0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MUSES01

MUSES01

  • 厂商:

    NJR(新日本无线)

  • 封装:

    DIP8

  • 描述:

    IC AUDIO 2 CIRCUIT 8DIP

  • 数据手册
  • 价格&库存
MUSES01 数据手册
MUSES01 High Quality Audio , J-FET Input, Dual Operational Amplifier The MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications with advanced circuitry and layout, unique material and assembled technology by skilled-craftwork. It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound. FEATURES ●Operating Voltage ●Output noise ●Input Offset Voltage ●Input Bias Current ●Voltage Gain ●Slew Rate ●Bipolar Technology ●Package Outline Vopr=±9V to ±16V 9.5nV/ √ Hz at f=1kHz 0.8mV typ. 5mV max. 200pA typ. 800pA max. at Ta=25°C 105dB typ. 12V/μs typ. DIP8 PIN CONFIGURATION PIN FUNCTION 1 2 3 4 8 PACKAGE OUTLINE -+ +- 7 6 5 1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V5. B +INPUT 6. B -INPUT 7. B OUTPUT 8.V+ MUSES01D MUSES and this logo are trademarks of New Japan Radio Co., Ltd. Ver.2009-12-18 -1- MUSES01 ABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER Supply Voltage Common Mode Input Voltage Differential Input Voltage Power Dissipation Output Current Operating Temperature Range Storage Temperature Range SYMBOL V+/VVICM VID PD IO T opr T stg RATING ±18 ±15 (Note1) ±30 910 ±25 -40 to +85 -50 to +150 UNIT V V V mW mA °C °C (Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage. RECOMMENDED OPERATING CONDITION (Ta=25°C) PARAMETER Supply Voltage SYMBOL V+/VTEST CONDITION MIN. ±9 TYP. MAX. ±16 UNIT V ELECTRIC CHARACTERISTICS DC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified) PARAMETER Operating Current Input Offset Voltage Input Bias Current Input Offset Current Voltage Gain Common Mode Rejection Ratio Supply Voltage Rejection Ratio Max Output Voltage 1 Max Output Voltage 2 Input Common Mode Voltage Range SYMBOL I cc V IO IB I IO AV CMR SVR V OM1 V OM2 V ICM TEST CONDITION N o Signal, R L = ∞ R s ≤ 10k Ω ( Note2, 3) ( Note2, 3) ( Note2, 3) R L ≥ 2k Ω, V o = ±10V V ICM = ±8V (Note4) V /V = ±9.0 to ±16.0V (Note2, 5) R L =10k Ω R L =2k Ω C MR ≥ 60dB + - MIN. 90 60 70 ±12 ±10 ±8 TYP. 8 .5 0.8 200 100 105 75 83 ±13.5 ±12.5 ±9.5 MAX. 12.0 5.0 800 400 - UNIT mA mV pA pA dB dB dB V V V (Note2) Measured at VICM=0V (Note3) Written by the absolute rate. (Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to −8V) (Note5) SVR is calculated by specified change in offset voltage. (V+/V−=±9V to ±16V) -2- Ver.2009-12-18 MUSES01 AC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified) PARAMETER Gain Bandwidth Product Unity Gain Frequency Phase Margin Input Noise Voltage1 Input Noise Voltage2 Total Harmonic Distortion Channel Separation Positive Slew Rate Negative Slew Rate SYMBOL GB fT φM V NI V N2 THD CS +SR -SR TEST CONDITION f=10kHz AV=+100, RS=100Ω, RL=2kΩ, CL=10pF AV=+100, RS=100Ω, RL=2kΩ,CL=10pF f=1kHz, AV=+100, RS=100Ω RIAA, RS =2.2kΩ, 30kHz LPF f=1kHz, AV=+10, RL=2kΩ, Vo=5Vrms f=1kHz, AV=-+100, RS=1kΩ, RL=2kΩ AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF MIN. TYP. 3.3 3.0 60 9 .5 1.2 0.002 1 50 12 13 MAX. 3.0 UNIT MHz MHz deg nV/ √ Hz μ Vrms % dB V/ μ s V/ μ s Ver.2009-12-18 -3- MUSES01 Application Notes •Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation PD. The dependence of the MUSES01 PD on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is PD on ambient temperature 25°C, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD lower than 25°C to it on 25°C. The PD is shown following formula as a function of the ambient temperature between those points. Dissipation Power PD = Tjmax - Ta θja [W] (Ta=25°C to Ta=150°C) Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, PD is different in each package. While, the actual measurement of dissipation power on MUSES01 is obtained using following equation. (Actual Dissipation Power) = (Supply Voltage VDD) X (Supply Current IDD) – (Output Power Po) The MUSES01 should be operated in lower than PD of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. PD [mW] DIP8 910 Ta [deg] -40 25 85 (Topr max.) 150 (Tstg max.) Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01 -4- Ver.2009-12-18 MUSES01 TYPICAL CHARACTERISTICS TO TA L H A R M O N I D I TO R TI N + N O I E C S O S vs O U T P U T A M P LI U D E (F R E Q U E N C Y ) T V + /V -= ± ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃ 16V TO TA L H A R M O N I D I TO R TI N + N O I E C S O S vs O U T P U T A M P LI U D E (F R E Q U E N C Y ) T V + /V -= ± ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃ 15V 10 1 T H D + N oi [ ] se % T H D + N oi [ ] se % 10 1 0. 1 0.1 f= 20kH z f= 20kH z 0. 01 1kH z 0. 01 1kH z 100H z 20H z 0. 001 0.0001 0.01 0. 1 100H z 20H z 0. 001 0. 0001 1 10 0. 01 0. 1 1 10 O ut put A m plt i ude [ rm s] V TO TA L H A R M O N I D I TO R TI N + N O I E C S O S vs O U T P U T A M P LI U D E (F R E Q U E N C Y ) T V + /V -= ± ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃ 9V O ut put A m plt i ude [ rm s] V E Q U I A LE N T I P U T N O I E D E N S I Y vs V N S T FR E Q U E N C Y 80 70 V + /V -= ± ,A V = + 100,R s= 100ohm ,R L = ∞ a= 25℃ 16V ,T 10 1 N oi D ensi y [ / H z] se t nV √ 60 50 40 30 20 10 0 T H D + N oi [ ] se % 0. 1 f= 20kH z 0. 01 1kH z 100H z 20H z 0. 001 0.0001 0. 01 0.1 1 10 1 10 100 F requency [ z] H 1, 000 10, 000 O ut put A m plt i ude [ rm s] V E Q U I A LE N T I P U T N O I E D E N S I Y vs V N S T FR E Q U E N C Y 80 70 V + /V -= ± ,A V = + 100,R s= 100ohm ,R L = ∞ a= 25℃ 15V ,T E Q U I A LE N T I P U T N O IS E D E N S I Y vs V N T FR E Q U E N C Y V + /V -= ± ,A V = + 100,R s= 100ohm ,R L = ∞ a= 25℃ 9V ,T 80 70 N oi D ensi y [ / H z] se t nV √ N oi D ensiy [ / H z] se t nV √ 60 50 40 30 20 10 0 1 10 100 F requency [ z] H 1, 000 10, 000 60 50 40 30 20 10 0 1 10 100 F requency [H z] 1, 000 10,000 Ver.2009-12-18 -5- MUSES01 C H A N N E L S E P A R A T I N vs F R E Q U E N C Y O V + /V -= ± ,A V =-100, R S =1kohm , R L = 2kohm , V o= 5V rm s, T a= 25℃ 16V C H A N N E L S E P A R A T I N vs F R E Q U E N C Y O V + /V -= ± ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 5V rm s, T a= 25℃ 15V -120 -130 -120 -130 C hannel S eparat on [ ] i dB C hannel S eparat on [ ] i dB -140 -150 -160 -170 -180 10 100 1000 F requency [ z] H 10000 100000 -140 -150 -160 -170 -180 10 100 1000 F requency [ z] H 10000 100000 C H A N N E L S E P A R A T I N vs F R E Q U E N C Y O V + /V -= ± ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 4V rm s, T a= 25℃ 9V C LO S E D -LO O P G A I / H A S E vs NP F R E Q U E N C Y (T E M P E R A T U R E ) V + /V -= ± , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF 16V -120 -130 60 G ai n V IN = -30dB m ,V i = 0V cm 180 120 60 40 T a=25℃ -40℃ C hannel S eparat on [ ] i dB V ol age G ai [ ] t n dB 20 P hase -150 -160 -170 -180 10 100 1000 F requency [ z] H 10000 100000 0 -20 -40 -60 1 10 85℃ 0 -60 -120 -180 100 1000 10000 100000 F requency [ z] kH C LO S E D LO O P G A I / H A S E vs NP F R E Q U E N C Y (T E M P E R A T U R E ) V + /V -= ± , A V = + 100, R S = 100ohm , R T = 50ohm , R L = 2kohm ,C L = 10pF 9V C LO S E D -LO O P G A I / H A S E vs NP F R E Q U E N C Y (T E M P E R A T U R E ) V + /V -= ± , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF 15V 60 G ai n V IN = -30dB m ,V i = 0V cm 180 120 60 G ai n V IN = -30dB m ,V i = 0V cm 180 120 60 40 T a=25℃ -40℃ 40 T a=25℃ -40℃ V ol age G ai [ ] t n dB V ol age G ai [ ] t n dB P hase S hi t [ f deg] 20 P hase 60 0 -60 20 P hase 0 -20 -40 -60 1 10 85℃ 0 -20 -40 -60 1 10 85℃ 0 -60 -120 -180 100 1000 10000 100000 -120 -180 100 1000 10000 100000 F requency [ z] kH F requency [ z] kH -6- Ver.2009-12-18 P hase S hi t [ f deg] P hase S hi t [ f deg] -140 MUSES01 T R A N S I N T R E S P O N S E (T E M P E R A T U R E ) E V + /V -=± ,V IN =2V P -P ,f= 100kH z 16V P ul seE dge= 10nsec,G v= 0dB ,C L =10pF , L = 2kohm R S LE W R A T E vs T E M P E R A T U R E V + /V -=± ,V IN =2V P -P ,f=100kH z 16V P ul dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm seE 6 Input V ol tage 2 1 20 5 4 O ut put V ol age [ ] t V 16 F al l 0 -1 T a=25℃ -40℃ 85℃ 3 2 1 0 -1 O utput V ol tage S l R at [ / sec] ew e Vμ I nput V ol age [ ] t V 12 -2 -3 -4 -5 -6 8 Ri se 4 -2 -2 -1 0 1 2 3 4 5 6 7 8 9 0 -50 -25 0 25 50 75 100 125 150 T i e [μ m sec] T em perature [℃] T R A N S IE N T R E S P O N S E (T E M P E R A T U R E ) V /V =± ,V IN =2V P -P ,f= 100kH z 15V P ul dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm seE + - S LE W R A T E vs T E M P E R A T U R E V + /V -=± ,V IN =2V P -P ,f=100kH z 15V P ul dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm seE 6 Input V ol tage 2 1 20 5 4 O ut put V ol age [ ] t V 16 0 -1 T a=25℃ -40℃ 85℃ F al l 3 2 1 0 -1 O utput V ol tage S l R at [ / sec] ew e Vμ I nput V ol age [ ] t V 12 -2 -3 -4 -5 -6 8 Ri se 4 -2 -2 -1 0 1 2 3 4 5 6 7 8 9 0 -50 -25 0 25 50 75 100 125 150 T i e [ sec] mμ T em perature [℃] S LE W R A T E vs T E M P E R A T U R E V + /V -=± ,V IN =2V P -P ,f= 100kH z 9V P ul dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm seE T R A N S IE N T R E S P O N S E (T E M P E R A T U R E ) V + /V -=± ,V IN =2V P -P ,f= 100kH z 9V P ul seE dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm 6 Input V ol tage 2 1 S l R at [ / sec] ew e Vμ 20 5 4 O ut put V ol age [ ] t V 16 I nput V olage [ ] t V F al l 0 -1 T a=25℃ -40℃ 85℃ 3 2 1 0 -1 O utput V ol tage 12 -2 -3 -4 -5 -6 8 Ri se 4 -2 -2 -1 0 1 2 3 4 5 6 7 8 9 0 -50 -25 0 25 50 75 100 125 150 T i e [ sec] mμ T em perature [℃] Ver.2009-12-18 -7- MUSES01 SUPPLY CURRENT vs SUPPLY VOLTAGE (TEMPERATURE) GV=0dB,Vin=0V SUPPLY CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) GV=0dB,Vin=0V 12 Ta=25℃ 10 -40℃ 12 ±16V 10 V /V =±15V + - Supply Current [mA] Supply Current [mA] 8 8 6 85℃ 4 6 ±9V 4 2 2 0 0 3 6 9 12 Supply Voltage [V+/V-] 15 18 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE (TEMPERATURE) VICM=0V,Vin=0V POWER SUPPLY REJECTION RATIO vs TEMPERATURE 100 90 V ICM=0V ,V+/V-=±9V to ±16V 5 4 Power Supply Rejection Ratio [dB] 14 16 18 3 -40℃ Ta=25℃ 80 70 60 50 40 30 20 10 Input Offset Voltage [mV] 2 1 0 -1 -2 -3 -4 -5 0 2 4 6 8 10 + 85℃ 12 - 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 Supply Voltage [V /V ] INPUT BIAS CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) V ICM=0V INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) 1,000,000 V+ /V -=±16V 1,000,000 100,000 100,000 Input Bias Current [pA] 10,000 V+/V-=±15V 1,000 ±16V 100 Input Bias Current [pA] 10,000 85℃ 1,000 Ta=25℃ 100 10 ±9V 10 -40℃ 1 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 1 -16 -12 -8 -4 0 4 8 Common-Mode Votage [V] 12 16 -8- Ver.2009-12-18 MUSES01 INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) 1,000,000 V /V =±15V + - INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) 1,000,000 V /V =±9V + - 100,000 100,000 Input Bias Current [pA] Input Bias Current [pA] 10,000 85℃ 1,000 Ta=25℃ 100 10,000 85℃ 1,000 Ta=25℃ 100 10 -40℃ 1 -15 -12 -9 -6 -3 0 3 6 9 Common-Mode Voltage [V] 12 15 10 -40℃ 1 -9 -6 -3 0 3 Cmmon-Mode Voltage [V] 6 9 INPUT OFFSET CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) V ICM=0V IN P U T O F F S E T V O LT A G E vs O U T P U T V O LT A G E (T E M P E R A T U R E ) V + /V -= ± ,R L = 2kohm to 0V 15V 10,000 5 4 1,000 I nput O f set V ol age [ V ] f at m Input Offset Current [pA] 3 2 1 0 -1 -2 -3 -4 -5 85℃ -40℃ T a=25℃ V+/V-=±15V 100 ±16V 10 ±9V 1 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 -16 -12 -8 -4 0 4 8 12 16 O utput V ol tage [V ] O P E N -LO O P V O LT A G E G A I vs T E M P E R A T U R E N O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E R L = 2kohm to 0V ,V + /V -= ± ,V o= -11V to + 11V 16V R L = 2kohm to 0V ,V + /V -= ± ,V o= -10V to + 10V 15V 120 110 120 110 100 O pen-Loop V ol age G ai [ ] t n dB O pen-Loop V ol age G ai [ ] t n dB 100 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 T em perat ure [ ℃] T em perat ure [ ℃] Ver.2009-12-18 -9- MUSES01 O P E N -LO O P V O LT A G E G A I vs T E M P E R A T U R E N R L = 2kohm to 0V ,V + /V -= ± ,V o= -4V t + 4V 9V o 120 110 COMMON-MODE REJECTION RATIO vs TEMPERATUER (INPUT COMMON-MODE VOLTAGE) V+ /V- =±16V 100 O pen-Loop V ol age G ai [ ] at n dB 100 Common-Mode Rejection Ratio [dB] 90 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 80 0V to +9V 60 Vicm=0V to -9V 40 20 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 T em perat ure [ ℃] COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V +/V- =±15V COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V + /V - =±9V 100 100 0V to +2V Common-Mode Rejection Ratio [dB] 80 Common-Mode Rejection Ratio [dB] 80 60 Vicm=0V to -8V 40 0V to +8V 60 Vicm=0V to -2V 40 20 20 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 M A X I U M O U T P U T V O LT A G E vs M LO A D R E S I T A N C E (T E M P E R A T U R E ) S 18 15 M axi um O ut m put V ol age [V ] t -40℃ V + /V -= ± ,G v= open,R L to 0V 16V M A X I U M O U T P U T V O LT A G E vs M LO A D R E S I T A N C E (T E M P E R A T U R E ) S 16 12 M axi um O ut m put V ot age [V ] V + /V -= ± ,G v= open,R L to 0V 15V 12 9 6 3 0 -3 -6 -9 -12 -15 -18 10 100 1000 10000 100000 25℃ 85℃ 8 4 0 -4 -8 -12 -16 10 -40℃ 85℃ 25℃ 100 1000 10000 100000 Load R esi ance [ohm ] st Load R esi ance [ohm ] st - 10 - Ver.2009-12-18 MUSES01 M A X IM U M O U T P U T V O LT A G E vs LO A D R E S I T A N C E (T E M P E R A T U R E ) S 10 8 M axi um O ut m put V ol age [V ] t M axi um O ut m put V ol age [V ] t V + /V -= ± ,G v= open,R L to 0V 9V M A X I U M O U T P U T V O LT A G E vs M T E M P E R A T U R E (S U P P LY V O LT A G E ) G v= open,R L = 2kohm to 0V 18 15 -40℃ 6 4 2 0 -2 -4 -6 12 9 6 3 0 -3 -6 -9 -12 -15 -18 V +/ -=± V 15V ± 9V ± 16V 85℃ 25℃ -8 -10 10 100 1000 10000 100000 -50 -25 0 25 50 75 100 125 150 Load R esi ance [ohm ] st T em perature [℃] G A IN B A N D W ID T H P R O D U C T vs T E M P E R A T U R E (S U P P LY V O LT A G E ) f=10kH z,A V =80dB , R S =10ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-50dB m M A X IM U M O U T P U T V O LT A G E vs T E M P E R A T U R E (S U P P LY V O LT A G E ) G v= open,R L =10kohm to 0V 18 15 M axi um O ut m put V ol age [V ] t 6 9 6 3 0 -3 -6 -9 -12 -15 -18 -50 -25 0 25 50 75 100 125 150 V +/ -=± V 15V ± 16V ± 9V G ai B andw i h P roduct [ H z] n dt M 12 5 4 V +/V -=± 15V ± 16V 3 2 1 0 -50 -25 0 25 50 75 100 125 150 ± 9V T em perature [℃] T em perature [℃] U N IT Y G A IN F R E Q U E N C Y vs T E M P E R A T U R E (S U P P LY V O LT A G E ) A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =56pF ,V IN =-30dB m P H A S E M A R G IN vs T E M P E R A T U R E (S U P P LY V O LT A G E ) A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-30dB m 6 5 4 3 2 ± 9V 90 V+ /V-=±15V ±16V U ni y G ai F requency [ H z] t n M P hase M argi [ n deg] V + /V -=± 15V ± 16V 60 ±9V 30 1 0 -50 -25 0 25 50 75 100 125 150 0 -50 -25 0 25 50 75 100 125 150 T em perature [℃] T em perature [℃] Ver.2009-12-18 - 11 - MUSES01 MEMO [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 12 - Ver.2009-12-18
MUSES01 价格&库存

很抱歉,暂时无法提供与“MUSES01”相匹配的价格&库存,您可以联系我们找货

免费人工找货