0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TD1507TR

TD1507TR

  • 厂商:

    TECHCODE(泰德)

  • 封装:

    TO252-5L

  • 描述:

    3A 150KHz 输出可调整 脉宽调制降压DC/DC转换器

  • 数据手册
  • 价格&库存
TD1507TR 数据手册
        Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 General Description  Features    The TD1507 is a series of easy to use fixed and adjustable step-down (buck) switch-mode voltage regulators. These devices are available in fixed output voltage of 5V, and an adjustable output version. Both versions are capable of driving a 3A load with excellent line and load regulation. z z z z z z z z z z z z Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, and a fixed-frequency oscillator. The output voltage is guaranteed to ±3% tolerance under specified input voltage and output load conditions. The oscillator frequency is guaranteed to ±15%. External shutdown is included, featuring typically 80 µA standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions. The TD1507 is available in TO252-5L packages.   5V and adjustable output versions Output adjustable from 1.23v to 43V Fixed 150KHz frequency internal oscillator Guaranteed 3A output load current Input voltage range up to 45V Low power standby mode, IQ typically 80 µA TTL shutdown capability Excellent line and load regulation Requires only 4 external components High efficiency Thermal shutdown and current limit protection Available in TO252-5L packages Applications  z z z z z z z Simple High-efficiency step-down regulator On-card switching regulators Positive to negative converter LCD monitor and LCD TV DVD recorder and PDP TV Battery charger Step-down to 3.3V for microprocessors Package Types                      TO252­5L  Figure 1. Package Types of TD1507  December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  1          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Pin Configurations        Figure 2 Pin Configuration of TD1507 (Top View)  Pin Description      Pin Number Pin Name 1 Vin 2 Output 3 GND 4 FB 5 ON/OFF Description Input supply voltage Switching output Ground Output voltage feedback ON/OFF shutdown Active is “Low” or floating   December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  2          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Ordering Information    TD1507    □ □    Circuit Type                                                                                                                          Output Voltage: 5:5V R:ADJ Package T: TO252-5L Function Block  Figure 3 Function Block Diagram of TD1507      December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  3          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507   Absolute Maximum Ratings  Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device  at  these  or  any  other  conditions  above  those  indicated  in  the  operation  is  not  implied.  Exposure  to  absolute  maximum  rating  conditions  for  extended  periods  may  affect  reliability.    Parameter Symbol Value Unit Input Voltage VIN -0.3 to 45 V Feedback Pin Voltage VFB -0.3 to Vin+0.3 V ON/OFF Pin Voltage VEN -0.3 to Vin+0.3 V Output Pin Voltage VSW -0.3 to Vin+0.3 V Power Dissipation PD Internally limited mW Operating Junction Temperature TJ 150 ºC Storage Temperature TSTG -65 to 150 ºC Lead Temperature (Soldering, 10 sec) TLEAD 260 ºC 2000 V ESD (HBM) MSL Level3 Thermal Resistance-Junction to Ambient Thermal Resistance-Junction to Case 50 10 RθJA RθJC ºC / W ºC / W Recommended Operating Conditions  Parameter  Symbol Min. Max. Unit Input Voltage VIN 3.6 45 V Operating Junction Temperature TJ -40 125 ºC Operating Ambient Temperature TA -40 85 ºC       December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  4          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Electrical Characteristics  Specifications with boldface type are for full operationg temperature range, the other type are for TJ=25OC.  Note1: Thermal resistance with copper area of approximately 3 in2.    Parameters Symbol Test Condition Min. Typ. Max. Unit Feedback bias current Ib Adjustable only, VFB=1.3V 10 50/100 nA Quiescent current IQ VFB=12V force driver off 5 10 mA Standby quiescent current ISTBY ON/OFF=5V, VIN=36V 80 200/250 uA Oscillator frequency FOSC 150 173 KHz Saturation voltage VSAT IOUT=3A 1.2 1.4/1.5 V Current Limit ICL Peak Current (VFB=0V) 4.5 5.5/6.5 A Output leakage current IL IL Output=0V (VFB=12V) 50 uA 2 30 mA 1.3 0.6 V Output leakage current 127 Output=-1V (VIN=36V) ON/OFF pin logic input Threshold voltage VIL VIH IH IL ON/OFF pin input current Low (Regulator ON) High (Regulator OFF) VLOGIC=2.5V(Regulator OFF) VLOGIC=0.5V(Regulator ON) 2.0 1.3 V 5 15 uA 0.02 5 uA Thermal Resistance Junction to Case θJC TO252-5L 10 O Thermal Resistance Junction to Ambient (Note1) θJA TO252-5L 50 O C/W C/W       December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  5          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Electrical Characteristics(Cont.)  Specifications with boldface type are for full operationg temperature range, the other type are for TJ=25OC.  Note1: Thermal resistance with copper area of approximately 3 in2.    Parameters Symbol Vout: Output Voltage TD1507 ADJ η: Efficiency Vout: Output Voltage TD1507 Test Condition 11V ≤ VIN ≤ 45V, 0.2A ≤ ILOAD≤3A, VOUT for 9V Min. 1.193/ 1.180 VIN=12V,VOUT=9V,ILOAD =3A 7V ≤ VIN ≤ 45V, 0.2A ≤ ILOAD≤3A Typ. 1.23 Max. 1.267/ 1.280 88 4.800/ 4.750 5.0 Unit V % 5.200/ 5.250 V 5V η: Efficiency VIN=12V, ILOAD=3A 83 %       December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  6          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Typical Performance Characteristics  Figure 4. Output Voltage vs. Temperature  Figure 5. Switching Frequency vs. Temperature          Figure 6. Output Saturation Characteristics  Figure 7. Quiescent Current vs. Temperature        December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  7          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Typical Performance Characteristics(Cont.)  Figure 8. ON/OFF Pin Voltage  Figure 9. ON/OFF Pin Sink Current      Figure 10. Output Saturation Characteristics            December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  8          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Typical Application Circuit Figure 11. Typical Application of TD1507 For 5V  Input Voltage Inductor (L1) 8V ~ 18V 8V ~ 45V 33uh 47uh Output Capacitor (Cout) Through Hole Electrolytic Surface Mount Tantalum 330uf/25V 220uf/10V 470uf/25V 330uf/10V Table 1. TD1507 Series Buck Regulator Design Procedure For 5V  December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  9          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Typical Application Circuit   Figure 12. Typical Application of TD1507 For ADJ    Note:In PCB layout. Reserved an area for CFF Vout R1 R2 Cf (Operational) 3.3V 1.6K 2.7K 33nf 5V 3.6K 11K 10nf 9V 6.8K 43K 1.5nf 12V 1.5K 13K 1nf Table 2. Vout VS. R1, R2, Cf Select Table  Output Voltage Input Voltage Inductor (L1) 3.3V 6V ~ 18V 47uh 470uf/25V 6V ~45V 68uh 560uf/25V 8V ~ 18V 33uh 330uf/25V 8V ~45V 47uh 470uf/25V 12V ~18V 47uh 330uf/25V 12V ~45V 47uh 470uf/25V 15V ~ 18V 47uh 220uf/25V 15V ~45V 47uh 330uf/25V 5V 9V 12V Output Capacitor (Cout) Through Hole Electrolytic Table 3. Typical Application Buck Regulator Design Procedure  December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  10          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Function Description  Pin Functions +VIN This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator Ground Circuit ground. Output Internal switch. The voltage at this pin switches between (+VIN – VSAT) and approximately – 0.5V, with a duty cycle of approximately VOUT / VIN. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum. Feedback Senses the regulated output voltage to complete the feedback loop. ON/OFF Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 80uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 25V) shuts the regulator down. If this shutdown feature is not needed, the ON /OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition. Thermal Considerations  The TD1507 is available in two packages, a 5-pin TO-252 The TO-252 package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The TD1507 junction temperature rises above ambient temperature for a 3A load and different input and output voltages. The data for these curves was taken with the TD1507 operating as a buck switching regulator in an ambient temperature of 25oC (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require more heat sinking. The TO-252 surface mount package tab is designed to be soldered to the copper on a printed circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PC board copper area that the package is soldered to should be at least 0.4 in2, and ideally should have 2 or more square inches of 2 oz. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in2, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PC board with large copper areas and/or airflow are recommended. The TD1507 (TO-252package) junction temperature rise above ambient temperature with a 3A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PC board to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 3A are used, double sided or multilayer PC boards with large copper areas and/or airflow might be needed, especially for high ambient temperatures and high output voltages. For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (Once exception to December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  11          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Function Description(Cont.)  this is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further. Setting the Output Voltage  The output voltage is set using a resistive voltage divider from the output voltage to FB(TD1507-ADJ) The voltage divider divides the output voltage down by the ratio: VFB = VOUT * R1 / (R1 + R2) Thus the output voltage is: VOUT = 1.235 * (R1 + R2) / R1 R1 can be as high as 100KΩ, but a typical value is 10KΩ. Using that value, R2 is determined by: R2 ~= 8.18 * (VOUT – 1.235) (KΩ) For example, for a 3.3V output voltage, R1 is 10KΩ, and R2is 17KΩ. Inductor  The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor results in less ripple current that in turn results in lower output ripple voltage. However, the larger value inductor has a larger physical size, higher series resistance, and/or lower saturation current. Choose an inductor that does not saturate under the worst-case load conditions. A good rule for determining the inductance is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum load current. Also, make sure that the peak inductor current (the load current plus half the peak to peak inductor ripple current) is below the TBDA minimum current limit. The inductance value can be calculated by the equation: L = (VOUT) * (VIN-VOUT) / VIN * f * ∆I Where VOUT is the output voltage, VIN is the input voltage, f is the switching frequency, and ∆I is the peak-to-peak inductor ripple current. Input Capacitor  The input current to the step-down converter is discontinuous, and so a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. A low ESR capacitor is required to keep the noise at the IC to a minimum. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice. The input capacitor value should be greater than 10μF. The capacitor can be electrolytic, tantalum or ceramic. However since it absorbs the input switching current it requires an adequate ripple current rating. Its RMS current rating should be greater than approximately 1/2 of the DC load current. For insuring stable operation should be placed as close to the IC as possible. Alternately a smaller high quality ceramic 0.1μF capacitor may be placed closer to the IC and a larger capacitor placed further away. If using this technique, it is recommended that the larger capacitor be a tantalum or electrolytic type. All ceramic capacitors should be places close to the TD1507. Output Capacitor  The output capacitor is required to maintain the DC output voltage. Low ESR capacitors are preferred to keep the output voltage ripple low. The characteristics of the output capacitor also affect the stability of the regulation control system. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance, December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  12          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Function Description(Cont.)  and so the output voltage ripple is mostly independent of the ESR. The output voltage ripple is estimated to be: VRIPPLE ~= 1.4 * VIN * (fLC/fSW)^2 Where VRIPPLE is the output ripple voltage, VIN is the input voltage, fLC is the resonant frequency of the LC filter, fSW is the switching frequency. In the case of tanatalum or lowESR electrolytic capacitors, the ESR dominates the impedance at the switching frequency, and so the output ripple is calculated as: VRIPPLE ~= ∆I * RESR Where VRIPPLE is the output voltage ripple, ∆I is the inductor ripple current, and RESR is the equivalent series resistance of the output capacitors. Output Rectifier Diode  The output rectifier diode supplies the current to the inductor when the high-side switch is off. To reduce losses due to the diode forward voltage and recovery times, use a Schottky rectifier. Table 1 provides the Schottky rectifier part numbers based on the maximum input voltage and current rating. Choose a rectifier who’s maximum reverse voltage rating is greater than the maximum input voltage, and who’s current rating is greater than the maximum load current. Feedforward Capacitor (CFF)    For output voltages greater than approximately 8V, an additional capacitor is required. The compensation capacitor is typically between 100 pF and 33 nF, and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltages, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors. This capacitor type can be ceramic, plastic, silver mica, etc.(Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.) Note:In PCB layout. Reserved an area for CFF.  Over Current Protection (OCP)  The cycle by cycle current limit threshold is set between 4A and 5A. When the load current reaches the current limit threshold, the cycle by cycle current limit circuit turns off the high side switch immediately to terminate the current duty cycle. The inductor current stops rising. The cycle by cycle current limit protection directly limits inductor peak current. The average inductor current is also limited due to the limitation on peak inductor current. When the cycle by cycle current limit circuit is triggered, the output voltage drops as the duty cycle is decreasing. Thermal Management and Layout  Consideration  In the TD1507 buck regulator circuit, high pulsing current flows through two circuit loops. The first loop starts from the input capacitors, to the VIN pin, to the VOUT pins, to the filter inductor, to the output capacitor and load, and then returns to the input capacitor through ground. Current flows in the first loop when the high side switch is on. The second loop starts from the inductor, to the output capacitors and load, to the GND pin of the TD1507, and to the VOUT pins of the TD1507. Current flows in the second loop when the low side diode is on. In PCB layout, minimizing the two loops area reduces the December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  13          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Function Description(Cont.)  noise of this circuit and improves efficiency. A ground plane is recommended to connect input capacitor, output capacitor, and GND pin of the TD1507. In the TD1507 buck regulator circuit, the two major power dissipating components are the TD1507 and output inductor. The total power dissipation of converter circuit can be measured by input power minus output power. Ptotal _loss = V IN × IIN – V O × IO The power dissipation of inductor can be approximately calculated by output current and DCR of inductor. Pinductor _loss= IO 2 × Rinductor × 1.1 The junction to ambient temperature can be got from power dissipation in the TD1507 and thermal impedance from junction to ambient. Several layout tips are listed below for the best electric and thermal performance. 1. Do not use thermal relief connection to the VIN and the GND pin. Pour a maximized copper area to the GND pin and the VIN pin to help thermal dissipation. 2. Input capacitor should be connected to the VIN pin and the GND pin as close as possible. 3. Make the current trace from VOUT pins to L to the GND as short as possible. 4. Pour copper plane on all unused board area and connect it to stable DC nodes, like VIN, GND, or VOUT. 5. Keep sensitive signal traces such as trace connecting FB pin away from the VOUT pins. T (jun-amb) =(Ptotalloss–Pinductorloss)× ΘJA The maximum junction temperature of TD1507 is 145°C, which limits the maximum load current capability. Please see the thermal de-rating curves for the maximum load current of the TD1507 under different ambient temperatures. The thermal performance of the TD1507 is trongly affected by the PCB layout. Extra care should be taken by users during the design process to nsure that the IC will operate under the recommended environmental conditions. December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  14          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Package Information           December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  15          Techcode® DATASHEET 3A 150KHz PWM Buck DC/DC Converter TD1507 Design Notes December,  20,  2005.                                                        Techcode  Semiconductor  Limited                                                  www.techcodesemi.com  16 
TD1507TR 价格&库存

很抱歉,暂时无法提供与“TD1507TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TD1507TR
  •  国内价格
  • 1+2.91384
  • 10+2.35980
  • 30+2.12382
  • 100+1.81602
  • 500+1.61082
  • 1000+1.53900

库存:2975

TD1507TR
    •  国内价格
    • 1+2.02080

    库存:66

    TD1507TR
    •  国内价格
    • 1+1.46250
    • 10+1.40000

    库存:14

    TD1507TR
    •  国内价格
    • 1+1.65186
    • 10+1.58631
    • 100+1.38966
    • 500+1.35033

    库存:2052