74AUP1T57
Low-power configurable gate with voltage-level translator
Rev. 5 — 15 August 2012
Product data sheet
1. General description
The 74AUP1T57 provides low-power, low-voltage configurable logic gate functions. The
output state is determined by eight patterns of 3-bit input. The user can choose the logic
functions AND, OR, NAND, NOR, XNOR, inverter and buffer. All inputs can be connected
to VCC or GND.
This device ensures a very low static and dynamic power consumption across the entire
VCC range from 2.3 V to 3.6 V.
The 74AUP1T57 is designed for logic-level translation applications with input switching
levels that accept 1.8 V low-voltage CMOS signals, while operating from either a single
2.5 V or 3.3 V supply voltage.
The wide supply voltage range ensures normal operation as battery voltage drops from
3.6 V to 2.3 V.
This device is fully specified for partial power-down applications using IOFF. The IOFF
circuitry disables the output, preventing the damaging backflow current through the device
when it is powered down.
Schmitt trigger inputs make the circuit tolerant to slower input rise and fall times across
the entire VCC range.
2. Features and benefits
Wide supply voltage range from 2.3 V to 3.6 V
High noise immunity
ESD protection:
HBM JESD22-A114F Class 3A exceeds 5000 V
MM JESD22-A115-A exceeds 200 V
CDM JESD22-C101E exceeds 1000 V
Low static power consumption; ICC = 1.5 A (maximum)
Latch-up performance exceeds 100 mA per JESD 78 Class II
Inputs accept voltages up to 3.6 V
Low noise overshoot and undershoot < 10 % of VCC
IOFF circuitry provides partial power-down mode operation
Multiple package options
Specified from 40 C to +85 C and 40 C to +125 C
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
3. Ordering information
Table 1.
Ordering information
Type number
Package
Temperature range
Name
Description
Version
74AUP1T57GW
40 C to +125 C
SC-88
plastic surface-mounted package; 6 leads
SOT363
74AUP1T57GM
40 C to +125 C
XSON6
plastic extremely thin small outline package; no leads; SOT886
6 terminals; body 1 1.45 0.5 mm
74AUP1T57GF
40 C to +125 C
XSON6
plastic extremely thin small outline package; no leads; SOT891
6 terminals; body 1 1 0.5 mm
74AUP1T57GN
40 C to +125 C
XSON6
extremely thin small outline package; no leads;
6 terminals; body 0.9 1.0 0.35 mm
SOT1115
74AUP1T57GS
40 C to +125 C
XSON6
extremely thin small outline package; no leads;
6 terminals; body 1.0 1.0 0.35 mm
SOT1202
4. Marking
Table 2.
Marking
Type number
Marking code[1]
74AUP1T57GW
a7
74AUP1T57GM
a7
74AUP1T57GF
a7
74AUP1T57GN
a7
74AUP1T57GN
a7
[1]
The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram
A
3
4
B
C
Fig 1.
1
Y
6
001aab583
Logic symbol
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
2 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
6. Pinning information
6.1 Pinning
74AUP1T57
74AUP1T57
B
1
6
B
1
6
C
GND
2
5
VCC
C
GND
2
5
VCC
A
3
4
Y
A
3
4
Y
B
1
6
C
GND
2
5
VCC
A
3
4
Y
001aah471
001aah473
Transparent top view
Transparent top view
001aah472
Fig 2.
74AUP1T57
Pin configuration SOT363
Fig 3.
Pin configuration SOT886
Fig 4.
Pin configuration SOT891,
SOT1115 and SOT1202
6.2 Pin description
Table 3.
Pin description
Symbol
Pin
Description
B
1
data input
GND
2
ground (0 V)
A
3
data input
Y
4
data output
VCC
5
supply voltage
C
6
data input
7. Functional description
Table 4.
Function table[1]
Input
Output
C
B
A
Y
L
L
L
H
L
L
H
L
L
H
L
H
L
H
H
L
H
L
L
L
H
L
H
L
H
H
L
H
H
H
H
H
[1]
H = HIGH voltage level; L = LOW voltage level.
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
3 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
7.1 Logic configurations
Table 5.
Function selection table
Logic function
Figure
2-input AND
see Figure 5
2-input AND with both inputs inverted
see Figure 8
2-input NAND with inverted input
see Figure 6 and 7
2-input OR with inverted input
see Figure 6 and 7
2-input NOR
see Figure 8
2-input NOR with both inputs inverted
see Figure 5
2-input XNOR
see Figure 9
Inverter
see Figure 10
Buffer
see Figure 11
VCC
B
C
B
C
Y
B
Y
1
6
2
5
3
4
VCC
B
C
C
Y
B
C
Y
B
Y
1
6
2
5
3
4
Y
001aab585
001aab584
Fig 5.
C
2-input AND gate or 2-input NOR gate with
both inputs inverted
Fig 6.
2-input NAND gate with input B inverted or
2-input OR gate with inverted C input
VCC
VCC
A
C
A
C
Y
A
Y
1
6
2
5
3
4
A
C
C
Y
A
C
Y
Y
A
1
6
2
5
3
4
001aab586
Fig 7.
C
Y
001aab587
2-input NAND gate with input C inverted or
2-input OR gate with inverted A input
Fig 8.
2-input NOR gate or 2-input AND gate with
both inputs inverted
VCC
VCC
B
B
C
Y
1
6
2
5
3
4
C
A
Y
Y
A
1
6
2
5
3
4
001aab589
001aab588
Fig 9.
2-input XNOR gate
74AUP1T57
Product data sheet
Y
Fig 10. Inverter
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
4 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
VCC
B
B
Y
1
6
2
5
3
4
Y
001aab590
Fig 11. Buffer
8. Limiting values
Table 6.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol
Parameter
VCC
supply voltage
IIK
input clamping current
VI
input voltage
IOK
output clamping current
Conditions
Min
VI < 0 V
[1]
VO < 0 V
[1]
Max
Unit
0.5
+4.6
V
50
-
mA
0.5
+4.6
V
50
-
mA
0.5
+4.6
V
-
20
mA
VO
output voltage
Active mode and Power-down mode
IO
output current
VO = 0 V to VCC
ICC
supply current
-
50
mA
IGND
ground current
50
-
mA
Tstg
storage temperature
65
+150
C
Ptot
total power dissipation
-
250
mW
[1]
[2]
Tamb = 40 C to +125 C
[2]
The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
For SC-88 package: above 87.5 C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 packages: above 118 C the value of Ptot derates linearly with 7.8 mW/K.
9. Recommended operating conditions
Table 7.
Recommended operating conditions
Symbol
Parameter
VCC
VI
VO
output voltage
Tamb
Conditions
Min
Max
Unit
supply voltage
2.3
3.6
V
input voltage
0
3.6
V
Active mode
0
VCC
V
Power-down mode; VCC = 0 V
0
3.6
V
40
+125
C
ambient temperature
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
5 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
10. Static characteristics
Table 8.
Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
Conditions
Min
Typ
Max
Unit
Tamb = 25 C
VT+
VT
VH
VOH
VOL
positive-going threshold
voltage
negative-going threshold
voltage
hysteresis voltage
HIGH-level output voltage
LOW-level output voltage
VCC = 2.3 V to 2.7 V
0.60
-
1.10
V
VCC = 3.0 V to 3.6 V
0.75
-
1.16
V
VCC = 2.3 V to 2.7 V
0.35
-
0.60
V
VCC = 3.0 V to 3.6 V
0.50
-
0.85
V
VCC = 2.3 V to 2.7 V
0.23
-
0.60
V
VCC = 3.0 V to 3.6 V
0.25
-
0.56
V
(VH = VT+ VT)
VI = VT+ or VT
IO = 20 A; VCC = 2.3 V to 3.6 V
VCC 0.1
-
-
V
IO = 2.3 mA; VCC = 2.3 V
2.05
-
-
V
IO = 3.1 mA; VCC = 2.3 V
1.9
-
-
V
IO = 2.7 mA; VCC = 3.0 V
2.72
-
-
V
IO = 4.0 mA; VCC = 3.0 V
2.6
-
-
V
IO = 20 A; VCC = 2.3 V to 3.6 V
-
-
0.10
V
IO = 2.3 mA; VCC = 2.3 V
-
-
0.31
V
IO = 3.1 mA; VCC = 2.3 V
-
-
0.44
V
IO = 2.7 mA; VCC = 3.0 V
-
-
0.31
V
IO = 4.0 mA; VCC = 3.0 V
-
-
0.44
V
-
-
0.1
A
VI = VT+ or VT
II
input leakage current
VI = GND to 3.6 V; VCC = 0 V to 3.6 V
IOFF
power-off leakage current
VI or VO = 0 V to 3.6 V; VCC = 0 V
-
-
0.1
A
IOFF
additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC = 0 V to 0.2 V
-
-
0.2
A
ICC
supply current
VI = GND or VCC; IO = 0 A;
VCC = 2.3 V to 3.6 V
-
-
1.2
A
ICC
additional supply current
VCC = 2.3 V to 2.7 V; IO = 0 A
[1]
-
-
-
A
VCC = 3.0 V to 3.6 V; IO = 0 A
[2]
-
-
-
A
CI
input capacitance
VCC = 0 V to 3.6 V; VI = GND or VCC
-
0.8
-
pF
CO
output capacitance
VO = GND; VCC = 0 V
-
1.7
-
pF
VCC = 2.3 V to 2.7 V
0.60
-
1.10
V
VCC = 3.0 V to 3.6 V
0.75
-
1.19
V
VCC = 2.3 V to 2.7 V
0.35
-
0.60
V
VCC = 3.0 V to 3.6 V
0.50
-
0.85
V
VCC = 2.3 V to 2.7 V
0.10
-
0.60
V
VCC = 3.0 V to 3.6 V
0.15
-
0.56
V
Tamb = 40 C to +85 C
VT+
VT
VH
positive-going threshold
voltage
negative-going threshold
voltage
hysteresis voltage
74AUP1T57
Product data sheet
(VH = VT+ VT)
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
6 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
Table 8.
Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
Conditions
VOH
VI = VT+ or VT
VOL
HIGH-level output voltage
LOW-level output voltage
Min
Typ
Max
Unit
IO = 20 A; VCC = 2.3 V to 3.6 V
VCC 0.1
-
-
V
IO = 2.3 mA; VCC = 2.3 V
1.97
-
-
V
IO = 3.1 mA; VCC = 2.3 V
1.85
-
-
V
IO = 2.7 mA; VCC = 3.0 V
2.67
-
-
V
IO = 4.0 mA; VCC = 3.0 V
2.55
-
-
V
IO = 20 A; VCC = 2.3 V to 3.6 V
-
-
0.1
V
IO = 2.3 mA; VCC = 2.3 V
-
-
0.33
V
IO = 3.1 mA; VCC = 2.3 V
-
-
0.45
V
IO = 2.7 mA; VCC = 3.0 V
-
-
0.33
V
IO = 4.0 mA; VCC = 3.0 V
-
-
0.45
V
VI = VT+ or VT
II
input leakage current
VI = GND to 3.6 V; VCC = 0 V to 3.6 V
-
-
0.5
A
IOFF
power-off leakage current
VI or VO = 0 V to 3.6 V; VCC = 0 V
-
-
0.5
A
IOFF
additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC = 0 V to 0.2 V
-
-
0.5
A
ICC
supply current
VI = GND or VCC; IO = 0 A;
VCC = 2.3 V to 3.6 V
-
-
1.5
A
ICC
additional supply current
VCC = 2.3 V to 2.7 V; IO = 0 A
[1]
-
-
4
A
VCC = 3.0 V to 3.6 V; IO = 0 A
[2]
-
-
12
A
VCC = 2.3 V to 2.7 V
0.60
-
1.10
V
VCC = 3.0 V to 3.6 V
0.75
-
1.19
V
VCC = 2.3 V to 2.7 V
0.33
-
0.64
V
VCC = 3.0 V to 3.6 V
0.46
-
0.85
V
VCC = 2.3 V to 2.7 V
0.10
-
0.60
V
VCC = 3.0 V to 3.6 V
0.15
-
0.56
V
Tamb = 40 C to +125 C
VT+
positive-going threshold
voltage
VT
negative-going threshold
voltage
VH
VOH
VOL
II
hysteresis voltage
HIGH-level output voltage
LOW-level output voltage
input leakage current
74AUP1T57
Product data sheet
(VH = VT+ VT)
VI = VT+ or VT
IO = 20 A; VCC = 2.3 V to 3.6 V
VCC 0.11 -
-
V
IO = 2.3 mA; VCC = 2.3 V
1.77
-
-
V
IO = 3.1 mA; VCC = 2.3 V
1.67
-
-
V
IO = 2.7 mA; VCC = 3.0 V
2.40
-
-
V
IO = 4.0 mA; VCC = 3.0 V
2.30
-
-
V
IO = 20 A; VCC = 2.3 V to 3.6 V
-
-
0.11
V
IO = 2.3 mA; VCC = 2.3 V
-
-
0.36
V
IO = 3.1 mA; VCC = 2.3 V
-
-
0.50
V
IO = 2.7 mA; VCC = 3.0 V
-
-
0.36
V
IO = 4.0 mA; VCC = 3.0 V
-
-
0.50
V
-
-
0.75
A
VI = VT+ or VT
VI = GND to 3.6 V; VCC = 0 V to 3.6 V
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
7 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
Table 8.
Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter
Conditions
Min
Typ
Max
Unit
IOFF
power-off leakage current
VI or VO = 0 V to 3.6 V; VCC = 0 V
-
-
0.75
A
IOFF
additional power-off
leakage current
VI or VO = 0 V to 3.6 V;
VCC = 0 V to 0.2 V
-
-
0.75
A
ICC
supply current
VI = GND or VCC; IO = 0 A;
VCC = 2.3 V to 3.6 V
-
-
3.5
A
ICC
additional supply current
VCC = 2.3 V to 2.7 V; IO = 0 A
[1]
-
-
7
A
VCC = 3.0 V to 3.6 V; IO = 0 A
[2]
-
-
22
A
[1]
One input at 0.3 V or 1.1 V, other input at VCC or GND.
[2]
One input at 0.45 V or 1.2 V, other input at VCC or GND.
11. Dynamic characteristics
Table 9.
Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.
Symbol Parameter
25 C
Conditions
Min
40 C to +125 C
Typ[1]
Max
Min
Max
(85 C)
Max
(125 C)
Unit
VCC = 2.3 V to 2.7 V; VI = 1.65 V to 1.95 V
tpd
propagation delay A, B, C to Y; see Figure 12
[2]
CL = 5 pF
2.1
3.6
5.5
0.5
6.8
7.5
ns
CL = 10 pF
2.6
4.1
6.2
1.0
7.9
8.7
ns
CL = 15 pF
2.9
4.6
6.8
1.0
8.7
9.6
ns
CL = 30 pF
3.8
5.8
8.2
1.5
10.8
11.9
ns
CL = 5 pF
1.7
3.4
5.4
0.5
6.0
6.6
ns
CL = 10 pF
2.1
4.0
6.2
1.0
7.1
7.9
ns
CL = 15 pF
2.5
4.5
6.7
1.0
7.9
8.7
ns
CL = 30 pF
3.3
5.6
8.2
1.5
10.0
11.0
ns
VCC = 2.3 V to 2.7 V; VI = 2.3 V to 2.7 V
tpd
propagation delay A, B, C to Y; see Figure 12
[2]
VCC = 2.3 V to 2.7 V; VI = 3.0 V to 3.6 V
tpd
propagation delay A, B, C to Y; see Figure 12
[2]
CL = 5 pF
1.4
3.2
4.9
0.5
5.5
6.1
ns
CL = 10 pF
1.8
3.7
5.7
1.0
6.5
7.2
ns
CL = 15 pF
2.2
4.2
6.3
1.0
7.4
8.2
ns
CL = 30 pF
3.0
5.4
7.8
1.5
9.5
10.5
ns
CL = 5 pF
2.0
2.9
3.9
0.5
8.0
8.8
ns
CL = 10 pF
2.5
3.5
4.6
1.0
8.5
9.4
ns
CL = 15 pF
2.8
3.9
5.2
1.0
9.1
10.1
ns
CL = 30 pF
3.6
5.1
6.6
1.5
9.8
10.8
ns
VCC = 3.0 V to 3.6 V; VI = 1.65 V to 1.95 V
tpd
propagation delay A, B, C to Y; see Figure 12
74AUP1T57
Product data sheet
[2]
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
8 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
Table 9.
Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.
Symbol Parameter
25 C
Conditions
40 C to +125 C
Unit
Min
Typ[1]
Max
Min
Max
(85 C)
Max
(125 C)
CL = 5 pF
1.6
2.8
4.2
0.5
5.3
5.9
ns
CL = 10 pF
2.0
3.4
4.9
1.0
6.1
6.8
ns
CL = 15 pF
2.3
3.9
5.5
1.0
6.8
7.5
ns
CL = 30 pF
3.1
5.0
6.9
1.5
8.5
9.4
ns
VCC = 3.0 V to 3.6 V; VI = 2.3 V to 2.7 V
propagation delay A, B, C to Y; see Figure 12
tpd
[2]
VCC = 3.0 V to 3.6 V; VI = 3.0 V to 3.6 V
propagation delay A, B, C to Y; see Figure 12
tpd
[2]
CL = 5 pF
1.3
2.8
4.2
0.5
4.7
5.2
ns
CL = 10 pF
1.7
3.3
4.9
1.0
5.7
6.3
ns
CL = 15 pF
2.0
3.8
5.5
1.0
6.2
6.9
ns
CL = 30 pF
2.8
4.9
7.0
1.5
7.8
8.6
ns
VCC = 2.3 V to 2.7 V
-
3.6
-
-
-
-
pF
VCC = 3.0 V to 3.6 V
-
4.3
-
-
-
-
pF
Tamb = 25 C
power dissipation
capacitance
CPD
fi = 1 MHz; VI = GND to VCC
[1]
All typical values are measured at nominal VCC.
[2]
tpd is the same as tPLH and tPHL
[3]
[3]
CPD is used to determine the dynamic power dissipation (PD in W).
PD = CPD VCC2 fi N + (CL VCC2 fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
(CL VCC2 fo) = sum of the outputs.
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
9 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
12. Waveforms
VI
A, B, C input
VM
VM
GND
t PHL
t PLH
VOH
VM
Y output
VM
VOL
t PLH
t PHL
VOH
Y output
VM
VM
VOL
001aab593
Measurement points are given in Table 10.
VOL and VOH are typical output voltage drop that occur with the output load.
Fig 12. Input A, B and C to output Y propagation delay times
Table 10.
Measurement points
Supply voltage
Output
Input
VCC
VM
VM
VI
tr = tf
2.3 V to 3.6 V
0.5 VCC
0.5 VI
1.65 V to 3.6 V
3.0 ns
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
10 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
VCC
VEXT
5 kΩ
G
VI
VO
DUT
CL
RT
RL
001aac521
Test data is given in Table 11.
Definitions for test circuit:
RL = Load resistance.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
VEXT = External voltage for measuring switching times.
Fig 13. Test circuit for measuring switching times
Table 11.
Test data
Supply voltage
Load
VEXT
[1]
VCC
CL
RL
2.3 V to 3.6 V
5 pF, 10 pF, 15 pF and 30 pF
5 k or 1 M
[1]
tPLH, tPHL
tPZH, tPHZ
tPZL, tPLZ
open
GND
2 VCC
For measuring enable and disable times RL = 5 k, for measuring propagation delays, setup and hold times and pulse width RL = 1 M.
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
11 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
13. Package outline
Plastic surface-mounted package; 6 leads
SOT363
D
E
B
y
X
A
HE
6
5
v M A
4
Q
pin 1
index
A
A1
1
2
e1
3
bp
c
Lp
w M B
e
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
max
bp
c
D
E
e
e1
HE
Lp
Q
v
w
y
mm
1.1
0.8
0.1
0.30
0.20
0.25
0.10
2.2
1.8
1.35
1.15
1.3
0.65
2.2
2.0
0.45
0.15
0.25
0.15
0.2
0.2
0.1
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
SOT363
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
04-11-08
06-03-16
SC-88
Fig 14. Package outline SOT363 (SC-88)
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
12 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
SOT886
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm
b
1
2
3
4x
(2)
L
L1
e
6
5
e1
4
e1
6x
A
(2)
A1
D
E
terminal 1
index area
0
1
2 mm
scale
Dimensions (mm are the original dimensions)
Unit
mm
max
nom
min
A(1)
0.5
A1
b
D
E
0.04 0.25 1.50 1.05
0.20 1.45 1.00
0.17 1.40 0.95
e
e1
0.6
0.5
L
L1
0.35 0.40
0.30 0.35
0.27 0.32
Notes
1. Including plating thickness.
2. Can be visible in some manufacturing processes.
Outline
version
SOT886
sot886_po
References
IEC
JEDEC
JEITA
European
projection
Issue date
04-07-22
12-01-05
MO-252
Fig 15. Package outline SOT886 (XSON6)
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
13 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm
1
SOT891
b
3
2
4×
(1)
L
L1
e
6
5
4
e1
e1
6×
A
(1)
A1
D
E
terminal 1
index area
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max
A1
max
b
D
E
e
e1
L
L1
mm
0.5
0.04
0.20
0.12
1.05
0.95
1.05
0.95
0.55
0.35
0.35
0.27
0.40
0.32
Note
1. Can be visible in some manufacturing processes.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
05-04-06
07-05-15
SOT891
Fig 16. Package outline SOT891 (XSON6)
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
14 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
XSON6: extremely thin small outline package; no leads;
6 terminals; body 0.9 x 1.0 x 0.35 mm
1
SOT1115
b
3
2
(4×)(2)
L
L1
e
6
5
4
e1
e1
(6×)(2)
A1
A
D
E
terminal 1
index area
0
0.5
scale
Dimensions
Unit
mm
1 mm
A(1)
A1
b
D
E
e
e1
max 0.35 0.04 0.20 0.95 1.05
nom
0.15 0.90 1.00 0.55
min
0.12 0.85 0.95
0.3
L
L1
0.35 0.40
0.30 0.35
0.27 0.32
Note
1. Including plating thickness.
2. Visible depending upon used manufacturing technology.
Outline
version
sot1115_po
References
IEC
JEDEC
JEITA
European
projection
Issue date
10-04-02
10-04-07
SOT1115
Fig 17. Package outline SOT1115 (XSON6)
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
15 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
XSON6: extremely thin small outline package; no leads;
6 terminals; body 1.0 x 1.0 x 0.35 mm
1
SOT1202
b
3
2
(4×)(2)
L
L1
e
6
5
4
e1
e1
(6×)(2)
A1
A
D
E
terminal 1
index area
0
0.5
scale
Dimensions
Unit
mm
1 mm
A(1)
A1
b
D
E
e
e1
L
L1
max 0.35 0.04 0.20 1.05 1.05
0.35 0.40
nom
0.15 1.00 1.00 0.55 0.35 0.30 0.35
min
0.12 0.95 0.95
0.27 0.32
Note
1. Including plating thickness.
2. Visible depending upon used manufacturing technology.
Outline
version
sot1202_po
References
IEC
JEDEC
JEITA
European
projection
Issue date
10-04-02
10-04-06
SOT1202
Fig 18. Package outline SOT1202 (XSON6)
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
16 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
14. Abbreviations
Table 12.
Abbreviations
Acronym
Description
CDM
Charged Device Model
CMOS
Complementary Metal Oxide Semiconductor
DUT
Device Under Test
ESD
ElectroStatic Discharge
HBM
Human Body Model
MM
Machine Model
15. Revision history
Table 13.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
74AUP1T57 v.5
20120815
Product data sheet
-
74AUP1T57 v.4
Modifications:
•
Package outline drawing of SOT886 (Figure 15) modified.
74AUP1T57 v.4
20111201
Product data sheet
-
74AUP1T57 v.3
74AUP1T57 v.3
20100721
Product data sheet
-
74AUP1T57 v.2
74AUP1T57 v.2
20090803
Product data sheet
-
74AUP1T57 v.1
74AUP1T57 v.1
20080103
Product data sheet
-
-
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
17 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
16. Legal information
16.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nexperia.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. Nexperia does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local Nexperia sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
Nexperia and its customer, unless Nexperia and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the Nexperia product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
16.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, Nexperia does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. Nexperia takes no
responsibility for the content in this document if provided by an information
source outside of Nexperia.
In no event shall Nexperia be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, Nexperia’s aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of Nexperia.
Right to make changes — Nexperia reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
74AUP1T57
Product data sheet
Suitability for use — Nexperia products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of a Nexperia product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. Nexperia and its suppliers accept no liability for
inclusion and/or use of Nexperia products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. Nexperia makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using Nexperia products, and Nexperia
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the Nexperia
product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
Nexperia does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using Nexperia
products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). Nexperia does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — Nexperia
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nexperia.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. Nexperia hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of Nexperia products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
18 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific Nexperia product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. Nexperia
accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without Nexperia’s warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
Nexperia’s specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies Nexperia for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond Nexperia’s
standard warranty and Nexperia’s product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
17. Contact information
For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
74AUP1T57
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 5 — 15 August 2012
©
Nexperia B.V. 2017. All rights reserved
19 of 20
74AUP1T57
Nexperia
Low-power configurable gate with voltage-level translator
18. Contents
1
2
3
4
5
6
6.1
6.2
7
7.1
8
9
10
11
12
13
14
15
16
16.1
16.2
16.3
16.4
17
18
©
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3
Functional description . . . . . . . . . . . . . . . . . . . 3
Logic configurations . . . . . . . . . . . . . . . . . . . . . 4
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
Recommended operating conditions. . . . . . . . 5
Static characteristics. . . . . . . . . . . . . . . . . . . . . 6
Dynamic characteristics . . . . . . . . . . . . . . . . . . 8
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 17
Legal information. . . . . . . . . . . . . . . . . . . . . . . 18
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 18
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Contact information. . . . . . . . . . . . . . . . . . . . . 19
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Nexperia B.V. 2017. All rights reserved
For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com
Date of release: 15 August 2012
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Nexperia:
74AUP1T57GF,132 74AUP1T57GM,115 74AUP1T57GM,132 74AUP1T57GW,125 74AUP1T57GN,132
74AUP1T57GS,132