MINI58DE
ARM® Cortex® -M0
32-bit Microcontroller
NuMicro® Family
Mini58DE Series
Datasheet
Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based
system design. Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.
For additional information or questions, please contact: Nuvoton Technology Corporation.
www.nuvoton.com
Dec. 09, 2015
Page 1 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.
MINI58DE
Table of Contents
1
GENERAL DESCRIPTION ....................................................................... 7
2
FEATURES ......................................................................................... 8
3
ABBREVIATIONS ................................................................................ 11
4
PARTS INFORMATION LIST AND PIN CONFIGURATION .............................. 12
4.1
NuMicro® Mini58 Series Naming Rule .............................................................12
4.2
NuMicro® Mini58 Series Product Selection Guide ...............................................13
4.3
PIN CONFIGURATION ..............................................................................14
4.3.1
LQFP 48-pin ................................................................................................... 14
4.3.2
QFN 33-pin .................................................................................................... 16
4.3.3
TSSOP 20-pin ................................................................................................. 18
Pin Description ........................................................................................19
4.4
BLOCK DIAGRAM ............................................................................... 23
5
NuMicro® Mini58 Block Diagram ...................................................................23
5.1
Functional Description ........................................................................... 24
6
6.1
ARM® Cortex® -M0 Core..............................................................................24
6.1.1
Overview ....................................................................................................... 24
6.1.2
Features ........................................................................................................ 24
6.2
System Manager ......................................................................................26
MINI58DE SERIES DATASHEET
6.2.1
Overview ....................................................................................................... 26
6.2.2
System Reset.................................................................................................. 26
6.2.3
Power Modes and Wake-up Sources ...................................................................... 32
6.2.4
System Power Architecture ................................................................................. 34
6.2.5
System Memory Mapping ................................................................................... 36
6.2.6
Memory Organization ........................................................................................ 36
6.2.7
System Timer (SysTick) ..................................................................................... 38
6.2.8
Nested Vectored Interrupt Controller (NVIC) ............................................................. 39
6.2.9
System Control Registers (SCB) ........................................................................... 42
6.3
Clock Controller .......................................................................................43
6.3.1
Overview ....................................................................................................... 43
6.3.2
Auto-trim........................................................................................................ 45
6.3.3
System Clock and SysTick Clock .......................................................................... 45
6.3.4
Peripherals Clock Source Selection ....................................................................... 46
6.3.5
Power-down Mode Clock .................................................................................... 48
Dec. 09, 2015
Page 2 of 83
Rev.1.02
MINI58DE
6.3.6
Flash Memory Controller (FMC) ....................................................................50
6.4
6.4.1
Overview ....................................................................................................... 50
6.4.2
Features ........................................................................................................ 50
General Purpose I/O (GPIO) ........................................................................51
6.5
6.5.1
Overview ....................................................................................................... 51
6.5.2
Features ........................................................................................................ 51
Timer Controller (TMR) ..............................................................................52
6.6
6.6.1
Overview ....................................................................................................... 52
6.6.2
Features ........................................................................................................ 52
Enhanced PWM Generator .........................................................................53
6.7
6.7.1
Overview ....................................................................................................... 53
6.7.2
Features ........................................................................................................ 53
Watchdog Timer (WDT)..............................................................................56
6.8
6.8.1
Overview ....................................................................................................... 56
6.8.2
Features ........................................................................................................ 56
Window Watchdog Timer (WWDT) ................................................................57
6.9
6.9.1
Overview ....................................................................................................... 57
6.9.2
Features ........................................................................................................ 57
6.10
UART Controller (UART) ............................................................................58
Overview ....................................................................................................... 58
6.10.2
Features ........................................................................................................ 58
I2C Serial Interface Controller (I2C) ................................................................59
6.11.1
Overview ....................................................................................................... 59
6.11.2
Features ........................................................................................................ 59
6.12
Serial Peripheral Interface (SPI) ....................................................................60
6.12.1
Overview ....................................................................................................... 60
6.12.2
Features ........................................................................................................ 60
6.13
Analog-to-Digital Converter (ADC) .................................................................61
6.13.1
Overview ....................................................................................................... 61
6.13.2
Features ........................................................................................................ 61
6.14
Analog Comparator (ACMP) ........................................................................62
6.14.1
Overview ....................................................................................................... 62
6.14.2
Features ........................................................................................................ 62
APPLICATION CIRCUIT ........................................................................ 63
Dec. 09, 2015
Page 3 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
6.10.1
6.11
7
Frequency Divider Output ................................................................................... 48
MINI58DE
ELECTRICAL CHARACTERISTICS .......................................................... 64
8
8.1
Absolute Maximum Ratings .........................................................................64
8.2
DC Electrical Characteristics ........................................................................65
8.3
AC Electrical Characteristics ........................................................................70
8.3.1
External Input Clock .......................................................................................... 70
8.3.2
External 4~24 MHz High Speed Crystal (HXT) .......................................................... 70
8.3.3
External 32.768 kHz XTAL Oscillator (LXT) .............................................................. 70
8.3.4
Typical Crystal Application Circuits ........................................................................ 70
8.3.5
22.1184 MHz Internal High Speed RC Oscillator (HIRC) .............................................. 71
8.3.6
10 kHz Internal Low Speed RC Oscillator (LIRC) ....................................................... 72
Analog Characteristics ...............................................................................73
8.4
8.4.1
10-bit SARADC................................................................................................ 73
8.4.2
LDO & Power Management ................................................................................. 74
8.4.3
Low Voltage Reset ........................................................................................... 74
8.4.4
Brown-out Detector ........................................................................................... 75
8.4.5
Power-on Reset ............................................................................................... 75
8.4.6
Comparator .................................................................................................... 76
8.5
Flash DC Electrical Characteristics ................................................................77
PACKAGE DIMENSIONS ...................................................................... 78
9
MINI58DE SERIES DATASHEET
9.1
48-pin LQFP ...........................................................................................78
9.2
33-pin QFN (4 mm x 4 mm) .........................................................................79
9.3
33-pin QFN (5 mm x 5 mm) .........................................................................80
9.4
20-pin TSSOP .........................................................................................81
10
REVISION HISTORY ............................................................................ 82
Dec. 09, 2015
Page 4 of 83
Rev.1.02
MINI58DE
List of Figures
®
Figure 4.1-1 NuMicro Mini58 Series Naming Rule ....................................................................... 12
®
Figure 4.3-1 NuMicro Mini58 Series LQFP 48-pin Diagram......................................................... 14
®
Figure 4.3-2 NuMicro Mini58 Series LQFP 48-pin Multi-Function Diagram ................................. 15
®
Figure 4.3-3 NuMicro Mini58 Series QFN 33-pin Diagram .......................................................... 16
®
Figure 4.3-4 NuMicro Mini58 Series QFN 33-pin Multi-funciton Diagram .................................... 17
®
Figure 4.3-5 NuMicro Mini58 Series TSSOP 20-pin Diagram ...................................................... 18
®
Figure 4.3-6 NuMicro Mini58 Series TSSOP 20-pin Multi-function Diagram ............................... 18
®
Figure 5.1-1 NuMicro Mini58 Series Block Diagram .................................................................... 23
Figure 6.1-1 Functional Block Diagram .......................................................................................... 24
Figure 6.2-1 System Rese Resources ........................................................................................... 27
Figure 6.2-2 nRESET Reset Waveform ......................................................................................... 29
Figure 6.2-3 Power-on Reset (POR) Waveform ............................................................................ 29
Figure 6.2-4 Low Voltage Reset (LVR) Waveform ......................................................................... 30
Figure 6.2-5 Brown-out Detector (BOD) Waveform ....................................................................... 31
Figure 6.2-6 Power Mode State Machine ...................................................................................... 32
®
Figure 6.2-7 NuMicro Mini58 Series Power Architecture Diagram .............................................. 35
Figure 6.3-1 Clock Generator Block Diagram ................................................................................ 43
Figure 6.3-2 Clock Generator Global View Diagram ...................................................................... 44
Figure 6.3-3 System Clock Block Diagram .................................................................................... 45
Figure 6.3-4 SysTick Clock Control Block Diagram ....................................................................... 46
Figure 6.3-6 Clock Source of Frequency Divider ........................................................................... 49
Figure 6.3-7 Block Diagram of Frequency Divider ......................................................................... 49
Figure 6.7-1 Application Circuit Diagram ....................................................................................... 55
Figure 8.3-1 Mini58 Typical Crystal Application Circuit.................................................................. 71
Figure 8.4-1 Power-up Ramp Condition ........................................................................................ 76
Dec. 09, 2015
Page 5 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK ................................................... 47
MINI58DE
List of Tables
Table 3-1 List of Abbreviations ....................................................................................................... 11
®
Table 4.2-1 NuMicro Mini58 Series Product Selection Guide ...................................................... 13
®
Table 4.4-1 NuMicro Mini58 Series Pin Description ..................................................................... 22
Table 6.2-1 Reset Value of Registers ............................................................................................ 28
Table 6.2-2 Power Mode Difference Table .................................................................................... 32
Table 6.2-3 Clocks in Power Modes .............................................................................................. 33
Table 6.2-4 Condition of Entering Power-down Mode Again ......................................................... 34
Table 6.2-5 Memory Mapping Table .............................................................................................. 36
Table 6.2-6 Address Space Assignments for On-Chip Modules ................................................... 37
Table 6.2-7 Exception Model ......................................................................................................... 40
Table 6.2-8 System Interrupt Map Vector Table ............................................................................ 41
Table 6.2-9 Vector Table Format ................................................................................................... 41
Table 6.3-1 Peripheral Clock Source Selection Table ................................................................... 48
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 6 of 83
Rev.1.02
MINI58DE
1
GENERAL DESCRIPTION
®
®
The NuMicro Mini58 series is pin-to-pin and function compatible with the NuMicro Mini51 series,
®
®
the 32-bit microcontroller (MCU) embedded with the ARM Cortex -M0 core. The Mini58 series
can bridge the gap and replace the cost equivalent to traditional 8- and 16-bit microcontroller by
32-bit performance and rich functions. The Mini58 series supports a wide range of applications
from low-end, price sensitive designs to computing-intensive ones and provides advanced highend features in economical products.
The Mini58 series can run up to 50 MHz which is faster than 24 MHz in Mini51 series, and
operate at a wide voltage range of 2.5V ~ 5.5V and temperature range of -40℃ ~ +105℃. For the
Mini58 series, the embedded program flash size upgrades from 16 Kbytes to 32 Kbytes and
SRAM upgrades from 2 Kbytes to 4 Kbytes. The Mini58 series also offers size configurable Data
Flash (shared with program flash), and 2.5 Kbytes flash for the ISP.
The Mini58 series has many high-performance peripheral functions, such as 22.1184 MHz
internal RC oscillator (±1% accuracy), I/O port with up to 30 pins, four 32-bit timers, two UARTs
2
with the RS485 function and IrDA function interface, one SPI interface, two I C interfaces, up to
three 16-bit PWM generators providing six channels, an 8-channel 10-bit ADC, Watchdog Timer,
Window Watchdog Timer, two Analog Comparators and a Brown-out Detector. All these
peripherals have been incorporated into the Mini58 series to reduce component count, board
space and system cost. Compared to the Mini51 series, the Mini58 series supports additional one
2
UART and one I C interface for better and more flexible connectivity applications.
Additionally, the Mini58 series is equipped with ISP (In-System Programming) and ICP (In-Circuit
Programming) functions, which allow the user to update the program memory without removing
the chip from the actual end product. The Mini58 series also supports In-Application-Programming
(IAP) function, user switches the code executing without the chip reset after the embedded flash
updated.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 7 of 83
Rev.1.02
MINI58DE
2
FEATURES
Core
®
®
ARM Cortex -M0 core running up to 50 MHz
One 24-bit system timer
Supports low power Idle mode
A single-cycle 32-bit hardware multiplier
NVIC for the 32 interrupt inputs, each with 4-level of priority
Supports Serial Wire Debug (SWD) interface and two watchpoints/four
breakpoints
Built-in LDO for wide operating voltage: 2.5V to 5.5V
Memory
32 KB Flash memory for program memory (APROM)
Configurable Flash memory for data memory (Data Flash)
2.5 KB Flash for loader (LDROM)
4 KB SRAM for internal scratch-pad RAM (SRAM)
Clock Control
Programmable system clock source
MINI58DE SERIES DATASHEET
Support 4 ~ 24 MHz external high speed crystal oscillator (HXT) for precise
timing operation
Support 32.768 kHz external low speed crystal oscillator (LXT) for idle wake-up
and system operation clock
Built-in 22.1184 MHz internal high speed RC oscillator (HIRC) for system
0
operation (1% accuracy at 25 C, 5V)
Built-in 10 kHz internal low speed RC oscillator (LIRC) for Watchdog Timer and
wake-up operation
PLL allowing CPU operation up to the maximum 50 MHz
I/O Port
Up to 30 general-purpose I/O (GPIO) pins for LQFP-48 package
Four I/O modes:
Quasi-bidirectional input/output
Push-Pull output
Open-Drain output
Input only with high impendence
Optional Schmitt trigger input
Timer
Dec. 09, 2015
Dynamically calibrating the HIRC OSC to 22.1184 MHz ±1% from -40℃ to
105℃ by external 32.768K crystal oscillator (LXT)
Switch clock sources on-the-fly
Provides two channel 32-bit Timers; one 8-bit pre-scaler counter with 24-bit uptimer for each timer
Page 8 of 83
Rev.1.02
MINI58DE
Dec. 09, 2015
Supports Event Counter mode
Supports Toggle Output mode
Supports external trigger in Pulse Width Measurement mode
Supports external trigger in Pulse Width Capture mode
WDT (Watchdog Timer)
Programmable clock source and time-out period
Supports wake-up function in Power-down mode and Idle mode
Interrupt or reset selectable on watchdog time-out
WWDT (Window Watchdog Timer)
6-bit down counter value (CNTDAT) and 6-bit compare value (CMPDAT) to
make the WWDT time-out window period flexible
Supports 4-bit value (PSCSEL) to programmable maximum 11-bit prescale
counter period of WWDT counter
PWM
Up to three built-in 16-bit PWM generators, providing six PWM outputs or three
complementary paired PWM outputs
Individual clock source, clock divider, 8-bit pre-scalar and dead-time generator
for each PWM generator
PWM interrupt synchronized to PWM period
Supports edge-alignment or center-alignment
Supports fault detection
UART (Universal Asynchronous Receiver/Transmitters)
Two UART devices
Buffered receiver and transmitter, each with 16-byte FIFO
Optional flow control function (CTSn and RTSn)
Supports IrDA (SIR) function
Programmable baud-rate generator up to 1/16 system clock
Supports RS-485 function
MINI58DE SERIES DATASHEET
SPI (Serial Peripheral Interface)
One SPI device
Master up to 25 MHz, and Slave up to 10 MHz
Supports Master/Slave mode
Full-duplex synchronous serial data transfer
Variable length of transfer data from 1 to 32 bits
MSB or LSB first data transfer
RX latching data can be either at rising edge or at falling edge of serial clock
TX sending data can be either at rising edge or at falling edge of serial clock
Supports Byte Suspend mode in 32-bit transmission
2
IC
Page 9 of 83
Rev.1.02
MINI58DE
2
Two I C devices
Supports Master/Slave mode
Bidirectional data transfer between masters and slaves
Multi-master bus (no central master)
Arbitration between simultaneously transmitting masters without corruption of
serial data on the bus
Serial clock synchronization allowing devices with different bit rates to
communicate via one serial bus
Serial clock synchronization can be used as a handshake mechanism to
suspend and resume serial transfer
Programmable clocks allow for versatile rate control
Supports multiple address recognition (four slave addresses with mask option)
ADC (Analog-to-Digital Converter)
10-bit SAR ADC with 250 kSPS
Up to 8-ch single-end input and one internal input from band-gap
Conversion started either by software trigger or external pin trigger
Analog Comparator
Two analog comparators with programmable 16-level internal voltage reference
Built-in CRV (comparator reference voltage)
ISP (In-System Programming), ICP (In-Circuit Programming), and IAP (In-ApplicationProgramming) update
BOD (Brown-out Detector)
MINI58DE SERIES DATASHEET
With 4 programmable threshold levels: 4.4V/3.7V/2.7V/2.2V
Supports Brown-out interrupt and reset option
96-bit unique ID
LVR (Low Voltage Reset)
Threshold voltage level: 2.0V
Operating Temperature: -40℃~105℃
Reliability: EFT > ± 4KV, ESD HBM pass 4KV
Packages:
Dec. 09, 2015
Green package (RoHS)
48-pin LQFP (7x7), 33-pin QFN (5x5) , 33-pin QFN (4x4), 20-pin TSSOP
Page 10 of 83
Rev.1.02
MINI58DE
3
ABBREVIATIONS
Description
ACMP
Analog Comparator Controller
ADC
Analog-to-Digital Converter
AHB
Advanced High-Performance Bus
APB
Advanced Peripheral Bus
BOD
Brown-out Detection
DAP
Debug Access Port
FIFO
First In, First Out
FMC
Flash Memory Controller
GPIO
General-Purpose Input/Output
HCLK
The Clock of Advanced High-Performance Bus
HIRC
22.1184 MHz Internal High Speed RC Oscillator
HXT
4~24 MHz External High Speed Crystal Oscillator
ICP
In Circuit Programming
ISP
In System Programming
ISR
Interrupt Service Routine
LDO
Low Dropout Regulator
LIRC
10 kHz internal low speed RC oscillator (LIRC)
LXT
32.768 kHz External Low Speed Crystal Oscillator
NVIC
Nested Vectored Interrupt Controller
PCLK
The Clock of Advanced Peripheral Bus
PLL
Phase-Locked Loop
PWM
Pulse Width Modulation
SPI
Serial Peripheral Interface
SPS
Samples per Second
TMR
Timer Controller
UART
Universal Asynchronous Receiver/Transmitter
UCID
Unique Customer ID
WDT
Watchdog Timer
WWDT
Window Watchdog Timer
MINI58DE SERIES DATASHEET
Acronym
Table 3-1 List of Abbreviations
Dec. 09, 2015
Page 11 of 83
Rev.1.02
MINI58DE
4
4.1
PARTS INFORMATION LIST AND PIN CONFIGURATION
NuMicro® Mini58 Series Naming Rule
ARM–Based
32-bit Microcontroller
Mini58-X X X
CPU Core
Corte® -M0
Temperature
E: -40oC ~ +105oC
Flash ROM
58
: 32 KB Flash ROM
Reserved
Package Type
L: LQFP 48 7x7mm
Z: QFN 33 5x5mm
T: QFN 33 4x4mm
F: TSSOP 20
®
Figure 4.1-1 NuMicro Mini58 Series Naming Rule
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 12 of 83
Rev.1.02
MINI58DE
4.2
NuMicro® Mini58 Series Product Selection Guide
ISP
Part Number APROM RAM Data Flash Loader
ROM
Connectivity
I/O
Timer
Comp. PWM
UART SPI
ADC
2
IC
IRC
ISP
22.1184
ICP
MHz
Package
MINI58LDE
32 KB
4 KB Configurable 2.5 KB up to 30
2x32bit
2
1
2
2
6
8x10bit
v
v
LQFP48
MINI58ZDE
32 KB
4 KB Configurable 2.5 KB up to 29
2x32bit
2
1
2
2
6
8x10bit
v
v
QFN33(5x5)
MINI58TDE
32 KB
4 KB Configurable 2.5 KB up to 29
2x32bit
2
1
2
2
6
8x10bit
v
v
QFN33(4x4)
MINI58FDE
32 KB
4 KB Configurable 2.5 KB up to 17
2x32bit
2
1
2
-
6
4x10bit
v
v
TSSOP20
®
Table 4.2-1 NuMicro Mini58 Series Product Selection Guide
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 13 of 83
Rev.1.02
MINI58DE
NC
P0.4
P0.5
P0.6
P0.7
NC
P4.7
P4.6
NC
NC
P2.6
P2.5
36
35
34
33
32
31
30
29
28
27
26
25
LQFP 48-pin
P0.1
37
24
P2.4
P0.0
38
23
P2.3
NC
39
22
P2.2
NC
40
21
NC
P5.3
41
20
P5.2
19
P5.5
18
LDO_CAP
VDD
42
AVDD
43
P1.0
44
17
VSS
P1.2
45
16
P5.0
P1.3
46
15
P5.1
P1.4
47
14
P3.6
NC
48
13
NC
2
3
4
5
6
7
8
9
10
11
12
nRESET
P3.0
AVSS
P5.4
P3.1
P3.2
P3.4
P3.5
NC
NC
MINI58DE SERIES DATASHEET
P1.5
LQFP 48-Pin
1
4.3.1
PIN CONFIGURATION
NC
4.3
®
Figure 4.3-1 NuMicro Mini58 Series LQFP 48-pin Diagram
Dec. 09, 2015
Page 14 of 83
Rev.1.02
NC
P0.4 / SPI0_SS / PWM0_CH5
P0.5 / SPI0_MOSI / PWM0_CH4
P0.6 / SPI0_MISO / PWM0_CH1
P0.7 / SPI0_CLK / PWM0_CH0
NC
P4.7 / ICE_DAT / UART1_TXD
P4.6 / ICE_CLK / UART1_RXD
NC
NC
P2.6 / PWM0_CH4 / ACMP1_O
P2.5 / UART1_TXD / PWM0_CH3
36
35
34
33
32
31
30
29
28
27
26
25
MINI58DE
UART0_RXD / UART0_nRTS / SPI0_SS / P0.1
37
24
P2.4 / UART1_RXD / PWM0_CH2
UART0_TXD / UART0_nCTS / P0.0
38
23
P2.3 / PWM0_CH1 / I2C1_SDA
NC
39
22
P2.2 / PWM0_CH0 / I2C1_SCL
NC
40
21
NC
ADC_CH0 / P5.3
41
20
P5.2 / INT1
VDD
42
19
P5.5
AVDD
43
18
LDO_CAP
ACMP0_P1 / ADC_CH1 / P1.0
44
17
VSS
PWM0_CH0 / ACMP0_P2 / UART0_RXD / ADC_CH2 / P1.2
45
16
P5.0 / XT1_IN / I2C1_SDA / UART0_TXD
PWM0_CH1 / ACMP0_P3 / UART0_TXD / ADC_CH3 / P1.3
46
15
P5.1 / XT1_OUT / I2C1_SCL / UART0_RXD
PWM0_CH4 / ACMP0_N / UART1_RXD / ADC_CH4 / P1.4
47
14
P3.6 / TM1_EXT / CLKO / ACMP0_O
NC
48
13
NC
1
2
3
4
5
6
7
8
9
10
11
12
NC
nRESET
ADC_CH6 / ACMP1_N / P3.0
AVSS
P5.4
ADC_CH7 / ACMP1_P0 / P3.1
ACMP1_P1 / STADC / TM0_EXT / INT0 / P3.2
ACMP1_P2 / I2C0_SDA / TM0_CNT_OUT / P3.4
ACMP1_P3 / I2C0_SCL / TM1_CNT_OUT / P3.5
NC
NC
MINI58DE SERIES DATASHEET
ACMP0_P0 / UART1_TXD / ADC_CH5 / P1.5
LQFP 48-Pin
®
Figure 4.3-2 NuMicro Mini58 Series LQFP 48-pin Multi-Function Diagram
Dec. 09, 2015
Page 15 of 83
Rev.1.02
MINI58DE
P0.4
P0.5
P0.6
P0.7
P4.7
P4.6
P2.6
P2.5
23
22
21
20
19
18
17
Top Transparent View
24
QFN 33-pin
P0.1
25
16
P2.4
P0.0
26
15
P2.3
P5.3
27
14
P2.2
VDD
28
13
P5.2
P1.0
29
12
VSS
P1.2
30
11
P5.0
P1.3
31
10
P5.1
P1.4
32
9
P3.6
QFN 33-Pin
1
2
3
4
5
6
7
8
nRESET
P3.0
P5.4
P3.1
P3.2
P3.4
P3.5
33 VSS
P1.5
4.3.2
®
Figure 4.3-3 NuMicro Mini58 Series QFN 33-pin Diagram
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 16 of 83
Rev.1.02
P0.4 / SPI0_SS / PWM0_CH5
P0.5 / SPI0_MOSI / PWM0_CH4
P0.6 / SPI0_MISO / PWM0_CH1
P0.7 / SPI0_CLK / PWM0_CH0
P4.7 / ICE_DAT / UART1_TXD
P4.6 / ICE_CLK / UART1_RXD
P2.6 / PWM0_CH4 / ACMP1_O
P2.5 / UART1_TXD / PWM0_CH3
23
22
21
20
19
18
17
Top Transparent View
24
MINI58DE
UART0_RXD / UART0_nRTS / SPI0_SS / P0.1
25
16
P2.4 / UART1_RXD / PWM0_CH2
UART0_TXD / UART0_nCTS / P0.0
26
15
P2.3 / PWM0_CH1 / I2C1_SDA
ADC_CH0 / P5.3
27
14
P2.2 / PWM0_CH0 / I2C1_SCL
28
13
P5.2 / INT1
12
VSS
VDD
QFN 33-Pin
ACMP0_P1 / ADC_CH1 / P1.0
29
PWM0_CH0 / ACMP0_P2 / UART0_RXD / ADC_CH2 / P1.2
30
11
P5.0 / XT1_IN / I2C1_SDA / UART0_TXD
PWM0_CH1 / ACMP0_P3 / UART0_TXD / ADC_CH3 / P1.3
31
10
P5.1 / XT1_OUT / I2C1_SCL / UART0_RXD
PWM0_CH4 / ACMP0_N / UART1_RXD / ADC_CH4 / P1.4
32
33 VSS
1
2
3
4
5
6
7
8
nRESET
ADC_CH6 / ACMP1_N / P3.0
P5.4
ADC_CH7 / ACMP1_P0 / P3.1
ACMP1_P1 / STADC / TM0_EXT / INT0 / P3.2
ACMP1_P2 / I2C0_SDA / TM0_CNT_OUT / P3.4
ACMP1_P3 / I2C0_SCL / TM1_CNT_OUT / P3.5
P3.6 / TM1_EXT / CLKO / ACMP0_O
®
Figure 4.3-4 NuMicro Mini58 Series QFN 33-pin Multi-funciton Diagram
Dec. 09, 2015
Page 17 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
ACMP0_P0 / UART1_TXD / ADC_CH5 / P1.5
9
MINI58DE
4.3.3
TSSOP 20-pin
1
20
VDD
P1.3
2
19
P0.4
P1.4
3
18
P0.5
P1.5
4
17
P0.6
nRESET
5
16
P0.7
P3.2
6
15
P4.7
P3.4
7
14
P4.6
P3.5
8
13
P2.5
P5.1
9
12
P2.4
P5.0
10
11
VSS
TSSOP 20-Pin
P1.2
®
Figure 4.3-5 NuMicro Mini58 Series TSSOP 20-pin Diagram
1
20
VDD
PWM0_CH1 / UART0_TXD / ADC_CH3 / P1.3
2
19
P0.4 / SPI0_SS / PWM0_CH5
PWM0_CH4 / UART1_RXD / ADC_CH4 / P1.4
3
18
P0.5 / SPI0_MOSI / PWM0_CH4
UART1_TXD / ADC_CH5 / P1.5
4
17
P0.6 / SPI0_MISO / PWM0_CH1
nRESET
5
16
P0.7 / SPI0_CLK / PWM0_CH0
STADC / TM0_EXT / INT0 / P3.2
6
15
P4.7 / ICE_DAT / UART1_TXD
I2C0_SDA / TM0_CNT_OUT / P3.4
7
14
P4.6 / ICE_CLK / UART1_RXD
I2C0_SCL / TM1_CNT_OUT / P3.5
8
13
P2.5 / UART1_TXD / PWM0_CH3
UART0_RXD / I2C1_SCL / XT1_OUT / P5.1
9
12
P2.4 / UART1_RXD / PWM0_CH2
UART0_TXD / I2C1_SDA / XT1_IN / P5.0
10
11
VSS
TSSOP 20-Pin
MINI58DE SERIES DATASHEET
PWM0_CH0 / UART0_RXD / ADC_CH2 / P1.2
®
Figure 4.3-6 NuMicro Mini58 Series TSSOP 20-pin Multi-function Diagram
Dec. 09, 2015
Page 18 of 83
Rev.1.02
MINI58DE
4.4
Pin Description
Pin Number
LQFP
48-pin
QFN
33-pin
TSSOP
20-pin
1
---
---
2
3
4
1
2
3
Pin Name
Pin Type
Description
NC
---
Not connected
P1.5
I/O
General purpose digital I/O pin
ADC_CH5
AI
ADC analog input pin
UART1_TXD
O
UART1 transmitter output pin
ACMP0_P0
AI
Analog comparator positive input pin
4
5
---
nRESET
I(ST)
The Schmitt trigger input pin for hardware device reset. A “Low”
on this pin for 768 clock counter of Internal RC 22.1184 MHz while
the system clock is running will reset the device. nRESET pin has
an internal pull-up resistor allowing power-on reset by simply
connecting an external capacitor to GND.
P3.0
I/O
General purpose digital I/O pin
ADC_CH6
AI
ADC analog input pin
ACMP1_N
AI
Analog comparator negative input pin
---
---
AVSS
AP
Ground pin for analog circuit
6
4
---
P5.4
I/O
General purpose digital I/O pin
P3.1
I/O
General purpose digital I/O pin
ADC_CH7
AI
ADC analog input pin
ACMP1_P0
AI
Analog comparator positive input pin
P3.2
I/O
General purpose digital I/O pin
INT0
I
External interrupt 0 input pin
STADC
I
ADC external trigger input pin
7
8
9
10
11
5
6
7
8
---
Dec. 09, 2015
---
6
7
8
---
TM0_EXT
I/O
Timer 0 external capture / reset trigger input pin / toggle output pin
ACMP1_P1
AI
Analog comparator positive input pin (not support in TSSOP20
package)
P3.4
I/O
General purpose digital I/O pin
TM0_CNT_OU
T
I/O
Timer 0 external event counter input pin / toggle output pin
I2C0_SDA
I/O
I2C0 data I/O pin
ACMP1_P2
AI
Analog comparator positive input pin
P3.5
I/O
General purpose digital I/O pin
TM1_CNT_OU
T
I/O
Timer 1 external event counter input pin / toggle output pin
I2C0_SCL
I/O
I2C0 clock I/O pin
ACMP1_P3
AI
Analog comparator positive input pin
NC
---
Not connected
Page 19 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
5
MINI58DE
Pin Number
Pin Name
Pin Type
Description
LQFP
48-pin
QFN
33-pin
TSSOP
20-pin
12
---
---
NC
---
Not connected
13
---
--
NC
---
Not connected
P3.6
I/O
General purpose digital I/O pin
ACMP0_O
O
Analog comparator output pin
CLKO
O
Frequency divider output pin
TM1_EXT
I/O
Timer 1 external capture / reset trigger input pin / toggle output pin
P5.1
I/O
General purpose digital I/O pin
XT1_OUT
O
The output pin from the internal inverting amplifier. It emits the
inverted signal of XT1_IN.
I2C1_SCL
I/O
I2C1 clock I/O pin
14
15
9
10
---
9
UART0_RXD
P5.0
XT1_IN
16
11
I
UART0 data receiver input pin
I/O
General purpose digital I/O pin
I
10
The input pin to the internal inverting amplifier. The system clock
could be from external crystal or resonator.
I2C1_SDA
I/O
I2C1 data I/O pin
UART0_TXD
O
UART0 transmitter output pin
11
VSS
P
Ground pin for digital circuit
P
LDO output pin
12
17
33
MINI58DE SERIES DATASHEET
18
---
---
LDO_CAP
19
---
---
P5.5
I/O
User program must enable pull-up resistor in the QFN-33
package.
P5.2
I/O
General purpose digital I/O pin
20
13
--INT1
I
General purpose digital I/O pin
21
22
23
24
---
14
15
16
Dec. 09, 2015
---
---
---
12
External interrupt 1 input pin
NC
---
Not connected
P2.2
I/O
General purpose digital I/O pin
PWM0_CH0
O
PWM0 output of PWM unit
I2C1_SCL
I/O
I2C1 clock I/O pin
P2.3
I/O
General purpose digital I/O pin
PWM0_CH1
O
PWM1 output of PWM unit
I2C1_SDA
I/O
I2C1 data I/O pin
P2.4
I/O
General purpose input/output digital pin
UART1_RXD
I
UART1 data receiver input pin
PWM0_CH2
O
PWM2 output of PWM unit
Page 20 of 83
Rev.1.02
MINI58DE
Pin Number
LQFP
48-pin
25
26
QFN
33-pin
17
18
TSSOP
20-pin
13
---
Pin Name
Pin Type
Description
P2.5
I/O
General purpose digital I/O pin
UART1_TXD
O
UART1 transmitter output pin
PWM0_CH3
O
PWM3 output of PWM unit
P2.6
I/O
General purpose digital I/O pin
PWM0_CH4
O
PWM4 output of PWM unit
ACMP1_O
O
Analog comparator output pin
---
---
NC
---
Not connected
28
---
---
NC
---
Not connected
P4.6
I/O
General purpose digital I/O pin
ICE_CLK
I
Serial wired debugger clock pin
UART1_RXD
I
UART1 data receiver input pin
P4.7
I/O
General purpose digital I/O pin
ICE_DAT
I/O
Serial wired debugger data pin
UART1_TXD
O
UART1 transmitter output pin
NC
---
Not connected
P0.7
I/O
General purpose digital I/O pin
SPI0_CLK
I/O
SPI serial clock pin
PWM0_CH0
O
PWM0 output of PWM unit
P0.6
I/O
General purpose digital I/O pin
SPI0_MISO
I/O
SPI MISO (master in/slave out) pin
PWM0_CH1
O
PWM1 output of PWM unit
P0.5
I/O
General purpose digital I/O pin
SPI0_MOSI
O
SPI MOSI (master out/slave in) pin
PWM0_CH4
O
PWM4 output of PWM unit
P0.4
I/O
General purpose digital I/O pin
SPI0_SS
I/O
SPI slave select pin
PWM0_CH5
O
PWM5 output of PWM unit
NC
---
Not connected
P0.1
I/O
General purpose digital I/O pin
UART0_nRTS
O
UART0 RTS pin
UART0_RXD
I
UART0 data receiver input pin
29
30
31
32
33
34
35
36
37
38
19
20
---
21
22
23
24
---
25
26
Dec. 09, 2015
14
15
---
16
17
18
19
---
MINI58DE SERIES DATASHEET
27
---
---
SPI0_SS
I/O
SPI slave select pin
P0.0
I/O
General purpose digital I/O pin
Page 21 of 83
Rev.1.02
MINI58DE
Pin Number
LQFP
48-pin
QFN
33-pin
TSSOP
20-pin
Pin Name
Pin Type
Description
UART0_nCTS
I
UART0 CTS pin
UAR0_TXD
O
UART0 transmitter output pin
39
---
---
NC
---
Not connected
40
---
---
NC
---
Not connected
P5.3
I/O
General purpose digital I/O pin
41
27
--ADC_CH0
AI
ADC analog input pin
VDD
P
Power supply for digital circuit
AVDD
P
Power supply for analog circuit
P1.0
I/O
General purpose digital I/O pin
ADC_CH1
AI
ADC analog input pin
ACMP0_P1
AI
Analog comparator positive input pin
P1.2
I/O
General purpose digital I/O pin
ADC_CH2
AI
ADC analog input pin
42
28
20
43
44
45
MINI58DE SERIES DATASHEET
46
47
48
29
30
31
32
---
---
1
2
3
--
UART0_RXD
I
UART0 data receiver input pin
ACMP0_P2
AI
Analog comparator positive input pin (not support in TSSOP20
package)
PWM0_CH0
O
PWM0 output of PWM unit
P1.3
I/O
General purpose digital I/O pin
ADC_CH3
AI
ADC analog input pin
UART0_TXD
O
UART0 transmitter output pin
ACMP0_P3
AI
Analog comparator positive input pin (not support in TSSOP20
package)
PWM0_CH1
O
PWM1 output of PWM unit
P1.4
I/O
General purpose digital I/O pin
ADC_CH4
I/O
ADC analog input pin
UART1_RXD
I
UART1 data receiver input pin
ACMP0_N
AI
Analog comparator negative input pin (not support in TSSOP20
package)
PWM0_CH4
O
PWM4 output of PWM unit
NC
---
Not connected
®
Table 4.4-1 NuMicro Mini58 Series Pin Description
[1] I/O type description. I: input, O: output, I/O: quasi bi-direction, D: open-drain, P: power pin, ST:
Schmitt trigger, A: Analog input.
Dec. 09, 2015
Page 22 of 83
Rev.1.02
MINI58DE
5
5.1
BLOCK DIAGRAM
NuMicro® Mini58 Block Diagram
®
Figure 5.1-1 NuMicro Mini58 Series Block Diagram
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 23 of 83
Rev.1.02
MINI58DE
6
FUNCTIONAL DESCRIPTION
ARM® Cortex® -M0 Core
6.1
6.1.1
Overview
®
The Cortex -M0 processor, a configurable, multistage, 32-bit RISC processor, has an AMBA
AHB-Lite interface and includes an NVIC component. It also has optional hardware debug
®
functionality. The processor can execute Thumb code and is compatible with other Cortex -M
profile processors. The profile supports two modes - Thread mode and Handler mode. Handler
mode is entered as a result of an exception. An exception return can only be issued in Handler
mode. Thread mode is entered on Reset and can be entered as a result of an exception return.
Figure 6.1-1 shows the functional controller of the processor.
Cortex-M0 components
Cortex-M0 processor
Nested
Vectored
Interrupt
Controller
(NVIC)
Interrupts
Debug
Cortex-M0
Processor
core
Breakpoint
and
Watchpoint
unit
Bus matrix
Debugger
interface
Wakeup
Interrupt
Controller
(WIC)
AHB-Lite interface
Debug
Access Port
(DAP)
Serial Wire or
JTAG debug port
MINI58DE SERIES DATASHEET
Figure 6.1-1 Functional Block Diagram
6.1.2
Features
A low gate count processor
®
ARMv6-M Thumb instruction set
Thumb-2 technology
ARMv6-M compliant 24-bit SysTick timer
A 32-bit hardware multiplier
System interface supported with little-endian data accesses
Ability to have deterministic, fixed-latency, interrupt handling
Load/store-multiples and multicycle-multiplies that can be abandoned and
restarted to facilitate rapid interrupt handling
C Application Binary Interface compliant exception model:
This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant
exception model that enables the use of pure C functions as interrupt handlers
Dec. 09, 2015
Low power Idle mode entry using the Wait For Interrupt (WFI), Wait For Event
(WFE) instructions, or return from interrupt sleep-on-exit feature
Page 24 of 83
Rev.1.02
MINI58DE
NVIC
32 external interrupt inputs, each with four levels of priority
Dedicated Non-maskable Interrupt (NMI) input
Supports for both level-sensitive and pulse-sensitive interrupt lines
Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Idle
mode
Debug support
Four hardware breakpoints
Two watch points
Program Counter Sampling Register (PCSR) for non-intrusive code profiling
Single step and vector catch capabilities
Bus interfaces
Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration
to all system peripherals and memory
Single 32-bit slave port that supports the DAP (Debug Access Port)
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 25 of 83
Rev.1.02
MINI58DE
6.2
System Manager
6.2.1
Overview
System management includes the following sections:
6.2.2
System Reset
System Power Architecture
System Memory Map
System management registers for Part Number ID, chip reset and on-chip controllers
reset, and multi-functional pin control
System Timer (SysTick)
Nested Vectored Interrupt Controller (NVIC)
System Control registers
System Reset
The system reset can be issued by one of the events listed below. These reset event flags can be
read from SYS_RSTSTS register to determine the reset source. Hardware reset can reset chip
through peripheral reset signals. Software reset can trigger reset through control registers.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Hardware Reset Sources
Power-on Reset (POR)
Low level on the nRESET pin
Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)
Low Voltage Reset (LVR)
Brown-out Detector Reset (BOD Reset)
CPU Lockup Reset
Software Reset Sources
CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])
MCU Reset to reboot but keeping the booting setting from APROM or LDROM
by writing 1 to SYSRESETREQ (SCS_AIRCR[2])
CPU Reset for Cortex -M0 core Only by writing 1 to CPURST (SYS_IPRST0[1])
®
Page 26 of 83
Rev.1.02
MINI58DE
Glitch Filter
36 us
nRESET
~50k ohm
@5v
Power-on
Reset
VDD
Reset Pulse Width
3.2ms
Low Voltage
Reset
AVDD
BODRSTEN(SYS_BODCTL[3])
Brown-out
Reset
WDT/WWDT
Reset
Reset Pulse Width
64 WDT clocks
CPU Lockup
Reset
Reset Pulse Width
2 system clocks
System Reset
CHIP Reset
CHIPRST(SYS_IPRST0[0])
MCU Reset
SYSRSTREQ(SCS_AIRCR[2])
Reset Pulse Width
2 system clocks
Software Reset
CPU Reset
CPURST(SYS_IPRST0[1])
Figure 6.2-1 System Rese Resources
®
There are a total of 9 reset sources in the NuMicro family. In general, CPU reset is used to reset
®
®
Cortex -M0 only; the other reset sources will reset Cortex -M0 and all peripherals. However,
there are small differences between each reset source and they are listed in Table 6.2-5.
POR
nRESET
WDT
LVR
BOD
Lockup
CHIP
MCU
CPU
Register
SYS_RSTSTS
0x001
Bit 1 = 1
Bit 2 = 1
0x001
Bit 4 = 1
Bit 8 = 1
Bit 0 = 1
Bit 5 = 1
Bit 7 = 1
CHIPRST
0x0
-
-
-
-
-
-
-
-
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
-
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
-
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x1
-
0x1
-
-
-
0x1
-
-
0x8
0x8
0x8
0x8
0x8
0x8
0x8
0x8
-
(SYS_IPRST0[0])
BODEN
(SYS_BODCTL[0])
BODVL
(SYS_BODCTL[2:1])
BODRSTEN
(SYS_BODCTL[3])
XTLEN
(CLK_PWRCTL[1:0])
WDTCKEN
(CLK_APBCLK0[0])
HCLKSEL
(CLK_CLKSEL0[2:0])
Dec. 09, 2015
Page 27 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
Reset Sources
MINI58DE
WDTSEL
0x3
0x3
-
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
-
0x0
-
-
-
-
-
-
-
-
0x0
0x0
-
-
-
-
-
-
-
WDT_CTL
0x0700
0x0700
0x0700
0x0700
0x0700
-
0x0700
-
-
WDT_ALTCTL
0x0000
0x0000
0x0000
0x0000
0x0000
-
0x0000
-
-
WWDT_RLDCNT
0x0000
0x0000
0x0000
0x0000
0x0000
-
0x0000
-
-
WWDT_CTL
0x3F0800
0x3F0800
0x3F0800
0x3F0800
0x3F0800
-
0x3F0800
-
-
WWDT_STATUS
0x0000
0x0000
0x0000
0x0000
0x0000
-
0x0000
-
-
WWDT_CNT
0x3F
0x3F
0x3F
0x3F
0x3F
-
0x3F
-
-
BS
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
-
Reload
from
CONFIG0
-
-
FMC_DFBA
Reload
from
CONFIG1
Reload
from
CONFIG1
Reload
from
CONFIG1
Reload
from
CONFIG1
Reload
from
CONFIG1
-
Reload
from
CONFIG1
-
-
CBS
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
Reload
from
CONFIG0
-
Reload
from
CONFIG0
-
-
Reload
base on
CONFIG0
Reload
base on
CONFIG0
Reload
base on
CONFIG0
Reload
base on
CONFIG0
Reload
base on
CONFIG0
-
Reload
base on
CONFIG0
-
-
(CLK_CLKSEL1[1:0])
XLTSTB
(CLK_STATUS[0])
PLLSTB
(CLK_STATUS[2])
LIRCSTB
0x0
(CLK_STATUS[3])
HIRCSTB
(CLK_STATUS[4])
CLKSFAIL
(CLK_STATUS[7])
(FMC_ISPCTL[1])
ISPEN
(FMC_ISPCTL[16])
MINI58DE SERIES DATASHEET
(FMC_ISPSTS[2:1))
VECMAP
(FMC_ISPSTS[20:9])
Other Peripheral
Registers
Reset Value
FMC Registers
Reset Value
-
Note: ‘-‘ means that the value of register keeps original setting.
Table 6.2-1 Reset Value of Registers
6.2.2.1
nRESET Reset
The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an
asynchronous reset input pin and can be used to reset system at any time. When the nRESET
voltage is lower than 0.2 VDD and the state keeps longer than 36 us (glitch filter), chip will be
reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above
0.7 VDD and the state keeps longer than 36 us (glitch filter). The PINRF (SYS_RSTSTS[1]) will be
set to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset
waveform.
Dec. 09, 2015
Page 28 of 83
Rev.1.02
MINI58DE
nRESET
0.7 VDD
36 us
0.2 VDD
36 us
nRESET
Reset
Figure 6.2-2 nRESET Reset Waveform
6.2.2.2
Power-On Reset (POR)
The Power-on reset (POR) is used to generate a stable system reset signal and forces the
system to be reset when power-on to avoid unexpected behavior of MCU. When applying the
power to MCU, the POR module will detect the rising voltage and generate reset signal to system
until the voltage is ready for MCU operation. At POR reset, the PORF (SYS_RSTSTS[0]) will be
set to 1 to indicate there is a POR reset event. The PORF (SYS_RSTSTS[0]) bit can be cleared
by writing 1 to it. Figure 6.2-3 shows the waveform of Power-On reset.
VPOR
MINI58DE SERIES DATASHEET
0.1V
VDD
Power On
Reset
Figure 6.2-3 Power-on Reset (POR) Waveform
6.2.2.3
Low Voltage Reset (LVR)
Low Voltage Reset detects AVDD during system operation. When the AVDD voltage is lower than
VLVR and the state keeps longer than De-glitch time (16*HCLK cycles), chip will be reset. The LVR
reset will control the chip in reset state until the AVDD voltage rises above VLVR and the state
keeps longer than De-glitch time. The PINRF (SYS_RSTSTS[1]) will be set to 1 if the previous
reset source is nRESET reset. Figure 6.2-4 shows the Low Voltage Reset waveform.
Dec. 09, 2015
Page 29 of 83
Rev.1.02
MINI58DE
AVDD
VLVR
T1
T2
( < de-glitch time) ( = de-glitch time)
Low Voltage Reset
T3
( = de-glitch time)
Figure 6.2-4 Low Voltage Reset (LVR) Waveform
6.2.2.4
Brown-out Detector Reset (BOD Reset)
MINI58DE SERIES DATASHEET
If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit
BODEN (SYS_BODCTL[0]), Brown-Out Detector function will detect AVDD during system
operation. When the AVDD voltage is lower than VBOD which is decided by BODEN
(SYS_BODCTL[0]) and BODVL (SYS_BODCTL[2:1]) and the state keeps longer than De-glitch
time (Max(20*HCLK cycles, 1*LIRC cycle)), chip will be reset. The BOD reset will control the chip
in reset state until the AVDD voltage rises above VBOD and the state keeps longer than De-glitch
time. The default value of BODEN, BODVL and BODRSTEN is set by flash controller user
configuration register CBOVEXT (CONFIG0[23]), CBOV (CONFIG0[22:21]) and CBORST
(CONFIG0[20]) respectively. User can determine the initial BOD setting by setting the CONFIG0
register. Figure 6.2-5 shows the Brown-Out Detector waveform.
Dec. 09, 2015
Page 30 of 83
Rev.1.02
MINI58DE
AVDD
VBODH
VBODL
Hysteresis
T1
T2
(< de-glitch time) (= de-glitch time)
BODOUT
T3
(= de-glitch time)
BODRSTEN
Brown-out
Reset
Figure 6.2-5 Brown-out Detector (BOD) Waveform
6.2.2.5
Watch Dog Timer Reset
Software can check if the reset is caused by watch dog time-out to indicate the previous reset is a
watch dog reset and handle the failure of MCU after watch dog time-out reset by checking
WDTRF (SYS_RSTSTS[2]).
6.2.2.6
CPU Lockup Reset
CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives
immediate indication of seriously errant kernel software. This is the result of the CPU being locked
because of an unrecoverable exception following the activation of the processor’s built in system
state protection hardware. When chip enters debug mode, the CPU lockup reset will be ignored.
6.2.2.7
CPU Reset, CHIP Reset and SYSTEM Reset
®
The CPU Reset means only Cortex -M0 core is reset and all other peripherals remain the same
status after CPU reset. User can set the CPURST (SYS_IPRST0[1]) to 1 to assert the CPU Reset
signal.
The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and BS
Dec. 09, 2015
Page 31 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
In most industrial applications, system reliability is very important. To automatically recover the
MCU from failure status is one way to improve system reliability. The watch dog timer (WDT) is
widely used to check if the system works fine. If the MCU is crashed or out of control, it may
cause the watch dog time-out. User may decide to enable system reset during watch dog time-out
to recover the system and take action for the system crash/out-of-control after reset.
MINI58DE
(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG setting. User can set the CHIPRST
(SYS_IPRST0[0]) to 1 to assert the CHIP Reset signal.
The MCU Reset is similar with CHIP Reset. The difference is that BS (FMC_ISPCTL[1]) will not
be reloaded from CONFIG setting and keep its original software setting for booting from APROM
or LDROM. User can set the SYSRESETREQ (SCS_AIRCR[2]) to 1 to assert the MCU Reset.
6.2.3
Power Modes and Wake-up Sources
There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-2 lists the
available clocks for each power mode.
MINI58DE SERIES DATASHEET
Power Mode
Normal Mode
Idle Mode
Power-down Mode
Definition
CPU is in active state
CPU is in sleep state
CPU is in sleep state
and all clocks stop
except LXT and LIRC.
SRAM content
retended.
Entry Condition
Chip is in normal
mode after system
reset released
CPU executes WFI
instruction.
CPU sets sleep mode
enable and power
down enable and
executes WFI
instruction.
Wake-up Sources
N/A
All interrupts
WDT, I²C, Timer,
UART, BOD and
GPIO
Available Clocks
All
All except CPU clock
LXT and LIRC
After Wake-up
N/A
CPU back to normal
mode
CPU back to normal
mode
Table 6.2-2 Power Mode Difference Table
System reset released
Normal Mode
CPU Clock ON
HXT, HIRC, LXT, LIRC, HCLK, PCLK ON
Flash ON
CPU executes WFI
Interrupts occur
1. SLEEPDEEP (SCS_SCR[2]) = 1
2. PDEN (CLK_PWRCTL[7]) = 1 and
PDWKIF (CLK_PWRCTL[8]) = 1
3. CPU executes WFI
Idle Mode
Wake-up events
occur
Power-down Mode
CPU Clock OFF
HXT, HIRC, LXT, LIRC, HCLK, PCLK ON
Flash Halt
CPU Clock OFF
HXT, HIRC, HCLK, PCLK OFF
LXT, LIRC ON
Flash Halt
Figure 6.2-6 Power Mode State Machine
Dec. 09, 2015
Page 32 of 83
Rev.1.02
MINI58DE
1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in run mode.
2. LIRC (10 kHz OSC) ON or OFF depends on S/W setting in run mode.
3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.
4. If WDT clock source is selected as LIRC and LIRC is on.
Idle Mode
Power-down Mode
HXT (4~20 MHz XTL)
ON
ON
Halt
HIRC (12/16 MHz OSC)
ON
ON
Halt
LXT (32768 Hz XTL)
ON
ON
ON/OFF1
LIRC (10 kHz OSC)
ON
ON
ON/OFF2
PLL
ON
ON
Halt
LDO
ON
ON
ON
CPU
ON
Halt
Halt
HCLK/PCLK
ON
ON
Halt
SRAM retention
ON
ON
ON
FLASH
ON
ON
Halt
GPIO
ON
ON
Halt
TIMER
ON
ON
ON/OFF3
PWM
ON
ON
Halt
WDT
ON
ON
ON/OFF4
WWDT
ON
ON
Halt
UART
ON
ON
Halt
IC
ON
ON
Halt
SPI
ON
ON
Halt
ADC
ON
ON
Halt
ACMP
ON
ON
Halt
2
MINI58DE SERIES DATASHEET
Normal Mode
Table 6.2-3 Clocks in Power Modes
Wake-up sources in Power-down mode:
WDT, I²C, Timer, UART, BOD and GPIO
After chip enters power down, the following wake-up sources can wake chip up to normal mode.
Table 6.2-4 lists the condition about how to enter Power-down mode again for each peripheral.
*User needs to wait this condition before setting PDEN (CLK_PWRCTL[7]) and execute WFI to enter
Power-down mode.
Wake-up
Source
Dec. 09, 2015
Wake-up condition
System can enter Power-down mode again condition*
Page 33 of 83
Rev.1.02
MINI58DE
BOD
Brown-Out Detector
Interrupt
GPIO
GPIO Interrupt
After software write 1 to clear the Px_INTSRC[n] bit.
Timer Interrupt
After software writes 1 to clear TWKF (TIMERx_INTSTS[1]) and TIF
(TIMERx_INTSTS[0]).
WDT
WDT Interrupt
After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).
UART
nCTS wake-up
After software writes 1 to clear CTSWKIF (UARTx_INTSTS[16]).
I2C
Falling edge in the
I2C_SDA or I2C_CLK
TIMER
After software writes 1 to clear SYS_BODCTL[BODIF].
After software writes 1 to clear WKIF ( I2C_STATUS1[0]).
Table 6.2-4 Condition of Entering Power-down Mode Again
6.2.4
System Power Architecture
In this chip, the power distribution is divided into three segments.
Analog power from AVDD and AVSS provides the power for analog components
operation. AVDD must be equal to VDD to avoid leakage current.
Digital power from VDD and VSS supplies power to the I/O pins and internal regulator
which provides a fixed 1.8V power for digital operation.
Built-in a capacitor for internal voltage regulator
The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should
be located close to the corresponding pin. Analog power (AVDD) should be the same voltage level
as the digital power (VDD). Figure 6.2-7 shows the power distribution of the Mini58 series.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 34 of 83
Rev.1.02
MINI58DE
AVDD
AVSS
Low
Voltage
Reset
10-bit
SAR-ADC
22.1184 MHz
HIRC
Oscillator
FLASH
SRAM
Brown
Out
Detector
Analog
Comparator
10 kHz
LIRC
Oscillator
1.8V
POR18
XT1_OUT
XT1_IN
PLL
LDO_CAP
Digital Logic
4~24 MHz
or
32.768 kHz
crystal
oscillator
2.5~5.5V
to 1.8V
LDO
IO cell
GPIO Pins
VDD VSS
Mini58
TM
Series Power Distribution
®
Figure 6.2-7 NuMicro Mini58 Series Power Architecture Diagram
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 35 of 83
Rev.1.02
MINI58DE
6.2.5
System Memory Mapping
Mini58
4 GB
System Control
0xFFFF_FFFF
Reserved
|
0xE000_F000
System C ontrol
System C ontrol
0xE000_ED00
SC S_BA
External Interrupt C ontrol
0xE000_E100
SC S_BA
System Timer C ontrol
0xE000_E010
SC S_BA
0xE000_EFFF
0xE000_E000
0xE000_E00F
Reserved
|
0x6002_0000
0x6001_FFFF
Reserved
0x6000_0000
0x5FFF_FFFF
Reserved
|
0x5020_0000
AHB
AHB peripherals
0x501F_FFFF
FMC
0x5000_C 000
FMC _BA
0x5000_0000
GPIO C ontrol
0x5000_4000
GP_BA
0x4FFF_FFFF
Interrupt Multiplexer C ontrol
0x5000_0300
INT_BA
C lock C ontrol
0x5000_0200
C LK_BA
System Global C ontrol
0x5000_0000
SYS_BA
UART1 C ontrol
0x4015_0000
UART1_BA
I 2C 1 C ontrol
0x4012_0000
I2C 1_BA
ADC C ontrol
0x400E_0000
ADC _BA
AC MP C ontrol
0x400D_0000
C MP_BA
UART0 C ontrol
0x4005_0000
UART0_BA
0x2000_1000
PWM C ontrol
0x4004_0000
PWM_BA
0x2000_0FFF
SPI C ontrol
0x4003_0000
SPI_BA
0x2000_0000
I 2C 0 C ontrol
0x4002_0000
I2C 0_BA
0x1FFF_FFFF
Timer0/Timer1 C ontrol
0x4001_0000
TMR_BA
WWDT C ontrol
0x4000_4100
WWDT_BA
WDT C ontrol
0x4000_4000
WDT_BA
Reserved
|
0x4020_0000
0x401F_FFFF
APB
|
1 GB
0x4000_0000
0x3FFF_FFFF
Reserved
MINI58DE SERIES DATASHEET
0.5 GB
|
4 KB SRAM
Reserved
|
APB peripherals
0x0000_8000
0x0000_7FFF
|
32 KB on-chip Flash (Mini58)
0 GB
0x0000_0000
Table 6.2-5 Memory Mapping Table
6.2.6
6.2.6.1
Memory Organization
Overview
®
The NuMicro Mini58 series provides 4G-byte addressing space. The addressing space assigned
to each on-chip controllers is shown the following table. The detailed register definition,
addressing space, and programming details will be described in the following sections for each
on-chip peripheral. The Mini58 series only supports little-endian data format.
Dec. 09, 2015
Page 36 of 83
Rev.1.02
MINI58DE
6.2.6.2
System Memory Map
The memory locations assigned to each on-chip controllers are shown in the following table.
Addressing Space
Token
Modules
0x0000_0000 – 0x0000_7FFF
FLASH_BA
Flash Memory Space (32 KB)
0x2000_0000 – 0x2000_0FFF
SRAM_BA
SRAM Memory Space (4 KB)
Flash and SRAM Memory Space
AHB Modules Space (0x5000_0000 – 0x501F_FFFF)
0x5000_0000 – 0x5000_01FF
SYS_BA
System Global Control Registers
0x5000_0200 – 0x5000_02FF
CLK_BA
Clock Control Registers
0x5000_0300 – 0x5000_03FF
INT_BA
Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF
GP_BA
GPIO (P0~P5) Control Registers
0x5000_C000 – 0x5000_FFFF
FMC_BA
Flash Memory Control Registers
APB Modules Space (0x4000_0000 – 0x401F_FFFF)
WDT_BA
Watchdog Timer Control Registers
0x4000_4100 – 0x4000_47FF
WWDT_BA
Window Watchdog Timer Control Registers
0x4001_0000 – 0x4001_3FFF
TMR_BA
Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF
I2C0_BA
I2C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF
SPI_BA
SPI with Master/slave Function Control Registers
0x4004_0000 – 0x4004_3FFF
PWM_BA
PWM Control Registers
0x4005_0000 – 0x4005_3FFF
UART0_BA
UART0 Control Registers
0x400D_0000 – 0x400D_3FFF
ACMP_BA
Analog Comparator Control Registers
0x400E_0000 – 0x400E_3FFF
ADC_BA
Analog-Digital-Converter (ADC) Control Registers
0x4012_0000 – 0x4012_3FFF
I2C1_BA
I2C1 Interface Control Registers
0x4015_0000 – 0x4015_3FFF
UART1_BA
UART1 Control Registers
MINI58DE SERIES DATASHEET
0x4000_4000 – 0x4000_00FF
System Control Space (0xE000_E000 – 0xE000_EFFF)
0xE000_E010 – 0xE000_E0FF
SCS_BA
System Timer Control Registers
0xE000_E100 – 0xE000_ECFF
SCS_BA
Nested Vectored Interrupt Control Registers
0xE000_ED00 – 0xE000_ED8F
SCS_BA
System Control Block Registers
Table 6.2-6 Address Space Assignments for On-Chip Modules
Dec. 09, 2015
Page 37 of 83
Rev.1.02
MINI58DE
6.2.7
System Timer (SysTick)
®
The Cortex -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The
counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.
When system timer is enabled, it will count down from the value in the SysTick Current Value
Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value
Register (SYST_RVR) on the next clock edge, and then decrement on subsequent clocks. When
the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on
reads.
The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to
zero before enabling the feature. This ensures the timer to count from the SYST_RVR value
rather than an arbitrary value when it is enabled.
If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is
reloaded with this value. This mechanism can be used to disable the feature independently from
the timer enable bit.
For more detailed information, please refer to the “ARM
®
Manual” and “ARM v6-M Architecture Reference Manual”.
®
®
Cortex -M0 Technical Reference
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 38 of 83
Rev.1.02
MINI58DE
6.2.8
6.2.8.1
Nested Vectored Interrupt Controller (NVIC)
Overview
®
The Cortex -M0 CPU provides an interrupt controller as an integral part of the exception mode,
named as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the
processor core and provides following features.
6.2.8.2
Features
Nested and Vectored interrupt support
Automatic processor state saving and restoration
Dynamic priority change
Reduced and deterministic interrupt latency
The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler
Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority.
All of the interrupts and most of the system exceptions can be configured to different priority
levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the
current running one’s priority. If the priority of the new interrupt is higher than the current one, the
new interrupt handler will override the current handler.
The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the
overhead of states saving and restoration and therefore reduces delay time in switching to
pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the
efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current
ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will
give priority to the higher one without delay penalty. Thus it advances the real-time capability.
For more detailed information, please refer to the “ARM
®
Manual” and “ARM v6-M Architecture Reference Manual”.
6.2.8.3
®
®
Cortex -M0 Technical Reference
Exception Model and System Interrupt Map
®
The following table lists the exception model supported by NuMicro Mini58 series. Software can
set four levels of priority on some of these exceptions as well as on all interrupts. The highest
user-configurable priority is denoted as 0 and the lowest priority is denoted as 3. The default
priority of all the user-configurable interrupts is 0. Note that the priority 0 is treated as the fourth
priority on the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”.
Dec. 09, 2015
Page 39 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
When an interrupt is accepted, the starting address of the Interrupt Service Routine (ISR) is
fetched from a vector table in memory. There is no need to determine which interrupt is accepted
and branch to the starting address of the correlated ISR by software. While the starting address is
fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR,
R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers
from stack and resume the normal execution. Thus it will take less and deterministic time to
process the interrupt request.
MINI58DE
Exception Name
Vector Number
Priority
Reset
1
-3
NMI
2
-2
Hard Fault
3
-1
Reserved
4 ~ 10
Reserved
SVCall
11
Configurable
Reserved
12 ~ 13
Reserved
PendSV
14
Configurable
SysTick
15
Configurable
Interrupt (IRQ0 ~ IRQ31)
16 ~ 47
Configurable
Table 6.2-7 Exception Model
Exception
Number
Interrupt Number
(Bit In Interrupt Interrupt Name
Registers)
Source
Module
1 ~ 15
-
-
-
16
0
BODOUT
Brown-out
17
1
WDT_INT
18
2
19
Interrupt Description
System exceptions
Power-Down
Wake-Up
-
MINI58DE SERIES DATASHEET
Brown-out low voltage detected interrupt
Yes
WDT
Watchdog Timer interrupt
Yes
EINT0
GPIO
External signal interrupt from P3.2 pin
Yes
3
EINT1
GPIO
External signal interrupt from P5.2 pin
Yes
20
4
GP0/1_INT
GPIO
External signal interrupt from GPIO
group P0~P1
Yes
21
5
GP2/3/4_INT
GPIO
External signal interrupt from GPIO
group P2~P4 except P3.2
Yes
22
6
PWM_INT
PWM
PWM interrupt
No
23
7
BRAKE_INT
PWM
PWM Brake interrupt
No
24
8
TMR0_INT
TMR0
Timer 0 interrupt
Yes
25
9
TMR1_INT
TMR1
Timer 1 interrupt
Yes
26 ~ 27
10 ~ 11
-
-
28
12
UART0_INT
UART0
UART0 interrupt
Yes
29
13
UART1_INT
UART1
UART1 interrupt
Yes
30
14
SPI_INT
SPI
SPI interrupt
No
31
15
-
-
32
16
GP5_INT
GPIO
External signal interrupt from GPIO
group P5 except P5.2
Yes
33
17
HIRC_TRIM_IN
T
HIRC
HIRC trim interrupt
No
34
18
I2C0_INT
I2C0
I C0 interrupt
Dec. 09, 2015
-
-
2
Page 40 of 83
Yes
Rev.1.02
MINI58DE
Exception
Number
Interrupt Number
(Bit In Interrupt Interrupt Name
Registers)
Source
Module
Interrupt Description
I2C1 interrupt
Power-Down
Wake-Up
35
19
I2C1_INT
I2C1
36 ~ 40
20 ~ 24
-
-
41
25
ACMP_INT
ACMP
42 ~ 43
26 ~ 27
-
-
44
28
PWRWU_INT
CLKC
Clock controller interrupt for chip wakeup from Power-down state
Yes
45
29
ADC_INT
ADC
ADC interrupt
No
46 ~ 47
30 ~ 31
-
-
No
Analog Comparator 0 or Comparator 1
interrupt
Yes
-
-
Table 6.2-8 System Interrupt Map Vector Table
6.2.8.4
Vector Table
When an interrupt is accepted, the processor will automatically fetch the starting address of the
interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table
based address is fixed at 0x00000000. The vector table contains the initialization value for the
stack pointer on reset, and the entry point addresses for all exception handlers. The vector
number on previous page defines the order of entries in the vector table associated with the
exception handler entry as illustrated in previous section.
Vector Table Word Offset (Bytes)
0x00
Initial Stack Pointer Value
Exception Entry Pointer using that Exception Number
Table 6.2-9 Vector Table Format
6.2.8.5
Operation Description
NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt SetEnable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write1-to-clear policy, both registers reading back the current enabled state of the corresponding
interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become
Pending; however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it
remains in its Active state until cleared by reset or an exception return. Clearing the enable bit
prevents new activations of the associated interrupt.
NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used
to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers
reading back the current pended state of the corresponding interrupts. The Clear-Pending
Register has no effect on the execution status of an Active interrupt.
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register
supporting four interrupts).
The general registers associated with the NVIC are all accessible from a block of memory in the
System Control Space and will be described in next section.
Dec. 09, 2015
Page 41 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
Exception Number * 0x04
Description
MINI58DE
6.2.9
System Control Registers (SCB)
®
The Cortex -M0 status and operating mode control are managed System Control Registers. Including
®
®
CPUID, Cortex -M0 interrupt priority and Cortex -M0 power management can be controlled through
these system control registers.
®
®
For more detailed information, please refer to the “ARM Cortex -M0 Technical Reference Manual”
®
and “ARM v6-M Architecture Reference Manual”.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 42 of 83
Rev.1.02
MINI58DE
6.3
Clock Controller
6.3.1
Overview
The clock controller generates clocks for the whole chip, including system clocks and all
peripheral clocks. The clock controller also implements the power control function with the
individually clock ON/OFF control, clock source selection and clock divider. The chip enters
®
Power-down mode when Cortex -M0 core executes the WFI instruction only if the PDEN
(CLK_PWRCTL[7]) bit is set to 1. After that, chip enters Power-down mode and waits for wake-up
interrupt source triggered to exit Power-down mode. In Power-down mode, the clock controller
turns off the 4~24 MHz external high speed crystal (HXT) and 22.1184 MHz internal high speed
RC oscillator (HIRC) to reduce the overall system power consumption. The following figures show
the clock generator and the overview of the clock source control.
The clock generator consists of 3 sources as listed below:
4~24 MHz external high speed crystal oscillator (HXT) or 32.768 kHz (LXT) external
low speed crystal oscillator
Programmable PLL output clock frequency (PLL source can be selected from external
4 ~ 24 MHz external high speed crystal (HXT) or 22.1184 MHz internal high speed
oscillator (HIRC)) (PLL FOUT)
22.1184 MHz internal high speed RC oscillator (HIRC)
10 kHz internal low speed RC oscillator (LIRC)
XTLEN (CLK_PWRCTL[1:0])
XT1_OUT
4~24 MHz HXT
or
32.768 kHz LXT
PLLSRC (CLK_PLLCTL[19])
0
HIRCEN (CLK_PWRCTL[2])
PLL
PLL FOUT
1
22.1184 MHz
HIRC
HIRC
LIRCEN (CLK_PWRCTL[3])
LIRC
10 kHz
LIRC
Legend:
HXT = 4~24 MHz external high speed crystal oscillator
LXT = 32.768 kHz external low speed crystal oscillator
HIRC = 22.1184 MHz internal high speed RC oscillator
LIRC = 10 kHz internal low speed RC oscillator
Figure 6.3-1 Clock Generator Block Diagram
Dec. 09, 2015
Page 43 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
XT1_IN
HXT or LXT
MINI58DE
22.1184
MHz
22.1184 MHz
111
10 kHz
4~24
MHz
PLLFOUT
010
Reserved
4~24 MHz
1/(HCLKDIV+1)
000
HCLK
ISP
PCLK
I2C 0~1
ACMP
22.1184 MHz
CLKSEL0[2:0]
111
External trigger
4~24 MHz
CPU
001
10 kHz
22.1184 MHz
CPUCLK
011
HCLK
10 kHz
001
0
4~24 MHz
PLLCON[19]
TMR 1
TMR 0
010
1
PLLFOUT
011
000
22.1184 MHz
CLKSEL1[14:12]
CLKSEL1[10:8]
22.1184 MHz
HCLK
4~24 MHz
CPUCLK
1/2
111
1/2
011
1/2
010
Reserved
SysTick
0
001
000
Reserved
PWMCH45
PWMCH23
PWMCH01
11
HCLK
10
CLKSEL0[5:3]
CLKSEL2[5:4]
CLKSEL1[31:30]
CLKSEL1[29:28]
CLKSEL2[17:16]
10 kHz
HCLK
1/2048
HCLK
1/2048
MINI58DE SERIES DATASHEET
4~24 MHz
10, 11
PLLFOUT
01
HCLK
00
4~24 MHz
WWDT
11
10
4~24 MHz
Reserved
11
10
10 kHz
PLLFOUT
1
SYST_CSR[2]
4~24 MHz
22.1184 MHz
FMC
WDT
00
CLKSEL1[1:0]
11
10
SPI
01
00
CLKSEL1[25:24]
CLKSEL1[5:4]
22.1184 MHz
HCLK
PLLFOUT
4~24 MHz
CLKSEL1[3:2]
1/(UARTDIV+1)
UART 0~1
1/(ADC_DIV+1)
ADC
11
10
01
22.1184 MHz
00
HCLK
Reserved
4~24 MHz
10 kHz
11
BOD
10
FREQDIV
01
00
CLKSEL2[3:2]
Note: Before clock switching, both the preselected and newly selected clock sources
must be turned on and stable.
Figure 6.3-2 Clock Generator Global View Diagram
Dec. 09, 2015
Page 44 of 83
Rev.1.02
MINI58DE
6.3.2
Auto-trim
This chip supports auto-trim function: the HIRC trim (22.1184 MHz internal RC oscillator),
according to the accurate LXT (32.768 kHz crystal oscillator), automatically gets accurate HIRC
output frequency, 1 % deviation within all temperature ranges. For instance, the system needs an
accurate 22.1184 MHz clock. In such case, if users do not want to use 22.1184 MHz HXT as the
system clock source, they need to solder 32.768 kHz crystal in system, and set FREQSEL
(SYS_IRCTCTL[0] trim frequency selection) to “1”, and the auto-trim function will be enabled.
Interrupt status bit FREQLOCK (SYS_IRCTISTS[0] HIRC frequency lock status) high indicates
the HIRC output frequency is accurate within 1% deviation. To get better results, it is
recommended to set both LOOPSEL (SYS_IRCTCTL[5:4] trim calculation loop) and RETRYCNT
(SYS_IRCTCTL[7:6] trim value update limitation count) to “11”.
6.3.3
System Clock and SysTick Clock
The system clock has 4 clock sources which were generated from clock generator block. The
clock source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram
is shown in Figure 6.3-3.
HCLKSEL (CLK_CLKSEL0[2:0])
22.1184 MHz
HIRC
10 kHz LIRC
PLL FOUT
Reserved
4~24 MHz HXT or
32.768 kHz LXT
111
011
CPUCLK
010
1/(HCLK_N+1)
001
HCLKDIV (CLK_CLKDIV[3:0])
HCLK
PCLK
CPU
AHB
APB
000
Note: Before clock switching, both the preselected and newly selected clock sources
must be turned on and stable.
Legend:
HXT = 4~24 MHz external high speed crystal oscillator
HIRC = 22.1184 MHz internal high speed RC oscillator
LIRC = 10 kHz internal low speed RC oscillator
Figure 6.3-3 System Clock Block Diagram
The source of PCLK is equal to HCLK in system clock architecture.
®
The clock source of SysTick in Cortex -M0 core can use CPU clock or external clock
CLKSRC(SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources.
The clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]).
The block diagram is shown in Figure 6.3-4.
Dec. 09, 2015
Page 45 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
CPU in Power Down Mode
MINI58DE
STCLKSEL (CLK_CLKSEL0[5:3])
22.1184 MHz
HIRC
HCLK
4~24 MHz HXT or
32.768 kHz LXT
Reserved
4~24 MHz HXT or
32.768 kHz LXT
1/2
111
1/2
011
1/2
010
STCLK
001
000
Legend:
HXT = 4~24 MHz external high speed crystal oscillator
HIRC = 22.1184 MHz internal high speed RC oscillator
LIRC = 10 kHz internal low speed RC oscillator
Note: Before clock switching, both the preselected and newly selected clock sources
must be turned on and stable.
Figure 6.3-4 SysTick Clock Control Block Diagram
6.3.4
Peripherals Clock Source Selection
The peripheral clock has different clock source switch settings depending on different peripherals.
Please note that, while switching clock source from one to another, user must wait until both clock
sources are running stabled.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 46 of 83
Rev.1.02
MINI58DE
PCLK
Watch Dog
Timer
WDTCKEN
(CLK_APBCLK[0])
TMR0CKEN
(CLK_APBCLK[2])
Timer0
TMR1CKEN
(CLK_APBCLK[3])
Timer1
Frequency
Divider
CLKOCKEN
(CLK_APBCLK[6])
I2C0
I2C0CKEN
(CLK_APBCLK[8])
I2C1
I2C1CKEN
(CLK_APBCLK[9])
SPIEN
(CLK_APBCLK[12])
SPI
UART0CKEN
(CLK_APBCLK[16])
UART0
UART1CKEN
(CLK_APBCLK[17])
UART1
PWM01
PWMCH01CKEN
(CLK_APBCLK[20])
PWM23
PWMCH23CKEN
(CLK_APBCLK[21])
PWM45
MINI58DE SERIES DATASHEET
PWMCH45CKEN
(CLK_APBCLK[22])
ADC
ADCCKEN
(CLK_APBCLK[28])
ACMP
ACMPCKEN
(CLK_APBCLK[30])
Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK
Dec. 09, 2015
Page 47 of 83
Rev.1.02
MINI58DE
Peripheral Clok
Selectable
Ext. CLK (HXT Or
LXT)
HIRC
LIRC
HCLK
PLL
WDT
Yes
Yes
No
Yes
Yes
No
WWDT
Yes
Yes
No
Yes
Yes
No
Timer0
Yes
Yes
Yes
Yes
Yes
No
Timer1
Yes
Yes
Yes
Yes
Yes
No
I2C0
No
-
-
-
-
-
I C1
No
-
-
-
-
-
SPI
Yes
Yes
No
No
Yes
Yes
UART0
Yes
Yes
Yes
No
No
Yes
UART1
Yes
Yes
Yes
No
No
Yes
PWM
No
-
-
-
-
-
ADC
Yes
Yes
Yes
No
Yes
Yes
ACMP
No
-
-
-
-
-
2
Table 6.3-1 Peripheral Clock Source Selection Table
Note: For the peripherals those peripheral clock are not selectable, its clock source is fixed to PCLK.
6.3.5
Power-down Mode Clock
MINI58DE SERIES DATASHEET
When chip enters Power-down mode, system clocks, some clock sources, and some peripheral
clocks will be disabled. Some clock sources and peripheral clocks are still active in Power-down
mode.
The clocks still kept active are listed below:
6.3.6
Clock Generator
10 kHz internal low speed oscillator (LIRC) clock
32.768 kHz external low speed crystal oscillator (LXT) clock (If PDLXT = 1 and
XTLEN[1:0] = 10)
Peripherals Clock (When 10 kHz low speed oscillator is adopted as clock source)
Watchdog Clock
Timer 0/1 Clock
Frequency Divider Output
This device is equipped with a power-of-2 frequency divider which is composed of 16 chained
divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one
multiplexer is reflected to the CLKO pin. Therefore there are 16 options of power-of-2 divided
1
16
clocks with the frequency from Fin/2 to Fin/2 where Fin is input clock frequency to the clock
divider.
Dec. 09, 2015
Page 48 of 83
Rev.1.02
MINI58DE
(N+1)
The output formula is Fout = Fin/2
, where Fin is the input clock frequency, Fout is the clock
divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).
When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When
writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock
reaches low state and stay in low state.
If DIV1EN (CLK_CLKOCTL[5]) set to 1, the frequency divider clock (FRQDIV_CLK) will bypass
power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly.
FREQSEL (CLK_CLKSEL2[3:2])
CLKOCKEN (CLK_APBCLK[6])
22.1184 MHz
HIRC
11
HCLK
CLKO_CLK
10
LIRC
01
4~24 MHz HXT or
32.768 kHz LXT
Legend:
HXT = 4~24 MHz external high speed crystal oscillator
LXT = 32.768 kHz external low speed crystal oscillator
HIRC = 22.1184 MHz internal high speed RC oscillator
00
Note: Before clock switching, both the preselected and newly selected clock sources
must be turned on and stable.
Figure 6.3-6 Clock Source of Frequency Divider
Enable
divide-by-2 counter
CLKO_CLK
1/2
1/22
FREQSEL
(CLK_CLKOCTL[3:0])
16 chained
divide-by-2 counter
1/23
…...
1/215
DIV1EN
(CLK_CLKOCTL[5])
1/216
0000
0001
:
:
1110
1111
16 to 1
MUX
0
CLKO
1
Figure 6.3-7 Block Diagram of Frequency Divider
Dec. 09, 2015
Page 49 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
CLKOEN
(CLK_CLKOCTL[4])
MINI58DE
6.4
Flash Memory Controller (FMC)
6.4.1
Overview
®
The NuMicro Mini58 series is equipped with 32 Kbytes on-chip embedded flash for application
and Data Flash to store some application dependent data. A User Configuration block provides
for system initialization. A 2.5 Kbytes loader ROM (LDROM) is used for In-System-Programming
(ISP) function. A 512 bytes security protection ROM (SPROM) can conceal user program. This
chip also supports In-Application-Programming (IAP) function, user switches the code executing
without the chip reset after the embedded flash updated.
6.4.2
Features
Supports 32 Kbytes application ROM (APROM).
Supports 2.5 Kbytes loader ROM (LDROM).
Supports configurable Data Flash size to share with APROM.
Supports 512 bytes security protection ROM (SPROM) to conceal user program.
Supports 12 bytes User Configuration block to control system initialization.
Supports 512 bytes page erase for all embedded flash.
Supports CRC-32 checksum calculation function.
Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update
embedded flash memory.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 50 of 83
Rev.1.02
MINI58DE
6.5
General Purpose I/O (GPIO)
6.5.1
Overview
®
The NuMicro Mini58 series has up to 30 General Purpose I/O pins to be shared with other
function pins depending on the chip configuration. These 30 pins are arranged in 6 ports named
as P0, P1, P2, P3, P4 and P5. Each of the 30 pins is independent and has the corresponding
register bits to control the pin mode function and data.
The I/O type of each pin can be configured by software individually as Input, Push-pull output,
Open-drain output, or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins is
stay in input mode and each port data register Px_DOUT[n] resets to 1. For Quasi-bidirectional
mode, each I/O pin is equipped with a very weak individual pull-up resistor about 110 k ~ 300
k for VDD is from 5.0 V to 2.5 V.
6.5.2
Features
Four I/O modes:
Quasi-bidirectional mode
Push-pull output
Open-drain output
Input-only with high impendence
I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
Enabling the pin interrupt function will also enable the pin wake-up function
High driver and high sink I/O mode support
Configurable default I/O mode of all pins after reset by CIOINI (Config0[10]) setting
CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset
CIOINI = 1, all GPIO pins in Input tri-state mode after chip reset
Dec. 09, 2015
Page 51 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
Quasi-bidirectional TTL/Schmitt trigger input mode selected by SYS_Px_MFP[23:16]
I/O pin configured as interrupt source with edge/level setting
MINI58DE
6.6
Timer Controller (TMR)
6.6.1
Overview
The Timer Controller includes two 32-bit timers, TMR0 and TMR1, allowing user to easily
implement a timer control for applications. The timer can perform functions, such as frequency
measurement, delay timing, clock generation, event counting by external input pins, and interval
measurement by external capture pins.
6.6.2
Features
Two sets of 32-bit timer with 24-bit up counter and one 8-bit prescale counter
Independent clock source for each timer
Provides one-shot, periodic, toggle-output and continuous counting operation modes
24-bit up counter value is readable through CNT (TIMRTx_CNT[23:0])
Supports event counting function
24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])
Supports external capture pin event for interval measurement
Supports external capture pin event to reset 24-bit up counter
Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is
generated
Supports internal capture triggered while internal ACMP output signal transition
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 52 of 83
Rev.1.02
MINI58DE
6.7
Enhanced PWM Generator
6.7.1
Overview
®
The NuMicro Mini58 series has built in one PWM unit (PWM0) which is specially designed for
motor driving control applications. The PWM0 supports six PWM generators which can be
configured as six independent PWM outputs, PWM0_CH0~PWM0_CH5, or as three
complementary PWM pairs, (PWM0_CH0, PWM0_CH1), (PWM0_CH2, PWM0_CH3) and
(PWM0_CH4, PWM0_CH5) with three programmable dead-time generators.
Every complementary PWM pairs share one 8-bit prescaler. There are six clock dividers providing
five divided frequencies (1, 1/2, 1/4, 1/8, 1/16) for each channel. Each PWM output has
independent 16-bit counter for PWM period control, and 16-bit comparators for PWM duty control.
The six PWM generators provide twelve independent PWM interrupt flags which are set by
hardware when the corresponding PWM period counter comparison matched period and duty.
Each PWM interrupt source with its corresponding enable bit can request PWM interrupt. The
PWM generators can be configured as One-shot mode to produce only one PWM cycle signal or
Auto-reload mode to output PWM waveform continuously.
To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and
16-bit comparator are implemented with double buffer. When user writes data to
counter/comparator buffer registers, the updated value will be loaded into the 16-bit down
counter/ comparator at the end of current period. The double buffering feature avoids glitch at
PWM outputs.
Besides PWM, Motor controlling also need Timer, ACMP and ADC to work together. In order to
control motor more precisely, we provide some registers that not only configure PWM but also
Timer, ADC and ACMP, by doing so, it can save more CPU time and control motor with ease
especially in BLDC.
6.7.2
Features
Six independent 16-bit PWM duty control units with maximum six port pins:
Six independent PWM outputs – PWM0_CH0, PWM0_CH1, PWM0_CH2,
PWM0_CH3, PWM0_CH4, and PWM0_CH5
Three complementary PWM pairs, with each pin in a pair mutually complement
to each other and capable of programmable dead-time insertion – (PWM0_CH0,
PWM0_CH1), (PWM0_CH2, PWM0_CH3) and (PWM0_CH4, PWM0_CH5)
Three synchronous PWM pairs, with each pin in a pair in-phase – (PWM0_CH0,
PWM0_CH1), (PWM0_CH2, PWM0_CH3) and (PWM0_CH4, PWM0_CH5)
Group control bit – PWM0_CH2 and PWM0_CH4 are synchronized with PWM0_CH0,
PWM0_CH3 and PWM0_CH5 are synchronized with PWM0_CH1
One-shot (only support edge-aligned type) or Auto-reload mode PWM
Up to 16-bit resolution
Supports edge-aligned, center-aligned and precise center-aligned mode
Supports asymmetric PWM generating in center-aligned and precise center-aligned
mode
Supports center loading in center-aligned and precise center-aligned mode
Programmable dead-time insertion between complementary paired PWMs
Dec. 09, 2015
Page 53 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
The PWM0 supports the following features:
MINI58DE
Each pin of PWM0_CH0 to PWM0_CH5 has independent polarity setting control
Hardware fault brake protections
Supports software trigger
Two Interrupt source types:
Synchronously requested at PWM frequency when down counter
comparison matched (edge- and center-aligned type) or underflow (edgealigned type)
Requested when external fault brake asserted
BKP0: EINT0 or CPO1
BKP1: EINT1 or CPO0
The PWM signals before polarity control stage are defined in the view of positive logic.
The PWM ports is active high or active low are controlled by polarity control register
Supports mask aligned function
Supports independently rising CMP matching, PERIOD matching, falling CMP
matching (in Center-aligned type), period matching to trigger ADC conversion
Timer comparing matching event trigger PWM to do phase change in BLDC
application
Supports ACMP output event trigger PWM to force PWM output at most one period
low, this feature is usually for step motor control
Provides interrupt accumulation function
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 54 of 83
Rev.1.02
MINI58DE
Trapezoidal Commutation System Architecture
+VDC Bus
Hyper Terminal
DC Bus +
BLDC
Isolation
circuit
UART
N
UART Interface
MINI58
+5V
UART
Timer
nINT0
Push
Button
S
+5V
CPO0
PWM0
CH0
CH1
CH2
CH3
CH4
CH5
DC Bus -
3-Phase Inverter
(IPM, MOSFET, IGBT)
AIN[6]
AIN[0]
AIN[1]
AIN[2]
AIN[7] AIN[3]
ADC
+VDC Bus
+5V
Option 1
Option 2
Sensorless circuit
MINI58DE SERIES DATASHEET
Figure 6.7-1 Application Circuit Diagram
Dec. 09, 2015
Page 55 of 83
Rev.1.02
MINI58DE
6.8
Watchdog Timer (WDT)
6.8.1
Overview
The Watchdog Timer is used to perform a system reset when system runs into an unknown state.
This prevents system from hanging for an infinite period of time. Besides, the Watchdog Timer
supports the function to wake-up system from Idle/Power-down mode.
6.8.2
Features
18-bit free running up counter for WDT time-out interval
Selectable time-out interval (2 ~ 2 ) WDT_CLK cycles and the time-out interval is 1.6 ms ~
26.214s if WDT_CLK = 10 kHz
System kept in reset state for a period of (1 / WDT_CLK) * 63
Supports selectable WDT reset delay period, including 1026、130、18 or 3 WDT_CLK reset
delay period
Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0] in
Config0 register
Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or
LXT
4
18
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 56 of 83
Rev.1.02
MINI58DE
6.9
Window Watchdog Timer (WWDT)
6.9.1
Overview
The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified
window period to prevent software run to uncontrollable status by any unpredictable condition.
6.9.2
Features
6-bit down counter value (CNTDAT) and 6-bit compare value (CMPDAT) to make the
WWDT time-out window period flexible
Supports 4-bit value (PSCSEL) to programmable maximum 11-bit prescale counter period of
WWDT counter
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 57 of 83
Rev.1.02
MINI58DE
6.10 UART Controller (UART)
6.10.1 Overview
®
The NuMicro Mini58 series provides two channels of Universal Asynchronous
Receiver/Transmitters (UART). The UART0 performs supports flow control function. The UART0
performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-toserial conversion on data transmitted from the CPU. The UART0 controller also supports IrDA
SIR Function, and RS-485 function mode. The UART0 channel supports six types of interrupts.
The UART1 channel supports five types of interrupts. The UART1 only performs a serial-toparallel conversion on data received from the peripheral, and a parallel-to-serial conversion on
data transmitted from the CPU. The UART0 has 16 bytes Receiver/Transmitter FIFO. The UART1
only has one Receiver/Transmitter buffer.
6.10.2 Features
MINI58DE SERIES DATASHEET
Full duplex, asynchronous communications
Separates receive/transmit 16/16 bytes entry FIFO for data payloads (Only Available in
UART0)
Separates receive/transmit 1/1 byte buffer for data payloads (Only Available in UART1)
Supports hardware auto flow control/flow control function (CTS, RTS) and programmable
RTS flow control trigger level (Only Available in UART0)
Programmable receiver buffer trigger level (Only Available in UART0)
Supports programmable baud-rate generator for each channel individually
Supports CTS wake-up function (Only Available in UART0)
Supports 8-bit receiver buffer time-out detection function
Programmable transmitting data delay time between the last stop and the next start bit by
setting UART_TOUT[15:8] register
Supports break error, frame error, parity error and receive/transmit buffer overflow detection
function
Fully programmable serial-interface characteristics
Programmable number of data bit, 5, 6, 7, 8 character
Programmable parity bit, even, odd, no parity or stick parity bit generation and
detection
Programmable stop bit, 1, 1.5, or 2 stop bit generation
Supports IrDA SIR function mode (Only Available in UART0)
Supports 3/16-bit duration for normal mode
Supports RS-485 function mode (Only Available in UART0)
Supports RS-485 9-bit mode
Supports hardware or software enable to program RTS pin to control RS-485
transmission direction directly
Dec. 09, 2015
Page 58 of 83
Rev.1.02
MINI58DE
6.11 I2C Serial Interface Controller (I2C)
6.11.1 Overview
2
I C is a two-wire, bi-directional serial bus that provides a simple and efficient method for data
2
exchange between devices. The I C standard is a true multi-master bus including collision detection
and arbitration that prevents data corruption if two or more masters attempt to control the bus
2
2
simultaneously. There are two sets of I C controller and only I C0 supports Power-down wake-up
function.
6.11.2 Features
2
The I C bus uses two wires (SDA and SCL) to transfer information between devices connected to
the bus. The main features of the bus include:
2
Supports up to two I C ports
Master/Slave mode
Bi-directional data transfer between masters and slaves
Multi-master bus
Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus
Serial clock synchronization allowing devices with different bit rates to communicate
via one serial bus
Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer
Built-in 14-bit time-out counter that requests the I C interrupt if the I C bus hangs up
and timer-out counter overflows
Programmable clocks allowing for versatile rate control
Supports 7-bit addressing mode
Supports multiple address recognition (four slave address registers with mask option)
Supports Power-down wake-up function (Only I C0 channel support this function)
Supports two-level buffer function
2
2
Page 59 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
Dec. 09, 2015
2
MINI58DE
6.12 Serial Peripheral Interface (SPI)
6.12.1 Overview
The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and
allows full duplex transfer. Devices communicate in Master/Slave mode with 4-wire bi-direction
interface. The SPI controller performing a serial-to-parallel conversion on data received from a
peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device.
SPI controller can be configured as a master or a slave device.
6.12.2 Features
Supports Master or Slave mode operation
Configurable transfer bit length
Provides four 32-bit FIFO buffers
Supports MSB first or LSB first transfer
Supports byte reorder function
Supports byte or word suspend mode
Supports Slave 3-wire mode
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 60 of 83
Rev.1.02
MINI58DE
6.13 Analog-to-Digital Converter (ADC)
6.13.1 Overview
The Mini58 series contains one 10-bit successive approximation analog-to-digital converters
(SAR A/D converter) with eight input channels. The A/D converters can be started by software,
external pin (STADC/P3.2) or PWM trigger.
6.13.2 Features
Analog input voltage range: 0 ~ Analog Supply Voltage from AVDD
10-bit resolution and 8-bit accuracy is guaranteed
Up to eight single-end analog input channels
Maximum ADC clock frequency is 6 MHz, and 14 ADC clocks per sample
Two operating modes
Single mode: A/D conversion is performed one time on a specified channel
PWM sequence mode: When PWM trigger, two of three ADC channels from 0 to 2
will automatically convert analog data in the sequence of channel [0,1] or
channel[1,2] or channel[0,2] defined by MODESEL (ADC_SEQCTL[3:2])
An A/D conversion can be started by:
Software write 1 to SWTRG bit
External pin STADC
PWM trigger with optional start delay period
Each Conversion result is held in data register with valid and overrun indicators
Conversion results can be compared with specified value and user can select whether
to generate an interrupt when conversion result matches the compare register setting
Channel 7 supports 2 input sources: External analog voltage and internal fixed bandgap voltage
Dec. 09, 2015
Page 61 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
MINI58DE
6.14 Analog Comparator (ACMP)
6.14.1 Overview
®
The NuMicro Mini58 series contains two comparators which can be used in a number of different
configurations. The comparator output is logic 1 when positive input is greater than negative input,
otherwise the output is 0. Each comparator can be configured to generate interrupt when the
comparator output value changes.
6.14.2 Features
Analog input voltage range: 0 ~ AVDD
Supports Hysteresis function
Optional internal reference voltage source for each comparator negative input
ACMP0 supports:
Four positive sources
Three negative sources
P1.4
Internal Comparator Reference Voltage (CRV)
Internal band-gap voltage (VBG)
ACMP1 supports:
Four positive sources
MINI58DE SERIES DATASHEET
Dec. 09, 2015
P1.5, P1.0, P1.2, or P1.3
P3.1, P3.2, P3.4, or P3.5
Three negative sources
P3.0
Internal Comparator Reference Voltage (CRV)
Internal band-gap voltage (VBG)
Page 62 of 83
Rev.1.02
MINI58DE
7
APPLICATION CIRCUIT
DVCC
[1]
AVCC
AVDD
DVCC
Power
CS
CLK
MISO
MOSI
SPI_SS
SPI_CLK
SPI_MISO
SPI_MOSI
FB
VDD
VDD
SPI Device
VSS
0.1uF
0.1uF
VSS
FB
AVSS
VDD
ICE_CLK
ICE_DAT
nRESET
VSS
SWD
Interface
DVCC
4.7K
20p
XT1_IN
Crystal
4~24 MHz
or
32.768 kHz
crystal
20p
4.7K
[2]
Mini58LDE
LQFP48
DVCC
CLK
I2Cx_SCL
I2Cx_SDA
VDD
DIO
I2C Device
VSS
XT1_OUT
DVCC
Reset
Circuit
10K
RS232 Transceiver
PC COM Port
nRESET
[2]
10uF/25V
UARTx_RXD
ROUT
UARTx_TXD
TIN
RIN
TOUT
UART
MINI58DE SERIES DATASHEET
LDO_CAP
1uF
Note 1: For the SPI device, the Mini58 chip
supply voltage must be equal to SPI device
working voltage. For example, when the SPI
Flash working voltage is 3.3 V, the Mini58 chip
supply voltage must also be 3.3V.
LDO
Note 2: x denotes 0 or 1.
Dec. 09, 2015
Page 63 of 83
Rev.1.02
MINI58DE
8
ELECTRICAL CHARACTERISTICS
8.1
Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Unit
VDD VSS
DC Power Supply
-0.3
+7.0
V
VIN
Input Voltage
VSS -0.3
VDD +0.3
V
1/tCLCL
Oscillator Frequency
4
24
MHz
TA
Operating Temperature
-40
+105
℃
TST
Storage Temperature
-55
+150
℃
IDD
Maximum Current into VDD
-
120
mA
ISS
Maximum Current out of VSS
-
120
mA
Maximum Current sunk by an I/O pin
-
35
mA
Maximum Current sourced by an I/O pin
-
35
mA
Maximum Current sunk by total I/O pins
-
100
mA
Maximum Current sourced by total I/O pins
-
100
mA
IIO
Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely
affects the life and reliability of the device.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 64 of 83
Rev.1.02
MINI58DE
8.2
DC Electrical Characteristics
(VDD - VSS = 2.5 ~ 5.5 V, TA = 25C)
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
VDD
Operation voltage
2.5
-
5.5
V
VDD = 2.5V ~ 5.5V up to 50 MHz
VSS / AVSS
Power Ground
-0.3
-
-
V
VLDO
LDO Output Voltage
1.62
1.8
1.98
V
VDD ≥ 2.5 V
1.20
1.24
1.28
V
VDD = 2.5V ~ 5.5V, TA = 25C
1.18
1.24
1.32
V
-0.3
0
0.3
V
VBG
VDD-AVDD
Band-gap Voltage
Allowed Voltage
Difference for VDD and
AVDD
IDD1
-
16.277
-
VDD = 2.5V ~ 5.5V,
TA = -40C~105C
-
HXT
HIRC
PLL
5.5V
24
MHz
X
V
V
mA
Operating Current
All Digital
VDD
Modules
Normal Run Mode
IDD2
HCLK = 50 MHz
11.272
-
mA
5.5V
24
MHz
X
V
X
-
14.651
-
mA
3.3V
24
MHz
X
V
V
-
9.739
-
mA
3.3V
24
MHz
X
V
X
VDD
HXT
HIRC
PLL
5.5V
X
V
X
V
while(1){}
IDD3
Executed from Flash
IDD4
IDD5
-
7.098
-
mA
Operating Current
Normal Run Mode
IDD6
HCLK =22.1184 MHz
All Digital
Modules
-
4.050
-
mA
5.5V
X
V
X
X
-
6.997
-
mA
3.3V
X
V
X
V
-
4.001
-
mA
3.3V
X
V
X
X
VDD
HXT
HIRC
PLL
5.5V
12
MHz
X
X
V
while(1){}
IDD7
Executed from Flash
IDD8
IDD9
-
5.514
-
mA
Operating Current
All Digital
Modules
Normal Run Mode
IDD10
HCLK = 12MHz
-
4.038
-
mA
5.5V
12
MHz
X
X
X
-
3.992
-
mA
3.3V
12
MHz
X
X
V
-
2.809
-
mA
3.3V
12
MHz
X
X
X
while(1){}
IDD11
Executed from Flash
IDD12
Dec. 09, 2015
Page 65 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
-
MINI58DE
IDD13
-
3.151
-
Normal Run Mode
IDD14
HCLK = 4 MHz
HXT
HIRC
PLL
5.5V
4 MHz
X
X
V
mA
Operating Current
All Digital
VDD
Modules
-
2.747
-
mA
5.5V
4 MHz
X
X
X
-
1.757
-
mA
3.3V
4 MHz
X
X
V
-
1.360
-
mA
3.3V
4 MHz
X
X
X
VDD
LXT
HIRC
PLL
5.5V
32.76
8 kHz
X
X
V
while(1){}
IDD15
Executed from Flash
IDD16
IDD17
-
176
-
μA
Operating Current
All Digital
Modules
Normal Run Mode
IDD18
HCLK = 32.768 kHz
-
173
-
μA
5.5V
32.76
8 kHz
X
X
X
-
158
-
μA
3.3V
32.76
8 kHz
X
X
V
-
155
-
μA
3.3V
32.76
8 kHz
X
X
X
VDD
HXT
LIRC
PLL
5.5V
X
V
X
V[4]
while(1){}
IDD19
Executed from Flash
IDD20
IDD21
-
168
-
μA
Operating Current
Normal Run Mode
IDD22
HCLK = 10 kHz
All Digital
Modules
-
167
-
μA
5.5V
X
V
X
X
-
150
-
μA
3.3V
X
V
X
V[4]
-
150
-
μA
3.3V
X
V
X
X
VDD
HXT
HIRC
PLL
5.5V
24
MHz
X
V
V
while(1){}
IDD23
Executed from Flash
MINI58DE SERIES DATASHEET
IDD24
IIDLE1
-
12.386
-
mA
All Digital
Modules
Operating Current
-
7.346
-
mA
5.5V
24
MHz
X
V
X
IIDLE3
-
10.784
-
mA
3.3V
24
MHz
X
V
V
IIDLE4
-
5.838
-
mA
3.3V
24
MHz
X
V
X
VDD
HXT
HIRC
PLL
5.5V
X
V
X
V
IIDLE2
Idle Mode
HCLK = 50MHz
IIDLE5
-
5.378
-
mA
Operating Current
All Digital
Modules
Idle Mode
IIDLE6
HCLK=22.1184 MHz
IIDLE7
Dec. 09, 2015
-
2.300
-
mA
5.5V
X
V
X
X
-
5.291
-
mA
3.3V
X
V
X
V
Page 66 of 83
Rev.1.02
MINI58DE
IIDLE8
-
IIDLE9
-
2.265
4.577
-
-
mA
Idle Mode
X
V
X
VDD
HXT
HIRC
PLL
5.5V
V
X
X
V
mA
Operating Current
IIDLE10
3.3V
X
All Digital
Modules
-
3.364
-
mA
5.5V
V
X
X
X
IIDLE11
-
3.062
-
mA
3.3V
V
X
X
V
IIDLE12
-
1.871
-
mA
3.3V
V
X
X
X
VDD
HXT
HIRC
PLL
5.5V
V
X
X
V
HCLK =12 MHz
IIDLE13
-
2.838
-
mA
Operating Current
IIDLE14
Idle Mode
All Digital
Modules
-
2.433
-
mA
5.5V
V
X
X
X
IIDLE15
-
1.446
-
mA
3.3V
V
X
X
V
IIDLE16
-
1.048
-
mA
3.3V
V
X
X
X
VDD
LXT
HIRC
PLL
5.5V
V
X
X
V
HCLK = 4 MHz
IIDLE17
-
167
-
μA
Operating Current
Idle Mode
All Digital
Modules
-
166
-
μA
5.5V
V
X
X
X
IIDLE19
-
150
-
μA
3.3V
V
X
X
V
IIDLE20
-
149
-
μA
3.3V
V
X
X
X
VDD
HXT
LIRC
PLL
5.5V
X
V
X
V[4]
IIDLE18
HCLK = 32.768 kHz
-
167
-
μA
Operating Current
Idle Mode
Modules
-
166
-
μA
5.5V
X
V
X
X
IIDLE 23
-
150
-
μA
3.3V
X
V
X
V[4]
IIDLE 24
-
149
-
μA
3.3V
X
V
X
X
-
6.2
-
A
VDD = 5.5 V, All oscillators and analog
blocks turned off.
IIDLE 22
HCLK = 10 kHz
IPWD1
Standby Current
Power-down Mode
IPWD2
(Deep Sleep Mode)
-
5.8
-
A
VDD = 3.3 V, All oscillators and analog
blocks turned off.
IIL
Logic 0 Input Current
P0/1/2/3/4/5 (Quasibidirectional Mode)
-
-70
-75
A
VDD = 5.5 V, VIN = 0V
Dec. 09, 2015
Page 67 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
IIDLE 21
All Digital
MINI58DE
ITL
Logic 1 to 0 Transition
Current P0/1/2/3/4/5
(Quasi-bidirectional
Mode) [*3]
-
-595
-750
A
ILK
Input Leakage Current
P0/1/2/3/4/5
-1
-
+1
A
Input Low Voltage
P0/1/2/3/4/5 (TTL Input)
-0.3
-
0.8
VIL1
VIH1
VIL3
VIH3
VILS
VIHS
RRST
MINI58DE SERIES DATASHEET
VILS
Input High Voltage
P0/1/2/3/4/5 (TTL Input)
Input Low Voltage
XTAL1[*2]
Input High Voltage
XTAL1[*2]
Negative-going
Threshold
(Schmitt Input),
nRESET
Positive-going
Threshold
(Schmitt Input),
nRESET
Internal nRESETPin
Pull-up Resistor
Negative-going
Threshold
VDD = 5.5 V, VIN = 2.0V
VDD = 5.5 V, 0 < VIN< VDD
Open-drain or input only mode
VDD = 4.5 V
V
-0.3
-
0.6
2.0
-
VDD + 0.3
VDD = 2.5 V
VDD = 5.5 V
V
1.5
-
VDD + 0.3
0
-
0.8
0
-
0.4
3.5
-
VDD + 0.3
2.4
-
VDD + 0.3
-0.3
-
0.2VDD
V
-
0.7 VDD
-
VDD + 0.3
V
-
150
kΩ
VDD = 2.5 V ~ 5.5V
40
VDD = 3.0 V
V
VDD = 4.5 V
VDD = 2.5 V
V
VDD = 5.5 V
VDD = 3.0 V
-0.3
-
0.3VDD
V
-
0.7 VDD
-
VDD + 0.3
V
-
-300
-400
-
A
VDD = 4.5 V, VSS = 2.4 V
-50
-80
-
A
VDD = 2.7 V, VSS = 2.2 V
ISR13
-40
-73
-
A
VDD = 2.5 V, VSS = 2.0 V
ISR21
-20
Source Current
P0/1/2/3/4/5 (Push-pull -3
Mode)
-2.5
-26
-
mA
VDD = 4.5 V, VSS = 2.4 V
-5
-
mA
VDD = 2.7 V, VSS = 2.2 V
-5
-
mA
VDD = 2.5 V, VSS = 2.0 V
Sink Current
P0/1/2/3/4/5 (Quasibidirectional, OpenDrain and Push-pull
Mode)
10
15
-
mA
VDD = 4.5 V, VSS = 0.45 V
6
9
-
mA
VDD = 2.7 V, VSS = 0.45 V
5
8
-
mA
VDD = 2.5 V, VSS = 0.45 V
VIHS
(Schmitt input),
P0/1/2/3/4/5
Positive-going
Threshold
(Schmitt input),
P0/1/2/3/4/5
ISR11
ISR12
ISR22
ISR23
ISK11
ISK12
ISK13
Source Current
P0/1/2/3/4/5 (Quasibidirectional Mode)
Notes:
1. nRESET pin is a Schmitt trigger input.
Dec. 09, 2015
Page 68 of 83
Rev.1.02
MINI58DE
2. XTAL1 is a CMOS input.
3. Pins of P0, P1, P2, P3, P4 and P5 can source a transition current when they are being externally
driven from 1 to 0. In the condition of VDD=5.5V, the transition current reaches its maximum value
when VIN approximates to 2V.
4. Only enable modules which support 10 kHz LIRC clock source
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 69 of 83
Rev.1.02
MINI58DE
8.3
AC Electrical Characteristics
8.3.1
External Input Clock
tCLCL
tCLCH
0.7 VDD
90%
tCLCX
10%
0.3 VDD
tCHCL
tCHCX
Note: Duty cycle is 50%.
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
tCHCX
Clock High Time
10
-
-
ns
-
tCLCX
Clock Low Time
10
-
-
ns
-
tCLCH
Clock Rise Time
2
-
15
ns
-
tCHCL
Clock Fall Time
2
-
15
ns
-
8.3.2
External 4~24 MHz High Speed Crystal (HXT)
MINI58DE SERIES DATASHEET
Symbol
Parameter
Min.
Typ.
Max
Unit
Test Conditions
VHXT
Operation Voltage
2.5
-
5.5
V
-
TA
Temperature
-40
-
105
℃
-
-
2.5
-
mA
12 MHz, VDD = 5.5V
IHXT
Operating Current
-
1.0
-
mA
12 MHz, VDD = 3.3V
4
-
24
MHz
-
fHXT
8.3.3
Clock Frequency
External 32.768 kHz XTAL Oscillator (LXT)
Specifications
Sym.
Parameter
Test Conditions
Min.
fLXTAL
Oscillator frequency
TLXTAL
Temperature
ILXTAL
Operating current
8.3.4
Typ.
Max.
Unit
32.768
-40
kHz
VDD = 2.5V ~ 5.5V
o
+105
C
A
5
VDD = 2.5V
Typical Crystal Application Circuits
Crystal
Dec. 09, 2015
C1
C2
Page 70 of 83
Rev.1.02
MINI58DE
4 MHz ~ 24 MHz
20 pF
20 pF
32.768 kHz
20 pF
20 pF
XT1_IN
XT1_OUT
4~24 MHz
or
32.768 kHz
Crystal
C1
Vss
C2
Vss
Figure 8.3-1 Mini58 Typical Crystal Application Circuit
8.3.5
22.1184 MHz Internal High Speed RC Oscillator (HIRC)
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
VHRC
Supply Voltage
1.62
1.8
1.98
V
-
Center Frequency
-
22.1184
MHz
-
-1
-
+1
%
-2
-
+2
%
-
700
-
μA
fHRC
Calibrated Internal
IHRC
Operating Current
Dec. 09, 2015
Page 71 of 83
TA = -40℃~105℃
VDD=2.5 V~ 5.5 V
TA = 25 ℃,VDD = 5 V
Rev.1.02
MINI58DE SERIES DATASHEET
Oscillator Frequency
TA = 25 ℃
VDD = 5 V
MINI58DE
HIRC oscillator accuracy vs. temperature
1.00
0.80
Deviation Percentage %
0.60
0.40
0.20
0.00
Max
-0.20
Min
-0.40
-0.60
-0.80
-1.00
-40 -30 -20 -10 0 10 20 25 30 40 50 60 70 80 85 90 100 110
TA ℃
8.3.6
10 kHz Internal Low Speed RC Oscillator (LIRC)
MINI58DE SERIES DATASHEET
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
VLRC
Supply Voltage
2.5
-
5.5
V
-
Center Frequency
-
10
-
kHz
-
-10
-
+10
%
-40
-
+40
%
fLRC
VDD=2.5V~ 5.5V
TA = 25℃
Oscillator Frequency
Dec. 09, 2015
Page 72 of 83
VDD=2.5V~ 5.5V
TA = -40℃~+105℃
Rev.1.02
MINI58DE
8.4
Analog Characteristics
8.4.1
10-bit SARADC
Symbol
Parameter
Min
Typ
Max
Unit
Test Condition
-
Resolution
-
-
10
Bit
-
DNL
Differential Nonlinearity Error
-
-1~1.5
-1~+2.5
LSB
-
INL
Integral Nonlinearity Error
-
±1
±2
LSB
-
EO
Offset Error
-
1
2
LSB
-
EG
Gain Error (Transfer Gain)
-
-1
-3
LSB
-
EA
Absolute Error
-
3
4
LSB
-
-
Monotonic
Guaranteed
-
-
FADC
ADC Clock Frequency
-
FS
-
4.2
AVDD = 4.5~5.5 V
MHz
-
-
2.8
AVDD =2.5~5.5 V
-
-
300
kSPS
AVDD = 4.5~5.5 V
-
-
200
kSPS
AVDD = 2.5~5.5 V
Sample Rate (FADC/TCONV)
Acquisition Time (Sample Stage)
N+1
1/FADC
TCONV
Total Conversion Time
N+14
1/FADC
N is sampling counter,
N=0,1,2, 4,8, 16,32, 4,
128, 256,1024
AVDD
Supply Voltage
2.5
-
5.5
V
-
IDDA
Supply Current (Avg.)
-
600
-
μA
AVDD = 5.5 V
VIN
Analog Input Voltage
0
-
AVDD
V
-
CIN
Input Capacitance
-
3.2
-
pF
-
RIN
Input Load
-
6
-
kΩ
-
MINI58DE SERIES DATASHEET
TACQ
Note: ADC voltage reference is same with AVDD
Dec. 09, 2015
Page 73 of 83
Rev.1.02
MINI58DE
EF (Full scale error) = EO + EG
Gain Error Offset Error
EG
EO
1023
1022
1021
1020
Ideal transfer curve
7
6
ADC
output
code
5
Actual transfer curve
4
3
2
DNL
1
1 LSB
Offset Error
EO
MINI58DE SERIES DATASHEET
8.4.2
1023
Analog input voltage
(LSB)
LDO & Power Management
Symbol
Parameter
Min
Typ
Max
Unit
Test Condition
VDD
DC Power Supply
2.5
-
5.5
V
-
VLDO
Output Voltage
1.62
1.8
1.98
V
-
TA
Temperature
-40
25
105
℃
Notes:
1.
It is recommended a 0.1μF bypass capacitor is connected between V DD and the closest VSS pin of the device.
8.4.3
Low Voltage Reset
Symbol
Parameter
Min
Typ
Max
Unit
Test Condition
AVDD
Supply Voltage
0
-
5.5
V
-
TA
Temperature
-40
25
105
℃
-
Dec. 09, 2015
Page 74 of 83
Rev.1.02
MINI58DE
ILVR
VLVR
8.4.4
Quiescent Current
Threshold Voltage
-
1
5
μA
AVDD =5.5V
1.90
2.00
2.10
V
TA=25℃
1.70
1.90
2.05
V
TA=-40℃
2.00
2.20
2.45
V
TA =105℃
Brown-out Detector
Symbol
Parameter
Min
Typ
Max
Unit
Test Condition
AVDD
Supply Voltage
0
-
5.5
V
-
TA
Temperature
-40
25
105
℃
-
IBOD
Quiescent Current
-
-
140
μA
AVDD =5.5V
4.2
4.38
4.55
V
3.5
3.68
3.85
V
2.5
2.68
2.85
V
2.0
2.18
2.35
V
4.3
4.52
4.75
V
3.5
3.8
4.05
V
2.5
2.77
3.05
V
2.0
2.25
2.55
V
VBOD
8.4.5
(Falling edge)
Brown-out Detector
(Rising edge)
BOD_VL [1:0]=11
BODEN = 1,
BOD_VL [1:0]=10
BODEN = 1,
BOD_VL [1:0]=01
BODEN = 1,
BOD_VL [1:0]=00
BODEN = 1,
BOD_VL [1:0]=11
BODEN = 1,
BOD_VL [1:0]=10
BODEN = 1,
BOD_VL [1:0]=01
BODEN = 1,
BOD_VL [1:0]=00
Power-on Reset
Symbol
Parameter
Min
Typ
Max
Unit
Test Condition
TA
Temperature
-40
25
105
℃
-
VPOR
Reset Voltage
1.6
2
2.4
V
-
VPOR
VDD Start Voltage to Ensure
Power-on Reset
-
-
100
mV
RRVDD
VDD Raising Rate to Ensure
Power-on Reset
0.025
-
-
V/ms
tPOR
Minimum Time for VDD Stays at
VPOR to Ensure Power-on Reset
0.5
-
-
ms
Dec. 09, 2015
Page 75 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
VBOD
Brown-out Detector
BODEN = 1,
MINI58DE
VDD
tPOR
RRVDD
VPOR
Time
Figure 8.4-1 Power-up Ramp Condition
8.4.6
Comparator
MINI58DE SERIES DATASHEET
Symbol
Parameter
Min
Typ
Max
Unit
VCMP
Supply Voltage
2.5
-
5.5
V
TA
Temperature
-40
25
105
℃
-
ICMP
Operation Current
-
40
80
μA
AVDD=5V
VOFF
Input Offset Voltage
10
20
mV
-
VSW
Output Swing
0.1
-
AVDD – 0.1
V
-
VCOM
Input Common Mode Range
0.1
-
AVDD – 0.1
V
-
-
DC Gain
40
70
-
dB
-
TPGD
Propagation Delay
-
200
-
ns
VCOM=1.2 V,
VDIFF=0.1 V
VHYS
Hysteresis
-
±30
±60
mV
VCOM=1.2 V
TSTB
Stable time
-
-
1
μs
Dec. 09, 2015
Page 76 of 83
Test Condition
Rev.1.02
MINI58DE
8.5
Flash DC Electrical Characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VFLA[2]
Supply Voltage
1.62
1.8
1.98
V
NENDUR
Endurance
20,000
-
-
cycles[1]
TRET
Data Retention
100
-
-
year
TERASE
Page Erase Time
-
20
-
ms
TPROG
Program Time
-
40
-
us
IDD1
Read Current
-
7
-
mA
IDD2
Program Current
-
8
-
mA
IDD3
Erase Current
-
12
-
mA
Test Condition
TA =85℃
Notes:
1.
2.
3.
Number of program/erase cycles.
VFLA is source from chip LDO output voltage.
Guaranteed by design, not test in production.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 77 of 83
Rev.1.02
MINI58DE
9
9.1
PACKAGE DIMENSIONS
48-pin LQFP
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 78 of 83
Rev.1.02
MINI58DE
9.2
33-pin QFN (4 mm x 4 mm)
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 79 of 83
Rev.1.02
MINI58DE
9.3
33-pin QFN (5 mm x 5 mm)
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 80 of 83
Rev.1.02
MINI58DE
9.4
20-pin TSSOP
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 81 of 83
Rev.1.02
MINI58DE
10 REVISION HISTORY
Date
Revision
Description
2015.06.11
1.00
Preliminary version.
2015.10.12
1.01
Updated LDROM size from 2 Kbytes to 2.5 Kbytes.
2015.12.09
1.02
Fixed cross reference error.
MINI58DE SERIES DATASHEET
Dec. 09, 2015
Page 82 of 83
Rev.1.02
MINI58DE
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property
damage. Such applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.
Dec. 09, 2015
Page 83 of 83
Rev.1.02
MINI58DE SERIES DATASHEET
Important Notice