0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RTL8309N-CG

RTL8309N-CG

  • 厂商:

    REALTEK(瑞昱)

  • 封装:

    QFN64_9X9MM_EP

  • 描述:

    单芯片8端口10/100MBPS以太网交换机控制器

  • 数据手册
  • 价格&库存
RTL8309N-CG 数据手册
RTL8309N SINGLE-CHIP 8-PORT 10/100MBPS ETHERNET SWITCH CONTROLLER DATASHEET Draft Rev. 1.0 10 January 2012 Track ID: 9-Port 10/100Mbps Ethernet Switch Controller i Track ID: Rev. 1.0 RTL8309N Datasheet COPYRIGHT ©2012 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp. DISCLAIMER Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors. TRADEMARKS Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners. CONFIDENTIALITY This document is confidential and should not be provided to a third-party without the permission of Realtek Semiconductor Corporation. USING THIS DOCUMENT This document is intended for the software engineer’s reference and provides detailed programming information. Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process. REVISION HISTORY Revision 1.0 Release Date 2012-1-10 8-Port 10/100Mbps Ethernet Switch Controller Summary First release. ii Track ID: Rev. 1.0 RTL8309N Datasheet Contents 1. GENERAL DESCRIPTION................................................................................................................................................0 2. FEATURES...........................................................................................................................................................................1 3. BLOCK DIAGRAM.............................................................................................................................................................3 4. PIN ASSIGNMENTS ...........................................................................................................................................................4 4.1. 4.2. 4.3. 4.4. 4.4.1. 4.4.2. 4.4.3. 4.4.4. 4.4.5. 4.4.6. 5. PHYSICAL LAYER FUNCTION DESCRIPTION ..........................................................................................................4 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10. 5.11. 6. PIN ASSIGNMENTS DIAGRAM .......................................................................................................................................4 PACKAGE IDENTIFICATION ...........................................................................................................................................5 PIN ASSIGNMENTS TABLE ............................................................................................................................................5 PIN DESCRIPTIONS .......................................................................................................................................................1 Media Connection Pins......................................................................................................................................1 Parallel LED Pins..............................................................................................................................................1 Miscellaneous Interface Pins.............................................................................................................................2 Configuration Strapping Pins ............................................................................................................................2 Regulator Pins ...................................................................................................................................................3 Power and GND Pins ........................................................................................................................................4 MDI INTERFACE...........................................................................................................................................................4 10BASE-T TRANSMIT FUNCTION..................................................................................................................................5 10BASE-T RECEIVE FUNCTION ....................................................................................................................................5 100BASE-TX TRANSMIT FUNCTION .............................................................................................................................5 100BASE-TX RECEIVE FUNCTION ...............................................................................................................................5 100BASE-FX FUNCTION ..............................................................................................................................................5 AUTO-NEGOTIATION FOR UTP FUNCTION....................................................................................................................6 CROSSOVER DETECTION AND AUTO CORRECTION FUNCTION ......................................................................................6 POLARITY CORRECTION FUNCTION..............................................................................................................................6 IEEE 802.3AZ ENERGY EFFICIENT ETHERNET FUNCTION (EEE) .................................................................................6 LINK DOWN POWER SAVING FUNCTION .......................................................................................................................7 SWITCH CORE FUNCTION DESCRIPTION ................................................................................................................7 6.1. HARDWARE RESET AND SOFTWARE RESET FUNCTION .................................................................................................7 6.1.1. Hardware Reset .................................................................................................................................................7 6.1.2. Software Reset....................................................................................................................................................7 6.2. LAYER 2 LEARNING AND FORWARDING FUNCTION ......................................................................................................7 6.2.1. Forwarding ........................................................................................................................................................8 6.2.2. Learning.............................................................................................................................................................8 6.2.3. Address Table Aging ..........................................................................................................................................8 6.2.4. Layer 2 Multicast...............................................................................................................................................8 6.3. MAC LIMIT FUNCTION ................................................................................................................................................8 6.4. RESERVED MULTICAST ADDRESS HANDLING FUNCTION .............................................................................................9 6.5. IEEE 802.3X FLOW CONTROL FUNCTION ....................................................................................................................9 6.6. HALF DUPLEX BACKPRESSURE FUNCTION .................................................................................................................10 6.6.1. Collision-Based Backpressure (Jam Mode).....................................................................................................10 6.6.2. Carrier-Based Backpressure (Defer Mode) ..................................................................................................... 11 6.7. VLAN FUNCTION ......................................................................................................................................................11 6.7.1. Port-Based VLAN ............................................................................................................................................12 6.7.2. IEEE 802.1Q Tagged-VID Based VLAN ..........................................................................................................12 6.7.3. Insert/Remove/Replace Tag..............................................................................................................................12 6.7.4. Ingress and Egress Rules .................................................................................................................................13 6.8. IEEE 802.1P REMARKING FUNCTION .........................................................................................................................13 6.9. BANDWIDTH CONTROL FUNCTION .............................................................................................................................14 6.9.1. Input Bandwidth Control .................................................................................................................................14 6.9.2. Output Bandwidth Control...............................................................................................................................14 6.10. QUALITY OF SERVICE (QOS) FUNCTION .....................................................................................................................14 6.10.1. Priority Arbitration..........................................................................................................................................14 6.10.2. Port-Based Priority Assignment ......................................................................................................................15 6.10.3. IEEE 802.1Q-Based Priority Assignment........................................................................................................15 8-Port 10/100Mbps Ethernet Switch Controller iii Track ID: Rev. 1.0 RTL8309N Datasheet 6.10.4. DSCP-Based Priority Assignment ...................................................................................................................15 6.10.5. IP Address-Based Priority ...............................................................................................................................15 6.10.6. Internal Priority to Queue ID Table.................................................................................................................15 6.10.7. Weighted Round-Robin ....................................................................................................................................15 6.11. LAYER2 TRAFFIC SUPPRESSION FUNCTION (STORM CONTROL) .................................................................................16 6.12. INPUT & OUTPUT DROP FUNCTION ............................................................................................................................16 6.13. LOOP DETECTION FUNCTION .....................................................................................................................................16 6.14. REALTEK CABLE TESTER FUNCTION ..........................................................................................................................16 6.15. EEPROM CONFIGURATION FUNCTION ......................................................................................................................16 7. INTERFACE DESCRIPTIONS........................................................................................................................................17 7.1. 7.2. I2C MASTER FOR EEPROM AUTO-DOWNLOAD ........................................................................................................17 SMI INTERFACE FOR EXTERNAL CPU ACCESS...........................................................................................................17 8. LDO REGULATOR...........................................................................................................................................................18 9. ELECTRICAL CHARACTERISTICS ............................................................................................................................18 9.1. 9.2. 10. 10.1. 11. ABSOLUTE MAXIMUM RATINGS .................................................................................................................................18 RECOMMENDED OPERATING RANGE ..........................................................................................................................18 MECHANICAL DIMENSIONS...................................................................................................................19 PLASTIC QUAD FLAT NO-LEAD PACKAGE 64 LEADS 9X9MM2 OUTLINE ....................................................................19 ORDERING INFORMATION .....................................................................................................................20 8-Port 10/100Mbps Ethernet Switch Controller iv Track ID: Rev. 1.0 RTL8309N Datasheet List of Tables TABLE 1 PIN ASSIGNMENTS TABLE .................................................................................................................................................5 TABLE 2. MEDIA CONNECTION PINS ...............................................................................................................................................1 TABLE 3. PARALLEL LED PINS .......................................................................................................................................................1 TABLE 4. MISCELLANEOUS INTERFACE PINS...................................................................................................................................2 TABLE 5. CONFIGURATION STRAPPING PINS ...................................................................................................................................2 TABLE 6. REGULATOR PINS ............................................................................................................................................................3 TABLE 7. POWER AND GND PINS ....................................................................................................................................................4 TABLE 8. RESERVED MULTICAST ADDRESS DEFAULT ACTIONS .....................................................................................................9 TABLE 9. VLAN TABLE ................................................................................................................................................................11 TABLE 10. VLAN ENTRY .............................................................................................................................................................12 TABLE 11. SMI (MDC, MDIO) MANAGEMENT PACKET FORMAT ................................................................................................17 TABLE 12. ABSOLUTE MAXIMUM RATINGS ..................................................................................................................................18 TABLE 13. RECOMMENDED OPERATING RANGE ...........................................................................................................................18 TABLE 14. ORDERING INFORMATION ............................................................................................................................................20 List of Figures FIGURE 1. BLOCK DIAGRAM ...........................................................................................................................................................3 FIGURE 2. PIN ASSIGNMENTS ..........................................................................................................................................................4 FIGURE 3. CONCEPTUAL EXAMPLE OF POLARITY CORRECTION ......................................................................................................6 FIGURE 4. TX PAUSE FRAME FORMAT...........................................................................................................................................10 FIGURE 5. FLOW CONTROL STATE MACHINE ................................................................................................................................10 FIGURE 6. COLLISION-BASED BACKPRESSURE SIGNAL TIMING ....................................................................................................11 FIGURE 7. 1KB~16KB EEPROM READ/WRITE TIMING ................................................................................................................17 8-Port 10/100Mbps Ethernet Switch Controller v Track ID: Rev. 1.0 RTL8309N Datasheet 1. General Description The RTL8309N is an 8-port Fast Ethernet switch controller that integrates eight MACs, and eight physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip. The RTL8309N contains a 2K-entry address lookup table. Two 4-way associative hash algorithms avoid hash collisions and maintain forwarding performance. Maximum packet length can be 2K bytes. Three types of independent storm filters are provided to filter packet storms, and an intelligent switch engine prevents Head-of-Line blocking problems. The RTL8309N supports 16 VLAN groups. These can be configured as port-based VLANs and/or 802.1Q tag-based VLANs. The RTL8309N also supports four Independent VLAN Learnings (IVLs). The RTL8309N supports several advanced QoS functions with four-level priority queues to improve multimedia or real-time networking applications, including: • Multi-priority assignment • Differential queue weight with WRR and SP packet scheduling • Port-based and queue-based rate limitation Energy-Efficient Ethernet (EEE) supports Low Power Idle Mode. When Low Power Idle Mode is enabled, systems on both sides of the link can disable portions of the functionality and save power during periods of low link utilization. The RTL8309N provides per-port one flexible LED functions for diagnostics, with five combination modes. A loop-detection function provides notification of network loops, the loop status can be notified by buzzer, LED or both. To simplify the peripheral power circuit, the RTL8309N integrated one LDO regulator to generate 1.0V from a 3.3V input power which needs only one external Diode. 8-Port 10/100Mbps Ethernet Switch Controller 0 Track ID: Rev. 1.0 RTL8309N Datasheet 2. Features Basic Switching Functions „ 8-port switch controller with transceiver for 10Base-T and 100Base-TX with: ‹ „ 8-port 10/100M UTP „ Supports advanced storm filtering „ Optional EEPROM interface for configuration VLAN Functions Non-blocking wire-speed reception and transmission and non-head-of-line-blocking forwarding „ Supports up to 16 VLAN groups „ Flexible 802.1Q port/tag-based VLAN „ Complies with IEEE 802.3/802.3u auto-negotiation „ Supports four IVLs „ Built-in high efficiency SRAM for packet buffer, with 2K-entry lookup table and two 4-way associative hash algorithms „ 2K byte maximum packet length „ Flow control fully supported: ‹ Half duplex: Back pressure flow control Full duplex: IEEE 802.3x flow control Service Quality ‹ „ Supports high performance QoS function on each port: Leaky VLAN for unicast/multicast/broadcast/ARP packets Power Saving Functions „ Supports Energy-Efficient Ethernet (EEE) function (IEEE 802.3az) „ Link down Power Saving Mode Diagnostic Functions „ Supports hardware loop detection function, with LEDs to indicate the existence of a loop „ Supports cable diagnosis (RTCT function) „ LED indicators: ‹ Supports 4-level priority queues ‹ Weighted round robin service ‹ Supports strict priority ‹ Loop status indication ‹ Input/Output port bandwidth control ‹ RTCT status indication ‹ Queue based bandwidth control ‹ 1Q-based, Port-based, DSCP-based, IP address-based, and other types of priority assignments „ Supports IEEE 802.1p Traffic Re-marking Security and Management „ „ LEDs blink upon reset for LED diagnostics Other Features ‹ „ Optional MDI/MDIX auto crossover for plug-and-play „ Physical layer port Polarity Detection and Correction function Supports reserved control frame filtering 8-Port 10/100Mbps Ethernet Switch Controller 1 Track ID: Rev. 1.0 RTL8309N Datasheet „ Robust baseline wander correction for improved 100Base-TX performance „ Low power, 1.0/3.3V, 55nm CMOS technology „ 25MHz crystal „ 64-pin QFN package „ Integrated LDO regulator to generate 1.0V from 3.3V via one external Diode 8-Port 10/100Mbps Ethernet Switch Controller 2 Track ID: Rev. 1.0 RTL8309N Datasheet 3. Block Diagram RX + -[ 0] TX + - [0 ] 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver MAC 0 Switch Engine 0 RX + - [1 ] TX + -[ 1] 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver MAC 1 Switch Engine 1 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver MAC 2 RX + - [2 ] TX + -[ 2] Packet Buffer Switch Engine 2 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver MAC 3 Switch Engine 3 RX +- [ 4] TX + - [4 ] 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver MAC 4 Switch Engine 4 RX + - [5 ] TX + -[ 5] 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver RX + -[ 6] TX + -[ 6 ] 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver RX + -[ 3] TX + -[ 3 ] RX +- [ 7] TX + - [7 ] IBREF 10 Base - T or 100 Base -TX or 100 Base - FX PHYceiver Lookup Table MAC 5 Switch Engine 5 MAC 6 Switch Engine 6 MAC 7 Switch Engine 7 MII_ REG And EEPROM AUTOLOAD SCL _ MDCPIN SDA _ MDIOPIN RESET # Global Function LED Control X1 X2 LED _ BLNK _ TIME LED _ ACT Waveform Shaping LDO Regulator 3.3V 1.0V Figure 1. Block Diagram 8-Port 10/100Mbps Ethernet Switch Controller 3 Track ID: Rev. 1.0 RTL8309N Datasheet 4. Pin Assignments Pin Assignments Diagram 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 V10OUT DVDDL P7LED P6LED P5LED/DIS_RST_BLNK P4LED/UNKOWN_MULTI P3LED/RMAMODE DVDDH P2LED/LED_MODE[2] P1LED/LED_MODE[1] P0LED/DIS_EEE LDIND/DIS_LD RESETB SDA/MDIO SCL/MDC DVDDL 4.1. 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 RTL8309N LLLLLLL TXXXX TAIWAN 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 AVDDL RXIP7 RXIN7 TXON7 TXOP7 AVDDH TXOP6 TXON6 RXIN6 RXIP6 AVDDL RXIP5 RXIN5 TXON5 TXOP5 AVDDH AVDDL RXIP2 RXIN2 TXON2 TXOP2 AVDDH TXOP3 TXON3 RXIN3 RXIP3 DVDDL AVDDL RXIP4 RXIN4 TXON4 TXOP4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 V33IN AVDDHPLL XO XI AVDDLPLL IBREF AVDDL RXIP0 RXIN0 TXON0 TXOP0 AVDDH TXOP1 TXON1 RXIN1 RXIP1 Figure 2. Pin Assignments 8-Port 10/100Mbps Ethernet Switch Controller 4 Track ID: Rev. 1.0 RTL8309N Datasheet 4.2. Package Identification Green package is indicated by a ‘G’ in the location marked ‘T’ in 错误!未找到引用源。. 4.3. Pin Assignments Table Upon Reset: Defined as a short time after the end of a hardware reset. After Reset: Defined as the time after the specified ‘Upon Reset’ time. I: Input Pin AI: Analog Input Pin O: Output Pin AO: Analog Output Pin I/O: Bi-Direction Input/Output Pin AI/O: Analog Bi-Direction Input/Output Pin P: Digital Power Pin AP: Analog Power Pin G: Digital Ground Pin AG: Analog Ground Pin IPU: Input Pin With Pull-Up Resistor; OPU: Output Pin With Pull-Up Resistor; (Typical Value is about 75KΩ) (Typical Value is about 75KΩ) IPD: Input Pin With Pull-Down Resistor; OPD: Output Pin With Pull-Down Resistor; (Typical Value is about 75KΩ) (Typical Value is about 75KΩ) I/OPD: IPD and OPD I/OPU: IPU and OPU Table 1 Pin Assignments Table Name AVDDL RXIP[2] RXIN[2] TXON[2] TXOP[2] AVDDH TXOP[3] TXON[3] RXIN[3] RXIP[3] DVDDL AVDDL RXIP[4] RXIN[4] TXON[4] TXOP[4] AVDDH TXOP[5] Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 8-Port 10/100Mbps Ethernet Switch Controller Type Name AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O P AP AI/O AI/O AI/O AI/O AP AI/O TXON[5] RXIN[5] RXIP[5] AVDDL RXIP[6] RXIN[6] TXON[6] TXOP[6] AVDDH TXOP[7] TXON[7] RXIN[7] RXIP[7] AVDDL DVDDL SCL/MDC SDA/MDIO RESETB 5 Pin No. 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Track ID: Type AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP P I/O PU I/O PU IPU Rev. 1.0 RTL8309N Datasheet Name LDIND P0LED P1LED P2LED DVDDH P3LED P4LED P5LED P6LED P7LED DVDDL V10OUT V33IN AVDDHPLL XO XI AVDDLPLL IBREF AVDDL RXIP[0] RXIN[0] TXON[0] TXOP[0] AVDDH TXOP[1] TXON[1] RXIN[1] RXIP[1] E-PAD Pin No. 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 E-PAD 8-Port 10/100Mbps Ethernet Switch Controller Type I/O PU I/O PD I/O PD I/O PD P I/O PD I/O PD I/O PD I/O PD I/O PD P AO AP AP O I AP AO AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O G 6 Track ID: Rev. 1.0 RTL8309N Datasheet 4.4. Pin Descriptions 4.4.1. Media Connection Pins Table 2. Media Connection Pins Pin No. Type Drive (mA) RXIP7/RXIN7 RXIP6/RXIN6 RXIP5/RXIN5 RXIP4/RXIN4 RXIP3/RXIN3 RXIP2/RXIN2 31,30 23,24 21,20 13,14 10,9 2,3 AI/O - Differential Receive Data Input: Port0-7 support 10Base-T, 100Base-TX and 100Base-FX RXIP1/RXIN1 RXIP0/RXIN0 64,63 56,57 TXOP7/TXON7 TXOP6/TXON6 TXOP5/TXON5 TXOP4/TXON4 TXOP3/TXON3 TXOP2/TXON2 TXOP1/TXON1 TXOP0/TXON0 28,29 26,25 18,19 16,15 7,8 5,4 61,62 59,58 AI/O - Differential Transmit Data Output: Port0-7 support 10Base-T, 100Base-TX and 100Base-FX Pin Name 4.4.2. Description Parallel LED Pins Table 3. Parallel LED Pins Pin No. Type Drive (mA) P0LED 38 I/OPD 10 LED for Port0 status indication P1LED 39 I/OPD 10 LED for Port1 status indication P2 LED 40 I/OPD 10 LED for Port2 status indication P3 LED 42 I/OPD 10 LED for Port3 status indication P4 LED 43 I/OPD 10 LED for Port4 status indication P5 LED 44 I/OPD 10 LED for Port5 status indication Pin Name 8-Port 10/100M Layer2 Switch Controller 1 Description Track ID: Rev. 1.0 RTL8309N Datasheet Pin No. Type Drive (mA) P6 LED 45 I/OPD 10 LED for Port6 status indication P7 LED 46 I/OPD 10 LED for Port7 status indication Pin Name 4.4.3. Description Miscellaneous Interface Pins Table 4. Miscellaneous Interface Pins Pin Name Drive Pin No. Type LDIND 37 I/OPU 10 SCL/MDC 34 I/OPU 4 I2C Interface Clock for EEPROM auto load when power on, and after power on, this pin is MDC/MDIO Interface Clock for access registers SDA/MDIO 35 I/OPU 4 I2C Interface Data Input/Output for EEPROM auto load when power on, and after power on, this pin is MDC/MDIO Interface Data Input/Output for access registers. RESETB 36 IPU - System Pin Reset Input. XI 52 AI - 25MHz Crystal Clock Input. The clock tolerance is ±50ppm. When using an oscillator, this pin should be tied to ground. XO 51 AO - 25MHz Crystal Clock Output Pin. IBREF 54 AO - Reference Resistor for PHY bandgap. A 2.49KΩ (1%) resistor should be connected between IBREF and GND. 4.4.4. (mA) Description Loop indication used by LED and buzzer, when loop topology is happened. Configuration Strapping Pins Table 5. Configuration Strapping Pins Pin Name Pin No. 8-Port 10/100M Layer2 Switch Controller Type Default 2 Description Track ID: Rev. 1.0 RTL8309N Datasheet Pin Name Pin No. Type Default Description DISLD (LDIND) 37 I/OPU - Disable loop detection function. 0: Enable 1: Disable (default) DIS_EEE (P0LED) 38 I/OPD - Disable EEE function 0: enable EEE function (default) 1: disable EEE function LED_MODE1 (P1LED) 39 I/OPD - LED Mode[2:1] Select. 2’b00/2’b01: Mode 0/1: Link+Act(default) 2’b10: Mode 2: Duplex 2’b11: Mode 3: Speed100+Act LED_MODE2 (P2LED) 40 I/OPD - LED Mode[2:1] Select. 2’b00/2’b01: Mode 0/1: Link+Act(default) 2’b10: Mode 2: Duplex 2’b11: Mode 3: Speed100+Act RMAMODE (P3LED) 42 I/OPD - RMA mode select: 0: Mode0 is selected (default) 01-80-c2-00-00-02 is drop and 01-80-c2-00-00-11 ~ 01-80-c2-00-00-1F, 01-80-c2-00-00-21 packet are forwarded 1: Mode1 is selected 01-80-c2-00-00-02 is forward and 01-80-c2-00-00-11 ~ 01-80-c2-00-00-1F, 01-80-c2-00-00-21 packet are dropped UNKOWN_MULTI (P4LED) 43 I/OPD - Enable unknown multicast data packet drop 0: forward all unknown multicast data packet (default) 1: drop all unknown multicast data packet (expect IGMP/MLD and RMA packet) DIS_RST_BLNK (P5LED) 44 I/OPD - Disable LED Power on Blinking: 0: enable (default) 1: disable 4.4.5. Regulator Pins Table 6. Regulator Pins Pin Name Pin No. 8-Port 10/100M Layer2 Switch Controller Type Drive (mA) 3 Description Track ID: Rev. 1.0 RTL8309N Datasheet Pin Name Pin No. Type Drive (mA) V10OUT 48 AO - Switch Regulator 1.0V output. V33IN 49 AP - Switch Regulator 3.3V input 4.4.6. Description Power and GND Pins Table 7. Power and GND Pins Pin Name Pin No. Type AVDDH 6,17,27,60 AP Analog Power 3.3V. AVDDL 1,12,22,32,55 AP Analog Power 1.0V. AVDDHPLL 50 AP Power 3.3V for PLL. AVDDLPLL 53 AP Power 1.0V for PLL. DVDDH 41 P Digital Power 3.3V for IO Pad. DVDDL 11,33,47 P Digital Power 1.0V for Core Voltage. E-PAD G Ground for whole chip GND 5. 5.1. Description Physical Layer Function Description MDI Interface The RTL8309N embeds 8 Fast Ethernet PHYs in one chip. Each port uses a single common MDI interface to support 10Base-T, 100Base-TX and 100Base-FX. This interface consists of two signal pairs RXIP/RXIN, and TXOP/TXON. The MDI interface has internal termination resistors for reduced BOM cost and PCB complexity. 8-Port 10/100M Layer2 Switch Controller 4 Track ID: Rev. 1.0 RTL8309N Datasheet 5.2. 10Base-T Transmit Function The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter. 5.3. 10Base-T Receive Function The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is above squelch level. 5.4. 100Base-TX Transmit Function The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly. The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven into the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also reduces EMI emissions. 5.5. 100Base-TX Receive Function The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate. A De-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit. Finally, the converted parallel data is fed into the MAC. 5.6. 100Base-FX Function All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+/- pins. 100Base-FX can be forced to full duplex with optional flow control ability. Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. In order to operate correctly, both sides of the connection should be set to the same flow control ability. A scrambler is not needed in 100Base-FX. Compared to common 100Base-FX applications, the RTL8309N removes a pair of differential SD (Signal Detect) signals that provide a link monitoring function, which reduces the pin count (Realtek patent). 8-Port 10/100M Layer2 Switch Controller 5 Track ID: Rev. 1.0 RTL8309N Datasheet 5.7. Auto-Negotiation for UTP Function The RTL8309N obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During auto-negotiation, each port advertises its ability to its link partner and compares its ability with advertisements received from its link partner. By default, the RTL8309N advertises full capabilities (100Full, 100Half, 10Full, 10Half) together with flow control ability. 5.8. Crossover Detection and Auto Correction Function During the link setup phase, the RTL8309N checks whether it receives active signals on every port in order to determine if a connection can be established. RTL8309N can identify the type of connected cable and sets the port to MDI or MDIX. When switching to MDI mode, the RTL8309N uses TXOP/N as transmit pair; when switching to MDIX mode, the RTL8309N uses RXIP/N as transmit pair. 5.9. Polarity Correction Function The RTL8309N automatically corrects polarity errors on the receiver pairs in the 10Base-T modes. In 100Base-TX mode, the polarity does not matter. + RX _ TX + _ _ + _ + TX + _ RX RTL8309N Link Partner In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The polarity becomes unlocked when the link is down. Figure 3. Conceptual Example of Polarity Correction 5.10. IEEE 802.3az Energy Efficient Ethernet Function (EEE) The RTL8309N supports IEEE 802.3az Energy Efficient Ethernet (EEE) ability for 100Base-TX in full duplex operation, and supports 10Base-Te for 10Base-T in full/half duplex .The Energy Efficient Ethernet (EEE) operational mode combines the IEEE 802.3 Media Access Control (MAC) Sub-layer with a family of Physical Layers defined to support operation in Low Power Idle (LPI) Mode. When the port is in LPI 8-Port 10/100M Layer2 Switch Controller 6 Track ID: Rev. 1.0 RTL8309N Datasheet Mode, link partners of both sides can turn off the unnecessary TX/RX circuits to save power consumption during periods of low link utilization. The RTL8309N EEE operational mode supports the IEEE 802.3 MAC operation at 100Mbps. In addition, the RTL8309N supports 10Mbps PHY with reduced transmit amplitude requirements in EEE operational mode. This new PHY is fully interoperable with legacy 10Base-T PHY over 100m of class D (Category 5) or better cabling. 5.11. Link Down Power Saving Function The RTL8309N implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected. A port automatically enters link down power saving mode 3 seconds after the cable is disconnected from it. Once a port enters link down power saving mode, it transmits normal link pulses on its TX and continues to monitor the RX to detect incoming signals, which might be 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or Auto-Negotiation’s FLP (Fast Link Pulse). After it detects an incoming signal, it wakes up from link down power saving mode and operates in normal mode according to the result of the connection. 6. 6.1. 6.1.1. Switch Core Function Description Hardware Reset and Software Reset Function Hardware Reset A hardware reset forces the RTL8309N to start the initial power-on sequence. First hardware will strap pins to give all default values when the ‘RESETB’ signal terminates. Next the configuration is auto-loaded from EEPROM (if EEPROM is detected), and then the complete SRAM BIST (Built-In Self Test) process is run. 6.1.2. Software Reset The RTL8309N supports software reset to reset Switch packet buffer. 6.2. Layer 2 Learning and Forwarding Function The RTL8309N MAC address table consists of an 2K-entry L2 hash table and a 2-entry forwarding table. The RTL8309N supports IVL (Independent VLAN Learning), SVL (Shared VLAN Learning), and IVL/SVL (Both Independent and Shared VLAN Learning). 8-Port 10/100M Layer2 Switch Controller 7 Track ID: Rev. 1.0 RTL8309N Datasheet 6.2.1. Forwarding When the VLAN egress filtering option is enabled, a received unicast frame will be forwarded to its destination port only if the destination port is in the same VLAN as the source port. If the destination port belongs to a different VLAN, the frame will be discarded. By default the received broadcast/multicast frame will flood to VLAN member ports only, except for the source port. IP Multicast data packets involve multicast address table lookup and forwarding operations. If the table lookup returns a hit, the data packet is forwarded to member ports according to forwarding table setting. If the IP multicast address is not stored in the address table (i.e., lookup miss), according to a 1-bit action configuration the packet is dropped or flooded. 6.2.2. Learning The RTL8309N features a Layer2 table (2K entries). It uses a 4-way hash structure to store L2 entries. Each entry can learn in the format of L2 Unicast, and the L2 Unicast hash key is {MAC, FID}. 6.2.3. Address Table Aging In a dynamic network topology, address aging allows the contents of the address table to always be the most recent and correct. A learned source address entry will be cleared (aged out) if it is not updated by the address learning process within an aging time period. The aging time of the RTL8309N is between 200 and 400 seconds (typical value is 300 seconds). The RTL8309N also supports a fast aging function that is used to age all dynamic entries within 1ms. 6.2.4. Layer 2 Multicast The RTL8309N supports two IP multicast frame types: IPv4 multicast and IPv6 multicast. The RTL8309N IGMPv1/2/3 and MLDv1/2 packets can be trapped to the CPU, to allow software to insert an IP multicast entry into the address table. 6.3. MAC Limit Function The RTL8309N supports the capability of limiting the number of MAC addresses that are learned. The learned MAC addresses of each port, and the total learned MAC addresses of any combination of multi ports can be limited. The limit thresholds of each port can be configured independently. There is a counter for each of the limits. The counter will be decremented if a counted MAC address ages out. Deleting or creating entries in the LUT via register setting will not affect these counters. When the 8-Port 10/100M Layer2 Switch Controller 8 Track ID: Rev. 1.0 RTL8309N Datasheet MAC limit of port(s) reached, the received packet on the corresponding port, which is not learned or is learned but is not the current ingress port, will be dropped and not be learned. 6.4. Reserved Multicast Address Handling Function The RTL8309N supports Reserved Multicast Address (RMA) as defined in the IEEE 802.1 standard. For each RMA, the actions include: Forward, Drop, Trap or Copy to CPU. The action priority is higher than the results of a L2 Table lookup. Default actions are shown in Table 8. Table 8. Reserved Multicast Address Default Actions Name Address Default Bridge Group Address 01-80-C2-00-00-00 Forward IEEE Std 802.3, 1988 Edition, Full Duplex PAUSE Operation 01-80-C2-00-00-01 Drop IEEE Std 802.3ad Slow Protocols-Multicast Address 01-80-C2-00-00-02 Drop IEEE Std 802.1X PAE Address 01-80-C2-00-00-03 Forward 01-80-C2-00-00-04~01-80-C2-00-000D, 01-80-C2-00-00-0F Drop LLDP IEEE Std 802.1AB Link Layer Discovery Protocol Multicast Address 01-80-C2-00-00-0E Forward All LANs Bridge Management Group Address 01-80-C2-00-00-10 Drop 01-80-C2-00-00-11~01-80-C2-00-0 0-1F Forward GMRP 01-80-C2-00-00-20 Drop GVRP 01-80-C2-00-00-21 Forward Reserved for use by Multiple Registration Protocol (MRP) applications 01-80-C2-00-00-22 ~ 01-80-C2-00-00-2F Drop IEEE 802.1ag PDU CCM/LTM 01-80-C2-00-00-31 ~ 01-80-C2-00-00-3F Forward Reserved for future protocol standards Reserved for 01-80-C2-00-00-1x 6.5. IEEE 802.3x Flow Control Function The RTL8309N supports IEEE 802.3x full duplex flow control. If one port’s receive buffer is over the pause-on threshold, a pause-on frame is sent to the link partner to stop the transmission. When the port’s receive buffer drops below the pause-off threshold, it sends a pause-off frame. The pause frame format is shown in Figure 4. 8-Port 10/100M Layer2 Switch Controller 9 Track ID: Rev. 1.0 RTL8309N Datasheet Figure 4. Tx Pause Frame Format The RTL8309N is implemented three type flow control mechanism: output flow control, input flow control and input bandwidth control base flow control. When RTL8309N flow control is enabled, the initial state is ‘Non_Congest’. The state is monitored continuously. If a pause-on trigger condition occurs, it enters the ‘Congest’ state. When in the ‘congest’ state, it is also continuously monitored. When a pause-off trigger condition occurs it re-enters the ‘Non_Congest’ state. Figure 5 shows the flow control state machine. Figure 5. Flow Control State Machine 6.6. Half Duplex Backpressure Function There are two mechanisms for half-duplex backpressure: collision-based or carrier-based. 6.6.1. Collision-Based Backpressure (Jam Mode) If the buffer is ready to overflow, this mechanism will force a collision. When the link partner detects this collision, the transmission is rescheduled. The Reschedule procedure is: • The RTL83109N will drive TXEN to high and send the preamble, SFD and a 4-byte Jam signal (pattern is 0xAA). Then the RTL8309N will drive TXEN to low. • When the link partner receives the Jam signal, it will feedback a 4-byte signal (pattern is CRC^0x01), then it will drive RXDV to low. 8-Port 10/100M Layer2 Switch Controller 10 Track ID: Rev. 1.0 RTL8309N Datasheet • The link partner waits for a random back-off time then re-sends the packet. The timing is shown in Figure 6. Figure 6. Collision-Based Backpressure Signal Timing 6.6.2. Carrier-Based Backpressure (Defer Mode) If the buffer is about to overflow, this mechanism will send a 0xAA pattern to defer the other station’s transmission. The RTL8309N will continuously send the defer signal until the buffer overflow is resolved. 6.7. VLAN Function The RTL8309N supports 16 VLAN groups with the 16-entry VLAN table (see Table 9 and Table 10). These can be configured as port-based VLANs and/or IEEE 802.1Q tag-based VLANs. The RTL8309N supports IVL/SVL function, using the FID to lookup layer2 table. The contents of the VLAN table can be configured via SMI or EEPROM. Multiple ingress filtering and egress filtering options provide various VLAN admit rules for the RTL83009N. The RTL83009N also provides flexible VLAN tag insert/remove function. Table 9. VLAN Table Entry Index VLAN ID MBR UNTAG SET FID VLAN Entry 0 VLAN ID A[11:0] VLAN ID A membership [8:0] VLAN ID A UNTAG_MSK [8:0] FID[1:0] VLAN Entry 1 VLAN ID B [11:0] VLAN ID B membership [8:0] VLAN ID B UNTAG_MSK [8:0] FID[1:0] …… VLAN Entry 15 …… VLAN ID P [11:0] 8-Port 10/100M Layer2 Switch Controller …… …… VLAN ID P membership [8:0] 11 VLAN ID P UNTAG_MSK [8:0] Track ID: …… FID[1:0] Rev. 1.0 RTL8309N Datasheet Table 10. VLAN Entry Field Description VID The VLAN ID for search. The VID of the ingress packet will be compared with this field. 12 MBR VLAN member port set. If the bit in this field is ‘1’, the corresponding port is a member port of the VLAN specified by the VID field. 9 UNTAG SET VLAN untag set. If the bit in this field is ‘1’, the packet egressing from the corresponding port will be VLAN-untagged. 9 FID The FID is for Layer2 table lookup. 2 6.7.1. Bits Port-Based VLAN Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to determine their VLAN association. All the packets received on a given input port will be forwarded to this port’s VLAN members. The RTL8309N supports VLAN indexes for each port to individually index this port to one of the 16 VLAN entry. A port that is not included in a VLAN’s member set cannot transmit packets to this VLAN. 6.7.2. IEEE 802.1Q Tagged-VID Based VLAN The RTL8309N uses a 12-bit explicit identifier in the VLAN entry to associate received packets with a VLAN tag. If the VID of a VLAN-tagged frame does not match any of the 16 VLAN entries, the RTL8309N will drop the frame if the VLAN packet trap to the CPU port function is disabled. Otherwise, the RTL8309N compares the explicit identifier in the VLAN tag with the 16 VLAN IDs to determine the VLAN association of this packet, and then forwards this packet to the member set of this VLAN. Two VIDs are reserved for special purposes. One of them is all 1’s, which is reserved and currently unused. The other is all 0’s, which indicates a priority tag. A priority-tagged frame should be treated as an untagged frame. 6.7.3. Insert/Remove/Replace Tag The RTL8309N supports the VLAN Insertion/Removal/replacing action for each port. The 802.1Q VLAN tags can be inserted, removed, or replaced based on the port’s setting. 8-Port 10/100M Layer2 Switch Controller 12 Track ID: Rev. 1.0 RTL8309N Datasheet 6.7.4. Ingress and Egress Rules The RTL8309N provides flexible VLAN ingress and egress rules to permit comprehensive traffic control. The RTL8309N can filter packets on ingress according to the tag condition of the packet. For a normalized VLAN application, each of the RTL8309N ports can be independently configured to: • ‘admit all frames’ • ‘admit only tagged frames’ • ‘admit only untagged frames’ Note: The priority tagged frame (VID=0) will be treated as an untagged frame. The RTL8309N also can optionally discard a frame associated with a VLAN of which the ingress port is not in the member set. For the egress filter, the RTL8309N drops the frame if this frame belongs to a VLAN but its egress port is not one of the VLAN’s member ports. However, there are 5 leaky options to provide exceptions for special applications. • ‘Unicast leaky VLAN’ enables inter-VLAN unicast packet forwarding. That is, if the layer 2 lookup table search has a hit, then the unicast packet will be forwarded to the egress port, ignoring the egress rule. • ‘Broadcast leaky VLAN’ enables inter-VLAN broadcast packet forwarding. Packets may be flooded to all other ports, ignoring the VLAN member set domain limitation. • ‘ARP leaky VLAN’ enables broadcasting of ARP packets to all other ports, ignoring the egress rule, when ‘Broadcast leaky VLAN’ is disabled. • ‘Multicast leaky VLAN’ enables inter-VLAN multicast packet forwarding. Packets may be flooded to all the multicast address group member sets, ignoring the VLAN member set domain limitation. • ‘Inter-VLAN mirror function’ enables the inter-VLAN mirror function, ignoring the VLAN member set domain limitation. The default value is ‘Enable the inter-VLAN mirror’. 6.8. IEEE 802.1p Remarking Function The RTL8309N provides IEEE 802.1p Remarking ability. Each port can enable or disable IEEE 802.1p Remarking ability. In addition, there is a RTL8309N global IEEE 802.1p Remarking Table. When one port enables 802.1p Remarking ability, 2-bit priority (not QID) determined by the RTL8309N is mapped to 3-bit priority according to the 1p Remarking Table. 8-Port 10/100M Layer2 Switch Controller 13 Track ID: Rev. 1.0 RTL8309N Datasheet If the port’s 1p remarking function is enabled, transmitting VLAN tagged packets will have the 1Q VLAN tag’s Priority field replaced with the 3-bit 1p remarking Priority. When the VLAN tags are inserted to non-tagged packets, the inserted tag’s priority will accord with the 1p remarking table, even if the port’s 1p remarking function is disabled. When the VLAN tag is replaced on tagged packets and the 1p remarking function is disabled, the VLAN tag’s VID will be replaced but the priority will not change. For a VLAN-tagged packet, the VID and 3-bit priority can be replaced by the RTL8309N independently. 6.9. Bandwidth Control Function 6.9.1. Input Bandwidth Control The RTL8309N has input bandwidth control per port. If the speed of received packets is faster than the bandwidth setting of this port, the switch will send a pause frame to the link partner or drop packets, according to its flow control setting. The bandwidth granularity is 64Kbps. 6.9.2. Output Bandwidth Control The RTL8309N has output bandwidth control per port, and has output bandwidth control on queue2 and queue3 in WRR mode. The bandwidth granularity is 64Kbps. 6.10. Quality of Service (QoS) Function The RTL8309N identifies the priority of packets based on seven types of QoS priority information: • Port-based • IEEE 802.1Q-based • DSCP-based • IP priority-based 6.10.1. Priority Arbitration The RTL8309N has one priority arbitration weight tables to decide which type of priority should be accepted when multiple types of priority exist. Each port can be set to its own Priority arbitration weight. 8-Port 10/100M Layer2 Switch Controller 14 Track ID: Rev. 1.0 RTL8309N Datasheet 6.10.2. Port-Based Priority Assignment Port-based priority assignment specifies a 2-bit priority for each physical port. When a packet is received from a physical port, it is assigned the 2-bit priority of that physical port. The port-based priority can be enabled or disabled by the control register. 6.10.3. IEEE 802.1Q-Based Priority Assignment In IEEE 802.1Q-based priority assignment, when a packet is VLAN-tagged or priority-tagged, the 2-bit priority is mapping from 3-bit priority of the tag. When a packet is untagged, the 802.1Q-based priority is assigned to the default Dot1Q port-based 2-bit priority information of a physical port. The Dot1Q port-based priority can be enable or disable. When the priority comes from a packet, the 1Q-based priority is acquired by mapping 3-bit tag priority to 2-bit priority though a RTL8309N Dot1Q-based Priority Mapping Table. The Dot1Q-based priority can be enabled or disabled by the control register. 6.10.4. DSCP-Based Priority Assignment The RTL8309N has one tables to map 6-bit DSCP values to 2-bit internal priorities. The table has 64 entries. The DSCP-based priority assignment can be enabled or disabled by the control register. 6.10.5. IP Address-Based Priority When IP-based priority is enabled, any incoming packets with source or destination IP address equal to the configuration in register IP Priority Address [A] and IP Priority Mask [A], or IP Priority Address [B] and IP Priority Mask [B] will be set to a 2-bit priority. IP priority [A] and IP priority [B] may be enabled or disabled independently. IP address-based priority can be enabled or disabled by the control register. 6.10.6. Internal Priority to Queue ID Table The RTL8309N can transfer its internal priority to the output queue ID. Each port has a table with 4 entries to map the 2-bit internal priority to 2-bit queue ID. 6.10.7. Weighted Round-Robin The RTL8309N has four queues per port. The Packet Scheduler controls the multiple traffic classes (i.e., controls the packet sending sequence of the priority queue). The RTL8309N supports Weighted Round-Robin (WRR) and Strict Priority (SP). Note that the Strict Priority queue is the highest priority of all queues, and overrides WRR. A larger strict priority queue ID indicates the priority is higher. 8-Port 10/100M Layer2 Switch Controller 15 Track ID: Rev. 1.0 RTL8309N Datasheet 6.11. Layer2 Traffic Suppression Function (Storm Control) The RTL8309N supports the storm filter function for each port. The storm types are broadcast storm, unknown only or all multicast storm, and unknown DA unicast storm. The RTL8309N can control all three storm types via three leaky buckets per port. 6.12. Input & Output Drop Function If some destination ports are blocking or the buffer is full, the frames to these ports will be dropped. There are two types of drop: • Input Drop: Drop the frame directly. Do not forward to any port. • Output Drop: Forward only to non-blocking ports. For the RTL8309N, the dropping of broadcast, multicast, and unknown DA frames can be controlled independently. 6.13. Loop Detection Function The RTL8309N periodically transmits a Realtek protocol frame to detect network loop faults. If a port detects a loop, the LED corresponding to the looped port will blink until the loop is resolved. At the same time, the loop event flag will be set. 6.14. Realtek Cable Tester Function The RTL8309N features the Realtek Cable Tester (RTCT). The Cable Tester function can be used to detect a short (two conductors of pair short-circuited) or open (a lack of continuity between the pins at each end of the Ethernet cable, or a disconnected cable) in each differential pair, and report the result in corresponding registers. RTL8309N also has an LED per port to indicate test status and results. 6.15. EEPROM Configuration Function RTL8309N can be initialed by EEPROM. To flexible initialize the register, RTL8309N used dynamic format to be loaded into any register needed to be initialized. 8-Port 10/100M Layer2 Switch Controller 16 Track ID: Rev. 1.0 RTL8309N Datasheet 7. Interface Descriptions 7.1. I2C Master for EEPROM Auto-Download Upon reset, the RTL8309N can auto-download the initial values of the internal MAC and PHY registers from the external EEPROM. The RTL8309N supports one types of EEPROM: 1Kb~16Kb. Figure 7. 1Kb~16Kb EEPROM Read/Write Timing After a reset, the I2C module starts to access the external EEPROM as a master. The EEPROM auto-loading time varies with the size of the EEPROM. After the EEPROM auto-download, the I2C module will change to MDC/MDIO slave mode for external CPU access. 7.2. SMI Interface for External CPU Access The RTL8309N supports a serial CPU interface (MDC/MDIO Slave mode) to access the internal registers (including all MAC and PHY configuration registers). There are two I/O pins (MDC and MDIO) for the SMI interface. MDIO is the access data signal, and MDC is the clock signal which frequency must be smaller than 3Mhz. The read/write data sequence is shown in Table 8-1. Table 11. SMI (MDC, MDIO) Management Packet Format Management Frame Fields 8-Port 10/100M Layer2 Switch Controller 17 Track ID: Rev. 1.0 RTL8309N Datasheet PRE ST OP PHYAD REGAD TA DATA IDL E Read 1…1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD Z Write 1…1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD Z 8. LDO Regulator RTL8309N embedded a LDO regulator from 3.3V to 1.0V that requires a well-designed PCB layout in order to achieve good power efficiency and lower the output voltage ripple and input overshoot. The LDO regulator 1.0V output pin must be connected only to DVDDL/AVDDL/AVDDLPLL (do not provide this power source to other devices). Note: Refer to the separate RTL8309N layout guide for details. 9. Electrical Characteristics 9.1. Absolute Maximum Ratings WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified. Table 12. Absolute Maximum Ratings Parameter Min Max Units -55 +125 °C DVDDH, AVDDH, AVDDHPLL Supply Referenced to DGND, AGND GND-0.3 +3.63 V DVDDL, AVDDL, AVDDLPLL Supply Referenced to DGND, AGND GND-0.3 +1.20 V Storage Temperature 9.2. Recommended Operating Range Table 13. Recommended Operating Range Parameter Min Typical Max Units DVDDH, AVDDH, AVDDHPLL Supply Voltage Range 3.135 3.3 3.465 V DVDDL, AVDDL, AVDDLPLL Supply Voltage Range 0.95 1.0 1.05 V Ambient Operating Temperature (Ta) 0 - 70 °C Maximum Junction Temperature - - 125 °C 8-Port 10/100M Layer2 Switch Controller 18 Track ID: Rev. 1.0 RTL8309N Datasheet 10. Mechanical Dimensions 10.1. Plastic Quad Flat No-Lead Package 64 Leads 9x9mm2 Outline Symbol Min Dimension in mm Nom Max Min Dimension in inch Nom Max A 0.80 0.85 0.90 0.031 0.033 0.035 A1 0.00 0.02 0.05 0.000 0.001 0.002 A2 --- 0.65 0.70 --- 0.026 0.028 A3 b 0.20 REF 0.18 D/E D2/E2 0.30 0.007 9.00B SC 5.75 e L 0.25 0.008 REF 6.00 0.40 0.012 0.354 BSC 6.25 0.226 0.50 BSC 0.30 0.010 0.236 0.246 0.020 BSC 0.50 0.012 0.016 0.020 Notes: 1. CONTROLLING DIMENSION:MILLIMETER(mm). 2. REFERENCE DOCUMENTL:JEDEC MO-220. 8-Port 10/100M Layer2 Switch Controller 19 Track ID: Rev. 1.0 RTL8309N Datasheet 11. Ordering Information Table 14. Ordering Information Part Number Package Status QFN 64-Pin E-PAD ‘Green’ Package Realtek Semiconductor Corp. Headquarters 1F, No. 2, Industry East Road IX, Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C. Tel: 886-3-5780211 Fax: 886-3-5776047 www.realtek.com.tw 8-Port 10/100M Layer2 Switch Controller 20 Track ID: Rev. 1.0
RTL8309N-CG 价格&库存

很抱歉,暂时无法提供与“RTL8309N-CG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
RTL8309N-CG
  •  国内价格
  • 1+10.37340
  • 10+9.98920
  • 100+8.83660
  • 500+8.60608

库存:0