RTL8309N
SINGLE-CHIP 8-PORT 10/100MBPS
ETHERNET SWITCH CONTROLLER
DATASHEET
Draft
Rev. 1.0
10 January 2012
Track ID:
9-Port 10/100Mbps Ethernet Switch Controller
i
Track ID:
Rev. 1.0
RTL8309N
Datasheet
COPYRIGHT
©2012 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any
means without the written permission of Realtek Semiconductor Corp.
DISCLAIMER
Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied,
including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in
this document or in the product described in this document at any time. This document could include
technical inaccuracies or typographical errors.
TRADEMARKS
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document
are trademarks/registered trademarks of their respective owners.
CONFIDENTIALITY
This document is confidential and should not be provided to a third-party without the permission of
Realtek Semiconductor Corporation.
USING THIS DOCUMENT
This document is intended for the software engineer’s reference and provides detailed programming
information.
Though every effort has been made to ensure that this document is current and accurate, more information
may have become available subsequent to the production of this guide. In that event, please contact your
Realtek representative for additional information that may help in the development process.
REVISION HISTORY
Revision
1.0
Release Date
2012-1-10
8-Port 10/100Mbps Ethernet Switch Controller
Summary
First release.
ii
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Contents
1.
GENERAL DESCRIPTION................................................................................................................................................0
2.
FEATURES...........................................................................................................................................................................1
3.
BLOCK DIAGRAM.............................................................................................................................................................3
4.
PIN ASSIGNMENTS ...........................................................................................................................................................4
4.1.
4.2.
4.3.
4.4.
4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.4.5.
4.4.6.
5.
PHYSICAL LAYER FUNCTION DESCRIPTION ..........................................................................................................4
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
6.
PIN ASSIGNMENTS DIAGRAM .......................................................................................................................................4
PACKAGE IDENTIFICATION ...........................................................................................................................................5
PIN ASSIGNMENTS TABLE ............................................................................................................................................5
PIN DESCRIPTIONS .......................................................................................................................................................1
Media Connection Pins......................................................................................................................................1
Parallel LED Pins..............................................................................................................................................1
Miscellaneous Interface Pins.............................................................................................................................2
Configuration Strapping Pins ............................................................................................................................2
Regulator Pins ...................................................................................................................................................3
Power and GND Pins ........................................................................................................................................4
MDI INTERFACE...........................................................................................................................................................4
10BASE-T TRANSMIT FUNCTION..................................................................................................................................5
10BASE-T RECEIVE FUNCTION ....................................................................................................................................5
100BASE-TX TRANSMIT FUNCTION .............................................................................................................................5
100BASE-TX RECEIVE FUNCTION ...............................................................................................................................5
100BASE-FX FUNCTION ..............................................................................................................................................5
AUTO-NEGOTIATION FOR UTP FUNCTION....................................................................................................................6
CROSSOVER DETECTION AND AUTO CORRECTION FUNCTION ......................................................................................6
POLARITY CORRECTION FUNCTION..............................................................................................................................6
IEEE 802.3AZ ENERGY EFFICIENT ETHERNET FUNCTION (EEE) .................................................................................6
LINK DOWN POWER SAVING FUNCTION .......................................................................................................................7
SWITCH CORE FUNCTION DESCRIPTION ................................................................................................................7
6.1.
HARDWARE RESET AND SOFTWARE RESET FUNCTION .................................................................................................7
6.1.1.
Hardware Reset .................................................................................................................................................7
6.1.2.
Software Reset....................................................................................................................................................7
6.2.
LAYER 2 LEARNING AND FORWARDING FUNCTION ......................................................................................................7
6.2.1.
Forwarding ........................................................................................................................................................8
6.2.2.
Learning.............................................................................................................................................................8
6.2.3.
Address Table Aging ..........................................................................................................................................8
6.2.4.
Layer 2 Multicast...............................................................................................................................................8
6.3.
MAC LIMIT FUNCTION ................................................................................................................................................8
6.4.
RESERVED MULTICAST ADDRESS HANDLING FUNCTION .............................................................................................9
6.5.
IEEE 802.3X FLOW CONTROL FUNCTION ....................................................................................................................9
6.6.
HALF DUPLEX BACKPRESSURE FUNCTION .................................................................................................................10
6.6.1.
Collision-Based Backpressure (Jam Mode).....................................................................................................10
6.6.2.
Carrier-Based Backpressure (Defer Mode) ..................................................................................................... 11
6.7.
VLAN FUNCTION ......................................................................................................................................................11
6.7.1.
Port-Based VLAN ............................................................................................................................................12
6.7.2.
IEEE 802.1Q Tagged-VID Based VLAN ..........................................................................................................12
6.7.3.
Insert/Remove/Replace Tag..............................................................................................................................12
6.7.4.
Ingress and Egress Rules .................................................................................................................................13
6.8.
IEEE 802.1P REMARKING FUNCTION .........................................................................................................................13
6.9.
BANDWIDTH CONTROL FUNCTION .............................................................................................................................14
6.9.1.
Input Bandwidth Control .................................................................................................................................14
6.9.2.
Output Bandwidth Control...............................................................................................................................14
6.10.
QUALITY OF SERVICE (QOS) FUNCTION .....................................................................................................................14
6.10.1.
Priority Arbitration..........................................................................................................................................14
6.10.2.
Port-Based Priority Assignment ......................................................................................................................15
6.10.3.
IEEE 802.1Q-Based Priority Assignment........................................................................................................15
8-Port 10/100Mbps Ethernet Switch Controller
iii
Track ID:
Rev. 1.0
RTL8309N
Datasheet
6.10.4.
DSCP-Based Priority Assignment ...................................................................................................................15
6.10.5.
IP Address-Based Priority ...............................................................................................................................15
6.10.6.
Internal Priority to Queue ID Table.................................................................................................................15
6.10.7.
Weighted Round-Robin ....................................................................................................................................15
6.11.
LAYER2 TRAFFIC SUPPRESSION FUNCTION (STORM CONTROL) .................................................................................16
6.12.
INPUT & OUTPUT DROP FUNCTION ............................................................................................................................16
6.13.
LOOP DETECTION FUNCTION .....................................................................................................................................16
6.14.
REALTEK CABLE TESTER FUNCTION ..........................................................................................................................16
6.15.
EEPROM CONFIGURATION FUNCTION ......................................................................................................................16
7.
INTERFACE DESCRIPTIONS........................................................................................................................................17
7.1.
7.2.
I2C MASTER FOR EEPROM AUTO-DOWNLOAD ........................................................................................................17
SMI INTERFACE FOR EXTERNAL CPU ACCESS...........................................................................................................17
8.
LDO REGULATOR...........................................................................................................................................................18
9.
ELECTRICAL CHARACTERISTICS ............................................................................................................................18
9.1.
9.2.
10.
10.1.
11.
ABSOLUTE MAXIMUM RATINGS .................................................................................................................................18
RECOMMENDED OPERATING RANGE ..........................................................................................................................18
MECHANICAL DIMENSIONS...................................................................................................................19
PLASTIC QUAD FLAT NO-LEAD PACKAGE 64 LEADS 9X9MM2 OUTLINE ....................................................................19
ORDERING INFORMATION .....................................................................................................................20
8-Port 10/100Mbps Ethernet Switch Controller
iv
Track ID:
Rev. 1.0
RTL8309N
Datasheet
List of Tables
TABLE 1 PIN ASSIGNMENTS TABLE .................................................................................................................................................5
TABLE 2. MEDIA CONNECTION PINS ...............................................................................................................................................1
TABLE 3. PARALLEL LED PINS .......................................................................................................................................................1
TABLE 4. MISCELLANEOUS INTERFACE PINS...................................................................................................................................2
TABLE 5. CONFIGURATION STRAPPING PINS ...................................................................................................................................2
TABLE 6. REGULATOR PINS ............................................................................................................................................................3
TABLE 7. POWER AND GND PINS ....................................................................................................................................................4
TABLE 8. RESERVED MULTICAST ADDRESS DEFAULT ACTIONS .....................................................................................................9
TABLE 9. VLAN TABLE ................................................................................................................................................................11
TABLE 10. VLAN ENTRY .............................................................................................................................................................12
TABLE 11. SMI (MDC, MDIO) MANAGEMENT PACKET FORMAT ................................................................................................17
TABLE 12. ABSOLUTE MAXIMUM RATINGS ..................................................................................................................................18
TABLE 13. RECOMMENDED OPERATING RANGE ...........................................................................................................................18
TABLE 14. ORDERING INFORMATION ............................................................................................................................................20
List of Figures
FIGURE 1. BLOCK DIAGRAM ...........................................................................................................................................................3
FIGURE 2. PIN ASSIGNMENTS ..........................................................................................................................................................4
FIGURE 3. CONCEPTUAL EXAMPLE OF POLARITY CORRECTION ......................................................................................................6
FIGURE 4. TX PAUSE FRAME FORMAT...........................................................................................................................................10
FIGURE 5. FLOW CONTROL STATE MACHINE ................................................................................................................................10
FIGURE 6. COLLISION-BASED BACKPRESSURE SIGNAL TIMING ....................................................................................................11
FIGURE 7. 1KB~16KB EEPROM READ/WRITE TIMING ................................................................................................................17
8-Port 10/100Mbps Ethernet Switch Controller
v
Track ID:
Rev. 1.0
RTL8309N
Datasheet
1. General Description
The RTL8309N is an 8-port Fast Ethernet switch controller that integrates eight MACs, and eight
physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip.
The RTL8309N contains a 2K-entry address lookup table. Two 4-way associative hash algorithms avoid
hash collisions and maintain forwarding performance.
Maximum packet length can be 2K bytes. Three types of independent storm filters are provided to filter
packet storms, and an intelligent switch engine prevents Head-of-Line blocking problems.
The RTL8309N supports 16 VLAN groups. These can be configured as port-based VLANs and/or
802.1Q tag-based VLANs. The RTL8309N also supports four Independent VLAN Learnings (IVLs).
The RTL8309N supports several advanced QoS functions with four-level priority queues to improve
multimedia or real-time networking applications, including:
• Multi-priority assignment
•
Differential queue weight with WRR and SP packet scheduling
•
Port-based and queue-based rate limitation
Energy-Efficient Ethernet (EEE) supports Low Power Idle Mode. When Low Power Idle Mode is enabled,
systems on both sides of the link can disable portions of the functionality and save power during periods
of low link utilization.
The RTL8309N provides per-port one flexible LED functions for diagnostics, with five combination
modes.
A loop-detection function provides notification of network loops, the loop status can be notified by
buzzer, LED or both.
To simplify the peripheral power circuit, the RTL8309N integrated one LDO regulator to generate 1.0V
from a 3.3V input power which needs only one external Diode.
8-Port 10/100Mbps Ethernet Switch Controller
0
Track ID:
Rev. 1.0
RTL8309N
Datasheet
2. Features
Basic Switching Functions
8-port switch controller with transceiver for
10Base-T and 100Base-TX with:
8-port 10/100M UTP
Supports advanced storm filtering
Optional EEPROM interface for
configuration
VLAN Functions
Non-blocking wire-speed reception and
transmission and non-head-of-line-blocking
forwarding
Supports up to 16 VLAN groups
Flexible 802.1Q port/tag-based VLAN
Complies with IEEE 802.3/802.3u
auto-negotiation
Supports four IVLs
Built-in high efficiency SRAM for packet
buffer, with 2K-entry lookup table and two
4-way associative hash algorithms
2K byte maximum packet length
Flow control fully supported:
Half duplex: Back pressure flow control
Full duplex: IEEE 802.3x flow control
Service Quality
Supports high performance QoS function on
each port:
Leaky VLAN for
unicast/multicast/broadcast/ARP packets
Power Saving Functions
Supports Energy-Efficient Ethernet (EEE)
function (IEEE 802.3az)
Link down Power Saving Mode
Diagnostic Functions
Supports hardware loop detection function,
with LEDs to indicate the existence of a
loop
Supports cable diagnosis (RTCT function)
LED indicators:
Supports 4-level priority queues
Weighted round robin service
Supports strict priority
Loop status indication
Input/Output port bandwidth control
RTCT status indication
Queue based bandwidth control
1Q-based, Port-based, DSCP-based, IP
address-based, and other types of priority
assignments
Supports IEEE 802.1p Traffic Re-marking
Security and Management
LEDs blink upon reset for LED
diagnostics
Other Features
Optional MDI/MDIX auto crossover for
plug-and-play
Physical layer port Polarity Detection and
Correction function
Supports reserved control frame filtering
8-Port 10/100Mbps Ethernet Switch Controller
1
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Robust baseline wander correction for
improved 100Base-TX performance
Low power, 1.0/3.3V, 55nm CMOS
technology
25MHz crystal
64-pin QFN package
Integrated LDO regulator to generate 1.0V
from 3.3V via one external Diode
8-Port 10/100Mbps Ethernet Switch Controller
2
Track ID:
Rev. 1.0
RTL8309N
Datasheet
3. Block Diagram
RX + -[ 0]
TX + - [0 ]
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
MAC 0
Switch
Engine 0
RX + - [1 ]
TX + -[ 1]
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
MAC 1
Switch
Engine 1
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
MAC 2
RX + - [2 ]
TX + -[ 2]
Packet
Buffer
Switch
Engine 2
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
MAC 3
Switch
Engine 3
RX +- [ 4]
TX + - [4 ]
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
MAC 4
Switch
Engine 4
RX + - [5 ]
TX + -[ 5]
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
RX + -[ 6]
TX + -[ 6 ]
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
RX + -[ 3]
TX + -[ 3 ]
RX +- [ 7]
TX + - [7 ]
IBREF
10 Base - T or
100 Base -TX or
100 Base - FX
PHYceiver
Lookup
Table
MAC 5
Switch
Engine 5
MAC 6
Switch
Engine 6
MAC 7
Switch
Engine 7
MII_ REG
And
EEPROM
AUTOLOAD
SCL _ MDCPIN
SDA _ MDIOPIN
RESET #
Global
Function
LED
Control
X1
X2
LED _ BLNK _ TIME
LED _ ACT
Waveform
Shaping
LDO
Regulator
3.3V
1.0V
Figure 1. Block Diagram
8-Port 10/100Mbps Ethernet Switch Controller
3
Track ID:
Rev. 1.0
RTL8309N
Datasheet
4. Pin Assignments
Pin Assignments Diagram
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
V10OUT
DVDDL
P7LED
P6LED
P5LED/DIS_RST_BLNK
P4LED/UNKOWN_MULTI
P3LED/RMAMODE
DVDDH
P2LED/LED_MODE[2]
P1LED/LED_MODE[1]
P0LED/DIS_EEE
LDIND/DIS_LD
RESETB
SDA/MDIO
SCL/MDC
DVDDL
4.1.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
RTL8309N
LLLLLLL
TXXXX TAIWAN
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
AVDDL
RXIP7
RXIN7
TXON7
TXOP7
AVDDH
TXOP6
TXON6
RXIN6
RXIP6
AVDDL
RXIP5
RXIN5
TXON5
TXOP5
AVDDH
AVDDL
RXIP2
RXIN2
TXON2
TXOP2
AVDDH
TXOP3
TXON3
RXIN3
RXIP3
DVDDL
AVDDL
RXIP4
RXIN4
TXON4
TXOP4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
V33IN
AVDDHPLL
XO
XI
AVDDLPLL
IBREF
AVDDL
RXIP0
RXIN0
TXON0
TXOP0
AVDDH
TXOP1
TXON1
RXIN1
RXIP1
Figure 2. Pin Assignments
8-Port 10/100Mbps Ethernet Switch Controller
4
Track ID:
Rev. 1.0
RTL8309N
Datasheet
4.2.
Package Identification
Green package is indicated by a ‘G’ in the location marked ‘T’ in 错误!未找到引用源。.
4.3.
Pin Assignments Table
Upon Reset: Defined as a short time after the end of a hardware reset.
After Reset: Defined as the time after the specified ‘Upon Reset’ time.
I: Input Pin
AI: Analog Input Pin
O: Output Pin
AO: Analog Output Pin
I/O: Bi-Direction Input/Output Pin
AI/O: Analog Bi-Direction Input/Output Pin
P: Digital Power Pin
AP: Analog Power Pin
G: Digital Ground Pin
AG: Analog Ground Pin
IPU: Input Pin With Pull-Up Resistor;
OPU: Output Pin With Pull-Up Resistor;
(Typical Value is about 75KΩ)
(Typical Value is about 75KΩ)
IPD: Input Pin With Pull-Down Resistor;
OPD: Output Pin With Pull-Down Resistor;
(Typical Value is about 75KΩ)
(Typical Value is about 75KΩ)
I/OPD: IPD and OPD
I/OPU: IPU and OPU
Table 1 Pin Assignments Table
Name
AVDDL
RXIP[2]
RXIN[2]
TXON[2]
TXOP[2]
AVDDH
TXOP[3]
TXON[3]
RXIN[3]
RXIP[3]
DVDDL
AVDDL
RXIP[4]
RXIN[4]
TXON[4]
TXOP[4]
AVDDH
TXOP[5]
Pin
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
8-Port 10/100Mbps Ethernet Switch Controller
Type
Name
AP
AI/O
AI/O
AI/O
AI/O
AP
AI/O
AI/O
AI/O
AI/O
P
AP
AI/O
AI/O
AI/O
AI/O
AP
AI/O
TXON[5]
RXIN[5]
RXIP[5]
AVDDL
RXIP[6]
RXIN[6]
TXON[6]
TXOP[6]
AVDDH
TXOP[7]
TXON[7]
RXIN[7]
RXIP[7]
AVDDL
DVDDL
SCL/MDC
SDA/MDIO
RESETB
5
Pin
No.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Track ID:
Type
AI/O
AI/O
AI/O
AP
AI/O
AI/O
AI/O
AI/O
AP
AI/O
AI/O
AI/O
AI/O
AP
P
I/O PU
I/O PU
IPU
Rev. 1.0
RTL8309N
Datasheet
Name
LDIND
P0LED
P1LED
P2LED
DVDDH
P3LED
P4LED
P5LED
P6LED
P7LED
DVDDL
V10OUT
V33IN
AVDDHPLL
XO
XI
AVDDLPLL
IBREF
AVDDL
RXIP[0]
RXIN[0]
TXON[0]
TXOP[0]
AVDDH
TXOP[1]
TXON[1]
RXIN[1]
RXIP[1]
E-PAD
Pin
No.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
E-PAD
8-Port 10/100Mbps Ethernet Switch Controller
Type
I/O PU
I/O PD
I/O PD
I/O PD
P
I/O PD
I/O PD
I/O PD
I/O PD
I/O PD
P
AO
AP
AP
O
I
AP
AO
AP
AI/O
AI/O
AI/O
AI/O
AP
AI/O
AI/O
AI/O
AI/O
G
6
Track ID:
Rev. 1.0
RTL8309N
Datasheet
4.4.
Pin Descriptions
4.4.1.
Media Connection Pins
Table 2. Media Connection Pins
Pin No.
Type
Drive
(mA)
RXIP7/RXIN7
RXIP6/RXIN6
RXIP5/RXIN5
RXIP4/RXIN4
RXIP3/RXIN3
RXIP2/RXIN2
31,30
23,24
21,20
13,14
10,9
2,3
AI/O
-
Differential Receive Data Input:
Port0-7 support 10Base-T, 100Base-TX
and 100Base-FX
RXIP1/RXIN1
RXIP0/RXIN0
64,63
56,57
TXOP7/TXON7
TXOP6/TXON6
TXOP5/TXON5
TXOP4/TXON4
TXOP3/TXON3
TXOP2/TXON2
TXOP1/TXON1
TXOP0/TXON0
28,29
26,25
18,19
16,15
7,8
5,4
61,62
59,58
AI/O
-
Differential Transmit Data Output:
Port0-7 support 10Base-T, 100Base-TX
and 100Base-FX
Pin Name
4.4.2.
Description
Parallel LED Pins
Table 3. Parallel LED Pins
Pin No.
Type
Drive
(mA)
P0LED
38
I/OPD
10
LED for Port0 status indication
P1LED
39
I/OPD
10
LED for Port1 status indication
P2 LED
40
I/OPD
10
LED for Port2 status indication
P3 LED
42
I/OPD
10
LED for Port3 status indication
P4 LED
43
I/OPD
10
LED for Port4 status indication
P5 LED
44
I/OPD
10
LED for Port5 status indication
Pin Name
8-Port 10/100M Layer2 Switch Controller
1
Description
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Pin No.
Type
Drive
(mA)
P6 LED
45
I/OPD
10
LED for Port6 status indication
P7 LED
46
I/OPD
10
LED for Port7 status indication
Pin Name
4.4.3.
Description
Miscellaneous Interface Pins
Table 4. Miscellaneous Interface Pins
Pin Name
Drive
Pin No.
Type
LDIND
37
I/OPU
10
SCL/MDC
34
I/OPU
4
I2C Interface Clock for EEPROM auto load when
power on, and after power on, this pin is MDC/MDIO
Interface Clock for access registers
SDA/MDIO
35
I/OPU
4
I2C Interface Data Input/Output for EEPROM auto
load when power on, and after power on, this pin is
MDC/MDIO Interface Data Input/Output for access
registers.
RESETB
36
IPU
-
System Pin Reset Input.
XI
52
AI
-
25MHz Crystal Clock Input.
The clock tolerance is ±50ppm.
When using an oscillator, this pin should be tied to
ground.
XO
51
AO
-
25MHz Crystal Clock Output Pin.
IBREF
54
AO
-
Reference Resistor for PHY bandgap.
A 2.49KΩ (1%) resistor should be connected between
IBREF and GND.
4.4.4.
(mA)
Description
Loop indication used by LED and buzzer, when loop
topology is happened.
Configuration Strapping Pins
Table 5. Configuration Strapping Pins
Pin Name
Pin No.
8-Port 10/100M Layer2 Switch Controller
Type
Default
2
Description
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Pin Name
Pin No.
Type
Default
Description
DISLD
(LDIND)
37
I/OPU
-
Disable loop detection function.
0: Enable
1: Disable (default)
DIS_EEE
(P0LED)
38
I/OPD
-
Disable EEE function
0: enable EEE function (default)
1: disable EEE function
LED_MODE1
(P1LED)
39
I/OPD
-
LED Mode[2:1] Select.
2’b00/2’b01: Mode 0/1: Link+Act(default)
2’b10: Mode 2: Duplex
2’b11: Mode 3: Speed100+Act
LED_MODE2
(P2LED)
40
I/OPD
-
LED Mode[2:1] Select.
2’b00/2’b01: Mode 0/1: Link+Act(default)
2’b10: Mode 2: Duplex
2’b11: Mode 3: Speed100+Act
RMAMODE
(P3LED)
42
I/OPD
-
RMA mode select:
0: Mode0 is selected (default)
01-80-c2-00-00-02 is drop and
01-80-c2-00-00-11 ~ 01-80-c2-00-00-1F,
01-80-c2-00-00-21 packet are forwarded
1: Mode1 is selected
01-80-c2-00-00-02 is forward and
01-80-c2-00-00-11 ~ 01-80-c2-00-00-1F,
01-80-c2-00-00-21 packet are dropped
UNKOWN_MULTI
(P4LED)
43
I/OPD
-
Enable unknown multicast data packet drop
0: forward all unknown multicast data packet
(default)
1: drop all unknown multicast data packet
(expect IGMP/MLD and RMA packet)
DIS_RST_BLNK
(P5LED)
44
I/OPD
-
Disable LED Power on Blinking:
0: enable (default)
1: disable
4.4.5.
Regulator Pins
Table 6. Regulator Pins
Pin Name
Pin No.
8-Port 10/100M Layer2 Switch Controller
Type
Drive
(mA)
3
Description
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Pin Name
Pin No.
Type
Drive
(mA)
V10OUT
48
AO
-
Switch Regulator 1.0V output.
V33IN
49
AP
-
Switch Regulator 3.3V input
4.4.6.
Description
Power and GND Pins
Table 7. Power and GND Pins
Pin Name
Pin No.
Type
AVDDH
6,17,27,60
AP
Analog Power 3.3V.
AVDDL
1,12,22,32,55
AP
Analog Power 1.0V.
AVDDHPLL
50
AP
Power 3.3V for PLL.
AVDDLPLL
53
AP
Power 1.0V for PLL.
DVDDH
41
P
Digital Power 3.3V for IO Pad.
DVDDL
11,33,47
P
Digital Power 1.0V for Core Voltage.
E-PAD
G
Ground for whole chip
GND
5.
5.1.
Description
Physical Layer Function Description
MDI Interface
The RTL8309N embeds 8 Fast Ethernet PHYs in one chip. Each port uses a single common MDI
interface to support 10Base-T, 100Base-TX and 100Base-FX. This interface consists of two signal pairs
RXIP/RXIN, and TXOP/TXON. The MDI interface has internal termination resistors for reduced BOM
cost and PCB complexity.
8-Port 10/100M Layer2 Switch Controller
4
Track ID:
Rev. 1.0
RTL8309N
Datasheet
5.2.
10Base-T Transmit Function
The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The
internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external
filter.
5.3.
10Base-T Receive Function
The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit
detects the signal level is above squelch level.
5.4.
100Base-TX Transmit Function
The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling,
NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then
scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy
such that EMI effects can be reduced significantly.
The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit
stream is driven into the network media in the form of MLT-3 signaling. The MLT-3 multi-level
signaling technology moves the power spectrum energy from high frequency to low frequency, which
also reduces EMI emissions.
5.5.
100Base-TX Receive Function
The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to
compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter
to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit
error rate. A De-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by
the PLL circuit. Finally, the converted parallel data is fed into the MAC.
5.6.
100Base-FX Function
All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+/- pins.
100Base-FX can be forced to full duplex with optional flow control ability.
Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. In order to
operate correctly, both sides of the connection should be set to the same flow control ability.
A scrambler is not needed in 100Base-FX. Compared to common 100Base-FX applications, the
RTL8309N removes a pair of differential SD (Signal Detect) signals that provide a link monitoring
function, which reduces the pin count (Realtek patent).
8-Port 10/100M Layer2 Switch Controller
5
Track ID:
Rev. 1.0
RTL8309N
Datasheet
5.7.
Auto-Negotiation for UTP Function
The RTL8309N obtains the states of duplex, speed, and flow control ability for each port in UTP mode
through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During
auto-negotiation, each port advertises its ability to its link partner and compares its ability with
advertisements received from its link partner. By default, the RTL8309N advertises full capabilities
(100Full, 100Half, 10Full, 10Half) together with flow control ability.
5.8.
Crossover Detection and Auto Correction Function
During the link setup phase, the RTL8309N checks whether it receives active signals on every port in
order to determine if a connection can be established. RTL8309N can identify the type of connected cable
and sets the port to MDI or MDIX. When switching to MDI mode, the RTL8309N uses TXOP/N as
transmit pair; when switching to MDIX mode, the RTL8309N uses RXIP/N as transmit pair.
5.9.
Polarity Correction Function
The RTL8309N automatically corrects polarity errors on the receiver pairs in the 10Base-T modes. In
100Base-TX mode, the polarity does not matter.
+
RX _
TX
+
_
_
+
_
+
TX
+
_ RX
RTL8309N
Link Partner
In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The
detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The
polarity becomes unlocked when the link is down.
Figure 3. Conceptual Example of Polarity Correction
5.10. IEEE 802.3az Energy Efficient Ethernet Function (EEE)
The RTL8309N supports IEEE 802.3az Energy Efficient Ethernet (EEE) ability for 100Base-TX in full
duplex operation, and supports 10Base-Te for 10Base-T in full/half duplex .The Energy Efficient Ethernet
(EEE) operational mode combines the IEEE 802.3 Media Access Control (MAC) Sub-layer with a family
of Physical Layers defined to support operation in Low Power Idle (LPI) Mode. When the port is in LPI
8-Port 10/100M Layer2 Switch Controller
6
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Mode, link partners of both sides can turn off the unnecessary TX/RX circuits to save power consumption
during periods of low link utilization.
The RTL8309N EEE operational mode supports the IEEE 802.3 MAC operation at 100Mbps. In addition,
the RTL8309N supports 10Mbps PHY with reduced transmit amplitude requirements in EEE operational
mode. This new PHY is fully interoperable with legacy 10Base-T PHY over 100m of class D (Category 5)
or better cabling.
5.11. Link Down Power Saving Function
The RTL8309N implements link-down power saving on a per-port basis, greatly cutting power
consumption when the network cable is disconnected. A port automatically enters link down power
saving mode 3 seconds after the cable is disconnected from it. Once a port enters link down power saving
mode, it transmits normal link pulses on its TX and continues to monitor the RX to detect incoming
signals, which might be 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or Auto-Negotiation’s
FLP (Fast Link Pulse). After it detects an incoming signal, it wakes up from link down power saving
mode and operates in normal mode according to the result of the connection.
6.
6.1.
6.1.1.
Switch Core Function Description
Hardware Reset and Software Reset Function
Hardware Reset
A hardware reset forces the RTL8309N to start the initial power-on sequence. First hardware will strap
pins to give all default values when the ‘RESETB’ signal terminates. Next the configuration is
auto-loaded from EEPROM (if EEPROM is detected), and then the complete SRAM BIST (Built-In
Self Test) process is run.
6.1.2.
Software Reset
The RTL8309N supports software reset to reset Switch packet buffer.
6.2.
Layer 2 Learning and Forwarding Function
The RTL8309N MAC address table consists of an 2K-entry L2 hash table and a 2-entry forwarding
table. The RTL8309N supports IVL (Independent VLAN Learning), SVL (Shared VLAN Learning),
and IVL/SVL (Both Independent and Shared VLAN Learning).
8-Port 10/100M Layer2 Switch Controller
7
Track ID:
Rev. 1.0
RTL8309N
Datasheet
6.2.1.
Forwarding
When the VLAN egress filtering option is enabled, a received unicast frame will be forwarded to its
destination port only if the destination port is in the same VLAN as the source port. If the destination
port belongs to a different VLAN, the frame will be discarded.
By default the received broadcast/multicast frame will flood to VLAN member ports only, except for
the source port.
IP Multicast data packets involve multicast address table lookup and forwarding operations. If the table
lookup returns a hit, the data packet is forwarded to member ports according to forwarding table setting.
If the IP multicast address is not stored in the address table (i.e., lookup miss), according to a 1-bit
action configuration the packet is dropped or flooded.
6.2.2.
Learning
The RTL8309N features a Layer2 table (2K entries). It uses a 4-way hash structure to store L2 entries.
Each entry can learn in the format of L2 Unicast, and the L2 Unicast hash key is {MAC, FID}.
6.2.3.
Address Table Aging
In a dynamic network topology, address aging allows the contents of the address table to always be the
most recent and correct. A learned source address entry will be cleared (aged out) if it is not updated by
the address learning process within an aging time period. The aging time of the RTL8309N is between
200 and 400 seconds (typical value is 300 seconds). The RTL8309N also supports a fast aging function
that is used to age all dynamic entries within 1ms.
6.2.4.
Layer 2 Multicast
The RTL8309N supports two IP multicast frame types: IPv4 multicast and IPv6 multicast.
The RTL8309N IGMPv1/2/3 and MLDv1/2 packets can be trapped to the CPU, to allow software to
insert an IP multicast entry into the address table.
6.3.
MAC Limit Function
The RTL8309N supports the capability of limiting the number of MAC addresses that are learned. The
learned MAC addresses of each port, and the total learned MAC addresses of any combination of multi
ports can be limited. The limit thresholds of each port can be configured independently.
There is a counter for each of the limits. The counter will be decremented if a counted MAC address ages
out. Deleting or creating entries in the LUT via register setting will not affect these counters. When the
8-Port 10/100M Layer2 Switch Controller
8
Track ID:
Rev. 1.0
RTL8309N
Datasheet
MAC limit of port(s) reached, the received packet on the corresponding port, which is not learned or is
learned but is not the current ingress port, will be dropped and not be learned.
6.4. Reserved Multicast Address Handling Function
The RTL8309N supports Reserved Multicast Address (RMA) as defined in the IEEE 802.1 standard.
For each RMA, the actions include: Forward, Drop, Trap or Copy to CPU. The action priority is higher
than the results of a L2 Table lookup. Default actions are shown in Table 8.
Table 8. Reserved Multicast Address Default Actions
Name
Address
Default
Bridge Group Address
01-80-C2-00-00-00
Forward
IEEE Std 802.3, 1988 Edition, Full Duplex PAUSE
Operation
01-80-C2-00-00-01
Drop
IEEE Std 802.3ad Slow Protocols-Multicast
Address
01-80-C2-00-00-02
Drop
IEEE Std 802.1X PAE Address
01-80-C2-00-00-03
Forward
01-80-C2-00-00-04~01-80-C2-00-000D, 01-80-C2-00-00-0F
Drop
LLDP IEEE Std 802.1AB Link Layer Discovery
Protocol Multicast Address
01-80-C2-00-00-0E
Forward
All LANs Bridge Management Group Address
01-80-C2-00-00-10
Drop
01-80-C2-00-00-11~01-80-C2-00-0
0-1F
Forward
GMRP
01-80-C2-00-00-20
Drop
GVRP
01-80-C2-00-00-21
Forward
Reserved for use by Multiple Registration
Protocol (MRP) applications
01-80-C2-00-00-22 ~
01-80-C2-00-00-2F
Drop
IEEE 802.1ag PDU CCM/LTM
01-80-C2-00-00-31 ~
01-80-C2-00-00-3F
Forward
Reserved for future protocol standards
Reserved for 01-80-C2-00-00-1x
6.5. IEEE 802.3x Flow Control Function
The RTL8309N supports IEEE 802.3x full duplex flow control. If one port’s receive buffer is over the
pause-on threshold, a pause-on frame is sent to the link partner to stop the transmission. When the port’s
receive buffer drops below the pause-off threshold, it sends a pause-off frame. The pause frame format is
shown in Figure 4.
8-Port 10/100M Layer2 Switch Controller
9
Track ID:
Rev. 1.0
RTL8309N
Datasheet
Figure 4. Tx Pause Frame Format
The RTL8309N is implemented three type flow control mechanism: output flow control, input flow
control and input bandwidth control base flow control.
When RTL8309N flow control is enabled, the initial state is ‘Non_Congest’. The state is monitored
continuously. If a pause-on trigger condition occurs, it enters the ‘Congest’ state. When in the ‘congest’
state, it is also continuously monitored. When a pause-off trigger condition occurs it re-enters the
‘Non_Congest’ state. Figure 5 shows the flow control state machine.
Figure 5. Flow Control State Machine
6.6. Half Duplex Backpressure Function
There are two mechanisms for half-duplex backpressure: collision-based or carrier-based.
6.6.1.
Collision-Based Backpressure (Jam Mode)
If the buffer is ready to overflow, this mechanism will force a collision. When the link partner detects this
collision, the transmission is rescheduled.
The Reschedule procedure is:
•
The RTL83109N will drive TXEN to high and send the preamble, SFD and a 4-byte Jam signal
(pattern is 0xAA). Then the RTL8309N will drive TXEN to low.
•
When the link partner receives the Jam signal, it will feedback a 4-byte signal (pattern is CRC^0x01),
then it will drive RXDV to low.
8-Port 10/100M Layer2 Switch Controller
10
Track ID:
Rev. 1.0
RTL8309N
Datasheet
•
The link partner waits for a random back-off time then re-sends the packet. The timing is shown in
Figure 6.
Figure 6. Collision-Based Backpressure Signal Timing
6.6.2.
Carrier-Based Backpressure (Defer Mode)
If the buffer is about to overflow, this mechanism will send a 0xAA pattern to defer the other station’s
transmission. The RTL8309N will continuously send the defer signal until the buffer overflow is
resolved.
6.7.
VLAN Function
The RTL8309N supports 16 VLAN groups with the 16-entry VLAN table (see Table 9 and Table 10).
These can be configured as port-based VLANs and/or IEEE 802.1Q tag-based VLANs. The RTL8309N
supports IVL/SVL function, using the FID to lookup layer2 table. The contents of the VLAN table can be
configured via SMI or EEPROM. Multiple ingress filtering and egress filtering options provide various
VLAN admit rules for the RTL83009N. The RTL83009N also provides flexible VLAN tag insert/remove
function.
Table 9. VLAN Table
Entry Index
VLAN ID
MBR
UNTAG SET
FID
VLAN Entry 0
VLAN ID A[11:0]
VLAN ID A membership [8:0]
VLAN ID A UNTAG_MSK [8:0]
FID[1:0]
VLAN Entry 1
VLAN ID B [11:0]
VLAN ID B membership [8:0]
VLAN ID B UNTAG_MSK [8:0]
FID[1:0]
……
VLAN Entry 15
……
VLAN ID P [11:0]
8-Port 10/100M Layer2 Switch Controller
……
……
VLAN ID P membership [8:0]
11
VLAN ID P UNTAG_MSK [8:0]
Track ID:
……
FID[1:0]
Rev. 1.0
RTL8309N
Datasheet
Table 10. VLAN Entry
Field
Description
VID
The VLAN ID for search. The VID of the ingress packet will be compared
with this field.
12
MBR
VLAN member port set. If the bit in this field is ‘1’, the corresponding port is
a member port of the VLAN specified by the VID field.
9
UNTAG
SET
VLAN untag set. If the bit in this field is ‘1’, the packet egressing from the
corresponding port will be VLAN-untagged.
9
FID
The FID is for Layer2 table lookup.
2
6.7.1.
Bits
Port-Based VLAN
Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a
VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to
determine their VLAN association. All the packets received on a given input port will be forwarded to
this port’s VLAN members. The RTL8309N supports VLAN indexes for each port to individually index
this port to one of the 16 VLAN entry. A port that is not included in a VLAN’s member set cannot
transmit packets to this VLAN.
6.7.2.
IEEE 802.1Q Tagged-VID Based VLAN
The RTL8309N uses a 12-bit explicit identifier in the VLAN entry to associate received packets with a
VLAN tag. If the VID of a VLAN-tagged frame does not match any of the 16 VLAN entries, the
RTL8309N will drop the frame if the VLAN packet trap to the CPU port function is disabled. Otherwise,
the RTL8309N compares the explicit identifier in the VLAN tag with the 16 VLAN IDs to determine the
VLAN association of this packet, and then forwards this packet to the member set of this VLAN. Two
VIDs are reserved for special purposes. One of them is all 1’s, which is reserved and currently unused.
The other is all 0’s, which indicates a priority tag. A priority-tagged frame should be treated as an
untagged frame.
6.7.3.
Insert/Remove/Replace Tag
The RTL8309N supports the VLAN Insertion/Removal/replacing action for each port. The 802.1Q
VLAN tags can be inserted, removed, or replaced based on the port’s setting.
8-Port 10/100M Layer2 Switch Controller
12
Track ID:
Rev. 1.0
RTL8309N
Datasheet
6.7.4.
Ingress and Egress Rules
The RTL8309N provides flexible VLAN ingress and egress rules to permit comprehensive traffic control.
The RTL8309N can filter packets on ingress according to the tag condition of the packet. For a
normalized VLAN application, each of the RTL8309N ports can be independently configured to:
•
‘admit all frames’
•
‘admit only tagged frames’
•
‘admit only untagged frames’
Note: The priority tagged frame (VID=0) will be treated as an untagged frame.
The RTL8309N also can optionally discard a frame associated with a VLAN of which the ingress port is
not in the member set.
For the egress filter, the RTL8309N drops the frame if this frame belongs to a VLAN but its egress port is
not one of the VLAN’s member ports. However, there are 5 leaky options to provide exceptions for
special applications.
•
‘Unicast leaky VLAN’ enables inter-VLAN unicast packet forwarding. That is, if the layer 2 lookup
table search has a hit, then the unicast packet will be forwarded to the egress port, ignoring the egress
rule.
•
‘Broadcast leaky VLAN’ enables inter-VLAN broadcast packet forwarding. Packets may be flooded
to all other ports, ignoring the VLAN member set domain limitation.
•
‘ARP leaky VLAN’ enables broadcasting of ARP packets to all other ports, ignoring the egress rule,
when ‘Broadcast leaky VLAN’ is disabled.
•
‘Multicast leaky VLAN’ enables inter-VLAN multicast packet forwarding. Packets may be flooded to
all the multicast address group member sets, ignoring the VLAN member set domain limitation.
•
‘Inter-VLAN mirror function’ enables the inter-VLAN mirror function, ignoring the VLAN member
set domain limitation. The default value is ‘Enable the inter-VLAN mirror’.
6.8.
IEEE 802.1p Remarking Function
The RTL8309N provides IEEE 802.1p Remarking ability. Each port can enable or disable IEEE 802.1p
Remarking ability. In addition, there is a RTL8309N global IEEE 802.1p Remarking Table. When one
port enables 802.1p Remarking ability, 2-bit priority (not QID) determined by the RTL8309N is mapped
to 3-bit priority according to the 1p Remarking Table.
8-Port 10/100M Layer2 Switch Controller
13
Track ID:
Rev. 1.0
RTL8309N
Datasheet
If the port’s 1p remarking function is enabled, transmitting VLAN tagged packets will have the 1Q
VLAN tag’s Priority field replaced with the 3-bit 1p remarking Priority.
When the VLAN tags are inserted to non-tagged packets, the inserted tag’s priority will accord with the
1p remarking table, even if the port’s 1p remarking function is disabled. When the VLAN tag is replaced
on tagged packets and the 1p remarking function is disabled, the VLAN tag’s VID will be replaced but
the priority will not change. For a VLAN-tagged packet, the VID and 3-bit priority can be replaced by the
RTL8309N independently.
6.9. Bandwidth Control Function
6.9.1.
Input Bandwidth Control
The RTL8309N has input bandwidth control per port. If the speed of received packets is faster than the
bandwidth setting of this port, the switch will send a pause frame to the link partner or drop packets,
according to its flow control setting. The bandwidth granularity is 64Kbps.
6.9.2.
Output Bandwidth Control
The RTL8309N has output bandwidth control per port, and has output bandwidth control on queue2 and
queue3 in WRR mode. The bandwidth granularity is 64Kbps.
6.10. Quality of Service (QoS) Function
The RTL8309N identifies the priority of packets based on seven types of QoS priority information:
•
Port-based
•
IEEE 802.1Q-based
•
DSCP-based
•
IP priority-based
6.10.1. Priority Arbitration
The RTL8309N has one priority arbitration weight tables to decide which type of priority should be
accepted when multiple types of priority exist. Each port can be set to its own Priority arbitration weight.
8-Port 10/100M Layer2 Switch Controller
14
Track ID:
Rev. 1.0
RTL8309N
Datasheet
6.10.2. Port-Based Priority Assignment
Port-based priority assignment specifies a 2-bit priority for each physical port. When a packet is received
from a physical port, it is assigned the 2-bit priority of that physical port. The port-based priority can be
enabled or disabled by the control register.
6.10.3. IEEE 802.1Q-Based Priority Assignment
In IEEE 802.1Q-based priority assignment, when a packet is VLAN-tagged or priority-tagged, the 2-bit
priority is mapping from 3-bit priority of the tag. When a packet is untagged, the 802.1Q-based priority is
assigned to the default Dot1Q port-based 2-bit priority information of a physical port. The Dot1Q
port-based priority can be enable or disable. When the priority comes from a packet, the 1Q-based
priority is acquired by mapping 3-bit tag priority to 2-bit priority though a RTL8309N Dot1Q-based
Priority Mapping Table. The Dot1Q-based priority can be enabled or disabled by the control register.
6.10.4. DSCP-Based Priority Assignment
The RTL8309N has one tables to map 6-bit DSCP values to 2-bit internal priorities. The table has 64
entries. The DSCP-based priority assignment can be enabled or disabled by the control register.
6.10.5. IP Address-Based Priority
When IP-based priority is enabled, any incoming packets with source or destination IP address equal to
the configuration in register IP Priority Address [A] and IP Priority Mask [A], or IP Priority Address [B]
and IP Priority Mask [B] will be set to a 2-bit priority.
IP priority [A] and IP priority [B] may be enabled or disabled independently. IP address-based priority
can be enabled or disabled by the control register.
6.10.6. Internal Priority to Queue ID Table
The RTL8309N can transfer its internal priority to the output queue ID. Each port has a table with 4
entries to map the 2-bit internal priority to 2-bit queue ID.
6.10.7. Weighted Round-Robin
The RTL8309N has four queues per port. The Packet Scheduler controls the multiple traffic classes (i.e.,
controls the packet sending sequence of the priority queue). The RTL8309N supports Weighted
Round-Robin (WRR) and Strict Priority (SP). Note that the Strict Priority queue is the highest priority of
all queues, and overrides WRR. A larger strict priority queue ID indicates the priority is higher.
8-Port 10/100M Layer2 Switch Controller
15
Track ID:
Rev. 1.0
RTL8309N
Datasheet
6.11. Layer2 Traffic Suppression Function (Storm Control)
The RTL8309N supports the storm filter function for each port. The storm types are broadcast storm,
unknown only or all multicast storm, and unknown DA unicast storm. The RTL8309N can control all
three storm types via three leaky buckets per port.
6.12. Input & Output Drop Function
If some destination ports are blocking or the buffer is full, the frames to these ports will be dropped.
There are two types of drop:
•
Input Drop: Drop the frame directly. Do not forward to any port.
•
Output Drop: Forward only to non-blocking ports.
For the RTL8309N, the dropping of broadcast, multicast, and unknown DA frames can be controlled
independently.
6.13. Loop Detection Function
The RTL8309N periodically transmits a Realtek protocol frame to detect network loop faults. If a port
detects a loop, the LED corresponding to the looped port will blink until the loop is resolved. At the same
time, the loop event flag will be set.
6.14. Realtek Cable Tester Function
The RTL8309N features the Realtek Cable Tester (RTCT). The Cable Tester function can be used to
detect a short (two conductors of pair short-circuited) or open (a lack of continuity between the pins at
each end of the Ethernet cable, or a disconnected cable) in each differential pair, and report the result in
corresponding registers. RTL8309N also has an LED per port to indicate test status and results.
6.15. EEPROM Configuration Function
RTL8309N can be initialed by EEPROM. To flexible initialize the register, RTL8309N used dynamic
format to be loaded into any register needed to be initialized.
8-Port 10/100M Layer2 Switch Controller
16
Track ID:
Rev. 1.0
RTL8309N
Datasheet
7.
Interface Descriptions
7.1. I2C Master for EEPROM Auto-Download
Upon reset, the RTL8309N can auto-download the initial values of the internal MAC and PHY registers
from the external EEPROM. The RTL8309N supports one types of EEPROM: 1Kb~16Kb.
Figure 7. 1Kb~16Kb EEPROM Read/Write Timing
After a reset, the I2C module starts to access the external EEPROM as a master. The EEPROM
auto-loading time varies with the size of the EEPROM. After the EEPROM auto-download, the I2C
module will change to MDC/MDIO slave mode for external CPU access.
7.2. SMI Interface for External CPU Access
The RTL8309N supports a serial CPU interface (MDC/MDIO Slave mode) to access the internal registers
(including all MAC and PHY configuration registers). There are two I/O pins (MDC and MDIO) for the
SMI interface. MDIO is the access data signal, and MDC is the clock signal which frequency must be
smaller than 3Mhz. The read/write data sequence is shown in Table 8-1.
Table 11. SMI (MDC, MDIO) Management Packet Format
Management Frame Fields
8-Port 10/100M Layer2 Switch Controller
17
Track ID:
Rev. 1.0
RTL8309N
Datasheet
PRE
ST
OP
PHYAD
REGAD
TA
DATA
IDL
E
Read
1…1
01
10
AAAAA
RRRRR
Z0
DDDDDDDDDDDDDDDD
Z
Write
1…1
01
01
AAAAA
RRRRR
10
DDDDDDDDDDDDDDDD
Z
8.
LDO Regulator
RTL8309N embedded a LDO regulator from 3.3V to 1.0V that requires a well-designed PCB layout in
order to achieve good power efficiency and lower the output voltage ripple and input overshoot. The LDO
regulator 1.0V output pin must be connected only to DVDDL/AVDDL/AVDDLPLL (do not provide this
power source to other devices).
Note: Refer to the separate RTL8309N layout guide for details.
9.
Electrical Characteristics
9.1. Absolute Maximum Ratings
WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to
the device, or device reliability will be affected. All voltages are specified reference to GND unless
otherwise specified.
Table 12. Absolute Maximum Ratings
Parameter
Min
Max
Units
-55
+125
°C
DVDDH, AVDDH, AVDDHPLL Supply Referenced to
DGND, AGND
GND-0.3
+3.63
V
DVDDL, AVDDL, AVDDLPLL Supply Referenced to
DGND, AGND
GND-0.3
+1.20
V
Storage Temperature
9.2. Recommended Operating Range
Table 13. Recommended Operating Range
Parameter
Min
Typical
Max
Units
DVDDH, AVDDH, AVDDHPLL Supply Voltage Range
3.135
3.3
3.465
V
DVDDL, AVDDL, AVDDLPLL Supply Voltage Range
0.95
1.0
1.05
V
Ambient Operating Temperature (Ta)
0
-
70
°C
Maximum Junction Temperature
-
-
125
°C
8-Port 10/100M Layer2 Switch Controller
18
Track ID:
Rev. 1.0
RTL8309N
Datasheet
10. Mechanical Dimensions
10.1. Plastic Quad Flat No-Lead Package 64 Leads 9x9mm2 Outline
Symbol
Min
Dimension in mm
Nom
Max
Min
Dimension in inch
Nom
Max
A
0.80
0.85
0.90
0.031
0.033
0.035
A1
0.00
0.02
0.05
0.000
0.001
0.002
A2
---
0.65
0.70
---
0.026
0.028
A3
b
0.20 REF
0.18
D/E
D2/E2
0.30
0.007
9.00B SC
5.75
e
L
0.25
0.008 REF
6.00
0.40
0.012
0.354 BSC
6.25
0.226
0.50 BSC
0.30
0.010
0.236
0.246
0.020 BSC
0.50
0.012
0.016
0.020
Notes:
1. CONTROLLING DIMENSION:MILLIMETER(mm).
2. REFERENCE DOCUMENTL:JEDEC MO-220.
8-Port 10/100M Layer2 Switch Controller
19
Track ID:
Rev. 1.0
RTL8309N
Datasheet
11. Ordering Information
Table 14. Ordering Information
Part Number
Package
Status
QFN 64-Pin E-PAD ‘Green’ Package
Realtek Semiconductor Corp.
Headquarters
1F, No. 2, Industry East Road IX, Science-based
Industrial Park, Hsinchu, 300, Taiwan, R.O.C.
Tel: 886-3-5780211 Fax: 886-3-5776047
www.realtek.com.tw
8-Port 10/100M Layer2 Switch Controller
20
Track ID:
Rev. 1.0