0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
QMA7981

QMA7981

  • 厂商:

    QST(矽睿)

  • 封装:

    LGA12_2X2MM

  • 描述:

    加速度传感器 LGA-12 Accelerometer 3-axis 4096LSB/g 1.71~3.6V

  • 数据手册
  • 价格&库存
QMA7981 数据手册
Document # Originator: 13-52-12 Title: QMA7981 Datasheet Rev:D MEMS / Peili Yan The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 1 / 30 矽睿 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D Abstract Single-Chip 3-Axis Accelerometer QMA7981 Advanced Information The QMA7981 is a single chip three-axis accelerometer. This surface-mount, small sized chip has integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration, targeted for applications such as screen rotation, step counting, sleep quality, gaming and personal navigation in mobile and wearable smart devices. The QMA7981 is based on our state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 14-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The device supports digital interface IIC and SPI. The QMA7981 is in a 2x2x0.95mm3 surface mount 12-pin land grid array (LGA) package. FEATURES BENEFIT  3-Axis Accelerometer in a 2x2x0.95 mm3 Land  Small size for highly integrated products. Grid Array Package (LGA), guaranteed to operate over a temperature range of -40 °C to +85 °C. Signals have been digitized and factory trimmed.  14-Bit ADC with low noise accelerometer  High resolution allows for motion and tilt  I2C Interface with Standard and Fast modes.  High-Speed sensor Support SPI digital interface  Built-In Self-Test sensing Interfaces communications. for fast data  Enables low-cost functionality test after assembly in production  Wide range operation voltage (1.71V To  Automatically maintains sensor’s sensitivity 3.6V) and low power consumption (2-50uA low power conversion current) under wide operation voltage range and compatible with battery powered applications  RoHS compliant , halogen-free  Environmental protection and wide applications  Built–in motion algorithm  Low power and easy applications including step counting, sleep quality, gaming and personal navigation The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 2 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 CONTENTS CONTENTS....................................................................................................................................................................................... 3 1 INTERNAL SCHEMATIC DIAGRAM ................................................................................................................................... 4 1.1 Internal Schematic Diagram ..................................................................................................................................... 4 2 SPECIFICATIONS AND I/O CHARACTERISTICS .............................................................................................................. 5 2.1 Product Specifications .............................................................................................................................................. 5 2.2 Absolute Maximum Ratings ..................................................................................................................................... 6 2.3 I/O Characteristics .................................................................................................................................................... 6 3 PACKAGE PIN CONFIGURATIONS ..................................................................................................................................... 7 3.1 Package 3-D View .................................................................................................................................................... 7 3.2 Package Outlines ...................................................................................................................................................... 8 4 EXTERNAL CONNECTION ................................................................................................................................................. 10 4.1 I2C Dual Supply Connection .................................................................................................................................. 10 4.2 I2C Single Supply connection ................................................................................................................................ 10 4.3 SPI Dual Supply Connection .................................................................................................................................. 11 4.4 SPI Single Supply connection ................................................................................................................................ 11 5 BASIC DEVICE OPERATION .............................................................................................................................................. 12 5.1 Acceleration sensor................................................................................................................................................. 12 5.2 Power Management ................................................................................................................................................ 12 5.3 Power On/Off Time ................................................................................................................................................ 12 5.4 Communication Bus Interface I2C and Its Addresses ............................................................................................. 13 6 MODES OF OPERATION ..................................................................................................................................................... 14 6.1 Modes Transition .................................................................................................................................................... 14 6.2 Description of Modes ............................................................................................................................................. 14 7 Functions and interrupts .......................................................................................................................................................... 15 7.1 STEP_ INT ............................................................................................................................................................. 15 7.2 DRDY_INT ............................................................................................................................................................ 16 7.3 ANY_MOT_INT .................................................................................................................................................... 16 7.4 SIG_MOT_INT ...................................................................................................................................................... 17 7.5 NO_MOT_INT ....................................................................................................................................................... 17 7.6 RAISE_INT ............................................................................................................................................................ 17 7.7 Interrupt configuration ............................................................................................................................................ 17 8 I2C COMMUNICATION PROTOCOL .................................................................................................................................. 19 8.1 I2C Timings ............................................................................................................................................................ 19 8.2 I2C R/W Operation ................................................................................................................................................. 19 9 REGISTERS ........................................................................................................................................................................... 21 9.1 Register Map .......................................................................................................................................................... 21 9.2 Register Definition ................................................................................................................................................. 22 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 3 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 1 INTERNAL SCHEMATIC DIAGRAM 1.1 Internal Schematic Diagram Sinc Offset FS CVA SDM G-SENSOR MUX INT1 Interrupt Gain INT2 AD0 IF SDA OSC BG VPMXYZ Trim Reg File SCL OTP RESV1 GND POWER(A+D) POR Mode FSM SelfTest Table 1. Block Function Block Transducer CVA Interrupt FSM I2C/SPI OSC Power RESV2 VDD Block Diagram GND VDDIO Figure 1. SENB Function 3-axis acceleration sensor Charge-to-Voltage amplifier for sensor signals Digital interrupt engine, to generate interrupt signal on data conversion, and motion function Finite state machine, to control device in different mode Interface logic data I/O Internal oscillator for internal operation Power block, including LDO The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 4 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 2 SPECIFICATIONS AND I/O CHARACTERISTICS 2.1 Product Specifications Table 2. Specifications (* Tested and specified at 25°C and 3.0V VDD except stated otherwise.) Parameter Supply voltage VDD I/O voltage VDDIO Standby current Low power current Low noise current BW Data output rate (ODR) Conditions VDD, for internal blocks VDDIO, for IO only VDD and VDDIO on ODR=268 Hz ODR=134 Hz ODR=67 Hz ODR=33.6 Hz ODR=13.4 Hz ODR=6.7 Hz ODR=32.5 Hz ODR=21.6 Hz ODR=13 Hz ODR=6.5 Hz Programmable bandwidth Min 1.71 1.71 2*BW Typ 3.3 3.3 1 50 25.3 12.9 6.7 2.9 1.7 100 83.3 50 25 0.16~168 Max 3.6 VDD Unit V V μA μA μA Hz Samples /sec 0.32~336 Startup time From the time when VDD reaches to 90% of final value to the time when device is ready for conversion 2 ms Wakeup time From the time device enters into active mode to the time device is ready for conversion 1 ms Operating temperature Acceleration Full Range Sensitivity Sensitivity Temperature Drift Sensitivity tolerance Zero-g offset Zero-g offset Temperature Drift Noise density Nonlinearity Cross Axis Sensitivity -40 FS=±2g FS=±4g FS=±8g FS=±16g FS=±32g ℃ 85 ±2/±4/±8/ ±16/±32 4096 2048 1024 512 256 g LSB/g FS=±2g, Normal VDD Supplies ±0.02 %/℃ Gain accuracy FS=±2g, Normal VDD Supplies ±4 ±80 % mg FS=±2g, Normal VDD Supplies ±2 mg/℃ FS=±2g, run state FS=±2g, Best fit straight line, 200 ±0.5 1 μg/√Hz %FS % The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 5 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 2.2 Absolute Maximum Ratings Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.) Parameters VDD VDDIO ESD Shock Immunity Storage temperature Condition Min -0.3 -0.3 HBM Duration < 200μS -50 Max 5.4 5.4 2 10000 150 Units V V kV g ℃ 2.3 I/O Characteristics Table 4. I/O Characteristics Parameter Voltage Input High Level 1 Voltage Input Low Level 1 Voltage Output High Level Voltage Output Low Level Symbol VIH1 Pin SDA, SCL VIL1 SDA, SCL VOH INT1, INT2 VOL INT1, INT2, SDA Condition Output Current ≥-100μA Output Current ≤100μA(INT) Output Current ≤1mA (SDA) Min. 0.7*VDDI O -0.3 TYP. Max. VDDIO+0 .3 0.3*VDDI O 0.8*VDDI O The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. Unit V V V 0.2*VDDI O V 6 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 3 PACKAGE PIN CONFIGURATIONS 3.1 Package 3-D View Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration. AD0 2 SDX 3 VDD IO 4 RES V1 11 SCX RES V2 x Top View y QMA7981 1 12 INT 1 INT 2 5 6 Figure 2. Package View Table 5. Pin Configurations PIN No. 1 PIN NAME AD0 I/O 2 3 4 5 6 7 8 9 10 11 12 SEN B 10 Z GND 9 GND IO 8 VDD 7 X QMA7981 Y TYPE Function I Power Supply VDDIO CMOS SDX IO VDDIO CMOS VDDIO RESV1 INT1 INT2 VDD GNDIO GND SENB RESV2 SCL P I O O P G G IO IO I VDDIO VDDIO VDDIO VDDIO VDD GND GND VDDIO VDDIO VDDIO Power CMOS CMOS CMOS Power Power Power CMOS CMOS CMOS LSB of I2C address, or SDO of 4W SPI Serial data for I2C, or SDI of 4W SPI, or SDIO of 3W SPI Power supply to digital interface Reserved. Float or connect to GND Interrupt 1 Interrupt 2 Power supply to internal block Ground to digital interface Ground to internal block Protocol selection Reserved. Float, or connect to GND Serial clock for I2C, or Serial clock for SPI The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 7 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 3.2 Package Outlines 3.2.1 Package Type LGA (Land Grid Array) 3.2.2 Package Outline Drawing: 2.0mm (Length)*2.0mm (Width)*0.95mm (Height) NOTE: 1. CONTROLLING DIMENSION: MILLIMETER. Figure 3. Package Outline Drawing The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 8 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 3.2.3 Marking: Figure 4. Marking Format Marking Text Description Comments Line 1 Y: year code CCC: lot code Line 2 S: Sub-con ID P: Part number 7: Fixed number year code: 1 character Lot code: 3 alphanumeric digits, variable to generate mass production trace-code S: 1 alphanumeric digit, variable identify sub-con P: 1 alphanumeric digit, variable to identify part number 7: “7” stand for product name QMA7981 Pin 1 identifier -- The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 9 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 4 4.1 EXTERNAL CONNECTION I2C Dual Supply Connection Digital Power 1.71~VDD Power 2.2Kohm SCL SDA SDX VDD IO RES V1 INT 1 RES V2 QMA7981 SCX Top View 2.2Kohm AD0 INT 2 C3, 10nF SEN B GND GND IO Analog Power 1.71~3.6V VDD C1, 0.1uF C2, 2.2uF Interrupt Figure 5. 4.2 I2C Dual Supply Connection I2C Single Supply connection Power 1.71~3.6V Power 2.2Kohm SCL SDA SDX VDD IO RES V1 INT 1 RES V2 QMA7981 SCX Top View 2.2Kohm AD0 INT 2 C3, 10nF SEN B GND GND IO VDD C1, 0.1uF C2, 2.2uF Interrupt Figure 6. I2C Single Supply Connection The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 10 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 4.3 SPI Dual Supply Connection Digital Power 1.71~VDD Power CSB SCK SDI SCX SDX VDD IO Top View RES V1 INT 1 SDO RES V2 QMA7981 AD0 INT 2 C3, 10nF SEN B GND GND IO Analog Power 1.71~3.6V VDD C1, 0.1uF C2, 2.2uF Interrupt Figure 7. 4.4 SPI Dual Supply Connection SPI Single Supply connection Power 1.71~3.6V Power CSB SCK SDI SCX SDX VDD IO Top View RES V1 INT 1 SDO RES V2 QMA7981 AD0 INT 2 C3, 10nF SEN B GND GND IO VDD C1, 0.1uF C2, 2.2uF Interrupt Figure 8. SPI Single Supply Connection The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 11 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 5 BASIC DEVICE OPERATION 5.1 Acceleration sensor The QMA7981 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output. 5.2 Power Management Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register’s default value, for the device to function properly. To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO. The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends. Table 6 provides references for four power states. Table 6. Power States 5.3 Power State 1 2 VDD 0V 0V VDDIO 0V 1.71v~3.6v 3 4 1.71v~3.6v 1.71v~3.6v 0V 1.71v~VDD Power State description Device Off, No Power Consumption Not allowed. User need to make sure that VDDIO is less than VDD. Otherwise, there will be leakage from VDDIO to VDD through internal ESD devices Device Off, Same Current as Standby Mode Device On, Normal Operation Mode, Enters Standby Mode after POR Power On/Off Time Device has two power supply pins and two ground pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. GND is 0V supply for all of internal blocks, and GNDIO for digital interface. There is no limitation on the voltage levels of VDD and VDDIO relative to each other, as long as they are within operating range. The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 12 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register’s default value, for the device to function properly. To make sure the POR block functions well, we should have such constrains on the timing of VDD. The power on/off time related to the device is in Table 7 Table 7. Time Required for Power On/Off Parameter POR Completion Time Symbol PORT Power off Voltage SDV Power on Interval PINT Power on Time PSUP Figure 9. 5.4 Condition Time Period After VDD and VDDIO at Operating Voltage to Ready for I2C Commend and Analogy Measurement. Voltage that Device Considers to be Power Down. Time Period Required for Voltage Lower Than SDV to Enable Next POR Time Period Required for Voltage from SDV to 90% of final value Min. Typ. Max. 250 Unit μs 0.2 V 100 μs 50 ms Power On/Off Timing Communication Bus Interface I2C and Its Addresses This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I²C. This device is compliant with I²C -Bus Specification, document number: 9398 393 40011. As an I²C compatible device, this device has a 7-bit serial address and supports I²C protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes. There are two I2C addresses selected by connecting pin 1 (AD0) to GND or VDDIO. configured to “001001” and the LSB can be configured by AD0. The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. The first six MSB are hardware 13 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 Table 8. I2C Address Options I2C Slave Address(HEX) 12 13 AD0 (pin 1) Connect to GND Connect to VDDIO I2C Slave Address(BIN) 0010010 0010011 6 MODES OF OPERATION 6.1 Modes Transition QMA7981 has two different operational modes, controlled by register (0x11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I 2C commands. The default mode after power-on is standby mode. Power Off Reset (POR or Soft Reset) Reset (POR or Soft Reset) NVM Load NVM Load 0x36=0xB6 0x36=0xB6 Standby Standby 0x11=1 0x11=1 0x33=1 Active 0x33=1 0x11=0 Active 0x11=0 0x36=0xB6 0x36=0xB6 Figure 10. Basic operation flow after power-on Figure 11. The work mode transferring The default mode after power on is standby mode. Through I2C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register 0x36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD (0x33) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own. 6.2 Description of Modes The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 14 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 6.2.1 Active Mode In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers (0x01~0x06). 6.2.2 Standby Mode In standby mode, most of the blocks are off, while device is ready for access through I2C. Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE_BIT (0x11) to logic 0. Besides the above two modes, the device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM_LOAD (0x33) is set to 1, NVM loading starts. When the device is in NVM loading state, NVM_RDY (0x33) is set to logic 0 by device. After NVM loading is finished, NVM_RDY (0x33) is set back to logic 1 by device, and NVM_LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM_LOAD is set to 1 in active mode. If the user sets this NVM_LOAD bit to 1 in standby mode, the device will not take the action until it enters into active state by setting MODE_BIT (0x11) to logic 1. After loading NVM, the device will enter into standby mode directly. The loading time for NVM is about 100uS. 7 Functions and interrupts ASIC support interrupts, such as STEP_INT, DRDY_INT, ANY_MOT_INT, SIG_MOT_INT, NO_MOT_INT, RAISE_INT, etc. 7.1 STEP_ INT The STEP/STEP_QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated. Figure 10. STEP/STEP_QUIT Median data (max+min) /2 is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP_SAMPLE_CNT (0x12). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected. Register STEP_PRECISION (0x13) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection. The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP_TIME_UP(0x15) and The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 15 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 STEP_TIME_LOW(0x14), the conversion ODR numbers ranged from STEP_TIME_LOW *ODR to 8* STEP_TIME_UP*ODR . STEP_COUNT_PEAK is used to set a fixed peak value for step detection, 0.05G~0.4G can be set. STEP_COUNT_P2P is used to set a peak to peak threshold for step detection, 0.3G~1G can be set. To remove unstable variation which will cause false STEP event detection, the step counter considers steps as valid step events only after some continuous steps detected; the start threshold can be set by 0x1F. Also, the step counter register STEP_CNT ({0x0E,0x08,0x07}) will be updated immediately by the setting number, and interrupt STEP is also generated. The related interrupt status bit is STEP_INT (0x0A) and SIG_STEP (0x0A). When the interrupt is generated, the value of STEP_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP_IEN/SIG_STEP_IEN (0x16/0x16) is the enable bit for the STEP_INT/SIG_STEP_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP (0x19)/INT1_SIG_STEP (0x19) or INT2_STEP (0x1B) /INT2_SIG_STEP (0x1B) to logic 1, to map the internal interrupt to the interrupt PINs. 7.2 DRDY_INT The width of the acceleration data is 14 bits, in two’s complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS (0x21) to logic 0. This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user. Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point. The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F), and the details as following: Acceleration RANGE Resolution range 0001 2g 244ug/LSB 0010 4g 488ug/LSB 0100 8g 977ug/LSB 1000 16g 1.95mg/LSB 1111 32g 3.91mg/LSB Others 2g 244ug/LSB The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64*MCLK, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched. 7.3 ANY_MOT_INT Any motion Any motion detection uses slope between two successive data to detect the changes in motion. It generates interrupt when a preset threshold ANY_MOT_TH (0x2E) is exceeded. The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 16 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 The time difference between two successive data depends on the output data rate (ODR). Slope(t1) = (𝑎𝑐𝑐(𝑡1) − 𝑎𝑐𝑐(𝑡0)) ∗ 𝑂𝐷𝑅 The any motion detection criteria are fulfilled and interrupt is generated if any of enabled channels exceeds ANY_MOT_TH for ANY_MOT_DUR (0x2C) consecutive times. As long as all the enabled channels data fall or stay below ANY_MOT_TH for ANY_MOT_DUR consecutive times, the interrupt will be reset unless the interrupt signal is latched. The any motion detection engine will send out the signals of axis which triggered the interrupt (ANY_MOT_FIRST_X (0x09), ANY_MOT_FIRST_Y (0x09), ANY_MOT_FIRST_Z (0x09)) and the sign of the motion (ANY_MOT_SIGN (0x09)) 7.4 SIG_MOT_INT A significant motion is a motion due to a change in user location. The algorithm is as following: 1) Look for movement, same setting as any motion detection 2) If movement detected, sleep for T_Skip (0x2F) 3) Look for movement a) If no movement detected within T_Proof (0x2F), go back to 1 b) If movement detected, report a significant movement, and generate the interrupt The significant motion detection and any motion detection are exclusive, user can select either one through SIG_MOT_SEL (0x2F). If significant motion is detected, the engine will set SIG_MOT_INT (0x0A). 7.5 NO_MOT_INT No-motion interrupt is generated if the slope (absolute value of acceleration difference) on all selected axes is smaller than the programmable threshold for a programmable time. Figure shows the timing for the no-motion interrupt. Register (0x2C) NO_MOT_DUR defines the delay times before the no-motion interrupt is generated. Table lists the delay times adjustable with register (0x2C) NO_MOT_DUR. The no-motion interrupt is enabled per axis by writing logic 1 to bits (0x18) NO_MOTION_EN_X, (0x18) NO_MOTION_EN_Y, and (0x18) NO_MOTION_EN_Z, respectively. The no-motion threshold is set through the (0x2D) NO_MOT_TH register. The meaning of an LSB of (0x2D) NO_MOT_TH depends on the selected g-range: it corresponds to 3.91mg in 2g-range (7.81mg in 4g-range, 15.6mg in 8g-range, 31.25mg in 16g-range, 62.5mg in 32g-range). Therefore the maximum value is 996mg in 2g-range (2g in 4g-range, 4g in 8g-range, 8g in 16g-range, and 16g in 32g-range). The time difference between the successive acceleration samples depends on the selected ODR and equates to 1/ODR. 7.6 RAISE_INT Raise wake algorithm is used to detect the action of raise hand (or hand down). The interrupt is enabled by writing logic 1 to bits (0X16[1]) RAISE_EN, (0X16[2]) HD_EN. User can adjust the sensitivity through the registers. The register RAISE_WAKE_SUM_TH(0X2A[5:0]) defines the strength of hand action (raise and down). The register RAISE_DIFF_TH(0X2A[7:6],0X2B[1:0]) defines the differential values of twice actions, when the hand behavior almost done the differential value will be smaller and we can use this register to set the threshold. RAISE_WAKE_PERIOD and RAISE_WAKE_TIMEOUT_TH define the duration of the total hand action. 7.7 Interrupt configuration The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 17 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs. The interrupt status registers INT_ST(0x09~0x0d) will update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately. When interrupt condition is fulfilled, related bit of interrupt will be set, until the associated interrupt condition is no more valid. Read operation to related register will also clear the register. Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT (0x21). In non-latched mode, the mapped interrupt pin will be set and/or cleared same as associated interrupt register bit. Also, the mapped interrupt pin can be cleared with read operation to any of the INT_ST(0x09~0x0d). Exception to this is the new data interrupt and step interrupt, which are automatically reset after a fixed time (T_Pulse = 64/MCLK), no matter LATCH_INT (0x21) is set to 0 or 1. In latched mode, the clearings of mapped pins are determined by INT_RD_CLR (0x21). If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers. Mapping the interrupt pins can be set by INT_MAP (0x19~0x1B). The electrical interrupt pins can be set INT_PIN_CONF (0x20). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull. The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 18 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 8 I2C COMMUNICATION PROTOCOL 8.1 I2C Timings Table 9 and Figure 11 describe the I2C communication protocol times Table 9. I2C Timings Parameter SCL Clock SCL Low Period SCL High Period SDA Setup Time SDA Hold Time Start Hold Time Start Setup Time Stop Setup Time New Transmission Time Rise Time Fall Time Figure 11. t sudat t hddat t hdsta t susta t susto t buf Condition Min. 0 1 1 0.1 0 0.6 0.6 0.6 1.3 Typ. Max. 400 Unit kHz μs μs 0.9 tr tf μs μs μs μs μs μs μs μs I2C Timing Diagram 8.2 I2C R/W Operation 8.2.1 Abbreviation Table 10. Symbol fscl t low t high Abbreviation The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 19 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 SACK MACK NACK RW 8.2.2 Acknowledged by slave Acknowledged by master Not acknowledged by master Read/Write Start/Stop/Ack START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I 2C transmission starts, the bus is considered busy. STOP: STOP condition is a low to high transition on SDA line while SCL is held high. ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle. NACK: If the receiver doesn’t pull down the SDA line during the high period of the acknowledge clock cycle, it’s recognized as NACK by the transmitter. 8.2.3 I2C Write I C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol. 2 Table 11. I2C Write Slave Address STOP Data (0x80) 1 0 0 0 0 0 0 0 SACK Register Address (0x11) 0 0 0 1 0 0 0 1 SACK 8.2.4 SACK START R W 0 0 1 0 0 1 0 0 I2C Read I C write sequence consists of a one-byte I2C write phase followed by the I2C read phase. A start condition must be generated between two phase. The I 2C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission. The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I 2C write command. 2 Table 12. I2C Read SACK MACK Data (0x00) 0 0 0 0 0 0 1 0 Slave Address START R W 0 0 1 0 0 1 0 1 Register Address (0x00) 0 0 0 0 0 0 0 0 SACK START R W 0 0 1 0 0 1 0 0 SACK Slave Address Data (0x01) 0 0 0 0 0 0 0 0 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 20 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 ………………………………. STOP Data (0x07) 0 0 0 0 0 0 0 0 NACK ………………………………. MACK MACK MACK Data (0x02) 0 0 0 0 0 0 1 0 9 REGISTERS 9.1 Register Map The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses Table 13. Register Map The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 21 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 9.2 Register Definition Register 0x00 (CHIP ID) Bit7 Bit6 Bit5 CHIP_ID This register is used to identify the device Register 0x01 ~ 0x02 (DXL, DXM) Bit7 Bit6 Bit5 DX DX DX: NEWDATA_X: Bit2 Bit1 Bit0 R/W RW Default 0xEX Bit4 Bit3 Bit2 Bit1 Bit0 NEWDATA _X R/W R Default 0x00 R 0x00 R/W R Default 0x00 R 0x00 R/W R Default 0x00 R 0x00 R/W R R Default 0x00 0x00 Bit4 Bit3 Bit2 Bit1 Bit0 NEWDATA _Y 14bits acceleration data of y-channel. This data is in two’s complement. 1, acceleration data of y-channel has been updated since last reading 0, acceleration data of y-channel has not been updated since last reading Register 0x05 ~ 0x06 (DZL, DZM) Bit7 Bit6 Bit5 DZ DZ DZ: NEWDATA_Z: Bit3 14bits acceleration data of x-channel. This data is in two’s complement. 1, acceleration data of x-channel has been updated since last reading 0, acceleration data of x-channel has not been updated since last reading Register 0x03 ~ 0x04 (DYL, DYM) Bit7 Bit6 Bit5 DY DY DY: NEWDATA_Y: Bit4 Bit4 Bit3 Bit2 Bit1 Bit0 NEWDATA _Z 14bits acceleration data of z-channel. This data is in two’s complement. 1, acceleration data of z-channel has been updated since last reading 0, acceleration data of z-channel has not been updated since last reading Register 0x07 ~ 0x08 (STEP_CNT) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 STEP_CNT STEP_CNT STEP_CNT: 16 bits of step counter, out of total 24bits data. The MSB data are in 0x0e Register 0x09 (INT_ST0) Bit7 Bit6 NO_MOT SIG_STEP Bit5 Bit4 Bit3 ANY_MOT _SIGN Bit2 ANY_MOT _FIRST_Z Bit1 ANY_MOT _FIRST_Y Bit0 ANY_MOT _FIRST_X R/W R Default 0x00 Bit1 Bit0 R/W Default NO_MOT: 1, no_motion interrupt active 0, no_motion interrupt inactive ANY_MOT_SIGN: 1, sign of any_motion triggering signal is negative 0, sign of any_motion triggering signal is positive ANY_MOT_FIRST_Z: 1, any_motion interrupt is triggered by Z axis 0, any_motion interrupt is not triggered by Z axis ANY_MOT_FIRST_Y: 1, any_motion interrupt is triggered by Y axis 0, any_motion interrupt is not triggered by Y axis ANY_MOT_FIRST_X: 1, any_motion interrupt is triggered by X axis 0, any_motion interrupt is not triggered by X axis Register 0x0a (INT_ST1) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 22 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 SIG_STEP SIG_STEP: HD_INT RAISE_INT SIG_MOT_I NT R 0x00 Bit2 Bit1 Bit0 R/W R Default 0x00 Bit2 Bit1 Bit0 R/W R 8bit MSB data of step counter, out of total 24bits data. The LSB data are in 0x07 and 0x08 Default 0x00 Bit5 Bit4 Bit3 Bit2 Bit1 1 RANGE set the full scale of the accelerometer. Setting as following Bit0 R/W RW Default 0xF0 1, significant step is active 0, significant step is inactive 1, step valid interrupt is active 0, step quit interrupt is inactive 1, hand down interrupt is active 0, hand down interrupt is inactive 1, raise hand interrupt is active 0, raise hand interrupt is inactive 1, significant interrupt is active 0, significant interrupt is inactive STEP_INT: HD_INT: RAISE_INT: SIG_MOT_INT: Register 0x0b (INT_ST2) Bit7 Bit6 DATA_INT: Register 0x0e (STEP_CNT) Bit7 Bit6 STEP_CNT STEP_CNT: Register 0x0f (FSR) Bit7 Bit6 1 1 RANGE: RANGE 0001 0010 0100 1000 1111 Others STEP_INT Bit5 Bit4 Bit3 DATA_INT 1, data ready interrupt active 0, data ready interrupt inactive Bit5 Acceleration range 2g 4g 8g 16g 32g 2g Register 0x10 (BW) Bit7 Bit6 1 1 BW: BW xx000 xx001 xx010 xx011 xx100 xx101 xx110 xx111 Others Register 0x11 (PM) Bit7 Bit6 MODE_BIT 1 MODE_BIT: Bit4 Bit3 Resolution 244ug/LSB 488g/LSB 977ug/LSB 1.95mg/LSB 3.91mg/LSB 244ug/LSB Bit5 Bit4 Bit3 1 BW bandwidth setting, as following Bit2 Bit1 Bit0 R/W RW Default 0xE0 Bit5 Bit4 Bit3 Bit2 T_RSTB_SINC_SEL MCLK_SEL 1, set device into active mode 0, set device into standby mode Bit1 Bit0 R/W RW Default 0x40 ODR MCLK/7695 MCLK/3855 MCLK/1935 MCLK/975 MCLK/15375 MCLK/30735 MCLK/61455 MCLK/7695 T_RSTB_SINC_SEL: Reset clock setting. The preset time is reserved for CIC filter in digital 11, T_RSTB_SINC=8*MCLK 10, T_RSTB_SINC=6*MCLK 01, T_RSTB_SINC=4*MCLK 00, T_RSTB_SINC=3*MCLK MCLK_SEL: set the master clock to digital The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 23 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 MCLK_SEL 0000 0001 0010 0011 0100 0101 0110 0111 1xxx Freq of MCLK 500KHz 333KHz 200KHz 100KHz 50KHz 25KHz 12.5KHz 5KHz Reserved Register 0x12 (STEP_CONF0) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default STEP_EN STEP_SAMPLE_CNT RW 0x14 STEP_EN: enable step counter, this bit should be set when using step counter STEP_SAMPLE_CNT: sample count setting for dynamic threshold calculation. The actual value is STEP_SAMPLE_CNT*8, default is 0xC, 96 sample count Register 0x13 (STEP_CONF1) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default STEP_CLR STEP_PRECISION RW 0x7F STEP_CLR: clear step count in register 0x07 ,0x08 and 0x0E STEP_PRECISION: threshold for acceleration change of two successive sample which is used to update sample_new register in step counter, the actual g value is STEP_PRECISION*LSB*16 when STEP_PRECISION!=0000000 & !=1111111 When STEP_PRECISION=0000000, always use P2P/8 When STEP_PRECISION=1111111, always use P2P/16 When STEP_PRECISION=?, always use P2P/4 Register 0x14 (STEP_CONF2) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W STEP_TIME_LOW RW STEP_TIME_LOW: the short time window for a valid step, the actual time is STEP_TIME_LOW*(1/ODR) Default 0x19 Register 0x15 (STEP_CONF3) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W STEP_TIME_UP RW STEP_TIME_UP: time window for quitting step counter, the actual time is STEP_TIME_UP*8*(1/ODR) Default 0x00 Register 0x16 (INT_EN0) Bit7 Bit6 1 SIG_STEP_I EN SIG_STEP_IEN: STEP_IEN: HD_EN: RAISE_EN: Register 0x17 (INT_EN1) Bit7 Bit6 1 1 INT_DATA_EN: Bit5 1 Bit4 1 Bit3 STEP_IEN Bit2 HD_EN Bit1 RAISE_EN Bit0 1 R/W RW Default 0xB1 Bit2 Bit1 Bit0 R/W RW Default 0xE0 1, enable significant step interrupt 0, disable significant step interrupt 1, enable step valid interrupt 0, disable step valid interrupt 1, enable hand-down interrupt 0, disable hand-down interrupt 1, enable raise-hand interrupt 0, disable raise-hand interrupt Bit5 1 Bit4 Bit3 INT_DATA _EN 1, enable data ready interrupt 0, disable data ready interrupt The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 24 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 Register 0x18 (INT_EN2) Bit7 Bit6 NO_MOT_ NO_MOT_ EN_Z EN_Y NO_MOT_EN_Z: NO_MOT_EN_Y: NO_MOT_EN_X: ANY_MOT_EN_Z: ANY_MOT_EN_Y: ANY_MOT_EN_X: Register 0x19 (INT_MAP0) Bit7 Bit6 1 INT1_SIG_ STEP INT1_SIG_STEP: Bit5 Bit4 Bit3 Bit2 NO_MOT_ 1 1 ANY_MOT EN_X _EN_Z 1, enable no_motion interrupt on Z axis 0, disable no_motion interrupt on Z axis 1, enable no_motion interrupt on Y axis 0, disable no_motion interrupt on Y axis 1, enable no_motion interrupt on X axis 0, disable no_motion interrupt on X axis 1, enable any_motion interrupt on Z axis 0, disable any_motion interrupt on Z axis 1, enable any_motion interrupt on Y axis 0, disable any_motion interrupt on Y axis 1, enable any_motion interrupt on X axis 0, disable any_motion interrupt on X axis Bit1 ANY_MOT _EN_Y Bit0 ANY_MOT _EN_X R/W RW Default 0x18 Bit5 1 Bit1 INT1_RAIS E Bit0 INT1_SIG_ MOT R/W RW Default 0xB0 Bit1 1 Bit0 INT1_ANY_ MOT R/W RW Default 0x62 Bit4 1 Bit3 INT1_STEP Bit2 INT1_HD 1, map significant step interrupt to INT1 pin 0, not map significant step interrupt to INT1 pin INT1_STEP: 1, map step valid interrupt to INT1 pin 0, not map step valid interrupt to INT1 pin INT1_HD: 1, map hand down interrupt to INT1 pin 0, not map hand down interrupt to INT1 pin INT1_RAISE: 1, map raise hand interrupt to INT1 pin 0, not map raise hand interrupt to INT1 pin INT1_SIG_MOT: 1, map significant interrupt to INT1 pin 0, not map significant interrupt to INT1 pin Register 0x1a (INT_MAP1) Bit7 Bit6 INT1_NO_ 1 MOT INT1_NO_MOT: INT1_DATA: INT1_ANY_MOT: Register 0x1b (INT_MAP2) Bit7 Bit6 1 INT2_SIG_S TEP INT2_SIG_STEP: INT2_STEP: INT2_HD: INT2_RAISE: INT2_SIG_MOT: Bit5 1 Bit4 Bit3 Bit2 INT1_DAT A 1, map no_motion interrupt to INT1 pin 0, not map no_motion interrupt to INT1 pin 1, map data ready interrupt to INT1 pin 0, not map data ready interrupt to INT1 pin 1, map any motion interrupt to INT1 pin 0, not map any motion interrupt to INT1 pin Bit5 1 Bit4 1 Bit3 INT2_STEP Bit2 INT2_HD Bit1 INT2_RAISE Bit0 INT2_SI G_MOT R/W RW Default 0xB0 1, map significant step interrupt to INT2 pin 0, not map significant step interrupt to INT2 pin 1, map step valid interrupt to INT2 pin 0, not map step valid interrupt to INT2 pin 1, map hand down interrupt to INT2 pin 0, not map hand down interrupt to INT2 pin 1, map raise hand interrupt to INT2 pin 0, not map raise hand interrupt to INT2 pin 1, map significant interrupt to INT2 pin The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 25 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 0, not map significant interrupt to INT2 pin Register 0x1c (INT_MAP3) Bit7 Bit6 INT2_NO_ 1 MOT INT2_NO_MOT: INT2_DATA: INT2_ANY_MOT: Register 0x1d (SIG_STEP_TH) Bit7 Bit6 STEP_INTERVAL STEP_INTERVAL : Bit5 1 Bit4 Bit3 Bit2 INT2_DAT A 1, map no_motion interrupt to INT2 pin 0, not map no_motion interrupt to INT2 pin 1, map register data ready interrupt to INT2 pin 0, not map register data ready interrupt to INT2 pin 1, map any motion interrupt to INT2 pin 0, not map any motion interrupt to INT2 pin Bit5 Bit4 Bit3 Register 0x1f Bit7 Bit6 STEP_START_CNT STEP_START_CNT: STEP_COUNT_PEAK: STEP_COUNT_P2P: DIS_IE_AD0: EN_SPI3W: STEP_COUNT_PEAK: INT2_OD: INT2_LVL: INT1_OD: INT1_LVL: Register 0x21 (INT_CFG) Bit7 Bit6 INT_RD_CL SHADOW_ R DIS INT_RD_CLR: SHADOW_DIS: Bit2 Bit1 Bit1 Bit5 Bit4 Bit3 Bit2 Bit1 STEP_COUNT_PEAK STEP_COUNT_P2P th_step_pattern = 0/4/8/12/16/24/32/40 FIXED_PEAK = 0.05g + 0.05g * STEP_COUNT_PEAK. This FIXED_PEAK is used in algorithm of STEP COUNTER. STEP_COUNT_PEAK is in register 0x20 and STEP_COUNT_PEAK[2:0]= {0x20[4], 0x1F[4:3]} FIXED_P2P = 0.3g + 0.1g * STEP_COUNT_P2P. STEP_COUNT_P2P[3:0]= {0x1F[2:0]} Register 0x20 (INTPIN_CONF) Bit7 Bit6 Bit5 DIS_PU_SE DIS_IE_AD EN_SPI3W NB 0 DIS_PU_SENB: Bit0 INT2_ANY_ MOT R/W RW Default 0x62 R/W Default RW 0x00 threshold of significant step. When MOD(STEP_CNT, STEP_INTERVAL)=0, SIG_STEP_INT will be generated. Register 0x1e (raise hand: X_TH Z_TH) Bit7 Bit6 Bit5 Bit4 Bit3 Z_TH X_TH X_TH: 0~7.5, LSB 0.5 (unit : m/s2) Z_TH: -8~7, LSB 1 (unit : m/s2) Bit2 Bit1 1 Bit4 Bit3 STEP_COU INT2_OD NT_PEAK< 2> 1, disable pull-up resistor of PIN_SENB 0, enable pull-up resistor of PIN_SENB 1, disable input of AD0 0, not disable input of AD0 1, enable 3W SPI 0, 4W SPI Definition in 0x1F 1, open-drain for INT2 pin 0, push-pull for INT2 pin 1, logic high as active level for INT2 pin 0, logic low as active level for INT2 pin 1, open-drain for INT1 pin 0, push-pull for INT1 pin 1, logic high as active level for INT1 pin 0, logic low as active level for INT1 pin Bit5 DIS_I2C Bit4 1 Bit3 1 Bit2 INT2_LVL Bit1 INT1_OD Bit0 Bit0 R/W RW Default 0x66 Bit0 R/W RW Default 0xA9 Bit0 INT1_LVL R/W RW Default 0x05 Bit2 1 Bit1 Bit0 R/W Default LATCH_INT LATCH_INT RW 0x1C _STEP 1, clear all the interrupts in latched-mode, when any read operation to any of registers from 0x09 to 0x0D 0, clear the related interrupts, only when read the register INT_ST (0x09 to 0x0D), no matter the interrupts in latched-mode, or in non-latched-mode. Reading 0x09 will clear the register 0x09 only and the others keep the status 1, disable the shadowing function for the acceleration data The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 26 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 DIS_I2C: LATCH_INT_STEP: LATCH_INT: 0, enable the shadowing function for the acceleration data. when shadowing is enabled, the MSB of the acceleration data is locked, when corresponding LSB of the data is reading. This can ensure the integrity of the acceleration data during the reading. The MSB will be unlocked when the MSB is read. 1: disable I2C. Setting this bit to 1 in SPI mode is recommended 0: enable I2C 1, step related interrupt is in latch mode 0, step related interrupt is in non-latch mode 1, interrupt is in latch mode 0, interrupt is in non-latch mode Register 0x27 (OS_CUST_X) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default OS_CUST_X RW 0x00 OS_CUST_X: offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g Register 0x28 (OS_CUST_Y) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default OS_CUST_Y RW 0x00 OS_CUST_Y: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g Register 0x29 (OS_CUST_Z) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default OS_CUST_Z RW 0x00 OS_CUST_Z: offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g Register 0x2a (RAISE_WAKE_SUM_TH RAISE_WAKE_DIFF_TH) Bit7 Bit6 Bit5 Bit4 Bit3 RAISE_WAKE_DIFF_TH RAISE_WAKE_SUM_TH : 0 ~ 31.5 (LSB 0.5 m/s2) RAISE_WAKE_DIFF_TH 0 1 2 3 4 5 6 7 8 9 10 default Bit1 Bit0 Bit2 Bit1 Bit0 RAISE_WAKE_DIFF_TH R/W RW Default 0xD8 R/W RW Default 0x7C UNIT (m/s2) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.2 Register 0x2b (RAISE_WAKE_DIFF_TH HD_X_TH HD_Z_TH) Bit7 Bit6 Bit5 Bit4 Bit3 HD_Z_TH HD_X_TH HD_X_TH : HD_Z_TH : Bit2 hand down x threshold, 0~7 (m/s2) hand down z threshold, 0~7 (m/s2) Register 0x2c (MOT_CONF0) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W Default NO_MOT_DUR ANY_MOT_DUR RW 0x00 NO_MOT_DUR: no motion interrupt will be triggered when slope < NO_MOT_TH for the times which defined by NO_MOT_DUR Duration = (NO_MOT_DUR + 1) * 1s, if NO_MOT_DUR =b00 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 27 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 ANY_MOT_DUR: Duration = (NO_MOT_DUR + 4) * 5s, if NO_MOT_DUR =b01 Duration = (NO_MOT_DUR + 10) * 10s, if NO_MOT_DUR =b1x any motion interrupt will be triggered when slope > ANY_MOT_TH for (ANY_MOT_DUR + 1) samples Register 0x2d (MOT_CONF1) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 NO_MOT_TH NO_MOT_TH: Threshold of no-motion interrupt. The threshold definition is as following TH= NO_MOT_TH * 16 * LSB R/W RW Default 0x00 R/W RW Default 0x00 Bit0 SIG_MOT_ SEL R/W RW Default 0x00 Bit0 ANY_MOT _RST_N R/W RW Default 0x1F Register 0x2e (MOT_CONF2) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 ANY_MOT_TH ANY_MOT_TH: Threshold of any motion interrupt. The threshold definition is as following TH= ANY_MOT_TH * 16 * LSB Register 0x2f (MOT_CONF3) Bit7 Bit6 Bit5 Bit4 SIG_MOT_TPROOF SIG_MOT_TPROOF: SIG_MOT_TSKIP: SIG_MOT_SEL: Register 0x30 Bit7 Bit6 MO_BP_C STEP_BP_C O O MO_BP_CO: Bit3 Bit2 SIG_MOT_TSKIP Bit1 00, T_PROOF=0.25s 01, T_PROOF=0.5s 10, T_PROOF=1s 11, T_PROOF=2s 00, T_SKIP=1.5s 01, T_SKIP=3s 10, T_SKIP=6s 11, T_SKIP=12s 1, select significant motion interrupt 0, select any motion interrupt NO_MOT_RST_N: Bit2 Bit1 NO_MOT_ SIG_MOT_ RST_N RST_N 1, motion detector will use data without OS_CUST 0, motion detector will use data with OS_CUST 1, pedometer will use data without OS_CUST 0, pedometer will use data with OS_CUST 0, Reset no motion detector. After reset, user should write 1 back. SIG_MOT_RST_N: 0, Reset significant motion detector. After reset, user should write 1 back. ANY_MOT_RST_N: 0, Reset any motion detector. After reset, user should write 1 back. STEP_BP_CO: Register 0x32 (ST) Bit7 Bit6 SELFTEST_ BIT SELFTEST_BIT: SELFTEST_SIGN: BP_AXIS_STEP: Bit5 Bit5 Bit4 Bit4 Bit3 Bit2 Bit1 Bit0 R/W SELFTEST_ BP_AXIS_STEP RW SIGN 1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the value settling. 0, normal 1, set self-test excitation positive 0, set self-test excitation negative 11, bypass Z axis, use only X and Y axes data for step counter algorithm 10, bypass Y axis, use only X and Z axes data for step counter algorithm 01, bypass X axis, use only Y and Z axes data for step counter algorithm 00, use all of 3 axes data for step counter algorithm Register 0x34 (Y_TH YZ_TH_SEL) Bit7 Bit6 Bit5 Bit4 YZ_TH_SEL Y_TH Y_TH: -16 ~ 15 (m/s2) YZ_TH_SEL UNIT (m/s2) Bit3 Bit3 Bit2 Bit1 Bit0 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. R/W RW Default 0x00 Default 0x9D 28 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 0 1 2 3 4 5 6 7 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 Register 0x35 (RAISE_WAKE_PERIOD) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RAISE_WAKE_PERIOD RAISE_WAKE_PERIOD: * ODR period = wake count (EX. ODR = 1ms, 0X35 = 100 ➔ wake count = 0.1 sec) R/W RW Default 0x81 Register 0x36 (SR) Bit7 Bit6 SOFT_RESET SOFT_RESET: R/W RW Default 0x00 R/W RW Default 0x00 Register 0x3f (RAISE_WAKE_TIMEOUT_TH RAISE_WAKE_PERIOD RAISE_WAKE_EN) Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R/W RAISE_WAKE_PERIOD RAISE_WAKE_TIMEOUT_TH RW RAISE_WAKE_TIMEOUT_TH * ODR period = timeout count (EX. ODR = 1ms, 0X3e = 100 ➔ timeout count = 0.1 sec) Default 0x02 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0xB6, soft reset all of the registers. After soft-reset, user should write 0x00 back Register 0x3e (RAISE_WAKE_TIMEOUT_TH) Bit7 Bit6 Bit5 Bit4 RAISE_WAKE_TIMEOUT_TH Bit3 Bit2 Bit1 Bit0 ORDERING INFORMATION Ordering Number Temperature Range Package Packaging QMA7981-TR -40℃~85℃ LGA-12 Tape and Reel: 5k pieces/reel FIND OUT MORE For more information on QST’s Accelerometer Sensors contact us at 86-21-50497300. The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction. The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 29 / 30 Document #: 13-52-12 Title: QMA7981 Datasheet Rev: D 矽睿 QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. ISO9001 : 2015 China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described. The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 30 / 30
QMA7981 价格&库存

很抱歉,暂时无法提供与“QMA7981”相匹配的价格&库存,您可以联系我们找货

免费人工找货
QMA7981
  •  国内价格
  • 1+2.53750
  • 30+2.45000
  • 100+2.27500
  • 500+2.10000
  • 1000+2.01250

库存:0