0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VBZFB40N03

VBZFB40N03

  • 厂商:

    VBSEMI(微碧)

  • 封装:

    TO-251-3

  • 描述:

    TO251;N—Channel沟道,30V;50A;RDS(ON)=7mΩ@VGS=10V,VGS=20V;Vth=1.2~3V;

  • 数据手册
  • 价格&库存
VBZFB40N03 数据手册
VBZFB40N03 www.VBsemi.com N-Channel 30-V (D-S) MOSFET PRODUCT SUMMARY VDS 30 RDS(on) VGS = 10 V 15 V mΩ RDS(on) VGS = 4.5 V 20 mΩ ID 40 A FEATURES • Halogen-free • TrenchFET® Gen III Power MOSFET • 100 % Rg Tested • 100 % UIS Tested Single Configuration RoHS COMPLIANT APPLICATIONS TO-251 • DC/DC Conversion - System Power D G S G D S Top View N-Channel MOSFET ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current (TJ = 150 °C) Pulsed Drain Current Avalanche Current Avalanche Energy Symbol VDS VGS TC = 25 °C TC = 70 °C TA = 25 °C TA = 70 °C L = 0.1 mH TC = 25 °C Continuous Source-Drain Diode Current TA = 25 °C TC = 25 °C TC = 70 °C Maximum Power Dissipation TA = 25 °C TA = 70 °C Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Limit 30 ± 20 40 36 14b, c 10 b, c 165 75 40 40 2.9b, c 28 18 3.5b, c 2.2b, c - 55 to 150 260 ID IDM IAS EAS IS PD TJ, Tstg Unit V A mJ A W °C THERMAL RESISTANCE RATINGS Parameter Maximum Junction-to-Ambient Maximum Junction-to-Case (Drain) t ≤ 10 s Steady State Symbol RthJA RthJC Typical 29 3.6 Maximum 36 4.5 Unit °C/W Notes: a. Based on TC = 25 °C. b. Surface Mounted on 1" x 1" FR4 board. c. t = 10 s. 1 VBZFB40N03 www.VBsemi.com SPECIFICATIONS TJ = 25 °C, unless otherwise noted Parameter Symbol Test Conditions Min. VDS VGS = 0 V, ID = 250 µA 30 Typ. Max. Unit Static Drain-Source Breakdown Voltage VDS Temperature Coefficient ΔVDS/TJ VGS(th) Temperature Coefficient ΔVGS(th)/TJ Gate-Source Threshold Voltage V 33 ID = 250 µA mV/°C -5 VGS(th) VDS = VGS , ID = 250 µA 3.0 V Gate-Source Leakage IGSS VDS = 0 V, VGS = ± 20 V ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 30 V, VGS = 0 V 1 VDS = 30 V, VGS = 0 V, TJ = 55 °C 5 On-State Drain Currenta ID(on) Drain-Source On-State Resistancea Forward Transconductancea RDS(on) gfs VDS ≥ 5 V, VGS = 10 V 1.2 µA A 15 VGS = 10 V, ID = 10 A 15 VGS = 4.5 V, ID = 7 A 20 VDS = 15 V, ID = 10 A 24 mΩ S b Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Rg 1700 VDS = 15 V, VGS = 0 V, f = 1 MHz VDS = 15 V, VGS = 10 V, ID = 10 A td(off) 33 18 nC 7.3 VDS = 15 V, VGS = 4.5 V, ID = 10 A 6.2 f = 1 MHz td(on) tr pF 200 150 VDD = 15 V, RL = 1.5 Ω ID ≅ 10 A, VGEN = 4.5 V, Rg = 1 Ω 0.2 0.8 1.6 15 30 12 24 13 26 tf 10 20 td(on) 9 18 tr td(off) VDD = 15 V, RL = 1.5 Ω ID ≅ 10 A, VGEN = 10 V, Rg = 1 Ω tf 9 18 14 28 8 16 Ω ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulse Diode Forward Current ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Fall Time ta Reverse Recovery Rise Time tb 76 TC = 25 °C 72 IS = 3 A, VGS = 0 V IF = 10 A, dI/dt = 100 A/µs, TJ = 25 °C A 0.78 1.2 V 17 34 ns 9.5 19 nC 10 7 ns Notes: a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %. b. Guaranteed by design, not subject to production testing. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 VBZFB40N03 www.VBsemi.com TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 50 8 VGS = 10 thru 5 V VGS = 4 V 30 20 VGS = 3 V I D - Drain Current (A) I D - Drain Current (A) 40 6 4 TC = 25 °C 2 10 TC = 125 °C TC = - 55 °C 0 0.0 0 0.5 1.0 1.5 2.0 0 2.5 4 2 10 8 6 VGS - Gate-to-Source Voltage (V) VDS - Drain-to-Source Voltage (V) Output Characteristics Transfer Characteristics 1250 0.030 0.020 C - Capacitance (pF) R DS(on) - On-Resistance (Ω) Ciss 1000 VGS = 10 V 0.010 750 500 Coss 0.005 250 Crss 0.000 0 40 0 50 70 60 80 0 10 15 20 25 ID - Drain Current (A) VDS - Drain-to-Source Voltage (V) On-Resistance vs. Drain Current and Gate Voltage Capacitance 30 1.8 10 ID = 10 A ID = 10 A 1.6 8 VGS = 10 V VDS = 15 V VDS = 20 V 4 2 0 0.0 1.4 (Normalized) VDS = 10 V 6 R DS(on) - On-Resistance VGS - Gate-to-Source Voltage (V) 5 1.2 VGS = 4.5 V 1.0 0.8 3.2 6.4 9.6 Qg - Total Gate Charge (nC) Gate Charge 12.8 16.0 0.6 - 50 - 25 0 25 50 75 100 125 150 TJ - Junction Temperature (°C) On-Resistance vs. Junction Temperature 3 VBZFB40N03 www.VBsemi.com TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 0.06 100 ID = 10 A TJ = 150 °C R DS(on) - On-Resistance (Ω) I S - Source Current (A) 10 0.05 TJ = 25 °C 1 0.1 0.01 0.04 0.03 TJ = 125 °C 0.02 0.01 TJ = 25 °C 0.001 0.0 0.00 0.2 0.4 0.6 1.0 0.8 1.2 0 2 3 4 5 6 7 8 9 10 VSD - Source-to-Drain Voltage (V) VGS - Gate-to-Source Voltage (V) Source-Drain Diode Forward Voltage On-Resistance vs. Gate-to-Source Voltage 120 0.4 0.2 96 0.0 Power (W) VGS(th) Variance (V) 1 - 0.2 ID = 5 mA 72 48 - 0.4 ID = 250 µA 24 - 0.6 - 0.8 - 50 0 - 25 0 25 50 75 100 125 150 0.001 0.01 100 Limited by RDS(on)* I D - Drain Current (A) 1 10 Single Pulse Power (Junction-to-Ambient) Threshold Voltage 10 1 ms 10 ms 1 100 ms 1s 10 s 0.1 TA = 25 °C Single Pulse 0.01 0.01 BVDSS Limited DC 0.1 1 10 VDS - Drain-to-Source Voltage (V) * VGS > minimum VGS at which RDS(on) is specified Safe Operating Area, Junction-to-Ambient 4 0.1 Time (s) TJ - Temperature (°C) 100 VBZFB40N03 www.VBsemi.com TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 40 I D - Drain Current (A) 32 24 Package Limited 16 8 0 0 25 50 100 75 125 150 TC - Case Temperature (°C) 35 2.0 28 1.6 Power (W) Power (W) Current Derating* 21 14 1.2 0.8 0.4 7 0.0 0 0 25 50 75 100 TC - Case Temperature (°C) Power, Junction-to-Case 125 150 0 25 50 75 100 125 150 TA - Case Temperature (°C) Power, Junction-to-Ambient * The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit. 5 VBZFB40N03 www.VBsemi.com TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 0.1 Notes: 0.1 PDM 0.05 t1 t2 1. Duty Cycle, D = t1 t2 2. Per Unit Base = RthJA = 81 °C/W 0.02 3. TJM - TA = PDMZthJA(t) Single Pulse 4. Surface Mounted 0.01 10 -4 10 -3 10 -2 10 -1 1 Square Wave Pulse Duration (s) 100 10 1000 Normalized Thermal Transient Impedance, Junction-to-Ambient 1 Normalized Effective Transient Thermal Impedance Duty Cycle = 0.5 0.2 0.1 0.05 0.1 0.02 Single Pulse 0.01 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Case 6 1 10 VBZFB40N03 www.VBsemi.com TOĆ251AA (DPAK) E A L2 b2 Dim A A1 b b1 b2 c c1 D E e L L1 L2 L3 D L3 L1 b1 L b MILLIMETERS c1 e c A1 INCHES Min Max Min Max 2.21 2.38 0.087 0.094 0.89 1.14 0.035 0.045 0.71 0.89 0.028 0.035 0.76 1.14 0.030 0.045 5.23 5.43 0.206 0.214 0.46 0.58 0.018 0.023 0.46 0.58 0.018 0.023 5.97 6.22 0.235 0.245 6.48 6.73 0.255 0.265 2.28 BSC 0.090 BSC 3.89 9.53 0.153 0.375 1.91 2.28 0.075 0.090 0.89 1.27 0.035 0.050 1.15 1.52 0.045 0.060 ECN: S-03946—Rev. E, 09-Jul-01 DWG: 5346 Note: Dimension L3 is for reference only. 7 VBZFB40N03 www.VBsemi.com Disclaimer All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice. Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com) Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental ; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee. Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein. Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing. The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all. Material Category Policy Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com) Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /. Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.
VBZFB40N03 价格&库存

很抱歉,暂时无法提供与“VBZFB40N03”相匹配的价格&库存,您可以联系我们找货

免费人工找货