0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XD272

XD272

  • 厂商:

    XINLUDA(信路达)

  • 封装:

    DIP-8

  • 描述:

    精密放大器 DIP-8

  • 数据手册
  • 价格&库存
XD272 数据手册
XD272 DIP8 / XL272 SOP8 D D D D D D D D Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C . . . 3 V to 16 V – 40°C to 85°C . . . 4 V to 16 V – 55°C to 125°C . . . 4 V to 16 V Single-Supply Operation Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix, I-Suffix types) Low Noise . . . Typically 25 nV/√Hz at f = 1 kHz Output Voltage Range Includes Negative Rail High Input impedance . . . 1012 Ω Typ ESD-Protection Circuitry 272 DIP/SOP (TOP VIEW) 1OUT 1IN – 1IN + GND 1 8 2 7 3 6 4 5 VDD 2OUT 2IN – 2IN + FK PACKAGE (TOP VIEW) description The 272 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose BiFET devices. equivalent schematic (each amplifier) VDD P3 P4 R6 R1 N5 R2 IN – P5 P1 P6 P2 IN + R5 C1 OUT N3 N1 R3 N2 D1 N4 R4 D2 GND 1 N6 R7 N7 XD272 DIP8 / XL272 SOP8 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA Total current into VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW package . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at IN+ with respect to IN –. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section). DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D 725 mW 5.8 mW/°C 464 mW 377 mW N/A FK 1375 mW 11 mW/°C 880 mW 715 mW 275 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW P 1000 mW 8.0 mW/°C 640 mW 520 mW N/A PW 525 mW 4.2 mW/°C 336 mW N/A N/A recommended operating conditions Supply voltage, VDD Common mode input voltage, Common-mode voltage VIC VDD = 5 V VDD = 10 V Operating free-air temperature, TA 2 C SUFFIX I SUFFIX M SUFFIX MIN MAX MIN MAX MIN MAX 3 16 4 16 4 16 – 0.2 3.5 – 0.2 3.5 0 3.5 – 0.2 8.5 – 0.2 8.5 0 8.5 0 70 – 40 85 – 55 125 UNIT V V °C XD272 DIP8 / XL272 SOP8 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† XD272 DIP8 XL272 SOP8 MIN 272 VIO Input offset voltage VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ αVIO Temperature coefficient of input offset voltage IIO Input offset current (see Note 4) VO = 2.5 25V V, VIC = 2 2.5 5V IIB Input bias current (see Note 4) VO = 2.5 25V V, VIC = 2 2.5 5V VICR VOH VOL AVD CMRR kSVR IDD 25°C High-level output voltage Low-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio VID = 100 mV, VID = –100 mV, VO = 0.25 V to 2 V, RL = 10 kΩ IOL = 0 RL = 10 kΩ VIC = VICRmin Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO) VDD = 5 V to 10 V, Supply current (two amplifiers) VO = 2.5 25V V, No load VO = 1.4 V VIC = 5 V V, MAX 1.1 10 Full range 12 25°C 0.9 5 230 2000 Full range Full range 3000 25°C to 70°C 1.8 25°C 0.1 70°C 7 25°C 0.6 70°C 40 25°C – 0.2 to 4 Full range – 0.2 to 3.5 µV µV/°C 300 600 – 0.3 to 4.2 pA pA V V 25°C 3.2 3.8 0°C 3 3.8 70°C 3 3.8 V 25°C 0 50 0°C 0 50 70°C 0 50 25°C 5 23 0°C 4 27 70°C 4 20 25°C 65 80 0°C 60 84 70°C 60 85 25°C 65 95 0°C 60 94 70°C 60 96 mV V/mV dB dB 25°C 1.4 3.2 0°C 1.6 3.6 70°C 1.2 2.6 † Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 3 mV 6.5 25°C Common-mode input voltage g range g (see Note 5) UNIT TYP mA XD272 DIP8 / XL272 SOP8 electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† XD272 DIP8 XL272 SOP8 MIN 272 VIO Input offset voltage VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ Temperature coefficient of input offset voltage IIO Input offset current (see Note 4) VO = 5 V V, VIC = 5 V IIB Input bias current (see Note 4) VO = 5 V V, VIC = 5 V VOH VOL AVD CMRR kSVR IDD Low-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio VID = 100 mV, VID = –100 mV, VO = 1 V to 6 V, RL = 10 kΩ IOL = 0 RL = 10 kΩ VIC = VICRmin Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO) VDD = 5 V to 10 V, Supply current (two amplifiers) VO = 2.5 2 5 V, V No load VO = 1.4 V VIC = 5 V V, 1.1 10 12 25°C 0.9 5 290 2000 Full range Full range 3000 25°C 0.1 70°C 7 25°C 0.7 70°C 50 25°C – 0.2 to 9 Full range – 0.2 to 8.5 µV µV/°C 2 300 600 – 0.3 to 9.2 pA pA V V 25°C 8 8.5 0°C 7.8 8.5 70°C 7.8 8.4 V 25°C 0 50 0°C 0 50 70°C 0 50 25°C 10 36 0°C 7.5 42 70°C 7.5 32 25°C 65 85 0°C 60 88 70°C 60 88 25°C 65 95 0°C 60 94 70°C 60 96 mV V/mV dB dB 25°C 1.9 4 0°C 2.3 4.4 70°C 1.6 3.4 † Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 4 mV 6.5 25°C Common-mode input voltage g range g (see Note 5) High-level output voltage MAX Full range 25°C to 70°C αVIO VICR 25°C UNIT TYP mA XD272 DIP8 / XL272 SOP8 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† XD272 DIP8 XL272 SOP8 MIN 272 VIO Input offset voltage VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ αVIO Temperature coefficient of input offset voltage IIO Input offset current (see Note 4) VO = 2 2.5 5V V, VIC = 2.5 25V IIB Input bias current (see Note 4) VO = 2 2.5 5V V, VIC = 2.5 25V 25°C VICR VOL AVD CMRR kSVR Low-level output voltage L Large-signal i l diff differential ti l voltage lt amplification lifi ti Common-mode rejection ratio S l lt j ti ratio ti Supply-voltage rejection (∆VDD /∆VIO) VID = 100 mV, VID = –100 mV, VO = 1 V to 6 V, RL = 10 kΩ IOL = 0 RL = 10 kΩ VIC = VICRmin VDD = 5 V to 10 V, VO = 1.4 V 10 0.9 5 230 2000 Full range Full range 3500 25°C to 85°C 1.8 25°C 0.1 85°C 24 25°C 0.6 85°C 200 – 0.2 to 4 15 35 – 0.3 to 4.2 – 0.2 to 3.5 25°C 3.2 3.8 – 40°C 3 3.8 85°C 3 3.8 V 25°C 0 50 – 40°C 0 50 85°C 0 50 25°C 5 23 – 40°C 3.5 32 85°C 3.5 19 25°C 65 80 – 40°C 60 81 85°C 60 86 25°C 65 95 – 40°C 60 92 85°C 60 dB dB 96 3.2 4.4 85°C 1.1 † Full range is – 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 2.4 5 mV V/mV 1.9 VIC = 5 V V, pA V – 40°C VO = 5 V, V No load pA V 1.4 Supply current (two amplifiers) µV µV/°C 25°C IDD mV 7 25°C Common-mode input voltage g range g (see Note 5) High-level output voltage 1.1 13 25°C Full range VOH MAX Full range 25°C UNIT TYP mA XD272 DIP8 / XL272 SOP8 electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† XD272 DIP8 XL272 SOP8 MIN 272 VIO Input offset voltage VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ Temperature coefficient of input offset voltage IIO Input offset current (see Note 4) VO = 5 V, V VIC = 5 V IIB Input bias current (see Note 4) VO = 5 V, V VIC = 5 V VOH VOL AVD CMRR kSVR Low-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio S l lt j ti ratio ti Supply-voltage rejection (∆VDD /∆VIO) VID = 100 mV, VID = –100 mV, VO = 1 V to 6 V, RL = 10 kΩ IOL = 0 RL = 10 kΩ VIC = VICRmin VDD = 5 V to 10 V, VO = 1.4 V 1.1 10 13 25°C 0.9 5 290 2000 Full range Full range 3500 25°C 0.1 85°C 26 25°C 0.7 85°C 220 25°C – 0.2 to 9 Full range – 0.2 to 8.5 1000 2000 – 0.3 to 9.2 25°C 8 8.5 – 40°C 7.8 8.5 85°C 7.8 8.5 V 25°C 0 50 – 40°C 0 50 85°C 0 50 25°C 10 36 – 40°C 7 46 85°C 7 31 25°C 65 85 – 40°C 60 87 85°C 60 88 25°C 65 95 – 40°C 60 92 85°C 60 dB dB 96 4 5 85°C 1.5 † Full range is – 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 3.2 6 mV V/mV 2.8 VIC = 5 V, V pA V – 40°C VO = 5 V, V No load pA V 1.4 Supply current (two amplifiers) µV µV/°C 2 25°C IDD mV 7 25°C Common-mode input voltage g range g (see Note 5) High-level output voltage MAX Full range 25°C to 85°C αVIO VICR 25°C UNIT TYP mA XD272 DIP8 / XL272 SOP8 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS 272 VIO Input offset voltage VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ TA† XD272 DIP8/XL272 SOP8 MIN 25°C TYP MAX 1.1 10 Full range 12 UNIT mV µV αVIO Temperature coefficient of input offset voltage IIO Input offset current (see Note 4) IIB Input bias current (see Note 4) VO = 2 2.5 5V 5V VO = 2 2.5 VIC = 2.5 25V 25V VIC = 2.5 25°C to 125°C 2.1 25°C 0.1 125°C 1.4 25°C 0.6 125°C 25°C VICR Common-mode input voltage g range g (see Note 5) Full range VOH VOL AVD CMRR kSVR High-level output voltage Low-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO) VID = 100 mV, VID = – 100 mV, VO = 0.25 V to 2 V RL = 10 kΩ IOL = 0 RL = 10 kΩ VIC = VICRmin VDD = 5 V to 10 V, VO = 1.4 V 9 0 to 4 µV/°C pA 15 pA 35 – 0.3 to 4.2 0 to 3.5 V 25°C 3.2 3.8 – 55°C 3 3.8 125°C 3 3.8 V 25°C 0 50 – 55°C 0 50 125°C 0 50 25°C 5 23 – 55°C 3.5 35 125°C 3.5 16 25°C 65 80 – 55°C 60 81 125°C 60 84 25°C 65 95 – 55°C 60 90 125°C 60 dB dB 97 3.2 – 55°C 2 5 125°C 1 † Full range is – 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 2.2 VO = 2.5 2 5 V, V No load 7 VIC = 2.5 25V V, mV V/mV 1.4 Supply current (two amplifiers) nA V 25°C IDD nA mA XD272 DIP8 / XL272 SOP8 electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted) PARAMETER TEST CONDITIONS 272 VIO Input offset voltage VO = 1.4 V, RS = 50 Ω, VIC = 0, RL = 10 kΩ TA† XD272 DIP8/XL272 SOP8 MIN 25°C TYP MAX 1.1 10 Full range 12 UNIT mV µV αVIO Temperature coefficient of input offset voltage IIO Input offset current (see Note 4) IIB VICR VOH VOL Input bias current (see Note 4) VO = 5 V, V VIC = 5 V V VO = 5 V, VIC = 5 V 25°C to 125°C 2.2 25°C 0.1 125°C 1.8 25°C 0.7 125°C 25°C Full range 0 to 8.5 Common-mode input voltage g range g (see Note 5) High-level output voltage Low-level output voltage VID = 100 mV, RL = 10 kΩ VID = – 100 mV, IOL = 0 10 0 to 9 CMRR kSVR Large-signal L i l differential diff ti l voltage lt amplification am lification Common-mode rejection ratio VO = 1 V to 6 V, RL = 10 kΩ VIC = VICRmin S l lt j ti ratio ti Supply-voltage rejection (∆VDD /∆VIO) VDD = 5 V to 10 V, Supply current (two amplifiers) VO = 5 V, V No load VO = 1.4 V IDD 8 8.5 7.8 8.5 125°C pA 35 nA V 7.8 8.4 V 25°C 0 50 – 55°C 0 50 0 50 25°C 10 36 – 55°C 7 50 125°C 7 27 25°C 65 85 – 55°C 60 87 125°C 60 86 25°C 65 95 – 55°C 60 90 125°C 60 97 1.9 mV V/mV dB dB 4 – 55°C 3 6 125°C 1.3 2.8 † Full range is – 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 8 nA V 25°C 25°C VIC = 5 V V, pA 15 – 0.3 to 9.2 – 55°C 125°C AVD µV/°C mA XD272 DIP8 / XL272 SOP8 electrical characteristics, VDD = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO IIB Input offset current (see Note 4) VICR Common-mode input voltage range (see Note 5) VOH VOL High-level output voltage AVD CMRR Large-signal differential voltage amplification kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) IDD Supply current (two amplifiers) TEST CONDITIONS Input bias current (see Note 4) VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 2.5 V, VO = 2.5 V, VIC = 2.5 V VIC = 2.5 V VID = 100 mV, VID = –100 mV, Low-level output voltage VO = 0.25 V to 2 V VIC = VICRmin Common-mode rejection ratio VDD = 5 V to 10 V, VO = 2.5 V, No load XD272 DIP8/XL272 SOP8 MIN TYP MAX 11 1.1 10 UNIT mV 1.8 µV/°C 0.1 pA 0.6 pA – 0.2 to 4 – 0.3 to 4.2 V RL = 10 kΩ 3.2 3.8 V IOL = 0 RL = 10 kΩ 5 23 V/mV 65 80 dB 65 95 dB VO = 1.4 V VIC = 2.5 V, 0 1.4 50 3.2 mV mA NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. electrical characteristics, VDD = 10 V, TA = 25°C (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO IIB Input offset current (see Note 4) TEST CONDITIONS Input bias current (see Note 4) VICR Common-mode input voltage range (see Note 5) VOH VOL High-level output voltage AVD CMRR Large-signal differential voltage amplification kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) IDD Supply current (two amplifiers) VO = 1.4 V,, RS = 50 Ω, VIC = 0,, RL = 10 kΩ VO = 5 V, VO = 5 V, VIC = 5 V VIC = 5 V VID = 100 mV, VID = –100 mV, Low-level output voltage VO = 1 V to 6 V, VIC = VICRmin Common-mode rejection ratio VDD = 5 V to 10 V, VO = 5 V, No load RL = 10 kΩ IOL = 0 RL = 10 kΩ VO = 1.4 V VIC = 5 V, XD272 DIP8/XL272 SOP8 MIN TYP MAX 11 1.1 10 mV 1.8 µV/°C 0.1 pA 0.7 pA – 0.2 to 9 – 0.3 to 9.2 V 8 8.5 0 V 50 mV 10 36 V/mV 65 85 dB 65 95 dB 1.9 NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 9 UNIT 4 mA XD272 DIP8 / XL272 SOP8 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER XD272 DIP8 XL272 SOP8 TEST CONDITIONS MIN VIPP = 1 V SR Slew rate at unity gain RL = 10 kΩ, CL = 20 pF, pF See Figure 1 VIPP = 2.5 V Vn Equivalent input noise voltage f = 1 kHz, See Figure 2 RS = 20 Ω, BOM Maximum output-swing bandwidth VO = VOH, RL = 10 kΩ kΩ, CL = 20 pF, F See Figure 1 B1 φm Unity-gain bandwidth Phase margin VI = 10 mV, V See Figure 3 VI = 10 mV, mV CL = 20 pF F, CL = 20 pF, F f = B1, See Figure 3 TYP 25°C 3.6 0°C 4 70°C 3 25°C 2.9 0°C 3.1 70°C 2.5 25°C 25 25°C 320 0°C 340 70°C 260 25°C 1.7 0°C 2 70°C 1.3 25°C 46° 0°C 47° 70°C 43° UNIT MAX V/µs nV/√Hz kHz MHz operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER TEST CONDITIONS TA XD272 DIP8 XL272 SOP8 MIN VIPP = 1 V SR Slew rate at unity gain RL = 10 kΩ, CL = 20 pF, pF See Figure 1 VIPP = 5.5 V Vn Equivalent input noise voltage f = 1 kHz, See Figure 2 RS = 20 Ω, BOM Maximum output-swing bandwidth VO = VOH, RL = 10 kΩ kΩ, F CL = 20 pF, See Figure 1 VI = 10 mV, V See Figure 3 CL = 20 pF, F B1 φm Unity-gain bandwidth Phase margin VI = 10 mV, mV CL = 20 pF F, 10 f = B1, See Figure 3 TYP 25°C 5.3 0°C 5.9 70°C 4.3 25°C 4.6 0°C 5.1 70°C 3.8 25°C 25 25°C 200 0°C 220 70°C 140 25°C 2.2 0°C 2.5 70°C 1.8 25°C 49° 0°C 50° 70°C 46° UNIT MAX V/µs nV/√Hz kHz MHz XD272 DIP8 / XL272 SOP8 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA XD272 DIP8 XL272 SOP8 MIN VIPP = 1 V SR Slew rate at unity gain RL = 10 kΩ, CL = 20 pF, pF See Figure 1 VIPP = 2.5 V Vn Equivalent input noise voltage f = 1 kHz, See Figure 2 RS = 20 Ω, BOM Maximum output-swing bandwidth VO = VOH, RL = 10 kΩ kΩ, CL = 20 pF, F See Figure 1 V VI = 10 mV, See Figure 3 CL = 20 pF, F B1 φm Unity-gain bandwidth Phase margin VI = 10 mV, mV CL = 20 pF F, f = B1, See Figure 3 TYP 25°C 3.6 – 40°C 4.5 85°C 2.8 25°C 2.9 – 40°C 3.5 85°C 2.3 25°C 25 25°C 320 – 40°C 380 85°C 250 25°C 1.7 – 40°C 2.6 85°C 1.2 25°C 46° – 40°C 49° 85°C 43° UNIT MAX V/µs nV/√Hz kHz MHz operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER TEST CONDITIONS TA XD272 DIP8 XL272 SOP8 MIN VIPP = 1 V SR Slew rate at unity gain RL = 10 kΩ, CL = 20 pF, pF See Figure 1 VIPP = 5.5 V Vn BOM B1 φm Equivalent input noise voltage f = 1 kHz, See Figure 2 RS = 20 Ω, Maximum output-swing bandwidth VO = VOH, RL = 10 kΩ kΩ, F CL = 20 pF, See Figure 1 VI = 10 mV, V See Figure 3 CL = 20 pF, F Unity-gain bandwidth Phase margin VI = 10 mV, mV CL = 20 pF F, 11 f = B1, See Figure 3 TYP 25°C 5.3 – 40°C 6.8 85°C 4 25°C 4.6 – 40°C 5.8 85°C 3.5 25°C 25 25°C 200 – 40°C 260 85°C 130 25°C 2.2 – 40°C 3.1 85°C 1.7 25°C 49° – 40°C 52° 85°C 46° UNIT MAX V/µs nV/√Hz kHz MHz XD272 DIP8 / XL272 SOP8 operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS VIPP = 1 V SR Slew rate at unity gain RL = 10 kΩ, CL = 20 pF, pF See Figure 1 VIPP = 2.5 V Vn BOM B1 φm Equivalent input noise voltage f = 1 kHz, See Figure 2 RS = 20 Ω, Maximum output-swing bandwidth VO = VOH, RL = 10 kΩ kΩ, F CL = 20 pF, See Figure 1 VI = 10 mV, V See Figure 3 CL = 20 pF, F Unity-gain bandwidth Phase margin VI = 10 mV, mV CL = 20 pF F, f = B1, See Figure 3 TA XD272 DIP8 XL272 SOP8 MIN TYP 25°C 3.6 – 55°C 4.7 125°C 2.3 25°C 2.9 – 55°C 3.7 125°C 2 25°C 25 25°C 320 – 55°C 400 125°C 230 25°C 1.7 – 55°C 2.9 125°C 1.1 25°C 46° – 55°C 49° 125°C 41° MAX UNIT V/µs nV/√Hz kHz MHz operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER TEST CONDITIONS VIPP = 1 V SR Slew rate at unity gain RL = 10 kΩ, CL = 20 pF, pF See Figure 1 VIPP = 5.5 V Vn Equivalent input noise voltage f = 1 kHz, See Figure 2 RS = 20 Ω, BOM Maximum output-swing bandwidth VO = VOH, RL = 10 kΩ kΩ, F CL = 20 pF, See Figure 1 B1 φm Unity-gain bandwidth Phase margin V VI = 10 mV, See Figure 3 VI = 10 mV, mV CL = 20 pF F, 12 CL = 20 pF, F f = B1, See Figure 3 TA XD272 DIP8 XL272 SOP8 MIN TYP 25°C 5.3 – 55°C 7.1 125°C 3.1 25°C 4.6 – 55°C 6.1 125°C 2.7 25°C 25 25°C 200 – 55°C 280 125°C 110 25°C 2.2 – 55°C 3.4 125°C 1.6 25°C 49° – 55°C 52° 125°C 44° MAX UNIT V/µs nV/√Hz kHz MHz XD272 DIP8 / XL272 SOP8 operating characteristics, VDD = 5 V, TA = 25°C PARAMETER TEST CONDITIONS MAX UNIT 3.6 RS = 20 Ω, See Figure 2 25 nV/√Hz VO = VOH, See Figure 1 CL = 20 pF, RL = 10 kΩ, 320 kHz VI = 10 mV, VI = 10 mV, See Figure 3 CL = 20 pF, See Figure 3 1.7 MHz f = B1, CL = 20 pF, 46° Slew rate at unity gain RL = 10 kΩ,, See Figure 1 CL = 20 pF,, Vn Equivalent input noise voltage f = 1 kHz, BOM Maximum output-swing bandwidth B1 Unity-gain bandwidth Phase margin TYP VIPP = 1 V VIPP = 2.5 V SR φm 272 MIN V/µs 2.9 operating characteristics, VDD = 10 V, TA = 25°C PARAMETER TEST CONDITIONS 272 TYP MAX UNIT VIPP = 1 V VIPP = 5.5 V 5.3 RS = 20 Ω, See Figure 2 25 nV/√Hz CL = 20 pF, RL = 10 kΩ, 200 kHz CL = 20 pF, See Figure 3 2.2 MHz f = B1, CL = 20 pF, 49° SR Slew rate at unity gain RL = 10 kΩ,, See Figure 1 CL = 20 pF,, Vn Equivalent input noise voltage f = 1 kHz, BOM Maximum output-swing bandwidth VO = VOH, See Figure 1 B1 Unity-gain bandwidth φm Phase margin VI = 10 mV, VI = 10 mV, See Figure 3 13 MIN 4.6 V/µs XD272 DIP8 / XL272 SOP8 PARAMETER MEASUREMENT INFORMATION single-supply versus split-supply test circuits Because the 272 are optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result. VDD VDD + – – VO VO + CL VI RL + VI CL RL VDD – (a) SINGLE SUPPLY (b) SPLIT SUPPLY 2 kΩ VDD VDD + – 1/2 VDD – 20 Ω 2 kΩ VO VO + + 20 Ω 20 Ω 20 Ω VDD – (a) SINGLE SUPPLY (b) SPLIT SUPPLY 10 kΩ VDD VDD + 100 Ω – VI – 100 Ω VI 10 kΩ VO + + 1/2 VDD VO CL CL VDD – (a) SINGLE SUPPLY (b) SPLIT SUPPLY 14 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 16 VID = 100 mV TA = 25°C See Note A 4 VOH V OH – High-Level Output Voltage – V VOH VOH – High-Level Output Voltage – V 5 VDD = 5 V 3 VDD = 4 V VDD = 3 V 2 ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 1 0 0 –2 –4 –6 –8 IOH – High-Level Output Current – mA – 10 14 VDD = 16 V VID = 100 mV TA = 25°C 12 10 8 VDD = 10 V 6 4 2 0 0 – 5 – 10 – 15 – 20 – 25 – 30 – 35 – 40 IOH – High-Level Output Current – mA NOTE A: The 3-V curve only applies to the C version. HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE 14 12 ÌÌÌÌÌ ÌÌÌÌ ÌÌÌÌÌ ÌÌÌÌ VDD – 1.6 VID = 100 mV RL = 10 kΩ TA = 25°C VOH V OH – High-Level Output Voltage – V VOH V OH – High-Level Output Voltage – V 16 HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 10 ÁÁ ÁÁ ÁÁ 8 6 IOH = – 5 mA VID = 100 mA VDD – 1.7 VDD = 5 V VDD –1.8 VDD – 1.9 VDD – 2 VDD = 10 V VDD –2.1 ÁÁ ÁÁ ÁÁ 4 2 0 0 2 4 6 8 10 12 VDD – Supply Voltage – V 14 VDD – 2.2 VDD –2.3 VDD –2.4 – 75 16 – 50 – 25 0 20 50 75 100 TA – Free-Air Temperature – °C † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 15 125 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 500 VDD = 5 V IOL = 5 mA 650 VOL – Low-Level Output Voltage – mV VOL V VOL OL – Low-Level Output Voltage – mV 700 TA = 25°C 600 550 VID = – 100 mV 500 450 ÁÁ ÁÁ ÁÁ VID = – 1 V 350 300 0 0.5 1 1.5 2 2.5 3 3.5 VIC – Common-Mode Input Voltage – V 450 400 VID = – 100 mV VID = – 1 V 350 VID = – 2.5 V ÁÁ ÁÁ 400 VDD = 10 V IOL = 5 mA TA = 25°C 4 300 250 0 LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 600 500 VDD = 5 V 400 300 VDD = 10 V 200 100 V VOL OL – Low-Level Output Voltage – mV VOL – Low-Level Output Voltage – mV VOL 10 900 IOL = 5 mA VIC = |VID/2| TA = 25°C 700 0 2 3 4 5 6 7 8 9 VIC – Common-Mode Input Voltage – V LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 800 ÁÁ ÁÁ ÁÁ 1 800 700 IOL = 5 mA VID = – 1 V VIC = 0.5 V VDD = 5 V 600 500 400 ÁÁ ÁÁ ÁÁ VDD = 10 V 300 200 100 0 –1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 VID – Differential Input Voltage – V 0 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 16 125 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT V VOL OL – Low-Level Output Voltage – V 0.9 0.8 0.7 ÌÌÌÌ ÌÌÌÌ ÌÌÌÌ 3.0 VID = – 1 V VIC = 0.5 V TA = 25°C See Note A V VOL OL – Low-Level Output Voltage – V 1.0 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VDD = 5 V VDD = 4 V 0.6 VDD = 3 V 0.5 0.4 ÁÁ ÁÁ 2.5 2.0 0.2 0.1 0 0 1 2 3 4 5 6 7 IOL – Low-Level Output Current – mA VID = – 1 V VIC = 0.5 V TA = 25°C VDD = 16 V VDD = 10 V 1.5 ÁÁ ÁÁ ÁÁ 0.3 ÌÌÌÌÌ ÌÌÌÌ ÌÌÌÌ ÌÌÌÌÌ ÌÌÌÌ 1.0 0.5 8 0 0 5 10 15 20 25 IOL – Low-Level Output Current – mA 30 NOTE A: The 3-V curve only applies to the C version. LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE 60 50 ÌÌÌÌ TA = 0°C 40 ÌÌÌÌ ÌÌÌÌ ÁÁ ÌÌÌÌÌÁÁ ÁÁ 30 TA = 25°C TA = 85°C 20 TA = 125°C 10 0 0 2 4 6 8 10 12 VDD – Supply Voltage – V 14 16 RL = 10 kΩ 45 AVD A VD – Large-Signal Differential Voltage Amplification – V/mV AVD AVD – Large-Signal Differential Voltage Amplification – V/mV 50 TA = – 55°C RL = 10 kΩ ÁÁ ÁÁ ÁÁ LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 40 VDD = 10 V 35 30 25 20 VDD = 5 V 15 10 5 0 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 17 125 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† COMMON-MODE INPUT VOLTAGE POSITIVE LIMIT vs SUPPLY VOLTAGE 10000 16 VDD = 10 V VIC = 5 V See Note A ÌÌ 1000 VIC – Common-Mode Input Voltage – V I IB and I IO – Input Bias and Offset Currents – pA INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE IIB 100 ÌÌ ÌÌ IIO 10 1 0.1 25 TA = 25°C 14 12 10 8 6 4 2 0 35 45 55 65 75 85 95 105 115 125 TA – Free-Air Temperature – °C NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically. 0 2 SUPPLY CURRENT vs SUPPLY VOLTAGE 14 16 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 SUPPLY CURRENT vs FREE-AIR TEMPERATURE 5 4 VO = VDD/2 No Load 4.5 3.5 VO = VDD/2 No Load TA = – 55°C 4 3.5 ÌÌÌÌ ÌÌÌÌ 3 TA = 25°C 2.5 2 1.5 1 ÌÌÌ TA = 0°C ÌÌÌÌ ÌÌÌÌ ÌÌÌÌ I DD – Supply Current – mA I DD – Supply Current – mA 4 6 8 10 12 VDD – Supply Voltage – V TA = 70°C 0.5 3 2.5 VDD = 10 V 2 1.5 VDD = 5 V 1 0.5 TA = 125°C 0 0 2 4 6 8 10 12 VDD – Supply Voltage – V 14 0 – 75 16 – 50 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 18 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† SLEW RATE vs FREE-AIR TEMPERATURE SLEW RATE vs SUPPLY VOLTAGE 8 8 AV = 1 VIPP = 1 V RL = 10 kΩ CL = 20 pF TA = 25°C See Figure 1 6 7 5 4 3 3 1 1 0 4 6 8 10 12 VDD – Supply Voltage – V 14 VDD = 10 V VIPP = 1 V 4 2 2 VDD = 10 V VIPP = 5.5 V 5 2 0 VDD = 5 V VIPP = 1 V VDD = 5 V VIPP = 2.5 V 0 – 75 16 NORMALIZED SLEW RATE vs FREE-AIR TEMPERATURE VO(PP) – Maximum Peak-to-Peak Output Voltage – V AV = 1 VIPP = 1 V RL = 10 kΩ CL = 20 pF 1.4 VDD = 10 V Normalized Slew Rate 1.2 1.1 VDD = 5 V 1.0 0.9 0.8 0.7 0.6 0.5 – 75 – 50 – 25 0 25 50 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY 1.5 1.3 AV = 1 RL = 10 kΩ CL = 20 pF See Figure 1 6 SR – Slew Rate – V/ µs SR – Slew Rate – V/ µs 7 100 125 10 VDD = 10 V 9 8 TA = 125°C TA = 25°C TA = – 55°C 7 6 5 VDD = 5 V 4 3 RL = 10 kΩ See Figure 1 2 1 0 10 TA – Free-Air Temperature – °C 100 1000 10000 f – Frequency – kHz † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 19 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 2.5 VDD = 5 V VI = 10 mV CL = 20 pF See Figure 3 2.5 B1 – Unity-Gain Bandwidth – MHz B1 – Unity-Gain Bandwidth – MHz 3.0 2.0 1.5 1.0 – 75 VI = 10 mV CL = 20 pF TA = 25°C See Figure 3 2.0 1.5 1.0 – 50 – 25 0 25 50 75 100 0 125 2 4 6 8 10 12 14 VDD – Supply Voltage – V TA – Free-Air Temperature – °C LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 107 Á Á VDD = 5 V RL = 10 kΩ TA = 25°C 10 5 0° 10 4 30° AVD 10 3 60° 10 2 90° Phase Shift 101 120° 1 150° 0.1 10 Phase Shift AVD AVD – Large-Signal Differential Voltage Amplification 10 6 180° 100 1k 10 k 100 k 1M 10 M f – Frequency – Hz † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 20 16 XD272 DIP8 / XL272 SOP8 TYPICAL CHARACTERISTICS† LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 10 7 VDD = 10 V RL = 10 kΩ TA = 25°C ÁÁ ÁÁ 10 5 0° 10 4 30° AVD 10 3 60° 10 2 90° Phase Shift AVD A VD – Large-Signal Differential Voltage Amplification 10 6 Phase Shift 101 120° 1 150° 0.1 10 100 1k 10 k 100 k 1M 180° 10 M f – Frequency – Hz PHASE MARGIN vs SUPPLY VOLTAGE PHASE MARGIN vs FREE-AIR TEMPERATURE 53° 50° VDD = 5 V VI = 10 mV CL = 20 pF See Figure 3 52° 48° φm m – Phase Margin φm m – Phase Margin 51° 50° 49° 48° VI = 10 mV CL = 20 pF TA = 25°C See Figure 3 47° 46° 2 4 6 8 10 12 14 44° 42° 45° 0 46° 40° –75 16 –50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C VDD – Supply Voltage – V † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 21 125 XD272 DIP8 / XL272 SOP8 DIP 22 21 XD272 DIP8 / XL272 SOP8 SOP 23 21
XD272 价格&库存

很抱歉,暂时无法提供与“XD272”相匹配的价格&库存,您可以联系我们找货

免费人工找货