XD272 DIP8 / XL272 SOP8
D
D
D
D
D
D
D
D
Input Offset Voltage Drift . . . Typically
0.1 µV/Month, Including the First 30 Days
Wide Range of Supply Voltages Over
Specified Temperature Range:
0°C to 70°C . . . 3 V to 16 V
– 40°C to 85°C . . . 4 V to 16 V
– 55°C to 125°C . . . 4 V to 16 V
Single-Supply Operation
Common-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix,
I-Suffix types)
Low Noise . . . Typically 25 nV/√Hz at
f = 1 kHz
Output Voltage Range Includes Negative
Rail
High Input impedance . . . 1012 Ω Typ
ESD-Protection Circuitry
272 DIP/SOP
(TOP VIEW)
1OUT
1IN –
1IN +
GND
1
8
2
7
3
6
4
5
VDD
2OUT
2IN –
2IN +
FK PACKAGE
(TOP VIEW)
description
The 272 precision dual operational
amplifiers combine a wide range of
input offset voltage grades with low offset voltage
drift, high input impedance, low noise, and speeds
approaching that of general-purpose BiFET
devices.
equivalent schematic (each amplifier)
VDD
P3
P4
R6
R1
N5
R2
IN –
P5
P1
P6
P2
IN +
R5
C1
OUT
N3
N1
R3
N2
D1
N4
R4
D2
GND
1
N6
R7
N7
XD272 DIP8 / XL272 SOP8
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA
output current, IO (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA
Total current into VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, P, or PW package . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at IN+ with respect to IN –.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application section).
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
377 mW
N/A
FK
1375 mW
11 mW/°C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/°C
640 mW
520 mW
N/A
PW
525 mW
4.2 mW/°C
336 mW
N/A
N/A
recommended operating conditions
Supply voltage, VDD
Common mode input voltage,
Common-mode
voltage VIC
VDD = 5 V
VDD = 10 V
Operating free-air temperature, TA
2
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
3
16
4
16
4
16
– 0.2
3.5
– 0.2
3.5
0
3.5
– 0.2
8.5
– 0.2
8.5
0
8.5
0
70
– 40
85
– 55
125
UNIT
V
V
°C
XD272 DIP8 / XL272 SOP8
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
XD272 DIP8
XL272 SOP8
MIN
272
VIO
Input offset voltage
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
αVIO
Temperature coefficient of input offset voltage
IIO
Input offset current (see Note 4)
VO = 2.5
25V
V,
VIC = 2
2.5
5V
IIB
Input bias current (see Note 4)
VO = 2.5
25V
V,
VIC = 2
2.5
5V
VICR
VOH
VOL
AVD
CMRR
kSVR
IDD
25°C
High-level output voltage
Low-level output voltage
Large-signal differential voltage amplification
Common-mode rejection ratio
VID = 100 mV,
VID = –100 mV,
VO = 0.25 V to 2 V,
RL = 10 kΩ
IOL = 0
RL = 10 kΩ
VIC = VICRmin
Supply-voltage
S
l
lt
rejection
j ti ratio
ti
(∆VDD /∆VIO)
VDD = 5 V to 10 V,
Supply current (two amplifiers)
VO = 2.5
25V
V,
No load
VO = 1.4 V
VIC = 5 V
V,
MAX
1.1
10
Full range
12
25°C
0.9
5
230
2000
Full range
Full range
3000
25°C to
70°C
1.8
25°C
0.1
70°C
7
25°C
0.6
70°C
40
25°C
– 0.2
to
4
Full range
– 0.2
to
3.5
µV
µV/°C
300
600
– 0.3
to
4.2
pA
pA
V
V
25°C
3.2
3.8
0°C
3
3.8
70°C
3
3.8
V
25°C
0
50
0°C
0
50
70°C
0
50
25°C
5
23
0°C
4
27
70°C
4
20
25°C
65
80
0°C
60
84
70°C
60
85
25°C
65
95
0°C
60
94
70°C
60
96
mV
V/mV
dB
dB
25°C
1.4
3.2
0°C
1.6
3.6
70°C
1.2
2.6
† Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
3
mV
6.5
25°C
Common-mode input voltage
g range
g
(see Note 5)
UNIT
TYP
mA
XD272 DIP8 / XL272 SOP8
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
XD272 DIP8
XL272 SOP8
MIN
272
VIO
Input offset voltage
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
Temperature coefficient of input offset voltage
IIO
Input offset current (see Note 4)
VO = 5 V
V,
VIC = 5 V
IIB
Input bias current (see Note 4)
VO = 5 V
V,
VIC = 5 V
VOH
VOL
AVD
CMRR
kSVR
IDD
Low-level output voltage
Large-signal differential voltage amplification
Common-mode rejection ratio
VID = 100 mV,
VID = –100 mV,
VO = 1 V to 6 V,
RL = 10 kΩ
IOL = 0
RL = 10 kΩ
VIC = VICRmin
Supply-voltage
S
l
lt
rejection
j ti ratio
ti
(∆VDD /∆VIO)
VDD = 5 V to 10 V,
Supply current (two amplifiers)
VO = 2.5
2 5 V,
V
No load
VO = 1.4 V
VIC = 5 V
V,
1.1
10
12
25°C
0.9
5
290
2000
Full range
Full range
3000
25°C
0.1
70°C
7
25°C
0.7
70°C
50
25°C
– 0.2
to
9
Full range
– 0.2
to
8.5
µV
µV/°C
2
300
600
– 0.3
to
9.2
pA
pA
V
V
25°C
8
8.5
0°C
7.8
8.5
70°C
7.8
8.4
V
25°C
0
50
0°C
0
50
70°C
0
50
25°C
10
36
0°C
7.5
42
70°C
7.5
32
25°C
65
85
0°C
60
88
70°C
60
88
25°C
65
95
0°C
60
94
70°C
60
96
mV
V/mV
dB
dB
25°C
1.9
4
0°C
2.3
4.4
70°C
1.6
3.4
† Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
4
mV
6.5
25°C
Common-mode input voltage
g range
g
(see Note 5)
High-level output voltage
MAX
Full range
25°C to
70°C
αVIO
VICR
25°C
UNIT
TYP
mA
XD272 DIP8 / XL272 SOP8
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
XD272 DIP8
XL272 SOP8
MIN
272
VIO
Input offset voltage
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
αVIO
Temperature coefficient of input offset voltage
IIO
Input offset current (see Note 4)
VO = 2
2.5
5V
V,
VIC = 2.5
25V
IIB
Input bias current (see Note 4)
VO = 2
2.5
5V
V,
VIC = 2.5
25V
25°C
VICR
VOL
AVD
CMRR
kSVR
Low-level output voltage
L
Large-signal
i
l diff
differential
ti l voltage
lt
amplification
lifi ti
Common-mode rejection ratio
S
l
lt
j ti ratio
ti
Supply-voltage
rejection
(∆VDD /∆VIO)
VID = 100 mV,
VID = –100 mV,
VO = 1 V to 6 V,
RL = 10 kΩ
IOL = 0
RL = 10 kΩ
VIC = VICRmin
VDD = 5 V to 10 V,
VO = 1.4 V
10
0.9
5
230
2000
Full range
Full range
3500
25°C to
85°C
1.8
25°C
0.1
85°C
24
25°C
0.6
85°C
200
– 0.2
to
4
15
35
– 0.3
to
4.2
– 0.2
to
3.5
25°C
3.2
3.8
– 40°C
3
3.8
85°C
3
3.8
V
25°C
0
50
– 40°C
0
50
85°C
0
50
25°C
5
23
– 40°C
3.5
32
85°C
3.5
19
25°C
65
80
– 40°C
60
81
85°C
60
86
25°C
65
95
– 40°C
60
92
85°C
60
dB
dB
96
3.2
4.4
85°C
1.1
† Full range is – 40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
2.4
5
mV
V/mV
1.9
VIC = 5 V
V,
pA
V
– 40°C
VO = 5 V,
V
No load
pA
V
1.4
Supply current (two amplifiers)
µV
µV/°C
25°C
IDD
mV
7
25°C
Common-mode input voltage
g range
g
(see Note 5)
High-level output voltage
1.1
13
25°C
Full range
VOH
MAX
Full range
25°C
UNIT
TYP
mA
XD272 DIP8 / XL272 SOP8
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
XD272 DIP8
XL272 SOP8
MIN
272
VIO
Input offset voltage
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
Temperature coefficient of input offset voltage
IIO
Input offset current (see Note 4)
VO = 5 V,
V
VIC = 5 V
IIB
Input bias current (see Note 4)
VO = 5 V,
V
VIC = 5 V
VOH
VOL
AVD
CMRR
kSVR
Low-level output voltage
Large-signal differential voltage amplification
Common-mode rejection ratio
S
l
lt
j ti ratio
ti
Supply-voltage
rejection
(∆VDD /∆VIO)
VID = 100 mV,
VID = –100 mV,
VO = 1 V to 6 V,
RL = 10 kΩ
IOL = 0
RL = 10 kΩ
VIC = VICRmin
VDD = 5 V to 10 V,
VO = 1.4 V
1.1
10
13
25°C
0.9
5
290
2000
Full range
Full range
3500
25°C
0.1
85°C
26
25°C
0.7
85°C
220
25°C
– 0.2
to
9
Full range
– 0.2
to
8.5
1000
2000
– 0.3
to
9.2
25°C
8
8.5
– 40°C
7.8
8.5
85°C
7.8
8.5
V
25°C
0
50
– 40°C
0
50
85°C
0
50
25°C
10
36
– 40°C
7
46
85°C
7
31
25°C
65
85
– 40°C
60
87
85°C
60
88
25°C
65
95
– 40°C
60
92
85°C
60
dB
dB
96
4
5
85°C
1.5
† Full range is – 40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
3.2
6
mV
V/mV
2.8
VIC = 5 V,
V
pA
V
– 40°C
VO = 5 V,
V
No load
pA
V
1.4
Supply current (two amplifiers)
µV
µV/°C
2
25°C
IDD
mV
7
25°C
Common-mode input voltage
g range
g
(see Note 5)
High-level output voltage
MAX
Full range
25°C to
85°C
αVIO
VICR
25°C
UNIT
TYP
mA
XD272 DIP8 / XL272 SOP8
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
272
VIO
Input offset voltage
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
TA†
XD272 DIP8/XL272 SOP8
MIN
25°C
TYP
MAX
1.1
10
Full range
12
UNIT
mV
µV
αVIO
Temperature coefficient of input offset
voltage
IIO
Input offset current (see Note 4)
IIB
Input bias current (see Note 4)
VO = 2
2.5
5V
5V
VO = 2
2.5
VIC = 2.5
25V
25V
VIC = 2.5
25°C to
125°C
2.1
25°C
0.1
125°C
1.4
25°C
0.6
125°C
25°C
VICR
Common-mode input voltage
g range
g
(see Note 5)
Full range
VOH
VOL
AVD
CMRR
kSVR
High-level output voltage
Low-level output voltage
Large-signal differential voltage amplification
Common-mode rejection ratio
Supply-voltage
S
l
lt
rejection
j ti ratio
ti
(∆VDD /∆VIO)
VID = 100 mV,
VID = – 100 mV,
VO = 0.25 V to 2 V
RL = 10 kΩ
IOL = 0
RL = 10 kΩ
VIC = VICRmin
VDD = 5 V to 10 V,
VO = 1.4 V
9
0
to
4
µV/°C
pA
15
pA
35
– 0.3
to
4.2
0
to
3.5
V
25°C
3.2
3.8
– 55°C
3
3.8
125°C
3
3.8
V
25°C
0
50
– 55°C
0
50
125°C
0
50
25°C
5
23
– 55°C
3.5
35
125°C
3.5
16
25°C
65
80
– 55°C
60
81
125°C
60
84
25°C
65
95
– 55°C
60
90
125°C
60
dB
dB
97
3.2
– 55°C
2
5
125°C
1
† Full range is – 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
2.2
VO = 2.5
2 5 V,
V
No load
7
VIC = 2.5
25V
V,
mV
V/mV
1.4
Supply current (two amplifiers)
nA
V
25°C
IDD
nA
mA
XD272 DIP8 / XL272 SOP8
electrical characteristics at specified free-air temperature, VDD = 10 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
272
VIO
Input offset voltage
VO = 1.4 V,
RS = 50 Ω,
VIC = 0,
RL = 10 kΩ
TA†
XD272 DIP8/XL272 SOP8
MIN
25°C
TYP
MAX
1.1
10
Full range
12
UNIT
mV
µV
αVIO
Temperature coefficient of input offset
voltage
IIO
Input offset current (see Note 4)
IIB
VICR
VOH
VOL
Input bias current (see Note 4)
VO = 5 V,
V
VIC = 5 V
V
VO = 5 V,
VIC = 5 V
25°C to
125°C
2.2
25°C
0.1
125°C
1.8
25°C
0.7
125°C
25°C
Full range
0
to
8.5
Common-mode input voltage
g range
g
(see Note 5)
High-level output voltage
Low-level output voltage
VID = 100 mV,
RL = 10 kΩ
VID = – 100 mV,
IOL = 0
10
0
to
9
CMRR
kSVR
Large-signal
L
i
l differential
diff
ti l voltage
lt
amplification
am
lification
Common-mode rejection ratio
VO = 1 V to 6 V,
RL = 10 kΩ
VIC = VICRmin
S
l
lt
j ti ratio
ti
Supply-voltage
rejection
(∆VDD /∆VIO)
VDD = 5 V to 10 V,
Supply current (two amplifiers)
VO = 5 V,
V
No load
VO = 1.4 V
IDD
8
8.5
7.8
8.5
125°C
pA
35
nA
V
7.8
8.4
V
25°C
0
50
– 55°C
0
50
0
50
25°C
10
36
– 55°C
7
50
125°C
7
27
25°C
65
85
– 55°C
60
87
125°C
60
86
25°C
65
95
– 55°C
60
90
125°C
60
97
1.9
mV
V/mV
dB
dB
4
– 55°C
3
6
125°C
1.3
2.8
† Full range is – 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
8
nA
V
25°C
25°C
VIC = 5 V
V,
pA
15
– 0.3
to
9.2
– 55°C
125°C
AVD
µV/°C
mA
XD272 DIP8 / XL272 SOP8
electrical characteristics, VDD = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input offset voltage
IIO
IIB
Input offset current (see Note 4)
VICR
Common-mode input voltage range (see Note 5)
VOH
VOL
High-level output voltage
AVD
CMRR
Large-signal differential voltage amplification
kSVR
Supply-voltage rejection ratio (∆VDD /∆VIO)
IDD
Supply current (two amplifiers)
TEST CONDITIONS
Input bias current (see Note 4)
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 2.5 V,
VO = 2.5 V,
VIC = 2.5 V
VIC = 2.5 V
VID = 100 mV,
VID = –100 mV,
Low-level output voltage
VO = 0.25 V to 2 V
VIC = VICRmin
Common-mode rejection ratio
VDD = 5 V to 10 V,
VO = 2.5 V,
No load
XD272 DIP8/XL272 SOP8
MIN
TYP
MAX
11
1.1
10
UNIT
mV
1.8
µV/°C
0.1
pA
0.6
pA
– 0.2
to
4
– 0.3
to
4.2
V
RL = 10 kΩ
3.2
3.8
V
IOL = 0
RL = 10 kΩ
5
23
V/mV
65
80
dB
65
95
dB
VO = 1.4 V
VIC = 2.5 V,
0
1.4
50
3.2
mV
mA
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
electrical characteristics, VDD = 10 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input offset voltage
IIO
IIB
Input offset current (see Note 4)
TEST CONDITIONS
Input bias current (see Note 4)
VICR
Common-mode input voltage range (see Note 5)
VOH
VOL
High-level output voltage
AVD
CMRR
Large-signal differential voltage amplification
kSVR
Supply-voltage rejection ratio (∆VDD /∆VIO)
IDD
Supply current (two amplifiers)
VO = 1.4 V,,
RS = 50 Ω,
VIC = 0,,
RL = 10 kΩ
VO = 5 V,
VO = 5 V,
VIC = 5 V
VIC = 5 V
VID = 100 mV,
VID = –100 mV,
Low-level output voltage
VO = 1 V to 6 V,
VIC = VICRmin
Common-mode rejection ratio
VDD = 5 V to 10 V,
VO = 5 V,
No load
RL = 10 kΩ
IOL = 0
RL = 10 kΩ
VO = 1.4 V
VIC = 5 V,
XD272 DIP8/XL272 SOP8
MIN
TYP
MAX
11
1.1
10
mV
1.8
µV/°C
0.1
pA
0.7
pA
– 0.2
to
9
– 0.3
to
9.2
V
8
8.5
0
V
50
mV
10
36
V/mV
65
85
dB
65
95
dB
1.9
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
9
UNIT
4
mA
XD272 DIP8 / XL272 SOP8
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
XD272 DIP8
XL272 SOP8
TEST CONDITIONS
MIN
VIPP = 1 V
SR
Slew rate at unity gain
RL = 10 kΩ,
CL = 20 pF,
pF
See Figure 1
VIPP = 2.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
RS = 20 Ω,
BOM
Maximum output-swing bandwidth
VO = VOH,
RL = 10 kΩ
kΩ,
CL = 20 pF,
F
See Figure 1
B1
φm
Unity-gain bandwidth
Phase margin
VI = 10 mV,
V
See Figure 3
VI = 10 mV,
mV
CL = 20 pF
F,
CL = 20 pF,
F
f = B1,
See Figure 3
TYP
25°C
3.6
0°C
4
70°C
3
25°C
2.9
0°C
3.1
70°C
2.5
25°C
25
25°C
320
0°C
340
70°C
260
25°C
1.7
0°C
2
70°C
1.3
25°C
46°
0°C
47°
70°C
43°
UNIT
MAX
V/µs
nV/√Hz
kHz
MHz
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER
TEST CONDITIONS
TA
XD272 DIP8
XL272 SOP8
MIN
VIPP = 1 V
SR
Slew rate at unity gain
RL = 10 kΩ,
CL = 20 pF,
pF
See Figure 1
VIPP = 5.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
RS = 20 Ω,
BOM
Maximum output-swing bandwidth
VO = VOH,
RL = 10 kΩ
kΩ,
F
CL = 20 pF,
See Figure 1
VI = 10 mV,
V
See Figure 3
CL = 20 pF,
F
B1
φm
Unity-gain bandwidth
Phase margin
VI = 10 mV,
mV
CL = 20 pF
F,
10
f = B1,
See Figure 3
TYP
25°C
5.3
0°C
5.9
70°C
4.3
25°C
4.6
0°C
5.1
70°C
3.8
25°C
25
25°C
200
0°C
220
70°C
140
25°C
2.2
0°C
2.5
70°C
1.8
25°C
49°
0°C
50°
70°C
46°
UNIT
MAX
V/µs
nV/√Hz
kHz
MHz
XD272 DIP8 / XL272 SOP8
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
XD272 DIP8
XL272 SOP8
MIN
VIPP = 1 V
SR
Slew rate at unity gain
RL = 10 kΩ,
CL = 20 pF,
pF
See Figure 1
VIPP = 2.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
RS = 20 Ω,
BOM
Maximum output-swing bandwidth
VO = VOH,
RL = 10 kΩ
kΩ,
CL = 20 pF,
F
See Figure 1
V
VI = 10 mV,
See Figure 3
CL = 20 pF,
F
B1
φm
Unity-gain bandwidth
Phase margin
VI = 10 mV,
mV
CL = 20 pF
F,
f = B1,
See Figure 3
TYP
25°C
3.6
– 40°C
4.5
85°C
2.8
25°C
2.9
– 40°C
3.5
85°C
2.3
25°C
25
25°C
320
– 40°C
380
85°C
250
25°C
1.7
– 40°C
2.6
85°C
1.2
25°C
46°
– 40°C
49°
85°C
43°
UNIT
MAX
V/µs
nV/√Hz
kHz
MHz
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER
TEST CONDITIONS
TA
XD272 DIP8
XL272 SOP8
MIN
VIPP = 1 V
SR
Slew rate at unity gain
RL = 10 kΩ,
CL = 20 pF,
pF
See Figure 1
VIPP = 5.5 V
Vn
BOM
B1
φm
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
RS = 20 Ω,
Maximum output-swing bandwidth
VO = VOH,
RL = 10 kΩ
kΩ,
F
CL = 20 pF,
See Figure 1
VI = 10 mV,
V
See Figure 3
CL = 20 pF,
F
Unity-gain bandwidth
Phase margin
VI = 10 mV,
mV
CL = 20 pF
F,
11
f = B1,
See Figure 3
TYP
25°C
5.3
– 40°C
6.8
85°C
4
25°C
4.6
– 40°C
5.8
85°C
3.5
25°C
25
25°C
200
– 40°C
260
85°C
130
25°C
2.2
– 40°C
3.1
85°C
1.7
25°C
49°
– 40°C
52°
85°C
46°
UNIT
MAX
V/µs
nV/√Hz
kHz
MHz
XD272 DIP8 / XL272 SOP8
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
VIPP = 1 V
SR
Slew rate at unity gain
RL = 10 kΩ,
CL = 20 pF,
pF
See Figure 1
VIPP = 2.5 V
Vn
BOM
B1
φm
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
RS = 20 Ω,
Maximum output-swing bandwidth
VO = VOH,
RL = 10 kΩ
kΩ,
F
CL = 20 pF,
See Figure 1
VI = 10 mV,
V
See Figure 3
CL = 20 pF,
F
Unity-gain bandwidth
Phase margin
VI = 10 mV,
mV
CL = 20 pF
F,
f = B1,
See Figure 3
TA
XD272 DIP8 XL272 SOP8
MIN
TYP
25°C
3.6
– 55°C
4.7
125°C
2.3
25°C
2.9
– 55°C
3.7
125°C
2
25°C
25
25°C
320
– 55°C
400
125°C
230
25°C
1.7
– 55°C
2.9
125°C
1.1
25°C
46°
– 55°C
49°
125°C
41°
MAX
UNIT
V/µs
nV/√Hz
kHz
MHz
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER
TEST CONDITIONS
VIPP = 1 V
SR
Slew rate at unity gain
RL = 10 kΩ,
CL = 20 pF,
pF
See Figure 1
VIPP = 5.5 V
Vn
Equivalent input noise voltage
f = 1 kHz,
See Figure 2
RS = 20 Ω,
BOM
Maximum output-swing bandwidth
VO = VOH,
RL = 10 kΩ
kΩ,
F
CL = 20 pF,
See Figure 1
B1
φm
Unity-gain bandwidth
Phase margin
V
VI = 10 mV,
See Figure 3
VI = 10 mV,
mV
CL = 20 pF
F,
12
CL = 20 pF,
F
f = B1,
See Figure 3
TA
XD272 DIP8 XL272 SOP8
MIN
TYP
25°C
5.3
– 55°C
7.1
125°C
3.1
25°C
4.6
– 55°C
6.1
125°C
2.7
25°C
25
25°C
200
– 55°C
280
125°C
110
25°C
2.2
– 55°C
3.4
125°C
1.6
25°C
49°
– 55°C
52°
125°C
44°
MAX
UNIT
V/µs
nV/√Hz
kHz
MHz
XD272 DIP8 / XL272 SOP8
operating characteristics, VDD = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
MAX
UNIT
3.6
RS = 20 Ω,
See Figure 2
25
nV/√Hz
VO = VOH,
See Figure 1
CL = 20 pF,
RL = 10 kΩ,
320
kHz
VI = 10 mV,
VI = 10 mV,
See Figure 3
CL = 20 pF,
See Figure 3
1.7
MHz
f = B1,
CL = 20 pF,
46°
Slew rate at unity gain
RL = 10 kΩ,,
See Figure 1
CL = 20 pF,,
Vn
Equivalent input noise voltage
f = 1 kHz,
BOM
Maximum output-swing bandwidth
B1
Unity-gain bandwidth
Phase margin
TYP
VIPP = 1 V
VIPP = 2.5 V
SR
φm
272
MIN
V/µs
2.9
operating characteristics, VDD = 10 V, TA = 25°C
PARAMETER
TEST CONDITIONS
272
TYP
MAX
UNIT
VIPP = 1 V
VIPP = 5.5 V
5.3
RS = 20 Ω,
See Figure 2
25
nV/√Hz
CL = 20 pF,
RL = 10 kΩ,
200
kHz
CL = 20 pF,
See Figure 3
2.2
MHz
f = B1,
CL = 20 pF,
49°
SR
Slew rate at unity gain
RL = 10 kΩ,,
See Figure 1
CL = 20 pF,,
Vn
Equivalent input noise voltage
f = 1 kHz,
BOM
Maximum output-swing bandwidth
VO = VOH,
See Figure 1
B1
Unity-gain bandwidth
φm
Phase margin
VI = 10 mV,
VI = 10 mV,
See Figure 3
13
MIN
4.6
V/µs
XD272 DIP8 / XL272 SOP8
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the 272 are optimized for single-supply operation, circuit configurations used for the
various tests often present some inconvenience since the input signal, in many cases, must be offset from
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to
the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either
circuit gives the same result.
VDD
VDD +
–
–
VO
VO
+
CL
VI
RL
+
VI
CL
RL
VDD –
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
2 kΩ
VDD
VDD +
–
1/2 VDD
–
20 Ω
2 kΩ
VO
VO
+
+
20 Ω
20 Ω
20 Ω
VDD –
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
10 kΩ
VDD
VDD +
100 Ω
–
VI
–
100 Ω
VI
10 kΩ
VO
+
+
1/2 VDD
VO
CL
CL
VDD –
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
14
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
16
VID = 100 mV
TA = 25°C
See Note A
4
VOH
V
OH – High-Level Output Voltage – V
VOH
VOH – High-Level Output Voltage – V
5
VDD = 5 V
3
VDD = 4 V
VDD = 3 V
2
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
1
0
0
–2
–4
–6
–8
IOH – High-Level Output Current – mA
– 10
14
VDD = 16 V
VID = 100 mV
TA = 25°C
12
10
8
VDD = 10 V
6
4
2
0
0
– 5 – 10 – 15 – 20 – 25 – 30 – 35 – 40
IOH – High-Level Output Current – mA
NOTE A: The 3-V curve only applies to the C version.
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
14
12
ÌÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌ
VDD – 1.6
VID = 100 mV
RL = 10 kΩ
TA = 25°C
VOH
V
OH – High-Level Output Voltage – V
VOH
V
OH – High-Level Output Voltage – V
16
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
10
ÁÁ
ÁÁ
ÁÁ
8
6
IOH = – 5 mA
VID = 100 mA
VDD – 1.7
VDD = 5 V
VDD –1.8
VDD – 1.9
VDD – 2
VDD = 10 V
VDD –2.1
ÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
4
6
8
10
12
VDD – Supply Voltage – V
14
VDD – 2.2
VDD –2.3
VDD –2.4
– 75
16
– 50
– 25
0
20
50
75 100
TA – Free-Air Temperature – °C
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
15
125
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
500
VDD = 5 V
IOL = 5 mA
650
VOL – Low-Level Output Voltage – mV
VOL
V
VOL
OL – Low-Level Output Voltage – mV
700
TA = 25°C
600
550
VID = – 100 mV
500
450
ÁÁ
ÁÁ
ÁÁ
VID = – 1 V
350
300
0
0.5
1
1.5
2
2.5
3
3.5
VIC – Common-Mode Input Voltage – V
450
400
VID = – 100 mV
VID = – 1 V
350
VID = – 2.5 V
ÁÁ
ÁÁ
400
VDD = 10 V
IOL = 5 mA
TA = 25°C
4
300
250
0
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
600
500
VDD = 5 V
400
300
VDD = 10 V
200
100
V
VOL
OL – Low-Level Output Voltage – mV
VOL – Low-Level Output Voltage – mV
VOL
10
900
IOL = 5 mA
VIC = |VID/2|
TA = 25°C
700
0
2
3
4
5
6
7
8
9
VIC – Common-Mode Input Voltage – V
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
800
ÁÁ
ÁÁ
ÁÁ
1
800
700
IOL = 5 mA
VID = – 1 V
VIC = 0.5 V
VDD = 5 V
600
500
400
ÁÁ
ÁÁ
ÁÁ
VDD = 10 V
300
200
100
0
–1
– 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10
VID – Differential Input Voltage – V
0
– 75
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
16
125
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
V
VOL
OL – Low-Level Output Voltage – V
0.9
0.8
0.7
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
3.0
VID = – 1 V
VIC = 0.5 V
TA = 25°C
See Note A
V
VOL
OL – Low-Level Output Voltage – V
1.0
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 5 V
VDD = 4 V
0.6
VDD = 3 V
0.5
0.4
ÁÁ
ÁÁ
2.5
2.0
0.2
0.1
0
0
1
2
3
4
5
6
7
IOL – Low-Level Output Current – mA
VID = – 1 V
VIC = 0.5 V
TA = 25°C
VDD = 16 V
VDD = 10 V
1.5
ÁÁ
ÁÁ
ÁÁ
0.3
ÌÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌ
1.0
0.5
8
0
0
5
10
15
20
25
IOL – Low-Level Output Current – mA
30
NOTE A: The 3-V curve only applies to the C version.
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
60
50
ÌÌÌÌ
TA = 0°C
40
ÌÌÌÌ
ÌÌÌÌ
ÁÁ
ÌÌÌÌÌÁÁ
ÁÁ
30
TA = 25°C
TA = 85°C
20
TA = 125°C
10
0
0
2
4
6
8
10
12
VDD – Supply Voltage – V
14
16
RL = 10 kΩ
45
AVD
A
VD – Large-Signal Differential
Voltage Amplification – V/mV
AVD
AVD – Large-Signal Differential
Voltage Amplification – V/mV
50
TA = – 55°C
RL = 10 kΩ
ÁÁ
ÁÁ
ÁÁ
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
40
VDD = 10 V
35
30
25
20
VDD = 5 V
15
10
5
0
– 75
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
17
125
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
COMMON-MODE
INPUT VOLTAGE POSITIVE LIMIT
vs
SUPPLY VOLTAGE
10000
16
VDD = 10 V
VIC = 5 V
See Note A
ÌÌ
1000
VIC – Common-Mode Input Voltage – V
I IB and I IO – Input Bias and Offset Currents – pA
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
IIB
100
ÌÌ
ÌÌ
IIO
10
1
0.1
25
TA = 25°C
14
12
10
8
6
4
2
0
35
45 55 65 75 85 95 105 115 125
TA – Free-Air Temperature – °C
NOTE A: The typical values of input bias current and input
offset current below 5 pA were determined mathematically.
0
2
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
14
16
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
125
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
5
4
VO = VDD/2
No Load
4.5
3.5
VO = VDD/2
No Load
TA = – 55°C
4
3.5
ÌÌÌÌ
ÌÌÌÌ
3
TA = 25°C
2.5
2
1.5
1
ÌÌÌ
TA = 0°C
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
I DD – Supply Current – mA
I DD – Supply Current – mA
4
6
8
10
12
VDD – Supply Voltage – V
TA = 70°C
0.5
3
2.5
VDD = 10 V
2
1.5
VDD = 5 V
1
0.5
TA = 125°C
0
0
2
4
6
8
10
12
VDD – Supply Voltage – V
14
0
– 75
16
– 50
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
18
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
SLEW RATE
vs
FREE-AIR TEMPERATURE
SLEW RATE
vs
SUPPLY VOLTAGE
8
8
AV = 1
VIPP = 1 V
RL = 10 kΩ
CL = 20 pF
TA = 25°C
See Figure 1
6
7
5
4
3
3
1
1
0
4
6
8
10
12
VDD – Supply Voltage – V
14
VDD = 10 V
VIPP = 1 V
4
2
2
VDD = 10 V
VIPP = 5.5 V
5
2
0
VDD = 5 V
VIPP = 1 V
VDD = 5 V
VIPP = 2.5 V
0
– 75
16
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
AV = 1
VIPP = 1 V
RL = 10 kΩ
CL = 20 pF
1.4
VDD = 10 V
Normalized Slew Rate
1.2
1.1
VDD = 5 V
1.0
0.9
0.8
0.7
0.6
0.5
– 75
– 50
– 25
0
25
50
75
– 50
– 25
0
25
50
75 100
TA – Free-Air Temperature – °C
125
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
1.5
1.3
AV = 1
RL = 10 kΩ
CL = 20 pF
See Figure 1
6
SR – Slew Rate – V/ µs
SR – Slew Rate – V/ µs
7
100
125
10
VDD = 10 V
9
8
TA = 125°C
TA = 25°C
TA = – 55°C
7
6
5
VDD = 5 V
4
3
RL = 10 kΩ
See Figure 1
2
1
0
10
TA – Free-Air Temperature – °C
100
1000
10000
f – Frequency – kHz
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
19
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
2.5
VDD = 5 V
VI = 10 mV
CL = 20 pF
See Figure 3
2.5
B1 – Unity-Gain Bandwidth – MHz
B1 – Unity-Gain Bandwidth – MHz
3.0
2.0
1.5
1.0
– 75
VI = 10 mV
CL = 20 pF
TA = 25°C
See Figure 3
2.0
1.5
1.0
– 50
– 25
0
25
50
75
100
0
125
2
4
6
8
10
12
14
VDD – Supply Voltage – V
TA – Free-Air Temperature – °C
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
107
Á
Á
VDD = 5 V
RL = 10 kΩ
TA = 25°C
10 5
0°
10 4
30°
AVD
10 3
60°
10 2
90°
Phase Shift
101
120°
1
150°
0.1
10
Phase Shift
AVD
AVD – Large-Signal Differential
Voltage Amplification
10 6
180°
100
1k
10 k
100 k
1M
10 M
f – Frequency – Hz
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
20
16
XD272 DIP8 / XL272 SOP8
TYPICAL CHARACTERISTICS†
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
10 7
VDD = 10 V
RL = 10 kΩ
TA = 25°C
ÁÁ
ÁÁ
10 5
0°
10 4
30°
AVD
10 3
60°
10 2
90°
Phase Shift
AVD
A
VD – Large-Signal Differential
Voltage Amplification
10 6
Phase Shift
101
120°
1
150°
0.1
10
100
1k
10 k
100 k
1M
180°
10 M
f – Frequency – Hz
PHASE MARGIN
vs
SUPPLY VOLTAGE
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
53°
50°
VDD = 5 V
VI = 10 mV
CL = 20 pF
See Figure 3
52°
48°
φm
m – Phase Margin
φm
m – Phase Margin
51°
50°
49°
48°
VI = 10 mV
CL = 20 pF
TA = 25°C
See Figure 3
47°
46°
2
4
6
8
10
12
14
44°
42°
45°
0
46°
40°
–75
16
–50
–25
0
25
50
75
100
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
21
125
XD272 DIP8 / XL272 SOP8
DIP
22
21
XD272 DIP8 / XL272 SOP8
SOP
23
21