XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Features
• Wide Range of Digital and Analog Signal Levels
- Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 20V
- Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤20VP-P
• Low ON Resistance, 125Ω (Typ) Over 15VP-P Signal Input
Range for VDD -VEE = 18V
• High OFF Resistance, Channel Leakage of ±100pA (Typ)
at VDD -VEE = 18V
• Logic-Level Conversion for Digital Addressing Signals of
3V to 20V (VDD -VSS = 3V to 20V) to Switch Analog
Signals to 20VP-P (VDD -VEE = 20V)
• Matched Switch Characteristics, rON = 5Ω (Typ) for
VDD -VEE = 15V
[ /Title • Very Low Quiescent Power Dissipation Under All DigitalControl Input and Supply Conditions, 0.2µW (Typ) at
(CD405
VDD -VSS = VDD -VEE = 10V
1B,
CD4052 • Binary Address Decoding on Chip
B,
• 5V, 10V, and 15V Parametric Ratings
CD4053 • 100% Tested for Quiescent Current at 20V
B)
• Maximum Input Current of 1µA at 18V Over Full Package
/SubTemperature Range, 100nA at 18V and 25oC
ject
• Break-Before-Make Switching Eliminates Channel
(CMOS
Overlap
Analog
Multi- Applications
plex• Analog and Digital Multiplexing and Demultiplexing
ers/Dem
ultiplex- • A/D and D/A Conversion
ers with • Signal Gating
Logic
CMOS Analog Multiplexers/Demultiplexers
Level
with Logic Level Conversion
ConverThe XD4051, XD4052, and XD4053 analog multiplexers
sion)
are digitally-controlled analog switches having low ON
/Author impedance and very low OFF leakage current. Control of
()
analog signals up to 20VP-P can be achieved by digital
/Keysignal amplitudes of 4.5V to 20V (if VDD -VSS = 3V, a
VDD -VEE of up to 13V can be controlled; for VDD -VEE level
words
(Harris differences above 13V, a VDD -VSS of at least 4.5V is
required). For example, if VDD = +4.5V, VSS = 0V, and
SemiVEE = -13.5V, analog signals from -13.5V to +4.5V can be
conduc- controlled
by digital inputs of 0V to 5V. These multiplexer
tor,
circuits dissipate extremely low quiescent power over the
CD4000 full VDD -VSS and VDD -VEE supply-voltage ranges,
independent of the logic state of the control signals. When
a logic “1” is present at the inhibit input terminal, all
channels are off.
1
The XD4051 is a single 8-Channel multiplexer having three
binary control inputs, A, B, and C, and an inhibit input. The
three binary signals select 1 of 8 channels to be turned on,
and connect one of the 8 inputs to the output.
The XD4052 is a differential 4-Channel multiplexer having
two binary control inputs, A and B, and an inhibit input. The
two binary input signals select 1 of 4 pairs of channels to be
turned on and connect the analog inputs to the outputs.
The XD4053 is a triple 2-Channel multiplexer having three
separate digital control inputs, A, B, and C, and an inhibit
input. Each control input selects one of a pair of channels
which are connected in a single-pole, double-throw
configuration.
When these devices are used as demultiplexers, the
“CHANNEL IN/OUT” terminals are the outputs and the
“COMMON OUT/IN” terminals are the inputs.
Ordering Information
PART NUMBER
TEMP. RANGE
(oC)
PACKAGE
4051, 4052
4053
-55 to 125
16 Ld CERAMIC
DIP
4051, 4052
4053
-55 to 125
16 Ld PDIP
4051, 4051
4051
4052, 4052
4052
4053 4053
4053
-55 to 125
16 Ld SOIC
4051, 4052
4053
-55 to 125
16 Ld SOP
4051, 4051
4052, 4052
4053, 4053
-55 to 125
16 Ld TSSOP
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Pinouts
XD4051 (PDIP, CDIP, SOIC, SOP, TSSOP)
TOP VIEW
4 1
16 VDD
6 2
15 2
COM OUT/IN 3
14 1
7 4
13 0
CHANNELS
IN/OUT
XD4052 (PDIP, CDIP, SOP, TSSOP)
TOP VIEW
0 1
16 VDD
2 2
15 2
COMMON “Y” OUT/IN 3
14 1
Y CHANNELS
IN/OUT
X CHANNELS
IN/OUT
CHANNELS IN/OUT
CHANNELS
IN/OUT
Y CHANNELS
IN/OUT
3 4
13 COMMON “X” OUT/IN
5 5
12 3
1 5
12 0
INH 6
11 A
INH 6
11 3
VEE 7
10 B
VEE 7
10 A
VSS 8
9 C
VSS 8
9 B
X CHANNELS
IN/OUT
XD4053 (PDIP, CDIP, SOP, TSSOP)
TOP VIEW
IN/OUT
by 1
16 VDD
bx 2
15 OUT/IN bx OR by
cy 3
14 OUT/IN ax OR ay
OUT/IN CX OR CY 4
13 ay
IN/OUT CX 5
12 ax
INH 6
11 A
VEE 7
10 B
VSS 8
9 C
IN/OUT
Functional Block Diagrams
XD4051
CHANNEL IN/OUT
16 VDD
7
6
5
4
3
2
1
0
4
2
5
1
12
15
14
13
TG
TG
A
†
11
TG
B
†
10
LOGIC
LEVEL
CONVERSION
C
†
9
INH
†
6
BINARY
TO
1 OF 8
DECODER
WITH
INHIBIT
TG
3
TG
TG
TG
TG
8 VSS
7 VEE
† All inputs are protected by standard CMOS protection network.
2
COMMON
OUT/IN
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Functional Block Diagrams
(Continued)
XD4052
X CHANNELS IN/OUT
3
2
1
0
11
15
14
12
TG
16 VDD
A
†
10
B
†
9
INH
†
6
TG
BINARY
TO
1 OF 4
DECODER
WITH
INHIBIT
LOGIC
LEVEL
CONVERSION
TG
COMMON X
OUT/IN
TG
13
TG
TG
3
COMMON Y
OUT/IN
TG
TG
8 VSS
7
VEE
1
5
2
4
0
1
2
3
Y CHANNELS IN/OUT
XD4053
LOGIC
LEVEL
CONVERSION
16 VDD
BINARY TO
1 OF 2
DECODERS
WITH
INHIBIT
IN/OUT
cy
cx
by
bx
ay
ax
3
5
1
2
13
12
TG
COMMON
OUT/IN
ax OR ay
14
A
†
11
TG
TG
COMMON
OUT/IN
bx OR by
15
B
C
†
†
10
TG
TG
9
4
TG
INH
†
COMMON
OUT/IN
cx OR cy
6
VDD
8
VSS
7
VEE
† All inputs are protected by standard CMOS protection network.
3
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
TRUTH TABLES
INPUT STATES
INHIBIT
C
B
A
“ON” CHANNEL(S)
0
0
0
0
0
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
X
X
X
None
XD4051
XD4052
INHIBIT
B
A
0
0
0
0x, 0y
0
0
1
1x, 1y
0
1
0
2x, 2y
0
1
1
3x, 3y
1
X
X
None
XD4053
INHIBIT
A OR B OR C
0
0
ax or bx or cx
0
1
ay or by or cy
1
X
None
X = Don’t Care
4
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Absolute Maximum Ratings
Thermal Information
Supply Voltage (V+ to V-)
Voltages Referenced to VSS Terminal . . . . . . . . . . . -0.5V to 20V
DC Input Voltage Range . . . . . . . . . . . . . . . . . . -0.5V to VDD +0.5V
DC Input Current, Any One Input. . . . . . . . . . . . . . . . . . . . . . ±10mA
Package Thermal Impedance, θJA (see Note 1):
E (PDIP) package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67oC/W
M (SOIC) package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73oC/W
NS (SOP) package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64oC/W
PW (TSSOP) package . . . . . . . . . . . . . . . . . . . . . . . . . . 108oC/W
Maximum Junction Temperature (Ceramic Package) . . . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .265oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
Common Conditions Here: If Whole Table is For the Full Temp. Range, VSUPPLY = ±5V, AV = +1,
RL = 100Ω, Unless Otherwise Specified (Note 3)
Electrical Specifications
LIMITS AT INDICATED TEMPERATURES (oC)
CONDITIONS
25
PARAMETER
VIS (V)
VEE (V)
VSS (V)
VDD (V)
-55
-40
85
125
MIN
TYP
MAX
UNITS
SIGNAL INPUTS (VIS) AND OUTPUTS (VOS)
-
-
-
5
5
5
150
150
-
0.04
5
µA
-
-
-
10
10
10
300
300
-
0.04
10
µA
-
-
-
15
20
20
600
600
-
0.04
20
µA
-
-
-
20
100
100
3000
3000
-
0.08
100
µA
-
0
0
5
800
850
1200
1300
-
470
1050
Ω
-
0
0
10
310
330
520
550
-
180
400
Ω
-
0
0
15
200
210
300
320
-
125
240
Ω
Change in ON
Resistance (Between
Any Two Channels),
∆rON
-
0
0
5
-
-
-
-
-
15
-
Ω
-
0
0
10
-
-
-
-
-
10
-
Ω
-
0
0
15
-
-
-
-
-
5
-
Ω
OFF Channel Leakage
Current: Any Channel
OFF (Max) or ALL
Channels OFF (Common
OUT/IN) (Max)
-
0
0
18
-
±0.01
±100
(Note 2)
nA
Capacitance:
-
-5
5-
5
Quiescent Device
Current, IDD Max
Drain to Source ON
Resistance rON Max
0 ≤ VIS ≤ VDD
Input, CIS
±100 (Note 2)
±1000 (Note 2)
-
-
-
-
-
5
-
pF
XD4051
-
-
-
-
-
30
-
pF
XD4052
-
-
-
-
-
18
-
pF
XD4053
-
-
-
-
-
9
-
pF
-
-
-
-
-
0.2
-
pF
5
-
-
-
-
-
30
60
ns
10
-
-
-
-
-
15
30
ns
15
-
-
-
-
-
10
20
ns
Output, COS
Feedthrough
CIOS
Propagation Delay Time
(Signal Input to Output
VDD
5
RL = 200kΩ,
CL = 50pF,
tr , tf = 20ns
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Common Conditions Here: If Whole Table is For the Full Temp. Range, VSUPPLY = ±5V, AV = +1,
RL = 100Ω, Unless Otherwise Specified (Continued) (Note 3)
Electrical Specifications
LIMITS AT INDICATED TEMPERATURES (oC)
CONDITIONS
25
PARAMETER
VIS (V)
VEE (V)
VSS (V)
VDD (V)
-55
-40
85
125
MIN
TYP
MAX
UNITS
5
1.5
1.5
1.5
1.5
-
-
1.5
V
10
3
3
3
3
-
-
3
V
15
4
4
4
4
-
-
4
V
5
3.5
3.5
3.5
3.5
3.5
-
-
V
10
7
7
7
7
7
-
-
V
15
11
11
11
11
11
-
-
V
±0.1
µA
CONTROL (ADDRESS OR INHIBIT), VC
Input Low Voltage, VIL ,
Max
VIL = VDD
through
1kΩ;
VIH = VDD
through
Input High Voltage, VIH , 1kΩ
Min
Input Current, IIN (Max)
VEE = VSS ,
RL = 1kΩ to VSS ,
IIS < 2µA on All
OFF Channels
VIN = 0, 18
18
±0.1
±0.1
±1
±1
-
±10-5
Propagation Delay Time:
Address-to-Signal
tr , tf = 20ns,
OUT (Channels ON or CL = 50pF,
OFF) See Figures 10, RL = 10kΩ
11, 14
0
0
5
-
-
-
-
-
450
720
ns
0
0
10
-
-
-
-
-
160
320
ns
0
0
15
-
-
-
-
-
120
240
ns
-5
0
5
-
-
-
-
-
225
450
ns
0
0
5
-
-
-
-
-
400
720
ns
0
0
10
-
-
-
-
-
160
320
ns
0
0
15
-
-
-
-
-
120
240
ns
-10
0
5
-
-
-
-
-
200
400
ns
0
0
5
-
-
-
-
-
200
450
ns
0
0
10
-
-
-
-
-
90
210
ns
0
0
15
-
-
-
-
-
70
160
ns
-10
0
5
-
-
-
-
-
130
300
ns
-
-
-
-
-
5
7.5
pF
Propagation Delay Time:
Inhibit-to-Signal OUT tr , tf = 20ns,
(Channel Turning ON) CL = 50pF,
See Figure 11
RL = 1kΩ
Propagation Delay Time:
Inhibit-to-Signal OUT
(Channel Turning
OFF) See Figure 15
tr , tf = 20ns,
CL = 50pF,
RL = 10kΩ
Input Capacitance, CIN
(Any Address or Inhibit
Input)
NOTE:
2. Determined by minimum feasible leakage measurement for automatic testing.
Electrical Specifications
TEST CONDITIONS
PARAMETER
VIS (V)
VDD (V)
RL (kΩ)
Cutoff (-3dB) Frequency Channel ON (Sine Wave Input)
5 (Note 3)
10
1
VOS at Common OUT/IN
VEE = VSS ,
V OS
20Log ------------ = – 3dB
V IS
6
VOS at Any Channel
LIMITS
TYP
UNITS
XD4053
30
MHz
XD4052
25
MHz
XD4051
20
MHz
60
MHz
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Electrical Specifications
TEST CONDITIONS
LIMITS
PARAMETER
VIS (V)
VDD (V)
RL (kΩ)
TYP
UNITS
Total Harmonic Distortion, THD
2 (Note 3)
5
10
0.3
%
3 (Note 3)
10
0.2
%
5 (Note 3)
15
0.12
%
VEE = VSS, fIS = 1kHz Sine Wave
-40dB Feedthrough Frequency
(All Channels OFF)
5 (Note 3)
10
1
VOS at Common OUT/IN
XD4053
8
MHz
XD4052
10
MHz
XD4051
12
MHz
VOS at Any Channel
8
MHz
Between Any 2 Channels
3
MHz
Between Sections,
XD4052 Only
Measured on Common
6
MHz
Measured on Any Channel
10
MHz
Between Any Two
Sections, XD4053
Only
In Pin 2, Out Pin 14
2.5
MHz
In Pin 15, Out Pin 14
6
MHz
10
(Note 4)
65
mVPEAK
VEE = 0, VSS = 0, tr , tf = 20ns, VCC
= VDD - VSS (Square Wave)
65
mVPEAK
VEE = VSS ,
V OS
20Log ------------ = – 40dB
V IS
-40dB Signal Crosstalk
Frequency
%
5 (Note 3)
10
1
VEE = VSS ,
V OS
20Log ------------ = – 40dB
V IS
Address-or-Inhibit-to-Signal
Crosstalk
-
10
NOTES:
V DD – V EE
----------------------------2
3. Peak-to-Peak voltage symmetrical about
4. Both ends of channel.
Typical Performance Curves
300
VDD - VEE = 10V
VDD - VEE = 5V
rON , CHANNEL ON RESISTANCE (Ω)
rON , CHANNEL ON RESISTANCE (Ω)
600
500
400
TA = 125oC
300
TA = 25oC
200
TA = -55oC
100
0
-4
-3
-2
-1
0
1
2
3
4
VIS , INPUT SIGNAL VOLTAGE (V)
FIGURE 1. CHANNEL ON RESISTANCE vs INPUT SIGNAL
VOLTAGE (ALL TYPES)
7
5
250
TA = 125oC
200
150
TA = 25oC
100
TA = -55oC
50
0
-10
-7.5
-5
-2.5
0
2.5
5
VIS , INPUT SIGNAL VOLTAGE (V)
7.5
FIGURE 2. CHANNEL ON RESISTANCE vs INPUT SIGNAL
VOLTAGE (ALL TYPES)
10
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Typical Performance Curves
(Continued)
600
250
rON , CHANNEL ON RESISTANCE (Ω)
rON , CHANNEL ON RESISTANCE (Ω)
TA = 25oC
VDD - VEE = 5V
500
400
300
200
10V
15V
100
0
-10
-7.5
-5
-2.5
0
2.5
5
7.5
VDD - VEE = 15V
200
TA = 125oC
150
TA = 25oC
100
TA = -55oC
50
0
-10
10
-7.5
-5
FIGURE 3. CHANNEL ON RESISTANCE vs INPUT SIGNAL
VOLTAGE (ALL TYPES)
PD , POWER DISSIPATION PACKAGE (µW)
RL = 100kΩ, RL = 10kΩ
1kΩ
500Ω
100Ω
2
0
-2
-4
-6
-6
-4
-2
0
2
4
VIS , INPUT SIGNAL VOLTAGE (V)
104
f
VDD = 15V
103
VDD = 10V
102
VDD = 5V
CL = 15pF
10
1
10
TEST CIRCUIT
VDD
CD4029
VDD B/D
A B
100Ω
10 9
1
3 CL
13
5
12
2
4 XD4052 14
15
6
11
7
8
100Ω
PD , POWER DISSIPATION PACKAGE (µW)
TA = 25oC
ALTERNATI
E N
NG “O”
AND “I” PATTERN
CL = 50pF
Ι
102
103
104
SWITCHING FREQUENCY (kHz)
105
FIGURE 7. DYNAMIC POWER DISSIPATION vs SWITCHING
FREQUENCY (XD4052)
8
5
7.5
10
TEST CIRCUIT
VDD
TA = 25oC
ALTERNATI
TE A NG “O”
AND
N “I”
“I” PATTER
E N
C
= 50pF
L
104
f
VDD = 15V
103
VDD = 10V
102
VDD = 5V
B/D
XD 4029
A B C
VDD
100Ω 11 10 9
13
14
15
12 XD4051
1
5
3
2
48 7 6 C
L
100Ω
Ι
CL = 15pF
1
FIGURE 5. ON CHARACTERISTICS FOR 1 OF 8 CHANNELS
(XD4051)
105
2.5
105
10
6
10
102
103
104
SWITCHING FREQUENCY (kHz)
105
FIGURE 6. DYNAMIC POWER DISSIPATION vs SWITCHING
FREQUENCY (XD4051)
PD , POWER DISSIPATION PACKAGE (µW)
VOS , OUTPUT SIGNAL VOLTAGE (V)
4
0
FIGURE 4. CHANNEL ON RESISTANCE vs INPUT SIGNAL
VOLTAGE (ALL TYPES)
6
VDD = 5V
VSS = 0V
VEE = -5V
TA = 25oC
-2.5
VIS , INPUT SIGNAL VOLTAGE (V)
VIS , INPUT SIGNAL VOLTAGE (V)
105
TA = 25oC
ALTERNATI
E N T NG “O”
O
AND
N “I”
“ ” PATTERN
CL = 50pF
104
103
VDD = 5V
102
CL = 15pF
VDD = 15V
VDD = 10V
TEST CIRCUIT
VDD f
9
4
CL
100Ω
3
12
5
13
100Ω
XD4053 2
10
1
11
15
6
14
7
8
Ι
10
1
10
102
103
104
SWITCHING FREQUENCY (kHz)
105
FIGURE 8. DYNAMIC POWER DISSIPATION vs SWITCHING
FREQUENCY (XD4053)
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Test Circuits and Waveforms
VDD = 15V
VDD = 7.5V
VDD = 5V
VDD = 5V
5V
7.5V
16
5V
16
16
16
VSS = 0V
VSS = 0V
VSS = 0V
VEE = 0V
7
8
VEE = -7.5V
7
8
VEE = -10V
7
8
7
8
VEE = -5V
VSS = 0V
(D)
(C)
(B)
(A)
NOTE: The ADDRESS (digital-control inputs) and INHIBIT logic levels
are: “0” = VSS and “1” = VDD. The analog signal (through the TG) may
swing from VEE to VDD.
FIGURE 9. TYPICAL BIAS VOLTAGES
tr = 20ns
tr = 20ns
tf = 20ns
90%
50%
90%
50%
10%
tf = 20ns
90%
50%
90%
50%
10%
10%
10%
TURN-ON TIME
90%
50%
90%
10%
10%
10%
TURN-OFF TIME
TURN-OFF TIME
FIGURE 10. WAVEFORMS, CHANNEL BEING TURNED ON
(RL = 1kΩ)
FIGURE 11. WAVEFORMS, CHANNEL BEING TURNED OFF
(RL = 1kΩ)
VDD
VDD
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
XD4051
IDD
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
XD4052
VDD
IDD
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
XD4053
FIGURE 12. OFF CHANNEL LEAKAGE CURRENT - ANY CHANNEL OFF
9
TURN-ON
TIME
tPHZ
IDD
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Test Circuits and Waveforms (Continued)
VDD
1
2
3
4
5
6
7
8
IDD
VDD
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
IDD
XD4051
VDD
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
XD4052
16
15
14
13
12
11
10
9
IDD
XD4053
FIGURE 13. OFF CHANNEL LEAKAGE CURRENT - ALL CHANNELS OFF
VDD
1
2
3
4
5
6
7
8
VDD
VEE
VSS
16
15
14
13
12
11
10
9
OUTPUT
VDD
OUTPUT
OUTPUT
1
RL
CL
2
RL
CL
3
VDD
VEE
4
VDD
5
VEE
6
VEE
VSS CLOCK
7
IN
8
VSS
VSS
XD4051
16
15
14
13
12
11
10
9
VDD
VEE
VDD
VSS CLOCK
VSS
IN
VSS
XD4052
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
XD4053
RL
CL
VEE
VDD
VSS CLOCK
IN
VSS
FIGURE 14. PROPAGATION DELAY - ADDRESS INPUT TO SIGNAL OUTPUT
VDD
OUTPUT
RL
1
2
3
4
5
6
7
8
50pF
VEE
VDD
VSS
VDD
CLOCK VEE
IN
VSS
16
15
14
13
12
11
10
9
VDD
OUTPUT
RL
50pF
VEE
VDD
VSS
VDD
CLOCK VEE
IN VSS
tPHL AND tPLH VSS
XD4051
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
OUTPUT
RL
50pF
VEE
VDD
VDD
VSS CLOCK VEE
IN VSS
V
tPHL AND tPLH SS
XD4052
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
VDD
V
tPHL AND tPLH SS
XD4053
FIGURE 15. PROPAGATION DELAY - INHIBIT INPUT TO SIGNAL OUTPUT
VDD
VIH
1K
VIH
VIL
VDD
VDD
µA
1K
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
VIH
VIL
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1K
1K
µA
VIH
1K
VIL
VIH
VIL
MEASURE < 2µA ON ALL
“OFF” CHANNELS (e.g., CHANNEL 6)
1K
µA
VIH
VIL
VIL
MEASURE < 2µA ON ALL
“OFF” CHANNELS (e.g., CHANNEL 2x)
MEASURE < 2µA ON ALL
“OFF” CHANNELS (e.g., CHANNEL by)
FIGURE 16. INPUT VOLTAGE TEST CIRCUITS (NOISE IMMUNITY)
10
16
15
14
13
12
11
10
9
XD4053B
XD4052B
XD4051B
1
2
3
4
5
6
7
8
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Test Circuits and Waveforms (Continued)
VDD
VDD
1
2
3
4
5
6
7
8
Ι
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
Ι
XD4051
XD4053
VDD
16
15
14
13
12
11
10
9
KEITHLEY
160 DIGITAL
MULTIMETER
TG
“ON”
10kΩ
X-Y
PLOTTER
FIGURE 18. CHANNEL ON RESISTANCE MEASUREMENT
CIRCUIT
VDD
1
2
3
4
5
6
7
8
VDD
Ι
VSS
XD4051
XD4053
VSS
X
H.P.
MOSELEY
7030A
XD4052
VDD
16
15
14
13
12
11
10
9
Y
VSS
FIGURE 17. QUIESCENT DEVICE CURRENT
1
2
3
4
5
6
7
8
1kΩ
RANGE
VSS
16
15
14
13
12
11
10
9
VDD
Ι
VSS
XD4052
NOTE: Measure inputs sequentially,
to both VDD and VSS connect all
unused inputs to either VDD or VSS .
NOTE: Measure inputs sequentially,
to both VDD and VSS connect all
unused inputs to either VDD or VSS .
FIGURE 19. INPUT CURRENT
5VP-P
CHANNEL
ON
5VP-P
OFF
CHANNEL
VDD
RF
VM
RL
1K
RL
RL
RL
FIGURE 20. FEEDTHROUGH (ALL TYPES)
FIGURE 21. CROSSTALK BETWEEN ANY TWO CHANNELS
(ALL TYPES)
CHANNEL IN Y
ON OR OFF
CHANNEL IN X
ON OR OFF
RL
RF
VM
RL
FIGURE 22. CROSSTALK BETWEEN DUALS OR TRIPLETS (XD4052B, XD4053B)
11
RF
VM
CHANNEL
ON
RF
VM
CHANNEL
OFF
6
7
8
5VP-P
COMMON
CHANNEL
OFF
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
Test Circuits and Waveforms (Continued)
DIFFERENTIAL
SIGNALS
XD4052
XD4052
COMMUNICATIONS
LINK
DIFF.
AMPLIFIER/
LINE DRIVER
DIFF.
MULTIPLEXING
DIFF.
RECEIVER
DEMULTIPLEXING
FIGURE 23. TYPICAL TIME-DIVISION APPLICATION OF THE XD4052
Special Considerations
In applications where separate power sources are used to
drive VDD and the signal inputs, the VDD current capability
should exceed VDD/RL (RL = effective external load). This
provision avoids permanent current flow or clamp action on
the VDD supply when power is applied or removed from the
XD4051, XD4052 or XD4053.
A
B
C
D
E
A
B
XD4051
C
INH
Q0
A
B
E
1/2
XD4556
A
B
XD4051
C
INH
Q1
Q2
A
B
XD4051
C
INH
FIGURE 24. 24-TO-1 MUX ADDRESSING
12
COMMON
OUTPUT
XD4051 XD4052 XD4053 DIP16
XL4051 XL4052 XL4053 SOP16
DIP
13