0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XD4053

XD4053

  • 厂商:

    XINLUDA(信路达)

  • 封装:

    DIP16

  • 描述:

    多路复用芯片 DIP-16

  • 数据手册
  • 价格&库存
XD4053 数据手册
XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Features • Wide Range of Digital and Analog Signal Levels - Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 20V - Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤20VP-P • Low ON Resistance, 125Ω (Typ) Over 15VP-P Signal Input Range for VDD -VEE = 18V • High OFF Resistance, Channel Leakage of ±100pA (Typ) at VDD -VEE = 18V • Logic-Level Conversion for Digital Addressing Signals of 3V to 20V (VDD -VSS = 3V to 20V) to Switch Analog Signals to 20VP-P (VDD -VEE = 20V) • Matched Switch Characteristics, rON = 5Ω (Typ) for VDD -VEE = 15V [ /Title • Very Low Quiescent Power Dissipation Under All DigitalControl Input and Supply Conditions, 0.2µW (Typ) at (CD405 VDD -VSS = VDD -VEE = 10V 1B, CD4052 • Binary Address Decoding on Chip B, • 5V, 10V, and 15V Parametric Ratings CD4053 • 100% Tested for Quiescent Current at 20V B) • Maximum Input Current of 1µA at 18V Over Full Package /SubTemperature Range, 100nA at 18V and 25oC ject • Break-Before-Make Switching Eliminates Channel (CMOS Overlap Analog Multi- Applications plex• Analog and Digital Multiplexing and Demultiplexing ers/Dem ultiplex- • A/D and D/A Conversion ers with • Signal Gating Logic CMOS Analog Multiplexers/Demultiplexers Level with Logic Level Conversion ConverThe XD4051, XD4052, and XD4053 analog multiplexers sion) are digitally-controlled analog switches having low ON /Author impedance and very low OFF leakage current. Control of () analog signals up to 20VP-P can be achieved by digital /Keysignal amplitudes of 4.5V to 20V (if VDD -VSS = 3V, a VDD -VEE of up to 13V can be controlled; for VDD -VEE level words (Harris differences above 13V, a VDD -VSS of at least 4.5V is required). For example, if VDD = +4.5V, VSS = 0V, and SemiVEE = -13.5V, analog signals from -13.5V to +4.5V can be conduc- controlled by digital inputs of 0V to 5V. These multiplexer tor, circuits dissipate extremely low quiescent power over the CD4000 full VDD -VSS and VDD -VEE supply-voltage ranges, independent of the logic state of the control signals. When a logic “1” is present at the inhibit input terminal, all channels are off. 1 The XD4051 is a single 8-Channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output. The XD4052 is a differential 4-Channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs. The XD4053 is a triple 2-Channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole, double-throw configuration. When these devices are used as demultiplexers, the “CHANNEL IN/OUT” terminals are the outputs and the “COMMON OUT/IN” terminals are the inputs. Ordering Information PART NUMBER TEMP. RANGE (oC) PACKAGE 4051, 4052 4053 -55 to 125 16 Ld CERAMIC DIP 4051, 4052 4053 -55 to 125 16 Ld PDIP 4051, 4051 4051 4052, 4052 4052 4053 4053 4053 -55 to 125 16 Ld SOIC 4051, 4052 4053 -55 to 125 16 Ld SOP 4051, 4051 4052, 4052 4053, 4053 -55 to 125 16 Ld TSSOP XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Pinouts XD4051 (PDIP, CDIP, SOIC, SOP, TSSOP) TOP VIEW 4 1 16 VDD 6 2 15 2 COM OUT/IN 3 14 1 7 4 13 0 CHANNELS IN/OUT XD4052 (PDIP, CDIP, SOP, TSSOP) TOP VIEW 0 1 16 VDD 2 2 15 2 COMMON “Y” OUT/IN 3 14 1 Y CHANNELS IN/OUT X CHANNELS IN/OUT CHANNELS IN/OUT CHANNELS IN/OUT Y CHANNELS IN/OUT 3 4 13 COMMON “X” OUT/IN 5 5 12 3 1 5 12 0 INH 6 11 A INH 6 11 3 VEE 7 10 B VEE 7 10 A VSS 8 9 C VSS 8 9 B X CHANNELS IN/OUT XD4053 (PDIP, CDIP, SOP, TSSOP) TOP VIEW IN/OUT by 1 16 VDD bx 2 15 OUT/IN bx OR by cy 3 14 OUT/IN ax OR ay OUT/IN CX OR CY 4 13 ay IN/OUT CX 5 12 ax INH 6 11 A VEE 7 10 B VSS 8 9 C IN/OUT Functional Block Diagrams XD4051 CHANNEL IN/OUT 16 VDD 7 6 5 4 3 2 1 0 4 2 5 1 12 15 14 13 TG TG A † 11 TG B † 10 LOGIC LEVEL CONVERSION C † 9 INH † 6 BINARY TO 1 OF 8 DECODER WITH INHIBIT TG 3 TG TG TG TG 8 VSS 7 VEE † All inputs are protected by standard CMOS protection network. 2 COMMON OUT/IN XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Functional Block Diagrams (Continued) XD4052 X CHANNELS IN/OUT 3 2 1 0 11 15 14 12 TG 16 VDD A † 10 B † 9 INH † 6 TG BINARY TO 1 OF 4 DECODER WITH INHIBIT LOGIC LEVEL CONVERSION TG COMMON X OUT/IN TG 13 TG TG 3 COMMON Y OUT/IN TG TG 8 VSS 7 VEE 1 5 2 4 0 1 2 3 Y CHANNELS IN/OUT XD4053 LOGIC LEVEL CONVERSION 16 VDD BINARY TO 1 OF 2 DECODERS WITH INHIBIT IN/OUT cy cx by bx ay ax 3 5 1 2 13 12 TG COMMON OUT/IN ax OR ay 14 A † 11 TG TG COMMON OUT/IN bx OR by 15 B C † † 10 TG TG 9 4 TG INH † COMMON OUT/IN cx OR cy 6 VDD 8 VSS 7 VEE † All inputs are protected by standard CMOS protection network. 3 XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 TRUTH TABLES INPUT STATES INHIBIT C B A “ON” CHANNEL(S) 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 X X X None XD4051 XD4052 INHIBIT B A 0 0 0 0x, 0y 0 0 1 1x, 1y 0 1 0 2x, 2y 0 1 1 3x, 3y 1 X X None XD4053 INHIBIT A OR B OR C 0 0 ax or bx or cx 0 1 ay or by or cy 1 X None X = Don’t Care 4 XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Absolute Maximum Ratings Thermal Information Supply Voltage (V+ to V-) Voltages Referenced to VSS Terminal . . . . . . . . . . . -0.5V to 20V DC Input Voltage Range . . . . . . . . . . . . . . . . . . -0.5V to VDD +0.5V DC Input Current, Any One Input. . . . . . . . . . . . . . . . . . . . . . ±10mA Package Thermal Impedance, θJA (see Note 1): E (PDIP) package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67oC/W M (SOIC) package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73oC/W NS (SOP) package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64oC/W PW (TSSOP) package . . . . . . . . . . . . . . . . . . . . . . . . . . 108oC/W Maximum Junction Temperature (Ceramic Package) . . . . . . . . .175oC Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .265oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. Common Conditions Here: If Whole Table is For the Full Temp. Range, VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified (Note 3) Electrical Specifications LIMITS AT INDICATED TEMPERATURES (oC) CONDITIONS 25 PARAMETER VIS (V) VEE (V) VSS (V) VDD (V) -55 -40 85 125 MIN TYP MAX UNITS SIGNAL INPUTS (VIS) AND OUTPUTS (VOS) - - - 5 5 5 150 150 - 0.04 5 µA - - - 10 10 10 300 300 - 0.04 10 µA - - - 15 20 20 600 600 - 0.04 20 µA - - - 20 100 100 3000 3000 - 0.08 100 µA - 0 0 5 800 850 1200 1300 - 470 1050 Ω - 0 0 10 310 330 520 550 - 180 400 Ω - 0 0 15 200 210 300 320 - 125 240 Ω Change in ON Resistance (Between Any Two Channels), ∆rON - 0 0 5 - - - - - 15 - Ω - 0 0 10 - - - - - 10 - Ω - 0 0 15 - - - - - 5 - Ω OFF Channel Leakage Current: Any Channel OFF (Max) or ALL Channels OFF (Common OUT/IN) (Max) - 0 0 18 - ±0.01 ±100 (Note 2) nA Capacitance: - -5 5- 5 Quiescent Device Current, IDD Max Drain to Source ON Resistance rON Max 0 ≤ VIS ≤ VDD Input, CIS ±100 (Note 2) ±1000 (Note 2) - - - - - 5 - pF XD4051 - - - - - 30 - pF XD4052 - - - - - 18 - pF XD4053 - - - - - 9 - pF - - - - - 0.2 - pF 5 - - - - - 30 60 ns 10 - - - - - 15 30 ns 15 - - - - - 10 20 ns Output, COS Feedthrough CIOS Propagation Delay Time (Signal Input to Output VDD 5 RL = 200kΩ, CL = 50pF, tr , tf = 20ns XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Common Conditions Here: If Whole Table is For the Full Temp. Range, VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified (Continued) (Note 3) Electrical Specifications LIMITS AT INDICATED TEMPERATURES (oC) CONDITIONS 25 PARAMETER VIS (V) VEE (V) VSS (V) VDD (V) -55 -40 85 125 MIN TYP MAX UNITS 5 1.5 1.5 1.5 1.5 - - 1.5 V 10 3 3 3 3 - - 3 V 15 4 4 4 4 - - 4 V 5 3.5 3.5 3.5 3.5 3.5 - - V 10 7 7 7 7 7 - - V 15 11 11 11 11 11 - - V ±0.1 µA CONTROL (ADDRESS OR INHIBIT), VC Input Low Voltage, VIL , Max VIL = VDD through 1kΩ; VIH = VDD through Input High Voltage, VIH , 1kΩ Min Input Current, IIN (Max) VEE = VSS , RL = 1kΩ to VSS , IIS < 2µA on All OFF Channels VIN = 0, 18 18 ±0.1 ±0.1 ±1 ±1 - ±10-5 Propagation Delay Time: Address-to-Signal tr , tf = 20ns, OUT (Channels ON or CL = 50pF, OFF) See Figures 10, RL = 10kΩ 11, 14 0 0 5 - - - - - 450 720 ns 0 0 10 - - - - - 160 320 ns 0 0 15 - - - - - 120 240 ns -5 0 5 - - - - - 225 450 ns 0 0 5 - - - - - 400 720 ns 0 0 10 - - - - - 160 320 ns 0 0 15 - - - - - 120 240 ns -10 0 5 - - - - - 200 400 ns 0 0 5 - - - - - 200 450 ns 0 0 10 - - - - - 90 210 ns 0 0 15 - - - - - 70 160 ns -10 0 5 - - - - - 130 300 ns - - - - - 5 7.5 pF Propagation Delay Time: Inhibit-to-Signal OUT tr , tf = 20ns, (Channel Turning ON) CL = 50pF, See Figure 11 RL = 1kΩ Propagation Delay Time: Inhibit-to-Signal OUT (Channel Turning OFF) See Figure 15 tr , tf = 20ns, CL = 50pF, RL = 10kΩ Input Capacitance, CIN (Any Address or Inhibit Input) NOTE: 2. Determined by minimum feasible leakage measurement for automatic testing. Electrical Specifications TEST CONDITIONS PARAMETER VIS (V) VDD (V) RL (kΩ) Cutoff (-3dB) Frequency Channel ON (Sine Wave Input) 5 (Note 3) 10 1 VOS at Common OUT/IN VEE = VSS , V OS 20Log ------------ = – 3dB V IS 6 VOS at Any Channel LIMITS TYP UNITS XD4053 30 MHz XD4052 25 MHz XD4051 20 MHz 60 MHz XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Electrical Specifications TEST CONDITIONS LIMITS PARAMETER VIS (V) VDD (V) RL (kΩ) TYP UNITS Total Harmonic Distortion, THD 2 (Note 3) 5 10 0.3 % 3 (Note 3) 10 0.2 % 5 (Note 3) 15 0.12 % VEE = VSS, fIS = 1kHz Sine Wave -40dB Feedthrough Frequency (All Channels OFF) 5 (Note 3) 10 1 VOS at Common OUT/IN XD4053 8 MHz XD4052 10 MHz XD4051 12 MHz VOS at Any Channel 8 MHz Between Any 2 Channels 3 MHz Between Sections, XD4052 Only Measured on Common 6 MHz Measured on Any Channel 10 MHz Between Any Two Sections, XD4053 Only In Pin 2, Out Pin 14 2.5 MHz In Pin 15, Out Pin 14 6 MHz 10 (Note 4) 65 mVPEAK VEE = 0, VSS = 0, tr , tf = 20ns, VCC = VDD - VSS (Square Wave) 65 mVPEAK VEE = VSS , V OS 20Log ------------ = – 40dB V IS -40dB Signal Crosstalk Frequency % 5 (Note 3) 10 1 VEE = VSS , V OS 20Log ------------ = – 40dB V IS Address-or-Inhibit-to-Signal Crosstalk - 10 NOTES: V DD – V EE ----------------------------2 3. Peak-to-Peak voltage symmetrical about 4. Both ends of channel. Typical Performance Curves 300 VDD - VEE = 10V VDD - VEE = 5V rON , CHANNEL ON RESISTANCE (Ω) rON , CHANNEL ON RESISTANCE (Ω) 600 500 400 TA = 125oC 300 TA = 25oC 200 TA = -55oC 100 0 -4 -3 -2 -1 0 1 2 3 4 VIS , INPUT SIGNAL VOLTAGE (V) FIGURE 1. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES) 7 5 250 TA = 125oC 200 150 TA = 25oC 100 TA = -55oC 50 0 -10 -7.5 -5 -2.5 0 2.5 5 VIS , INPUT SIGNAL VOLTAGE (V) 7.5 FIGURE 2. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES) 10 XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Typical Performance Curves (Continued) 600 250 rON , CHANNEL ON RESISTANCE (Ω) rON , CHANNEL ON RESISTANCE (Ω) TA = 25oC VDD - VEE = 5V 500 400 300 200 10V 15V 100 0 -10 -7.5 -5 -2.5 0 2.5 5 7.5 VDD - VEE = 15V 200 TA = 125oC 150 TA = 25oC 100 TA = -55oC 50 0 -10 10 -7.5 -5 FIGURE 3. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES) PD , POWER DISSIPATION PACKAGE (µW) RL = 100kΩ, RL = 10kΩ 1kΩ 500Ω 100Ω 2 0 -2 -4 -6 -6 -4 -2 0 2 4 VIS , INPUT SIGNAL VOLTAGE (V) 104 f VDD = 15V 103 VDD = 10V 102 VDD = 5V CL = 15pF 10 1 10 TEST CIRCUIT VDD CD4029 VDD B/D A B 100Ω 10 9 1 3 CL 13 5 12 2 4 XD4052 14 15 6 11 7 8 100Ω PD , POWER DISSIPATION PACKAGE (µW) TA = 25oC ALTERNATI E N NG “O” AND “I” PATTERN CL = 50pF Ι 102 103 104 SWITCHING FREQUENCY (kHz) 105 FIGURE 7. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (XD4052) 8 5 7.5 10 TEST CIRCUIT VDD TA = 25oC ALTERNATI TE A NG “O” AND N “I” “I” PATTER E N C = 50pF L 104 f VDD = 15V 103 VDD = 10V 102 VDD = 5V B/D XD 4029 A B C VDD 100Ω 11 10 9 13 14 15 12 XD4051 1 5 3 2 48 7 6 C L 100Ω Ι CL = 15pF 1 FIGURE 5. ON CHARACTERISTICS FOR 1 OF 8 CHANNELS (XD4051) 105 2.5 105 10 6 10 102 103 104 SWITCHING FREQUENCY (kHz) 105 FIGURE 6. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (XD4051) PD , POWER DISSIPATION PACKAGE (µW) VOS , OUTPUT SIGNAL VOLTAGE (V) 4 0 FIGURE 4. CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES) 6 VDD = 5V VSS = 0V VEE = -5V TA = 25oC -2.5 VIS , INPUT SIGNAL VOLTAGE (V) VIS , INPUT SIGNAL VOLTAGE (V) 105 TA = 25oC ALTERNATI E N T NG “O” O AND N “I” “ ” PATTERN CL = 50pF 104 103 VDD = 5V 102 CL = 15pF VDD = 15V VDD = 10V TEST CIRCUIT VDD f 9 4 CL 100Ω 3 12 5 13 100Ω XD4053 2 10 1 11 15 6 14 7 8 Ι 10 1 10 102 103 104 SWITCHING FREQUENCY (kHz) 105 FIGURE 8. DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (XD4053) XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Test Circuits and Waveforms VDD = 15V VDD = 7.5V VDD = 5V VDD = 5V 5V 7.5V 16 5V 16 16 16 VSS = 0V VSS = 0V VSS = 0V VEE = 0V 7 8 VEE = -7.5V 7 8 VEE = -10V 7 8 7 8 VEE = -5V VSS = 0V (D) (C) (B) (A) NOTE: The ADDRESS (digital-control inputs) and INHIBIT logic levels are: “0” = VSS and “1” = VDD. The analog signal (through the TG) may swing from VEE to VDD. FIGURE 9. TYPICAL BIAS VOLTAGES tr = 20ns tr = 20ns tf = 20ns 90% 50% 90% 50% 10% tf = 20ns 90% 50% 90% 50% 10% 10% 10% TURN-ON TIME 90% 50% 90% 10% 10% 10% TURN-OFF TIME TURN-OFF TIME FIGURE 10. WAVEFORMS, CHANNEL BEING TURNED ON (RL = 1kΩ) FIGURE 11. WAVEFORMS, CHANNEL BEING TURNED OFF (RL = 1kΩ) VDD VDD 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 XD4051 IDD 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 XD4052 VDD IDD 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 XD4053 FIGURE 12. OFF CHANNEL LEAKAGE CURRENT - ANY CHANNEL OFF 9 TURN-ON TIME tPHZ IDD XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Test Circuits and Waveforms (Continued) VDD 1 2 3 4 5 6 7 8 IDD VDD 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 IDD XD4051 VDD 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 XD4052 16 15 14 13 12 11 10 9 IDD XD4053 FIGURE 13. OFF CHANNEL LEAKAGE CURRENT - ALL CHANNELS OFF VDD 1 2 3 4 5 6 7 8 VDD VEE VSS 16 15 14 13 12 11 10 9 OUTPUT VDD OUTPUT OUTPUT 1 RL CL 2 RL CL 3 VDD VEE 4 VDD 5 VEE 6 VEE VSS CLOCK 7 IN 8 VSS VSS XD4051 16 15 14 13 12 11 10 9 VDD VEE VDD VSS CLOCK VSS IN VSS XD4052 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 XD4053 RL CL VEE VDD VSS CLOCK IN VSS FIGURE 14. PROPAGATION DELAY - ADDRESS INPUT TO SIGNAL OUTPUT VDD OUTPUT RL 1 2 3 4 5 6 7 8 50pF VEE VDD VSS VDD CLOCK VEE IN VSS 16 15 14 13 12 11 10 9 VDD OUTPUT RL 50pF VEE VDD VSS VDD CLOCK VEE IN VSS tPHL AND tPLH VSS XD4051 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 OUTPUT RL 50pF VEE VDD VDD VSS CLOCK VEE IN VSS V tPHL AND tPLH SS XD4052 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 VDD V tPHL AND tPLH SS XD4053 FIGURE 15. PROPAGATION DELAY - INHIBIT INPUT TO SIGNAL OUTPUT VDD VIH 1K VIH VIL VDD VDD µA 1K 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 VIH VIL 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 1K 1K µA VIH 1K VIL VIH VIL MEASURE < 2µA ON ALL “OFF” CHANNELS (e.g., CHANNEL 6) 1K µA VIH VIL VIL MEASURE < 2µA ON ALL “OFF” CHANNELS (e.g., CHANNEL 2x) MEASURE < 2µA ON ALL “OFF” CHANNELS (e.g., CHANNEL by) FIGURE 16. INPUT VOLTAGE TEST CIRCUITS (NOISE IMMUNITY) 10 16 15 14 13 12 11 10 9 XD4053B XD4052B XD4051B 1 2 3 4 5 6 7 8 XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Test Circuits and Waveforms (Continued) VDD VDD 1 2 3 4 5 6 7 8 Ι 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 Ι XD4051 XD4053 VDD 16 15 14 13 12 11 10 9 KEITHLEY 160 DIGITAL MULTIMETER TG “ON” 10kΩ X-Y PLOTTER FIGURE 18. CHANNEL ON RESISTANCE MEASUREMENT CIRCUIT VDD 1 2 3 4 5 6 7 8 VDD Ι VSS XD4051 XD4053 VSS X H.P. MOSELEY 7030A XD4052 VDD 16 15 14 13 12 11 10 9 Y VSS FIGURE 17. QUIESCENT DEVICE CURRENT 1 2 3 4 5 6 7 8 1kΩ RANGE VSS 16 15 14 13 12 11 10 9 VDD Ι VSS XD4052 NOTE: Measure inputs sequentially, to both VDD and VSS connect all unused inputs to either VDD or VSS . NOTE: Measure inputs sequentially, to both VDD and VSS connect all unused inputs to either VDD or VSS . FIGURE 19. INPUT CURRENT 5VP-P CHANNEL ON 5VP-P OFF CHANNEL VDD RF VM RL 1K RL RL RL FIGURE 20. FEEDTHROUGH (ALL TYPES) FIGURE 21. CROSSTALK BETWEEN ANY TWO CHANNELS (ALL TYPES) CHANNEL IN Y ON OR OFF CHANNEL IN X ON OR OFF RL RF VM RL FIGURE 22. CROSSTALK BETWEEN DUALS OR TRIPLETS (XD4052B, XD4053B) 11 RF VM CHANNEL ON RF VM CHANNEL OFF 6 7 8 5VP-P COMMON CHANNEL OFF XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 Test Circuits and Waveforms (Continued) DIFFERENTIAL SIGNALS XD4052 XD4052 COMMUNICATIONS LINK DIFF. AMPLIFIER/ LINE DRIVER DIFF. MULTIPLEXING DIFF. RECEIVER DEMULTIPLEXING FIGURE 23. TYPICAL TIME-DIVISION APPLICATION OF THE XD4052 Special Considerations In applications where separate power sources are used to drive VDD and the signal inputs, the VDD current capability should exceed VDD/RL (RL = effective external load). This provision avoids permanent current flow or clamp action on the VDD supply when power is applied or removed from the XD4051, XD4052 or XD4053. A B C D E A B XD4051 C INH Q0 A B E 1/2 XD4556 A B XD4051 C INH Q1 Q2 A B XD4051 C INH FIGURE 24. 24-TO-1 MUX ADDRESSING 12 COMMON OUTPUT XD4051 XD4052 XD4053 DIP16 XL4051 XL4052 XL4053 SOP16 DIP 13
XD4053 价格&库存

很抱歉,暂时无法提供与“XD4053”相匹配的价格&库存,您可以联系我们找货

免费人工找货