XD14051 XD14052 XD14053 DIP-16
XL14051 XL14052 XL14053 SOP-16
The XD14051, XD14052, and XD14053 analog multiplexers
are digitally−controlled analog switches. The XD14051 effectively
implements an SP8T solid state switch, the XD14052 a DP4T, and
the XD14053 a Triple SPDT. All three devices feature low ON
impedance and very low OFF leakage current. Control of analog
signals up to the complete supply voltage range can be achieved.
•
•
•
•
•
Features
•
•
•
•
•
Triple Diode Protection on Control Inputs
Switch Function is Break Before Make
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Analog Voltage Range (VDD − VEE) = 3.0 to 18 V
Note: VEE must be v VSS
•
Linearized Transfer Characteristics
Low−noise − 12 nV/√Cycle, f ≥ 1.0 kHz Typical
Pin−for−Pin Replacement for XD4051, XD4052, and XD4053
For 4PDT Switch, See XD14551
For Lower RON, Use the XD4051, XD4052, or XD4053
High−Speed CMOS Devices
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free and are RoHS Compliant
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol
Parameter
Value
Unit
−0.5 to +18.0
V
−0.5 to VDD + 0.5
V
Input Current (DC or Transient)
per Control Pin
+10
mA
ISW
Switch Through Current
± 25
mA
PD
Power Dissipation per Package (Note 1)
500
mW
TA
Ambient Temperature Range
−55 to +125
°C
Tstg
Storage Temperature Range
−65 to +150
°C
TL
Lead Temperature (8−Second Soldering)
260
°C
VDD
DC Supply Voltage Range
(Referenced to VEE, VSS ≥ VEE)
Vin,
Vout
Input or Output Voltage Range
(DC or Transient) (Referenced to VSS for
Control Inputs and VEE for Switch I/O)
Iin
PDIP−16
P SUFFIX
CASE 648
1
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Temperature Derating: Plastic “P and D/DW” Packages: – 7.0 mW/_C From
65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high−impedance circuit. For proper operation, Vin and Vout should be constrained to
the range VSS v (Vin or Vout) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either
VSS, VEE or VDD). Unused outputs must be left open.
1
1
SOIC−16
D SUFFIX
CASE 751B
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
XD14051
8−Channel Analog
Multiplexer/Demultiplexer
CONTROLS
SWITCHES
IN/OUT
6
11
10
9
13
14
15
12
1
5
2
4
INHIBIT
A
B
C
X0
X1
X
3
X2
COMMON
X3
OUT/IN
X4
X5
X6
X7
XD14052
Dual 4−Channel Analog
Multiplexer/Demultiplexer
CONTROLS
SWITCHES
IN/OUT
6
10
9
12
14
15
11
1
5
2
4
INHIBIT
A
X
B
X0
X1
X2
X3
Y0
Y
Y1
CONTROLS
13
COMMONS
OUT/IN
3
Y2
Y3
VDD = PIN 16
VSS = PIN 8
VEE = PIN 7
XD14053
Triple 2−Channel Analog
Multiplexer/Demultiplexer
SWITCHES
IN/OUT
6
11
10
9
12
13
2
1
5
3
INHIBIT
X
A
B
C
X0
Y
X1
Y0
Y1
Z
Z0
Z1
VDD = PIN 16
VSS = PIN 8
VEE = PIN 7
14
COMMONS
OUT/IN
15
4
VDD = PIN 16
VSS = PIN 8
VEE = PIN 7
Note: Control Inputs referenced to VSS, Analog Inputs and Outputs reference to VEE. VEE must be ≤ VSS.
PIN ASSIGNMENT
XD14051
XD14052
XD14053
X4
1
16
VDD
Y0
1
16
VDD
Y1
1
16
VDD
X6
2
15
X2
Y2
2
15
X2
Y0
2
15
Y
X
3
14
X1
Y
3
14
X1
Z1
3
14
X
X7
4
13
X0
Y3
4
13
X
Z
4
13
X1
X5
5
12
X3
Y1
5
12
X0
Z0
5
12
X0
INH
6
11
A
INH
6
11
X3
INH
6
11
A
VEE
7
10
B
VEE
7
10
A
VEE
7
10
B
VSS
8
9
C
VSS
8
9
B
VSS
8
9
C
2
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
ELECTRICAL CHARACTERISTICS
− 55_C
Characteristic
Symbol
VDD
Test Conditions
25_C
125_C
Min
Max
Min
Typ
(Note 2)
Max
Min
Max
Unit
3.0
18
3.0
−
18
3.0
18
V
−
−
−
5.0
10
20
−
−
−
0.005
0.010
0.015
5.0
10
20
−
−
−
150
300
600
mA
SUPPLY REQUIREMENTS (Voltages Referenced to VEE)
VDD – 3.0 ≥ VSS ≥ VEE
Power Supply Voltage
Range
VDD
−
Quiescent Current Per
Package
IDD
5.0
10
15
Control Inputs:
Vin = VSS or VDD,
Switch I/O: VEE v VI/O v
VDD, and DVswitch v
500 mV (Note 3)
ID(AV)
5.0
10
15
TA = 25_C only (The
channel component,
(Vin – Vout)/Ron, is
not included.)
Total Supply Current
(Dynamic Plus
Quiescent, Per Package
mA
(0.07 mA/kHz) f + IDD
(0.20 mA/kHz) f + IDD
(0.36 mA/kHz) f + IDD
Typical
CONTROL INPUTS — INHIBIT, A, B, C (Voltages Referenced to VSS)
Low−Level Input Voltage
VIL
5.0
10
15
Ron = per spec,
Ioff = per spec
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
V
High−Level Input Voltage
VIH
5.0
10
15
Ron = per spec,
Ioff = per spec
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
V
Input Leakage Current
Iin
15
Vin = 0 or VDD
−
± 0.1
−
± 0.00001
± 0.1
−
1.0
mA
Input Capacitance
Cin
−
−
−
−
5.0
7.5
−
−
pF
SWITCHES IN/OUT AND COMMONS OUT/IN — X, Y, Z (Voltages Referenced to VEE)
Recommended
Peak−to−Peak Voltage
Into or Out of the Switch
VI/O
−
Channel On or Off
0
VDD
0
−
VDD
0
VDD
VPP
Recommended Static or
Dynamic Voltage Across
the Switch (Note 3)
(Figure 5)
DVswitch
−
Channel On
0
600
0
−
600
0
300
mV
Output Offset Voltage
VOO
−
Vin = 0 V, No Load
−
−
−
10
−
−
−
mV
ON Resistance
Ron
5.0
10
15
DVswitch v 500 mV
(Note 3) Vin = VIL or VIH
(Control), and Vin =
0 to VDD (Switch)
−
−
−
800
400
220
−
−
−
250
120
80
1050
500
280
−
−
−
1200
520
300
W
DRon
5.0
10
15
−
−
−
70
50
45
−
−
−
25
10
10
70
50
45
−
−
−
135
95
65
W
Ioff
15
Vin = VIL or VIH
(Control) Channel to
Channel or Any One
Channel
−
± 100
−
± 0.05
± 100
−
± 1000
nA
Capacitance, Switch I/O
CI/O
−
Inhibit = VDD
−
−
−
10
−
−
−
pF
Capacitance, Common O/I
CO/I
−
Inhibit = VDD
(XD14051)
(XD14052)
(XD14053)
−
−
−
−
−
−
−
−
−
60
32
17
−
−
−
−
−
−
−
−
−
CI/O
−
−
Pins Not Adjacent
Pins Adjacent
−
−
−
−
−
−
0.15
0.47
−
−
−
−
−
−
DON Resistance Between
Any Two Channels in the
Same Package
Off−Channel Leakage
Current (Figure 10)
Capacitance, Feedthrough
(Channel Off)
pF
pF
2. Data labeled “Typ” is not to be used for design purposes, but is intended as an indication of the IC’s potential performance.
3. For voltage drops across the switch (DVswitch) > 600 mV ( > 300 mV at high temperature), excessive VDD current may be drawn, i.e. the
current out of the switch may contain both VDD and switch input components. The reliability of the device will be unaffected unless the
Maximum Ratings are exceeded. (See first page of this data sheet.)
3
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
ELECTRICAL CHARACTERISTICS (Note 4) (CL = 50 pF, TA = 25_C) (VEE v VSS unless otherwise indicated)
Characteristic
Propagation Delay Times (Figure 6)
Switch Input to Switch Output (RL = 1 kW)
XD14051
tPLH, tPHL = (0.17 ns/pF) CL + 26.5 ns
tPLH, tPHL = (0.08 ns/pF) CL + 11 ns
tPLH, tPHL = (0.06 ns/pF) CL + 9.0 ns
Symbol
VDD – VEE
Vdc
Typ (Note 5)
All Types
Max
tPLH, tPHL
ns
5.0
10
15
35
15
12
90
40
30
XD14052
tPLH, tPHL = (0.17 ns/pF) CL + 21.5 ns
tPLH, tPHL = (0.08 ns/pF) CL + 8.0 ns
tPLH, tPHL = (0.06 ns/pF) CL + 7.0 ns
5.0
10
15
30
12
10
75
30
25
XD14053
tPLH, tPHL = (0.17 ns/pF) CL + 16.5 ns
tPLH, tPHL = (0.08 ns/pF) CL + 4.0 ns
tPLH, tPHL = (0.06 ns/pF) CL + 3.0 ns
5.0
10
15
25
8.0
6.0
65
20
15
Inhibit to Output (RL = 10 kW, VEE = VSS)
Output “1” or “0” to High Impedance, or
High Impedance to “1” or “0” Level
XD14051
Unit
ns
ns
tPHZ, tPLZ,
tPZH, tPZL
ns
5.0
10
15
350
170
140
700
340
280
XD14052
5.0
10
15
300
155
125
600
310
250
ns
XD14053
5.0
10
15
275
140
110
550
280
220
ns
5.0
10
15
360
160
120
720
320
240
XD14052
5.0
10
15
325
130
90
650
260
180
ns
XD14053
5.0
10
15
300
120
80
600
240
160
ns
−
10
0.07
−
%
BW
10
17
−
MHz
Off Channel Feedthrough Attenuation (Figure 7)
RL = 1KW, Vin = 1/2 (VDD − VEE) p−p
fin = 4.5 MHz — XD14051
fin = 30 MHz — XD14052
fin = 55 MHz — XD14053
−
10
– 50
−
dB
Channel Separation (Figure 8)
(RL = 1 kW, Vin = 1/2 (VDD−VEE) p−p,
fin = 3.0 MHz
−
10
– 50
−
dB
Crosstalk, Control Input to Common O/I (Figure 9)
(R1 = 1 kW, RL = 10 kW
Control tTLH = tTHL = 20 ns, Inhibit = VSS)
−
10
75
−
mV
Control Input to Output (RL = 1 kW, VEE = VSS)
XD14051
Second Harmonic Distortion
(RL = 10KW, f = 1 kHz) Vin = 5 VPP
Bandwidth (Figure 7)
(RL = 50 W, Vin = 1/2 (VDD−VEE) p−p, CL = 50pF
20 Log (Vout/Vin) = − 3 dB)
tPLH, tPHL
ns
4. The formulas given are for the typical characteristics only at 25_C.
5. Data labelled “Typ” is not lo be used for design purposes but In intended as an indication of the IC’s potential performance.
4
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
VDD
VDD
VDD
IN/OUT
OUT/IN
VEE
VDD
LEVEL
CONVERTED
CONTROL
IN/OUT
OUT/IN
CONTROL
VEE
Figure 1. Switch Circuit Schematic
TRUTH TABLE
16
Control Inputs
Select
INH6
A11
B10
C9
ON Switches
Inhibit
C*
B
A
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
XD14051
X0
X1
X2
X3
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
X4
X5
X6
X7
1
x
x x
None
*Not applicable for XD14052
x = Don’t Care
XD14052
Y0
Y1
Y2
Y3
X0
X1
X2
X3
XD14053
Z0
Z0
Z0
Z0
Y0
Y0
Y1
Y1
X0
X1
X0
X1
Z1
Z1
Z1
Z1
Y0
Y0
Y1
Y1
X0
X1
X0
X1
None
VDD
BINARY TO 1-OF-8
DECODER WITH
INHIBIT
LEVEL
CONVERTER
8
X013
X114
VSS
7
VEE
X215
X312
3X
X41
X55
None
X62
X74
Figure 2.XD14051 Functional Diagram
16
VDD
16
INH6
BINARY TO 1-OF-4
DECODER WITH
INHIBIT
LEVEL
CONVERTER
A10
B9
8
X012
X114
VSS
7
INH6
A11
B10
C9
VEE
X215
X311
Y01
Y15
Y22
Y34
BINARY TO 1-OF-2
DECODER WITH
INHIBIT
LEVEL
CONVERTER
8
13X
VDD
VSS
7
VEE
X012
X113
Y02
Y11
Z05
3Y
Z13
Figure 3. XD14052 Functional Diagram
Figure 4. XD14053 Functional Diagram
5
14X
15Y
4Z
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
TEST CIRCUITS
ON SWITCH
CONTROL
SECTION
OF IC
A
B
C
PULSE
GENERATOR
Vout
LOAD
V
INH
CL
RL
SOURCE
VDD
VEE
VEE VDD
Figure 6. Propagation Delay Times,
Control and Inhibit to Output
Figure 5. DV Across Switch
A, B, and C inputs used to turn ON
or OFF the switch under test.
RL
A
B
C
VSS
Vout
INH
A
B
C
ON
INH
OFF
CL = 50 pF
RL
Vout
Vin
RL
CL = 50 pF
VDD - VEE
VDD - VEE
2
Vin
2
Figure 7. Bandwidth and Off−Channel
Feedthrough Attenuation
Figure 8. Channel Separation
(Adjacent Channels Used For Setup)
OFF CHANNEL UNDER TEST
VDD
A
B
C
CONTROL
SECTION
OF IC
Vout
RL
INH
VEE
OTHER
CHANNEL(S)
VEE
VDD
CL = 50 pF
R1
COMMON
VEE
VDD
Figure 9. Crosstalk, Control Input to
Common O/I
Figure 10. Off Channel Leakage
NOTE: See also Figures 7 and 8 in the XD14016 data sheet.
6
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
VDD
KEITHLEY 160
DIGITAL
MULTIMETER
10 k
1 kW
RANGE
VDD
X-Y
PLOTTER
VEE = VSS
Figure 11. Channel Resistance (RON) Test Circuit
300
300
250
200
150
TA = 125°C
100
25°C
-55°C
50
0
-10
RON , “ON” RESISTANCE (OHMS)
R ON , “ON” RESISTANCE (OHMS)
350
-8.0 -6.0 -4.0 -2.0
0
0.2
4.0
6.0
8.0
250
200
150
25°C
-55°C
50
-8.0 -6.0 -4.0 -2.0
0
0.2
4.0
6.0
Vin, INPUT VOLTAGE (VOLTS)
Vin, INPUT VOLTAGE (VOLTS)
Figure 12. VDD = 7.5 V, VEE = − 7.5 V
Figure 13. VDD = 5.0 V, VEE = − 5.0 V
700
350
600
300
500
400
300
TA = 125°C
200
25°C
100
0
-10
TA = 125°C
100
0
-10
10
R ON , “ON” RESISTANCE (OHMS)
R ON , “ON” RESISTANCE (OHMS)
TYPICAL RESISTANCE CHARACTERISTICS
350
-55°C
-8.0 -6.0 -4.0 -2.0
0
0.2
4.0
6.0
8.0
VDD = 2.5 V
200
150
5.0 V
100
7.5 V
50
-8.0 -6.0 -4.0 -2.0
0
0.2
4.0
6.0
8.0
Vin, INPUT VOLTAGE (VOLTS)
Vin, INPUT VOLTAGE (VOLTS)
Figure 15. Comparison at 25°C, VDD = −VEE
Figure 14. VDD = 2.5 V, VEE = − 2.5 V
7
10
TA = 25°C
250
0
-10
10
8.0
10
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
APPLICATIONS INFORMATION
Figure A illustrates use of the on−chip level converter
detailed in Figures 2, 3, and 4. The 0−to−5 V Digital Control
signal is used to directly control a 9 Vp−p analog signal.
The digital control logic levels are determined by VDD
and VSS. The VDD voltage is the logic high voltage; the VSS
voltage is logic low. For the example, VDD = + 5 V = logic
high at the control inputs; VSS = GND = 0 V = logic low.
The maximum analog signal level is determined by VDD
and VEE. The VDD voltage determines the maximum
recommended peak above VSS. The VEE voltage
determines the maximum swing below VSS. For the
example, VDD − VSS = 5 V maximum swing above VSS ;
VSS − VEE = 5 V maximum swing below VSS. The example
shows a ± 4.5 V signal which allows a 1/2 volt margin at each
peak. If voltage transients above VDD and/or below VEE are
anticipated on the analog channels, external diodes (Dx) are
recommended as shown in Figure B. These diodes should be
small signal types able to absorb the maximum anticipated
current surges during clipping.
The absolute maximum potential difference between
VDD and VEE is 18.0 V. Most parameters are specified up to
15 V which is the recommended maximum difference
between VDD and VEE.
Balanced supplies are not required. However, VSS must
be greater than or equal to VEE. For example, VDD = + 10
V, VSS = + 5 V, and VEE – 3 V is acceptable. See the Table
below.
+5 V
-5 V
VDD
VSS
VEE
+ 4.5 V
9 Vp-p
+5 V
ANALOG SIGNAL
EXTERNAL
CMOS
DIGITAL
CIRCUITRY
0-TO-5 V DIGITAL
CONTROL SIGNALS
SWITCH
I/O
COMMON
O/I
XD14051
XD14052
XD14053
9 Vp-p
ANALOG SIGNAL
−4.5 V
INHIBIT,
A, B, C
Figure A. Application Example
VDD
VDD
DX
DX
ANALOG
I/O
COMMON
O/I
DX
DX
VEE
VEE
Figure B. External Germanium or Schottky Clipping Diodes
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
POSSIBLE SUPPLY CONNECTIONS
VDD
In Volts
VSS
In Volts
VEE
In Volts
Control Inputs
Logic High/Logic Low
In Volts
Maximum Analog Signal Range
In Volts
+8
0
–8
+ 8/0
+ 8 to – 8 = 16 Vp–p
+5
0
– 12
+ 5/0
+ 5 to – 12 = 17 Vp–p
+5
0
0
+ 5/0
+ 5 to 0 = 5 Vp–p
+5
0
–5
+ 5/0
+ 5 to – 5 = 10 Vp–p
+ 10
+5
–5
+ 10/ + 5
+ 10 to – 5 = 15 Vp–p
8
GND
XD14051 XD14052 XD14053
XL14051 XL14052 XL14053
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
9