0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XD33063

XD33063

  • 厂商:

    XINLUDA(信路达)

  • 封装:

    DIP-8

  • 描述:

    DC/DC开关转换器 DIP-8

  • 数据手册
  • 价格&库存
XD33063 数据手册
XD34063 DIP8 XD33063 DIP8 XL34063 SOP8 XL33063 SOP8 1 Features 3 Description • • • • • • • The XD34063 and XD33063 devices are easy-touse ICs containing all the primary circuitry needed for building simple DC-DC converters. These devices primarily consist of an internal temperaturecompensated reference, a comparator, an oscillator, a PWM controller with active current limiting, a driver, and a high-current output switch. Thus, the devices require minimal external components to build converters in the boost, buck, and inverting topologies. 1 Wide Input Voltage Range: 3 V to 40 V High Output Switch Current: Up to 1.5 A Adjustable Output Voltage Oscillator Frequency Up to 100 kHz Precision Internal Reference: 2% Short-Circuit Current Limiting Low Standby Current 2 Applications • • • • • • • The XD34063 device is characterized for operation from –40°C to 85°C, while the XD33063 device is characterized for operation from 0°C to 70°C. Blood Gas Analyzers: Portable Cable Solutions HMIs (Human Machine Interfaces) Telecommunications Portable Devices Consumer & Computing Test & Measurement 5 Device Information(1) PART NUMBER 33063 /34063 PACKAGE (PIN) BODY SIZE SOIC (8) 4.90 mm × 3.91 mm SON (8) 4.00 mm × 4.00 mm PDIP (8) 9.81 mm × 6.35 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. 4 Simplified Schematic Drive Collector 8 1 Switch Collector 2 Switch Emitter 3 Timing Capacitor Q2 S Q Q1 R 100 W Ipk Sense 7 Ipk Oscillator CT 6 VCC 1.25-V Reference Regulator + − Comparator Inverting Input 4 5 GND 1 1 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 6 Pin Configuration and Functions D (SOIC) OR P (PDIP) PACKAGE (TOP VIEW) Switch Collector Switch Emitter Timing Capacitor GND 1 8 2 7 3 6 4 5 Driver Collector Ipk VCC Comparator Inverting Input DRJ (QFN) PACKAGE (TOP VIEW) Switch Collector 1 Switch Emitter † 8 Driver Collector 2 7 Ipk Timing Capacitor 3 6 VCC GND 4 5 Comparator Inverting Input † The exposed thermal pad is electrically bonded internally to pin 4 (GND) . Pin Functions PIN NAME NO. TYPE DESCRIPTION Switch Collector 1 I/O High-current internal switch collector input. Switch Emitter 2 I/O High-current internal switch emitter output. Timing Capacitor 3 — Attach a timing capacitor to change the switching frequency. GND 4 — Ground Comparator Inverting Input 5 I Attach to a resistor divider network to create a feedback loop. VCC 6 I Logic supply voltage. Tie to VIN. IPK 7 I Current-limit sense input. Driver Collector 8 I/O Darlington pair driving transistor collector input. 2 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN VCC Supply voltage VIR Comparator inverting input voltage range VC(switch) Switch collector voltage VE(switch) Switch emitter voltage VCE(switch) VC(driver) MAX UNIT 40 V 40 V 40 V 40 V Switch collector to switch emitter voltage 40 V Driver collector voltage 40 V IC(driver) Driver collector current 100 mA ISW Switch current 1.5 A TJ Operating virtual junction temperature 150 °C Tstg Storage temperature range 150 °C (1) –0.3 VPIN1 = 40 V –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) 2500 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) 1500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions VCC Supply voltage TA Operating free-air temperature MIN MAX 3 40 XD34063 –40 85 XD33063 0 70 UNIT V °C 7.4 Thermal Information XD33063 THERMAL METRIC (1) D DRJ P UNIT 85 °C/W 8 PINS RθJA (1) Junction-to-ambient thermal resistance 97 41 For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953). 7.5 Electrical Characteristics—Oscillator VCC = 5 V, TA = full operating range (unless otherwise noted) (see block diagram) MIN TYP MAX fosc Oscillator frequency PARAMETER VPIN5 = 0 V, CT = 1 nF TEST CONDITIONS 25°C 24 33 42 kHz Ichg Charge current VCC = 5 V to 40 V 25°C 24 35 42 μA Idischg Discharge current VCC = 5 V to 40 V 25°C 140 220 260 μA Idischg/Ichg Discharge-to-charge current ratio VPIN7 = VCC 25°C 5.2 6.5 7.5 — VIpk Current-limit sense voltage Idischg = Ichg 25°C 250 300 350 mV 3 TA UNIT XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 7.6 Electrical Characteristics—Output Switch VCC = 5 V, TA = full operating range (unless otherwise noted) (see block diagram) (1) PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT VCE(sat) Saturation voltage – Darlington connection ISW = 1 A, pins 1 and 8 connected Full range 1 1.3 V VCE(sat) Saturation voltage – non-Darlington connection (2) ISW = 1 A, RPIN8 = 82 Ω to VCC, forced β ∼ 20 Full range 0.45 0.7 V hFE DC current gain ISW = 1 A, VCE = 5 V IC(off) Collector off-state current VCE = 40 V 100 μA (1) (2) 25°C 50 Full range 75 0.01 — Low duty-cycle pulse testing is used to maintain junction temperature as close to ambient temperature as possible. In the non-Darlington configuration, if the output switch is driven into hard saturation at low switch currents (≤300 mA) and high driver currents (≥30 mA), it may take up to 2 μs for the switch to come out of saturation. This condition effectively shortens the off time at frequencies ≥30 kHz, becoming magnified as temperature increases. The following output drive condition is recommended in the nonDarlington configuration: Forced β of output switch = IC,SW / (IC,driver – 7 mA) ≥ 10, where ∼7 mA is required by the 100-Ω resistor in the emitter of the driver to forward bias the Vbe of the switch. 7.7 Electrical Characteristics—Comparator VCC = 5 V, TA = full operating range (unless otherwise noted) (see block diagram) PARAMETER TEST CONDITIONS TA MIN TYP MAX 25°C 1.225 1.25 1.275 Full range 1.21 UNIT Vth Threshold voltage ΔVth Threshold-voltage line regulation VCC = 5 V to 40 V Full range 1.4 5 mV IIB Input bias current VIN = 0 V Full range –20 –400 nA MIN MAX UNIT 1.29 V 7.8 Electrical Characteristics—Total Device VCC = 5 V, TA = full operating range (unless otherwise noted) (see block diagram) PARAMETER ICC Supply current TEST CONDITIONS VCC = 5 V to 40 V, CT = 1 nF, VPIN7 = VCC, VPIN5 > Vth, VPIN2 = GND, All other pins open 4 TA Full range 4 mA XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 7.9 Typical Characteristics 1000 1.8 100 Pin 7 = VCC Pin 5 = GND TA = 25°C VCE(SAT), Output Switch Saturation Voltage (V) On-Off Time (µs) t ON-OFF, Output Switch VCC = 5 V t ON 10 t OFF 1 0.01 0.1 1 CT, Oscillator Timing Capacitor (nF) 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1 0 0.0 10 ICC, Supply Current (mA) VCE(SAT), Output Switch Saturation Voltage (V) 1.0 Force Beta = 20 0.6 VCC = 5 V Pin 7 = VCC Pin 2, 3, 5 = GND TA = 25°C 0.2 0.0 0 0 0.0 0.2 1 0.4 0.6 0.8 1.0 1.2 IC, Collector Current (A) 0.6 0.8 1 1.0 1.2 1.4 1.6 3.6 1.2 0.4 0.4 IE, Emitter Current (A) Darlington Connection 0.8 0.2 Figure 2. Output Switch Saturation Voltage vs Emitter Current (Emitter-Follower Configuration) Figure 1. Output Switch On-Off Time vs Oscillator Timing Capacitor 1.4 VCC = 5 V Pin 1, 7, 8 = VCC Pin 3, 5 = GND TA = 25°C 1.7 1.4 3.2 2.8 2.4 2.0 1.6 CT = 1 nF Pin 7 = VCC Pin 2 = GND TA = 25°C 1.2 0.8 0.4 0.0 1.6 0 5 10 15 20 25 30 VCC, Supply Voltage (V) 35 Figure 4. Standby Supply Current vs Supply Voltage Figure 3. Output Switch Saturation Voltage vs Collector Current (Common-Emitter Configuration) 5 40 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 8 Detailed Description 8.1 Overview The XD33063 and XD34063 devices are easy-to-use ICs containing all the primary circuitry needed for building simple DC-DC converters. These devices primarily consist of an internal temperature-compensated reference, a comparator, an oscillator, a PWM controller with active current limiting, a driver, and a high-current output switch. Thus, the devices require minimal external components to build converters in the boost, buck, and inverting topologies. The XD33063 device is characterized for operation from –40°C to 85°C, while the XD34063 device is characterized for operation from 0°C to 70°C. 8.2 Functional Block Diagram Drive Collector 8 1 Switch Collector 2 Switch Emitter 3 Timing Capacitor Q2 S Q Q1 R 100 W Ipk Sense 7 Ipk Oscillator CT 6 VCC 1.25-V Reference Regulator + − Comparator Inverting Input 4 5 GND 8.3 Feature Description • • • • • • • Wide Input Voltage Range: 3 V to 40 V High Output Switch Current: Up to 1.5 A Adjustable Output Voltage Oscillator Frequency Up to 100 kHz Precision Internal Reference: 2% Short-Circuit Current Limiting Low Standby Current 8.4 Device Functional Modes 8.4.1 Standard operation Based on the application, the device can be configured in multiple different topologies. See the Application and Implementation section for how to configure the device in several different operating modes. 6 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 9 Application and Implementation 9.1 Application Information 9.1.1 External Switch Configurations for Higher Peak Current R* 8 1 7 VOUT 7 2 1 2 RSC RSC 6 VIN 8 VIN 6 7 * R → 0 for constant Vin a) EXTERNAL npn SWITCH A. b) EXTERNAL npn SATURATED SWITCH (see Note A) If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤300 mA) and high driver currents (≥30 mA), it may take up to 2 μs to come out of saturation. This condition will shorten the off time at frequencies ≥30 kHz and is magnified at high temperatures. This condition does not occur with a Darlington configuration because the output switch cannot saturate. If a non-Darlington configuration is used, the output drive configuration in Figure 7b is recommended. Figure 5. Boost Regulator Connections for IC Peak Greater Than 1.5 A 7 VOUT XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 Application Information (continued) 1 1 8 8 7 7 2 RSC 2 RSC VOUT 6 VIN VOUT 6 VIN a) EXTERNAL npn SWITCH b) EXTERNAL pnp SATURATED SWITCH Figure 6. Buck Regulator Connections for IC Peak Greater Than 1.5 A 8 8 1 1 VOUT 7 2 6 3 5 4 7 2 6 3 5 4 VOUT VIN VIN a) External NPN Switch b) External PNP Saturated Switch Figure 7. Inverting Regulator Connections for IC Peak Greater Than 1.5 A 9.2 Typical Application 9.2.1 Voltage-Inverting Converter Application 1 8 S Q R Q2 Q1 2 7 Oscillator 6 VIN 4.5 V to 6.0 V L 88 mH Ipk RSC 0.24 W CT 3 VCC + + _ Comparator 100 mF 1.25-V Reference Regulator 1N5819 + 1500 pF 4 5 1.0 mH R1 R2 8.2 kW VOUT −12 V/100 mA 953 W CO 1000 mF VOUT = –1.25 (1+ R2) R1 100 mF + + Optional Filter 8 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 Typical Application (continued) 9.2.1.1 Design Requirements The user must determine the following desired parameters: Vsat = Saturation voltage of the output switch VF = Forward voltage drop of the chosen output rectifier The following power-supply parameters are set by the user: Vin = Nominal input voltage Vout = Desired output voltage Iout = Desired output current fmin = Minimum desired output switching frequency at the selected values of Vin and Iout Vripple = Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout. 9.2.1.2 Detailed Design Procedure CALCULATION VOLTAGE INVERTING Vout + VF ton/toff Vin - Vsat 1 f + t off (ton + toff) toff t on t on +1 t off ton (ton + toff ) - toff CT 4 ´ 10-5 t on æt ö 2Iout(max ) ç on + 1÷ è t off ø 0.3 Ipk (switch ) Ipk(switch) RSC ( ) æ V - Vsat ö ç in(min ) ÷ ç ÷ t on(max ) I pk (switch ) ç ÷ è ø I t 9 out on Vripple(pp ) L(min) CO æ R2 ö -1.25 ç 1 + R1 ÷ø è Vout See Figure 8 9 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 9.2.1.3 Application Performance 380 VCC = 5 V ICHG = IDISCHG 360 VIPK, Current Limit Sense Voltage (mV) 340 320 300 280 260 240 220 200 −50 −25 0 25 50 75 100 TA, Ambient Temperature (°C) 125 Figure 9. Current-Limit Sense Voltage vs Temperature TEST CONDITIONS RESULTS Line regulation VIN = 4.5 V to 6 V, IO = 100 mA 3 mV ± 0.12% Load regulation VIN = 5 V, IO = 10 mA to 100 mA 0.022 V ± 0.09% Output ripple VIN = 5 V, IO = 100 mA 500 mVPP Short-circuit current VIN = 5 V, RL = 0.1 Ω 910 mA Efficiency VIN = 5 V, IO = 100 mA 62.2% Output ripple with optional filter VIN = 5 V, IO = 100 mA 70 mVPP 10 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 9.2.2 Step-Up Converter Application 170 mH L 1 8 180 W S Q R Q2 1N5819 Q1 2 7 Ipk RSC 0.22 W VIN 12 V 3 CT 6 CT 1500 pF VCC + + _ Comparator 100 mF 1.25-V Reference Regulator 4 5 1.0 mH R2 R1 2.2 kW 47 kW CO 330 mF + VOUT = 1.25 (1+ R2) R1 VOUT 28 V/175 mA 100 mF + Optional Filter Figure 10. Step-Up Converter 9.2.2.1 Design Requirements The user must determine the following desired parameters: Vsat = Saturation voltage of the output switch VF = Forward voltage drop of the chosen output rectifier The following power-supply parameters are set by the user: Vin = Nominal input voltage Vout = Desired output voltage Iout = Desired output current fmin = Minimum desired output switching frequency at the selected values of Vin and Iout Vripple = Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout. 11 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 9.2.2.2 Detailed Design Procedure CALCULATION STEP UP Vout + VF- Vin(min ) ton/toff Vin(min ) - Vsat 1 f + t off (ton + toff) toff t on t on +1 t off ton (ton + toff ) - toff CT 4 ´ 10-5 t on æt ö 2Iout(max ) ç on + 1÷ è t off ø 0.3 Ipk (switch ) Ipk(switch) RSC ( ) æ V - Vsat ö ç in(min ) ÷ ç ÷ t on(max ) Ipk (switch ) ç ÷ è ø I t 9 out on Vripple(pp ) L(min) CO æ R2 ö 1.25 ç 1 + R1 ÷ø è Vout See Figure 10 9.2.2.3 Application Performance TEST CONDITIONS RESULTS Line regulation VIN = 8 V to 16 V, IO = 175 mA 30 mV ± 0.05% Load regulation VIN = 12 V, IO = 75 mA to 175 mA 10 mV ± 0.017% Output ripple VIN = 12 V, IO = 175 mA 400 mVPP Efficiency VIN = 12 V, IO = 175 mA 87.7% Output ripple with optional filter VIN = 12 V, IO = 175 mA 40 mVPP 12 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 9.2.3 Step-Down Converter Application 1 8 S Q R Q2 Q1 2 7 VIN 25 V 1N5819 Ipk RSC 0.33 W Oscillator 6 CT 3 VCC + + _ Comparator 100 mF L 220 mH CT 470 pF 1.25-V Reference Regulator 4 5 1.0 mH R2 R1 1.2 kW VOUT 5 V/500 mA 3.8 kW CO 470 mF VOUT = 1.25 (1+ R2) R1 + 100 mF + Optional Filter Figure 11. Step-Down Converter 9.2.3.1 Design Requirements The user must determine the following desired parameters: Vsat = Saturation voltage of the output switch VF = Forward voltage drop of the chosen output rectifier The following power-supply parameters are set by the user: Vin = Nominal input voltage Vout = Desired output voltage Iout = Desired output current fmin = Minimum desired output switching frequency at the selected values of Vin and Iout Vripple = Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout. 13 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 9.2.3.2 Detailed Design Procedure CALCULATION STEP DOWN ton/toff Vout + VF Vin(min ) - Vsat - Vout 1 f + t off (ton + toff) toff t on t on +1 t off ton (ton + toff ) - toff CT 4 ´ 10-5 t on Ipk(switch) 2Iout(max ) 0.3 RSC Ipk (switch ) ( æ V - Vsat - Vout ç in(min ) ç Ipk (switch ) ç è L(min) )ö÷ t ÷ ÷ ø on(max ) Ipk (switch ) (t on + t off ) CO 8Vripple(pp ) æ R2 ö 1.25 ç 1 + R1 ÷ø è Vout See Figure 11 9.2.3.3 Application Performance TEST CONDITIONS RESULTS Line regulation VIN = 15 V to 25 V, IO = 500 mA 12 mV ± 0.12% Load regulation VIN = 25 V, IO = 50 mA to 500 mA 3 mV ± 0.03% Output ripple VIN = 25 V, IO = 500 mA 120 mVPP Short-circuit current VIN = 25 V, RL = 0.1 Ω 1.1 A Efficiency VIN = 25 V, IO = 500 mA 83.7% Output ripple with optional filter VIN = 25 V, IO = 500 mA 40 mVPP 14 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 10 Power Supply Recommendations This device accepts 3 V to 40 V on the input. It is recommended to have a 1000-µF decoupling capacitor on the input. 11 Layout 11.1 Layout Guidelines Keep feedback loop layout trace lengths to a minimum to avoid unnecessary IR drop. In addition, the loop for the decoupling capacitor at the input should be as small as possible. The trace from VIN to pin 1 of the device should be thicker to handle the higher current. 11.2 Layout Example 1 8 2 7 0.33 XD33063 3 6 4 5 VIN CT 100 PF VOUT CO R2 R1 Figure 12. Layout Example for a Step-Down Converter 15 16 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 DIP 16 15 XD34063 DIP8/XD33063 DIP8-XL34063 SOP8/XL33063 SOP8/XL34063 SOP8 SOP 17 15
XD33063 价格&库存

很抱歉,暂时无法提供与“XD33063”相匹配的价格&库存,您可以联系我们找货

免费人工找货