XD74LS163 DIP-16
This synchronous 4-bit binary counter features an internal carry look-ahead for application in high-speed counting
designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs changes
coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation
eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A
buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform. This
counter is fully programmable; that is, the output may be preset to either level. As presetting is synchronous, setting up
a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock
pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input would be avoided when the
clock is low if the enable inputs are high at or before the transition. The clear function is asynchronous and a low level
at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable
inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired
can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously
clear the counter to LLLL. Low-to-high transitions at the clear input should be avoided when the clock is low if the
enable and load inputs are high at or before the transition. The carry look-ahead circuitry provides for cascading
counters for n-bit synchronous applications without additional getting. Instrumental in accomplishing this function are
two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input
T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output
pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple
carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs
should occur only when the clock input is high.
Pin Arrangement
Clear
1
CLR
CK Ripple
Carry
16
VCC
15
Ripple
Carry Output
Clock
2
A
3
A
QA
14
QA
B
4
B
QB
13
QB
C
5
C
QC
12
QC
D
6
D
QD
11
QD
Enable P
7
P
T
10
Enable T
GND
8
9
Load
Data
Inputs
Outputs
Load
(Top view)
1
XD74LS163
Block Diagram
Clock
D
Clear
Q
CK
Output
QA
Q
Load
Enable
P
T
A
D
CK
Q
Output
QB
Q
B
Data
Inputs
C
D Q
CK
Q
D
D Q
CK
Q
Output
QC
Output
QD
Ripple
Carry
Output
2
DIP-16
XD74LS163
DIP-16
Absolute Maximum Ratings
Symbol
Ratings
Unit
Supply voltage
Item
VCC
7
V
Input voltage
VIN
7
V
Power dissipation
PT
400
mW
Tstg
–65 to +150
°C
Storage temperature
Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.
Recommended Operating Conditions
Item
Supply voltage
Output current
Operating temperature
Clock frequency
Clock pulse width
Clear pulse width
Symbol
Min
Typ
VCC
4.75
5.00
5.25
V
IOH
—
—
–400
µA
IOL
—
—
8
mA
–20
25
75
°C
ƒclock
0
—
25
MHz
tw (clock)
25
—
—
ns
20
—
—
ns
20
—
—
ns
tw (clear)
Enable P, T
Load
tsu
Clear
Hold time
20
—
—
ns
20
—
—
ns
20
—
—
ns
3
—
—
ns
th
Typical Clear, Preset, and Inhibit Sequence
Clear
Load
A
Data
Inputs
B
C
D
Clock
Enable P
Enable T
QA
QB
Outputs
QC
QD
Carry
Unit
Topr
A, B, C, D
Setup time
Max
12
13
14
Clear Preset
3
15 0
Count
1
2
Inhibit
XD74LS163
DIP-16
Electrical Characteristics
(Ta = –20 to +75 °C)
Item
Input voltage
Symbol
VIH
VIL
min.
2.0
—
typ.*
—
—
max.
—
0.8
Unit
V
V
VOH
2.7
—
—
V
—
—
—
—
—
—
—
—
—
—
—
–20
—
—
—
—
—
—
—
—
—
—
0.4
0.5
20
40
40
–0.4
–0.8
–0.8
0.1
0.2
0.2
–100
31
32
–1.5
Output voltage
VOL
Data, Enable P
Load, Clock, Enable T
Clear
Data, Enable P
Input
Load, Clock, Enable T
current
Clear
Data, Enable P
Load, Clock, Enable T
Clear
Short-circuit output current
Supply current**
IIH
IIL
II
IOS
ICCH
ICCL
VIK
—
—
—
—
18
19
—
V
Condition
VCC = 4.75 V, VIH = 2 V, VIL = 0.8 V,
IOH = –400 µA
IOL = 4 mA VCC = 4.75 V, VIH = 2 V,
IOL = 8 mA VIL = 0.8 V
µA
VCC = 5.25 V, VI = 2.7 V
mA
VCC = 5.25 V, VI = 0.4 V
mA
VCC = 5.25 V, VI = 7 V
mA
mA
mA
V
VCC = 5.25 V
VCC = 5.25 V
VCC = 5.25 V
VCC = 4.75 V, IIN = –18 mA
Input clamp voltage
Notes: * VCC = 5 V, Ta = 25°C
** ICC is measured with the load input high, then again with the load input low, with all other inputs high and all
outputs open. ICC is measured with the clock input high, then again with the clock input low, with all other
inputs low and all outputs open.
Switching Characteristics
(VCC = 5 V, Ta = 25°C)
Item
Maximum clock frequency
Propagation delay time
Symbol
ƒmax
tPLH
tPHL
tPLH
tPHL
tPLH
tPHL
tPLH
tPHL
tPHL
Inputs
Clock
Outputs
QA to QD
Clock
Ripple
Carry
Clock
(Load = “H”)
QA to QD
Clock
(Load = “L”)
QA to QD
Enable T
Ripple
Carry
Clear
QA to QD
4
min.
25
—
—
—
—
—
—
—
—
—
typ.
32
20
18
13
18
13
18
9
9
20
max.
—
35
35
24
27
24
27
14
14
28
Unit
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
Condition
CL = 15 pF,
RL = 2 kΩ
XD74LS163
DIP-16
Timing Method
tw (CK)
3V
Clock
1.3V
1.3V
1.3V
1.3V
0V
tsu
th
3V
Clear
1.3V
1.3V
tsu
0V
th
3V
Load
1.3V
1.3V
tsu
0V
th
3V
Data
Outputs
A to D
1.3V
1.3V
0V
tsu
Enable
P or T
1.3V
th
1.3V
0V
Testing Method
Test Circuit
VCC
QA
4.5V
Load
CK
Input
See Testing Table
P.G.
Zout = 50Ω
Load circuit 1
QA
A
QB
B
C
QB
D
QC
P
QC
QD
QD
T
CLR
Notes:
RL
CL
Input
P.G.
Zout = 50Ω
3V
1. CL includes probe and jig capacitance.
2. All diodes are 1S2074(H).
5
Ripple
Carry
Same as Load Circuit 1.
Same as Load Circuit 1.
Same as Load Circuit 1.
Ripple
Carry
Same as Load Circuit 1.
XD74LS163
DIP-16
Testing Table
Item
From input to
output
ƒmax
tPLH
tPHL
CK
Ripply
→
Carry
CK → Q
CK → Q
Enable
→
T
CLR → Q
Ripple
Carry
Inputs
Clear
Load
4.5V
4.5V
Enable
P
T
4.5V
4.5V
4.5V
4.5V
4.5V
4.5V
4.5V
4.5V
GND
4.5V
IN
Clock
Data
IN
A
GND
B
GND
C
GND
D
GND
4.5V
IN
GND
GND
GND
GND
4.5V
GND
4.5V
GND
IN
IN
GND
IN*
GND
IN*
GND
IN*
GND
IN*
GND
4.5V
IN
IN*
4.5V
4.5V
4.5V
4.5V
GND
GND
GND
IN*
4.5V
4.5V
4.5V
4.5V
Notes: *. For initialized
Item
From input to output
ƒmax
tPLH
tPHL
CK→Ripple Carry
CK→Q
CK→Q
Enable T→Ripple Carry
CLR→Q
Outputs
QA
QB
QC
QD
Ripple Carry
OUT
—
OUT
OUT
—
OUT
OUT
—
OUT
OUT
—
OUT
OUT
—
OUT
OUT
—
OUT
OUT
—
OUT
OUT
—
OUT
OUT
OUT
—
—
OUT
—
6
XD74LS163
DIP-16
Waveforms 1
ƒmax, tPLH, tPHL, (Clock→Q, Ripple Carry)
tTLH
Clock
10%
tPLH
QA
tTHL
3V
90%
90%
1.3V 1.3V
10%
(Measure at
tn + 1)
1.3V
tw (CK)
1.3V
0V
tPHL
(Measure at tn + 2)
VOH
1.3V
1.3V
tPHL
tPLH (Measure at tn + 2)
(Measure at tn + 4)
QB
1.3V
VOL
VOH
1.3V
VOL
tPHL
tPLH (Measure at tn + 4)
(Measure at tn + 8)
QC
1.3V
VOH
1.3V
VOL
tPHL
(Measure at
tn + 16)
QD
tPLH (Measure at tn + 8)
1.3V
VOH
1.3V
VOL
tPLH (Measure at
tn + 15)
Ripple
Carry
tPHL (Measure at tn + 16)
VOH
1.3V
1.3V
VOL
Note:
Clock input pulse; tTLH ≤ 15 ns, tTHL ≤ 6 ns, PRR = 1 MHz, duty cycle 50%
and : ƒmax tTLH = tTHL ≤ 2.5 ns.
tn is reference bit time when all outputs are low.
7
XD74LS163
DIP-16
Waveforms 2
tPLH, tPHL, (Clock→Q)
tTLH
tTHL
Clock
3V
90%
90%
1.3V
10%
tTLH
1.3V
10%
0V
tTHL
90%
Data Inputs
A, B, C or D
3V
90%
10%
10%
0V
tPLH
tPHL
VOH
Outputs
QA, QB, QC or QD
1.3V
1.3V
VOL
Note:
Input pulse: tTLH ≤ 15 ns, tTHL ≤ 6 ns, Clock input: PRR = 1 MHz, duty cycle 50%,
Data input: PRR = 500 kHz, duty cycle 50%
Waveforms 3
tPLH, tPHL, (Enable T→Ripple Carry)
tTLH
tTHL
90 %
1.3 V
Enable T
3V
90 %
1.3 V
10 %
10 %
tPLH
0V
tPHL
VOH
Ripple
Carry
Note:
1.3 V
1.3 V
VOH
Input pulse: tTLH ≤ 15 ns, tTHL ≤ 6 ns, PRR = 1 MHz
8
XD74LS163
DIP-16
Waveforms 4
tPHL, (Clear→Q)
tTLH
tTHL
90%
Clock
3V
90%
1.3V
10%
tTHL
10%
tTLH
tw (CLR)
Clear
≥ 20ns
90%
1.3V
90%
1.3V
10%
10%
0V
3V
0V
tPHL
VOH
1.3V
QA to QD
VOL
Note:
Input pulse: tTLH ≤ 15 ns, tTHL ≤ 6 ns
9
XD74LS163
Package Dimensions
JEITA Package Code
P-DIP16-6.3x19.2-2.54
DIP-16
DIP
RENESAS Code
PRDP0016AE-B
Previous Code
DP-16FV
MASS[Typ.]
1.05g
D
9
E
16
1
8
b3
0.89
Z
A1
A
Reference
Symbol
L
e
e
c
e1
D
19.2
E
6.3
A1
0.51
b
p
0.40
b
3
20.32
7.4
0.48
0.56
1.30
c
0.19
θ
0°
e
2.29
L
Max
5.06
Z
( Ni/Pd/Au plating )
10
Nom
7.62
1
A
θ
bp
Dimension in Millimeters
Min
0.25
0.31
2.54
2.79
15°
1.12
2.54