0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EPC901-CSP32-033

EPC901-CSP32-033

  • 厂商:

    ESPROS

  • 封装:

    XFBGA-32

  • 描述:

    IC CCD LINE SENSOR 1024X1

  • 数据手册
  • 价格&库存
EPC901-CSP32-033 数据手册
Datasheet – epc901 CCD line sensor 1024x1 pixel General Description Features The epc901 is a high-performance CCD line sensor capable of storing a total of 4 frames in the frame store elements for ultra high-speed image acquisition. The acquisition of the image is controlled by a control signal SHUTTER. The epc901 flags when a frame is ready for read-out by asserting the DATA_RDY signal. The transmission of the frame over the video amplifier is controlled by the external control signal READ. When a read-out is initiated by a pulse on the READ signal, it is sampled by a CDS stage. After a fixed delay the frame can be shifted out through the video amplifier by applying the appropriate amount of read clock edges. ■ Photosensitive CCD array backside illuminated with 1024x1 pixel ■ Very high frame rate ■ Very high sensitivity due to 100% fill factor and ESPROS' unique OHC15L process technology ■ Pixel size 7.5 x 120μm ■ On-chip correlated-double sampling ■ Single-ended or differential analog output ■ Simple 5-pin control interface for acquisition and read-out ■ I2C bus interface ■ Internal clock source, trimmable ■ Two on-chip temperature sensors ■ Single supply voltage ■ 32 Pin space saving CSP package ■ Chip size L x W x T: 8.0 x 1.3 x 0.23 mm The device offers various configuration options: ■ Gain of the read-out stage selectable of 1, 2 or 4 ■ Transmission direction left to right and right to left ■ Region of interest (ROI) center region (pixel 256 to 767) ■ Binning of 2 or 4 pixels to reduce transmission time and noise ■ Single- or multi-frame acquisition ■ Clearing of frames stored and periodic flushing of pixel array to avoid blooming Applications ■ Linear and rotary encoder ■ Triangulation light barrier / distance measurement ■ Line sensor / camera ■ Business card readers & portable scanners ■ Multi-touch displays / electronic white boards ■ Finger print readers ■ Spectrometers ■ Check & ticket readers ■ Speed measurement ■ Bar code readers Figure 1: Backside illuminated CMOS/CCD imager CCD 1024x1 Configuration Inputs Logic Frame store 1 Frame store 2 Frame store 3 Frame store 4 Configuration I2C-bus I2C-Interface 1024 : 1 MUX Analog output Figure 2: Block diagram © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 1 / 32 Datasheet_epc901-V7.00 www.espros.com Table of Contents 1. Block diagram.....................................................................................................................................................3 2. Pin-out................................................................................................................................................................3 2.1. Power domains....................................................................................................................................................................................5 3. Electrical, optical and timing characteristics............................................................................................................6 3.1. Electrical and other characteristics......................................................................................................................................................6 3.2. Temperature sensor characteristics....................................................................................................................................................7 3.3. Timing parameters...............................................................................................................................................................................7 3.4. Absolute maximum ratings..................................................................................................................................................................8 3.5. Optical characteristics..........................................................................................................................................................................9 3.6. Frequency response..........................................................................................................................................................................10 3.7. Video amplifier frequency response..................................................................................................................................................10 4. Configuration.................................................................................................................................................... 11 5. Imager operation................................................................................................................................................12 5.1. General remarks................................................................................................................................................................................12 5.2. Single frame acquisition.....................................................................................................................................................................12 5.3. Multi frame acquisition.......................................................................................................................................................................13 5.4. Image readout....................................................................................................................................................................................13 5.5. ROI / binning read clock....................................................................................................................................................................14 5.6. Flush..................................................................................................................................................................................................14 6. Various features.................................................................................................................................................15 6.1. Temperature sensor..........................................................................................................................................................................15 6.2. Power-down.......................................................................................................................................................................................15 6.3. Oscillator clock trimming....................................................................................................................................................................15 6.4. Reset..................................................................................................................................................................................................15 7. I2C interface......................................................................................................................................................16 7.1. I2C communication............................................................................................................................................................................16 7.1.1. Device addressing..........................................................................................................................................................................16 7.1.2. Single-byte write.............................................................................................................................................................................16 7.1.3. Multi-byte write................................................................................................................................................................................16 7.1.4. Single-byte read..............................................................................................................................................................................17 7.1.5. Multi-byte read................................................................................................................................................................................17 7.1.6. Software reset.................................................................................................................................................................................17 7.1.7. Device address sampling...............................................................................................................................................................17 7.1.8. Setup latency..................................................................................................................................................................................17 7.2. I2C bus timing....................................................................................................................................................................................18 8. Register description...........................................................................................................................................19 8.1. Binning, amplifier gain, ROI, read direction.......................................................................................................................................19 8.2. Video Amplifier bandwidth.................................................................................................................................................................20 8.3. Video amplifier bandwidth, noise and current consumption..............................................................................................................20 8.4. Configuration control, video amplifier on/off......................................................................................................................................20 8.5. Video amplifier SE/Diff, charge pump on/off, 5V regulator on/off.....................................................................................................21 8.6. Oscillator trimming (fine)....................................................................................................................................................................21 8.7. Oscillator trimming (coarse)...............................................................................................................................................................22 8.8. Temperature sensors read................................................................................................................................................................22 8.8.1. Left temperature sensor.................................................................................................................................................................22 8.8.2. Right temperature sensor...............................................................................................................................................................22 8.9. Temperature sensors control.............................................................................................................................................................23 8.10. I2C error flag....................................................................................................................................................................................23 8.11. Chip revision....................................................................................................................................................................................23 9. Application information......................................................................................................................................24 9.1. Differential mode................................................................................................................................................................................24 9.2. Single ended mode............................................................................................................................................................................25 9.3. External components.........................................................................................................................................................................25 9.4. Low noise operation...........................................................................................................................................................................25 9.4.1. Charge pump noise........................................................................................................................................................................25 9.4.2. Video amplifier noise......................................................................................................................................................................25 9.4.3. Layout recommendations...............................................................................................................................................................26 10. Power consumption considerations....................................................................................................................27 10.1. General considerations....................................................................................................................................................................27 10.2. Low power operation.......................................................................................................................................................................27 11. Layout and packaging information......................................................................................................................28 11.1. Mechanical dimensions...................................................................................................................................................................28 11.2. PCB design and SMD manufacturing process considerations.......................................................................................................29 11.3. Tape & Reel Information..................................................................................................................................................................29 11.4. Soldering and IC handling...............................................................................................................................................................29 12. Self-test mode by fill-and-spill............................................................................................................................30 13. Ordering Information........................................................................................................................................31 14. IMPORTANT NOTICE........................................................................................................................................32 © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 2 / 32 Datasheet_epc901-V7.00 www.espros.com 1. Block diagram CCD Control CCD pixel field 1024 x 1 FS4 FS3 FS2 FS1 CCD frame store buffer FS1..4 Floating diffusion / source follower / CDS Shift Control 1024:4 multiplexer 4:1 multiplexer VDD_OA analog in VIDEO_P VIDEO_CM VIDEO_N AMP CLR_DATA digital control SHUTTER READ GND_OA DATA_RDY Control ROI_SEL VDD Charge pump RD_DIR HOR_BIN VDD_7V0 AGND Oscillator I2C Interface CS0 TEST_MODE ANA_TEST_0 PWR_DOWN I_BIAS GAIN BW0 BW1 DGND Temperature Sensor 1&2 Test Control AMP Control Power supply / Power on Reset ANA_TEST_1 AGND SCL 1.8V regulator CS1 5V regulator VDD_1V8 SDA VDD_5V0 Figure 3: Block diagram 2. Pin-out 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 11 12 13 14 15 16 epc901 1 2 3 4 5 6 7 8 9 10 Figure 4: Pin-out, view to the photo-sensitive side (top-view) © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 3 / 32 Datasheet_epc901-V7.00 www.espros.com Pin no. Pin name Digital pins 2 PWR_DOWN 3 CLR_DATA 5 CLR_PIX 6 SHUTTER 12 READ 4 DATA_RDY 13 SDA 14 SCL 15 ROI_SEL 17 CS1 19 CS0 21 GAIN 22 BW0 23 BW1 24 RD_DIR 25 HOR_BIN 30 TEST_MODE Analog pins 8 VIDEO_N 9 VIDEO_P 11 VIDEO_CM 27 I_BIAS 28 ANA_TEST_1 29 ANA_TEST_0 Supply pins 26 VDD 10 VDD_OA 32 VDD_1V8 18 VDD_5V0 20 VDD_7V0 16 AGND 1 AGND 7 GND_OA 31 DGND Pin type DI DI DI DI DI Default [V] Description 0 0 0 0 0 DO DIOD DIOD DI TER TER TER TER TER DI TER DI AO AO AI AI AIO AIO Supply Supply AO / Supply Supply Supply Supply Supply VDD VDD 0 VDD/2 VDD/2 VDD/2 VDD/2 VDD/2 0 VDD/2 0 Power-down mode enable Clear internal data memory controller Rising edge resets pixels and its controller Exposure active when SHUTTER set Read-out control and read clock Flag when data on video interface is ready. Used as a strap pin to turn on/off the charge pump I2C serial data (open drain) I2C serial clock (open drain) Region of interest selection I2C chip select 1 I2C chip select 0 Select gain of read-out path LSB of bandwidth of video amplifier MSB of bandwidth of video amplifier Read-out direction Horizontal binning selection Chip test Negative terminal of video output Positive terminal of video output VDD/2 or 0 Voltage to set video output common-mode Bias current 0 Analog test in-/output 1 0 Analog test in-/output 0, rising edge indicates the last pixel in a frame Positive chip supply voltage Positive supply of video amplifier Decoupling Decoupling / external 5V supply for low power consumption (refer to 10.2.) Decoupling Analog ground Analog ground Video amplifier ground Digital ground Definitions: ■ DI: ■ DO: ■ DIOD: ■ AO: ■ AI: ■ AIO: ■ TER: Digital input pin, with an internal pull-down resistor of approx. 100-250kΩ Digital output pin General purpose bidirectional digital pin with open-drain output, requires external pull-up resistor Analog output Analog input Analog input and output Ternary input pin, with a pull-down and an equal pull-up resistor of approx. 100-250kΩ which tie the pin to the VDD/2 state. © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 4 / 32 Datasheet_epc901-V7.00 www.espros.com 2.1. Power domains VDD VDD_5V0 VDD_7V0 VDD_OA VDD_1V8 The epc901 chip has internally 5 different power domains and 3 ground references which are interconnected with ESD protection diodes. All pins are also equipped with ESD protection diodes. Figure 5 shows this functional circuit. The diodes have a breakthrough voltage of 0.3V. The designer has to take care that none of these diodes become conductive either at power-up, power-down or normal operation. epc 901 VIDEO_P VIDEO_N VIDEO_CM I_BIAS ANA_TEST_0 ANA_TEST_1 analog pins DGND all others TEST_MODE GND_OA digital pins AGND GND_OA DGND AGND Figure 5: ESD protection diode circuit © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 5 / 32 Datasheet_epc901-V7.00 www.espros.com 3. Electrical, optical and timing characteristics (TA = 25°C, VDD = 3.0V unless otherwise noted) 3.1. Electrical and other characteristics Parameter Description Min Typ Max Unit VDD Nominal Nominal supply voltage on VDD and VDD_OA 2.70 3.00 3.45 V Supply voltage on VDD and VDD_OA with Read Clock of max. 1 MHz. 2.45 PSRR Power supply rejection ratio VDD and VDD_OA. Differential 13 dB IDD+IDD_OA 1 Total current consumption on pins VDD and VDD_OA (refer to section 10.) Single ended 9 dB Differential mode, full video bandwidth, 46kfps 2, Charge pump: ON Temperature sensors: ON Idle mode (READ = L) 26 39 mA Peak, during read-out 48 72 mA Differential mode, full video bandwidth, 46kfps 2, external VDD5V0 supply 3 Charge pump: OFF Temperature sensors: OFF Idle mode (READ = L) 10 15 mA Peak, during read-out 16 24 mA Differential mode, low video bandwidth, 1kfps 4, external VDD5V0 supply 3 Charge pump: OFF Temperature sensors: OFF Idle mode (READ = L) 6.0 9.0 mA Peak, during read-out 6.0 9.0 mA Single-ended mode, low video bandwidth, 1kfps 4 Charge pump: ON Temperature sensors: ON Idle mode (READ = L) 21 30 mA Peak, during read-out 40 60 mA Single-ended mode, low video bandwidth, 1kfps 4, external VDD5V0 supply 3 Charge pump: OFF Temperature sensors: OFF Idle mode (READ = L) 5.0 10.0 mA Peak during read-out 5.0 10.0 mA Power-Save mode (POWR_DOWN = H, shutter still working), external VDD5V0 supply 3 Charge pump: OFF Temperature sensors: OFF 1.3 2 mA In-rush current at power-up during approximately 5ms Charge pump: ON 60 90 mA In-rush current at power-up during approximately 2ms, external VDD5V0 supply 3 Charge pump: OFF 50 75 mA 1.2 2.5 mA 0.2*VDD V IDD_5V Current consumption on pin VDD_5V0 3, Differential/single-ended mode, full video bandwidth, 46kfps external VDD5V0 supply 3) Charge pump: OFF VDIL Low voltage level on binary digital inputs 5 (Level L) VDIH High voltage level on binary digital inputs (Level H) VDOL, VTERIL Low voltage level on binary and ternary digital outputs (Level L) VDOH, VTERIH High voltage level on binary and ternary digital outputs (Level H) 0.8*VDD VTERIM Centre voltage level on ternary digital inputs (Level M) 0.4*VDD IDI Sink current at digital inputs RDI Internal pull-down resistor RTER Internal voltage dividing resistors which force the input to VDD/2 IDO Sink / source current at digital outputs VVDD1V8 Internally generated voltage on pin VDD1V8 1.62 1.8 VVDD5V0 Internally generated voltage on pin VDD5V0 4.5 5.0 5.5 V VVDD7V0 Internally generated voltage on pin VDD7V0 6.0 6.5 7.0 V VVIDEO_P,N Voltage range at output of video amplifier (@ gain 1) 0.25 VDD-0.25 V VCM_SE Voltage at VIDEO_CM to select single-ended mode 0.4 V 2 5 © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 6 / 32 0.5*VDD V 0.2*VDD V V 0.6*VDD V 10 μA 100 250 kΩ 100 250 kΩ 3 mA 1.98 V Datasheet_epc901-V7.00 www.espros.com Parameter Description Min Typ Max Unit VCM_D Common-mode voltage in differential mode, set on pin VIDEO_CM. Note: For VCM_D>1V, differential mode is detected automatically by default. For VCM_D Frame Store Buffers --> CDS VIDEO_CM GND_OA I_BIAS 7 27 DGND 31 AGND 16 1 AGND VIDEO_N RBIAS 9 ADC 11 8 Pins 8 and 11: Can be left not connected. Refer to the note below. Figure 16: Single ended mode application diagram If VIDEO_N and VIDEO_CM are tied to GND at power-up or RESET, single-ended mode is enabled. The output signal is available at VIDEO_P. Note: If the pins VIDEO_N and VIDEO_CM are not connected, the epc901 is in differential mode after power-up or RESET. In this case, singleended mode can be selected via I2C register setting FORCE_ANA_CTRL_SIGS, bit AMP_OVR (see Table 14 and Table 15). Illumination VIDEO_P (typ.) Dark voltage 0.4V Maximum video output 2.0V Table 28: Video amplifier output in single-ended mode 9.3. External components The external components in Figure 15 and Figure 16 shall be as follows: Parameter Description Value Units Tolerance Comments RBIAS Bias resistor 56k kΩ ±1% Temperature coefficient max. ±100ppm/K CVDD1V8 Decoupling capacitor 1.0 μF ±20% low ESR CVDD5V0, CVDD7V0 Decoupling capacitors 2.2 μF ±20% low ESR CVDD, CVDD_OA Decoupling capacitors 1.0 μF ±20% low ESR L Decoupling inductor 600 Ω @100MHz, e.g. Taiyo Yuden BK1005HR601-T 9.4. Low noise operation 9.4.1. Charge pump noise The internal charge pump generates some noise, especially in single-ended mode. The noise performance can be optimized by turning off the charge pump and supplying the chip with an external 5V supply. Refer to section 10.2. 9.4.2. Video amplifier noise Another noise source is the video amplifier which can be used in two different modes. Single ended mode is the lower noise operation mode. Thus, use the chip in single ended mode for low noise applications. In addition, operate the video amplifier at lowest possible band width and lowest current consumption. Refer to 8.2. and 8.3. © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 25 / 32 Datasheet_epc901-V7.00 www.espros.com 9.4.3. Layout recommendations The epc901 line imager is a very high sensitivity analog/digital chip. Due to its high conversion gain, just a few electrons collected by coupling to signal lines close to the chip generate a significant voltage at the output. Thus, do not place any signal lines underneath the chip without shielding. It is highly recommended to place a stable AGND plane underneath the epc901 chip (on the top layer of the PCB) and not to place any signal tracks close to the chip. Also very important is a clean noise-free power supply. Especially decouple the VDD from VDD_OA with capacitor so the output modula tion of the video amplifier does not modulate the VDD of the chip. Make sure all the capacitors used for decoupling are low ESR types. The READ signal line can also be a major source of noise or coupling to the output signal. Figure 17 shows a scope screen shot of such a coupling problem. VIDEO_P READ Figure 17: READ signal coupling to the output by a ground loop The source of such problems is usually a ground loop. Especially if there is a significant distance 'd' as shown in Figure 18 (starting from a few cm only) between the video output of the epc901 chip and the input of the ADC. Care has to be taken that the layout of the GND lines is exactly like shown in Figure 18. Make sure that the digital GND has a separate track as shown by the blue ground line! d VDD VDD_OA VDD_5V0 VIDEO_P 31 1 GND_OA epc 901 VDD_7V0 GNDD 20 VDD_1V8 GNDA 18 GNDA 32 12 READ 10 VDD 26 16 VIDEO_N VDD 9 ADC 8 AGND 7 GND Common AGND connection Digital control Common GND connection READ DGND Figure 18: Recommended ground and power supply connections Make also sure that the thick lines in Figure 18 are as short and as thick as possible. © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 26 / 32 Datasheet_epc901-V7.00 www.espros.com 10. Power consumption considerations 10.1. General considerations There are several options to control the power consumption. However, a trade-off between performance and power consumption has to be considered. The following section describes the various options. The most power-consuming blocks are • Temperature sensors (approx. 3mA) • Video amplifier (approx. 3.5mA) • Charge pump and 5V regulator (approx. 13.5mA) The wake-up time of the video amp is typ. 3µs only. Thus, in most applications it can be turned off during illumination in order to reduce the average power consumption. 10.2. Low power operation The lowest possible power consumption of the epc901 can be achieved if it is supplied with 3V and 5V since the highest power consumption is the internal charge pump which generates the 5V from VDD. In this case, the chip-internal charge pump and the internal 5V regu lator shall be turned off. The power consumption in this configuration is less than 20mW compared to 80mW in the standard mode. The following application information shows how this can be achieved. Follow carefully the instructions in order to avoid damage of the chip. Use protection diodes according to circuit diagram below. The diodes have to be low voltage Schottky devices with a forward current of at least 100mA (i.e. BAT74). IN_+3.0V Ext. supply +3.0V VDD 26 epc 901 D1 VDD_OA DGND VDD_7V0 31 GND_OA 20 D2 10 VDD_5V0 AGND 18 D3 AGND Ext. supply +5.0V IN_+5.0V 32 VDD_1V8 1 16 7 GND Common GND connection Common AGN connection Make sure that external 5V supply (VDD_5V0) is delayed by at least 100µs to the VDD. 1. Power up VDD (3V) 2. 3. Wait for at least 100µs Power up VDD_5V0 VDD VDD_5V0 >100µs Figure 19: Power up sequence in low power configuration © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 27 / 32 Datasheet_epc901-V7.00 www.espros.com 11. Layout and packaging information 11.1. Mechanical dimensions (0.050) The packaging technology is a CSP with a uBGA. All measures which do not have an explicit tolerance are meant +/-0.001mm. Photosensitive side (top view) Solder balls Sn96.5Ag3.0Cu0.5 (SAC305) 0.190 ±0.020 PCB side 8.080 ±0.040 4.080 ±0.020 1024 x 0.0075 = 7.680 0.0075 photosensitive area center of pixel-field 17 0.618 Pixel #1023 top view (view to photosensitive side) (ball size:  0.200) (0.232 ±0.020) 1 (0.330 ±0.020) 0.860 Pixel #0 0.850 ±0.020 1.324 ±0.040 0.120 32 16 0.090 0.500 3.750 15 x 0.500 = 7.500 Weight: 4.57 mg - dimensions in mm - not specified tolerances ±0.001 The photosensitive area is not marked neither on the front nor on the backside of the IC. As a visible reference, the metal ring of the IC can be used which is visible from the back side (solder ball side). Also from the front side (photosensitive area) it can be seen with a camera which is sensitive in the near infrared wavelength domain (950 .. 1150nm). Figure 20 shows the epc901 chip from the bottom side with view to the solder balls. Please note the location of pin 1. Pin 1 Figure 20: Bottom view © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 28 / 32 Datasheet_epc901-V7.00 www.espros.com 11.2. PCB design and SMD manufacturing process considerations The epc901 chip comes in a very small 32 pin chip scale package, the PCB layout should be made with special care. The silicon chip is small and light weight compared to its solder balls. It is highly recommended that all tracks to the chip should come straight from the side. A consequent symmetrical PCB layout design is highly recommended to achieve high production yield. The pads and the tracks should also have exactly the same width. The tracks shall be covered by a solder resist mask in order to avoid drain of the solder tin alloy to the track. solder resist mask opening solder resist mask 1.324 ø0.3 min. 0.25 solder paste resist coverage 8.000 track (straight only for 0.25mm!) landing pad max. 0.15 ø0.4 chip perimeter all measures in mm Figure 21: Recommended PCB layout Underfill of the components reduces stress to the solder pads caused by e.g. temperature cycling or mechanical bending. The thermal and mechanical fatigue will be reduced and the longterm reliability will be increased. Underfill and underfill selection is application specific. It shall follow JEDEC-STD JEP150: Stress-Test-Driven Qualification of and Failure Mechanisms Associated with Assembled Solid State Surface- Mount Components. Please refer to the application note AN08_Process-Rules_CSP_Assembly. Please follow carefully the recommendations in this application note to achieve a high manufacturing yield. 11.3. Tape & Reel Information The devices are packed in tape on reel for automatic placement systems. The tape is wound on 178 mm (7 inch) or 330 mm (13 inch) reels and individually packaged for shipment. General tape-and-reel specification data are available in a separate data sheet and indicate the tape sizes for various package types. Further tape-and-reel specifications can be found in the Electronic Industries Association (EIA) standard 481-1, 481-2, 481-3. CSP32 Tape 12 Pin 1 4 ESPROS does not guaranteeCSP6 that there Thus, the pick-and-place machine should check the presence of a chip dur Tape are no empty cavities. QFN16 Tape Pin 1 Pin 1 ing picking. 8 11.4. Soldering and IC handling 12 Since the chip is only 50μm thick and has a high aspect ratio (length to width), a careful handling during the surface mount assembly process shall be taken in order to avoid mechanical damage. In addition to that, careful PCB layout is needed in order to achieve reliable assembly results with a high yield. Please refer to the application note AN08_Process-Rules_CSP_Assembly which contains most up to date and comprehensive information to these topics. This application note can be downloaded at www.espros.com/application-notes. 4 8 © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 29 / 32 Datasheet_epc901-V7.00 www.espros.com 12. Self-test mode by fill-and-spill The CCD and the readout chain functionality of the epc901 chip can be tested without optical stimulation. This function is useful in a factory test of the final product or in safety applications. The concept is to inject electrically stimulated charge into the pixel instead of photon generated charge by the as-called fill-and-spill circuitry. The basic behavior of the IC by the fill-and-spill circuitry is exactly the same as when the IC is illuminated. I.e. also when fill-and-spill is used, the acquisition is controlled by SHUTTER, the internal flush and shift operation are similar and the signal DATA_RDY is asserted at the end of the internal shift operation. If the CCD is stimulated by the fill-and-spill, the on-chip test controller coordinates the operation of the fill-and-spill and the CCD. Fill-and-spill procedure: 1. Select differential readout mode. 2. Apply the following voltages: TEST_MODE = VDD ROI_SEL = 0V or VDD RD_DIR = 0V or VDD 3. Access the test mode configuration registers. Write access remains available until next reset: Addr 0xD0: 0x4A Addr 0xD1: 0x66 Addr 0xD2: 0x02 Addr 0xD4: 0x20 Addr 0xD5: 0x21 4. Select the pattern of pixels to be stimulated by writing to register Addr 0xD3 (see Table 29): Bit select Stimulation 7 not used 6 all odd pixels 5 pixels 2, 6, 10 etc. 4 pixels 4, 12, 20 etc. 3 pixels 0, 8, 16 etc. 2:0 Set these bits to 0x1 Table 29: Bit select description of register Addr 0xD3 in fill-and-spill test mode 5. Apply the following voltages to the test pins. Note that Vout varies from production lot to lot: ANA_TEST_0 = 1 VDC ANA_TEST_1 (VIDEO_P – VIDEO_N): ◦ ◦ 3.0 VDC for Vout of approx. -0.3V 3.6 VDC for Vout of approx. +0.5V 6. Wait 10 µs 7. Acquire a frame by using a 20µs SHUTTER signal. A different integration time is not allowed. 8. Read the frame as described in section 5.4. 9. Disconnect external voltage sources from pins ANA_TEST_0/1. 10. Configure test mode registers to their initial values: Addr 0xD4: 0x00 Addr 0xD5: 0x01 Addr 0xD2: 0x00 Addr 0xD3: 0x00 11. Apply the following voltages: TEST_MODE = 0V ROI_SEL → application dependent RD_DIR → application dependent Important notes: ■ The chip does not operate correctly if the procedure and the write sequences described above are not exactly executed. ■ ANA_TEST* are bi-directional pins, by default output pins. Thus, the voltages V IN and VDC may only be applied once the chip is in fill-andspill mode. Otherwise, it can get damaged! © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 30 / 32 Datasheet_epc901-V7.00 www.espros.com 13. Ordering Information Part Number Part Name Package RoHS Packaging Method P100 401 epc901-CSP32-033 CSP32 Yes Reel P100 208 epc901 Evaluation Board V2 PCB 70.00 x 65.00 mm Yes Anti static bag P100 209 epc901 Chip Carrier Board V2 PCB 36.00 x 42.75 mm Yes Anti static bag Table 30: Ordering information Application notes can be downloaded from the ESPROS website at www.espros.com/downloads/09_Application_notes. © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 31 / 32 Datasheet_epc901-V7.00 www.espros.com 14. IMPORTANT NOTICE ESPROS Photonics AG and its subsidiaries (ESPROS) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to ESPROS’ terms and conditions of sale supplied at the time of order acknowledgment. ESPROS warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with epc’s stan dard warranty. Testing and other quality control techniques are used to the extent ESPROS deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. ESPROS assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using ESPROS components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. ESPROS does not warrant or represent that any license, either express or implied, is granted under any ESPROS patent right, copyright, mask work right, or other ESPROS intellectual property right relating to any combination, machine, or process in which ESPROS products or services are used. Information published by ESPROS regarding third-party products or services does not constitute a license from ESPROS to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ESPROS under the patents or other intellectual property of ESPROS. Resale of ESPROS products or services with statements different from or beyond the parameters stated by ESPROS for that product or service voids all express and any implied warranties for the associated ESPROS product or service. ESPROS is not responsible or liable for any such statements. ESPROS products are not authorized for use in safety-critical applications (such as life support) where a failure of the ESPROS product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their appli cations, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of ESPROS products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by epc. Further, Buyers must fully indemnify ESPROS and its representatives against any damages arising out of the use of ESPROS products in such safety-critical applications. ESPROS products are neither designed nor intended for use in military/aerospace applications or environments unless the ESPROS prod ucts are specifically designated by ESPROS as military-grade. Only products designated by ESPROS as military-grade meet military spec ifications. Buyers acknowledge and agree that any such use of ESPROS products which ESPROS has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. ESPROS products are neither designed nor intended for use in automotive applications or environments unless the specific ESPROS products are designated by ESPROS as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, ESPROS will not be responsible for any failure to meet such requirements. © 2020 ESPROS Photonics Corporation Characteristics subject to change without notice 32 / 32 Datasheet_epc901-V7.00 www.espros.com
EPC901-CSP32-033 价格&库存

很抱歉,暂时无法提供与“EPC901-CSP32-033”相匹配的价格&库存,您可以联系我们找货

免费人工找货