0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IS31FL3726A-SALS4-TR

IS31FL3726A-SALS4-TR

  • 厂商:

    LUMISSIL

  • 封装:

    SSOP24

  • 描述:

    IC SERIAL SHIPT 18-CH LED DRIVER

  • 数据手册
  • 价格&库存
IS31FL3726A-SALS4-TR 数据手册
IS31FL3726A 16-CHANNEL LED DRIVER July 2020 GENERAL DESCRIPTION FEATURES The IS31FL3726A is an industry standard serial  shift-register-plus latch-type LED driver operating from a 3V to 5V supply. It is comprised of 16 constant-current open drain sinks designed for driving common anode LEDs. The output current value can be set from 5mA to 60mA by using an external resistor. As a result, all outputs will have virtually the same current levels. This driver uses a high-speed 4-wire serial interface of up to 30MHz to drive 16 constant current outputs, a 16-bit shift register, a 16-bit latch and a 16-bit AND-gate circuit. Serial input --------------- data appears at the output OUTn channels after 16 clock cycles. Driving the Latch pin will load the 16-bit of shift-register data into the 16-bit output latch to drive the LEDs ON or OFF. The Enable pin can be used as a PWM input to adjust the LED brightness. The IS31FL3726A operates from a 3V to 5.5V supply, and is specified over the -40°C to +125°C temperature range. Output current capability and number of outputs: 60mA × 16 outputs Current set with external resistor Constant current range: 5mA to 60mA IOUT_MAX= 45mA @ VCC= 3V IOUT_MAX= 60mA @ VCC= 5V Current accuracy (All output on, IOUT = 25.2mA) - Bit to bit: < ±4%. - Device to device: < ±2%. 200mV LED Dropout at 25mA For common-anode LEDs Power supply voltage range, VCC= 3.0V to 5.5V Serial and parallel data transfer rate: 30MHz (Max. cascade connection) Operating temperature range, TA= -40°C ~ +125°C Package: QFN-24 (4mm×4mm), SSOP-24 and eTSSOP-24          APPLICATIONS  Video display panel LED driver  Point of sale signs  Variable LED signboards TYPICAL APPLICATION CIRCUIT VBattery LDO 3.3V VCC 1 F OUT0 0.1 F OUT1 SERIAL-IN OUT2 ENABLE Micro Controller LATCH IS31FL3726A CLOCK SERIAL-OUT R-EXT REXT 2k GND Figure 1 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 OUT13 OUT14 OUT15 Typical Application Circuit 1 IS31FL3726A TYPICAL APPLICATION CIRCUIT (CONTINUE) Figure 2 Typical Application Circuit (Serial Synchronization) Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 2 IS31FL3726A PIN CONFIGURATION Package Pin Configuration (Top View) QFN-24 SSOP-24 eTSSOP-24 GND 1 24 VCC SERIAL-IN 2 23 R-EXT CLOCK 3 22 SERIAL-OUT LATCH 4 21 ENABLE OUT0 5 20 OUT15 OUT1 6 19 OUT14 OUT2 7 18 OUT13 OUT3 8 17 OUT12 OUT4 9 16 OUT11 OUT5 10 15 OUT10 OUT6 11 14 OUT9 OUT7 12 13 OUT8 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 3 IS31FL3726A PIN DESCRIPTION No. Pin Description 22 SERIAL-OUT Output pin for serial data input on SERIAL-IN terminal. 2 23 R-EXT Input pin connect to an external resistor to regulate the output current. 3 24 VCC Supply voltage pin. 4 1 GND GND pin for control logic. 5 2 SERIAL-IN Input pin for serial data for data shift register. 6 3 CLOCK Input pin for clock for data shift on rising edge. 7 4 ------------------- LATCH 8 ~ 23 5~20 OUT0~OUT15 QFN SSOP/eTSSOP 1 ------------------- --------------- ------------------- Input pin for data strobe when the LATCH input is driven low, data is not latched. When it is pulled high, data is latched. Constant-current sinks. Input pin for output enable. --------------- 24 21 ----------------------- ENABLE Thermal Pad Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 ------------------- All current sinks (OUT0 to OUT15) are turned off, ----------------------- when the ENABLE pin is driven High and are turned on, when this pin is driven Low. Connect to GND. 4 IS31FL3726A ORDERING INFORMATION Industrial Range: -40°C to +125°C Order Part No. Package QTY IS31FL3726A-QFLS4-TR QFN-24, Lead-free 2500/Reel IS31FL3726A-SALS4-TR IS31FL3726A-SALS4 SSOP-24, Lead-free 2500/Reel 58/Tube IS31FL3726A-ZLS4-TR eTSSOP-24, Lead-free 2500/Reel Copyright  ©  2020  Lumissil  Microsystems.  All  rights  reserved.  Lumissil  Microsystems  reserves  the  right  to  make  changes  to  this  specification  and  its  products  at  any  time  without  notice.  Lumissil  Microsystems  assumes  no  liability  arising  out  of  the  application  or  use  of  any  information,  products  or  services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and  before placing orders for products.  Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can  reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use  in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:  a.) the risk of injury or damage has been minimized;  b.) the user assume all such risks; and  c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 5 IS31FL3726A FUNCTIONAL BLOCK DIAGRAM Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 6 IS31FL3726A ABSOLUTE MAXIMUM RATINGS Supply voltage, VCC Voltage at any input pin Maximum junction temperature, TJMAX Storage temperature range, TSTG Operating temperature range, TA=TJ Junction package thermal resistance, junction to ambient (4 layer standard test PCB based on JESD 51-2A), θJA Maximum power dissipation, PDMAX ESD (HBM) ESD (CDM) -0.3V ~ +6.0V -0.3V ~ VCC+0.2V +150°C -65°C ~ +150°C -40°C ~ +125°C 29.1°C/W (QFN) 70.3°C/W (SSOP) 28.1°C/W (eTSSOP) 3.44W (QFN) 1.42W (SSOP) 3.56W (eTSSOP) ±8kV ±750V Note 1: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. RECOMMENDED OPERATING CONDITION TA = 25°C, unless otherwise specified. Symbol VOUT fCLK Characteristic Condition Min. Output (headroom) voltage Clock frequency (Note 2) Cascade connected ------------------- Typ. Max. Unit 0.7 5 V 30 MHz 20 ns 20 ns ENABLE pulse width (Note 2, 3) 70 ns tSETUP1 SERIAL-IN set-up time for CLOCK pin 8 ns tHOLD1 SERIAL-IN Hold time for CLOCK pin 8 ns 8 ns 8 ns twLAT twCLK twENA tSETUP2 tHOLD2 LATCH pulse width CLOCK pulse width ----------------------- ------------------- Set-up time for LATCH pin ------------------- Hold time for LATCH pin Note 2: Guaranteed by design. ----------------------- Note 3: When the pulse of the Low level is input to the E N A B L E pin held in the High level. Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 7 IS31FL3726A ELECTRICAL CHARACTERISTICS TA = 25°C, VCC= 3.3V ~ 5.5V, unless otherwise specified. Symbol VCC Characteristic Supply voltage IOUT IMAT Output current error between bits (Note 5) IOUT Output current error between ICs (Note 6) Condition Normal operation 26.5 VOUT= 1V,VCC= 5V REXT = 750Ω 23.9 25.2 26.5 VOUT = 1V VCC = 3.3V REXT = 750Ω IOUT=25.2mA -4 4 % VOUT = 1V VCC = 5V REXT = 750Ω IOUT=25.2mA -4 4 % VOUT = 1V VCC = 3.3V REXT = 750Ω IOUT=25.2mA -2 2 % VOUT = 1V VCC = 5V REXT = 750Ω IOUT=25.2mA -2 2 % 0.5 V 1 µA VOUT = 5.5V VOH %/VCC R(UP) R(DOWN) IDD(OFF)2 IDD(ON)1 Logic high level Logic low level 0.3VCC IOL = 1.0mA, VCC = 3.3V 0.4 IOL = 1.0mA, VCC = 5V 0.4 IOH = -1.0mA, VCC = 3.3V 2.9 IOH = -1.0mA, VCC = 5V 4.6 When VCC is changed 3.3V to 5.5V, IOUT= 25.2mA Pull-up resistor ----------------------- ENABLE pin Pull-down resistor ------------------- Supply current 0.4 0.7VCC Output current supply voltage regulation IDD(OFF)1 V 25.2 Output leakage current input voltage SERIAL-OUT pin voltage 5.5 23.9 IOZ VOL Unit REXT = 750Ω REXT = 750Ω, IOUT= 25.2mA VIL Max. VOUT= 1V,VCC= 3.3V Headroom voltage Input voltage Typ. 3.0 VHR VIH Min. LATCH pin VOUT = 5V VOUT = 5V All outputs off VOUT = 0.7V All outputs on Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 mA V V 1 % 500 750 kΩ REXT = OPEN 0.3 0.6 REXT = 0.75kΩ REXT = 1.8kΩ REXT = 0.75kΩ 2.1 1 8.6 2.5 1.2 10 REXT = 1.8kΩ 4.5 6 250 mA 8 IS31FL3726A SWITCHING CHARACTERISTICS (NOTE 4) TA = 25°C, unless otherwise specified Symbol Characteristic Condition —————— Min. Max. 30 50 ————————— ENABLE = “L” tpLH2 ———————— L A T C H - OUTn , ENABLE = “L” ————————— 30 50 tpLH3 ————————— ———————— 50 70 20 40 60 100 tpLH Propagation delay tpHL1 —————— —————— ENABLE - OUTn , L A T C H = “H” CLOCK - SERIAL-OUT —————— ———————— CLOCK - OUTn , L A T C H = “H” ————————— ENABLE = “L” tpHL2 ———————— L A T C H - OUTn , ENABLE = “L” ————————— 60 100 tpHL3 ————————— ———————— ENABLE - OUTn , L A T C H = “H” CLOCK - SERIAL-OUT 70 100 20 40 tpHL Unit ———————— CLOCK - OUTn , L A T C H = “H” tpLH1 Typ. —————— —————— ns tor Output rise time 10%~90% of voltage waveform 30 50 ns tof Output fall time 90%~10% of voltage waveform 52 80 ns tr Maximum CLOCK rise time 500 ns tf Maximum CLOCK fall time 500 ns When not on PCB (Note 7) Conditions: (Refer to test circuit.) TA = 25°C, VCC=VIH =3.3V and 5V, VIL =0V, REXT =750Ω, VL =3.0V, RL=60Ω, CL=10.5pF Note 4: Guaranteed by design. Note 5: IOUT mismatch (bit to bit) I MAT IMAT is calculated:     I OUTn (n  0 ~ 15)   1  100%    I OUT 0  I OUT1  ...  I OUT15      16    Note 6: IOUT accuracy (device to device) IOUT is calculated: I OUT  I OUT 0  I OUT1  ...  I OUT15   I OUT ( IDEAL) )  ( 16    100%  I OUT ( IDEAL)       Where IOUT(IDEAL)= 10.5mA when REXT= 1800Ω, IOUT(IDEAL)= 25.2mA when REXT= 750Ω. Note 7: 1. If the device is connected in a cascade and tr/tf for the waveform is large, it may not be possible to achieve the timing required for data transfer. Please consider the timings carefully. ----------------- 2. Delay between outputs. The IS31FL3726A has graduated delay circuits between outputs. The fixed delay time is 5ns (typical), OUT1 has ---------------- 5ns delay, OUT2 has 10ns delay, etc. This delay prevents large inrush currents, which reduce power supply bypass capacitor requirements when the outputs turn on. The delay works during switch on and switch off of each output channel. LEDs that have not turned on before ——————— ——————— ENABLE is low will still turn on and off at the determined delayed time regardless of the state of ENABLE. Therefore, every LED will be ——————— illuminated for the amount of time ENABLE is pulled high. Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 9 IS31FL3726A TIMING WAVEFORM ———————— —————————— —————— 1. CLOCK, SERIAL-IN, SERIAL-OUT, L A T C H , E N A B L E , OUTn twCLK 50% CLOCK 50% tSETUP1 SERIAL-IN 50% 50% tHOLD1 50% SERIAL-OUT tpLH/tpHL tHOLD2 50% LATCH tSETUP2 50% twLAT ENABLE L = OUTPUT ENABLE H = OFF 50% OUTn L = ON tpHL1/LH1 tpHL2/LH2 —————— 2. OUTn Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 10 IS31FL3726A Figure 3 Timing Diagram Warning: The Latch input is a logic levelit is not an edge triggered latch circuit. Note 8: The serial-in data (SERIAL-IN) will be clocked into a 16 bit shift register synchronized on the rising edge of the clock (CLOCK). The data ‘1’ means the corresponding current output ‘ON’ for output, the data ‘0’ represents for ‘OFF’. The data will be transferred into the 16 bit latch ———————— register when the signal ( L A T C H ) is ‘H’ (level trigger); otherwise, the data will be latched. The trigger timing of the serial-out data (SERIAL-OUT) will be shifted out on synchronization to the rising edge of the clock. All outputs are turned off while enable terminal ————————— ————————— ( E N A B L E ) is kept at high level. And they are active when E N A B L E turns to low. Truth Table CLOCK __________ ____________ LATCH ENABLE SERIAL-IN H L L —————— —————— ——————— OUT0 …OUT7 … OUT15 SERIAL-OUT Dn Dn …Dn-7 …Dn-15 Dn-15 L Dn+1 No change Dn-14 H L Dn+2 Dn+2 …Dn-5 …Dn-13 Dn-13 X L Dn+3 Dn+2 …Dn-5 …Dn-13 Dn-13 Dn+3 OFF Dn-13 X H ____________ __________ Warning: The following conditions, ENABLE=0, LATCH=1, SERIAL-IN=1, cannot be configured at the same time when power is on, or IS31FL3726A will behave unpredictably. ————— ————— ————— ————— Note 9: OUT0 to OUT15 =On when Dn = H; OUT0 to OUT15 =Off when Dn = L. In order to ensure that the level of the power supply voltage is correct, an external resistor must be connected between R-EXT and GND. Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 11 IS31FL3726A TYPICAL TEST CHARACTERISTICS ICC VCC VCC Figure 4 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 Test Diagram 12 IS31FL3726A APPLICATION INFORMATION ADJUSTING OUTPUT CURRENT THERMAL CONSIDERATIONS The output current of each channel is set by an external resistor REXT, the relationship between IOUT and REXT is: The package thermal resistance, θJA, determines the amount of heat that can pass from the silicon die to the surrounding ambient environment. The θJA is a measure of the temperature rise created by power dissipation and is usually measured in degree Celsius per watt (°C/W). I OUT  k  V REXT R EXT Where VREXT is 1.26V, k is 15, so IOUT is calculated by Equation (1): I OUT  15  1 .26 V R EXT (1) When operating the chip at high ambient temperatures, or when driving maximum load current, care must be taken to avoid exceeding the package power dissipation limits. The maximum power dissipation can be calculated using the following Equation (2): As show in the figure below: PD ( MAX )  60 So, PD ( MAX )  50 125C  25C  3.44W (QFN) 29.1C / W 125C  25C  1.42W (SSOP) 70.3C / W 20 PD ( MAX )  125C  25C  3.56W (eTSSOP) 28.1C / W 10 Figure 7 shows the power derating of the IS31FL3726A on a JEDEC boards (in accordance with JESD 51-5 and JESD 51-7) standing in still air. 30 0 0 1000 2000 Figure 5 3000 REXT (Ω) 4000 5000 6000 4 eTSSOP-24 3.5 IOUT vs. REXT CONSTANT CURRENT OUTPUT In order to obtain a good performance of constant-current output, a suitable output voltage is necessary. Users can get related information about the minimum output voltage below. 70 3 QFN-24 2.5 2 SSOP-24 1.5 1 REXT=0.315kΩ 60 0.5 50 IOUT (mA) (2)  JA PD ( MAX )  Power Dissipation (W) IOUT (mA) 40 TJ ( MAX )  TA REXT=0.42kΩ 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 Temperature (°C) 40 30 REXT=0.75kΩ Figure 7 Dissipation Curve 20 REXT=1.8kΩ 10 REXT=3.9kΩ 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VOUT (V) Figure 6 2 2.2 2.4 2.6 2.8 3 IOUT vs. VOUT Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 13 IS31FL3726A CLASSIFICATION REFLOW PROFILES Profile Feature Pb-Free Assembly Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) 150°C 200°C 60-120 seconds Average ramp-up rate (Tsmax to Tp) 3°C/second max. Liquidous temperature (TL) Time at liquidous (tL) 217°C 60-150 seconds Peak package body temperature (Tp)* Max 260°C Time (tp)** within 5°C of the specified classification temperature (Tc) Max 30 seconds Average ramp-down rate (Tp to Tsmax) 6°C/second max. Time 25°C to peak temperature 8 minutes max. Figure 8 Classification Profile Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 14 IS31FL3726A PACKAGE INFORMATION QFN-24 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 15 IS31FL3726A SSOP-24 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 16 IS31FL3726A eTSSOP-24 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 17 IS31FL3726A RECOMMENDED LAND PATTERN QFN-24 SSOP-24 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 18 IS31FL3726A eTSSOP-24 Note: 1. Land pattern complies to IPC-7351. 2. All dimensions in MM. 3. This document (including dimensions, notes & specs) is a recommendation based on typical circuit board manufacturing parameters. Since land pattern design depends on many factors unknown (eg. user’s board manufacturing specs), user must determine suitability for use. Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 19 IS31FL3726A REVISION HISTORY Revision Detail Information Date 0A Update to Lumissil Logo 2020.01.22 0B Update typical application circuit, EC table and application information 2020.06.04 A Release to mass production 2020.06.23 Lumissil Microsystems – www.lumissil.com Rev. A, 06/23/2020 20
IS31FL3726A-SALS4-TR 价格&库存

很抱歉,暂时无法提供与“IS31FL3726A-SALS4-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IS31FL3726A-SALS4-TR
  •  国内价格 香港价格
  • 1+16.745561+2.01114
  • 10+10.3928910+1.24819
  • 25+8.7423525+1.04996
  • 100+6.87048100+0.82515
  • 250+5.95119250+0.71474
  • 500+5.38539500+0.64679
  • 1000+4.911461000+0.58987

库存:4374

IS31FL3726A-SALS4-TR
  •  国内价格 香港价格
  • 2000+4.514502000+0.54219
  • 4000+4.182004000+0.50226
  • 6000+4.062166000+0.48787

库存:4374