µ MOTOROLA
MC68340
Integrated Processor with DMA
User’s Manual
©MOTOROLA INC., 1992
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the
are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.
PREFACE
The complete documentation package for the MC68340 consists of the MC68340UM/AD,
MC68340 Integrated Processor with DMA User’s Manual, M68000PM/AD, MC68000
Family Programmer’s Reference Manual, and the MC68340P/D, MC68340 Integrated
Processor with DMA Product Brief.
The MC68340 Integrated with DMA Processor User’s Manual describes the programming,
capabilities, registers, and operation of the MC68340; the MC68000 Family Programmer’s
Reference Manual provides instruction details for the MC68340; and the MC68340
Integrated Processor with DMA Product Brief provides a brief description of the MC68340
capabilities.
This user’s manual is organized as follows:
Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Device Overview
Signal Descriptions
Bus Operation
System Integration Module
CPU32
DMA Controller Module
Serial Module
Section 8
Section 9
Section 10
Section 11
Section 12
Timer Modules
IEEE 1149.1 Test Access
Port
Applications
Electrical Characteristics
Ordering Information and
Mechanical Data
68K FAX-IT
FAX 512-891-8593
The Motorola High-End Technical Publication Department provides a FAX number for you
to submit any questions and comments about this document. We welcome your
suggestions for improving our documentation or any questions concerning our products.
Please provide the part number and revision number (located in upper right-hand corner
on the cover), and the title of the document when submitting. When referring to items in
the manual please reference by the page number, paragraph number, figure number,
table number, and line number if needed. Reference the line number from the top of the
page.
When we receive a FAX between the hours of 7:30 AM and 5:00 PM EST, Monday
through Friday, we will respond within two hours. If the FAX is received after 5:00 PM or
on the weekend, we will respond within two hours on the first working day following receipt
of the FAX.
When sending a FAX, please provide your name, company, FAX number, and voice
number including area code (so we can talk to a real person if needed).
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS
Paragraph
Number
Title
Page
Number
Section 1
Device Overview
1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.1.5
1.3.1.6
1.3.1.7
1.3.2
1.3.3
1.3.4
1.4
1.5
1.6
1.7
M68300 Family..................................................................................................1-2
Organization ..................................................................................................1-3
Advantages....................................................................................................1-3
Central Processor Unit..................................................................................... 1-3
CPU32 ............................................................................................................1-4
Background Debug Mode...........................................................................1-4
On-Chip Peripherals ........................................................................................1-5
System Integration Module.........................................................................1-5
External Bus Interface..............................................................................1-5
System Configuration and Protection...................................................1-6
Clock Synthesizer.....................................................................................1-6
Chip Select and Wait State Generation ...............................................1-6
Interrupt Handling.....................................................................................1-6
Discrete I/O Pins........................................................................................ 1-6
IEEE 1149.1 Test Access Port................................................................1-7
Direct Memory Access Module...................................................................1-7
Serial Module................................................................................................1-7
Timer Modules...............................................................................................1-8
Power Consumption Management................................................................1-8
Physical ..............................................................................................................1-9
Compact Disc-Interactive ................................................................................1-9
More Information...............................................................................................1-10
Section 2
Signal Descriptions
2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.6
MOTOROLA
Signal Index.......................................................................................................2-2
Address Bus.......................................................................................................2-4
Address Bus (A23–A0) ................................................................................2-4
Address Bus (A31–A24)..............................................................................2-4
Data Bus (D15–D0)..........................................................................................2-4
Function Codes (FC3–FC0)............................................................................2-5
Chip Selects (CS3–CS0) ................................................................................2-5
Interrupt Request Level (IRQ7, IRQ6, IRQ5, IRQ3) ...................................2-6
MC68340 USER'S MANUAL
iii
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Continued)
Paragraph
Number
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.9
2.9.1
2.9.2
2.9.3
2.10
2.10.1
2.10.2
2.10.3
2.10.4
2.11
2.11.1
2.11.2
2.11.3
2.11.4
2.12
2.12.1
2.12.2
2.12.3
2.13
2.13.1
2.13.2
2.13.3
2.13.4
2.13.5
2.13.6
2.13.7
2.13.8
2.14
2.14.1
2.14.2
2.14.3
iv
Title
Page
Number
Bus Control Signals .........................................................................................2-6
Data and Size Acknowledge (DSACK1, DSACK0)................................2-6
Address Strobe (AS)....................................................................................2-6
Data Strobe (DS)...........................................................................................2-7
Transfer Size (SIZ1, SIZ0) ..........................................................................2-7
Read/Write (R/W)...........................................................................................2-7
Bus Arbitration Signals....................................................................................2-7
Bus Request (BR)..........................................................................................2-7
Bus Grant (BG)...............................................................................................2-7
Bus Grant Acknowledge (BGACK).............................................................2-7
Read-Modify-Write Cycle (RMC).................................................................2-8
Exception Control Signals ..............................................................................2-8
Reset (RESET)...............................................................................................2-8
Halt (HALT)....................................................................................................2-8
Bus Error (BERR)...........................................................................................2-8
Clock Signals ....................................................................................................2-8
System Clock (CLKOUT)............................................................................2-8
Crystal Oscillator (EXTAL, XTAL)...............................................................2-9
External Filter Capacitor (XFC) ..................................................................2-9
Clock Mode Select (MODCK).....................................................................2-9
Instrumentation and Emulation Signals .......................................................2-9
Instruction Fetch (IFETCH)..........................................................................2-9
Instruction Pipe (IPIPE)...............................................................................2-9
Breakpoint (BKPT)........................................................................................2-10
Freeze (FREEZE)..........................................................................................2-10
DMA Module Signals.......................................................................................2-10
DMA Request (DREQ2, DREQ1).................................................................2-10
DMA Acknowledge (DACK2, DACK1)......................................................2-10
DMA Done (DONE2, DONE1)......................................................................2-10
Serial Module Signals.....................................................................................2-11
Serial Crystal Oscillator (X2, X1) ...............................................................2-11
Serial External Clock Input (SCLK)...........................................................2-11
Receive Data (RxDA, RxDB).......................................................................2-11
Transmit Data (TxDA, TxDB).......................................................................2-11
Clear to Send (CTSA, CTSB).....................................................................2-11
Request to Send (RTSA, RTSB)................................................................2-11
Transmitter Ready (T≈RDYA).....................................................................2-11
Receiver Ready (R≈RDYA) .........................................................................2-12
Timer Signals ....................................................................................................2-12
Timer Gate (TGATE2, TGATE1)................................................................2-12
Timer Input (TIN2, TIN1) ..............................................................................2-12
Timer Output (TOUT2, TOUT1)...................................................................2-12
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS (Continued)
Paragraph
Number
2.15
2.15.1
2.15.2
2.15.3
2.15.4
2.16
2.17
2.18
Title
Page
Number
Test Signals.......................................................................................................2-13
Test Clock (TCK)...........................................................................................2-13
Test Mode Select (TMS)..............................................................................2-13
Test Data In (TDI)..........................................................................................2-13
Test Data Out (TDO).....................................................................................2-13
Synthesizer Power (VCCSYN)..........................................................................2-13
System Power and Ground (VCC and GND)................................................2-13
Signal Summary...............................................................................................2-13
Section 3
Bus Operation
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.7.1
3.1.7.2
3.1.7.3
3.2
3.2.1
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.4
3.2.3.5
3.2.3.6
3.2.3.7
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.3
MOTOROLA
Bus Transfer Signals........................................................................................3-1
Bus Control Signals .....................................................................................3-2
Function Code Signals................................................................................3-3
Address Bus (A31–A0) ................................................................................3-4
Address Strobe (AS)....................................................................................3-4
Data Bus (D15–D0)......................................................................................3-4
Data Strobe (DS)...........................................................................................3-4
Bus Cycle Termination Signals..................................................................3-4
Data Transfer and Size Acknowledge Signals
(DSACK1 and DSACK0).....................................................................3-4
Bus Error (BERR).......................................................................................3-5
Autovector (AVEC)....................................................................................3-5
Data Transfer Mechanism...............................................................................3-5
Dynamic Bus Sizing.....................................................................................3-5
Misaligned Operands...................................................................................3-7
Operand Transfer Cases.............................................................................3-7
Byte Operand to 8-Bit Port, Odd or Even (A0 = X) ..............................3-7
Byte Operand to 16-Bit Port, Even (A0 = 0)..........................................3-8
Byte Operand to 16-Bit Port, Odd (A0 = 1) ...........................................3-9
Word Operand to 8-Bit Port, Aligned.....................................................3-9
Word Operand to 16-Bit Port, Aligned...................................................3-10
Long-word Operand to 8-Bit Port, Aligned...........................................3-10
Long-Word Operand to 16-Bit Port, Aligned........................................3-12
Bus Operation................................................................................................3-14
Synchronous Operation with DSACK≈.....................................................3-14
Fast Termination Cycles..............................................................................3-15
Data Transfer Cycles........................................................................................3-16
Read Cycle.....................................................................................................3-16
Write Cycle.....................................................................................................3-18
Read-Modify-Write Cycle.............................................................................3-19
MC68340 USER'S MANUAL
v
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Continued)
Paragraph
Number
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2
3.4.4.3
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.7
Title
Page
Number
CPU Space Cycles........................................................................................... 3-21
Breakpoint Acknowledge Cycle.................................................................3-22
LPSTOP Broadcast Cycle...........................................................................3-23
Module Base Address Register Access....................................................3-27
Interrupt Acknowledge Bus Cycles............................................................3-27
Interrupt Acknowledge Cycle—Terminated Normally........................3-27
Autovector Interrupt Acknowledge Cycle .............................................3-29
Spurious Interrupt Cycle..........................................................................3-30
Bus Exception Control Cycles........................................................................3-32
Bus Errors.......................................................................................................3-34
Retry Operation .............................................................................................3-36
Halt Operation ...............................................................................................3-38
Double Bus Fault ..........................................................................................3-39
Bus Arbitration...................................................................................................3-40
Bus Request...................................................................................................3-43
Bus Grant........................................................................................................3-43
Bus Grant Acknowledge..............................................................................3-43
Bus Arbitration Control.................................................................................3-44
Show Cycles..................................................................................................3-44
Reset Operation ................................................................................................3-46
Section 4
System Integration Module
4.1
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.2.6.1
4.2.2.6.2
4.2.2.7
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.4
4.2.4.1
vi
Module Overview..............................................................................................4-1
Module Operation.............................................................................................4-2
Module Base Address Register Operation...............................................4-2
System Configuration and Protection Operation....................................4-3
System Configuration ..............................................................................4-5
Internal Bus Monitor .................................................................................4-6
Double Bus Fault Monitor........................................................................4-6
Spurious Interrupt Monitor ......................................................................4-6
Software Watchdog..................................................................................4-6
Periodic Interrupt Timer ...........................................................................4-7
Periodic Timer Period Calculation.....................................................4-8
Using the Periodic Timer as a Real-Time Clock .............................4-9
Simultaneous Interrupts by Sources in the SIM40.............................4-9
Clock Synthesizer Operation......................................................................4-9
Phase Comparator and Filter .................................................................4-11
Frequency Divider ....................................................................................4-12
Clock Control.............................................................................................4-13
Chip Select Operation .................................................................................4-13
Programmable Features..........................................................................4-14
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS (Continued)
Paragraph
Number
4.2.4.2
4.2.5
4.2.5.1
4.2.5.2
4.2.6
4.2.7
4.3
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.3
4.3.4
4.3.4.1
4.3.4.2
4.3.4.3
4.3.5
4.3.5.1
4.3.5.2
4.3.5.3
4.3.5.4
4.3.5.5
4.3.5.6
4.3.5.7
4.4
4.4.1
4.4.2
4.4.3
Title
Page
Number
Global Chip Select Operation ................................................................4-14
External Bus Interface Operation...............................................................4-15
Port A...........................................................................................................4-15
Port B...........................................................................................................4-16
Low-Power Stop ...........................................................................................4-17
Freeze.............................................................................................................4-17
Programming Model.........................................................................................4-18
Module Base Address Register (MBAR)...................................................4-20
System Configuration and Protection Registers.....................................4-21
Module Configuration Register (MCR)..................................................4-21
Autovector Register (AVR).......................................................................4-23
Reset Status Register (RSR)...................................................................4-23
Software Interrupt Vector Register (SWIV)...........................................4-24
System Protection Control Register (SYPCR).....................................4-24
Periodic Interrupt Control Register (PICR) ...........................................4-26
Periodic Interrupt Timer Register (PITR)...............................................4-27
Software Service Register (SWSR) ......................................................4-28
Clock Synthesizer Control Register (SYNCR) ........................................4-28
Chip Select Registers ..................................................................................4-29
Base Address Registers ..........................................................................4-30
Address Mask Registers..........................................................................4-31
Chip Select Registers Programming Example....................................4-33
External Bus Interface Control....................................................................4-33
Port A Pin Assignment Register 1 (PPARA1).......................................4-33
Port A Pin Assignment Register 2 (PPARA2).......................................4-34
Port A Data Direction Register (DDRA).................................................4-34
Port A Data Register (PORTA)................................................................4-34
Port B Pin Assignment Register (PPARB) ............................................4-35
Port B Data Direction Register (DDRB).................................................4-35
Port B Data Register (PORTB, PORTB1) ..............................................4-35
MC68340 Initialization Sequence.................................................................4-36
Startup ............................................................................................................4-36
SIM40 Module Configuration .....................................................................4-36
SIM40 Example Configuration Code........................................................4-38
Section 5
CPU32
5.1
5.1.1
5.1.2
5.1.3
MOTOROLA
Overview.............................................................................................................5-1
Features..........................................................................................................5-2
Virtual Memory ..............................................................................................5-2
Loop Mode Instruction Execution ..............................................................5-3
MC68340 USER'S MANUAL
vii
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Continued)
Paragraph
Number
5.1.4
5.1.5
5.1.6
5.1.7
5.1.7.1
5.1.7.2
5.1.8
5.1.9
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.1.1
5.3.1.1.1
5.3.1.1.2
5.3.1.2
5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.3.3.4
5.3.3.5
5.3.3.6
5.3.3.7
5.3.3.8
5.3.3.9
5.3.3.10
5.3.4
5.3.4.1
5.3.4.2
5.3.4.3
5.3.4.4
5.3.4.5
5.3.5
5.3.6
5.4
5.4.1
5.4.2
5.4.2.1
5.4.2.2
viii
Title
Page
Number
Vector Base Register....................................................................................5-4
Exception Handling......................................................................................5-4
Addressing Modes........................................................................................5-5
Instruction Set................................................................................................5-5
Table Lookup and Interpolate Instructions...........................................5-7
Low-Power STOP Instruction .................................................................5-7
Processing States.........................................................................................5-7
Privilege States.............................................................................................5-7
Architecture Summary .....................................................................................5-8
Programming Model.....................................................................................5-8
Registers.........................................................................................................5-10
Instruction Set....................................................................................................5-11
M68000 Family Compatibility.....................................................................5-11
New Instructions........................................................................................5-11
Low-Power Stop (LPSTOP)................................................................5-11
Table Lookup and Interpolation (TBL)..............................................5-12
Unimplemented Instructions...................................................................5-12
Instruction Format and Notation.................................................................5-12
Instruction Summary ....................................................................................5-15
Condition Code Register.........................................................................5-20
Data Movement Instructions ...................................................................5-21
Integer Arithmetic Operations.................................................................5-22
Logic Instructions......................................................................................5-24
Shift and Rotate Instructions...................................................................5-24
Bit Manipulation Instructions...................................................................5-25
Binary-Coded Decimal (BCD) Instructions ..........................................5-26
Program Control Instructions..................................................................5-26
System Control Instructions....................................................................5-27
Condition Tests .........................................................................................5-29
Using the TBL Instructions ..........................................................................5-29
Table Example 1: Standard Usage.......................................................5-30
Table Example 2: Compressed Table ..................................................5-31
Table Example 3: 8-Bit Independent Variable ....................................5-32
Table Example 4: Maintaining Precision..............................................5-34
Table Example 5: Surface Interpolations.............................................5-36
Nested Subroutine Calls.............................................................................5-36
Pipeline Synchronization with the NOP Instruction................................5-36
Processing States.............................................................................................5-36
State Transitions...........................................................................................5-37
Privilege Levels.............................................................................................5-37
Supervisor Privilege Level......................................................................5-37
User Privilege Level.................................................................................5-39
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS (Continued)
Paragraph
Number
5.4.2.3
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4
5.5.2.5
5.5.2.6
5.5.2.7
5.5.2.8
5.5.2.9
5.5.2.10
5.5.2.11
5.5.2.12
5.5.3
5.5.3.1
5.5.3.1.1
5.5.3.1.2
5.5.3.1.3
5.5.3.1.4
5.5.3.2
5.5.3.2.1
5.5.3.2.2
5.5.3.2.3
5.5.3.2.4
5.5.3.2.5
5.5.3.2.6
5.5.3.2.7
5.5.4
5.5.4.1
5.5.4.2
5.5.4.3
5.6
5.6.1
5.6.1.1
5.6.1.2
MOTOROLA
Title
Page
Number
Changing Privilege Level........................................................................5-39
Exception Processing ......................................................................................5-39
Exception Vectors.........................................................................................5-40
Types of Exceptions .................................................................................5-41
Exception Processing Sequence ..........................................................5-41
Exception Stack Frame............................................................................5-42
Multiple Exceptions ..................................................................................5-42
Processing of Specific Exceptions ............................................................5-44
Reset ...........................................................................................................5-44
Bus Error.....................................................................................................5-46
Address Error.............................................................................................5-46
Instruction Traps........................................................................................5-47
Software Breakpoints...............................................................................5-47
Hardware Breakpoints.............................................................................5-48
Format Error...............................................................................................5-48
Illegal or Unimplemented Instructions ..................................................5-48
Privilege Violations...................................................................................5-49
Tracing........................................................................................................5-50
Interrupts.....................................................................................................5-51
Return from Exception..............................................................................5-52
Fault Recovery...............................................................................................5-53
Types of Faults ..........................................................................................5-55
Type I—Released Write Faults...........................................................5-55
Type II—Prefetch, Operand, RMW, and MOVEP Faults.................5-56
Type III—Faults During MOVEM Operand Transfer .......................5-57
Type IV—Faults During Exception Processing ...............................5-57
Correcting a Fault .....................................................................................5-57
Type I—Completing Released Writes via Software .......................5-57
Type I—Completing Released Writes via RTE................................5-57
Type II—Correcting Faults via RTE....................................................5-58
Type III—Correcting Faults via Software..........................................5-58
Type III—Correcting Faults by Conversion and Restart.................5-58
Type III—Correcting Faults via RTE...................................................5-59
Type IV—Correcting Faults via Software .........................................5-59
CPU32 Stack Frames ..................................................................................5-60
Four-Word Stack Frame ..........................................................................5-60
Six-Word Stack Frame.............................................................................5-60
Bus Error Stack Frame.............................................................................5-60
Development Support......................................................................................5-63
CPU32 Integrated Development Support................................................5-63
Background Debug Mode (BDM) Overview ........................................5-64
Deterministic Opcode Tracking Overview............................................5-64
MC68340 USER'S MANUAL
ix
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Continued)
Paragraph
Number
5.6.1.3
5.6.2
5.6.2.1
5.6.2.2
5.6.2.2.1
5.6.2.2.2
5.6.2.2.3
5.6.2.3
5.6.2.4
5.6.2.5
5.6.2.5.1
5.6.2.5.2
5.6.2.5.3
5.6.2.6
5.6.2.7
5.6.2.7.1
5.6.2.7.2
5.6.2.8
5.6.2.8.1
5.6.2.8.2
5.6.2.8.3
5.6.2.8.4
5.6.2.8.5
5.6.2.8.6
5.6.2.8.7
5.6.2.8.8
5.6.2.8.9
5.6.2.8.10
5.6.2.8.11
5.6.2.8.12
5.6.2.8.13
5.6.2.8.14
5.6.2.8.15
5.6.2.8.16
5.6.3
5.6.3.1
5.6.3.2
5.6.3.3
5.7
5.7.1
5.7.1.1
5.7.1.2
x
Title
Page
Number
On-Chip Hardware Breakpoint Overview.............................................5-64
Background Debug Mode...........................................................................5-65
Enabling BDM ...........................................................................................5-65
BDM Sources ............................................................................................5-66
External BKPT Signal..........................................................................5-66
BGND Instruction ..................................................................................5-66
Double Bus Fault. .................................................................................5-66
Entering BDM ............................................................................................5-66
Command Execution................................................................................5-67
BDM Registers...........................................................................................5-67
Fault Address Register (FAR) .............................................................5-67
Return Program Counter (RPC) .........................................................5-67
Current Instruction Program Counter (PCC)....................................5-67
Returning from BDM.................................................................................5-68
Serial Interface..........................................................................................5-68
CPU Serial Logic..................................................................................5-69
Development System Serial Logic....................................................5-71
Command Set ...........................................................................................5-73
Command Format.................................................................................5-73
Command Sequence Diagram..........................................................5-74
Command Set Summary.....................................................................5-75
Read A/D Register (RAREG/RDREG)................................................5-76
Write A/D Register (WAREG/WDREG) ..............................................5-77
Read System Register (RSREG)........................................................5-77
Write System Register (WSREG).......................................................5-78
Read Memory Location (READ).........................................................5-79
Write Memory Location (WRITE)........................................................5-79
Dump Memory Block (DUMP). ...........................................................5-80
Fill Memory Block (FILL)......................................................................5-82
Resume Execution (GO)......................................................................5-83
Call User Code (CALL)........................................................................5-83
Reset Peripherals (RST)......................................................................5-85
No Operation (NOP).............................................................................5-85
Future Commands................................................................................5-86
Deterministic Opcode Tracking..................................................................5-86
Instruction Fetch (IFETCH)......................................................................5-86
Instruction Pipe (IPIPE)...........................................................................5-87
Opcode Tracking during Loop Mode ....................................................5-88
Instruction Execution Timing...........................................................................5-88
Resource Scheduling ..................................................................................5-88
Microsequencer ........................................................................................5-89
Instruction Pipeline...................................................................................5-89
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS (Continued)
Paragraph
Number
5.7.1.3
5.7.1.3.1
5.7.1.3.2
5.7.1.3.3
5.7.1.4
5.7.1.5
5.7.1.6
5.7.1.7
5.7.2
5.7.2.1
5.7.2.2
5.7.2.3
5.7.3
5.7.3.1
5.7.3.2
5.7.3.3
5.7.3.4
5.7.3.5
5.7.3.6
5.7.3.7
5.7.3.8
5.7.3.9
5.7.3.10
5.7.3.11
5.7.3.12
5.7.3.13
5.7.3.14
Title
Page
Number
Bus Controller Resources .......................................................................5-89
Prefetch Controller................................................................................5-90
Write Pending Buffer. ...........................................................................5-90
Microbus Controller..............................................................................5-91
Instruction Execution Overlap.................................................................5-91
Effects of Wait States................................................................................5-92
Instruction Execution Time Calculation ................................................5-92
Effects of Negative Tails ..........................................................................5-93
Instruction Stream Timing Examples ........................................................5-94
Timing Example 1—Execution Overlap................................................5-94
Timing Example 2—Branch Instructions ..............................................5-95
Timing Example 3—Negative Tails.......................................................5-96
Instruction Timing Tables ............................................................................5-97
Fetch Effective Address ...........................................................................5-99
Calculate Effective Address....................................................................5-100
MOVE Instruction ......................................................................................5-101
Special-Purpose MOVE Instruction.......................................................5-101
Arithmetic/Logic Instructions...................................................................5-102
Immediate Arithmetic/Logic Instructions...............................................5-105
Binary-Coded Decimal and Extended Instructions ............................5-106
Single Operand Instructions...................................................................5-107
Shift/Rotate Instructions...........................................................................5-108
Bit Manipulation Instructions...................................................................5-109
Conditional Branch Instructions.............................................................5-110
Control Instructions...................................................................................5-111
Exception-Related Instructions and Operations..................................5-111
Save and Restore Operations................................................................5-111
Section 6
DMA Controller Module
6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.2
6.3.2.1
MOTOROLA
DMA Module Overview....................................................................................6-2
DMA Module Signal Definitions.....................................................................6-4
DMA Request (DREQ≈)................................................................................6-4
DMA Acknowledge (DACK≈)......................................................................6-4
DMA Done (DONE≈).....................................................................................6-4
Transfer Request Generation .........................................................................6-4
Internal Request Generation.......................................................................6-4
Internal Request, Maximum Rate...........................................................6-5
Internal Request, Limited Rate ...............................................................6-5
External Request Generation .....................................................................6-5
External Burst Mode.................................................................................6-5
MC68340 USER'S MANUAL
xi
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Continued)
Paragraph
Number
6.3.2.2
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.2
6.4.2.1
6.4.2.2
6.5
6.6
6.6.1
6.6.2
6.6.2.1
6.6.2.2
6.6.3
6.6.3.1
6.6.3.2
6.6.3.3
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.8
6.9
6.9.1
6.9.1.1
6.9.1.2
6.9.2
Title
Page
Number
External Cycle Steal Mode .....................................................................6-5
Data Transfer Modes........................................................................................6-6
Single-Address Mode..................................................................................6-6
Single-Address Read...............................................................................6-7
Single-Address Write...............................................................................6-9
Dual-Address Mode .....................................................................................6-12
Dual-Address Read..................................................................................6-12
Dual-Address Write ..................................................................................6-14
Bus Arbitration...................................................................................................6-18
DMA Channel Operation.................................................................................6-18
Channel Initialization and Startup.............................................................6-18
Data Transfers...............................................................................................6-19
Internal Request Transfers......................................................................6-19
External Request Transfers.....................................................................6-19
Channel Termination ...................................................................................6-20
Channel Termination ...............................................................................6-20
Interrupt Operation....................................................................................6-20
Fast Termination Option ..........................................................................6-20
Register Description.........................................................................................6-22
Module Configuration Register (MCR)......................................................6-23
Interrupt Register (INTR)..............................................................................6-26
Channel Control Register (CCR) ...............................................................6-26
Channel Status Register (CSR).................................................................6-30
Function Code Register (FCR) ...................................................................6-32
Source Address Register (SAR) ................................................................6-33
Destination Address Register (DAR).........................................................6-33
Byte Transfer Counter Register (BTC) ......................................................6-34
Data Packing .....................................................................................................6-35
DMA Channel Initialization Sequence .........................................................6-36
DMA Channel Configuration ......................................................................6-36
DMA Channel Operation in Single-Address Mode............................6-37
DMA Channel Operation in Dual-Address Mode ...............................6-37
DMA Channel Example Configuration Code ..........................................6-38
Section 7
Serial Module
7.1
7.1.1
7.1.2
7.1.3
7.1.4
xii
Module Overview..............................................................................................7-2
Serial Communication Channels A and B...............................................7-3
Baud Rate Generator Logic ........................................................................7-3
Internal Channel Control Logic..................................................................7-3
Interrupt Control Logic .................................................................................7-3
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS (Continued)
Paragraph
Number
7.1.5
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.8.1
7.2.8.2
7.2.9
7.2.9.1
7.2.9.2
7.2.10
7.2.11
7.2.12
7.2.12.1
7.2.12.2
7.2.13
7.2.13.1
7.2.13.2
7.2.13.3
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.5
7.3.5.1
7.3.5.2
7.3.5.3
7.4
7.4.1
7.4.1.1
MOTOROLA
Title
Page
Number
Comparison of Serial Module to MC68681.............................................7-4
Serial Module Signal Definitions................................................................... 7-4
Crystal Input or External Clock (X1) ..........................................................7-5
Crystal Output (X2) .......................................................................................7-5
External Input (SCLK)..................................................................................7-6
Channel A Transmitter Serial Data Output (TxDA).................................7-6
Channel A Receiver Serial Data Input (RxDA)........................................7-6
Channel B Transmitter Serial Data Output (TxDB).................................7-6
Channel B Receiver Serial Data Input (RxDB)........................................7-6
Channel A Request-To-Send (RTSA) ......................................................7-6
RTSA...........................................................................................................7-6
OP0..............................................................................................................7-6
Channel B Request-To-Send (RTSB).......................................................7-6
RTSB ...........................................................................................................7-7
OP1..............................................................................................................7-7
Channel A Clear-To-Send (CTSA) ...........................................................7-7
Channel B Clear-To-Send (CTSB)............................................................7-7
Channel A Transmitter Ready (T≈RDYA).................................................7-7
T≈RDYA......................................................................................................7-7
OP6..............................................................................................................7-7
Channel A Receiver Ready (R≈RDYA).....................................................7-7
R≈RDYA......................................................................................................7-7
FFULLA.......................................................................................................7-7
OP4..............................................................................................................7-7
Operation............................................................................................................7-8
Baud Rate Generator ...................................................................................7-8
Transmitter and Receiver Operating Modes............................................7-8
Transmitter .................................................................................................7-10
Receiver......................................................................................................7-11
FIFO Stack..................................................................................................7-12
Looping Modes .............................................................................................7-14
Automatic Echo Mode..............................................................................7-14
Local Loopback Mode .............................................................................7-14
Remote Loopback Mode .........................................................................7-14
Multidrop Mode .............................................................................................7-15
Bus Operation................................................................................................7-17
Read Cycles...............................................................................................7-17
Write Cycles...............................................................................................7-17
Interrupt Acknowledge Cycles................................................................7-17
Register Description and Programming .......................................................7-17
Register Description.....................................................................................7-17
Module Configuration Register (MCR)..................................................7-19
MC68340 USER'S MANUAL
xiii
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Continued)
Paragraph
Number
7.4.1.2
7.4.1.3
7.4.1.4
7.4.1.5
7.4.1.6
7.4.1.7
7.4.1.8
7.4.1.9
7.4.1.10
7.4.1.11
7.4.1.12
7.4.1.13
7.4.1.14
7.4.1.15
7.4.1.16
7.4.1.17
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.5
7.5.1
7.5.2
Title
Page
Number
Interrupt Level Register (ILR)..................................................................7-21
Interrupt Vector Register (IVR)................................................................7-21
Mode Register 1 (MR1)............................................................................7-22
Status Register (SR).................................................................................7-24
Clock-Select Register (CSR)..................................................................7-26
Command Register (CR) .........................................................................7-27
Receiver Buffer (RB).................................................................................7-30
Transmitter Buffer (TB).............................................................................7-30
Input Port Change Register (IPCR)........................................................7-31
Auxiliary Control Register (ACR)............................................................7-32
Interrupt Status Register (ISR)................................................................7-32
Interrupt Enable Register (IER)...............................................................7-34
Input Port (IP).............................................................................................7-35
Output Port Control Register (OPCR)....................................................7-35
Output Port Data Register (OP) ..............................................................7-37
Mode Register 2 (MR2)............................................................................7-37
Programming.................................................................................................7-40
Serial Module Initialization .....................................................................7-40
I/O Driver Example....................................................................................7-40
Interrupt Handling.....................................................................................7-40
Serial Module Initialization Sequence .........................................................7-46
Serial Module Configuration ......................................................................7-46
Serial Module Example Configuration Code ..........................................7-47
Section 8
Timer Modules
8.1
8.1.1
8.1.1.1
8.1.1.2
8.1.1.3
8.1.1.4
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
xiv
Module Overview..............................................................................................8-1
Timer and Counter Functions.....................................................................8-2
Prescaler and Counter.............................................................................8-2
Timeout Detection.....................................................................................8-2
Comparator................................................................................................8-2
Clock Selection Logic..............................................................................8-3
Internal Control Logic...................................................................................8-3
Interrupt Control Logic .................................................................................8-4
Timer Modules Signal Definitions .................................................................8-4
Timer Input (TIN1, TIN2) ..............................................................................8-5
Timer Gate (TGATE1, TGATE2)................................................................8-6
Timer Output (TOUT1, TOUT2)...................................................................8-6
Operating Modes ..............................................................................................8-6
Input Capture/Output Compare..................................................................8-6
Square-Wave Generator.............................................................................8-8
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
TABLE OF CONTENTS (Continued)
Paragraph
Number
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.9.1
8.3.9.2
8.3.9.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.5
8.5.1
8.5.2
Title
Page
Number
Variable Duty-Cycle Square-Wave Generator........................................8-9
Variable-Width Single-Shot Pulse Generator.........................................8-10
Pulse-Width Measurement..........................................................................8-12
Period Measurement....................................................................................8-13
Event Count ...................................................................................................8-14
Timer Bypass.................................................................................................8-16
Bus Operation................................................................................................8-17
Read Cycles...............................................................................................8-17
Write Cycles...............................................................................................8-17
Interrupt Acknowledge Cycles................................................................8-17
Register Description.........................................................................................8-17
Module Configuration Register (MCR)......................................................8-18
Interrupt Register (IR) ...................................................................................8-20
Control Register (CR)...................................................................................8-20
Status Register (SR).....................................................................................8-23
Counter Register (CNTR) ............................................................................8-25
Preload 1 Register (PREL1)........................................................................ 8-25
Preload 2 Register (PREL2)........................................................................ 8-26
Compare Register (COM)............................................................................8-26
Timer Module Initialization Sequence..........................................................8-27
Timer Module Configuration.......................................................................8-27
Timer Module Example Configuration Code...........................................8-28
Section 9
IEEE 1149.1 Test Access Port
9.1
9.2
9.3
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.5
9.6
Overview.............................................................................................................9-1
TAP Controller...................................................................................................9-2
Boundary Scan Register .................................................................................9-3
Instruction Register...........................................................................................9-9
EXTEST (000) ...............................................................................................9-10
SAMPLE/PRELOAD (001) ..........................................................................9-10
BYPASS (X1X, 101).....................................................................................9-11
HI-Z (100) .......................................................................................................9-11
MC68340 Restrictions......................................................................................9-11
Non-IEEE 1149.1 Operation...........................................................................9-12
Section 10
Applications
10.1
10.1.1
MOTOROLA
Minimum System Configuration...................................................................10-1
Processor Clock Circuitry..........................................................................10-1
MC68340 USER'S MANUAL
xv
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
TABLE OF CONTENTS (Concluded)
Paragraph
Number
10.1.2
10.1.3
10.1.4
10.1.5
10.2
10.2.1
10.2.2
10.2.3
10.2.4
Title
Page
Number
10.3
10.3.1
10.3.2
Reset Circuitry .............................................................................................10-3
SRAM Interface ...........................................................................................10-3
ROM Interface..............................................................................................10-4
Serial Interface............................................................................................10-4
Memory Interface Information.......................................................................10-5
Using an 8-Bit Boot ROM...........................................................................10-5
Access Time Calculations.........................................................................10-6
Calculating Frequency-Adjusted Output ................................................10-7
Interfacing an 8-Bit Device to 16-Bit Memory Using
Single-Address DMA Mode..................................................................10-10
Power Consumption Considerations..........................................................10-10
MC68340 Power Reduction at 5V ..........................................................10-11
MC68340V (3.3 V) .....................................................................................10-13
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
Section 11
Electrical Characteristics
Maximum Rating .............................................................................................11-1
Thermal Characteristics.................................................................................11-1
Power Considerations ...................................................................................11-2
AC Electrical Specification Definitions .......................................................11-2
DC Electrical Specifications .........................................................................11-5
AC Electrical Specifications Control Timing..............................................11-6
AC Timing Specifications..............................................................................11-8
DMA Module AC Electrical Specifications.................................................11-19
Timer Module Electrical Specifications ......................................................11-20
Serial Module Electrical Specifications......................................................11-22
IEEE 1149.1 Electrical Specifications.........................................................11-25
Section 12
Ordering Information and Mechanical Data
12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
Standard MC68340 Ordering Information .................................................12-1
Pin Assignment ...............................................................................................12-2
144-Lead Ceramic Quad Flat Pack (FE Suffix).....................................12-2
145-Lead Plastic Pin Grid Array (RP Suffix) ..........................................12-4
Package Dimensions.....................................................................................12-6
FE Suffix .......................................................................................................12-6
RP Suffix.......................................................................................................12-7
Index
xvi
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
LIST OF ILLUSTRATIONS
Figure
Number
Title
Page
Number
1-1
Block Diagram.........................................................................................................1-1
2-1
Functional Signal Groups .....................................................................................2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
Input Sample Window............................................................................................3-2
MC68340 Interface to Various Port Sizes..........................................................3-7
Long-Word Operand Read Timing from 8-Bit Port............................................3-11
Long-Word Operand Write Timing to 8-Bit Port.................................................3-12
Long-Word and Word Read and Write Timing—16-Bit Port ...........................3-13
Fast Termination Timing........................................................................................3-15
Word Read Cycle Flowchart .................................................................................3-16
Word Write Cycle Flowchart..................................................................................3-18
Read-Modify-Write Cycle Timing .........................................................................3-19
CPU Space Address Encoding............................................................................3-21
Breakpoint Operation Flowchart ..........................................................................3-24
Breakpoint Acknowledge Cycle Timing (Opcode Returned)..........................3-25
Breakpoint Acknowledge Cycle Timing (Exception Signaled) ......................3-26
Interrupt Acknowledge Cycle Flowchart.............................................................3-28
Interrupt Acknowledge Cycle Timing ..................................................................3-29
Autovector Operation Timing................................................................................3-31
Bus Error without DSACK≈ ...................................................................................3-35
Late Bus Error with DSACK≈ ................................................................................3-36
Retry Sequence ......................................................................................................3-37
Late Retry Sequence .............................................................................................3-38
HALT Timing............................................................................................................3-39
Bus Arbitration Flowchart for Single Request....................................................3-41
Bus Arbitration Timing Diagram—Idle Bus Case..............................................3-42
Bus Arbitration Timing Diagram—Active Bus Case .........................................3-42
Bus Arbitration State Diagram..............................................................................3-45
Show Cycle Timing Diagram................................................................................3-46
Timing for External Devices Driving RESET ......................................................3-47
Power-Up Reset Timing Diagram........................................................................3-48
4-1
4-2
4-3
4-4
SIM40 Module Register Block..............................................................................4-3
System Configuration and Protection Function ................................................4-5
Software Watchdog Block Diagram ....................................................................4-7
Clock Block Diagram for Crystal Operation .......................................................4-10
MOTOROLA
MC68340 USER'S MANUAL
xvii
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
LIST OF ILLUSTRATIONS (Continued)
Figure
Number
Title
Page
Number
4-5
4-6
4-7
4-8
MC68340 Crystal Oscillator..................................................................................4-10
Clock Block Diagram for External Oscillator Operation...................................4-11
Full Interrupt Request Multiplexer........................................................................4-16
SIM40 Programming Model..................................................................................4-19
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
CPU32 Block Diagram...........................................................................................5-3
Loop Mode Instruction Sequence .......................................................................5-3
User Programming Model.....................................................................................5-9
Supervisor Programming Model Supplement ..................................................5-9
Status Register........................................................................................................5-10
Instruction Word General Format.........................................................................5-12
Table Example 1.....................................................................................................5-30
Table Example 2.....................................................................................................5-31
Table Example 3.....................................................................................................5-33
Exception Stack Frame..........................................................................................5-42
Reset Operation Flowchart....................................................................................5-45
Format $0—Four-Word Stack Frame..................................................................5-60
Format $2—Six-Word Stack Frame ....................................................................5-60
Internal Transfer Count Register..........................................................................5-61
Format $C—BERR Stack for Prefetches and Operands..................................5-62
Format $C—BERR Stack on MOVEM Operand................................................5-62
Format $C—Four- and Six-Word BERR Stack..................................................5-63
In-Circuit Emulator Configuration ........................................................................5-64
Bus State Analyzer Configuration .......................................................................5-64
BDM Block Diagram...............................................................................................5-65
BDM Command Execution Flowchart.................................................................5-68
Debug Serial I/O Block Diagram..........................................................................5-70
Serial Interface Timing Diagram..........................................................................5-71
BKPT Timing for Single Bus Cycle......................................................................5-72
BKPT Timing for Forcing BDM .............................................................................5-72
BKPT/DSCLK Logic Diagram ..............................................................................5-72
Command-Sequence Diagram............................................................................5-75
Functional Model of Instruction Pipeline ............................................................5-87
Instruction Pipeline Timing Diagram...................................................................5-88
Block Diagram of Independent Resources ........................................................5-90
Simultaneous Instruction Execution....................................................................5-91
Attributed Instruction Times...................................................................................5-92
Example 1—Instruction Stream ...........................................................................5-95
Example 2—Branch Taken...................................................................................5-95
Example 2—Branch Not Taken............................................................................5-96
Example 3—Branch Negative Tail ......................................................................5-96
xviii
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
LIST OF ILLUSTRATIONS (Continued)
Figure
Number
Title
Page
Number
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
DMA Block Diagram...............................................................................................6-1
Single-Address Transfers .....................................................................................6-3
Dual-Address Transfer...........................................................................................6-3
DMA External Connections to Serial Module....................................................6-6
Single-Address Read Timing (External Burst) ..................................................6-8
Single-Address Read Timing (Cycle Steal).......................................................6-9
Single-Address Write Timing (External Burst)...................................................6-10
Single-Address Write Timing (Cycle Steal).......................................................6-11
Dual-Address Read Timing (External Burst—Source Requesting)...............6-13
Dual-Address Read Timing (Cycle Steal—Source Requesting)...................6-14
Dual-Address Write Timing (External Burst—Destination Requesting)........6-16
Dual-Address Write Timing (Cycle Steal—Destination Requesting)............6-17
Fast Termination Option (Cycle Steal)................................................................6-21
Fast Termination Option (External Burst—Source Requesting) ....................6-22
DMA Module Programming Model......................................................................6-23
Packing and Unpacking of Operands.................................................................6-35
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
Simplified Block Diagram......................................................................................7-1
External and Internal Interface Signals ..............................................................7-5
Baud Rate Generator Block Diagram..................................................................7-8
Transmitter and Receiver Functional Diagram.................................................. 7-9
Transmitter Timing Diagram .................................................................................7-10
Receiver Timing Diagram......................................................................................7-12
Looping Modes Functional Diagram...................................................................7-15
Multidrop Mode Timing Diagram .........................................................................7-16
Serial Module Programming Model....................................................................7-19
Serial Module Programming Flowchart..............................................................7-41
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
Simplified Block Diagram......................................................................................8-1
Timer Functional Diagram.....................................................................................8-3
External and Internal Interface Signals ..............................................................8-5
Input Capture/Output Compare Mode.................................................................8-7
Square-Wave Generator Mode............................................................................8-8
Variable Duty-Cycle Square-Wave Generator Mode ......................................8-10
Variable-Width Single-Shot Pulse Generator Mode........................................8-11
Pulse-Width Measurement Mode ........................................................................8-12
Period Measurement Mode ..................................................................................8-14
Event Count Mode..................................................................................................8-15
Timer Module Programming Model.....................................................................8-18
9-1
9-2
Test Access Port Block Diagram..........................................................................9-2
TAP Controller State Machine..............................................................................9-3
MOTOROLA
MC68340 USER'S MANUAL
xix
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
LIST OF ILLUSTRATIONS (Continued)
Figure
Number
9-3
9-4
9-5
9-6
9-7
9-8
9-9
Title
Page
Number
Output Latch Cell (O.Latch)...................................................................................9-7
Input Pin Cell (I.Pin)................................................................................................9-7
Active-High Output Control Cell (IO.Ctl1)...........................................................9-8
Active-Low Output Control Cell (IO.Ctl0)............................................................9-8
Bidirectional Data Cell (IO.Cell)...........................................................................9-9
General Arrangement for Bidirectional Pins......................................................9-9
Bypass Register ......................................................................................................9-11
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
Minimum System Configuration Block Diagram.............................................10-1
Sample Crystal Circuit.........................................................................................10-2
Statek Corporation Crystal Circuit.....................................................................10-2
XFC and VCCSYN Capacitor Connections........................................................10-3
SRAM Interface .....................................................................................................10-3
ROM Interface........................................................................................................10-4
Serial Interface......................................................................................................10-5
External Circuitry for 8-Bit Boot ROM ................................................................10-5
8-Bit Boot ROM Timing.........................................................................................10-6
Access Time Computation Diagram..................................................................10-6
Signal Relationships to CLKOUT ......................................................................10-7
Signal Width Specifications................................................................................10-8
Skew between Two Outputs...............................................................................10-9
Circuitry for Interfacing 8-Bit Device to 16-Bit Memory in
Single-Address DMA Mode..............................................................................10-10
10-15 MC68340 Current vs. Activity at 5 V..................................................................10-11
10-16 MC68340 Current vs. Voltage/Temperature....................................................10-12
10-17 MC68340 Current vs. Clock Frequency at 5 V................................................10-12
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
xx
Drive Levels and Test Points for AC Specifications.......................................11-4
Read Cycle Timing Diagram...............................................................................11-11
Write Cycle Timing Diagram...............................................................................11-12
Fast Termination Read Cycle Timing Diagram ...............................................11-13
Fast Termination Write Cycle Timing Diagram................................................11-14
Bus Arbitation Timing—Active Bus Case .........................................................11-15
Bus Arbitration Timing—Idle Bus Case ............................................................11-16
Show Cycle Timing Diagram..............................................................................11-16
IACK Cycle Timing Diagram...............................................................................11-17
Background Debug Mode Serial Port Timing .................................................11-18
Background Debug Mode FREEZE Timing .....................................................11-18
DMA Signal Timing Diagram..............................................................................11-19
Timer Module Clock Signal Timing Diagram ..................................................11-20
Timer Module Signal Timing Diagram..............................................................11-21
Serial Module General Timing Diagram ..........................................................11-22
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
LIST OF ILLUSTRATIONS (Concluded)
Figure
Number
11-16
11-17
11-18
11-19
11-20
11-21
Title
Page
Number
Serial Module Asynchronous Mode Timing (X1)............................................11-23
Serial Module Asynchronous Mode Timing (SCLK–16X)............................11-23
Serial Module Synchronous Mode Timing Diagram .....................................11-23
Test Clock Input Timing Diagram.......................................................................11-25
Boundary Scan Timing Diagram .......................................................................11-26
Test Access Port Timing Diagram......................................................................11-26
MOTOROLA
MC68340 USER'S MANUAL
xxi
11/2/95
SECTION 1: OVERVIEW
UM Rev.1.0
LIST OF TABLES
Table
Number
Title
Page
Number
2-1
2-2
2-3
2-4
2-5
Signal Index.............................................................................................................2-2
Address Space Encoding .....................................................................................2-5
DSACK≈ Encoding.................................................................................................2-6
SIZx Signal Encoding............................................................................................2-7
Signal Summary.....................................................................................................2-14
3-1
3-2
3-3
3-4
SIZx Signal Encoding............................................................................................3-3
Address Space Encoding .....................................................................................3-3
DSACK≈ Encoding.................................................................................................3-5
DSACK≈, BERR, and HALT Assertion Results..................................................3-33
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
Clock Operating Modes.........................................................................................4-9
System Frequencies from 32.768-kHz Reference............................................4-13
Clock Control Signals............................................................................................4-13
Port A Pin Assignment Register ...........................................................................4-15
Port B Pin Assignment Register ...........................................................................4-16
SHENx Control Bits................................................................................................4-22
Deriving Software Watchdog Timeout................................................................4-25
BMTx Encoding.......................................................................................................4-26
PIRQL Encoding......................................................................................................4-26
DDx Encoding .........................................................................................................4-32
PSx Encoding..........................................................................................................4-32
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
Instruction Set..........................................................................................................5-6
Instruction Set Summary.......................................................................................5-16
Condition Code Computations.............................................................................5-20
Data Movement Operations..................................................................................5-21
Integer Arithmetic Operations...............................................................................5-23
Logic Operations.....................................................................................................5-24
Shift and Rotate Operations..................................................................................5-25
Bit Manipulation Operations .................................................................................5-25
Binary-Coded Decimal Operations .....................................................................5-26
Program Control Operations.................................................................................5-26
System Control Operations...................................................................................5-28
Condition Tests .......................................................................................................5-29
Standard Usage Entries........................................................................................5-30
Compressed Table Entries ...................................................................................5-32
xxii
MC68340 USER'S MANUAL
MOTOROLA
11/2/95
SECTION 1: OVERVIEW
UM Rev 1
LIST OF TABLES (Continued)
Table
Number
Title
Page
Number
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
8-Bit Independent Variable Entries .....................................................................5-33
Exception Vector Assignments.............................................................................5-40
Exception Priority Groups......................................................................................5-43
Tracing Control........................................................................................................5-50
BDM Source Summary..........................................................................................5-67
Polling the BDM Entry Source..............................................................................5-68
CPU Generated Message Encoding...................................................................5-70
Size Field Encoding...............................................................................................5-74
BDM Command Summary....................................................................................5-77
Register Field for RSREG and WSREG..............................................................5-79
6-1
6-2
6-3
6-4
6-5
6-6
FRZx Control Bits ....................................................................................................6-24
SSIZEx Encoding ...................................................................................................6-28
DSIZEx Encoding ...................................................................................................6-29
REQx Encoding.......................................................................................................6-29
BBx Encoding and Bus Bandwidth......................................................................6-29
Address Space Encoding .....................................................................................6-32
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
FRZx Control Bits ....................................................................................................7-20
PMx and PT Control Bits........................................................................................7-23
B/Cx Control Bits.....................................................................................................7-24
RCSx Control Bits...................................................................................................7-26
TCSx Control Bits ...................................................................................................7-27
MISCx Control Bits .................................................................................................7-28
TCx Control Bits ......................................................................................................7-29
RCx Control Bits......................................................................................................7-30
CMx Control Bits .....................................................................................................7-38
SBx Control Bits......................................................................................................7-39
8-1
8-2
8-3
8-4
8-5
8-6
OCx Encoding .........................................................................................................8-17
FRZx Control Bits ....................................................................................................8-19
IEx Encoding............................................................................................................8-21
POTx Encoding .......................................................................................................8-22
MODEx Encoding ...................................................................................................8-22
OCx Encoding .........................................................................................................8-22
9-1
9-2
9-3
Boundary Scan Control Bits .................................................................................9-4
Boundary Scan Bit Definitions .............................................................................9-5
Instructions...............................................................................................................9-10
10-1
10-2
Memory Access Times at 16.78 MHz................................................................10-7
Typical Electrical Characteristics.......................................................................10-13
MOTOROLA
MC68340 USER'S MANUAL
xxiii
SECTION 1
DEVICE OVERVIEW
The MC68340 is a high-performance 32-bit integrated processor with direct memory
access (DMA), combining an enhanced M68000-compatible processor, 32-bit DMA, and
other peripheral subsystems on a single integrated circuit. The MC68340 CPU32 delivers
32-bit CISC processor performance from a lower cost 16-bit memory system. The
combination of peripherals offered in the MC68340 can be found in a diverse range of
microprocessor-based systems, including embedded control and general computing.
Systems requiring very high-speed block transfers of data can especially benefit from the
MC68340.
The MC68340's high level of functional integration results in significant reductions in
component count, power consumption, board space, and cost while yielding much higher
system reliability and shorter design time. The 3.3-V MC68340V is particularly attractive to
applications requiring a very tight power budget. Complete code compatibility with the
MC68000 and MC68010 affords the designer access to a broad base of established realtime kernels, operating systems, languages, applications, and development tools—many
oriented towards embedded control.
SYSTEM
INTEGRATION
MODULE
(SIM40)
SYSTEM
PROTECTION
TWOCHANNEL
SERIAL
I/O
CPU32
68020– BASED
PROCESSOR
CHIP SELECTS
AND
WAIT STATES
CLOCK
SYNTHESIZER
INTERMODULE BUS
EXTERNAL
BUS
INTERFACE
BUS
ARBITRATION
TWO-CHANNEL DMA
CONTROLLER
TIMER
TIMER
IEEE TEST
Figure 1-1. Block Diagram
MOTOROLA
MC68340 USER’S MANUAL
1-1
The primary features of the MC68340, illustrated in Figure 1-1, are as follows:
• High Functional Integration on a Single Piece of Silicon
• CPU32—MC68020-Derived 32-Bit Central Processor Unit
— Upward Object-Code Compatible with MC68000 and MC68010
— Additional MC68020 Instructions and Addressing Modes
— Unique Embedded Control Instructions
— Fast Two-Clock Register Instructions—10,045 Dhrystones
• Two-Channel Low-Latency DMA Controller for High-Speed Memory Transfers
— Single- or Dual-Address Transfers
— 32-Bit Addresses and Counters
— 8-, 16-, and 32-Bit Data Transfers
— 50 Mbyte/Sec Sustained Transfers (12.5 Mbyte/Sec Memory-to-Memory)
• Two-Channel Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
— Baud Rate Generators
— Modem Control
— MC68681/MC2681 Compatible
— 9.8 Mbits/Sec Maximum Transfer Rate
• Two Independent Counter/Timers
— 16-Bit Counter
— Up to 8-Bit Prescaler
— Multimode Operation
— 80-ns Resolution
• System Integration Module Incorporates Many Functions Typically Relegated to
External PALs, TTL, and ASIC, such as:
— System Configuration
— External Bus Interface
— System Protection
— Periodic Interrupt Timer
— Chip Select and Wait State Generation — Interrupt Response
— Clock Generation
— Bus Arbitration
— Dynamic Bus Sizing
— IEEE 1149.1 Boundary Scan (JTAG)
— Up to 16 Discrete I/O Lines
— Power-On Reset
• 32 Address Lines, 16 Data Lines
• Power Consumption Control
— Static HCMOS Technology Reduces Power in Normal Operation
— Low Voltage Operation at 3.3 V ±0.3 V (MC68340V only)
— Programmable Clock Generator Throttles Frequency
— Unused Peripherals Can Be Turned Off
— LPSTOP Provides an Idle State for Lowest Standby Current
• 0–16.78 MHz or 0–25.16 MHz Operation
• 144-Pin Ceramic Quad Flat Pack (CQFP) or 145-Pin Plastic Pin Grid Array (PGA)
As a low voltage part, the MC68340V can operate with a 3.3-V power supply. MC68340 is
used throughout this manual to refer to both the low voltage and standard 5-V parts since
both are functionally equivalent.
1.1 M68300 FAMILY
The MC68340 is one of a series of components in the M68300 family. Other members of
the family include the MC68302, MC68330, MC68331, MC68332, and MC68333.
1-2
MC68340 USER’S MANUAL
MOTOROLA
1.1.1 Organization
The M68300 family of integrated processors and controllers is built on an M68000 core
processor, an on-chip bus, and a selection of intelligent peripherals appropriate for a set of
applications. The CPU32 is a powerful central processor with nearly the performance of
the MC68020. A system integration module incorporates the external bus interface and
many of the smaller circuits that typically surround a microprocessor for address decoding,
wait-state insertion, interrupt prioritization, clock generation, arbitration, watchdog timing,
and power-on reset timing.
Each member of the M68300 family is distinguished by its selection of peripherals.
Peripherals are chosen to address specific applications but are often useful in a wide
variety of applications. The peripherals may be highly sophisticated timing or protocol
engines that have their own processors, or they may be more traditional peripheral
functions, such as UARTs and timers. Since each major function is designed in a
standalone module, each module might be found in many different M68300 family parts.
Driver software written for a module on one M68300 part can be used to run the same
module that appears on another part.
1.1.2 Advantages
By incorporating so many major features into a single M68300 family chip, a system
designer can realize significant savings in design time, power consumption, cost, board
space, pin count, and programming. The equivalent functionality can easily require 20
separate components. Each component might have 16–64 pins, totaling over 350
connections. Most of these connections require interconnects or are duplications. Each
connection is a candidate for a bad solder joint or misrouted trace. Each component is
another part to qualify, purchase, inventory, and maintain. Each component requires a
share of the printed circuit board. Each component draws power—often to drive large
buffers to get the signal to another chip. The cumulative power consumption of all the
components must be available from the power supply. The signals between the CPU and
a peripheral might not be compatible nor run from the same clock, requiring time delays or
other special design considerations.
In a M68300 family component, the major functions and glue logic are all properly
connected internally, timed with the same clock, fully tested, and uniformly documented.
Power consumption stays well under a watt, and a special standby mode drops current
well under a milliamp during idle periods. Only essential signals are brought out to pins.
The primary package is the surface-mount quad flat pack for the smallest possible
footprint; pin grid arrays are also available.
1.2 CENTRAL PROCESSOR UNIT
The CPU32 is a powerful central processor that supervises system functions, makes
decisions, manipulates data, and directs I/O. A special debugging mode simplifies
processor emulation during system debug.
MOTOROLA
MC68340 USER’S MANUAL
1-3
1.2.1 CPU32
The CPU32 is an M68000 family processor specially designed for use as a 32-bit core
processor and for operation over the intermodule bus (IMB). Designers used the
MC68020 as a model and included advances of the later M68000 family processors,
resulting in an instruction execution performance of 4 MIPS (VAX-equivalent) at 25.16
MHz.
The powerful and flexible M68000 architecture is the basis of the CPU32. MC68000
(including the MC68HC000 and the MC68EC000) and MC68010 user programs will run
unmodified on the CPU32. The programmer can use any of the eight 32-bit data registers
for fast manipulation of data and any of the eight 32-bit address registers for indexing data
in memory. The CPU32 can operate on data types of single bits, binary-coded decimal
(BCD) digits, and 8, 16, and 32 bits. Peripherals and data in memory can reside anywhere
in the 4-Gbyte linear address space. A supervisor operating mode protects system-level
resources from the more restricted user mode, allowing a true virtual environment to be
developed.
Flexible instructions for data movement, arithmetic functions, logical operations, shifts and
rotates, bit set and clear, conditional and unconditional program branches, and overall
system control are supported, including a fast 32 × 32 multiply and 32-bit conditional
branches. New instructions, such as table lookup and interpolate and low power stop,
support the specific requirements of embedded control applications. Many addressing
modes complement these instructions, including predecrement and postincrement, which
allow simple stack and queue maintenance and scaled indexed for efficient table
accesses. Data types and addressing modes are supported orthogonally by all data
operations and with all appropriate addressing modes. Position-independent code is easily
written.
The CPU32 is specially optimized to run with the MC68340's 16-bit data bus. Most
instructions execute in one-half the number of clocks compared to the original MC68000,
yielding an overall 1.6 times the performance of the same-speed MC68000 and measuring
10,045 Dhrystones/sec @ 25.16 MHz (6,742 Dhrystones/sec @ 16.78 MHz).
Like all M68000 family processors, the CPU32 recognizes interrupts of seven different
priority levels and allows the peripheral to vector the processor to the desired service
routine. Internal trap exceptions ensure proper instruction execution with good addresses
and data, allow operating system intervention in special situations, and permit instruction
tracing. Hardware signals can either terminate or rerun bad memory accesses before
instructions process data incorrectly.
The CPU32 offers the programmer full 32-bit data processing performance with complete
M68000 compatibility, yet with more compact code than is available with RISC
processors. The CPU32 is identical in all CPU32-based M68300 family products.
1.2.2 Background Debug Mode
A special operating mode is available in the CPU32 in which normal instruction execution
is suspended while special on-chip microcode performs the functions of a debugger.
1-4
MC68340 USER’S MANUAL
MOTOROLA
Commands are received over a dedicated, high-speed, full-duplex serial interface.
Commands allow the manual reading or writing of CPU32 registers, reading or writing of
external memory locations, and diversion to user-specified patch code. This background
debug mode permits a much simpler emulation environment while leaving the processor
chip in the target system, running its own debugging operations.
1.3 ON-CHIP PERIPHERALS
To improve total system throughput and reduce part count, board size, and cost of system
implementation, the M68300 family integrates on-chip, intelligent peripheral modules and
typical glue logic. These functions on the MC68340 include the SIM40, a DMA controller,
a serial module, and two timers.
The processor communicates with these modules over the on-chip intermodule bus (IMB).
This backbone of the chip is similar to traditional external buses with address, data, clock,
interrupt, arbitration, and handshake signals. Because bus masters (like the CPU32 and
DMA), peripherals, and the SIM40 are all on the chip, the IMB ensures that
communication between these modules is fully synchronized and that arbitration and
interrupts can be handled in parallel with data transfers, greatly improving system
performance. Internal accesses across the IMB may be monitored from outside of the
chip, if desired.
Each module operates independently. No direct connections between peripheral modules
are made inside the chip; however, external connections could, for instance, link a serial
output to a DMA control line. Modules and their registers are accessed in the memory
map of the CPU32 (and DMA) for easy access by general M68000 instructions and are
relocatable. Each module may be assigned its own interrupt level, response vector, and
arbitration priority. Since each module is a self-contained design and adheres to the IMB
interface specifications, the modules may appear on other M68300 family products,
retaining the investment in the software drivers for the module.
1.3.1 System Integration Module
The MC68340 SIM40 provides the external bus interface for both the CPU32 and the
DMA. It also eliminates much of the glue logic that typically supports the microprocessor
and its interface with the peripheral and memory system. The SIM40 provides
programmable circuits to perform address decoding and chip selects, wait-state insertion,
interrupt handling, clock generation, bus arbitration, watchdog timing, discrete I/O, and
power-on reset timing. A boundary scan test capability is also provided.
1.3.1.1 EXTERNAL BUS INTERFACE. The external bus interface (EBI) handles the
transfer of information between the internal CPU32 or DMA controller and memory,
peripherals, or other processing elements in the external address space. Based on the
MC68030 bus, the external bus provides up to 32 address lines and 16 data lines.
Address extensions identify each bus cycle as CPU32 or DMA initiated, supervisor or user
privilege level, and instruction or data access. The data bus allows dynamic sizing for 8- or
16-bit bus accesses (plus 32 bits for DMA). Synchronous transfers from the CPU32 or the
DMA can be made in as little as two clock cycles. Asynchronous transfers allow the
MOTOROLA
MC68340 USER’S MANUAL
1-5
memory system to signal the CPU32 or DMA when the transfer is complete and to note
the number of bits in the transfer. An external master can arbitrate for the bus using a
three-line handshaking interface.
1.3.1.2 SYSTEM CONFIGURATION AND PROTECTION. The M68000 family of
processors is designed with the concept of providing maximum system safeguards.
System configuration and various monitors and timers are provided in the MC68340.
Power-on reset circuitry is a part of the SIM40. A bus monitor ensures that the system
does not lock up when there is no response to a memory access. The bus fault monitor
can reset the processor when a catastrophic bus failure occurs. Spurious interrupts are
detected and handled appropriately. A software watchdog can pull the processor out of an
infinite loop. An interrupt can be sent to the CPU32 with programmable regularity for
DRAM refresh, time-of-day clock, task switching, etc.
1.3.1.3 CLOCK SYNTHESIZER. The clock synthesizer generates the clock signals used
by all internal operations as well as a clock output used by external devices. The clock
synthesizer can operate with an inexpensive 32768-Hz watch crystal or an external
oscillator for reference, using an internal phase-locked loop and voltage-controlled
oscillator. At any time, software can select clock frequencies from 131 kHz to 16.78 MHz
or 25.16 MHz, favoring either low power consumption or high performance. Alternately, an
external clock can drive the clock signal directly at the operating frequency. With its fully
static HCMOS design, it is possible to completely stop the system clock without losing the
contents of the internal registers.
1.3.1.4 CHIP SELECT AND WAIT STATE GENERATION. Four programmable chip
selects provide signals to enable external memory and peripheral circuits, providing all
handshaking and timing signals with up to 175-ns access times with a 25-MHz system
clock (265 ns @ 16.78 MHz). Each chip select signal has an associated base address and
an address mask that determine the addressing characteristics of that chip select.
Address space and write protection can be selected for each. The block size can be
selected from 256 bytes up to 4 Gbytes in increments of 2 n. Accesses can be preselected
for either 8- or 16-bit transfers. Fast synchronous termination or up to three wait states
can be programmed, whether or not the chip select signals are used. External
handshakes can also signal the end of a bus transfer. A system can boot from reset out of
8-bit-wide memory, if desired.
1.3.1.5 INTERRUPT HANDLING. Seven input signals are provided to trigger an external
interrupt, one for each of the seven priority levels supported. Seven separate outputs can
indicate the priority level of the interrupt being serviced. An input can direct the processor
to a default service routine, if desired. Interrupts at each priority level can be
preprogrammed to go to the default service routine. For maximum flexibility, interrupts can
be vectored to the correct service routine by the interrupting device.
1.3.1.6 DISCRETE I/O PINS. When not used for other functions, 16 pins can be
programmed as discrete input or output lines. Additionally, in other peripheral modules,
pins for otherwise unused functions can often be used for general input/output.
1-6
MC68340 USER’S MANUAL
MOTOROLA
1.3.1.7 IEEE 1149.1 TEST ACCESS PORT. To aid in system diagnostics, the MC68340
includes dedicated user-accessible test logic that is fully compliant with the IEEE 1149.1
standard for boundary scan testability, often referred to as JTAG (Joint Test Action
Group).
1.3.2 Direct Memory Access Module
The most distinguishing MC68340 characteristic is the high-speed 32-bit DMA controller,
used to quickly move large blocks of data between internal peripherals, external
peripherals, or memory without processor intervention. The DMA module consists of two,
independent, programmable channels. Each channel has separate request, acknowledge,
and done signals. Each channel can operate in a single-address or a dual-address (flyby)
mode.
In single-address mode, only one (the source or the destination) address is provided, and
a peripheral device such as a serial communications controller receives or supplies the
data. An external request must start a single-address transfer. In this mode, each channel
supports 32 bits of address and 8, 16, or 32 bits of data.
In dual-address mode, two bus transfers occur, one from a source device and the other to
a destination device. Dual-address transfers can be started by either an internal or
external request. In this mode, each channel supports 32 bits of address and 8 or 16 bits
of data (32 bits require external logic). The source and destination port size can be
selected independently; when they are different, the data will be packed or unpacked. An
8-bit disk interface can be read twice before the concatenated 16-bit result is passed into
memory.
Byte, word, and long-word counts up to 32 bits can be transferred. All addresses and
transfer counters are 32 bits. Addresses increment or remain constant, as programmed.
The DMA channels support two external request modes, burst transfer and cycle steal.
Internal requests can be programmed to occupy 25, 50, 75, or 100 percent of the data bus
bandwidth. Interrupts can be programmed to postpone DMA completion.
The DMA module can sustain a transfer rate of 12.5 Mbytes/sec in dual-address mode
and nearly 50 Mbytes/sec in single-address mode @ 25.16 MHz (8.4 and 33.3 Mbytes/sec
@ 16.78 MHz, respectively). The DMA controller arbitrates with the CPU32 for the bus in
parallel with existing bus cycles and is fully synchronized with the CPU32, eliminating all
delays normally associated with bus arbitration by allowing DMA bus cycles to butt
seamlessly with CPU bus cycles.
1.3.3 Serial Module
Most digital systems use serial I/O to communicate with host computers, operator
terminals, or remote devices. The MC68340 contains a two-channel, full-duplex USART.
An on-chip baud rate generator provides standard baud rates up to 76.8k baud
independently to each channel's receiver and transmitter. The module is functionally
equivalent to the MC68681/MC2681 DUART.
MOTOROLA
MC68340 USER’S MANUAL
1-7
Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8
bits with even, odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive
buffers and two-byte transmit buffers minimize CPU service calls. A wide variety of error
detection and maskable interrupt capability is provided on each channel. Full-duplex,
autoecho loopback, local loopback, and remote loopback modes can be selected.
Multidrop applications are supported.
A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel
can be programmed for a different baud rate, or an external 1 × and 16× clock input can be
selected. Full modem support is provided with separate request-to-send (RTS) and clearto-send (CTS) signals for each channel. One channel also provides service request
signals. The two serial ports can sustain rates of 9.8 Mbps with a 25-MHz system clock in
1× mode, 612 kbps in 16× mode (6.5 Mbps and 410 kbps @ 16.78 MHz).
1.3.4 Timer Modules
Timers and counters are used in a system to monitor elapsed time, generate waveforms,
measure signals, keep time-of-day clocks, initiate DRAM refresh cycles, count events, and
provide “time slices” to ensure that no task dominates the activity of the processor. A
counter that counts clock pulses makes a timer, which is most useful when it causes
certain actions to occur in response to reaching desired counts.
The MC68340 has two, identical, versatile, on-chip counter/timers as well as a simple
timer in the SIM40. These general-purpose counter/timers can be used for precisely timed
events without the errors to which software-based counters and timers are susceptible—
e.g., errors caused by dynamic memory refreshing, DMA cycle steals, and interrupt
servicing. The programmable timer operating modes are input capture, output compare,
square-wave generation, variable duty-cycle square-wave generation, variable-width
single-shot pulse generation, event counting, period measurement, and pulse-width
measurement.
Each timer consists of a 16-bit countdown counter with an 8-bit countdown prescaler for a
composite 24-bit resolution. The two timers can be externally cascaded for a maximum
count width of 48 bits. The counter/timer can be clocked by the internal system clock
generated by the SIM40 (÷2) or by an external clock input. Either the processor or external
stimuli can trigger the starting and stopping of the counter. When a counter reaches a
predetermined value, either an external output signal can be driven, or an interrupt can be
made to the CPU32. The finest resolution of the timer is 80 ns with a 25-MHz system
clock (125 ns @ 16.78 MHz).
1.4 POWER CONSUMPTION MANAGEMENT
The MC68340 is very power efficient due to its advanced 0.8-µ HCMOS process
technology and its static logic design. The resulting power consumption is typically
900 mW in full operation @ 25 MHz (650 mW @ 16.78 MHz)—far less than the
comparable discrete component implementation the MC68340 can replace. For
applications employing reduced voltage operation, selection of the MC68340V, which
1-8
MC68340 USER’S MANUAL
MOTOROLA
requires only a 3.3-V power supply, reduces current consumption by 40–60% in all modes
of operation (as well as reducing noise emissions).
The MC68340 has many additional methods of dynamically controlling power
consumption during operation. The frequency of operation can be lowered under software
control to reduce current consumption when performance is less critical. Idle internal
peripheral modules can be turned off to save power (5–10% each). Running a special low
power stop (LPSTOP) instruction shuts down the active circuits in the CPU and peripheral
modules, halting instruction execution. Power consumption in this standby mode is
reduced to about 350 µW. Processing and power consumption can be resumed by
resetting the part or by generating an interrupt with the SIM40's periodic interrupt timer.
1.5 PHYSICAL
The MC68340 is available as 0–16.78 MHz and 0–25.16 MHz, 0°C to +70°C and -40°C to
+85°C, and 5.0 V ±5% and 3.3 V ±0.3 supply voltages (reduced frequencies at 3.3 V) .
Thirty-two power and ground leads minimize ground bounce and ensure proper isolation
of different sections of the chip, including the clock oscillator. A 144 pins are used for
signals and power. The MC68340 is available in a gull-wing ceramic quad flat pack
(CQFP) with 25.6-mil (0.001-in) lead spacing or a 15 × 15 plastic pin grid array (PPGA)
with 0.1-in pin spacing.
1.6 COMPACT DISC-INTERACTIVE
The MC68340 was designed to meet the needs of many markets, including compact discinteractive (CD-I). CD-I is an emerging standard for a publishing medium that will bring
multimedia to a broad general audience—the consumer. CD-I players combine television
and stereo systems as output devices, with interactive control using a TV remote-controllike device to provide a multimedia experience selected from software “titles” contained in
compressed form on standard compact discs.
The highly integrated MC68340 is ideal as the central processor for CD-I players. It
provides the M68000 microprocessor code compatibility and DMA functions required by
the CD-I Green Book specification as well as many other useful on-chip functions for a
very cost-effective solution. The extra demands of full-motion video CD-I systems make
the best use of the MC68340 high performance. The MC68340 is CD-I compliant and has
been CD-I qualified. With its low voltage operation, the MC68340V is the only practical
choice for portable CD-I.
MOTOROLA
MC68340 USER’S MANUAL
1-9
1.7 MORE INFORMATION
The following table lists available documentation related to the MC68340:
Document Number
BR1114/D
MC68340/D
MC68340UM/AD
M68000PM/AD
AN1063/D
AN453
1-10
Document Name
M68300 Integrated Processor Family
MC68340 Technical Summary
MC68340 User's Manual
M68000 Family Programmer's Reference Manual
DRAM Controller for the MC68340
Software Implementation of SPI on the MC68340
BR573/D
M68340 Evaluation System Product Brief
BR729/D
The 68K Source
BR1407/D
3.3 Volt Logic and Interface Circuits
MC68340 USER’S MANUAL
MOTOROLA
SECTION 2
SIGNAL DESCRIPTIONS
SCLK
X2
X1
PORT A
TCK
TMS
TDI
TDO
A31/PORT A7/IACK7
A30/PORT A6/IACK6
A29/PORT A5/IACK5
A28/PORT A4/IACK4
A27/PORT A3/IACK3
A26/PORT A2/IACK2
A25/PORT A1/IACK1
A24/PORT A0
BKPT/DSCLK
FREEZE
IPIPE/DSO
IFETCH/DSI
This section contains brief descriptions of the MC68340 input and output signals in their
functional groups as shown in Figure 2-1.
TWO-CHANNEL
SERIAL
I/O
CPU32
CORE
TEST
A23–A0
RxDA
TxDA
CTSA
RxDB
TxDB
CTSB
D15–D0
FC3–FC0
OUTPUT
PORT
SYSTEM
INTEGRATION
MODULE
BUS
ARBITRATION
TIMER
MODULE
CLKOUT
XFC
XTAL
EXTAL
TIMER
MODULE
TGATE2
TIN2
TOUT2
CLOCK
TWO-CHANNEL
DMA
CONTROLLER
PORT B
DREQ1
DACK1
DONE1
DREQ2
DACK2
DONE2
IRQ7/PORT B7
IRQ6/PORT B6
IRQ5/PORT B5
IRQ3/PORT B3
CS3/IRQ4/PORT B4
CS2/IRQ2/PORT B2
CS1/IRQ1/PORT B1
CS0/AVEC
MODCK/PORT B0
TxRDYA/OP6
RxRDYA/FFULLA/OP4
RTSB/OP1
RTSA/OP0
IMB
TIN1
TOUT1
BR
BG
BGACK
RMC
EXTERNAL
BUS
INTERFACE
TGATE1
RESET
BERR
HALT
AS
DS
R/W
SIZ1
SIZ0
DSACK1
DSACK0
Figure 2-1. Functional Signal Groups
MOTOROLA
MC68340 USER’S MANUAL
2-1
2.1 SIGNAL INDEX
The input and output signals for the MC68340 are listed in Table 2-1. The name,
mnemonic, and brief functional description are presented. For more detail on each signal,
refer to the signal paragraph. Guaranteed timing specifications for the signals listed in
Table 2-1 can be found in Section 11 Electrical Characteristics.
Table 2-1. Signal Index
Signal Name
Address Bus
Mnemonic
Function
A23–A0
Lower 24 bits of the address bus
Input/
Output
Out
Address Bus/Port A7–A0/
Interrupt Acknowledge
A31–A24
Upper eight bits of the address bus, parallel I/O port, or
interrupt acknowledge lines
Out/I/O/Out
Data Bus
D15–D0
The 16-bit data bus used to transfer byte or word data
I/O
Function Codes
FC3–FC0
Identify the processor state and the address space of the
current bus cycle
Out
Chip Select 3–1/
Interrupt Request Level/
Port B4, B2, B1
CS3–CS1
Enables peripherals at programmed addresses, interrupt
priority level to the CPU32, or parallel I/O port
Out/In/
I/O
Chip Select 0/Autovector
CS0
Enables peripherals at programmed addresses or
requests an automatic vector
Out/In
Bus Request
BR
Indicates that an external device requires bus mastership
Bus Grant
BG
Indicates that current bus cycle is complete and the
MC68340 has relinquished the bus
Out
BGACK
Indicates that an external device has assumed bus
mastership
In
Provides asynchronous data transfers and dynamic bus
sizing
In
Bus Grant Acknowledge
Data and Size
Acknowledge
DSACK1,
DSACK0
In
RMC
Identifies the bus cycle as part of an indivisible read modify-write operation
Out
Address Strobe
AS
Indicates that a valid address is on the address bus
Out
Data Strobe
DS
During a read cycle, DS indicates that an external device
should place valid data on the data bus. During a write
cycle, DS indicates that valid data is on the data bus.
Out
SIZ1, SIZ0
Indicates the number of bytes remaining to be transferred
for this cycle
Out
R/ W
Indicates the direction of data transfer on the bus
Out
IRQ7, IRQ6,
IRQ5, IRQ3
Provides an interrupt priority level to the CPU32 or
becomes a parallel I/O port
In/I/O
Read-Modify-Write Cycle
Size
Read/Write
Interrupt Request Level/
Port B7, B6, B5, B3
RESET
System reset
I/O
Halt
HALT
Suspends external bus activity
I/O
Bus Error
BERR
Indicates an invalid bus operation is being attempted
In
Reset
System Clock
Crystal Oscillator
External Filter Capacitor
2-2
CLKOUT
System clock out
EXTAL, XTAL
XFC
Connections for an external crystal or oscillator to the
internal oscillator circuit
Connection pin for an external capacitor to filter the circuit
of the phase-locked loop
MC68340 USER’S MANUAL
Out
In, Out
In
MOTOROLA
Table 2-1. Signal Index (Continued)
Signal Name
Input/
Output
Mnemonic
Function
MODCK
Selects the source of the internal system clock upon reset
or becomes a parallel I/O port
In/I/O
Instruction Fetch/
Development Serial In
IFETCH/DSI
Indicates when the CPU32 is performing an instruction
word prefetch and when the instruction pipeline has been
flushed or provides background debug mode serial in
Out/In
Instruction Pipe/
Development Serial Out
IPIPE/DSO
Used to track movement of words through the instruction
pipeline or provides background debug mode serial out
Out/Out
Breakpoint/Development
Serial Clock
BKPT/DSCLK
Signals a hardware breakpoint to the CPU32 or provides
background debug mode serial clock
In/—
FREEZE
Indicates that the CPU32 has entered background debug
mode
Out
Out
Clock Mode Select/
Port B0
Freeze
Transmit Data
TxDA, TxDB
Transmitter serial data output from the serial module
Clear-to-Send
CTSA, CTSB
Serial module clear-to-send inputs
Request-to-Send/
OP1, OP0
RTSB, RTSA
Channel request-to-send outputs or discrete outputs
Serial Crystal Oscillator
X1, X2
Connections for an external crystal to the serial module
internal oscillator circuit
Serial Clock
SCLK
External serial module clock input
Transmitter Ready/OP6
T≈RDYA
Indicates transmit buffer has a character or becomes a
parallel output
Receiver Ready/
FIFO Full/OP4
R≈RDYA
Indicates receive buffer has a character, the receiver
FIFO buffer is full or becomes a parallel output
DMA Request
DRE
Input that starts a DMA process
In
Out/Out
In
Out/Out
Out/Out/Out
In
Q2, DREQ1
DMA Acknowledge
DACK2,
DACK1
Output that signals an access during DMA
Out
DMA Done
DONE2,
DONE1
Bi-directional signal that indicates the last transfer
I/O
Timer Gate
TGATE2,
TGATE1
Counter enable input to timer
In
Timer Input
TIN2, TIN1
Time reference input to timer
In
TOUT2,
TOUT1
Output waveform from timer
Out
Timer Output
Test Clock
TCK
Provides a clock for IEEE 1149.1 test logic
In
Test Mode Select
TMS
Controls test mode operations
In
Test Data In
TDI
Shifts in instructions and test data
In
Test Data Out
TDO
Shifts out instructions and test data
Synchronizer Power
System Power Supply
and Ground
MOTOROLA
VCCSYN
VCC , GND
Out
Quiet power supply to VCO; also used to control
synthesizer mode after reset.
—
Power supply and ground to the MC68340
—
MC68340 USER’S MANUAL
2-3
NOTE
The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.
2.2 ADDRESS BUS
The address bus signals are outputs that define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The MC68340 places the address on
the bus at the beginning of a bus cycle. The address is valid while AS is asserted.
The address bus consists of the following two groups. Refer to Section 3 Bus Operation
for information on the address bus and its relationship to bus operation.
2.2.1 Address Bus (A23–A0)
These three-state outputs (along with A31–A24) provide the address for the current bus
cycle, except in the CPU address space.
2.2.2 Address Bus (A31–A24)
These pins can be programmed as the most significant eight address bits, port A parallel
I/O, or interrupt acknowledge signals. These pins can be used for more than one of their
multiplexed functions as long as the external demultiplexing circuit properly resolves
interaction between the different functions.
A31–A24
These pins can function as the most significant eight address bits.
Port A7–A0
These eight pins can serve as a dedicated parallel I/O port. See Section 4 System
Integration Module for more information on programming these pins.
IACK7– IACK1
The MC68340 asserts one of these pins to indicate the level of an external interrupt
during an interrupt acknowledge cycle. Peripherals can use the IACK≈ signals instead
of monitoring the address bus and function codes to determine that an interrupt
acknowledge cycle is in progress and to obtain the current interrupt level.
2.3 DATA BUS (D15–D0)
This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68340. A read or write operation may transfer 8 or 16 bits of data (one or two
bytes) in one bus cycle. During a read cycle, the data is latched by the MC68340 on the
2-4
MC68340 USER’S MANUAL
MOTOROLA
last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus
are driven, regardless of the port width or operand size. The MC68340 places the data on
the data bus approximately one-half clock cycle after AS is asserted in a write cycle.
2.4 FUNCTION CODES (FC3–FC0)
These signals are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32 to acquire specific control information not
normally associated with read or write bus cycles. The function code signals are valid
while AS is asserted. See Table 2-2 for more information.
Table 2-2. Address Space Encoding
Function Code Bits
3
2
1
0
Address Spaces
0
0
0
0
Reserved (Motorola)
0
0
0
1
User Data Space
0
0
1
0
User Program Space
0
0
1
1
Reserved (User )
0
1
0
0
Reserved (Motorola)
0
1
0
1
Supervisor Data Space
0
1
1
0
Supervisor Program Space
0
1
1
1
CPU Space
1
x
x
x
DMA Space
2.5 CHIP SELECTS (CS3–CS0)
These pins can be programmed to be chip select output signals, port B parallel I/O and
autovector input, or additional interrupt request lines. Refer to Section 4 System
Integration Module for more information on these signals.
CS3– CS0
The chip select output signals enable peripherals at programmed addresses. These
signals are inactive high (not high impedance) after reset. CS0 is the chip select for a
boot ROM containing the reset vector and initialization program. It functions as the boot
chip select immediately after reset.
IRQ4, IRQ2, IRQ1
Interrupt request lines are external interrupt lines to the CPU32. These additional
interrupt request lines are selected by the FIRQ bit in the module configuration register.
MOTOROLA
MC68340 USER’S MANUAL
2-5
Port B4, B2, B1, AVEC
This signal group functions as three bits of parallel I/O and the autovector input. AVEC
requests an automatic vector during an interrupt acknowledge cycle.
2.6 INTERRUPT REQUEST LEVEL (IRQ7, IRQ6, IRQ5, IRQ3)
These pins can be programmed to be either prioritized interrupt request lines or port B
parallel I/O.
IRQ7, IRQ6, IRQ5, IRQ3
IRQ7 , the highest priority, is nonmaskable. IRQ6–IRQ1 are internally maskable
interrupts. Refer to Section 5 CPU32 for more information on interrupt request lines.
Port B7, B6, B5, B3
These pins can be used as port B parallel I/O. Refer to Section 4 System Integration
Module for more information on parallel I/O signals.
2.7 BUS CONTROL SIGNALS
These signals control the bus transfer operations of the MC68340. Refer to Section 3
Bus Operation for more information on these signals.
2.7.1 Data and Size Acknowledge ( DSACK1, DSACK0)
These two active-low input signals allow asynchronous data transfers and dynamic data
bus sizing between the MC68340 and external devices as listed in Table 2-3. During bus
cycles, external devices assert DSACK1 and/or DSACK0 as part of the bus protocol.
During a read cycle, this signals the MC68340 to terminate the bus cycle and to latch the
data. During a write cycle, this indicates that the external device has successfully stored
the data and that the cycle may terminate.
Table 2-3. DSACK≈ Encoding
DSACK
1
1
1
0
0
DSACK
0
1
0
1
0
Result
Insert Wait States in Current Bus Cycle
Complete Cycle—Data Bus Port Size Is 8 Bits
Complete Cycle—Data Bus Port Size Is 16 Bits
Reserved—Defaults to 16-Bit Port Size Can Be
Used for 32-Bit DMA Cycles
2.7.2 Address Strobe ( AS)
AS is an output timing signal that indicates the validity of both an address on the address
bus and many control signals. AS is asserted approximately one-half clock cycle after the
beginning of a bus cycle.
2-6
MC68340 USER’S MANUAL
MOTOROLA
2.7.3 Data Strobe (DS)
DS is an output timing signal that applies to the data bus. For a read cycle, the MC68340
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
MC68340 asserts DS approximately one clock cycle after the assertion of AS during a
write cycle.
2.7.4 Transfer Size (SIZ1, SIZ0)
These output signals are driven by the bus master to indicate the number of operand
bytes remaining to be transferred in the current bus cycle as noted in Table 2-4.
Table 2-4. SIZx Signal Encoding
SIZ1
SIZ0
Transfer Size
0
1
Byte
1
0
Word
1
1
Three Byte
0
0
Long Word
2.7.5 Read/Write (R/ W)
This active-high output signal is driven by the bus master to indicate the direction of a data
transfer on the bus. A logic one indicates a read from a slave device; a logic zero indicates
a write to a slave device.
2.8 BUS ARBITRATION SIGNALS
The following signals are the bus arbitration control signals used to determine the bus
master. Refer to Section 3 Bus Operation for more information on these signals.
2.8.1 Bus Request (BR)
This active-low input signal indicates that an external device needs to become the bus
master.
2.8.2 Bus Grant (BG)
Assertion of this active-low output signal indicates that the MC68340 has relinquished the
bus.
2.8.3 Bus Grant Acknowledge (BGACK)
Assertion of this active-low input indicates that an external device has become the bus
master.
MOTOROLA
MC68340 USER’S MANUAL
2-7
2.8.4 Read-Modify-Write Cycle (RMC)
This output signal identifies the bus cycle as part of an indivisible read-modify-write
operation. It remains asserted during all bus cycles of the read-modify-write operation to
indicate that bus ownership cannot be transferred.
2.9 EXCEPTION CONTROL SIGNALS
These signals are used by the MC68340 to recover from an exception.
2.9.1 Reset ( RESET)
This active-low, open-drain, bidirectional signal is used to initiate a system reset. An
external reset signal (as well as a reset from the SIM40) resets the MC68340 and all
external devices. A reset signal from the CPU32 (asserted as part of the RESET
instruction) resets external devices; the internal state of the CPU32 is not affected. The
on-chip modules are reset, except for the SIM40. However, the module configuration
register for each on-chip module is not altered. When asserted by the MC68340, this
signal is guaranteed to be asserted for a minimum of 512 clock cycles. Refer to Section 3
Bus Operation for a description of bus reset operation and Section 5 CPU32 for
information about the reset exception.
2.9.2 Halt (HALT)
This active-low, open-drain, bidirectional signal is asserted to suspend external bus
activity, to request a retry when used with BERR, or to perform a single-step operation. As
an output, HALT indicates a double bus fault by the CPU32. Refer to Section 3 Bus
Operation for a description of the effects of HALT on bus operation.
2.9.3 Bus Error (BERR)
This active-low input signal indicates that an invalid bus operation is being attempted or,
when used with HALT, that the processor should retry the current cycle. Refer to Section
3 Bus Operation for a description of the effects of BERR on bus operation.
2.10 CLOCK SIGNALS
These signals are used by the MC68340 for controlling or generating the system clocks.
See Section 4 System Integration Module for more information on the various clocking
methods and frequencies.
2.10.1 System Clock (CLKOUT)
This output signal is the system clock output and is used as the bus timing reference by
external devices. CLKOUT can be varied in frequency or slowed in low power stop mode
to conserve power.
2-8
MC68340 USER’S MANUAL
MOTOROLA
2.10.2 Crystal Oscillator (EXTAL, XTAL)
These two pins are the connections for an external crystal to the internal oscillator circuit.
If an external oscillator is used, it should be connected to EXTAL, with XTAL left open.
2.10.3 External Filter Capacitor (XFC)
This pin is used to add an external capacitor to the filter circuit of the phase-locked loop.
The capacitor should be connected between XFC and VCCSYN.
2.10.4 Clock Mode Select (MODCK)
This pin selects the source of the internal system clock during reset. After reset, it can be
programmed to be port B parallel I/O.
MODCK
The state of this active-high input signal during reset selects the source of the internal
system clock. If MODCK is high during reset, the internal voltage-controlled oscillator
(VCO) furnishes the system clock in crystal mode. If MODCK is low during reset, an
external clock source at the EXTAL pin furnishes the system clock output in external
clock mode.
Port B0
This pin can be used as a port B parallel I/O.
2.11 INSTRUMENTATION AND EMULATION SIGNALS
These signals are used for test or software debugging. See Section 5 CPU32 for more
information on these signals and background debug mode.
2.11.1 Instruction Fetch (IFETCH)
This pin functions as IFETCH in normal operation and as DSI in background debug mode.
IFETCH
This active-low output signal indicates when the CPU32 is performing an instruction
word prefetch and when the instruction pipeline has been flushed.
DSI
This development serial input signal helps to provide serial communications for
background debug mode.
2.11.2 Instruction Pipe (IPIPE)
This pin functions as IPIPE in normal operation and as DSO in background debug mode.
MOTOROLA
MC68340 USER’S MANUAL
2-9
IPIPE
This active-low output signal is used to track movement of words through the instruction
pipeline.
DSO
This development serial output signal helps to provide serial communications for
background debug mode.
2.11.3 Breakpoint (BKPT)
This pin functions as BKPT in normal operation and as DSCLK in background debug
mode.
BKPT
This active-low input signal is used to signal a hardware breakpoint to the CPU32.
DSCLK
This development serial clock input helps to provide serial communications for
background debug mode.
2.11.4 Freeze (FREEZE)
Assertion of this active-high output signal indicates that the CPU32 has acknowledged a
breakpoint and has initiated background mode operation.
2.12 DMA MODULE SIGNALS
The following signals are used by the direct memory access (DMA) controller module to
provide external handshake for either a source or destination. See Section 6 DMA
Module for additional information on these signals.
2.12.1 DMA Request (DREQ2, DREQ1)
This active-low input is asserted by a peripheral device to request an operand transfer
between that peripheral and memory. The assertion of DREQ≈ starts the DMA process.
The assertion level in external burst mode is level sensitive; in external cycle steal mode,
it is falling-edge sensitive.
2.12.2 DMA Acknowledge (DACK2, DACK1)
This active-low output is asserted by the DMA to signal to a peripheral that an operand is
being transferred in response to a previous transfer request.
2.12.3 DMA Done (DONE2, DONE1)
This active-low bidirectional signal is asserted by the DMA or a peripheral device during
any DMA bus cycle to indicate that the last data transfer is being performed. DONE≈ is an
active input in any mode. As an output, it is only active in external request mode. An
external pullup resistor is required even during operation in the internal request mode.
2-10
MC68340 USER’S MANUAL
MOTOROLA
2.13 SERIAL MODULE SIGNALS
The following signals are used by the serial module for data and clock signals. See
Section 7 Serial Module for more information on these signals.
2.13.1 Serial Crystal Oscillator (X2, X1)
These pins furnish the connection to a crystal or external clock, which must be supplied
when using the baud rate generator. An external clock is connected to the X1 pin; X2 is
left floating.
2.13.2 Serial External Clock Input (SCLK)
This input can be used as the external clock input for channel A or channel B, bypassing
the baud rate generator.
2.13.3 Receive Data (RxDA, RxDB)
These signals are the receiver serial data input for each channel. Data received on this
signal is sampled on the rising edge of the clock source, with the least significant bit
received first.
2.13.4 Transmit Data (TxDA, TxDB)
These signals are the transmitter serial data output for each channel. The output is held
high ('mark' condition) when the transmitter is disabled, idle, or operating in the local
loopback mode. Data is shifted out on this signal at the falling edge of the clock source,
with the least significant bit transmitted first.
2.13.5 Clear to Send (CTSA, CTSB)
These active-low signals can be programmed as the clear-to-send inputs for each
channel.
2.13.6 Request to Send (RTSA, RTSB)
These active-low signals can be programmed as request-to-send outputs or used as
discrete outputs.
RTSB, RTSA
When used for this function, these signals function as the request-to-send outputs.
OP1, OP0
When used for this function, these outputs are controlled by the value of bit 1 and bit 0,
respectively, in the output port data registers.
2.13.7 Transmitter Ready (T≈RDYA)
This active-low output can be programmed as the channel A transmitter ready status
indicator or used as a discrete output.
MOTOROLA
MC68340 USER’S MANUAL
2-11
T≈RDYA
When used for this function, this signal reflects the complement of the status of bit 2 of
the channel A status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the transmitter contains a character.
OP6
When used for this function, this output is controlled by bit 6 in the output port data
registers.
2.13.8 Receiver Ready (R≈RDYA)
This active-low output signal can be programmed as the channel A receiver ready,
channel A FIFO full indicator, or a dedicated parallel output.
R≈RDYA
When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver contains a character.
FFULLA
When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver FIFO is full.
OP4
When used for this function, this output is controlled by bit 4 in the output port data
registers.
2.14 TIMER SIGNALS
The following external signals are used by the timer modules. See Section 8 Timer
Modules for additional information on these signals.
2.14.1 Timer Gate (TGATE2, TGATE1)
These active-low inputs can be programmed to enable and disable the counters and
prescalers. TGATE≈ can also be programmed as a simple input.
2.14.2 Timer Input (TIN2, TIN1)
These inputs can be programmed as clocks that cause events to occur in the counters
and prescalers.
2.14.3 Timer Output (TOUT2, TOUT1)
These outputs drive the various output waveforms generated by the timers.
2-12
MC68340 USER’S MANUAL
MOTOROLA
2.15 TEST SIGNALS
The following signals are used with the on-board test logic defined by the IEEE 1149.1
standard. See Section 9 IEEE 1149.1 Test Access Port for more information on the use
of these signals.
2.15.1 Test Clock (TCK)
This input provides a clock for on-board test logic defined by the IEEE 1149.1 standard.
2.15.2 Test Mode Select (TMS)
This input controls test mode operations for on-board test logic defined by the IEEE
1149.1 standard.
2.15.3 Test Data In (TDI)
This input is used for serial test instructions and test data for on-board test logic defined
by the IEEE 1149.1 standard.
2.15.4 Test Data Out (TDO)
This output is used for serial test instructions and test data for on-board test logic defined
by the IEEE 1149.1 standard.
2.16 SYNTHESIZER POWER (V CCSYN )
This pin supplies a quiet power source to the VCO to provide greater frequency stability. It
is also used to control the synthesizer mode after reset. See Section 4 System
Integration Module for more information.
2.17 SYSTEM POWER AND GROUND (V CC AND GND)
These pins provide system power and ground to the MC68340. Multiple pins are provided
for adequate current capability. All power supply pins must have adequate bypass
capacitance for high-frequency noise suppression.
2.18 SIGNAL SUMMARY
Table 2-5 presents a summary of all the signals discussed in the preceding paragraphs.
MOTOROLA
MC68340 USER’S MANUAL
2-13
Table 2-5. Signal Summary
Signal Name
Mnemonic
Input/Output
A23–A0
Out
—
Yes
Address Bus Port A7–A0/
Interrupt Acknowledge
A31–A24
Out/I/O/Out
—/—/Low
Yes
Data Bus
D15–D0
I/O
—
Yes
Function Codes
FC3–FC0
Out
—
Yes
Chip Select 3/Interrupt Request
Level/Port B4, B2, B1
CS3–CS1
Out/In/I/O
Low/Low/—
No
CS0
Out/In
Low/Low
No
Bus Request
BR
In
Low
—
Bus Grant
BG
Out
Low
No
BGACK
In
Low
—
DSACK1,
DSACK0
In
Low
—
RMC
Out
Low
Yes
Address Strobe
AS
Out
Low
Yes
Data Strobe
DS
Out
Low
Yes
SIZ1, SIZ0
Out
—
Yes
R/ W
Out
High/Low
Yes
IRQ7, IRQ6,
IRQ5, IRQ3
In/I/O
Low/—
—
Reset
RESET
I/O
Low
No
Halt
HALT
I/O
Low
No
Bus Error
BERR
In
Low
—
CLKOUT
Out
—
No
EXTAL, XTAL
In, Out
—
—
XFC
In
—
—
MODCK
In/I/O
—/—
—
Instruction Fetch/
Development Serial In
IFETCH/DSI
Out/In
Low/—
No/—
Instruction Pipe/
Development Serial Out
IPIPE/DSO
Out/Out
Low/—
No/—
BKPT/DSCLK
In/In
Low/—
—/—
FREEZE
Out
High
No
RxDA, RxDB
In
—
—
Address Bus
Chip Select 0/Autovector
Bus Grant Acknowledge
Data and Size Acknowledge
Read-Modify-Write Cycle
Size
Read/Write
Interrupt Request Level/
Port B7, B6, B5, B3
System Clock
Crystal Oscillator
External Filter Capacitor
Clock Mode Select/Port B0
Breakpoint/
Development Serial Clock
Freeze
Receive Data
2-14
MC68340 USER’S MANUAL
Active State
Three-State
MOTOROLA
Table 2-5. Signal Summary (Continued)
Signal Name
Mnemonic
Input/Output
Active State
Three-State
Transmit Data
TxDA, TxDB
Out
—
No
Clear-to-Send
CTSA, CTSB
In
Low
—
Request-to-Send/
OP1, OP0
RTSB, RTSA
Out/Out
Low/—
No
SCLK
In
—
—
Transmitter Ready/OP6
T≈RDYA
Out/Out
Low/—
No
Receiver Ready/
FIFO Full/OP4
R≈RDYA
Out/Out/Out
Low/Low/—
No
DMA Request
DREQ2, DREQ1
In
Low
—
DMA Acknowledge
DACK2, DACK1
Out
Low
No
DMA Done
DONE2, DONE1
I/O
Low
No
Timer Gate
TGATE2,
TGATE1
In
Low
—
Timer Input
TIN2, TIN1
In
—
—
TOUT2, TOUT1
Out
—
Yes
Test Clock
TCK
In
—
—
Test Mode Select
TMS
In
High
—
TDI
In
High
—
TDO
Out
High
—
VCCSYN
–
—
—
VCC , GND
–
—
—
Serial Clock
Timer Output
Test Data In
Test Data Out
Synchronizer Power
System Power Supply and
Return
MOTOROLA
MC68340 USER’S MANUAL
2-15
SECTION 3
BUS OPERATION
This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and reset operation. Operation of the external bus is the same
whether the MC68340 or an external device is the bus master; the names and
descriptions of bus cycles are from the viewpoint of the bus master. For exact timing
specifications, refer to Section 11 Electrical Characteristics.
The MC68340 architecture supports byte, word, and long-word operands allowing access
to 8- and 16-bit data ports through the use of asynchronous cycles controlled by the
SIZ1/SIZ0 outputs and DSACK1/DSACK0 inputs. The MC68340 requires word and longword operands to be located in memory on word boundaries. The only type of transfer that
can be performed to an odd address is a single-byte transfer, referred to as an odd-byte
transfer. For an 8-bit port, multiple bus cycles may be required for an operand transfer due
to either misalignment or a word or long-word operand.
3.1 BUS TRANSFER SIGNALS
The bus transfers information between the MC68340 and external memory or a peripheral
device. External devices can accept or provide 8 bits or 16 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted
or provided during a bus transfer is defined as the port width. The MC68340 contains an
address bus that specifies the address for the transfer and a data bus that transfers the
data. Control signals indicate the beginning and type of the cycle as well as the address
space and size of the transfer. The selected device then controls the length of the cycle
with the signal(s) used to terminate the cycle. Strobe signals, one for the address bus and
another for the data bus, indicate the validity of the address and provide timing information
for the data. Both asynchronous and synchronous operation is possible for any port width.
In asynchronous operation, the bus and control input signals are internally synchronized to
the MC68340 clock, introducing a delay. This delay is the time required for the MC68340
to sample an input signal, synchronize the input to the internal clocks, and determine
whether it is high or low. In synchronous mode, the bus and control input signals must be
timed to setup and hold times. Since no synchronization is needed, bus cycles can be
completed in three clock cycles in this mode. Additionally, using the fast-termination option
of the chip select signals, two-clock operation is possible.
Furthermore, for all inputs, the MC68340 latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 3-1,
where t su and t h are the input setup and hold times, respectively. To ensure that an input
signal is recognized on a specific falling edge of the clock, that input must be stable during
MOTOROLA
MC68340 USER’S MANUAL
3-1
the sample window. If an input makes a transition during the window time period, the level
recognized by the MC68340 is not predictable; however, the MC68340 always resolves
the latched level to either a logic high or low before using it. In addition to meeting input
setup and hold times for deterministic operation, all input signals must obey the protocols
described in this section.
t su
th
CLKOUT
EXT
SAMPLE WINDOW
Figure 3-1. Input Sample Window
NOTE
The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.
3.1.1 Bus Control Signals
The MC68340 initiates a bus cycle by driving the A31–A0, SIZx, FCx, and R/W outputs. At
the beginning of a bus cycle, SIZ1 and SIZ0 are driven with FC3–FC0. SIZ1 and SIZ0
indicate the number of bytes remaining to be transferred during an operand cycle
(consisting of one or more bus cycles). Table 3-1 lists the encoding of the SIZx signal.
These signals are valid while AS is asserted. The R/ W signal determines the direction of
the transfer during a bus cycle. Driven at the beginning of a bus cycle, R/ W is valid while
AS is asserted. R/W only transitions when a write cycle is preceded by a read cycle or
vice versa. The signal may remain low for consecutive write cycles. The RMC signal is
asserted at the beginning of the first bus cycle of a read-modify-write operation and
remains asserted until completion of the final bus cycle of the operation.
3-2
MC68340 USER’S MANUAL
MOTOROLA
Table 3-1. SIZx Signal Encoding
SIZ1
SIZ0
Transfer Size
0
1
Byte
1
0
Word
1
1
Three Bytes
0
0
Long Word
3.1.2 Function Code Signals
FC3–FC0 are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32 to acquire specific control information not
normally associated with read or write bus cycles. FC3–FC0 are valid while AS is
asserted.
Function codes (see Table 3-2) can be considered as extensions of the 32-bit address
that can provide up to 16 different 4-Gbyte address spaces. Function codes are
automatically generated by the CPU32 to select address spaces for data and program at
both user and supervisor privilege levels, a CPU address space for processor functions,
and an alternate master address space. User programs access only their own program
and data areas to increase protection of system integrity and can be restricted from
accessing other information. The S-bit in the CPU32 status register is set for supervisor
accesses and cleared for user accesses to provide differentiation. Refer to 3.4 CPU
Space Cycles for more information.
Table 3-2. Address Space Encoding
Function Code Bits
MOTOROLA
3
2
1
0
Address Spaces
0
0
0
0
Reserved (Motorola)
0
0
0
1
User Data Space
0
0
1
0
User Program Space
0
0
1
1
Reserved (User )
0
1
0
0
Reserved (Motorola)
0
1
0
1
Supervisor Data Space
0
1
1
0
Supervisor Program Space
0
1
1
1
CPU Space
1
x
x
x
DMA Space
MC68340 USER’S MANUAL
3-3
3.1.3 Address Bus (A31–A0)
These signals are outputs that define the address of the byte (or the most significant byte)
to be transferred during a bus cycle. The MC68340 places the address on the bus at the
beginning of a bus cycle. The address is valid while AS is asserted.
3.1.4 Address Strobe ( AS)
This output timing signal indicates the validity of many control signals and the address on
the address bus. AS is asserted approximately one-half clock cycle after the beginning of
a bus cycle.
3.1.5 Data Bus (D15–D0)
This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68340. A read or write operation may transfer 8 or 16 bits of data (one or two
bytes) in one bus cycle. During a read cycle, the data is latched by the MC68340 on the
last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus
are driven, regardless of the port width or operand size. The MC68340 places the data on
the data bus approximately one-half clock cycle after AS is asserted in a write cycle.
3.1.6 Data Strobe (DS)
DS is an output timing signal that applies to the data bus. For a read cycle, the MC68340
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
MC68340 asserts DS approximately one clock cycle after the assertion of AS during a
write cycle.
3.1.7 Bus Cycle Termination Signals
The following signals can terminate a bus cycle.
3.1.7.1 DATA TRANSFER AND SIZE ACKNOWLEDGE SIGNALS ( DSACK1 AND
DSACK0). During bus cycles, external devices assert DSACK1 and/or DSACK0 as part
of the bus protocol. During a read cycle, this signals the MC68340 to terminate the bus
cycle and to latch the data. During a write cycle, this indicates that the external device has
successfully stored the data and that the cycle may terminate. These signals also indicate
to the MC68340 the size of the port for the bus cycle just completed (see Table 3-3). Refer
to 3.3.1 Read Cycle for timing relationships of DSACK1 and DSACK0.
Additionally, the system integration module (SIM40) chip select address mask register can
be programmed to internally generate DSACK1 and DSACK0 for external accesses,
eliminating logic required to generate these signals. However, if external DSACK≈ signals
are returned earlier than indicated by the DD bits in the chip select address mask register,
the cycle will terminate sooner than programmed. Refer to Section 4 System Integration
Module for additional information. The SIM40 can alternatively be programmed to
generate a fast termination cycle, providing a two-cycle external access. Refer to 3.2.6
Fast Termination Cycles for additional information on these cycles.
3-4
MC68340 USER’S MANUAL
MOTOROLA
3.1.7.2 BUS ERROR (BERR). This signal is also a bus cycle termination indicator and
can be used in the absence of DSACK≈ to indicate a bus error condition. BERR can also
be asserted in conjunction with DSACK≈ to indicate a bus error condition, provided it
meets the appropriate timing described in this section and in Section 11 Electrical
Characteristics. Additionally, BERR and HALT can be asserted together to indicate a
retry termination. Refer to 3.5 Bus Exception Control Cycles for additional information
on the use of these signals.
The internal bus monitor can be used to generate an internal bus error signal for internal
and internal-to-external transfers. If the bus cycles of an external bus master are to be
monitored, external BERR generation must be provided since the internal bus error
monitor has no information about transfers initiated by an external bus master.
3.1.7.3 AUTOVECTOR (AVEC ).This signal can be used to terminate interrupt
acknowledge cycles, indicating that the MC68340 should internally generate a vector
(autovector) number to locate an interrupt handler routine. AVEC can be generated either
externally or internally by the SIM40 (see Section 4 System Integration Module for
additional information). AVEC is ignored during all other bus cycles.
3.2 DATA TRANSFER MECHANISM
The MC68340 supports byte, word, and long-word operands, allowing access to 8- and
16-bit data ports through the use of asynchronous cycles controlled by DSACK1 and
DSACK0 . The MC68340 also supports byte, word, and long-word operands, allowing
access to 8- and 16-bit data ports through the use of synchronous cycles controlled by the
fast termination capability of the SIM40.
3.2.1 Dynamic Bus Sizing
The MC68340 dynamically interprets the port size of the addressed device during each
bus cycle, allowing operand transfers to or from 8- and 16-bit ports. During an operand
transfer cycle, the slave device signals its port size (byte or word) and indicates
completion of the bus cycle to the MC68340 through the use of the DSACK≈ inputs. Refer
to Table 3-3 for DSACK≈ encoding.
Table 3-3. DSACK≈ Encoding
MOTOROLA
DSACK1
DSACK0
1
(Negated)
1
(Negated)
Insert Wait States in Current Bus Cycle
1
(Negated)
0
(Asserted)
Complete Cycle—Data Bus Port Size Is 8 Bits
0
(Asserted)
1
(Negated)
Complete Cycle—Data Bus Port Size Is 16 Bits
0
(Asserted)
0
(Asserted)
Reserved—Defaults to 16-Bit Port Size Can Be
Used for 32-Bit DMA cycles
Result
MC68340 USER’S MANUAL
3-5
For example, if the MC68340 is executing an instruction that reads a long-word operand
from a 16-bit port, the MC68340 latches the 16 bits of valid data and runs another bus
cycle to obtain the other 16 bits. The operation from an 8-bit port is similar, but requires
four read cycles. The addressed device uses DSACK≈ to indicate the port width. For
instance, a 16-bit device always returns DSACK≈ for a 16-bit port (regardless of whether
the bus cycle is a byte or word operation).
Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 16-bit port must reside on data bus bits 15–0, and an 8-bit
port must reside on data bus bits 15–8. This requirement minimizes the number of bus
cycles needed to transfer data to 8- and 16-bit ports and ensures that the MC68340
correctly transfers valid data.
The MC68340 always attempts to transfer the maximum amount of data on all bus cycles;
for a word operation, it always assumes that the port is 16 bits wide when beginning the
bus cycle. The bytes of operands are designated as shown in Figure 3-2. The most
significant byte of a long-word operand is OP0, and OP3 is the least significant byte. The
two bytes of a word-length operand are OP0 (most significant) and OP1. The single byte
of a byte-length operand is OP0. These designations are used in the figures and
descriptions that follow.
Figure 3-2 shows the required organization of data ports on the MC68340 bus for both
8- and 16-bit devices. The four bytes shown in Figure 3-2 are connected through the
internal data bus and data multiplexer to the external data bus. The data multiplexer
establishes the necessary connections for different combinations of address and data
sizes. The multiplexer takes the two bytes of the 16-bit bus and routes them to their
required positions. The positioning of bytes is determined by the SIZ1/SIZ0 and A0
outputs. The SIZ1/SIZ0 outputs indicate the number of bytes to be transferred during the
current bus cycle (see Table 3-1). The number of bytes transferred during a read or write
bus cycle is equal to or less than the size indicated by the SIZ1/SIZ0 outputs, depending
on port width. For example, during the first bus cycle of a long-word transfer to a word
port, the size outputs indicate that four bytes are to be transferred although only two bytes
are moved on that bus cycle.
The address line A0 also affects the operation of the data multiplexer. During an operand
transfer, A31–A1 indicate the word base address of that portion of the operand to be
accessed, and A0 indicates the byte offset from the base (i.e., either odd or even byte).
Figure 3-2 lists the bytes required on the data bus for read cycles. The entries shown as
OPn are portions of the requested operand that are read or written during that bus cycle
and are defined by SIZ1/SIZ0 and A0 for the bus cycle.
3-6
MC68340 USER’S MANUAL
MOTOROLA
OPERAND
OP0
OP1
OP0
31
OP3
OP2
OP1
OP0
OP2
OP1
OP0
23
15
7
Case
(a)
(b)
(c)
(d)
(e)
(f)
(g)
Transfer Case
Byte to Byte
Byte to Word (Even)
Byte to Word (Odd)
Word to Byte (Aligned)
Word to Word (Aligned)
Long Word to Byte (Aligned)
Long Word to Word (Aligned)
SIZ1
0
0
0
1
1
0
0
SIZ0
1
1
1
0
0
0
0
A0
X
0
1
0
0
0
0
DSACK1 DSACK0
1
0
0
X
0
X
1
0
0
X
1
0
0
X
0
Data Bus
D8 D7
D0
(OP0)
OP0
(OP0)
OP0
(OP0)
OP0
(OP1)
OP0
OP1
OP0
(OP1)
OP0
OP0
OP1
D15
NOTES:
1. Operands in parentheses are ignored by the MC68340 during read cycles.
2. A 3-byte to byte transfer does occur as the second byte transfer of a long-word to byte port transfer.
Figure 3-2. MC68340 Interface to Various Port Sizes
3.2.2 Misaligned Operands
In this architecture, the basic operand size is 16 bits. Operand misalignment refers to
whether an operand is aligned on a word boundary or overlaps the word boundary,
determined by address line A0. When A0 is low, the address is even and is a word and
byte boundary. When A0 is high, the address is odd and is a byte boundary only. A byte
operand is properly aligned at any address; a word or long-word operand is misaligned at
an odd address.
At most, each bus cycle can transfer a word of data aligned on a word boundary. If the
MC68340 transfers a long-word operand over a 16-bit port, the most significant operand
word is transferred on the first bus cycle, and the least significant operand word is
transferred on a following bus cycle.
The CPU32 restricts all operands (both data and instructions) to be aligned. That is, word
and long-word operands must be located on a word or long-word boundary, respectively.
The only type of transfer that can be performed to an odd address is a single-byte
transfer, referred to as an odd-byte transfer. If a misaligned access is attempted, the
CPU32 generates an address error exception, and enters exception processing. Refer to
Section 5 CPU32 for more information on exception processing.
3.2.3 Operand Transfer Cases
The following cases are examples of the allowable alignments of operands to ports.
3.2.3.1 BYTE OPERAND TO 8-BIT PORT, ODD OR EVEN (A0 = X). The MC68340
drives the address bus with the desired address and the SIZx pins to indicate a singlebyte operand.
MOTOROLA
MC68340 USER’S MANUAL
3-7
BYTE OPERAND
OP0
0
7
DATA BUS
CYCLE 1
D15
D8 D7
D0
OP0
(OP0)
SIZ1
0
SIZ0
1
A0
X
DSACK1 DSACK0
1
0
For a read operation, the slave responds by placing data on bits 15–8 of the data bus,
asserting DSACK0 and negating DSACK1 to indicate an 8-bit port. The MC68340 then
reads the operand byte from bits 15–8 and ignores bits 7–0.
For a write operation, the MC68340 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACK≈ signals are read. The
slave device reads the byte operand from bits 15–8 and places the operand in the
specified location. The slave then asserts DSACK0 to terminate the bus cycle.
3.2.3.2 BYTE OPERAND TO 16-BIT PORT, EVEN (A0 = 0). The MC68340 drives the
address bus with the desired address and the SIZx pins to indicate a single-byte operand.
BYTE OPERAND
OP0
0
7
DATA BUS
CYCLE 1
D15
OP0
D8 D7
D0
(OP0)
SIZ1
0
SIZ0
1
A0
0
DSACK1 DSACK0
0
X
For a read operation, the slave responds by placing data on bits 15–8 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68340 then reads the operand byte
from bits 15–8 and ignores bits 7–0.
For a write operation, the MC68340 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACK≈ signals are read. The
slave device reads the operand from bits 15–8 of the data bus and uses the address to
place the operand in the specified location. The slave then asserts DSACK1 to terminate
the bus cycle.
3-8
MC68340 USER’S MANUAL
MOTOROLA
3.2.3.3 BYTE OPERAND TO 16-BIT PORT, ODD (A0 = 1). The MC68340 drives the
address bus with the desired address and the SIZx pins to indicate a single-byte operand.
BYTE OPERAND
OP0
0
7
DATA BUS
CYCLE 1
D15
D8 D7
D0
(OP0)
OP0
SIZ1
0
SIZ0
1
A0
1
DSACK1 DSACK0
0
X
For a read operation, the slave responds by placing data on bits 7–0 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68340 then reads the operand byte
from bits 7–0 and ignores bits 15–8.
For a write operation, the MC68340 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACK≈ signals are read. The
slave device reads the operand from bits 7–0 of the data bus and uses the address to
place the operand in the specified location. The slave then asserts DSACK1 to terminate
the bus cycle.
3.2.3.4 WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68340 drives the address
bus with the desired address and the SIZx pins to indicate a word operand.
WORD OPERAND
OP0
15
OP1
87
0
DATA BUS
D15
D8 D7
D0
(OP1)
OP0
CYCLE 1
(OP1)
OP1
CYCLE 2
SIZ1
1
0
SIZ0
0
1
A0
0
1
DSACK1 DSACK0
1
0
1
0
For a read operation, the slave responds by placing the most significant byte of the
operand on bits 15–8 of the data bus and asserting DSACK0 to indicate an 8-bit port. The
MC68340 reads the most significant byte of the operand from bits 15–8 and ignores bits
7–0. The MC68340 then decrements the transfer size counter, increments the address,
and reads the least significant byte of the operand from bits 15–8 of the data bus.
For a write operation, the MC68340 drives the word operand on bits 15–0 of the data bus.
The slave device then reads the most significant byte of the operand from bits 15–8 of the
data bus and asserts DSACK0 to indicate that it received the data but is an 8-bit port.
The MC68340 then decrements the transfer size counter, increments the address, and
writes the least significant byte of the operand to bits 15–8 of the data bus.
MOTOROLA
MC68340 USER’S MANUAL
3-9
3.2.3.5 WORD OPERAND TO 16-BIT PORT, ALIGNED. The MC68340 drives the
address bus with the desired address and the size pins to indicate a word operand.
WORD OPERAND
OP0
OP1
15
0
D15
D8 D7
D0
DATA BUS
CYCLE 1
OP0
OP1
SIZ1
1
SIZ0
0
A0
0
DSACK1 DSACK0
0
X
For a read operation, the slave responds by placing the data on bits 15–0 of the data bus
and asserting DSACK1 to indicate a 16-bit port. When DSACK1 is asserted, the
MC68340 reads the data on the data bus and terminates the cycle.
For a write operation, the MC68340 drives the word operand on bits 15–0 of the data bus.
The slave device then reads the entire operand from bits 15–0 of the data bus and asserts
DSACK1 to terminate the bus cycle.
3.2.3.6 LONG-WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68340 drives the
address bus with the desired address and the SIZx pins to indicate a long-word operand.
OP0
LONG-WORD OPERAND
31
DATA BUS
D15
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
OP1
23
OP0
OP1
OP2
OP3
D8 D7
D0
(OP1)
(OP1)
(OP3)
(OP3)
OP2
15
OP3
7
SIZ1
0
1
1
0
0
SIZ0
0
1
0
1
A0
0
1
0
1
DSACK1 DSACK0
1
0
1
0
1
0
1
0
For a read operation, shown in Figure 3-3, the slave responds by placing the most
significant byte of the operand on bits 15–8 of the data bus and asserting DSACK0 to
indicate an 8-bit port. The MC68340 reads the most significant byte of the operand (byte
0) from bits 15–8 and ignores bits 7–0. The MC68340 then decrements the transfer size
counter, increments the address, initiates a new cycle, and reads byte 1 of the operand
from bits 15–8 of the data bus. The MC68340 repeats the process of decrementing the
transfer size counter, incrementing the address, initiating a new cycle, and reading a byte
to transfer the remaining two bytes.
For a write operation, shown in Figure 3-4, the MC68340 drives the two most significant
bytes of the operand on bits 15–0 of the data bus. The slave device then reads only the
most significant byte of the operand (byte 0) from bits 15–8 of the data bus and asserts
DSACK0 to indicate reception and an 8-bit port. The MC68340 then decrements the
transfer size counter, increments the address, and writes byte 1 of the operand to bits
15–8 of the data bus. The MC68340 continues to decrement the transfer size counter,
increment the address, and write a byte to transfer the remaining two bytes to the slave
device.
3-10
MC68340 USER’S MANUAL
MOTOROLA
S0
S2
S4
S0
S2
S4
S0
S2
S4
S0
S2
S4
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
SIZ0
4 BYTES
3 BYTES
2 BYTES
1 BYTE
SIZ1
DSACK0
DSACK1
OP0
D15–D8
OP1
OP3
OP2
D7–D0
BYTE
READ
BYTE
BYTE
READ
READ
LONG-WORD OPERAND READ FROM 8-BIT BUS
BYTE
READ
Figure 3-3. Long-Word Operand Read Timing from 8-Bit Port
MOTOROLA
MC68340 USER’S MANUAL
3-11
S0
S2
S4
S0
S2
S4
S0
S2
S4
S0
S2
S4
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
SIZ0
3 BYTES
4 BYTES
1 BYTE
2 BYTES
SIZ1
DSACK0
DSACK1
D15–D8
OP0
OP1
OP2
OP3
D7–D0
(OP1)
(OP1)
(OP3)
(OP3)
WRITE
WRITE
WRITE
WRITE
LONG-WORD OPERAND WRITE TO 8-BIT BUS
Figure 3-4. Long-Word Operand Write Timing to 8-Bit Port
3.2.3.7 LONG-WORD OPERAND TO 16-BIT PORT, ALIGNED. Figure 3-5 shows both
long-word and word read and write timing to a 16-bit port.
LONG-WORD OPERAND
OP0
31
D15
DATA BUS
CYCLE 1
CYCLE 2
3-12
OP1
OP2
23
15
D8 D7
OP0
OP2
D0
OP1
OP3
OP3
7
0
SIZ1
0
1
SIZ0
0
0
MC68340 USER’S MANUAL
A0
0
0
DSACK1 DSACK0
0
X
0
X
MOTOROLA
S0
S2
S4
S0
S2
S4
S0
S2
S4
S0
S2
S4
S0
S2
S4
S0
S4
S2
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
SIZ0
2 BYTES
4 BYTES
2 BYTES
4 BYTES
2 BYTES
2 BYTES
SIZ1
DSACK0
DSACK1
D15–D8
OP0
OP2
OP0
OP0
OP2
OP0
D7–D0
OP1
OP3
OP1
OP1
OP3
OP1
LONG WORD READ
FROM 16-BIT BUS
WORD READ
FROM 16-BIT BUS
LONG WORD WRITE TO
16-BIT BUS
WORD
WRITE TO
16-BIT BUS
Figure 3-5. Long-Word and Word Read and Write Timing—16-Bit Port
The MC68340 drives the address bus with the desired address and drives the SIZx pins to
indicate a long-word operand. For a read operation, the slave responds by placing the two
most significant bytes of the operand on bits 15–0 of the data bus and asserting DSACK1
to indicate a 16-bit port. The MC68340 reads the two most significant bytes of the operand
(bytes 0 and 1) from bits 15–0. The MC68340 then decrements the transfer size counter
by 2, increments the address by 2, initiates a new cycle, and reads bytes 2 and 3 of the
operand from bits 15–0 of the data bus.
For a write operation, the MC68340 drives the two most significant bytes of the operand
on bits 15–0 of the data bus. The slave device then reads the two most significant bytes of
the operand (bytes 0 and 1) from bits 15–0 of the data bus and asserts DSACK1 to
indicate reception and a 16-bit port. The MC68340 then decrements the transfer size
counter by 2, increments the address by 2, and writes bytes 2 and 3 of the operand to bits
15–0 of the data bus.
MOTOROLA
MC68340 USER’S MANUAL
3-13
3.2.4 Bus Operation
The MC68340 bus is asynchronous, allowing external devices connected to the bus to
operate at clock frequencies different from the clock for the MC68340. Bus operation uses
the handshake lines (AS, DS, DSACK1/DSACK0, BERR, and HALT ) to control data
transfers. AS signals a valid address on the address bus, and DS is used as a condition
for valid data on a write cycle. Decoding the SIZx outputs and lower address line A0
provides strobes that select the active portion of the data bus. The slave device (memory
or peripheral) responds by placing the requested data on the correct portion of the data
bus for a read cycle or by latching the data on a write cycle; the slave asserts the
DSACK1/DSACK0 combination that corresponds to the port size to terminate the cycle.
Alternatively, the SIM40 can be programmed to assert the DSACK1/ DSACK0 combination
internally and respond for the slave. If no slave responds or the access is invalid, external
control logic may assert BERR to abort the bus cycle or BERR with HALT to retry the bus
cycle.
DSACK≈ can be asserted before the data from a slave device is valid on a read cycle.
The length of time that DSACK≈ may precede data must not exceed a specified value in
any asynchronous system to ensure that valid data is latched into the MC68340. (See
Section 11 Electrical Characteristics for timing parameters.) Note that no maximum
time is specified from the assertion of AS to the assertion of DSACK≈ . Although the
MC68340 can transfer data in a minimum of three clock cycles when the cycle is
terminated with DSACK≈ , the MC68340 inserts wait cycles in clock-period increments
until DSACK≈ is recognized. BERR and/or HALT can be asserted after DSACK≈ is
asserted. BERR and or HALT must be asserted within the time specified after DSACK≈ is
asserted in any asynchronous system. If this maximum delay time is violated, the
MC68340 may exhibit erratic behavior.
3.2.5 Synchronous Operation with DSACK≈
Although cycles terminated with DSACK≈ are classified as asynchronous, cycles
terminated with DSACK≈ can also operate synchronously in that signals are interpreted
relative to clock edges. The devices that use these cycles must synchronize the response
to the MC68340 clock (CLKOUT) to be synchronous. Since the devices terminate bus
cycles with DSACK≈, the dynamic bus sizing capabilities of the MC68340 are available.
The minimum cycle time for these cycles is also three clocks. To support systems that use
the system clock to generate DSACK≈ and other asynchronous inputs, the asynchronous
input setup time and the asynchronous input hold time are given. If the setup and hold
times are met for the assertion or negation of a signal such as DSACK≈, the MC68340 is
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACK≈ is recognized on a particular falling edge of the clock, valid
data is latched into the MC68340 (for a read cycle) on the next falling clock edge if the
data meets the data setup time. In this case, the parameter for asynchronous operation
can be ignored. The timing parameters are described in Section 11 Electrical
Characteristics.
3-14
MC68340 USER’S MANUAL
MOTOROLA
If a system asserts DSACK≈ for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACK≈ (and/or BERR/ HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACK≈ (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACK≈, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACK≈ is recognized. This setup time is
critical, and the MC68340 may exhibit erratic behavior if it is violated. When operating
synchronously, the data-in setup and hold times for synchronous cycles may be used
instead of the timing requirements for data relative to DS.
3.2.6 Fast Termination Cycles
With an external device that has a fast access time, the chip select circuit fast termination
enable (FTE) can provide a two-clock external bus transfer. Since the chip select circuits
are driven from the system clock, the bus cycle termination is inherently synchronized with
the system clock. Refer to Section 4 System Integration Module for more information on
chip selects.When fast termination is selected, the DD bits of the corresponding address
mask register are overridden. Fast termination can only be used with zero wait states. To
use the fast termination option, an external device should be fast enough to have data
ready, within the specified setup time, by the falling edge of S4. Figure 3-6 shows the
DSACK≈ timing for a read with two wait states, followed by a fast termination read and
write. When using the fast termination option, DS is asserted only in a read cycle, not in a
write cycle.
S0 S1 S2 S3 SW SW* SW SW* S4 S5 S0 S1 S4 S5 S0 S1 S4 S5 S0
CLKOUT
AS
DS
R/W
DSACKx
D15–D0
TWO WAIT STATES IN READ
FAST
TERMINATION
READ
FAST
TERMINATION
WRITE
* DSACKx only internally asserted for fast termination cycles.
Figure 3-6. Fast Termination Timing
MOTOROLA
MC68340 USER’S MANUAL
3-15
3.3 DATA TRANSFER CYCLES
The transfer of data between the MC68340 and other devices involves the following
signals:
• Address Bus A31–A0
• Data Bus D15–D0
• Control Signals
The address bus and data bus are parallel, nonmultiplexed buses. The bus master moves
data on the bus by issuing control signals, and the bus uses a handshake protocol to
ensure correct movement of the data. In all bus cycles, the bus master is responsible for
de-skewing all signals it issues at both the start and end of the cycle. In addition, the bus
master is responsible for de-skewing the acknowledge and data signals from the slave
devices. The following paragraphs define read, write, and read-modify-write cycle
operations. Each bus cycle is defined as a succession of states that apply to the bus
operation. These states are different from the MC68340 states described for the CPU32.
The clock cycles used in the descriptions and timing diagrams of data transfer cycles are
independent of the clock frequency. Bus operations are described in terms of external bus
states.
3.3.1 Read Cycle
During a read cycle, the MC68340 receives data from a memory or peripheral device. If
the instruction specifies a long-word or word operation, the MC68340 attempts to read two
bytes at once. For a byte operation, the MC68340 reads one byte. The section of the data
bus from which each byte is read depends on the operand size, address signal A0, and
the port size. Refer to 3.2.1 Dynamic Bus Sizing and 3.2.2 Misaligned Operands for
more information. Figure 3-7 is a flowchart of a word read cycle.
SLAVE
BUS MASTER
ADDRESS DEVICE
1.
2.
3.
4.
5.
SET R/W TO READ
DRIVE ADDRESS ON A31–A0
DRIVE FUNCTION CODE ON FC3–FC0
DRIVE SIZE PINS FOR OPERAND SIZE
ASSERT AS AND DS
ACQUIRE DATA
PRESENT DATA
1. DECODE ADDRESS
2. PLACE DATA ON D15–D0
3. DRIVE DSACKx SIGNALS
1. LATCH DATA
2. NEGATE AS AND DS
START NEXT CYCLE
TERMINATE CYCLE
1. REMOVE DATA FROM D15–D0
2. NEGATE DSACKx
Figure 3-7. Word Read Cycle Flowchart
3-16
MC68340 USER’S MANUAL
MOTOROLA
State 0—The read cycle starts in state 0 (S0). During S0, the MC68340 places a valid
address on A31–A0 and valid function codes on FC3–FC0. The function codes select the
address space for the cycle. The MC68340 drives R/ W high for a read cycle. SIZ1/SIZ0
become valid, indicating the number of bytes requested for transfer.
State 1—One-half clock later, in state 1 (S1), the MC68340 asserts AS indicating a valid
address on the address bus. The MC68340 also asserts DS during S1. The selected
device uses R/ W, SIZ1 or SIZ0, A0, and DS to place its information on the data bus. One
or both of the bytes (D15–D8 and D7–D0) are selected by SIZ1/SIZ0 and A0.
State 2—As long as at least one of the DSACK≈ signals is recognized on the falling edge
of S2 (meeting the asynchronous input setup time requirement), data is latched on the
falling edge of S4, and the cycle terminates.
State 3—If DSACK≈ is not recognized by the start of state 3 (S3), the MC68340 inserts
wait states instead of proceeding to states 4 and 5. To ensure that wait states are
inserted, both DSACK1 and DSACK0 must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added, the MC68340
continues to sample DSACK≈ on the falling edges of the clock until one is recognized.
State 4—At the falling edge of state 4 (S4), the MC68340 latches the incoming data and
samples DSACK≈ to get the port size.
State 5—The MC68340 negates AS and DS during state 5 (S5). It holds the address valid
during S5 to provide address hold time for memory systems. R/ W , SIZ1 and SIZ0, and
FC3–FC0 also remain valid throughout S5. The external device keeps its data and
DSACK≈ signals asserted until it detects the negation of AS or DS (whichever it detects
first). The device must remove its data and negate DSACK≈ within approximately one
clock period after sensing the negation of AS or DS . DSACK≈ signals that remain
asserted beyond this limit may be prematurely detected for the next bus cycle.
MOTOROLA
MC68340 USER’S MANUAL
3-17
3.3.2 Write Cycle
During a write cycle, the MC68340 transfers data to memory or a peripheral device. Figure
3-8 is a flowchart of a word write cycle.
BUS MASTER
SLAVE
ADDRESS DEVICE
1.
2.
3.
4.
5.
6.
7.
SET R/W TO WRITE
DRIVE ADDRESS ON A31–A0
DRIVE FUNCTION CODE ON FC3–FC0
DRIVE SIZE PINS FOR OPERAND SIZE
ASSERT AS
PLACE DATA ON D15–D0
ASSERT DS
TERMINATE OUTPUT TRANSFER
ACCEPT DATA
1. DECODE ADDRESS
2. LATCH DATA FROM D15–D0
3. ASSERT DSACKx SIGNALS
1. NEGATE DS AND AS
2. REMOVE DATA FROM D15–D0
TERMINATE CYCLE
1. NEGATE DSACKx
START NEXT CYCLE
Figure 3-8. Word Write Cycle Flowchart
State 0—The write cycle starts in S0. During S0, the MC68340 places a valid address on
A31–A0 and valid function codes on FC3–FC0. The function codes select the address
space for the cycle. The MC68340 drives R/W low for a write cycle. SIZ1/SIZ0 become
valid, indicating the number of bytes to be transferred.
State 1—One-half clock later during S1, the MC68340 asserts AS, indicating a valid
address on the address bus.
State 2—During S2, the MC68340 places the data to be written onto D15–D0, and
samples DSACK≈ at the end of S2.
State 3—The MC68340 asserts DS during S3, indicating that data is stable on the data
bus. As long as at least one of the DSACK≈ signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), the cycle terminates one clock
later. If DSACK≈ is not recognized by the start of S3, the MC68340 inserts wait states
instead of proceeding to S4 and S5. To ensure that wait states are inserted, both
DSACK1 and DSACK0 must remain negated throughout the asynchronous input setup
and hold times around the end of S2. If wait states are added, the MC68340 continues to
sample DSACK≈ on the falling edges of the clock until one is recognized. The selected
device uses R/W, SIZ1/SIZ0, and A0 to latch data from the appropriate byte(s) of D15–D8
and D7–D0. SIZ1/SIZ0 and A0 select the bytes of the data bus. If it has not already done
so, the device asserts DSACK≈ to signal that it has successfully stored the data.
3-18
MC68340 USER’S MANUAL
MOTOROLA
State 4—The MC68340 issues no new control signals during S4.
State 5—The MC68340 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/ W, SIZ1/SIZ0, and FC3–
FC0 also remain valid throughout S5. The external device must keep DSACK≈ asserted
until it detects the negation of AS or DS (whichever it detects first). The device must
negate DSACK≈ within approximately one clock period after sensing the negation of AS
or DS . DSACK≈ signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.
3.3.3 Read-Modify-Write Cycle
The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68340, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems.
During the entire read-modify-write sequence, the MC68340 asserts RMC to indicate that
an indivisible operation is occurring. The MC68340 does not issue a BG signal in response
to a BR signal during this operation. Figure 3-9 is an example of a functional timing
diagram of a read-modify-write instruction specified in terms of clock periods.
S0
S2
S0
S4
S2
S4
S0
CLK OUT
A31–A30
FC3–FC0
SIZ1–SIZ0
R/W
RMC
AS
DS
DSACKx
D15–D0
READ
WRITE
INDIVISIBLE
CYCLE
Figure 3-9. Read-Modify-Write Cycle Timing
MOTOROLA
MC68340 USER’S MANUAL
3-19
State 0—The MC68340 asserts RMC in S0 to identify a read-modify-write cycle. The
MC68340 places a valid address on A31–A0 and valid function codes on FC3–FC0. The
function codes select the address space for the operation. SIZ1/SIZ0 become valid in S0
to indicate the operand size. The MC68340 drives R/W high for the read cycle.
State 1—One-half clock later during S1, the MC68340 asserts AS indicating a valid
address on the address bus. The MC68340 also asserts DS during S1.
State 2—The selected device uses R/W, SIZ1/SIZ0, A0, and DS to place information on
the data bus. Either or both of the bytes (D15–D8 and D7–D0) are selected by SIZ1/SIZ0
and A0. Concurrently, the selected device may assert DSACK≈.
State 3—As long as at least one of the DSACK≈ signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), data is latched on the next
falling edge of the clock, and the cycle terminates. If DSACK≈ is not recognized by the
start of S3, the MC68340 inserts wait states instead of proceeding to S4 and S5. To
ensure that wait states are inserted, both DSACK1 and DSACK0 must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the MC68340 continues to sample the DSACK≈ signals on the falling
edges of the clock until one is recognized.
State 4—At the end of S4, the MC68340 latches the incoming data.
State 5—The MC68340 negates AS and DS during S5. If more than one read cycle is
required to read in the operand(s), S0–S5 are repeated for each read cycle. When
finished reading, the MC68340 holds the address, R/W, and FC3–FC0 valid in preparation
for the write portion of the cycle. The external device keeps its data and DSACK≈ signals
asserted until it detects the negation of AS or DS (whichever it detects first). The device
must remove the data and negate DSACK≈ within approximately one clock period after
sensing the negation of AS or DS. DSACK≈ signals that remain asserted beyond this limit
may be prematurely detected for the next portion of the operation.
Idle States—The MC68340 does not assert any new control signals during the idle states,
but it may internally begin the modify portion of the cycle at this time. S0–S5 are omitted if
no write cycle is required. If a write cycle is required, R/W remains in the read mode until
S0 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S2.
State 0—The MC68340 drives R/ W low for a write cycle. Depending on the write operation
to be performed, the address lines may change during S0.
State 1—In S1, the MC68340 asserts AS, indicating a valid address on the address bus.
State 2—During S2, the MC68340 places the data to be written onto D15–D0.
State 3—The MC68340 asserts DS during S3, indicating stable data on the data bus. As
long as at least one of the DSACK≈ signals is recognized by the end of S2 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACK≈ is not recognized by the start of S3, the MC68340 inserts wait states instead of
3-20
MC68340 USER’S MANUAL
MOTOROLA
proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and
DSACK0 must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the MC68340 continues to sample
DSACK≈ on the falling edges of the clock until one is recognized. The selected device
uses R/ W, DS, SIZ1/SIZ0, and A0 to latch data from the appropriate section(s) of D15–D8
and D7–D0. SIZ1/SIZ0 and A0 select the data bus sections. If it has not already done so,
the device asserts DSACK≈ when it has successfully stored the data.
State 4—The MC68340 issues no new control signals during S4.
State 5—The MC68340 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/ W and FC3–FC0 also
remain valid throughout S5. If more than one write cycle is required, states S0–S5 are
repeated for each write cycle. The external device keeps DSACK≈ asserted until it detects
the negation of AS or DS (whichever it detects first). The device must remove its data and
negate DSACK≈ within approximately one clock period after sensing the negation of AS
or DS.
3.4 CPU SPACE CYCLES
FC3–FC0 select user and supervisor program and data areas. The area selected by FC3–
FC0 = $7 is classified as the CPU space. The breakpoint acknowledge, LPSTOP
broadcast, module base address register access, and interrupt acknowledge cycles
described in the following paragraphs use CPU space. The CPU space type, which is
encoded on A19–A16 during a CPU space operation, indicates the function that the
MC68340 is performing. On the MC68340, four of the encodings are implemented as
shown in Figure 3-10. All unused values are reserved by Motorola for additional CPU
space types.
CPU SPACE CYCLES
FUNCTION
CODE
BREAKPOINT
ACKNOWLEDGE
LOW-POWER
STOP BROADCAST
MODULE BASE
ADDRESS
REGISTER ACCESS
INTERRUPT
ACKNOWLEDGE
ADDRESS BUS
3
0
0 1 1 1
19
16
0
31
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BKPT# T 0
3
0
0 1 1 1
19
16
0
31
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
3
0
0 1 1 1
31
19
0
16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
3
31
0
19
16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LEVEL 1
0
0 1 1 1
CPU SPACE
TYPE FIELD
Figure 3-10. CPU Space Address Encoding
MOTOROLA
MC68340 USER’S MANUAL
3-21
3.4.1 Breakpoint Acknowledge Cycle
The breakpoint acknowledge cycle allows external hardware to insert an instruction
directly into the instruction pipeline as the program executes. The breakpoint acknowledge
cycle is generated by the execution of a breakpoint instruction (BKPT) or the assertion of
the BKPT pin. The T-bit state (shown in Figure 3-10) differentiates a software breakpoint
cycle (T = 0) from a hardware breakpoint cycle (T = 1).
When a BKPT instruction is executed (software breakpoint), the MC68340 performs a
word read from CPU space, type 0, at an address corresponding to the breakpoint number
(bits [2–0] of the BKPT opcode) on A4–A2, and the T-bit (A1) is cleared. If this bus cycle is
terminated with BERR (i.e., no instruction word is available), the MC68340 then performs
illegal instruction exception processing. If the bus cycle is terminated by DSACK≈ , the
MC68340 uses the data on D15–D0 (for 16-bit ports) or two reads from D15–D8 (for 8-bit
ports) to replace the BKPT instruction in the internal instruction pipeline and then begins
execution of that instruction.
When the CPU32 acknowledges a BKPT pin assertion (hardware breakpoint) with
background mode disabled, the CPU32 performs a word read from CPU space, type 0, at
an address corresponding to all ones on A4–A2 (BKPT#7), and the T-bit (A1) is set. If this
bus cycle is terminated by BERR, the MC68340 performs hardware breakpoint exception
processing. If this bus cycle is terminated by DSACK≈, the MC68340 ignores data on the
data bus and continues execution of the next instruction.
NOTE
The BKPT pin is sampled on the same clock phase as data
and is latched with data as it enters the CPU32 pipeline. If
BKPT is asserted for only one bus cycle and a pipeline flush
occurs before BKPT is detected by the CPU32, BKPT is
ignored. To ensure detection of BKPT by the CPU32, BKPT
can be asserted until a breakpoint acknowledge cycle is
recognized.
The breakpoint operation flowchart is shown in Figure 3-11. Figures 3-12 and 3-13 show
the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes
supplied on the cycle and with an exception signaled, respectively.
3-22
MC68340 USER’S MANUAL
MOTOROLA
3.4.2 LPSTOP Broadcast Cycle
The low power stop (LPSTOP) broadcast cycle is generated by the CPU32 executing the
LPSTOP instruction. Since the external bus interface must get a copy of the interrupt
mask level from the CPU32, the CPU32 performs a CPU space type 3 write with the mask
level encoded on the data bus, as shown in the following figure. The CPU space type 3
cycle waits for the bus to be available, and is shown externally to indicate to external
devices that the MC68340 is going into LPSTOP mode. If an external device requires
additional time to prepare for entry into LPSTOP mode, entry can be delayed by asserting
HALT. The SIM40 provides internal DSACK≈ response to this cycle. For more information
on how the SIM40 responds to LPSTOP mode, see Section 4 System Integration
Module.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
—
—
—
—
—
—
—
—
—
—
—
—
—
I2
I1
I0
I2–I0—Interrupt Mask Level
The interrupt mask level is encoded on bits 2–0 of the data bus during an LPSTOP
broadcast.
MOTOROLA
MC68340 USER’S MANUAL
3-23
BREAKPOINT OPERATION FLOW
EXTERNAL DEVICE
PROCESSOR
ACKNOWLEDGE BREAKPOINT
IF BREAKPOINT INSTRUCTION EXECUTED:
1. SET R/W TO READ
2. SET FUNCTION CODE TO CPU SPACE
3. PLACE CPU SPACE TYPE 0 ON A19–A16
4. PLACE BREAKPOINT NUMBER ON A2–A4
5. CLEAR T-BIT (A1)
6. SET SIZE TO WORD
7. ASSERT AS AND DS
IF BKPT PIN ASSERTED:
1. SET R/W TO READ
2. SET FUNCTION CODE TO CPU SPACE
3. PLACE CPU SPACE TYPE 0 ON A19–A16
4. PLACE ALL ONE'S ON A4–A2
5. SET T-BIT (A-1) TO ONE
6. SET SIZE TO WORD
7. ASSERT AS AND DS
IF BREAKPOINT INSTRUCTION EXECUTED AND
DSACKx IS ASSERTED:
1. LATCH DATA
2. NEGATE AS AND DS
3. GO TO (A)
IF BKPT PIN ASSERTED AND DSACKx IS ASSERTED:
1. NEGATE AS AND DS
2. GO TO (A)
IF BERR ASSERTED:
1. NEGATE AS AND DS
2. GO TO (B)
(A)
IF BREAKPOINT INSTRUCTION EXECUTED:
1. PLACE REPLACEMENT OPCODE ON DATA BUS
2. ASSERT DSACKx
-OR1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING
IF BKPT PIN ASSERTED:
1. ASSERT DSACKx
-OR1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING
(B)
1. NEGATE DSACKx or BERR
IF BREAKPOINT INSTRUCTION EXECUTED:
1. PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2. CONTINUE PROCESSING
IF BKPT PIN ASSERTED:
1. CONTINUE PROCESSING
IF BREAKPOINT INSTRUCTION EXECUTED:
1. INITIATE ILLEGAL INSTRUCTION PROCESSING
IF BKPT PIN ASSERTED:
1. INITIATE HARDWARE BREAKPOINT PROCESSING
Figure 3-11. Breakpoint Operation Flowchart
3-24
MC68340 USER’S MANUAL
MOTOROLA
S0
S1
S2
S3
S4
S5
S0
S1
S2
S3
S4
S5
S0
S1
S2
S3
S4
S5
S0
CLKOUT
A31–A20
A19–A16
BREAKPOINT ENCODING (0000)
A4–A1
BREAKPOINT NUMBER/T-BIT
A15–A5,A0
FC3–FC0
CPU SPACE
SIZ0
SIZ1
AS
DS
R/W
DSACKx
D7–D0
D15–D8
BERR
HALT
BKPT
BREAKPOINT
OCCURS
READ
BREAKPOINT
ACKNOWLEDGE
INSTRUCTION WORD FETCH
FETCHED
INSTRUCTION
EXECUTION
Figure 3-12. Breakpoint Acknowledge Cycle Timing (Opcode Returned)
MOTOROLA
MC68340 USER’S MANUAL
3-25
S0
S1
S2
S3
S4
S5
S0
S1
S2
S3
S4
S5
S0
S1
S2
S3
S4
S5
S0
CLKOUT
A31–A20
BREAKPOINT ENCODING (0000)
A19–A16
BREAKPOINT NUMBER/T-BIT
A4–A1
A15–A5, A0
FC3–FC0
CPU SPACE
SIZ0
SIZ1
AS
DS
R/W
DSACKx
D7–D0
D15–D8
BERR
HALT
BKPT
BREAKPOINT
OCCURS
READ
BREAKPOINT
ACKNOWLEDGE
BUS ERROR ASSERTED
EXCEPTION
STACKING
Figure 3-13. Breakpoint Acknowledge Cycle Timing (Exception Signaled)
3-26
MC68340 USER’S MANUAL
MOTOROLA
3.4.3 Module Base Address Register Access
All internal module registers, including the SIM40, occupy a single 4-Kbyte block that is
relocatable along 4-Kbyte boundaries. The location is fixed by writing the desired base
address of the SIM40 block to the module base address register using the MOVES
instruction. The module base address register is only accessible in CPU space at address
$0003FF00. The SFC or DFC register must indicate CPU space (FC3–FC0 = $7), using
the MOVEC instruction, before accessing the module base address register. Refer to
Section 4 System Integration Module for additional information on the module base
address register.
3.4.4 Interrupt Acknowledge Bus Cycles
The CPU32 makes an interrupt pending in three cases. The first case occurs when a
peripheral device signals the CPU32 (with IRQ7–IRQ1) that the device requires service
and the internally synchronized value on these signals indicates a higher priority than the
interrupt mask in the status register. The second case occurs when a transition has
occurred in the case of a level 7 interrupt. A recognized level 7 interrupt must be removed
for one clock cycle before a second level 7 can be recognized. The third case occurs if,
upon returning from servicing a level 7 interrupt, the request level stays at 7 and the
processor mask level changes from 7 to a lower level, a second level 7 is recognized. The
CPU32 takes an interrupt exception for a pending interrupt within one instruction boundary
(after processing any other pending exception with a higher priority). The following
paragraphs describe the types of interrupt acknowledge bus cycles that can be executed
as part of interrupt exception processing.
3.4.4.1 INTERRUPT ACKNOWLEDGE CYCLE—TERMINATED NORMALLY. When the
CPU32 processes an interrupt exception, it performs an interrupt acknowledge cycle to
obtain the number of the vector that contains the starting location of the interrupt service
routine. Some interrupting devices have programmable vector registers that contain the
interrupt vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices that cannot
supply a vector number will use the autovector cycle described in 3.4.4.2 Autovector
Interrupt Acknowledge Cycle.
MOTOROLA
MC68340 USER’S MANUAL
3-27
The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
3.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are as follows:
1. FC3–FC0 are set to $7 (FC3/FC2/FC1/FC0 = 0111) for CPU address space.
2. A3, A2, and A1 are set to the interrupt request level, and the IACK≈ strobe
corresponding to the current interrupt level is asserted. (Either the function codes
and address signals or the IACK≈ strobes can be monitored to determine that an
interrupt acknowledge cycle is in progress and the current interrupt level.)
3. The CPU32 space type field (A19–A16) is set to $F (interrupt acknowledge).
4. Other address signals (A31–A20, A15–A4, and A0) are set to one.
5. The SIZ0/SIZ1 and R/ W signals are driven to indicate a single-byte read cycle.
The responding device places the vector number on the least significant byte
of its data port (for an 8-bit port, the vector number must be on D15–D8; for a
16-bit port, the vector must be on D7–D0) during the interrupt acknowledge cycle.
The cycle is then terminated normally with DSACK≈.
Figure 3-14 is a flowchart of the interrupt acknowledge cycle; Figure 3-15 shows the
timing for an interrupt acknowledge cycle terminated with DSACK≈.
INTERRUPTING DEVICE
MC68340
REQUEST INTERRUPT
GRANT INTERRUPT
1. SYNCHRONIZE IRQ7–IRQ1
2. COMPARE IRQ1–IRQ7 TO MASK LEVEL AND
WAIT FOR INSTRUCTION TO COMPLETE
3. PLACE INTERRUPT LEVEL ON A3–A1;
TYPE FIELD (A19–A16) = $F
4. SET R/W TO READ
5. SET FC3–FC0 TO 0111
6. DRIVE SIZE PINS TO INDICATE A ONE-BYTE
TRANSFER
7. ASSERT AS AND DS
8. ASSERT THE CORRESPONDING IACKx STROBE.
PROVIDE VECTOR NUMBER
1. PLACE VECTOR NUMBER ON LEAST
SIGNIFICANT BYTE OF DATA BUS
2. ASSERT DSACKx (OR AVEC IF NO VECTOR
NUMBER)
ACQUIRE VECTOR NUMBER
RELEASE
1. LATCH VECTOR NUMBER
2. NEGATE DS AND AS
1. NEGATE DSACKx
START NEXT CYCLE
Figure 3-14. Interrupt Acknowledge Cycle Flowchart
3-28
MC68340 USER’S MANUAL
MOTOROLA
S0
S2
S4
S0
0–2 CLOCKS*
S1 S2
S4
S0
S2
CLKOUT
A31–A4
A3–A1
INTERRUPT LEVEL
A0
FC3–FC0
CPU SPACE
SIZ0
1 BYTE
SIZ1
R/W
AS
DS
VECTOR FROM 16-BIT PORT
DSACKx
VECTOR FROM 8-BIT PORT
D7–D0
D15–D8
IRQ7–IRQ1
IACK7–IACK1
READ
CYCLE
WRITE
STACK
INTERNAL
ARBITRATION
IACK CYCLE
*Internal Arbitration may take between 0–2 clock cycles.
Figure 3-15. Interrupt Acknowledge Cycle Timing
3.4.4.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting DSACK≈,
the device asserts AVEC to terminate the cycle. If the DSACK≈ signals are asserted
during an interrupt acknowledge cycle terminated by AVEC, the DSACK≈ signals and
MOTOROLA
MC68340 USER’S MANUAL
3-29
data will be ignored if AVEC is asserted before or at the same time as the DSACK≈
signals. The vector number supplied in an autovector operation is derived from the
interrupt level of the current interrupt. When AVEC is asserted instead of DSACK≈ during
an interrupt acknowledge cycle, the MC68340 ignores the state of the data bus and
internally generates the vector number (the sum of the interrupt level plus 24 ($18)).
AVEC is multiplexed with CS0. The FIRQ bit in the SIM40 module configuration register
controls whether the AVEC /CS0 pin is used as an autovector input or as CS0 (refer to
Section 4 System Integration Module for additional information). AVEC is only sampled
during an interrupt acknowledge cycle. During all other cycles, AVEC is ignored.
Additionally, AVEC can be internally generated for external devices by programming the
autovector register. Seven distinct autovectors can be used, corresponding to the seven
levels of interrupt available with signals IRQ7–IRQ1. Figure 3-16 shows the timing for an
autovector operation.
3.4.4.3 SPURIOUS INTERRUPT CYCLE. Requested interrupts, whether internal or
external, are arbitrated internally. When no internal module (including the SIM40, which
responds for external requests) responds during an interrupt acknowledge cycle by
arbitrating for the interrupt acknowledge cycle internally, the spurious interrupt monitor
generates an internal bus error signal to terminate the vector acquisition. The MC68340
automatically generates the spurious interrupt vector number (24) instead of the interrupt
vector number in this case. When an external device does not respond to an interrupt
acknowledge cycle with AVEC or DSACK≈ , a bus monitor must assert BERR , which
results in the CPU32 taking the spurious interrupt vector. If HALT is also asserted, the
MC68340 retries the interrupt acknowledge cycle instead of using the spurious interrupt
vector.
3-30
MC68340 USER’S MANUAL
MOTOROLA
S0
S2
S4
S0
0–2 CLOCKS*
S1 S2
S4
S0
S2
CLKOUT
A31–A4
A3–A1
INTERRUPT LEVEL
A0
FC3–FC0
CPU SPACE
SIZ0
1 BYTE
SIZ1
R/W
AS
DS
DSACKx
D15–D0
AVEC
IRQ7–IRQ1
IACK7–IACK1
CYCLE
READ
WRITE
STACK
INTERNAL
ARBITRATION
IACK
CYCLE
* Internal Arbitration may take between 0–2 clocks.
Figure 3-16. Autovector Operation Timing
MOTOROLA
MC68340 USER’S MANUAL
3-31
3.5 BUS EXCEPTION CONTROL CYCLES
The bus architecture requires assertion of DSACK≈ from an external device to signal that
a bus cycle is complete. Neither DSACK≈ nor AVEC is asserted in the following cases:
• DSACK≈/AVEC is programmed to respond internally.
• The external device does not respond.
• Various other application-dependent errors occur.
The MC68340 provides BERR when no device responds by asserting DSACK≈ / AVEC
within an appropriate period of time after the MC68340 asserts AS . This mechanism
allows the cycle to terminate and the MC68340 to enter exception processing for the error
condition. HALT is also used for bus exception control. This signal can be asserted by an
external device for debugging purposes to cause single bus cycle operation, or, in
combination with BERR, a retry of a bus cycle in error. To properly control termination of a
bus cycle for a retry or a bus error condition, DSACK≈, BERR, and HALT can be asserted
and negated with the rising edge of the MC68340 clock. This assures that when two
signals are asserted simultaneously, the required setup and hold time for both is met for
the same falling edge of the MC68340 clock. This or an equivalent precaution should be
designed into the external circuitry to provide these signals. Alternatively, the internal bus
monitor could be used. The acceptable bus cycle terminations for asynchronous cycles
are summarized in relation to DSACK≈ assertion as follows (case numbers refer to Table
3-4):
• Normal Termination: DSACK≈ is asserted; BERR and HALT remain negated (case 1).
• Halt Termination: HALT is asserted at the same time as or before DSACKx, and
BERR remains negated (case 2).
• Bus Error Termination: BERR is asserted in lieu of, at the same time as, or before
DSACK≈ (case 3) or after DSACK≈ (case 4), and HALT remains negated; BERR is
negated at the same time as or after DSACK≈.
• Retry Termination: HALT and BERR are asserted in lieu of, at the same time as, or
before DSACK≈ (case 5) or after DSACK≈ (case 6); BERR is negated at the same
time as or after DSACK≈, and HALT may be negated at the same time as or after
BERR.
Table 3-4 lists various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications given in Section 11 Electrical Characteristics. DSACK≈
BERR, and HALT may be negated after AS. If DSACK≈ or BERR remain asserted into S2
of the next bus cycle, that cycle may be terminated prematurely.
EXAMPLE A: A system uses a bus monitor timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).
3-32
MC68340 USER’S MANUAL
MOTOROLA
EXAMPLE B: A system uses error detection and correction on RAM contents. The
designer may:
1. Delay DSACK≈ until data is verified and assert BERR and HALT simultaneously to
indicate to the MC68340 to automatically retry the error cycle (case 5), or if data is
valid, assert DSACK≈ (case 1).
2. Delay DSACK≈ until data is verified and assert BERR with or without DSACK≈ if
data is in error (case 3). This initiates exception processing for software handling of
the condition.
3. Return DSACK≈ prior to data verification; if data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.
4. Return DSACK≈ prior to data verification; if data is invalid, assert BERR and HALT
on the next clock cycle (case 6). The memory controller can then correct the RAM
prior to or during the automatic retry.
Table 3-4. DSACK≈, BERR, and HALT Assertion Results
Asserted on Rising
Edge of State
Case
Num
Control
Signal
N
N+2
1
DSACK≈
BERR
HALT
A
NA
NA
S
NA
X
Normal cycle terminate and continue.
2
DSACK≈
BERR
HALT
A
NA
A/S
S
NA
S
Normal cycle terminate and halt; continue
when HALT negated.
3
DSACK≈
BERR
HALT
NA/A
A
NA
X
S
X
Terminate and take bus error exception,
possibly deferred.
4
DSACK≈
BERR
HALT
A
NA
NA
X
A
NA
Terminate and take bus error exception,
possibly deferred.
5
DSACK≈
BERR
HALT
NA/A
A
A/S
X
S
S
Terminate and retry when HALT negated.
6
DSACK≈
BERR
HALT
A
NA
NA
X
A
A
Terminate and retry when HALT negated.
NOTES:
N —
A —
NA —
X —
S —
MOTOROLA
Result
Number of the current even bus state (e.g., S2, S4, etc.)
Signal is asserted in this bus state
Signal is not asserted in this state
Don't care
Signal was asserted in previous state and remains asserted in this state
MC68340 USER’S MANUAL
3-33
3.5.1 Bus Errors
BERR can be used to abort the bus cycle and the instruction being executed. BERR takes
precedence over DSACK≈ provided it meets the timing constraints described in Section
11 Electrical Characteristics. If BERR does not meet these constraints, it may cause
unpredictable operation of the MC68340. If BERR remains asserted into the next bus
cycle, it may cause incorrect operation of that cycle. When BERR is issued to terminate a
bus cycle, the MC68340 can enter exception processing immediately following the bus
cycle, or it can defer processing the exception.
The instruction prefetch mechanism requests instruction words from the bus controller
before it is ready to execute them. If a bus error occurs on an instruction fetch, the
MC68340 does not take the exception until it attempts to use that instruction word. Should
an intervening instruction cause a branch or should a task switch occur, the bus error
exception does not occur. The bus error condition is recognized during a bus cycle in any
of the following cases:
• DSACK≈ and HALT are negated, and BERR is asserted.
• HALT and BERR are negated, and DSACK≈ is asserted. BERR is then asserted
within one clock cycle ( HALT remains negated).
• BERR and HALT are asserted simultaneously, indicating a retry.
When the MC68340 recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 3-17 shows the timing of a bus error for the case in which
DSACK≈ is not asserted. Figure 3-18 shows the timing for a bus error that is asserted
after DSACK≈. Exceptions are taken in both cases. Refer to Section 5 CPU32 for details
of bus error exception processing.
In the second case, in which BERR is asserted after DSACK≈ is asserted, BERR must be
asserted within the time specified for purely asynchronous operation, or it must be
asserted and remain stable during the sample window around the next falling edge of the
clock after DSACK≈ is recognized. If BERR is not stable at this time, the MC68340 may
exhibit erratic behavior. BERR has priority over DSACK≈ . In this case, data may be
present on the bus, but it may not be valid. This sequence can be used by systems that
have memory error detection and correction logic and by external cache memories.
3-34
MC68340 USER’S MANUAL
MOTOROLA
S0
S2
SW
SW
S4
S0
S2
S4
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
DSACKx
D15–D0
BERR
READ CYCLE WITH BUS
ERROR
INTERNAL
PROCESSING
STACK
WRITE
Figure 3-17. Bus Error without DSACK≈
MOTOROLA
MC68340 USER’S MANUAL
3-35
S0
S2
S4
S0
S2
S4
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
DSACKx
D15–D0
BERR
WRITE
CYCLE
INTERNAL
PROCESSING
STACK
WRITE
Figure 3-18. Late Bus Error with DSACK≈
3.5.2 Retry Operation
When both BERR and HALT are asserted by an external device during a bus cycle, the
MC68340 enters the retry sequence shown in Figure 3-19. A delayed retry, which is
similar to the delayed BERR signal described previously, can also occur (see Figure 3-20).
The MC68340 terminates the bus cycle, places the control signals in their inactive state,
and does not begin another bus cycle until the BERR and HALT signals are negated by
external logic. After a synchronization delay, the MC68340 retries the previous cycle using
the same access information (address, function code, size, etc.). BERR should be negated
before S2 of the retried cycle to ensure correct operation of the retried cycle.
3-36
MC68340 USER’S MANUAL
MOTOROLA
S0
S2
SW
SW
S4
S0
S2
S4
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
DSACKx
D15–D0
DATA
IGNORED
BERR
HALT
READ CYCLE WITH
RETRY
HALT
READ RERUN
Figure 3-19. Retry Sequence
The MC68340 retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence. Asserting BR along with BERR
and HALT provides a relinquish and retry operation. The MC68340 does not relinquish the
bus during a read-modify-write operation. Any device that requires the MC68340 to give
up the bus and retry a bus cycle during a read-modify-write cycle must assert only BERR
and BR (HALT must not be included). The bus error handler software should examine the
read-modify-write bit in the special status word (see Section 5 CPU32) and take the
appropriate action to resolve this type of fault when it occurs.
MOTOROLA
MC68340 USER’S MANUAL
3-37
S0
S2
S4
S0
S2
S4
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
DSACKx
D15–D10
BERR
HALT
WRITE
CYCLE
HALT
WRITE
RERUN
Figure 3-20. Late Retry Sequence
3.5.3 Halt Operation
When HALT is asserted and BERR is not asserted, the MC68340 halts external bus
activity at the next bus cycle boundary (see Figure 3-21). HALT by itself does not
terminate a bus cycle. Negating and reasserting HALT in accordance with the correct
timing requirements provides a single-step (bus cycle to bus cycle) operation. Since HALT
affects external bus cycles only, a program that does not require use of the external bus
may continue executing. The single-cycle mode allows the user to proceed through (and
debug) external MC68340 operations, one bus cycle at a time. Since the occurrence of a
bus error while HALT is asserted causes a retry operation, the user must anticipate retry
cycles while debugging in the single-cycle mode. The single-step operation and the
software trace capability allow the system debugger to trace single bus cycles, single
instructions, or changes in program flow.
When the MC68340 completes a bus cycle with HALT asserted, D15–D0 is placed in the
high-impedance state, and bus control signals are negated (not high-impedance state);
the A31–A0, FCx, SIZx, and R/W signals remain in the same state. The halt operation has
no effect on bus arbitration (see 3.6 Bus Arbitration). When bus arbitration occurs while
the MC68340 is halted, the address and control signals are also placed in the highimpedance state. Once bus mastership is returned to the MC68340, if HALT is still
3-38
MC68340 USER’S MANUAL
MOTOROLA
asserted, the A31–A0, FCx, SIZx, and R/ W signals are again driven to their previous
states. The MC68340 does not service interrupt requests while it is halted.
S0
S2
S0
S4
S2
S4
S0
CLKOUT
A31–A0
FC3–FC0
R/W
AS
DS
DSACKx
D15–D10
HALT
BR
BG
BGACK
READ
HALT
(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS
HALTED)
READ
Figure 3-21. HALT Timing
3.5.4 Double Bus Fault
A double bus fault results when a bus error or an address error occurs during the
exception processing sequence for any of the following:
• A previous bus error
• A previous address error
• A reset
For example, the MC68340 attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus error exception
MOTOROLA
MC68340 USER’S MANUAL
3-39
occurs during the stacking operation, the second error is considered a double bus fault.
When a double bus fault occurs, the MC68340 halts and asserts HALT. Only a reset
operation can restart a halted MC68340. However, bus arbitration can still occur (see 3.6
Bus Arbitration). A second bus error or address error that occurs after exception
processing has completed (during the execution of the exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not constitute a bus
error or contribute to a double bus fault. The MC68340 continues to retry the same bus
cycle as long as the external hardware requests it.
Reset can also be generated internally by the halt monitor (see Section 5 CPU32).
3.6 BUS ARBITRATION
The bus design of the MC68340 provides for a single bus master at any one time, either
the MC68340 or an external device. One or more of the external devices on the bus can
have the capability of becoming bus master for the external bus, but not the MC68340
internal bus. Bus arbitration is the protocol by which an external device becomes bus
master; the bus controller in the MC68340 manages the bus arbitration signals so that the
MC68340 has the lowest priority. External devices that need to obtain the bus must assert
the bus arbitration signals in the sequences described in the following paragraphs.
Systems having several devices that can become bus master require external circuitry to
assign priorities to the devices so that, when two or more external devices attempt to
become bus master at the same time, the one having the highest priority becomes bus
master first. The sequence of the protocol is as follows:
1. An external device asserts BR.
2. The MC68340 asserts BG to indicate that the bus is available.
3. The external device asserts BGACK to indicate that it has assumed bus mastership.
NOTE
The MC68340 does not place CS3–CS0 in a high-impedance
state after reset or when the bus is granted to an external
master.
BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR. To guarantee operand coherency, BG is only asserted at the end of an
operand transfer. Additionally, BG is not asserted until the end of a read-modify-write
operation (when RMC is negated) in response to a BR signal. When the requesting device
receives BG and more than one external device can be bus master, the requesting device
should begin whatever arbitration is required. When the external device assumes bus
mastership, it asserts BGACK and maintains BGACK during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external
device to assume mastership of the bus through the normal bus arbitration procedure: 1) it
must have received BG through the arbitration process, and 2) BGACK must be inactive,
indicating that no other bus master has claimed ownership of the bus.
3-40
MC68340 USER’S MANUAL
MOTOROLA
Figure 3-22 is a flowchart showing bus arbitration for a single device. This technique
allows processing of bus requests during data transfer cycles. Refer to Figures 3-23 and
3-24 for bus arbitration timing diagrams.
BR is negated at the time that BGACK is asserted. This type of operation applies to a
system consisting of the MC68340 and one device capable of bus mastership. In a system
having a number of devices capable of bus mastership, BR from each device can be wireORed to the MC68340. In such a system, more than one bus request could be asserted
simultaneously. BG is negated a few clock cycles after the transition of BGACK. However,
if bus requests are still pending after the negation of BG, the MC68340 asserts another BG
within a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current bus master
has finished using the bus. The following paragraphs provide additional information about
the three steps in the arbitration process. Bus arbitration requests are recognized during
normal processing, HALT assertion, and a CPU32 halt caused by a double bus fault.
PROCESSOR
REQUESTING DEVICE
REQUEST THE BUS
GRANT BUS ARBITRATION
1. ASSERT BR
1. ASSERT BG
ACKNOWLEDGE BUS MASTERSHIP
TERMINATE ARBITRATION
1. NEGATE BG (AND WAIT FOR
BGACK TO BE NEGATED)
1. EXTERNAL ARBITRATION DETERMINES
NEXT BUS MASTER
2. NEXT BUS MASTER WAITS FOR BGACK
TO BE NEGATED
3. NEXT BUS MASTER ASSERTS BGACK
TO BECOME NEW MASTER
4. BUS MASTER NEGATES BR
OPERATE AS BUS MASTER
1. PERFORM DATA TRANSFERS (READ AND
WRITE CYCLES) ACCORDING TO THE
SAME RULES THE PROCESSOR USES
RELEASE BUS MASTERSHIP
RE-ARBITRATE OR RESUME
PROCESSOR OPERATION
1. NEGATE BGACK
Figure 3-22. Bus Arbitration Flowchart for Single Request
MOTOROLA
MC68340 USER’S MANUAL
3-41
CLKOUT
A31–A0
D15–D0
AS
BR
BG
BGACK
Figure 3-23. Bus Arbitration Timing Diagram—Idle Bus Case
S0
S1
S2
S3
S4
S5
CLKOUT
A31–A0
D15–D0
AS
DS
R/W
DSACK0,
DSACK1
BR
BG
BGACK
Figure 3-24. Bus Arbitration Timing Diagram—Active Bus Case
3-42
MC68340 USER’S MANUAL
MOTOROLA
3.6.1 Bus Request
External devices capable of becoming bus masters request the bus by asserting BR. This
signal can be wire-ORed to indicate to the MC68340 that some external device requires
control of the bus. The MC68340 is effectively at a lower bus priority level than the
external device and relinquishes the bus after it has completed the current bus cycle (if
one has started). If no BGACK is received while the BR is active, the MC68340 remains
bus master once BR is negated. This prevents unnecessary interference with ordinary
processing if the arbitration circuitry inadvertently responds to noise or if an external
device determines that it no longer requires use of the bus before it has been granted
mastership.
3.6.2 Bus Grant
The MC68340 supports operand coherency; thus, if an operand transfer requires multiple
bus cycles, the MC68340 does not release the bus until the entire transfer is complete.
Therefore, assertion of BG is subject to the following constraints:
• The minimum time for BG assertion after BR is asserted depends on internal
synchronization (see Section 11 Electrical Characteristics).
• During an external operand transfer, the MC68340 does not assert BG until after
the last cycle of the transfer (determined by SIZx and DSACK≈).
• During an external operand transfer, the MC68340 does not assert BG as long as
RMC is asserted.
• If the show cycle bits SHEN1–SHEN0 = 01, the MC68340 does not assert BG to
an external master.
Externally, the BG signal can be routed through a daisy-chained network or a priorityencoded network. The MC68340 is not affected by the method of arbitration as long as the
protocol is obeyed.
3.6.3 Bus Grant Acknowledge
An external device cannot request and be granted the external bus while another device is
the active bus master. A device that asserts BGACK remains the bus master until it
negates BGACK . BGACK should not be negated until all required bus cycles are
completed. Bus mastership is terminated at the negation of BGACK.
Once an external device receives the bus and asserts BGACK, it should negate BR. If BR
remains asserted after BGACK is asserted, the MC68340 assumes that another device is
requesting the bus and prepares to issue another BG.
MOTOROLA
MC68340 USER’S MANUAL
3-43
3.6.4 Bus Arbitration Control
The bus arbitration control unit in the MC68340 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68340 are internally
synchronized in a maximum of two cycles of the clock. As shown in Figure 3-25 input
signals labeled R and A are internally synchronized versions of B R and BGACK
respectively. The BG output is labeled G, and the internal high-impedance control signal is
labeled T. If T is true, the address, data, and control buses are placed in the highimpedance state after the next rising edge following the negation of AS and RMC . All
signals are shown in positive logic (active high) regardless of their true active voltage
level. The state machine shown in Figure 3-25 does not have a state 1 or state 4.
State changes occur on the next rising edge of the clock after the internal signal is valid.
The BG signal transitions on the falling edge of the clock after a state is reached during
which G changes. The bus control signals (controlled by T) are driven by the MC68340
immediately following a state change, when bus mastership is returned to the MC68340.
State 0, in which G and T are both negated, is the state of the bus arbiter while the
MC68340 is bus master. R and A keep the arbiter in state 0 as long as they are both
negated.
The MC68340 does not allow arbitration of the external bus during the RMC sequence.
For the duration of this sequence, the MC68340 ignores the BR input. If mastership of the
bus is required during an RMC operation, BERR must be used to abort the RMC sequence.
3.6.5 Show Cycles
The MC68340 can perform data transfers with its internal modules without using the
external bus, but, when debugging, it is desirable to have address and data information
appear on the external bus. These external bus cycles, called show cycles, are
distinguished by the fact that AS is not asserted externally. DS is used to signal address
strobe timing in show cycles.
After reset, show cycles are disabled and must be enabled by writing to the SHEN bits in
the module configuration register (see 4.3.2.1 Module Configuration Register (MCR)).
When show cycles are disabled, the A31–A0, FCx, SIZx, and R/ W signals continue to
reflect internal bus activity. However, AS and DS are not asserted externally, and the
external data bus remains in a high-impedance state. When show cycles are enabled, DS
indicates address strobe timing and the external data bus contains data. The following
paragraphs are a state-by-state description of show cycles, and Figure 3-26 illustrates a
show cycle timing diagram. Refer to Section 11 Electrical Characteristics for specific
timing information.
3-44
MC68340 USER’S MANUAL
MOTOROLA
RA + B
GTV
AB
STATE 0
RA
RAB
RA
G TV
RA
STATE 3
R+A
G TV
STATE 2
R A +A
G TV
R
R
STATE 5
RA
G TV
RA
STATE 6
RA
R - BUS REQUEST
A - BUS GRANT ACKNOWLEDGE
B - BUS CYCLE IN PROGRESS
G - BUS GRANT
T - THREE-STATE SIGNAL TO BUS CONTROL
V - BUS AVAILABLE TO BUS CONTROL
Figure 3-25. Bus Arbitration State Diagram
MOTOROLA
MC68340 USER’S MANUAL
3-45
State 0—During state 0, the A31–A0 and FCx become valid, R/ W is driven to indicate a
show read or write cycle, and the SIZx pins indicate the number of bytes to transfer.
During a read, the addressed peripheral is driving the data bus, and the user must take
care to avoid bus conflicts.
State 41—One-half clock cycle later, DS (rather than AS ) is asserted to indicate that
address information is valid.
State 42—No action occurs in state 42. The bus controller remains in state 42 (wait states
will be inserted) until the internal read cycle is complete.
State 43—When DS is negated, show data is valid on the next falling edge of the system
clock. The external data bus drivers are enabled so that data becomes valid on the
external bus as soon as it is available on the internal bus.
State 0—The A31–A0, FCx, R/W , and SIZx pins change to begin the next cycle. Data
from the preceding cycle is valid through state 0.
S0
S41
S42
S43
S0
S1
S2
CLKOUT
A31–A0,
FC2–FC0,
SIZ1–SIZ0
R/W
AS, CS
DS
D15–D0
BKPT
SHOW CYCLE
START OF EXTERNAL CYCLE
Figure 3-26. Show Cycle Timing Diagram
3.7 RESET OPERATION
The MC68340 has reset control logic to determine the cause of reset, synchronize it if
necessary, and assert the appropriate reset lines. The reset control logic can
independently drive three different lines:
1. EXTRST (external reset) drives the external RESET pin.
2. CLKRST (clock reset) resets the clock module.
3-46
MC68340 USER’S MANUAL
MOTOROLA
3. INTRST (internal reset) goes to all other internal circuits.
Synchronous reset sources are not asserted until the end of the current bus cycle,
whether or not RMC is asserted. The internal bus monitor is automatically enabled for
synchronous resets; therefore, if the current bus cycle does not terminate normally, the
bus monitor terminates it. Only single-byte or word transfers are guaranteed valid for
synchronous resets. An external or clock reset is a synchronous reset source.
Asynchronous reset sources indicate a catastrophic failure, and the reset controller logic
immediately resets the system. Resetting the MC68340 causes any bus cycle in progress
to terminate as if DSACK≈ or BERR had been asserted. In addition, the MC68340
appropriately initializes registers for a reset exception. Asynchronous reset sources
include power-up, software watchdog, double bus fault resets, and execution of the
RESET instruction.
If an external device drives RESET low, RESET should be asserted for at least 590 clock
periods to ensure that the MC68340 resets. The reset control logic holds reset asserted
internally until the external RESET is released. When the reset control logic detects that
external RESET is no longer being driven, it drives both internal and external reset low for
an additional 512 cycles to guarantee this length of reset to the entire system. Figure 3-27
shows the RESET timing.
1 CLOCK
RESET
590 CLOCK
512 CLOCK
PULLED EXTERNAL
DRIVEN BY MC68340
Figure 3-27. Timing for External Devices Driving RESET
If reset is asserted from any other source, the reset control logic asserts RESET for 328
input clock periods plus 512 output clock periods, and until the source of reset is negated.
After any internal reset occurs, a 14-cycle rise time is allowed before testing for the
presence of an external reset. If no external reset is detected, the CPU32 begins its vector
fetch.
Figure 3-28 is a timing diagram of the power-up reset operation, showing the relationships
between RESET, V CC , and bus signals. During the reset period, the entire bus threestates except for non-three-statable signals, which are driven to their inactive state. Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for RESET exception
processing begins.
MOTOROLA
MC68340 USER’S MANUAL
3-47
CLKOUT
VCO
LOCK
VCC
328 ×
TCLKIN
512 ×
TCLKOUT
≤ 14 CLOCKS
RESET
BUS
CYCLES
ADDRESS AND
CONTROL SIGNALS
THREE-STATED
BUS STATE
UNKNOWN
1
2
3
4
NOTES:
1. Internal start-up time.
2. SSP read here.
3. PC read here.
4. First instruction fetched here.
Figure 3-28. Power-Up Reset Timing Diagram
When a RESET instruction is executed, the MC68340 drives the RESET signal for 512
clock cycles. The SIM40 registers and the module control registers in each internal
peripheral module (DMA, timers, and serial modules) are not affected. All other peripheral
module registers are reset the same as for a hardware reset. The external devices
connected to the RESET signal are reset at the completion of the RESET instruction.
3-48
MC68340 USER’S MANUAL
MOTOROLA
SECTION 4
SYSTEM INTEGRATION MODULE
The MC68340 system integration module (SIM40) consists of several functions that
control the system start-up, initialization, configuration, and the external bus with a
minimum of external devices. It also provides the IEEE 1149.1 boundary scan capabilities.
The SIM40 includes the following functions:
• System Configuration and Protection
• Clock Synthesizer
• Chip Selects and Wait States
• External Bus Interface
• Bus Arbitration
• Dynamic Bus Sizing
• IEEE 1149.1 Test Access Port
4.1 MODULE OVERVIEW
The SIM40 is essentially identical to the SIM implemented in the MC68330. The SIM40
has similar features to the SIM in the MC68331, MC68332, and MC68333. The periodic
interrupt timer, double bus fault monitor, software watchdog, internal bus monitor, and
spurious interrupt monitor are identical. However, many of the other features in the SIM's
differ in their use and details.
The system configuration and protection function controls system configuration and
provides various monitors and timers, including the internal bus monitor, double bus fault
monitor, spurious interrupt monitor, software watchdog timer, and the periodic interrupt
timer.
The clock synthesizer generates the clock signals used by the SIM40 and the other onchip modules, as well as CLKOUT used by external devices.
The programmable chip select function provides four chip select signals that can enable
external memory and peripheral circuits, providing all handshaking and timing signals.
Each chip select signal has an associated base address register and an address mask
register that contain the programmable characteristics of that chip select. Up to three wait
states can be programmed by setting bits in the address mask register.
MOTOROLA
MC68340 USER’S MANUAL
4-1
The external bus interface (EBI) handles the transfer of information between the internal
CPU32 and memory, peripherals, or other processing elements in the external address
space. See Section 3 Bus Operation for further information.
The MC68340 dynamically interprets the port size of an addressed device during each
bus cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. The device
signals its port size and indicates completion of the bus cycle through the use of the
DSACK≈ inputs. Dynamic bus sizing allows a programmer to write code that is not buswidth specific. For a discussion on dynamic bus sizing, see Section 3 Bus Operation.
The MC68340 includes dedicated user-accessible test logic that is fully compliant with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture . Problems
associated with testing high-density circuit boards have led to the development of this
standard under the sponsorship of the IEEE Test Technology Committee and Joint Test
Action Group (JTAG). The MC68340 implementation supports circuit-board test strategies
based on this standard. Refer to Section 9 IEEE 1149.1 Test Access Port for additional
information.
4.2 MODULE OPERATION
The following paragraphs describe the operation of the module base address register,
system configuration and protection, clock synthesizer, chip select functions, and the
external bus interface.
NOTE
The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.
4.2.1 Module Base Address Register Operation
The module base address register (MBAR) controls the location of all internal module
registers (see 4.3.1 Module Base Address Register (MBAR)). The address stored in this
register is the base address (starting location) for all internal registers. All internal module
registers are contained in a single 4-Kbyte block (see Figure 4-1) that is relocatable along
4-Kbyte boundaries.
The location of the internal registers is fixed by writing the desired base address of the
4-Kbyte block to the MBAR using the MOVES instruction to address $0003FF00 in CPU
space. The source function code (SFC) and destination function code (DFC) registers
contain the address space values (FC3–FC0) for the read or write operand of the MOVES
instruction (see Section 5 CPU32 or M68000PM/AD, Programmer’s Reference Manual ).
Therefore, the SFC or DFC register must indicate CPU space (FC3–FC0 = $7), using the
MOVEC instruction, before accessing MBAR. The offset from the base address is shown
above each register diagram.
4-2
MC68340 USER’S MANUAL
MOTOROLA
$FFFFFFFF
$XXXXXFFF
MC68340
RELOCATABLE
MODULE
BLOCK
$FFF
$7BF
DMA
$780
$721
$XXXXX000
SERIAL PORTS
$700
.
$67F
TIMER MODULES
$600
$07F
SIM 40
$000
MBAR
($0003FF00
FC=0111)
RAM
(TYPICAL)
$00000000
NOTE: $XXXXX is the value contained in the MBAR bits BA31-BA12.
Figure 4-1. SIM40 Module Register Block
4.2.2 System Configuration and Protection Operation
The SIM40 allows the user to control certain features of system configuration by writing
bits in the module configuration register (MCR). This register also contains read-only
status bits that show the state of the SIM40.
All M68000 family members are designed to provide maximum system safeguards. As an
extension of the family, the MC68340 promotes the same basic concepts of safeguarded
design present in all M68000 members. In addition, many functions that normally must be
provided by external circuits are incorporated in this device. The following features are
provided in the system configuration and protection function:
SIM40 Module Configuration
The SIM40 allows the user to configure the system to the particular requirements. The
functions include control of FREEZE and show cycle operation, the function of the CS≈
signals, the access privilege of the supervisor/user registers, the level of interrupt
arbitration, and automatic vectoring for external interrupts.
Reset Status
The reset status register provides the user with information on the cause of the most
recent reset. The possible causes of reset include: external, power-up, software
watchdog, double bus fault, loss of clock, and RESET instruction.
MOTOROLA
MC68340 USER’S MANUAL
4-3
Internal Bus Monitor
The SIM40 provides an internal bus monitor to monitor the DSACK≈ response time for
all internal bus accesses. An option allows the monitoring of external bus accesses. For
external bus accesses, four selectable response times are provided to allow for
variations in response speed of memory and peripherals used in the system. A bus
error signal is asserted internally if the DSACK≈ response limit is exceeded. BERR is
not asserted externally. This monitor can be disabled for external bus cycles only.
Double Bus Fault Monitor
The double bus fault monitor causes a reset to occur if the internal HALT is asserted by
the CPU32, indicating a double bus fault. A double bus fault results when a bus or
address error occurs during the exception processing sequence for a previous bus or
address error, a reset, or while the CPU32 is loading information from a bus error stack
frame during an RTE instruction. This function can be disabled. See Section 3 Bus
Operation for more information.
Spurious Interrupt Monitor
If no interrupt arbitration occurs during an interrupt acknowledge (IACK) cycle, the bus
error signal is asserted internally. This function cannot be disabled.
Software Watchdog
The software watchdog asserts reset or a level 7 interrupt (as selected by the system
protection and control register) if the software fails to service the software watchdog for
a designated period of time (i.e., because it is trapped in a loop or lost). There are eight
selectable timeout periods. This function can be disabled.
Periodic Interrupt Timer
The SIM40 provides a timer to generate periodic interrupts. The periodic interrupt time
period can vary from 122 µs to 15.94 s (with a 32.768-kHz crystal used to generate the
system clock). This function can be disabled.
Figure 4-2 shows a block diagram of the system configuration and protection function.
4-4
MC68340 USER’S MANUAL
MOTOROLA
MODULE
CONFIGURATION
RESET
STATUS
DOUBLE BUS
FAULT MONITOR
BUS
MONITOR
HALT
RESET
REQUEST
BERR
SPURIOUS
INTERRUPT MONITOR
SOFTWARE
WATCHDOG
CLOCK
29
PRESCALER
PERIODIC
INTERRUPT TIMER
SOFTWARE
RESET
REQUEST or
IRQ7
IRQ7-IRQ1
Figure 4-2. System Configuration and Protection Function
4.2.2.1 SYSTEM CONFIGURATION. Aspects of the system configuration are controlled
by the MCR and the autovector register (AVR).
The configuration of port B is controlled by the combination of the FIRQ bit in the MCR
and the port B pin assignment register (PPARB). Port B pins can function as dedicated I/O
lines, chip selects, interrupts, or autovector input.
For debug purposes, internal bus accesses can be shown on the external bus. This
function is called show cycles. The SHEN1, SHEN0 bits in the MCR control show cycles.
Bus arbitration can be either enabled or disabled during show cycles.
Arbitration for servicing interrupts is controlled by the value programmed into the interrupt
arbitration (IARB) field of the MCR. Each module that generates interrupts, including the
SIM40, has an IARB field. The value of the IARB field allows arbitration during an IACK
cycle among modules that simultaneously generate the same interrupt level. No two
modules should share the same IARB value. The IARB must contain a value other than $0
for all modules that can generate interrupts; interrupts with IARB = 0 are discarded as
extraneous. The SIM40 arbitrates for both its own interrupts and externally generated
interrupts.
MOTOROLA
MC68340 USER’S MANUAL
4-5
There are eight arbitration levels for access to the intermodule bus (IMB). The SIM40 is
fixed at the highest level (above the programmable level 7), and the CPU32 is fixed at the
lowest level (below level 0). The direct memory access (DMA) module is the only other
module that can become bus master and arbitrate for the bus. It must be initialized with a
level other than 0 or 7.
The AVR contains bits that correspond to external interrupt levels that require an
autovector response. The SIM40 supports up to seven discrete external interrupt
requests. If the bit corresponding to an interrupt level is set in the AVR, the SIM40 returns
an autovector in response to the IACK cycle servicing that external interrupt request.
Otherwise, external circuitry must either return an interrupt vector or assert the external
AVEC signal.
4.2.2.2 INTERNAL BUS MONITOR. The internal bus monitor continually checks for the
bus cycle termination response time by checking the DSACK≈, BERR, and HALT status or
the AVEC status during an IACK cycle. The monitor initiates a bus error if the response
time is excessive. The bus monitor feature cannot be disabled for internal accesses to an
internal module. The internal bus monitor cannot check the DSACK≈ response on the
external bus unless the MC68340 is the bus master. The BME bit in the system protection
control register (SYPCR) enables the internal bus monitor for internal-to-external bus
cycles. If the system contains external bus masters whose bus cycles must be monitored,
an external bus monitor must be implemented. In this case, the internal-to-external bus
monitor option must be disabled.
The bus cycle termination response time is measured in clock cycles, and the maximumallowable response time is programmable. The bus monitor response time period ranges
from 8 to 64 system clocks (see Table 4-8). These options are provided to allow for
different response times of peripherals that might be used in the system.
4.2.2.3 DOUBLE BUS FAULT MONITOR. A double bus fault is caused by a bus error or
address error during the exception processing sequence. The double bus fault monitor
responds to an assertion of HALT on the internal bus. Refer to Section 3 Bus Operation
for more information. The DBF bit in the reset status register (RSR) indicates that the last
reset was caused by the double bus fault monitor. The double bus fault monitor reset can
be enabled by the DBFE bit in the SYPCR.
4.2.2.4 SPURIOUS INTERRUPT MONITOR. The spurious interrupt monitor issues BERR
if no interrupt arbitration occurs during an IACK cycle. Normally, during an IACK cycle,
one or more internal modules recognize that the CPU32 is responding to interrupt
request(s) and arbitrate for the privilege of returning a vector or asserting AVEC . (The
SIM40 reports and arbitrates for externally generated interrupts.) This feature cannot be
disabled.
4.2.2.5 SOFTWARE WATCHDOG. The SIM40 provides a software watchdog option to
prevent system lock-up in case the software becomes trapped in loops with no controlled
exit. Once enabled by the SWE bit in the SYPCR, the software watchdog requires a
special service sequence to be executed on a periodic basis. If this periodic servicing
action does not occur, the software watchdog times out and issues a reset or a level 7
4-6
MC68340 USER’S MANUAL
MOTOROLA
interrupt (as programmed by the SWRI bit in the SYPCR). The address of the interrupt
service routine for the software watchdog interrupt is stored in the software interrupt vector
register (SWIV). Figure 4-3 shows a block diagram of the software watchdog as well as
the clock control circuits for the periodic interrupt timer.
The watchdog clock rate is determined by the SWP bit in the periodic interrupt timer
register (PITR) and the SWT bits in the SYPCR. See Table 4-7 for a list of watchdog
timeout periods.
The software watchdog service sequence consists of the following steps: 1) write $55 to
the software service register (SWSR) and 2) write $AA to the SWSR. Both writes must
occur in the order listed prior to the watchdog timeout, but any number of instructions or
accesses to the SWSR can be executed between the two writes.
PITR
SWP
PTP
FREEZE
EXTAL
CLOCK
DISABLE
PRESCALER (2 9 )
CLOCK
MUX
PITCLK
.
.4
PIT
INTERRUPT
MODULUS COUNTER
PRECLK
RESET
SWCLK
15 STAGE DIVIDER CHAIN (215 )
LPSTOP
29
2 11
213
215
Figure 4-3. Software Watchdog Block Diagram
4.2.2.6 PERIODIC INTERRUPT TIMER. The periodic interrupt timer consists of an 8-bit
modulus counter that is loaded with the value contained in the PITR (see Figure
4-3). The modulus counter is clocked by a signal derived from the EXTAL input pin unless
an external frequency source is used. When an external frequency source is used
(MODCK low during reset), the default state of the prescaler control bits (SWP and PTP)
in the PITR is changed to enable both prescalers.
Either clock source (EXTAL or EXTAL ÷ 512) is divided by 4 before driving the modulus
counter (PITCLK). When the modulus counter value reaches zero, an interrupt is
generated. The level of the generated interrupt is programmed into the PIRQL bits in the
periodic interrupt control register (PICR). During the IACK cycle, the SIM40 places the
periodic interrupt vector, programmed into the PIV bits in the PICR, onto the internal bus.
The value of bits 7–0 in the PITR is then loaded again into the modulus counter, and the
counting process starts over. If a new value is written to the PITR, this value is loaded into
the modulus counter when the current count is completed.
MOTOROLA
MC68340 USER’S MANUAL
4-7
4.2.2.6.1 Periodic Timer Period Calculation. The period of the periodic timer can be
calculated using the following equation:
periodic interrupt timer period
=
PITR count value
EXTAL frequency/prescaler value
22
Solving the equation using a crystal frequency of 32.768-kHz with the prescaler disabled
gives:
periodic interrupt timer period
=
periodic interrupt timer period
=
PITR count value
32768/1
22
PITR count value
8192
This gives a range from 122 µs, with a PITR value of $01 (00000001 binary), to 31.128
ms, with a PITR value of $FF (11111111 binary).
Solving the equation with the prescaler enabled (PTP=1 in the PITR) gives the following
values:
periodic interrupt timer period
=
periodic interrupt timer period
=
PITR count value
32768/512
22
PITR count value
16
This gives a range from 62.5 ms, with a PITR value of $01, to 15.94 s, with a PITR value
of $FF.
For fast calculation of periodic timer period using a 32.768-kHz crystal, the following
equations can be used:
With prescaler disabled:
programmable interrupt timer period
=
PITR (122 µs)
=
PITR (62.5 ms)
With prescaler enabled:
programmable interrupt timer period
4-8
MC68340 USER’S MANUAL
MOTOROLA
4.2.2.6.2 Using the Periodic Timer as a Real-Time Clock. The periodic interrupt timer
can be used as a real-time clock interrupt by setting it up to generate an interrupt with a
one-second period. Rearranging the periodic timer period equation to solve for the desired
count value:
PITR count value
=
(PIT period) (EXTAL frequency)
(Prescaler value) (2 2)
PITR count value
=
(1) (32768)
(512) (2 2)
PITR count value
=
16 (decimal)
Therefore, when using a 32.768-kHz crystal, the PITR should be loaded with a value of
$10 with the prescaler enabled to generate interrupts at a one-second rate.
4.2.2.7 SIMULTANEOUS INTERRUPTS BY SOURCES IN THE SIM40. If multiple
interrupt sources at the same interrupt level are simultaneously asserted in the SIM40, it
will prioritize and service the interrupts in the following order: 1) software watchdog, 2)
periodic interrupt timer, and 3) external interrupts.
4.2.3 Clock Synthesizer Operation
The clock synthesizer can operate with either an external crystal or an external oscillator
for reference, using the internal phase-locked loop (PLL) and voltage-controlled oscillator
(VCO), or an external clock can directly drive the clock signal at the operating frequency.
The four modes of clock operation are listed in Table 4-1.
Table 4-1. Clock Operating Modes
Mode
Description
MODCK
Reset
Value
VCCSYN
Operating
Value
Crystal Mode
External crystal or oscillator used with the on-chip PLL and VCO to
generate a system clock and CLKOUT of programmable rates.
5V
5V
External Clock
Mode without PLL
The desired operating frequency is driven into EXTAL resulting in a
system clock and CLKOUT of the same frequency, not tightly coupled.
0V
0V
External Clock
Mode with PLL
The desired operating frequency is driven into EXTAL, resulting in a
system clock and CLKOUT of the same frequency, with a tight skew
between input and output signals.
0V
5V
Limp Mode
Upon input signal loss for either clock mode using the PLL, operation
continues at approximately one-half operating speed (affected by the
value of the X-bit in the SYNCR).
X
5V
In crystal mode (see Figure 4-4), the clock synthesizer can operate from the on-chip PLL
and VCO, using a parallel resonant crystal connected between the EXTAL and XTAL pins,
or an external oscillator connected to EXTAL as a reference frequency source. The
oscillator circuit is shown in Figure 4-5. A 32.768-kHz watch crystal provides an
inexpensive reference, but the reference crystal or external oscillator frequency can be
any frequency in the range specified in Section 11 Electrical Characteristics. When
MOTOROLA
MC68340 USER’S MANUAL
4-9
using crystal mode, the system clock frequency is programmable (using the W, X, and Y
bits in the SYNCR) over the range specified in Section 11 Electrical Characteristics
(see Table 4-2.).
VDDSYN
XFC 1
330 K
20 pF
20 pF
0.1 µF
20 M
EXTAL
XTAL
CRYSTAL
OSCILLATOR
0.1 µF
V DDSYN
XFC PIN
LOW-PASS
FILTER
PHASE
COMPARATOR
0.01 µF
MUX
1
VCO
CLKOUT
÷2
÷64
MUX
1
MODULUS
DIVIDER
0
SEL
0
÷4
÷8
0
X
SEL
6
0
$3F
FEEDBACK DIVIDER
Y
W
NOTE 1: Must be low-leakage capacitor.
Figure 4-4. Clock Block Diagram for Crystal Operation
60 kΩ
XTAL
EXTAL
.
60 kΩ
Figure 4-5. MC68340 Crystal Oscillator
A separate power pin (VCCSYN ) is used to allow the clock circuits to run with the rest of
the device powered down and to provide increased noise immunity for the clock circuits.
The source for VCCSYN should be a quiet power supply with adequate external bypass
capacitors placed as close as possible to the VCCSYN pin to ensure a stable operating
frequency. Figure 4-4 shows typical values for the bypass and PLL external capacitors.
The crystal manufacturer's documentation should be consulted for specific
recommendations for external components.
4-10
MC68340 USER’S MANUAL
MOTOROLA
To use an external clock source (see Figure 4-6), the operating clock frequency can be
driven directly into the EXTAL pin (the XTAL pin must be left floating for this case). This
approach results in a system clock and CLKOUT that are the same as the input signal
frequency, but not tightly coupled to it. To enable this mode, MODCK must be held low
during reset, and VCCSYN held at 0 V while the chip is in operation.
VCCSYN
XFC 1
0.1 µF
EXTERNAL
CLOCK
EXTAL
XTAL
CRYSTAL
OSCILLATOR
XFC PIN
PHASE
COMPARATOR
VCCSYN
LOW-PASS
FILTER
.01 µF
VCO
FEEDBACK
DIVIDER
2
CLKOUT
CLOCK CONTROL
SYSTEM
CLOCK
NOTES:
1. Must be low-leakage capacitor.
2. External mode uses this path only.
Figure 4-6. Clock Block Diagram for External Oscillator Operation
Alternatively, an external clock signal can be directly driven into EXTAL (with XTAL left
floating) using the on-chip PLL. This configuration results in an internal clock and
CLKOUT signal of the same frequency as the input signal, with a tight skew between the
external clock and the internal clock and CLKOUT signals. To enable this mode, MODCK
must be held low during reset, and V CCSYN should be connected to a quiet 5-V source.
If an input signal loss for either of the clock modes utilizing the PLL occurs, chip operation
can continue in limp mode with the VCO running at approximately one-half the operating
speed (affected by the value of the X-bit in the SYNCR), using an internal voltage
reference. The SLIMP bit in the SYNCR indicates that a loss of input signal reference has
been detected. The RSTEN bit in the SYNCR controls whether an input signal loss causes
a system reset or causes the device to operate in limp mode. The SLOCK bit in the
SYNCR indicates when the VCO has locked onto the desired frequency or if an external
clock is being used.
4.2.3.1 PHASE COMPARATOR AND FILTER. The phase comparator takes the output of
the frequency divider and compares it to an external input signal reference. The result of
MOTOROLA
MC68340 USER’S MANUAL
4-11
this compare is low-pass filtered and used to control the VCO. The comparator also
detects when the external crystal or oscillator stops running to initiate the limp mode for
the system clock.
The PLL requires an external low-leakage filter capacitor, typically in the range from 0.01
to 0.1 µF, connected between the XFC and VCCSYN pins. The XFC capacitor should
provide 50-MΩ insulation but should not be electrolytic. Smaller values of the external filter
capacitor provide a faster response time for the PLL, and larger values provide greater
frequency stability. For external clock mode without PLL, the XFC pin can be left open.
4.2.3.2 FREQUENCY DIVIDER. The frequency divider circuits divide the VCO frequency
down to the reference frequency for the phase comparator. The frequency divider consists
of 1) a 2-bit prescaler controlled by the W-bit in the SYNCR and 2) a 6-bit modulo
downcounter controlled by the Y-bits in the SYNCR.
Several factors are important to the design of the system clock. The resulting system clock
frequency must be within the limits specified for the device. The frequency of the system
clock is given by the following equation:
FSYSTEM = FCRYSTAL [2(2+2W+X) ] × (Y+1)
The maximum VCO frequency limit must also be observed. The VCO frequency is given
by the following equation:
FVCO = FSYSTEM [2(2–X)]
Since clearing the X-bit causes the VCO to run at twice the system frequency, the VCO
upper frequency limit must be considered when programming the SYNCR. Both the
system clock and VCO frequency limits are given in Section 11 Electrical
Characteristics. Table 4-2 lists some frequencies available from various combinations of
SYNCR bits with a reference frequency of 32.768-KHz.
4-12
MC68340 USER’S MANUAL
MOTOROLA
Table 4-2. System Frequencies from 32.768-kHz Reference
Y
W = 0; X = 0
W = 0; X = 1
W = 1; X = 0
W = 1; X = 1
000000
131
262
524
1049
000101
786
1573
3146
6291
001010
1442
2884
5767
11534
001111
2097
4194
8389
16777
010100
2753
5505
11010
22020
011001
3408
6816
13631
–
011111
4194
8389
16777
–
100011
4719
9437
18874
–
101000
5374
10748
21496
–
101101
6029
12059
24117
–
110010
6685
13369
–
–
110111
7340
14680
–
–
111100
7995
15991
–
–
111111
8389
16777
–
–
NOTE: System frequencies are in kHz.
4.2.3.3 CLOCK CONTROL. The clock control circuits determine the source used for both
internal and external clocks during special circumstances, such as low-power stop
(LPSTOP) execution.
Table 4-3 summarizes the clock activity during LPSTOP in crystal mode operation. Any
clock in the off state is held low. The STEXT and STSIM bits in the SYNCR control clock
activity during LPSTOP. Refer to 4.2.6 Low-Power Stop for additional information.
Table 4-3. Clock Control Signals
Control Bits
Clock Outputs
STSIM
STEXT
SIMCLK
CLKOUT
0
0
EXTAL
Off
0
1
EXTAL
EXTAL
1
0
VCO
Off
1
1
VCO
VCO
NOTE: SIMCLK runs the periodic interrupt RESET and
IRQ≈ pin synchronizers in LPSTOP mode.
4.2.4 Chip Select Operation
Typical microprocessor systems require external hardware to provide select signals to
external memory and peripherals. The MC68340 integrates these functions on chip to
provide the cost, speed, and reliability benefits of a higher level of integration. The chip
select function contains register pairs for each external chip select signal. The pair
consists of a base address register and an address mask register that define the
characteristics of a single chip select. The register pair provides flexibility for a wide
variety of chip select functions.
MOTOROLA
MC68340 USER’S MANUAL
4-13
4.2.4.1 PROGRAMMABLE FEATURES. The chip select function supports the following
programmable features:
Four Programmable Chip Select Circuits
All four chip select circuits are independently programmable from the same list of
selectable features. Each chip select circuit has an individual base address register and
address mask register that contain the programmed characteristics of that chip select.
The base address register selects the starting address for the address block in 256-byte
increments. The address mask register specifies the size of the address block range.
The base address register V-bit indicates that the register information for that chip
select is valid. A global chip select ( CS0) allows address decode for a boot ROM before
system initialization occurs.
Variable Block Sizes
The block size, starting from the specified base address, can vary in size from 256
bytes up to 4 Gbytes in 2n increments. The specified base address must be on a
multiple of the the block size. The block size is specified in the address mask register.
Both 8- and 16-Bit Ports Supported
The 8-bit ports are accessible on both odd and even addresses when connected to data
bus bits 15–8; the 16-bit ports can be accessed as odd bytes, even bytes, or even
words. The port size is specified by the PS bits in the address mask register.
Write Protect Capability
The WP bit in each base address register can restrict write access to its range of
addresses.
Fast Termination Option
Programming the FTE bit in the base address register for the fast termination option
causes the chip select to terminate the cycle by asserting the internal DSACK≈ early,
providing a two-cycle external access.
Internal DSACK≈ Generation for External Accesses with Programmable Wait States
DSACK≈ can be generated internally with up to three wait states for a particular device
using the DD bits in the address mask register.
Full 32-Bit Address Decode with Address Space Checking
The FC bits in the base address register and FCM bits in the address mask register are
used to select address spaces for which the chip selects will be asserted.
4.2.4.2 GLOBAL CHIP SELECT OPERATION. Global chip select operation allows
address decode for a boot ROM before system initialization occurs. CS0 is the global chip
select output, and its operation differs from the other external chip select outputs following
reset. When the CPU32 begins fetching after reset, CS0 is asserted for every address
until the V-bit is set in the CS0 base address register.
4-14
MC68340 USER’S MANUAL
MOTOROLA
NOTE
If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CS0
and CS2 "overlap" for a certain range, CS0 will assert when
accessing the "overlapped" address range, and CS2 will not.
Global chip select provides a 16-bit port with three wait states, which allows a boot ROM
to be located in any address space and still provide the stack pointer and program counter
values at $00000000 and $00000004, respectively. Global chip select does not provide
write protection and responds to all function codes. While CS0 is a global chip select, no
other chip select (CS1, CS2, CS3 ) can be used. CS0 operates in this manner until the
V-bit is set in the CS0 base address register, which will then allow the use of CS3–CS1.
Provided the desired address range is first loaded into the CS0 base address register,
CS0 can be programmed to continue decode for a range of addresses after the V-bit is
set, After the V-bit is set for CS0, global chip select can only be restarted with a system
reset.
A system can use an 8-bit boot ROM if an external 8-bit DSACK≈ that responds in two or
less wait states is generated. The 8-bit DSACK≈ must respond in two or less wait states
so that the global chip select, which responds with three wait states, will not be used. See
Section 10 Applications for a detailed discussion.
4.2.5 External Bus Interface Operation
This section describes port A and port B functions. Refer to Section 3 Bus Operation for
more information about the EBI.
4.2.5.1 PORT A. Port A pins can be independently programmed to function as either
addresses A31–A24, discrete I/O pins, or IACKx pins. The port A pin assignment
registers (PPARA1 and PPARA2) control the function of the port A pins as listed in Table
4-4. Upon reset, port A is configured as input pins. If the system uses these signals as
addresses, pulldowns should be put on these signals to avoid indeterminate values until
the port A registers can be programmed.
Table 4-4. Port A Pin Assignment Register
Pin Function
Signal
MOTOROLA
PPARA1 = 0
PPARA1 = 1
PPARA1 = 0
PPARA2 = 0
PPARA2 = X
PPARA2 = 1
A31
A31
PORT A7
IACK7
A30
A30
PORT A6
IACK6
A29
A29
PORT A5
IACK5
A28
A28
PORT A4
IACK4
A27
A27
PORT A3
IACK3
A26
A26
PORT A2
IACK2
A25
A25
PORT A1
IACK1
A24
A24
PORT A0
—
MC68340 USER’S MANUAL
4-15
4.2.5.2 PORT B. Port B pins can be independently programmed to function as chip
selects, IRQ ≈ and MODCK pins, or discrete I/O pins. These pins are multiplexed as
shown in Figure 4-7. Selection of a pin function is accomplished by a combination of the
port B pin assignment register (PPARB) and the FIRQ bit of the MCR. See Table 4-5 for
port B combinations. By changing the value of the FIRQ bit and the corresponding bits in
the PPARB for a particular signal, the port B pins can be configured for different pin
functions. Upon reset, port B is configured as MODCK, IRQ7, IRQ6, IRQ5, IRQ3, and
CS3–CS0.
INTERRUPT
PORT
LOGIC
MODCK/PORT B0
IRQ7/PORT B7
IRQ6/PORT B6
IRQ5/PORT B5
IRQ3/PORT B3
IRQ4/PORT B4
IRQ2/PORT B2
IRQ1/PORT B1
CS3/IRQ4/PORT B4
CS2/IRQ2/PORT B2
AVEC
FULL IRQ
MUX
CHIPSELECT
MODULE
CS1/IRQ1/PORT B1
CS0/AVEC
CS3
CS2
CS1
CS0
FIRQ
Figure 4-7. Full Interrupt Request Multiplexer
Table 4-5. Port B Pin Assignment Register
Pin Function
Signal
FIRQ = 0
FIRQ = 0
FIRQ = 1
FIRQ = 1
PPARB = 0
PPARB = 1
PPARB = 0
PPARB = 1
IRQ7
PORTB7
IRQ7
PORTB7
IRQ7
IRQ6
PORTB6
IRQ6
PORTB6
IRQ6
IRQ5
PORTB5
IRQ5
PORTB5
IRQ5
IRQ3
PORTB3
IRQ3
PORTB3
IRQ3
CS3
CS3
CS3
PORTB4
IRQ4
CS2
CS2
CS2
PORTB2
IRQ2
CS1
CS1
CS1
PORTB1
IRQ1
CS0
CS0
CS0
AVEC
AVEC
MODCK
PORTB0
MODCK
PORTB0
MODCK
NOTE: MODCK has no function after reset.
4-16
MC68340 USER’S MANUAL
MOTOROLA
The number of wait states programmed into the internal wait state generation logic by a
chip select can be used even though the pin is not used as a C S ≈ signal. The
programmed number of wait states in the CS≈ signal applies to the port B pins configured
as IRQ≈ or I/O pins. This is done by programming the chip select with the number of wait
states to be added, as though it were to be used. The DD1/DD0 and PS1/PS0 bits in the
chip select address mask register must be set to add the desired number of wait states
(the V-bit in the module base address register should be set).
4.2.6 Low-Power Stop
Executing the LPSTOP instruction provides reduced power consumption when the
MC68340 is idle; only the SIM40 remains active. Operation of the SIM40 clock and
CLKOUT during LPSTOP is controlled by the STSIM and STEXT bits in the SYNCR (see
Table 4-3). LPSTOP disables the clock to the software watchdog in the low state. The
software watchdog remains stopped until the LPSTOP mode ends; it begins to run again
on the next rising clock edge.
NOTE
When the CPU32 executes the STOP instruction (as opposed
to LPSTOP), the software watchdog continues to run. If the
software watchdog is enabled, it issues a reset or interrupt
when timeout occurs.
The periodic interrupt timer does not respond to an LPSTOP instruction; thus, it can be
used to exit LPSTOP as long as the interrupt request level is higher than the CPU32
interrupt mask level. To stop the periodic interrupt timer while in LPSTOP, the PITR must
be loaded with a zero value before LPSTOP is executed. The bus monitor, double bus
fault monitor, and spurious interrupt monitor are all inactive during LPSTOP.
The STP bit in the MCR of each on-chip module (DMA, timers, and serial modules) should
be set prior to executing the LPSTOP instruction. Setting the STP bit stops all clocks
within each of the modules, except for the clock from the IMB. The clock from the IMB
remains active to allow the CPU32 access to the MCR of each module. The system clock
stops on the low phase of the clock and remains stopped until the STP bit is cleared by
the CPU32 or until reset. For more information, see the description of the MCR STP bit for
each module.
If an external device requires additional time to prepare for entry into LPSTOP mode,
entry can be delayed by asserting HALT (see 3.4.2 LPSTOP Broadcast Cycle ).
4.2.7 Freeze
FREEZE is asserted by the CPU32 if a breakpoint is encountered with background mode
enabled. Refer to Section 5 CPU32 for more information on the background mode. When
FREEZE is asserted, the double bus fault monitor and spurious interrupt monitor continue
to operate normally. However, the software watchdog, the periodic interrupt timer and the
internal bus monitor will be affected. When FREEZE is asserted, setting the FRZ1 bit in
MOTOROLA
MC68340 USER’S MANUAL
4-17
the MCR disables the software watchdog and periodic interrupt timer, and setting the
FRZ0 bit in the MCR disables the bus monitor.
4.3 PROGRAMMING MODEL
Figure 4-8 is a programming model (register map) of all registers in the SIM40. For more
information about a particular register, refer to the description of the module or function
indicated in the right column. The ADDR (address) column indicates the offset of the
register from the address stored in the module base address register. The FC (function
code) column indicates whether a register is restricted to supervisor access (S) or
programmable to exist in either supervisor or user space (S/U).
For the registers discussed in the following pages, the number in the upper right-hand
corner indicates the offset of the register from the address stored in the module base
address register. The numbers on the top line of the register represent the bit position in
the register. The second line contains the mnemonic for the bit. The numbers below the
register represent the bit values after a hardware reset. The access privilege is indicated
in the lower right-hand corner.
NOTE:
A CPU32 RESET instruction will not affect any of the SIM40
registers.
4-18
MC68340 USER’S MANUAL
MOTOROLA
ADDR
FC
000
S
15
8 7
0
MODULE CONFIGURATION REGISTER (MCR)
SYSTEM
PROTECTION
004
S
006
S
CLOCK SYNTHESIZER CONTROL REGISTER (SYNCR)
AUTOVECTOR REGISTER (AVR)
RESET STATUS REGISTER (RSR)
CLOCK
SYSTEM
PROTECTION
010
S/U
012
S/U
014
S
016
S
018
RESERVED
PORT A DATA (PORTA)
EBI
RESERVED
PORT A DATA DIRECTION (DDRA)
EBI
RESERVED
PORT A PIN ASSIGNMENT 1 (PPRA1)
EBI
RESERVED
PORT A PIN ASSIGNMENT 2 (PPRA2)
EBI
S/U
RESERVED
PORT B DATA (PORTB)
EBI
01A
S/U
RESERVED
PORT B DATA (PORTB1)
EBI
01C
S/U
RESERVED
PORT B DATA DIRECTION (DDRB)
EBI
01E
S
RESERVED
PORT B PIN ASSIGNMENT (PPARB)
EBI
020
S
SW INTERRUPT VECTOR (SWIV)
SYSTEM PROTECTION CONTROL
(SYPCR)
PROTECTION
SYSTEM
022
S
PERIODIC INTERRUPT CONTROL REGISTER (PICR)
SYSTEM
PROTECTION
024
S
PERIODIC INTERRUPT TIMING REGISTER (PITR)
SYSTEM
PROTECTION
026
S
RESERVED
SOFTWARE SERVICE (SWSR)
SYSTEM
PROTECTION
040
S
ADDRESS MASK 1 CS0
CHIP SELECT
042
S
ADDRESS MASK 2 CS0
CHIP SELECT
044
S
BASE ADDRESS 1 CS0
CHIP SELECT
046
S
BASE ADDRESS 2 CS0
CHIP SELECT
048
S
ADDRESS MASK 1 CS1
CHIP SELECT
04A
S
ADDRESS MASK 2 CS1
CHIP SELECT
04C
S
BASE ADDRESS 1 CS1
CHIP SELECT
04E
S
BASE ADDRESS 2 CS1
CHIP SELECT
050
S
ADDRESS MASK 1 CS2
CHIP SELECT
052
S
ADDRESS MASK 2 CS2
CHIP SELECT
054
S
BASE ADDRESS 1 CS2
CHIP SELECT
056
S
BASE ADDRESS 2 CS2
CHIP SELECT
058
S
ADDRESS MASK 1 CS3
CHIP SELECT
05A
S
ADDRESS MASK 2 CS3
CHIP SELECT
05C
S
BASE ADDRESS 1 CS3
CHIP SELECT
05E
S
BASE ADDRESS 2 CS3
CHIP SELECT
Figure 4-8. SIM40 Programming Model
MOTOROLA
MC68340 USER’S MANUAL
4-19
4.3.1 Module Base Address Register (MBAR)
MBAR 1
$0003FF00
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
BA31
BA30
BA29
BA28
BA27
BA26
BA25
BA24
BA23
BA22
BA21
BA20
BA19
IBA18
BA17
BA16
RESET:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CPU Space Only
MBAR 2
$0003FF02
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
BA15
BA14
BA13
BA12
0
0
AS8
AS7
AS6
AS5
AS4
AS3
AS2
AS1
AS0
V
RESET
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CPU Space Only
BA31–BA12—Base Address Bits 31–12
The base address field is the upper 20 bits of the MBAR that provides for block starting
locations in increments of 4-Kbytes.
Bits 11, 10—Reserved
AS8–AS0—Address Space Bits 8–0
The address space field allows particular address spaces to be masked, placing the 4K
module block into a particular address space(s). If an address space is masked, an
access to the register block location in that address space becomes an external access.
The module block is not accessed. The address space bits are as follows:
AS8—mask DMA Space
address space (FC3–FC0 = 1xxx)
AS7—mask CPU Space
address space (FC3–FC0 = 0111)
AS6—mask Supervisor Program
address space (FC3–FC0 = 0110)
AS5—mask Supervisor Data
address space (FC3–FC0 = 0101)
AS4—mask Reserved [Motorola]
address space (FC3–FC0 = 0100)
AS3—mask Reserved [User]
address space (FC3–FC0 = 0011)
AS2—mask User Program
address space (FC3–FC0 = 0010)
AS1—mask User Data
address space (FC3–FC0 = 0001)
AS0—mask Reserved [Motorola]
address space (FC3–FC0 = 0000)
For each address space bit:
1 = Mask this address space from the internal module selection. The bus cycle goes
external.
0 = Decode for the internal module block.
V—Valid Bit
This bit indicates when the contents of the MBAR are valid. The base address value is
not used; therefore, all internal module registers are not accessible until the V-bit is set.
1 = Contents are valid.
0 = Contents are not valid.
4-20
MC68340 USER’S MANUAL
MOTOROLA
NOTE
An access to this register does not affect external space since
the cycle is not run externally.
Example code for accessing the MBAR is as follows:
Register D0 will contain the value of MBAR. MBAR can be read using the following code:
MOVE.L
MOVEC.L
LEA.L
MOVES.L
#7,D0
D0,SFC
$0003FF00,A0
(A0),D0
load D0 with the CPU space function code
load SFC to indicate CPU space
load A0 with the address of MBAR
load D0 with the contents of MBAR
Address $0003FF00 in CPU space (MBAR) will be loaded with the value $FFFFF001.
This value will set the base address of the internal registers to $FFFFF. MBAR can be
written to using the following code:
MOVE.L
MOVEC.L
LEA.L
MOVE.L
MOVES.L
#7,D0
D0,DFC
$0003FF00,A0
#$FFFFF001,D0
D0,(A0)
load D0 with the CPU space function code
load DFC to indicate CPU space
load A0 with the address of MBAR
load D0 with the value to be written into MBAR
write the value contained in D0 into MBAR
4.3.2 System Configuration and Protection Registers
The following paragraphs provide descriptions of the system configuration and protection
registers.
4.3.2.1 MODULE CONFIGURATION REGISTER (MCR). The MCR, which controls the
SIM40 configuration, can be read or written at any time.
MCR
$000
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
FRZ1
FRZ0
FIRQ
0
0
SHEN1
SHEN0
SUPV
0
0
0
IARB3
IARB2
IARB1
IARB0
RESET:
0
1
1
0
0
0
0
0
1
0
0
0
1
1
1
1
Supervisor Only
Bits 15, 11, 10, 6–4—Reserved
FRZ1—Freeze Software Enable
1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters are disabled, preventing interrupts from occurring during software
debug.
0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters continue to run. See 4.2.7 Freeze for more information.
MOTOROLA
MC68340 USER’S MANUAL
4-21
FRZ0—Freeze Bus Monitor Enable
1 = When FREEZE is asserted, the bus monitor is disabled.
0 = When FREEZE is asserted, the bus monitor continues to operate as
programmed.
FIRQ—Full Interrupt Request Mode
1 = Configures port B for seven interrupt request lines, autovector, and no external
chip selects.
0 = Configures port B for four interrupt request lines and four external chip selects.
See Table 4-5 for pin function selection.
SHEN1, SHEN0—Show Cycle Enable
These two control bits determine what the EBI does with the external bus during internal
transfer operations (see Table 4-6). A show cycle allows internal transfers to be
externally monitored. The address, data, and control signals (except for AS) are driven
externally. DS is used to signal address strobe timing for show cycles. Data is valid on
the next falling clock edge after DS is negated. However, data is not driven externally,
and AS and DS are not asserted externally for internal accesses unless show cycles
are enabled.
If external bus arbitration is disabled, the EBI will not recognize an external bus request
until arbitration is enabled again. To prevent bus conflicts, external peripherals must not
attempt to initiate cycles during show cycles with arbitration disabled.
Table 4-6. SHENx Control Bits
SHEN1
SHEN0
ACTION
0
0
Show cycles disabled, external arbitration enabled
0
1
Show cycles enabled, external arbitration disabled
1
X
Show cycles enabled, external arbitration enabled
SUPV—Supervisor/User Data Space
The SUPV bit defines the SIM40 registers as either supervisor data space or user
(unrestricted) data space.
1 = The SIM40 registers defined as supervisor/user are restricted to supervisor data
access (FC3–FC0 = $5). An attempted user-space write is ignored and returns
BERR.
0 = The SIM40 registers defined as supervisor/user data are unrestricted (FC2 is a
don't care).
IARB3–IARB0—Interrupt Arbitration Bits 3–0
These bits are used to arbitrate for the bus in the case that two or more modules
simultaneously generate an interrupt at the same priority level. No two modules can
share the same IARB value. The reset value of IARB is $F, allowing the SIM40 to
arbitrate during an IACK cycle immediately after reset. The system software should
initialize the IARB field to a value from $F (highest priority) to $1 (lowest priority). A
4-22
MC68340 USER’S MANUAL
MOTOROLA
value of $0 prevents arbitration and causes all SIM40 interrupts, including external
interrupts, to be discarded as extraneous.
4.3.2.2 AUTOVECTOR REGISTER (AVR). The AVR contains bits that correspond to
external interrupt levels that require an autovector response. Setting a bit allows the
SIM40 to assert an internal AVEC during the IACK cycle in response to the specified
interrupt request level. This register can be read and written at any time.
AVR
$006
7
6
5
4
3
2
1
0
AV7
AV6
AV5
AV4
AV3
AV2
AV1
0
RESET:
0
0
0
0
0
0
0
0
Supervisor Only
NOTE:
The IARB field in the MCR must contain a value other than $0
for the SIM40 to autovector for external interrupts.
4.3.2.3 RESET STATUS REGISTER (RSR). The RSR contains a bit for each reset source
to the SIM40. A set bit indicates the last type of reset that occurred, and only one bit can
be set in the register. The RSR is updated by the reset control logic when the SIM40
comes out of reset. This register can be read at any time; a write has no effect. For more
information, see Section 3 Bus Operation.
RSR
$007
7
6
5
4
3
2
1
0
EXT
POW
SW
DBF
0
LOC
SYS
0
Supervisor Only
EXT—External Reset
1 = The last reset was caused by an external signal driving RESET.
POW—Power-Up Reset
1 = The last reset was caused by the power-up reset circuit.
SW—Software Watchdog Reset
1 = The last reset was caused by the software watchdog circuit.
DBF—Double Bus Fault Monitor Reset
1 = The last reset was caused by the double bus fault monitor.
Bits 3, 0—Reserved
MOTOROLA
MC68340 USER’S MANUAL
4-23
LOC—Loss of Clock Reset
1 = The last reset was caused by a loss of frequency reference to the clock
synthesizer. This reset can only occur if the RSTEN bit in the SYNCR is set and
the VCO is enabled.
SYS—System Reset
1 = The last reset was caused by the CPU32 executing a RESET instruction. The
system reset does not load a reset vector or affect any internal CPU32 registers,
SIM40 configuration registers, or the MCR in each internal peripheral module
(DMA, timers, and serial modules). It will, however, reset external devices and all
other registers in the peripheral modules.
4.3.2.4 SOFTWARE INTERRUPT VECTOR REGISTER (SWIV). The SWIV contains the
8-bit vector that is returned by the SIM40 during an IACK cycle in response to an interrupt
generated by the software watchdog. This register can be read or written at any time. This
register is set to the uninitialized vector, $0F, at reset.
SWIV
$020
7
6
5
4
3
2
1
0
SWIV7
SWIV6
SWIV5
SWIV4
SWIV3
SWIV2
SWIV1
SWIV0
RESET:
0
0
0
0
1
1
1
1
Supervisor Only
4.3.2.5 SYSTEM PROTECTION CONTROL REGISTER (SYPCR). The SYPCR controls
the system monitors, the prescaler for the software watchdog, and the bus monitor timing.
This register can be read at any time, but can be written only once after reset.
SYPCR
$021
7
6
5
4
3
2
1
0
SWE
SWRI
SWT1
SWT0
DBFE
BME
BMT1
BMT0
RESET:
0
0
0
0
0
0
0
0
Supervisor Only
SWE—Software Watchdog Enable
1 = Software watchdog is enabled.
0 = Software watchdog is disabled.
See 4.2.2.5 Software Watchdog for more information.
SWRI—Software Watchdog Reset/Interrupt Select
1 = Software watchdog causes a system reset.
0 = Software watchdog causes a level 7 interrupt to the CPU32.
4-24
MC68340 USER’S MANUAL
MOTOROLA
SWT1, SWT0—Software Watchdog Timing
These bits, along with the SWP bit in the PITR, control the divide ratio used to establish
the timeout period for the software watchdog. The software watchdog timeout period is
given by the following formula:
divide count
EXTAL frequency
The software watchdog timeout period, listed in Table 4-7, gives the formula to derive the
software watchdog timeout for any clock frequency. The timeout periods are listed for a
32.768-kHz crystal used with the VCO and for a 16.777-MHz external oscillator.
Table 4-7. Deriving Software Watchdog Timeout
SWP
SWT1
SWT0
Software Timeout Period
32.768-kHz
Crystal Period
16.777-MHz External
Clock Period
0
0
0
29/EXTAL Input Frequency
15.6 ms
30 µs
62.5 ms
122 µs
0
0
1
211 /EXTAL Input Frequency
0
1
0
213 /EXTAL Input Frequency
250 ms
488 µs
0
1
1
215 /EXTAL Input Frequency
1s
1.95 ms
0
218 /EXTAL Input Frequency
8s
15.6 ms
32 s
62.5 ms
1
0
1
0
1
220 /EXTAL Input Frequency
1
1
0
222 /EXTAL Input Frequency
128 s
250 ms
1
1
1
224 /EXTAL Input Frequency
512 s
1s
NOTE:
When the SWP and SWT bits are modified to select a software timeout other than the default, the
software service sequence ($55 followed by $AA written to the software service register) must be
performed before the new timeout period takes effect. Refer to 4.2.2.5 Software Watchdog for
more information.
DBFE—Double Bus Fault Monitor Enable
1 = Enable double bus fault monitor function.
0 = Disable double bus fault monitor function.
For more information, see 4.2.2.3 Double Bus Fault Monitor and Section 5 CPU32.
BME—Bus Monitor External Enable
1 = Enable bus monitor function for an internal-to-external bus cycle.
0 = Disable bus monitor function for an internal-to-external bus cycle.
For more information see 4.2.2.2 Internal Bus Monitor.
BMT1, BMT0—Bus Monitor Timing
These bits select the timeout period for the bus monitor (see Table 4-8). Upon reset, the
bus monitor is set to 64 system clocks.
MOTOROLA
MC68340 USER’S MANUAL
4-25
Table 4-8. BMTx Encoding
BMT1
BMT0
0
0
64 system clocks (CLKOUT)
Bus Monitor Timeout Period
0
1
32 system clocks
1
0
16 system clocks
1
1
8 system clocks
4.3.2.6 PERIODIC INTERRUPT CONTROL REGISTER (PICR). The PICR contains the
interrupt level and the vector number for the periodic interrupt request. This register can
be read or written at any time. Bits 15–11 are unimplemented and always return zero; a
write to these bits has no effect.
PICR
$022
15
14
13
12
11
0
0
0
0
0
RESET:
0
0
0
0
0
10
9
8
PIRQL2 PIRQL1 PIRQL0
0
0
0
7
6
5
4
3
2
1
0
PIV7
PIV6
PIV5
PIV4
PIV3
PIV2
PIV1
PIV0
0
0
0
0
1
1
1
1
Supervisor Only
Bits 15–11—Reserved
PIRQL2–PIRQL0—Periodic Interrupt Request Level
These bits contain the periodic interrupt request level. Table 4-9 lists which interrupt
request level is asserted during an IACK cycle when a periodic interrupt is generated.
The periodic timer continues to run when the interrupt is disabled.
Table 4-9. PIRQL Encoding
PIRQL2
PIRQL1
PIRQL0
Interrupt Request Level
0
0
0
Periodic Interrupt Disabled
0
0
1
Interrupt Request Level 1
0
1
0
Interrupt Request Level 2
0
1
1
Interrupt Request Level 3
1
0
0
Interrupt Request Level 4
1
0
1
Interrupt Request Level 5
1
1
0
Interrupt Request Level 6
1
1
1
Interrupt Request Level 7
NOTE:
Use caution with a level 7 interrupt encoding due to the
SIM40's interrupt servicing order. See 4.2.2.7 Simultaneous
Interrupts by Sources in the SIM40 for the servicing order.
4-26
MC68340 USER’S MANUAL
MOTOROLA
PIV7–PIV0—Periodic Interrupt Vector Bits 7–0
These bits contain the value of the vector generated during an IACK cycle in response
to an interrupt from the periodic timer. When the SIM40 responds to the IACK cycle, the
periodic interrupt vector from the PICR is placed on the bus. This vector number is
multiplied by four to form the vector offset, which is added to the vector base register to
obtain the address of the vector.
4.3.2.7 PERIODIC INTERRUPT TIMER REGISTER (PITR). The PITR contains control for
prescaling the software watchdog and periodic timer as well as the count value for the
periodic timer. This register can be read or written at any time. Bits 15–10 are not
implemented and always return zero when read. A write does not affect these bits.
PITR
$024
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
SWP
PTP
PITR7
PITR6
PITR5
PITR4
PITR3
PITR2
PITR1
PITR0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET:
0
MODCK MODCK
Supervisor Only
Bits 15–10—Reserved
SWP—Software Watchdog Prescale
This bit controls the software watchdog clock source as shown in 4.3.2.5 System
Protection Control Register (SYPCR).
1 = Software watchdog clock prescaled by a value of 512.
0 = Software watchdog clock not prescaled.
The SWP reset value is the inverse of the MODCK bit state on the rising edge of reset.
PTP—Periodic Timer Prescaler Control
This bit contains the prescaler control for the periodic timer.
1 = Periodic timer clock prescaled by a value of 512.
0 = Periodic timer clock not prescaled.
The PTP reset value is the inverse of the MODCK bit state on the rising edge of reset.
PITR7–PITR0—Periodic Interrupt Timer Register Bits 7–0
The remaining bits of the PITR contain the count value for the periodic timer. A zero
value turns off the periodic timer.
MOTOROLA
MC68340 USER’S MANUAL
4-27
4.3.2.8 SOFTWARE SERVICE REGISTER (SWSR). The SWSR is the location to which
the software watchdog servicing sequence is written. The software watchdog can be
enabled or disabled by the SWE bit in the SYPCR. SWSR can be written at any time, but
returns all zeros when read.
SWSR
7
$027
6
5
4
3
2
1
0
SWSR7 SWSR6 SWSR5 SWSR4 SWSR3 SWSR2 SWSR1 SWSR0
RESET:
0
0
0
0
0
0
0
0
Supervisor Only
4.3.3 Clock Synthesizer Control Register (SYNCR)
The SYNCR can be read or written only in supervisor mode. The reset state of SYNCR
produces an operating frequency of 8.39 MHz when the PLL is referenced to a 32.768kHz reference signal. The system frequency is controlled by the frequency control bits in
the upper byte of the SYNCR as follows:
FSYSTEM = FCRYSTAL [2(2+2W+X) ] × (Y+1)
SYNCR
$004
15
14
13
12
11
10
9
8
7
6
5
W
X
Y5
Y4
Y3
Y2
Y1
Y0
RSVD
0
0
RESET:
0
0
1
1
1
1
1
1
0
0
0
U = Unaffected by reset
4
3
SLIMP SLOCK
U
U
2
1
0
RSTEN
STSIM
STEXT
0
0
0
Supervisor Only
W—Frequency Control Bit
This bit controls the prescaler tap in the synthesizer feedback loop. Setting the bit
increases the VCO speed by a factor of 4, requiring a time delay for the VCO to relock
(see equation for determining system frequency).
X—Frequency Control Bit
This bit controls a divide-by-two prescaler, which is not in the synthesizer feedback
loop. Setting the bit doubles the system clock speed without changing the VCO speed,
as specified in the equation for determining system frequency; therefore, no delay is
incurred to relock the VCO.
Y5–Y0—Frequency Control Bits
The Y-bits, with a value from 0–63, control the modulus downcounter in the synthesizer
feedback loop, causing it to divide by the value of Y+1 (see the equation for determining
system frequency). Changing these bits requires a time delay for the VCO to relock.
Bits 7–5—Reserved
Bit 7 is reserved for factory testing.
4-28
MC68340 USER’S MANUAL
MOTOROLA
SLIMP—Limp Mode
1 = A loss of input signal reference has been detected, and the VCO is running at
approximately one-half the maximum speed (affected by the X-bit ), determined
from an internal voltage reference.
0 = External input signal frequency is at VCO reference.
SLOCK—Synthesizer Lock
1 = VCO has locked onto the desired frequency (or system clock is driven
externally).
0 = VCO is enabled, but has not yet locked.
RSTEN—Reset Enable
1 = Loss of input signal causes a system reset.
0 = Loss of input signal causes the VCO to operate at a nominal speed without
external reference (limp mode), and the device continues to operate at that
speed.
STSIM—Stop Mode System Integration Clock
1 = When LPSTOP is executed, the SIM40 clock is driven from the VCO.
0 = When LPSTOP is executed, the SIM40 clock is driven from an external crystal or
oscillator, and the VCO is turned off to conserve power.
STEXT—Stop Mode External Clock
1 = When the LPSTOP instruction is executed, the external clock pin (CLKOUT) is
driven from the SIM40 clock as determined by the STSIM bit.
0 = When the LPSTOP instruction is executed, the external clock (CLKOUT) is held
low to conserve power. No external clock will be driven in LPSTOP mode.
4.3.4 Chip Select Registers
The following paragraphs provide descriptions of the registers in the chip select function,
and an example of how to program the registers. The chip select registers cannot be used
until the V-bit in the MBAR is set.
MOTOROLA
MC68340 USER’S MANUAL
4-29
4.3.4.1 BASE ADDRESS REGISTERS. There are four 32-bit base address registers in
the chip select function, one for each chip select signal.
Base Address 1
$044, $04C, $054, $05C
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
BA31
BA30
BA29
BA28
BA27
BA26
BA25
BA24
BA23
BA22
BA21
BA20
BA19
BA18
BA17
BA16
RESET:
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
Supervisor Only
Base Address 2
$046, $04E, $056, $05E
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
BA15
BA14
BA13
BA12
BA11
BA10
BA9
BA8
BFC3
BFC2
BFC1
BFC0
WP
FTE
NCS
V
RESET:
U
U
U
U
U
U
U
U
U
U
U
U
U
U
0
0
U = Unaffected by reset
Supervisor Only
BA31–BA8—Base Address Bits 31–8
The base address field, the upper 24 bits of each base address register, selects the
starting address for the chip select. The specified base address must be on a multiple of
the selected block size. The corresponding bits, AM31–AM8, in the address mask
register define the size of the block for the chip select. The base address field (and the
base function code field) is compared to the address on the address bus to determine if
a chip select should be generated.
BFC3–BFC0—Base Function Code Bits 3–0
The value programmed into this field causes a chip select to be asserted for a certain
address space type. There are nine function code address spaces (see Section 3 Bus
Operation) specified as either user or supervisor, program or data, CPU, and DMA.
These bits should be used to allow access to one type of address space. If access to
more than one type of address space is desired, the FCMx bits should be used in
addition to the BFCx bits. To prevent access to CPU space, set the NCS bit.
WP—Write Protect
This bit can restrict write accesses to the address range in a base address register. An
attempt to write to the range of addresses specified in a base address register that has
this bit set returns BERR.
1 = Only read accesses are allowed.
0 = Either read or write accesses are allowed.
FTE—Fast-Termination Enable
This bit causes the cycle to terminate early with an internal DSACK≈, giving a fast twoclock external access. When clear, all external cycles are at least three clocks. If fast
termination is enabled, the DD bits of the corresponding address mask register are
overridden (see Section 3 Bus Operation).
1 = Fast termination cycle enabled (termination determined by PS bits).
0 = Fast termination cycle disabled (termination determined by DD and PS bits).
4-30
MC68340 USER’S MANUAL
MOTOROLA
NCS—No CPU Space
This bit specifies whether or not a chip select will assert on a CPU space access cycle
(FC3–FC0 = $7 or $F). If both supervisor data and program accesses are desired, while
ignoring CPU space accesses, then this bit should be set. The NCS bit is cleared at
reset.
1 = Suppress the chip select on a CPU space access.
0 = Assert the chip select on a CPU space access.
V—Valid Bit
This bit indicates that the contents of its base address register and address mask
register pair are valid. The programmed chip selects do not assert until the V-bit is set.
A reset clears the V-bit in each base address register, but does not change any other
bits in the base address and address mask registers ( CS0 is a special case, see 4.2.4.2
Global Chip Select Operation).
1 = Contents are valid.
0 = Contents are not valid.
4.3.4.2 ADDRESS MASK REGISTERS. There are four 32-bit address mask registers in
the chip select function, one for each chip select signal.
Address Mask 1
$040, $048, $050, $058
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
AM31
AM30
AM29
AM28
AM27
AM26
AM25
AM24
AM23
AM22
AM21
AM20
AM19
AM18
AM17
AM16
RESET:
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
Supervisor Only
Address Mask 2
$042, $04A, $052, $05A
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
AM15
AM14
AM13
AM12
AM11
AM10
AM9
AM8
FCM3
FCM2
FCM1
FCM0
DD1
DD0
PS1
PS0
RESET:
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U = Unaffected by reset
Supervisor Only
AM31–AM8—Address Mask Bits 31–8
The address mask field, the upper 24 bits of each address mask register, defines the
chip select block size. The block size is equal to 2n , where n = (number of bits set in
the address mask field) + 8.
Any set bit masks the corresponding base address register bit (the base address
register bit becomes a don’t care). By masking the address bits independently, external
devices of different size address ranges can be used. Address mask bits can be set or
cleared in any order in the field, allowing a resource to reside in more than one area of
the address map. This field can be read or written at any time.
MOTOROLA
MC68340 USER’S MANUAL
4-31
FCM3–FCM0—Function Code Mask Bits 3–0
This field can be used to mask certain function code bits, allowing more than one
address space type to be assigned to a chip select. Any set bit masks the
corresponding function code bit.
DD1, DD0—DSACK Delay Bits 1 and 0
This field determines the number of wait states added before an internal DSACK≈ is
returned for that entry. Table 4-10 lists the encoding for the DD bits.
NOTE:
The port size field must be programmed for an internal
DSACK ≈ response and the FTE bit in the base address
register must be cleared for the DDx bits to have significance.
If external DSACK≈ signals are returned earlier than indicated
by the DDx bits, the cycle will terminate sooner than
programmed. See 4.2.5.2 PORT B for a discussion on using
the internal DSACK≈ generation without using the CS≈ signal.
Table 4-10. DDx Encoding
DD1
DD0
Response
0
0
Zero Wait State
0
1
One Wait State
1
0
Two Wait States
1
1
Three Wait States
PS1, PS0—Port Size Bits 1 and 0
This field determines whether a given chip select responds with DSACK≈ and, if so,
what port size is returned. Table 4-11 lists the encoding for the PSx bits.
Table 4-11. PSx Encoding
PS1
PS0
Mode
0
0
Reserved*
0
1
16-Bit Port
1
0
8-Bit Port
1
1
External DSACK≈ Response
*Use only for 32-bit DMA transfers.
To use the external DSACK≈ response, PS1–PS0 = 11 should be selected to suppress
internal DSACK≈ generation. The DDx bits then have no significance.
4-32
MC68340 USER’S MANUAL
MOTOROLA
4.3.4.3 CHIP SELECT REGISTERS PROGRAMMING EXAMPLE. The following listing is
an example of programming a chip select at starting address $00040000, for a block size
of 256 Kbytes, accessing supervisor and user data spaces with a 16-bit port requiring two
wait states. There will be no write protection, no fast termination, and no CPU space
accesses.
base address 1 = $0004
base address 2 = $0013
address mask 1 = $0003
address mask 2 = $FF49
NOTE
If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CS0
and CS2 "overlap" for a certain range, CS0 will assert when
accessing the "overlapped" address range, and CS2 will not.
4.3.5 External Bus Interface Control
The following paragraphs describe the registers that control the I/O pins used with the
EBI. Refer to the Section 3 Bus Operation for more information about the EBI. For a list
of pin numbers used with port A and port B, see the pinout diagram in Section 12
Ordering Information and Mechanical Data. Section 2 Signal Descriptions shows a
block diagram of the port control circuits.
4.3.5.1 PORT A PIN ASSIGNMENT REGISTER 1 (PPARA1). PPARA1 selects between
an address and discrete I/O function for the port A pins. Any set bit defines the
corresponding pin to be an I/O pin, controlled by the port A data and data direction
registers. Any cleared bit defines the corresponding pin to be an address bit as defined in
the following register diagram. Bits set in this register override the configuration setting of
PPARA2. The $FF reset value of PPARA1 configures it as an input port. This register can
be read or written at any time.
PPARA1
$015
7
6
5
4
3
2
1
0
PRTA7
(A31)
PRTA6
(A30)
PRTA5
(A29)
PRTA4
(A28)
PRTA3
(A27)
PRTA2
(A26)
PRTA1
(A25)
PRTA0
(A24)
RESET:
1
1
1
1
1
1
1
1
Supervisor Only
MOTOROLA
MC68340 USER’S MANUAL
4-33
4.3.5.2 PORT A PIN ASSIGNMENT REGISTER 2 (PPARA2). PPARA2 selects between
an address and IACK≈ function for the port A pins. Any set bit defines the corresponding
pin to be an IACK ≈ output pin. Any cleared bit defines the corresponding pin to be an
address bit as defined in the register diagram. Any set bits in PPARA1 override the
configuration set in PPARA2. Bit 0 has no function in this register because there is no
level 0 interrupt. This register can be read or written at any time.
PPARA2
$017
7
6
5
4
3
2
1
0
IACK7
(A31)
IACK6
(A30)
IACK5
(A29)
IACK4
(A28)
IACK3
(A27)
IACK2
(A26)
IACK1
(A25)
0
RESET:
0
0
0
0
0
0
0
0
Supervisor Only
The IACK ≈ signals are asserted if a bit in PPARA2 is set and the CPU32 services an
external interrupt at the corresponding level. IACK ≈ signals have the same timing as
address strobes.
NOTE:
Upon reset, port A is configured as an input port.
4.3.5.3 PORT A DATA DIRECTION REGISTER (DDRA). DDRA controls the direction of
the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output. Any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.
DDRA
$013
7
6
5
4
3
2
1
0
DD7
DD6
DD5
DD4
DD3
DD2
DD1
DD0
RESET:
0
0
0
0
0
0
0
0
Supervisor/User
4.3.5.4 PORT A DATA REGISTER (PORTA). PORTA affects only pins configured as
discrete I/O. A write to PORTA is stored in the internal data latch, and if any port A pin is
configured as an output, the value stored for that bit is driven on the pin. A read of PORTA
returns the value at the pin only if the pin is configured as discrete input. Otherwise, the
value read is the value stored in the internal data latch. This register can be read or written
at any time.
PORTA
$011
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
RESET:
U
U
U
U
U
U
U
U
Supervisor/User
4-34
MC68340 USER’S MANUAL
MOTOROLA
4.3.5.5 PORT B PIN ASSIGNMENT REGISTER (PPARB). PPARB controls the function
of each port B pin. Any set bit defines the corresponding pin to be an IRQ≈ input or CS≈
as defined in Table 4-5. Any cleared bit defines the corresponding pin to be a discrete I/O
pin (or CS ≈ if the FIRQ bit of the MCR is zero) controlled by the port B data and data
direction registers. The MODCK signal has no function after reset. PPARB is configured to
all ones at reset to provide for MODCK, IRQ7, IRQ6, IRQ5, IRQ3, and CS3– CS0. This
register can be read or written at any time.
PPARB
$01F
7
6
5
4
3
2
1
0
PPARB7
(IRQ7)
PPARB6
(IRQ6)
PPARB5
(IRQ5)
PPARB4
(IRQ4)
PPARB3
(IRQ3)
PPARB2
(IRQ2)
PPARB1
(IRQ1)
PPARB0
(MODCK)
RESET:
1
1
1
1
1
1
1
1
Supervisor Only
4.3.5.6 PORT B DATA DIRECTION REGISTER (DDRB). DDRB controls the direction of
the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output; any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.
DDRB
$01D
7
6
5
4
3
2
1
0
DD7
DD6
DD5
DD4
DD3
DD2
DD1
DD0
RESET:
0
0
0
0
0
0
0
0
Supervisor/User
4.3.5.7 PORT B DATA REGISTER (PORTB, PORTB1). This is a single register that can
be accessed at two different addresses. This register affects only those pins configured as
discrete I/O. A write is stored in the internal data latch, and if any port B pin is configured
as an output, the value stored for that bit is driven on the pin. A read of this register
returns the value stored in the register only if the pin is configured as a discrete output.
Otherwise, the value read is the value of the pin. This register can be read or written at
any time.
PORTB, PORTB1
$019, 01B
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
RESET:
U
U
U
U
U
U
U
U
Supervisor/User
MOTOROLA
MC68340 USER’S MANUAL
4-35
4.4 MC68340 INITIALIZATION SEQUENCE
The following paragraphs discuss a suggested method for initializing the MC68340 after
power-up.
4.4.1 Startup
RESET is asserted by the MC68340 during the time in which V CC is ramping up, the VCO
is locking onto the frequency, and the MC68340 is going through the reset operation. After
RESET is negated, four bus cycles are run, with global CS0 being asserted to fetch the
32-bit supervisor stack pointer (SSP) and the 32-bit program counter (PC) from the boot
ROM. Until programmed differently, CS0 is a global, 16-bit-wide, three-wait-state chip
select. CS0 can be programmed to continue decode for a range of addresses after the
V-bit is set, provided the desired address range is first loaded into the CS0 base address
register. After the V-bit is set for CS0 , global chip select can only be restarted with a
system reset.
After the SSP and the PC are fetched, the module base address register (MBAR) should
be initialized, and the MBAR V-bit should be set (CPU space address $0003FF00) with
the desired base address for the internal modules.
4.4.2 SIM40 Module Configuration
The order of the following SIM40 register initializations is not important; however, time can
be saved by initializing the SYNCR first to quickly increase to the desired processor
operating frequency. The module base address register must be initialized prior to any of
following steps.
Clock Synthesizer Control Register (SYNCR):
• Set frequency control bits (W, X, Y) to specify frequency.
• Select action taken during loss of crystal (RSTEN bit): activate a system reset or
operate in limp mode.
• Select system clock and CLKOUT during LPSTOP (STSIM and STEXT bits).
Module Configuration Register (MCR)
• If using the software watchdog, periodic interrupt timer, and/or the bus monitor, select
action taken when FREEZE is asserted (FRZx bits).
• Select port B configuration (FIRQ bit). Note that this bit is used in combination with
the bits in the PPARB to program the function of the port B pins.
• Select the access privilege for the supervisor/user registers (SUPV bit).
• Select the interrupt arbitration level for the SIM40 (IARBx bits).
Autovector Register (AVR)
• Select the desired external interrupt levels for internal autovectoring.
4-36
MC68340 USER’S MANUAL
MOTOROLA
System Protection Control Register (SYPCR) (Note that this register can only be written
once after reset.)
• Enable the software watchdog, if desired (SWE bit).
• If the watchdog is enabled, select whether a system reset or a level 7 interrupt is
desired at timeout (SWRI bit).
• If the watchdog is enabled, select the timeout period (SWTx bits).
• Enable the double bus fault monitor, if desired (DBFE bit).
• Enable the external bus monitor, if desired (BME bit).
• Select timeout period for bus monitor (BMTx bits).
Software Watchdog Interrupt Vector Register (SWIV)
• If using the software watchdog, program the vector number for a software watchdog
interrupt.
Periodic Interrupt Timer Register (PITR)
• If using the software watchdog, select whether or not to prescale (SWP bit).
• If using the periodic interrupt timer, select whether or not to prescale (PTP bit).
• Program the count value for the periodic timer, or program a zero value to turn off the
periodic timer (PITRx bits).
Periodic Interrupt Control Register (PICR)
• If using the periodic timer, program the desired interrupt level for the periodic interrupt
timer (PIRQLx bits).
• If using the periodic timer, program the vector number for a periodic timer interrupt.
Chip Select Base Address and Address Mask Registers
• Initialize and set the V-bits in the necessary chip select base address and address
mask registers. Following this step, other system resources requiring the CS≈ signals
can be accessed. Care must be exercised when changing the address for CS0. The
address of the instruction following the MOVE instruction to the CS0 base address
register must match the value of the PC at that time. CS0 must be taken out of global
chip select mode by setting the V-bit in the base address register before CS3–CS1
can be used.
Port A and B Registers
• Program the desired function of the port A signals (PPARA1 and PPARA2 registers).
• Program the desired function of the port B signals (PPARB register).
MOTOROLA
MC68340 USER’S MANUAL
4-37
4.4.3 SIM40 Example Configuration Code
The following code is an example configuration sequence for the SIM40 module.
***************************************************************************
* MC68340 basic SIM40 register initialization example code:
* This code is used to initialize the MC68340's internal SIM40 registers,
* providing basic functions for operation.
* It includes chip select programming for external devices.
* This code would be programmed beginning at offset $0 into ROM which is
* relocated to address $60000 by the initialization code.
* The SSP_VEC and RST_VEC vectors used to initialize the system stack
* pointer and initial PC, respectively, are located at offset $0 after
* reset.
***************************************************************************
* equates
***************************************************************************
SSP_INIT
EQU $10000
Stack pointer initial value - top of RAM
MBAR
EQU $0003FF00 Address of Module Base Address Reg.
MODBASE EQU $FFFFF000 Default Module Base address value
****************************************
* SIM40 register offsets from MBAR base address
MCR
EQU $00
SYNCR
EQU $04
SYPCR
EQU $21
CSAM0
EQU $40
CSBAR0
EQU $44
CSAM1
EQU $48
CSBAR1
EQU $4c
CSAM2
EQU $50
CSBAR2
EQU $54
CSAM3
EQU $58
CSBAR3
EQU $5c
***************************************************************************
* Reset vectors
* These two vectors should be located at addresses $0 and $4 after a processor
* hardware reset.
***************************************************************************
ORG $60000
SSP_VEC DC.L SSP_INIT
Supervisor stack pointer - initial value
RST_VEC DC.L INIT340
Reset vector pointing to initialization code
4-38
MC68340 USER’S MANUAL
MOTOROLA
***************************************************************************
* Initialization code
***************************************************************************
* Start Chip Select Initialization:
INIT340
MOVE.W
#$2700,SR
Init SR - interrupts masked
***************************************************************************
* Set up default module base address value
MOVEQ.L #7,D0
MBAR is in CPU space
MOVEC.L D0,DFC
load DFC to indicate CPU space
MOVE.L
#MODBASE+1,D0
Set address/valid bit
MOVES.L
D0,MBAR
write to MBAR
***************************************************************************
* Set up system protection register:
* Software watchdog disabled, double bus fault monitor disabled, bus
* monitor BERR after 16 clocks.
MOVE.B
#6,SYPCR+MODBASE
***************************************************************************
* Clock synthesizer control register:
* Switch from 8.3 to 16.7 MHZ
MOVE.W
#$7F00,SYNCR+MODBASE
X-bit doubles the default speed
***************************************************************************
* Module configuration register:
* When FREEZE is asserted, software watchdog and periodic interrupt timer
* are disabled, bus monitor is enabled. Port B = 4 IRQs, 4 chip selects.
* Show Cycles enabled, external arbitration enabled. Supervisor/user
* SIM registers unrestricted, Interrupt Arbitration at priority $F
MOVE.W
#$420F,MCR+MODBASE
***************************************************************************
* Now, set up Address masks and base addresses for the chip selects:
LEA
CSAM0+MODBASE,A0 Point to CS0 addr. mask location.
MOVEQ
#7,D
Set up a loop counter.
LEA
CSAM0$,A1
Point to addr mask memory location.
LOOP MOVE.L
(A1)+,(A0)+
Init. addr mask and base addr reg
DBRA
D0,LOOP
MOTOROLA
MC68340 USER’S MANUAL
4-39
***************************************************************************
* Data table for chip select initialization
***************************************************************************
* CS0 - EPROM - 00060000-0007ffff, 3-wait states, 16-bit term., write protect
CSAM0$
DC.L $0001FFFD
CSBAR0$
DC.L $00060009
* CS1 - RAM - 00000000-0000ffff, fast termination
CSAM1$
DC.L $0000FFF0
CSBAR1$
DC.L $00000005
* CS2 - external device - 00FFE8xx, external termination
CSAM2$
DC.L $000000F3
CSBAR2$
DC.L $00FFE801
* CS3 - secondary memory - 00000000-0003ffff, 3-wait states, 16-bit term.
CSAM3$
DC.L $0003FFFD
CSBAR3$
DC.L $00000001
***************************************************************************
END
4-40
MC68340 USER’S MANUAL
MOTOROLA
SECTION 5
CPU32
The CPU32, the first-generation instruction processing module of the M68300 family, is
based on the industry-standard MC68000 core processor. It has many features of the
MC68010 and MC68020 as well as unique features suited for high-performance processor
applications. The CPU32 provides a significant performance increase over the MC68000
CPU, yet maintains source-code and binary-code compatibility with the M68000 family.
5.1 OVERVIEW
The CPU32 is designed to interface to the intermodule bus (IMB), allowing interaction with
other IMB submodules. In this manner, integrated processors can be developed that
contain useful peripherals on chip. This integration provides high-speed accesses among
the IMB submodules, increasing system performance.
Another advantage of the CPU32 is low power consumption. The CPU32 is implemented
in high-speed complementary metal-oxide semiconductor (HCMOS) technology, providing
low power use during normal operation. During periods of inactivity, the LPSTOP
instruction can be executed, shutting down the CPU32 and other IMB modules, greatly
reducing power consumption.
Ease of programming is an important consideration when using an integrated processor.
The CPU32 instruction format reflects a predominate register-memory interaction
philosophy. All data resources are available to all operations that require them. The
programming model includes eight multifunction data registers and seven general-purpose
addressing registers. The data registers readily support 8-bit (byte), 16-bit (word), and 32bit (long-word) operand lengths for all operations. Address manipulation is supported by
word and long-word operations. Although the program counter (PC) and stack pointers
(SP) are special-purpose registers, they are also available for most data addressing
activities. Ease of program checking and diagnosis is enhanced by trace and trap
capabilities at the instruction level.
As processor applications become more complex and programs become larger, high-level
language (HLL) will become the system designer's choice in programming languages.
HLL aids in the rapid development of complex algorithms with less error and is readily
portable. The CPU32 instruction set will efficiently support HLL.
MOTOROLA
MC68340 USER’S MANUAL
5-1
5.1.1 Features
Features of the CPU32 are as follows:
• Fully Upward Object-Code Compatible with M68000 Family
• Virtual Memory Implementation
• Loop Mode of Instruction Execution
• Fast Multiply, Divide, and Shift Instructions
• Fast Bus Interface with Dynamic Bus Port Sizing
• Improved Exception Handling for Embedded Control Applications
• Additional Addressing Modes
— Scaled Index
— Address Register Indirect with Base Displacement and Index
— Expanded PC Relative Modes
— 32-Bit Branch Displacements
• Instruction Set Additions
— High-Precision Multiply and Divide
— Trap On Condition Codes
— Upper and Lower Bounds Checking
• Enhanced Breakpoint Instruction
• Trace on Change of Flow
• Table Lookup and Interpolate Instruction
• LPSTOP Instruction
• Hardware BKPT Signal, Background Mode
• Fully Static Implementation
A block diagram of the CPU32 is shown in Figure 5-1. The major blocks depicted operate
in a highly independent fashion that maximizes concurrences of operation while managing
the essential synchronization of instruction execution and bus operation. The bus
controller loads instructions from the data bus into the decode unit. The sequencer and
control unit provide overall chip control, managing the internal buses, registers, and
functions of the execution unit.
5.1.2 Virtual Memory
A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger virtual memory on a secondary storage device. When the processor attempts
to access a location in the virtual memory map that is not resident in physical memory, a
page fault occurs. The access to that location is temporarily suspended while the
necessary data is fetched from secondary storage and placed in physical memory. The
5-2
MC68340 USER’S MANUAL
MOTOROLA
CPU32 uses instruction restart, which requires that only a small portion of the internal
machine state be saved. After correcting the page fault, the machine state is restored, and
the instruction is refetched and restarted. This process is completely transparent to the
application program.
SEQUENCER
CONTROL
UNIT
DATA BUS
ADDRESS
BUS
INSTRUCTION
PREFETCH
AND
DECODE
16
BUS
CONTROL
EXECUTION
UNIT
BUS CONTROL
32
Figure 5-1. CPU32 Block Diagram
5.1.3 Loop Mode Instruction Execution
The CPU32 has several features that provide efficient execution of program loops. One of
these features is the DBcc looping primitive instruction. To increase the performance of
the CPU32, a loop mode has been added to the processor. The loop mode is used by any
single-word instruction that does not change the program flow. Loop mode is implemented
in conjunction with the DBcc instruction. Figure 5-2 shows the required form of an
instruction loop for the processor to enter loop mode.
ONE-WORD INSTRUCTION
DBcc
DBcc DISPLACEMENT
$FFFC = 4
Figure 5-2. Loop Mode Instruction Sequence
The loop mode is entered when the DBcc instruction is executed and the loop
displacement is –4. Once in loop mode, the processor performs only the data cycles
associated with the instruction and suppresses all instruction fetches. The termination
MOTOROLA
MC68340 USER’S MANUAL
5-3
condition and count are checked after each execution of the data operations of the looped
instruction. The CPU32 automatically exits the loop mode on interrupts or other
exceptions.
5.1.4 Vector Base Register
The vector base register (VBR) contains the base address of the 1024-byte exception
vector table, which consists of 256 exception vectors. Exception vectors contain the
memory addresses of routines that begin execution at the completion of exception
processing. These routines perform a series of operations appropriate for the
corresponding exceptions. Because the exception vectors contain memory addresses,
each consists of one long word, except for the reset vector. The reset vector consists of
two long words: the address used to initialize the supervisor stack pointer (SSP) and the
address used to initialize the PC.
The address of an interrupt exception vector is derived from an 8-bit vector number and
the VBR. The vector numbers for some exceptions are obtained from an external device;
other numbers are supplied automatically by the processor. The processor multiplies the
vector number by 4 to calculate the vector offset, which is added to the VBR. The sum is
the memory address of the vector. All exception vectors are located in supervisor data
space, except the reset vector, which is located in supervisor program space. Only the
initial reset vector is fixed in the processor's memory map; once initialization is complete,
there are no fixed assignments. Since the VBR provides the base address of the vector
table, the vector table can be located anywhere in memory; it can even be dynamically
relocated for each task that is executed by an operating system. Refer to 5.5 Exception
Processing for additional details.
31
0
VECTOR BASE REGISTER (VBR)
5.1.5 Exception Handling
The processing of an exception occurs in four steps, with variations for different exception
causes. During the first step, a temporary internal copy of the status register (SR) is made,
and the SR is set for exception processing. During the second step, the exception vector
is determined. During the third step, the current processor context is saved. During the
fourth step, a new context is obtained, and the processor then proceeds with instruction
processing.
Exception processing saves the most volatile portion of the current context by pushing it
on the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes the SR and PC context of the processor when the
exception occurred. To support generic handlers, the processor places the vector offset in
the exception stack frame. The processor also marks the frame with a frame format. The
format field allows the return-from-exception (RTE) instruction to identify what information
is on the stack so that it may be properly restored.
5-4
MC68340 USER’S MANUAL
MOTOROLA
5.1.6 Addressing Modes
Addressing in the CPU32 is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory; this flexibility
eliminates the need for extra instructions to store register contents in memory.
The seven basic addressing modes are as follows:
• Register Direct
• Register Indirect
• Register Indirect with Index
• Program Counter Indirect with Displacement
• Program Counter Indirect with Index
• Absolute
• Immediate
Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, and offset. The PC relative mode also has index and offset capabilities. In
addition to these addressing modes, many instructions implicitly specify the use of the SR,
SP and/or PC. Addressing is explained fully in the M68000PM/AD, M68000 Family
Programmer’s Reference Manual .
5.1.7 Instruction Set
The instruction set of the CPU32 is very similar to that of the MC68020 (see Table 5-1).
Two new instructions have been added to facilitate embedded control applications:
LPSTOP and table lookup and interpolate (TBL). The following M68020 instructions are
not implemented on the CPU32:
BFxxx
— Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)
CALLM, RTM — Call Module, Return Module
CAS, CAS2
— Compare and Set (Read-Modify-Write Instructions)
cpxxx
— Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cpRESTORE,
cpSAVE, cpScc, cpTRAPcc)
PACK, UNPK — Pack, Unpack BCD Instructions
The CPU32 traps on unimplemented instructions or illegal effective addressing modes,
allowing user-supplied code to emulate unimplemented capabilities or to define specialpurpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 core enhancements.
MOTOROLA
MC68340 USER’S MANUAL
5-5
Table 5-1. Instruction Set
Mnemonic
ABCD
ADD
ADDA
ADDI
ADDQ
AND
ANDI
ASL
ASR
Bcc
BCHG
BCLR
BGND
BKPT
BRA
BSET
BSR
BTST
CHK
CHK2
CLR
CMP
CMPA
CMPI
CMPM
CMP2
DBcc
DIVS, DIVSL
DIVU, DIVUL
EOR
EORI
EXG
EXT, EXTB
ILLEGAL
JMP
JSR
LEA
LINK
LPSTOP
LSL, LSR
MOVE
5-6
Description
Mnemonic
Add Decimal with Extend
Add
Add Address
Add Immediate
Add Quick
Logical AND
Logical AND Immediate
Arithmetic Shift Left
Arithmetic Shift Right
Branch Conditionally (16 Tests)
Bit Test and Change
Bit Test and Clear
Enter Background Mode
Breakpoint
Branch Always
Bit Test and Set
Branch to Subroutine
Bit Test
Check Register against Bounds
Check Register against Upper and
Lower Bounds
Clear Operand
Compare
Compare Address
Compare Immediate
Compare Memory
Compare Register against Upper
and Lower Bounds
Test Condition, Decrement and
Branch (16 Tests)
Signed Divide
Unsigned Divide
Logical Exclusive OR
Logical Exclusive OR Immediate
Exchange Registers
Sign Extend
Take Illegal Instruction Trap
Jump
Jump to Subroutine
Load Effective Address
Link and Allocate
Low-Power Stop
Logical Shift Left and Right
Move
MOVEA
MOVE CCR
MOVE SR
MOVE USP
MOVEC
MOVEM
MOVEP
MOVEQ
MOVES
MULS
MULU
NBCD
NEG
NEGX
NOP
NOT
OR
ORI
PEA
RESET
ROL, ROR
ROXL, ROXR
RTD
RTE
RTR
RTS
SBCD
Scc
STOP
SUB
SUBA
SUBI
SUBQ
SUBX
SWAP
TAS
TBLS, TBLSN
Description
Move Address
Move Condition Code Register
Move to/from Status Register
Move User Stack Pointer
Move Control Register
Move Multiple Registers
Move Peripheral Data
Move Quick
Move Alternate Address Space
Signed Multiply
Unsigned Multiply
Negate Decimal with Extend
Negate
Negate with Extend
No Operation
Ones Complement
Logical Inclusive OR
Logical Inclusive OR Immediate
Push Effective Address
Reset External Devices
Rotate Left and Right
Rotate with Extend Left and Right
Return and Deallocate
Return from Exception
Return and Restore
Return from Subroutine
Subtract Decimal with Extend
Set Conditionally
Stop
Subtract
Subtract Address
Subtract Immediate
Subtract Quick
Subtract with Extend
Swap Data Register Halves
Test and Set Operand
Table Lookup and Interpolate,
Signed
TBLU, TBLUN Table Lookup and Interpolate,
Unsigned
TRAPcc
Trap Conditionally (16 Tests)
TRAPV
Trap on Overflow
TST
Test
UNLK
Unlink
MC68340 USER’S MANUAL
MOTOROLA
5.1.7.1 TABLE LOOKUP AND INTERPOLATE INSTRUCTIONS. To maximize
throughput for real-time applications, reference data is often “particulated” and stored in
memory for quick access. The storage of each data point would require an inordinate
amount of memory. The table instruction requires only a sample of data points stored in
the array, thus reducing memory requirements. Intermediate values are recovered with
this instruction via linear interpolation. The results may be rounded by a round-to-nearest
algorithm.
5.1.7.2 LOW-POWER STOP INSTRUCTION. In applications where power consumption is
a consideration, the CPU32 forces the device into a low-power standby mode when
immediate processing is not required. The low-power stop mode is entered by executing
the LPSTOP instruction. The processor will remain in this mode until a user-specified (or
higher) interrupt level or reset occurs.
5.1.8 Processing States
The processor is always in one of four processing states: normal, exception, halted, or
background. The normal processing state is that associated with instruction execution; the
bus is used to fetch instructions and operands and to store results. The exception
processing state is associated with interrupts, trap instructions, tracing, and other
exception conditions. The exception may be internally generated explicitly by an
instruction or by an unusual condition arising during the execution of an instruction.
Externally, exception processing can be forced by an interrupt, a bus error, or a reset. The
halted processing state is an indication of catastrophic hardware failure. For example, if
during the exception processing of a bus error another bus error occurs, the processor
assumes that the system is unusable and halts. The background processing state is
initiated by breakpoints, execution of special instructions, or a double bus fault.
Background processing allows interactive debugging of the system via a simple serial
interface. Refer to 5.4 Processing States for details.
5.1.9 Privilege States
The processor operates at one of two levels of privilege—supervisor or user. The
supervisor level has higher privileges than the user level. Not all instructions are permitted
to execute in the lower privileged user level, but all instructions are available at the
supervisor level. This scheme allows the supervisor to protect system resources from
uncontrolled access. The processor uses the privilege level indicated by the S-bit in the
SR to select either the user or supervisor privilege level and either the user stack pointer
(USP) or SSP for stack operations.
MOTOROLA
MC68340 USER’S MANUAL
5-7
5.2 ARCHITECTURE SUMMARY
The CPU32 is upward source- and object-code compatible with the MC68000 and
MC68010. It is downward source- and object-code compatible with the MC68020. Within
the M68000 family, architectural differences are limited to the supervisory operating state.
User state programs can be executed unchanged on upward-compatible devices.
The major CPU32 features are as follows:
• 32-Bit Internal Data Path and Arithmetic Hardware
• 32-Bit Address Bus Supported by 32-Bit Calculations
• Rich Instruction Set
• Eight 32-Bit General-Purpose Data Registers
• Seven 32-Bit General-Purpose Address Registers
• Separate User and Supervisor Stack Pointers
• Separate User and Supervisor State Address Spaces
• Separate Program and Data Address Spaces
• Many Data Types
• Flexible Addressing Modes
• Full Interrupt Processing
• Expansion Capability
5.2.1 Programming Model
The CPU32 programming model consists of two groups of registers that correspond to the
user and supervisor privilege levels. User programs can only use the registers of the user
model. The supervisor programming model, which supplements the user programming
model, is used by CPU32 system programmers who wish to protect sensitive operating
system functions. The supervisor model is identical to that of MC68010 and later
processors.
The CPU32 has eight 32-bit data registers, seven 32-bit address registers, a 32-bit PC,
separate 32-bit SSP and USP, a 16-bit SR, two alternate function code registers, and a
32-bit VBR (see Figures 5-3 and 5-4).
5-8
MC68340 USER’S MANUAL
MOTOROLA
31
16
15
8
7
0
D0
D1
D2
D3
DATA REGISTERS
D4
D5
D6
D7
31
16
15
A0
A1
A2
A3
ADDRESS REGISTERS
A4
A5
A6
31
16
15
0
A7
(USP)
31
USER STACK POINTER
0
15
8
7
PC
PROGRAM COUNTER
CCR
CONDITION CODE
REGISTER
0
0
Figure 5-3. User Programming Model
31
16
15
15
0
8
7
SUPERVISOR STACK
POINTER
SR
STATUS REGISTER
PC
PROGRAM COUNTER
SFC
ALTERNATE FUNCTION
CODE REGISTERS
0
(CCR)
31
31
A7' (SSP)
0
3
2
0
DFC
Figure 5-4. Supervisor Programming Model Supplement
MOTOROLA
MC68340 USER’S MANUAL
5-9
5.2.2 Registers
Registers D7–D0 are used as data registers for bit, byte (8-bit), word (16-bit), long-word
(32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the USP and SSP are
address registers that may be used as software SPs or base address registers. Register
A7 (shown as A7 and A7' in Figures 5-3 and 5-4) is a register designation that applies to
the USP in the user privilege level and to the SSP in the supervisor privilege level. In
addition, address registers may be used for word and long-word operations. All of the 16
general-purpose registers (D7–D0, A7–A0) may be used as index registers.
The PC contains the address of the next instruction to be executed by the CPU32. During
instruction execution and exception processing, the processor automatically increments
the contents of the PC or places a new value in the PC, as appropriate.
The SR (see Figure 5-5) contains condition codes, an interrupt priority mask (three bits),
and three control bits. Condition codes reflect the results of a previous operation. The
codes are contained in the low byte (CCR) of the SR. The interrupt priority mask
determines the level of priority an interrupt must have to be acknowledged. The control
bits determine trace mode and privilege level. At user privilege level, only the CCR is
available. At supervisor privilege level, software can access the full SR.
The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.
Alternate source and destination function code registers (SFC and DFC) contain 3-bit
function codes. The CPU32 generates a function code each time it accesses an address.
Specific codes are assigned to each type of access. The codes can be used to select
eight dedicated 4-Gbyte address spaces. The MOVEC instruction can use registers SFC
and DFC to specify the function code of a memory address.
USER BYTE
(CONDITION CODE REGISTER)
SYSTEM BYTE
15
T1
14
T0
13
S
12
0
TRACE
ENABLE
11
0
10
I2
9
I1
8
I0
7
0
6
0
5
0
INTERRUPT
PRIORITY MASK
4
X
3
N
2
Z
1
V
0
C
EXTEND
NEGATIVE
ZERO
SUPERVISOR/USER
STATE
OVERFLOW
CARRY
Figure 5-5. Status Register
5-10
MC68340 USER’S MANUAL
MOTOROLA
5.3 INSTRUCTION SET
The following paragaphs describe the set of instructions provided in the CPU32 and
demonstrate their use. Descriptions of the instruction format and the operands used by
instructions are included. After a summary of the instructions by category, a detailed
description of each instruction is listed in alphabetical order. Complete programming
information is provided, as well as a description of condition code computation and an
instruction format summary.
The CPU32 instructions include machine functions for all the following operations:
• Data Movement
• Arithmetic Operations
• Logical Operations
• Shifts and Rotates
• Bit Manipulation
• Conditionals and Branches
• System Control
The large instruction set encompasses a complete range of capabilities and, combined
with the enhanced addressing modes, provides a flexible base for program development.
5.3.1 M68000 Family Compatibility
It is the philosophy of the M68000 Family that all user-mode programs can execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.
The CPU32 can be thought of as an intermediate member of the M68000 family. Object
code from an MC68000 or MC68010 may be executed on the CPU32, and many of the
instruction and addressing mode extensions of the MC68020 are also supported.
5.3.1.1 NEW INSTRUCTIONS. Two instructions have been added to the M68000
instruction set for use in embedded control applications: LPSTOP and table lookup and
interpolation (TBL).
5.3.1.1.1 Low-Power Stop (LPSTOP). In applications where power consumption is a
consideration, the CPU32 can force the device into a low-power standby mode when
immediate processing is not required. The low-power mode is entered by executing the
LPSTOP instruction. The processor remains in this mode until a user-specified or higher
level interrupt or a reset occurs.
MOTOROLA
MC68340 USER’S MANUAL
5-11
5.3.1.1.2 Table Lookup and Interpolation (TBL). To maximize throughput for real-time
applications, reference data is often precalculated and stored in memory for quick access.
The storage of sufficient data points can require an inordinate amount of memory. The
TBL instruction uses linear interpolation to recover intermediate values from a sample of
data points, and thus conserves memory.
When the TBL instruction is executed, the CPU32 looks up two table entries bounding the
desired result and performs a linear interpolation between them. Byte, word, and longword operand sizes are supported. The result can be rounded according to a round-tonearest algorithm or returned unrounded along with the fractional portion of the calculated
result (byte and word results only). This extra precision can be used to reduce cumulative
error in complex calculations. See 5.3.4 Using the TBL Instructions for examples.
5.3.1.2 UNIMPLEMENTED INSTRUCTIONS. The ability to trap on unimplemented
instructions allows user-supplied code to emulate unimplemented capabilities or to define
special-purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 enhancements. See 5.5.2.8
Illegal or Unimplemented Instructions for more details.
5.3.2 Instruction Format and Notation
All instructions consist of at least one word. Some instructions can have as many as
seven words, as shown in Figure 5-6. The first word of the instruction, called the operation
word, specifies instruction length and the operation to be performed. The remaining
words, called extension words, further specify the instruction and operands. These words
may be immediate operands, extensions to the effective address mode specified in the
operation word, branch displacements, bit number, special register specifications, trap
operands, or argument counts.
15
0
OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)
IMMEDIATE OPERAND OR SOURCE ADDRESS
EXTENSION
(IF ANY, ONE TO THREE WORDS)
DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)
Figure 5-6. Instruction Word General Format
5-12
MC68340 USER’S MANUAL
MOTOROLA
Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:
• Register Specification
A register field of the instruction contains the number of
the register.
• Effective Address
An effective address field of the instruction contains
address mode information.
• Implicit Reference
The definition of an instruction implies the use of
specific registers.
The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register is an address or data register and how it is to
be used. The M68000PM/AD, M68000 Family Programmer’s Reference Manual , contains
detailed register information.
Except where noted, the following notation is used in this section:
Data
Immediate data from an instruction
Destination Destination contents
Source
Source contents
Vector
Location of exception vector
An
Any address register (A7–A0)
Ax, Ay
Address registers used in computation
Dn
Any data register (D7–D0)
Rc
Control register (VBR, SFC, DFC)
Rn
Any address or data register
Dh, Dl
Data registers, high- and low-order 32 bits of product
Dr, Dq
Data registers, division remainder, division quotient
Dx, Dy
Data registers, used in computation
Dym, Dyn
Data registers, table interpolation values
Xn
Index register
[An]
Address extension
cc
Condition code
d#
Displacement
Example: d16 is a 16-bit displacement
〈ea〉
Effective address
#〈data〉
Immediate data; a literal integer
label
Assembly program label
list
List of registers
Example: D3–D0
[...]
Bits of an operand
Examples: [7] is bit 7; [31:24] are bits 31–24
MOTOROLA
MC68340 USER’S MANUAL
5-13
(...)
CCR
PC
SP
SR
SSP
USP
FC
DFC
SFC
+
–
/
×
=
≠
>
≥
<
≤
Λ
V
⊕
~
BCD
LSW
MSW
{R/W}
Contents of a referenced location
Example: (Rn) refers to the contents of Rn
Condition code register (lower byte of SR)
X—extend bit
N—negative bit
Z—zero bit
V—overflow bit
C—carry bit
Program counter
Active stack pointer
Status register
Supervisor stack pointer
User stack pointer
Function code
Destination function code register
Source function code register
Arithmetic addition or postincrement
Arithmetic subtraction or predecrement
Arithmetic division or conjunction symbol
Arithmetic multiplication
Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to
Logical AND
Logical OR
Logical exclusive OR
Invert; operand is logically complemented
Binary-coded decimal, indicated by subscript
Example: Source10 is a BCD source operand.
Least significant word
Most significant word
Read/write indicator
In a description of an operation, a destination operand is placed to the right of source
operands and is indicated by an arrow (⇒).
5-14
MC68340 USER’S MANUAL
MOTOROLA
5.3.3 Instruction Summary
The instructions form a set of tools to perform the following operations:
Data movement
Bit manipulation
Integer arithmetic
Binary-coded decimal arithmetic
Logic
Program control
Shift and rotate
System control
The complete range of instruction capabilities combined with the addressing modes
described previously provide flexibility for program development. All CPU32 instructions
are summarized in Table 5-2.
MOTOROLA
MC68340 USER’S MANUAL
5-15
Table 5-2. Instruction Set Summary
Opcode
Syntax
Source 10 + Destination10 + X ⇒ Destination
ABCD Dy,Dx
ABCD –(Ay),–(Ax)
ADD
Source + Destination ⇒ Destination
ADD 〈ea〉,Dn
ADD Dn,〈ea〉
ADDA
Source + Destination ⇒ Destination
ADDA 〈ea〉,An
ADDI
Immediate Data + Destination ⇒ Destination
ADDI #〈 data〉,〈 ea〉
ADDQ
Immediate Data + Destination ⇒ Destination
ADDQ # 〈data 〉,〈ea〉
ADDX
Source + Destination + X ⇒ Destination
ADDX Dy,Dx
ADDX –(Ay),–(Ax)
AND
Source Λ Destination ⇒ Destination
AND 〈ea〉, Dn
AND Dn,〈ea〉
ANDI
Immediate Data Λ Destination ⇒ Destination
ANDI #〈data〉,〈 ea〉
Source Λ CCR ⇒ CCR
ANDI #〈data〉,CCR
If supervisor state
the Source Λ SR ⇒ SR
else TRAP
ANDI #〈data〉,SR
Destination Shifted by 〈 count〉 ⇒ Destination
ASd Dx,Dy
ASd # 〈data 〉,Dy
ASd 〈ea〉
If (condition true) then PC + d ⇒ PC
Bcc 〈label〉
BCHG
~(〈number 〉 of Destination) ⇒ Z;
~(〈number 〉 of Destination) ⇒ 〈bit number〉 of
Destination
BCHG Dn,〈ea〉
BCHG # 〈data 〉,〈ea〉
BCLR
~(〈number 〉 of Destination) ⇒ Z;
0 ⇒ 〈bit number〉 of Destination
BCLR Dn, 〈ea〉
BCLR # 〈data 〉,〈ea〉
BGND
If (background mode enabled) then
enter background mode
else Format/Vector offset ⇒ –(SSP)
PC ⇒ –(SSP)
SR ⇒ –(SSP)
(Vector) ⇒ PC
BGND
BKPT
Run breakpoint acknowledge cycle;
TRAP as illegal instruction
BKPT #〈 data〉
BRA
PC + d ⇒ PC
BRA 〈label〉
BSET
~(〈number 〉 of Destination) ⇒ Z;
1 ⇒ 〈bit number〉 of Destination
BSET Dn,〈 ea〉
BSET #〈 data〉,〈 ea〉
BSR
SP – 4 ⇒ SP; PC ⇒ (SP); PC + d ⇒ PC
BSR 〈label〉
BTST
– (〈number 〉 of Destination) ⇒ Z;
BTST Dn, 〈ea〉
BTST # 〈data 〉,〈ea〉
CHK
If Dn < 0 or Dn > Source then TRAP
CHK 〈ea〉,Dn
CHK2
If Rn < lower bound or
If Rn > upper bound
then TRAP
CHK2 〈ea〉,Rn
0 ⇒ Destination
CLR 〈ea〉
ABCD
ANDI to CCR
ANDI to SR
ASL,ASR
Bcc
CLR
Destination — Source ⇒ cc
CMP 〈ea〉,Dn
CMPA
Destination — Source
CMPA 〈ea〉,An
CMPI
Destination — Immediate Data
CMPI # 〈data〉,〈 ea〉
Destination — Source ⇒ cc
CMPM (Ay)+,(Ax)+
CMP
CMPM
5-16
Operation
MC68340 USER’S MANUAL
MOTOROLA
Table 5-2. Instruction Set Summary (Continued)
Opcode
Operation
Syntax
CMP2
Compare Rn < lower-bound or
Rn > upper-bound
and Set Condition Codes
CMP2 〈ea〉,Rn
DBcc
If condition false then (Dn – 1 ⇒ Dn;
If Dn ≠ –1 then PC + d ⇒ PC)
DBcc Dn,〈 label〉
DIVS
DIVSL
Destination/Source ⇒ Destination
DIVS.W 〈ea〉,Dn
DIVS.L 〈 ea〉,Dq
DIVS.L 〈 ea〉,Dr:Dq
DIVSL.L 〈 ea〉,Dr:Dq
32/16 ⇒ 16r:16q
32/32 ⇒ 32q
64/32 ⇒ 32r:32q
32/32 ⇒ 32r:32q
DIVU
DIVUL
Destination/Source ⇒ Destination
DIVU.W 〈ea〉,Dn
DIVU.L 〈ea〉,Dq
DIVU.L 〈ea〉,Dr:Dq
DIVUL.L 〈ea〉,Dr:Dq
32/16 ⇒ 16r:16q
32/32 ⇒ 32q
64/32 ⇒ 32r:32q
32/32 ⇒ 32r:32q
EOR
Source ⊕ Destination ⇒ Destination
EOR Dn,〈 ea〉
EORI
Immediate Data ⊕ Destination ⇒ Destination
EORI # 〈data 〉,〈ea〉
Source ⊕ CCR ⇒ CCR
EORI # 〈data 〉,CCR
EORI
to SR
If supervisor state
the Source ⊕ SR ⇒ SR
else TRAP
EORI # 〈data 〉,SR
EXG
Rx ⇔ Ry
EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT
EXTB
Destination Sign-Extended ⇒ Destination
EXT.W Dn
EXT.L Dn
EXTB.L Dn
LLEGAL
SSP – 2 ⇒ SSP; Vector Offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP);
SSp – 2 ⇒ SSP; SR ⇒ (SSP);
Illegal Instruction Vector Address ⇒ PC
ILLEGAL
EORI
to CCR
JMP
Destination Address ⇒ PC
JMP 〈ea〉
JSR
SP–4 ⇒ SP; PC ⇒ (SP)
Destination Address ⇒ PC
JSR 〈ea〉
extend byte to word
extend word to long word
extend byte to long word
LEA
〈ea〉 ⇒ An
LEA 〈ea〉,An
LINK
SP – 4 ⇒ SP; An ⇒ (SP)
SP ⇒ An, SP + d ⇒ SP
LINK An,#〈 displacement〉
LPSTOP
If supervisor state
Immediate Data ⇒ SR
Interrupt Mask ⇒ External Bus Interface (EBI)
STOP
else TRAP
LPSTOP #〈 data〉
LSL,LSR
Destination Shifted by 〈 count〉 ⇒ Destination
LSd1 Dx,Dy
LSd1 # 〈data 〉,Dy
LSd1 〈ea〉
MOVE
Source ⇒ Destination
MOVE 〈ea〉,〈ea〉
MOVEA
Source ⇒ Destination
MOVEA 〈 ea〉,An
CCR ⇒ Destination
MOVE CCR, 〈ea〉
MOVE from
CCR
MOTOROLA
MC68340 USER’S MANUAL
5-17
Table 5-2. Instruction Set Summary (Continued)
Opcode
Operation
Syntax
MOVE to CCR
Source ⇒ CCR
MOVE 〈 ea〉,CCR
MOVE from SR
If supervisor state
then SR ⇒ Destination
else TRAP
MOVE SR,〈 ea〉
MOVE to SR
If supervisor state
then Source ⇒ SR
else TRAP
MOVE 〈ea〉,SR
MOVE USP
If supervisor state
then USP ⇒ An or An ⇒ USP
else TRAP
MOVE USP,An
MOVE An,USP
MOVEC
If supervisor state
then Rc ⇒ Rn or Rn ⇒ Rc
else TRAP
MOVEC Rc,Rn
MOVEC Rn,Rc
MOVEM
Registers ⇒ Destination
Source ⇒ Registers
MOVEM register list,〈 ea〉
MOVEM 〈ea〉,register list
MOVEP
Source ⇒ Destination
MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx
MOVEQ
Immediate Data ⇒ Destination
MOVEQ #〈 data〉,Dn
MOVES
If supervisor state
then Rn ⇒ Destination [DFC] or Source
[SFC] ⇒Rn
else TRAP
MOVES Rn,〈 ea〉
MOVES 〈 ea〉,Rn
MULS
Source × Destination ⇒ Destination
MULS.W 〈ea〉,Dn
MULS.L 〈 ea〉,Dl
MULS.L 〈 ea〉,Dh:Dl
16 × 16 ⇒ 32
32 × 32 ⇒ 32
32 × 32 ⇒ 64
MULU
Source × Destination ⇒ Destination
MULU.W 〈ea〉,Dn
MULU.L 〈ea〉,Dl
MULU.L 〈ea〉,Dh:Dl
16 × 16 ⇒ 32
32 × 32 ⇒ 32
32 × 32 ⇒ 64
NBCD
0 – (Destination10) – X ⇒ Destination
NBCD 〈ea〉
0 – (Destination) ⇒ Destination
NEG 〈ea〉
NEG
0 – (Destination) – X ⇒ Destination
NEGX 〈ea〉
NOP
None
NOP
NOT
~Destination ⇒ Destination
NOT 〈ea〉
OR
Source V Destination ⇒ Destination
OR 〈ea〉,Dn
OR Dn, 〈ea〉
ORI
Immediate Data V Destination ⇒ Destination
ORI # 〈data 〉,〈ea〉
Source V CCR ⇒ CCR
ORI # 〈data 〉,CCR
ORI to SR
If supervisor state
then Source V SR ⇒ SR
else TRAP
ORI # 〈data 〉,SR
PEA
Sp – 4 ⇒ SP; 〈ea〉 ⇒ (SP)
PEA 〈ea〉
If supervisor state
then Assert RESET
else TRAP
RESET
Destination Rotated by 〈count 〉⇒ Destination
ROd 1 Rx,Dy
ROd 1 # 〈data 〉,Dy
ROd 1 〈ea〉
NEGX
ORI to CCR
RESET
ROL,ROR
5-18
MC68340 USER’S MANUAL
MOTOROLA
Table 5-2. Instruction Set Summary (Concluded)
Opcode
ROXL,ROXR
Operation
Syntax
Destination Rotated with X by 〈count〉 ⇒ Destination ROXd 1 Rx,Dy
ROXd 1 # 〈data 〉,Dy
ROXd 1 〈ea〉
RTD
(SP) ⇒ PC; SP + 4 + d ⇒ SP
RTE
If supervisor state
RTE
the (SP) ⇒ SR; SP + 2 ⇒ SP; (SP) ⇒ PC;
SP + 4 ⇒ SP;
restore state and deallocate stack according to (SP)
else TRAP
RTR
(SP) ⇒ CCR; SP + 2 ⇒ SP;
(SP) ⇒ PC; SP + 4 ⇒ SP
RTR
RTS
(SP) ⇒ PC; SP + 4 ⇒ SP
RTS
Destination10 – Source 10 – X ⇒ Destination
SBCD Dx,Dy
SBCD –(Ax),–(Ay)
If Condition True
then 1s ⇒ Destination
else 0s ⇒ Destination
Scc 〈ea〉
STOP
If supervisor state
then Immediate Data ⇒ SR; STOP
else TRAP
STOP #〈 data〉
SUB
Destination – Source ⇒ Destination
SUB 〈ea〉,Dn
SUB Dn,〈 ea〉
SBCD
Scc
RTD # 〈displacement〉
SUBA
Destination – Source ⇒ Destination
SUBA 〈 ea〉,An
SUBI
Destination – Immediate Data ⇒ Destination
SUBI # 〈data 〉,〈ea〉
SUBQ
Destination – Immediate Data ⇒ Destination
SUBQ #〈 data〉,〈ea〉
SUBX
Destination – Source – X ⇒ Destination
SUBX Dx,Dy
SUBX –(Ax),–(Ay)
SWAP
Register [31:16] ⇔ Register [15:0]
SWAP Dn
Destination Tested ⇒ Condition Codes;
1 ⇒ bit 7 of Destination
TAS 〈ea〉
ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) *
Dx[7:0]} / 256 ⇒ Dx
TBLS.〈size〉 〈ea〉, Dx
TBLS.〈size〉 Dym:Dyn, Dx
ENTRY(n) × 256 + {(ENTRY(n + 1) – ENTRY(n)) *
Dx [7:0]} ⇒ Dx
TBLSN. 〈size〉 〈ea〉,Dx
TBLSN. 〈size〉 Dym:Dyn, Dx
ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) *
Dx[7:0]} / 256 ⇒ Dx
TBLU. 〈size〉 〈ea〉,Dx
TBLU. 〈size〉 Dym:Dyn, Dx
TBLUN
ENTRY(n) • 256 + {(ENTRY(n + 1) – ENTRY(n)) •
Dx[7:0]} ⇒ Dx
TBLUN. 〈size〉 〈ea〉,Dx
TBLUN. 〈size〉 Dym:Dyn,Dx
TRAP
SSP – 2 ⇒ SSP; Format/Offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP); SSP – 2 ⇒ SSP;
SR ⇒ (SSP); Vector Address ⇒ PC
TRAP # 〈vector 〉
TRAPcc
If cc then TRAP
TRAPcc
TRAPcc.W #〈 data 〉
TRAPcc.L #〈 data〉
TRAPV
If V then TRAP
TRAPV
Destination Tested ⇒ Condition Codes
TST 〈ea〉
TAS
TBLS
TBLSN
TBLU
TST
UNLK
An ⇒ SP; (SP) ⇒ An; SP + 4 ⇒ SP
NOTE 1: d is direction, L or R.
MOTOROLA
UNLK An
MC68340 USER’S MANUAL
5-19
5.3.3.1 CONDITION CODE REGISTER. The CCR portion of the SR contains five bits that
indicate the result of a processor operation. Table 5-3 lists the effect of each instruction on
these bits. The carry bit and the multiprecision extend bit are separate in the M68000
Family to simplify programming techniques that use them. Refer to Table 5-7 as an
example.
Table 5-3. Condition Code Computations
Operations
5-20
X
N
Z
V
C
ABCD
*
U
?
U
?
C = Decimal Carry
Z = Z Λ R∂Λ ... Λ R0
ADD, ADDI, ADDQ
*
*
*
?
?
V = Sm Λ Dm Λ R∂ V S∂ Λ D∂ Λ Rm
C = Sm Λ Dm V R∂ Λ Dm V Sm Λ R∂
ADDX
*
*
?
?
?
V = Sm Λ Dm Λ R∂ V S∂ Λ D∂ Λ Rm
C = Sm Λ Dm V R∂ Λ Dm V Sm Λ R∂
Z = Z Λ R∂ Λ ... Λ R0
AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR,
ORI, CLR, EXT, NOT,
TAS, TST
—
*
*
0
0
CHK
—
*
U
U
U
CHK2, CMP2
—
U
?
U
?
Z = (R = LB) V (R = UB)
C = (LB < UB) Λ (IR < LB) V (R > UB) V
(UB < LB) Λ (R > UB) Λ (R < LB)
SUB, SUBI, SUBQ
*
*
*
?
?
V = S∂ Λ Dm Λ R∂ V Sm Λ D∂ Λ Rm
C = Sm Λ D∂ V Rm Λ D∂ V Sm Λ Rm
SUBX
*
*
?
?
?
V = S∂ Λ Dm Λ R∂ V Sm Λ D∂ Λ Rm
C = Sm Λ D∂ V Rm Λ D∂ V Sm Λ Rm
Z = Z Λ R∂ Λ ... Λ R0
CMP, CMPI, CMPM
—
*
*
?
?
V = S∂ Λ Dm Λ R∂ V Sm Λ D∂ Λ Rm
C = Sm Λ D∂ V Rm Λ D∂ V Sm Λ Rm
DIVS, DIVU
—
*
*
?
0
V = Division Overflow
MULS, MULU
—
*
*
?
0
V = Multiplication Overflow
SBCD, NBCD
*
U
?
U
?
C = Decimal Borrow
Z = Z Λ R∂ Λ ... Λ R0
NEG
*
*
*
?
?
V = Dm Λ Rm
C = Dm V Rm
NEGX
*
*
?
?
?
V = Dm Λ Rm
C = Dm V Rm
Z = Z Λ R∂ Λ ... Λ R0
ASL
*
*
*
?
?
V = Dm Λ (D∂ – 1 V ... V D∂ – r ) V D∂ Λ
(Dm–1 V ... + Dm – r)
C = D∂ – r + 1
ASL (r = 0)
—
*
*
0
0
LSL, ROXL
*
*
*
0
?
LSR (r = 0)
—
*
*
0
0
ROXL (r = 0)
—
*
*
0
?
C=X
C = Dm – r + 1
ROL
—
*
*
0
?
ROL (r = 0)
—
*
*
0
0
ASR, LSR, ROXR
*
*
*
0
?
ASR, LSR (r = 0)
—
*
*
0
0
ROXR (r = 0)
—
*
*
0
?
Special Definition
C = Dm – r + 1
C = Dr – 1
C=X
MC68340 USER’S MANUAL
MOTOROLA
Table 5-3. Condition Code Computations (Continued)
X
N
Z
V
C
ROR
Operations
—
∗
∗
0
?
ROR (r = 0)
—
∗
∗
0
0
Special Definition
C = Dr – 1
NOTE : The following notations apply to this table only.
—
=
Not affected
Sm
=
Source operand MSB
U
=
Undefined
Dm
=
Destination operand MSB
?
=
See special definition
Rm
=
Result operand MSB
∗
=
General case
R
=
Register tested
X
=
C
n
=
Bit Number
N
=
Rm
r
=
Shift count
Z
=
LB
=
Lower bound
Λ
=
Upper bound
=
UB
Rm
=
V
Rm Λ ... Λ R0
Boolean AND
Boolean OR
=
NOT Rm
5.3.3.2 DATA MOVEMENT INSTRUCTIONS. The MOVE instruction is the basic means of
transferring and storing address and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory,
and register to register. Address movement instructions (MOVE or MOVEA) transfer word
and long-word operands and ensure that only valid address manipulations are executed.
In addition to the general MOVE instructions, there are several special data movement
instructions—move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK). Table 5-4 is a summary of the
data movement operations.
Table 5-4. Data Movement Operations
Instruction
Operand
Syntax
Operand Size
EXG
Rn, Rn
32
Rn ⇒ Rn
LEA
〈ea〉, An
32
〈ea〉 ⇒ An
LINK
An, #〈d〉
16, 32
Operation
SP – 4 ⇒ SP, An ⇒ (SP); SP ⇒ An, SP + d ⇒ SP
MOVE
〈ea〉, 〈ea〉
8, 16, 32
Source ⇒ Destination
MOVEA
〈ea〉, An
16, 32 ⇒ 32
Source ⇒ Destination
MOVEM
list, 〈ea〉
〈ea〉, list
16, 32
16, 32 ⇒ 32
Listed registers ⇒ Destination
Source ⇒ Listed registers
MOVEP
Dn, (d16, An)
16, 32
Dn [31:24] ⇒ (An + d); Dn [23:16] ⇒ (An + d + 2);
Dn [15:8] ⇒ (An + d + 4); Dn [7:0] ⇒ (An + d + 6)
(An + d) ⇒ Dn [31:24]; (An + d + 2) ⇒ Dn [23:16];
(An + d + 4) ⇒ Dn [15:8]; (An + d + 6) ⇒ Dn [7:0]
Immediate Data ⇒ Destination
(d 16, An), Dn
MOVEQ
#〈data〉, Dn
8 ⇒ 32
PEA
〈ea〉
32
SP – 4 ⇒ SP; 〈ea〉 ⇒ SP
UNLK
An
32
An ⇒ SP; (SP) ⇒ An, SP + 4 ⇒ SP
MOTOROLA
MC68340 USER’S MANUAL
5-21
5.3.3.3 INTEGER ARITHMETIC OPERATIONS. The arithmetic operations include the
four basic operations of add (ADD), subtract (SUB), multiply (MUL), and divide (DIV) as
well as arithmetic compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The
instruction set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands consist of
16 or 32 bits. The clear and negate instructions apply to all sizes of data operands.
Signed and unsigned MUL and DIV instructions include:
• Word multiply to produce a long-word product
• Long-word multiply to produce a long-word or quad-word product
• Division of a long-word dividend by a word divisor (word quotient and word
remainder)
• Division of a long-word or quad-word dividend by a long-word divisor (long-word
quotient and long-word remainder)
A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX). Refer to Table 5-5 for a summary of the integer
arithmetic operations.
5-22
MC68340 USER’S MANUAL
MOTOROLA
Table 5-5. Integer Arithmetic Operations
Operand
Syntax
Operand Size
ADD
Dn, 〈ea〉
〈ea〉, Dn
8, 16, 32
8, 16, 32
Source + Destination ⇒ Destination
ADDA
〈ea〉, An
16, 32
Source + Destination ⇒ Destination
ADDI
#〈data〉, 〈 ea〉
8, 16, 32
Immediate Data + Destination ⇒ Destination
ADDQ
#〈data〉, 〈 ea〉
8, 16, 32
Immediate Data + Destination ⇒ Destination
ADDX
Dn, Dn
– (An), – (An)
8, 16, 32
8, 16, 32
Source + Destination + X ⇒ Destination
Instruction
Operation
CLR
〈ea〉
8, 16, 32
0 ⇒ Destination
CMP
〈ea〉, Dn
8, 16, 32
(Destination – Source), CCR shows results
CMPA
〈ea〉, An
16, 32
(Destination – Source), CCR shows results
CMPI
#〈data〉, 〈 ea〉
8, 16, 32
CMPM
(An) +, (An) +
8, 16, 32
(Destination – Source), CCR shows results
CMP2
〈ea〉, Rn
8, 16, 32
Lower bound ≤ Rn ≤ Upper Bound, CCR shows
results
DIVS/DIVU
〈ea〉, Dn
〈ea〉, Dr:Dq
〈ea〉, Dq
〈ea〉, Dr:Dq
32/16 ⇒ 16:16
64/32 ⇒ 32:32
32/32 ⇒ 32
32/32 ⇒ 32:32
EXT
Dn
Dn
8 ⇒ 16
16 ⇒ 32
Sign Extended Destination ⇒ Destination
EXTB
Dn
8 ⇒ 32
Sign Extended Destination ⇒ Destination
MULS/MULU
〈ea〉, Dn
〈ea〉, Dl
〈ea〉, Dh:Dl
16 × 16 ⇒ 32
32 × 32 ⇒ 32
32 × 32 ⇒ 64
DIVSL/DIVUL
(Destination – Immediate Data), CCR shows results
Destination/Source ⇒ Destination (signed or
unsigned)
Source × Destination ⇒ Destination (signed or
unsigned)
NEG
〈ea〉
8, 16, 32
0 – Destination ⇒ Destination
NEGX
〈ea〉
8, 16, 32
0 – Destination – X ⇒ Destination
SUB
〈ea〉, Dn
Dn, 〈ea〉
8, 16, 32
Destination – Source ⇒ Destination
SUBA
〈ea〉, An
16, 32
Destination – Source ⇒ Destination
SUBI
#〈data〉, 〈 ea〉
8, 16, 32
Destination – Immediate Data ⇒ Destination
SUBQ
#〈data〉, 〈 ea〉
8, 16, 32
Destination – Immediate Data ⇒ Destination
SUBX
Dn, Dn
– (An), – (An)
8, 16, 32
8, 16, 32
Destination – Source – X ⇒ Destination
TBLS/TBLU
〈ea〉, Dn
Dym:Dyn, Dn
8, 16, 32
Dyn – Dym ⇒ Temp
(Temp × Dn [7:0]) ⇒ Temp
(Dym × 256) + Temp ⇒ Dn
TBLSN/TBLUN
〈ea〉, Dn
Dym:Dyn, Dn
8, 16, 32
Dyn – Dym ⇒ Temp
(Temp × Dn [7:0]) / 256 ⇒ Temp
Dym + Temp ⇒ Dn
MOTOROLA
MC68340 USER’S MANUAL
5-23
5.3.3.4 LOGIC INSTRUCTIONS. The logical operation instructions (AND, OR, EOR, and
NOT) perform logical operations with all sizes of integer data operands. A similar set of
immediate instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The test (TST) instruction arithmetically compares the operand
with zero, placing the result in the CCR. Table 5-6 summarizes the logical operations.
Table 5-6. Logic Operations
Operand
Syntax
Operand Size
AND
〈ea〉, Dn
Dn, 〈ea〉
8, 16, 32
8, 16, 32
Source Λ Destination ⇒ Destination
ANDI
#〈data〉, 〈 ea〉
8, 16, 32
Immediate Data Λ Destination ⇒ Destination
EOR
Dn, 〈ea〉
8, 16, 32
Source ⊕ Destination ⇒ Destination
EORI
#〈data〉, 〈 ea〉
8, 16, 32
Immediate Data ⊕ Destination ⇒ Destination
NOT
〈ea〉
8, 16, 32
Destination ⇒ Destination
OR
〈ea〉, Dn
Dn, 〈ea〉
8, 16, 32
8, 16, 32
Source V Destination ⇒ Destination
ORI
#〈data〉, 〈 ea〉
8, 16, 32
Immediate Data V Destination ⇒ Destination
TST
〈ea〉
8, 16, 32
Source – 0, to set condition codes
Instruction
Operation
5.3.3.5 SHIFT AND ROTATE INSTRUCTIONS. The arithmetic shift instructions, ASR and
ASL, and logical shift instructions, LSR and LSL, provide shift operations in both
directions. The ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift)
operations, with and without the extend bit. All shift and rotate operations can be
performed on either registers or memory.
Register shift and rotate operations shift all operand sizes. The shift count may be
specified in the instruction operation word (to shift from 1 to 8 places) or in a register
(modulo 64 shift count).
Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 5-7 is a summary of the shift and rotate operations.
5-24
MC68340 USER’S MANUAL
MOTOROLA
Table 5-7. Shift and Rotate Operations
Instruction
ASL
ASR
LSL
LSR
ROL
ROR
ROXL
ROXR
SWAP
Operand
Syntax
Operand Size
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn, Dn
#〈data〉, Dn
〈ea〉
8, 16, 32
8, 16, 32
16
Dn
16
Operation
X/C
0
X/C
0
X/C
0
X/C
C
C
C
X
X
C
MSW
LSW
5.3.3.6 BIT MANIPULATION INSTRUCTIONS. Bit manipulation operations are
accomplished using the following instructions: bit test (BTST), bit test and set (BSET), bit
test and clear (BCLR), and bit test and change (BCHG). All bit manipulation operations
can be performed on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory operands are 8
bits long. Table 5-8 is a summary of bit manipulation instructions.
Table 5-8. Bit Manipulation Operations
Operand
Syntax
Operand Size
BCHG
Dn, 〈ea〉
#〈data〉, 〈 ea〉
8, 32
8, 32
~(〈bit number 〉 of destination) ⇒ Z ⇒ bit of
destination
BCLR
Dn, 〈ea〉
#〈data〉, 〈 ea〉
8, 32
8, 32
~(〈bit number 〉 of destination) ⇒ Z; 0 ⇒ bit of
destination
BSET
Dn, 〈ea〉
#〈data〉, 〈 ea〉
8, 32
8, 32
~(〈bit number 〉 of destination) ⇒ Z; 1 ⇒ bit of
destination
BTST
Dn, 〈ea〉
#〈data〉, 〈 ea〉
8, 32
8, 32
~(〈 bit number 〉 of destination) ⇒ Z
Instruction
MOTOROLA
Operation
MC68340 USER’S MANUAL
5-25
5.3.3.7 BINARY-CODED DECIMAL (BCD) INSTRUCTIONS. Five instructions support
operations on BCD numbers. The arithmetic operations on packed BCD numbers are add
decimal with extend (ABCD), subtract decimal with extend (SBCD), and negate decimal
with extend (NBCD). Table 5-9 is a summary of the BCD operations.
Table 5-9. Binary-Coded Decimal Operations
Operand
Syntax
Operand Size
ABCD
Dn, Dn
– (An), – (An)
8
8
Source 10 + Destination10 + X ⇒ Destination
NBCD
〈ea〉
8
8
0 – Destination10 – X ⇒ Destination
SBCD
Dn, Dn
– (An), – (An)
8
8
Destination10 – Source10 – X ⇒ Destination
Instruction
Operation
5.3.3.8 PROGRAM CONTROL INSTRUCTIONS. A set of subroutine call and return
instructions and conditional and unconditional branch instructions perform program control
operations. Table 5-10 summarizes these instructions.
Table 5-10. Program Control Operations
Instruction
Operand
Syntax
Operand Size
Bcc
〈label〉
8, 16, 32
If condition true, then PC + d ⇒ PC
DBcc
Dn , 〈label〉
16
If condition false, then Dn – 1 ⇒ PC;
if Dn ≠ (– 1), then PC + d ⇒ PC
Scc
〈ea〉
8
If condition true, then destination bits are set to 1;
else destination bits are cleared to 0
BRA
〈label〉
8, 16, 32
PC + d ⇒ PC
BSR
〈label〉
8, 16, 32
SP – 4 ⇒ SP; PC ⇒ (SP); PC + d ⇒ PC
JMP
〈ea〉
none
Destination ⇒ PC
JSR
〈ea〉
none
SP – 4 ⇒ SP; PC ⇒ (SP); destination ⇒ PC
NOP
none
none
PC + 2 ⇒ PC
Operation
Conditional
Unconditional
Returns
5-26
(SP) ⇒ PC; SP + 4 + d ⇒ SP
RTD
#〈d〉
16
RTR
none
none
(SP) ⇒ CCR; SP + 2 ⇒ SP; (SP) ⇒ PC; SP + 4 ⇒
SP
RTS
none
none
(SP) ⇒ PC; SP + 4 ⇒ SP
MC68340 USER’S MANUAL
MOTOROLA
To specify conditions for change in program control, condition codes must be substituted
for the letters "cc" in conditional program control opcodes. Condition test mnemonics are
given below. Refer to 5.3.3.10 Condition Tests for detailed information on condition
codes.
CC —
Carry clear
LS —
Low or same
CS —
Carry set
LT —
Less than
EQ —
Equal
MI —
Minus
F
False*
NE —
Not equal
GE —
Greater or equal
PL —
Plus
GT —
Greater than
T
True
HI
High
VC —
Overflow clear
Less or equal
VS —
Overflow set
—
—
LE —
—
*Not applicable to the Bcc instruction
5.3.3.9 SYSTEM CONTROL INSTRUCTIONS. Privileged instructions, trapping
instructions, and instructions that use or modify the CCR provide system control
operations. All of these instructions cause the processor to flush the instruction pipeline.
Table 5-11 summarizes the instructions. The preceding list of condition tests also applies
to the TRAPcc instruction. Refer to 5.3.3.10 Condition Tests for detailed information on
condition codes.
MOTOROLA
MC68340 USER’S MANUAL
5-27
Table 5-11. System Control Operations
Instruction
Operand
Syntax
Operand Size
Operation
Privileged
ANDI
#〈data〉, SR
16
Immediate Data Λ SR ⇒ SR
EORI
#〈data〉, SR
16
Immediate Data ⊕ SR ⇒ SR
MOVE
〈ea〉, SR
SR, 〈ea〉
16
16
Source ⇒ SR
SR ⇒ Destination
MOVEA
USP, An
An, USP
32
32
USP ⇒ An
An ⇒ USP
MOVEC
Rc, Rn
Rn, Rc
32
32
Rc ⇒ Rn
Rn ⇒ Rc
MOVES
Rn, 〈ea〉
〈ea〉, Rn
8, 16, 32
Rn ⇒ Destination using DFC
Source using SFC ⇒ Rn
ORI
#〈data〉, SR
16
Immediate Data V SR ⇒ SR
RESET
none
none
Assert RESET line
RTE
none
none
(SP) ⇒ SR; SP + 2 ⇒ SP; (SP) ⇒ PC; SP + 4 ⇒
SP; restore stack according to format
STOP
#〈data〉
16
LPSTOP
#〈data〉
none
Immediate Data ⇒ SR; STOP
Immediate Data ⇒ SR; interrupt mask ⇒ EBI;
STOP
Trap Generating
BKPT
#〈data〉
none
If breakpoint cycle acknowledged, then execute
returned operation word, else trap as illegal
instruction.
BGND
none
none
If background mode enabled, then enter background
mode, else format/vector offset ⇒ – (SSP);
PC ⇒ – (SSP); SR ⇒ – (SSP); (vector) ⇒ PC
CHK
〈ea〉, Dn
16, 32
CHK2
〈ea〉, Rn
8, 16, 32
ILLEGAL
none
none
SSP – 2 ⇒ SSP; vector offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP);
SSP – 2 ⇒ SSP; SR ⇒ (SSP);
llegal instruction vector address ⇒ PC
TRAP
#〈data〉
none
SSP – 2 ⇒ SSP; format/vector offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP); SR ⇒ (SSP);
vector address ⇒ PC
TRAPcc
none
#〈data〉
none
16, 32
TRAPV
none
none
If Dn < 0 or Dn < (ea), then CHK exception
If Rn < lower bound or Rn > upper bound, then
CHK exception
If cc true, then TRAP exception
If V set, then overflow TRAP exception
Condition Code Register
5-28
ANDI
#〈data〉, CCR
8
Immediate Data Λ CCR ⇒ CCR
EORI
#〈data〉, CCR
8
Immediate Data ⊕ CCR ⇒ CCR
MOVE
〈ea〉, CCR
CCR, 〈ea〉
16
16
Source ⇒ CCR
CCR ⇒ Destination
ORI
#〈data〉, CCR
8
Immediate Data V CCR ⇒ CCR
MC68340 USER’S MANUAL
MOTOROLA
5.3.3.10 CONDITION TESTS. Conditional program control instructions and the TRAPcc
instruction execute on the basis of condition tests. A condition test is the evaluation of a
logical expression related to the state of the CCR bits. If the result is 1, the condition is
true. If the result is 0, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z-bit condition code is true. Table 5-12 lists each
condition test.
Table 5-12. Condition Tests
Mnemonic
Condition
Encoding
Test
T
True
0000
1
F*
False
0001
0
HI
High
0010
C•Z
LS
Low or Same
0011
C+Z
CC
Carry Clear
0100
C
CS
Carry Set
0101
C
NE
Not Equal
0110
Z
EQ
Equal
0111
Z
VC
Overflow Clear
1000
V
VS
Overflow Set
1001
V
PL
Plus
1010
N
MI
Minus
1011
N
GE
Greater or Equal
1100
N • V + N• V
LT
Less Than
1101
N • V+ N•V
GT
Greater Than
1110
N • V • Z+ N • V • Z
LE
Less or Equal
* Not available for the Bcc instruction.
• = Boolean AND
+ = Boolean OR
N = Boolean NOT
1111
Z + N • V+ N • V
5.3.4 Using the TBL Instructions
There are four TBL instructions. TBLS returns a signed, rounded byte, word, or long-word
result. TBLSN returns a signed, unrounded byte, word, or long-word result. TBLU returns
an unsigned, rounded byte, word, or long-word result. TBLUN returns an unsigned,
unrounded byte, word, or long-word result. All four instructions support two types of
interpolation data: an n-element table stored in memory and a two-element range stored in
a pair of data registers. The latter form provides a means of performing surface (3D)
interpolation between two previously calculated linear interpolations.
The following examples show how to compress tables and use fewer interpolation levels
between table entries. Example 1 (see Figure 5-7) demonstrates TBL for a 257-entry
table, allowing up to 256 interpolation levels between entries. Example 2 (see Figure 5-8)
reduces table length for the same data to four entries. Example 3 (see Figure 5-9)
demonstrates use of an 8-bit independent variable with an instruction.
MOTOROLA
MC68340 USER’S MANUAL
5-29
Two additional examples show how TBLSN can reduce cumulative error when multiple
table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates use
of TBLSN in surface interpolation.
5.3.4.1 TABLE EXAMPLE 1: STANDARD USAGE. The table consists of 257 word
entries. As shown in Figure 5-7, the function is linear within the range 32768 ≤ X ≤ 49152.
Table entries within this range are as given in Table 5-13 .
Table 5-13. Standard Usage Entries
Entry Number
X Value
Y Value
128*
32768
1311
162
41472
1659
163
41728
1669
164
41984
1679
165
42240
1690
192*
49152
1966
*These values are the end points of the range.
All entries between these points fall on the line.
DEPENDENT VARIABLE
Y
16384
32768
49152
65536
X
INDEPENDENT VARIABLE
Figure 5-7. Table Example 1
5-30
MC68340 USER’S MANUAL
MOTOROLA
The table instruction is executed with the following bit pattern in Dx:
31
16
NOT USED
15
1
0
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
Table Entry Offset ⇒ Dx [8:15] = $A3 = 163
Interpolation Fraction ⇒ Dx [0:7] = $80 = 128
Using this information, the table instruction calculates dependent variable Y:
Y = 1669 + (128 (1679 – 1669)) / 256 = 1674
5.3.4.2 TABLE EXAMPLE 2: COMPRESSED TABLE. In Example 2 (see Figure 5-8), the
data from Example 1 has been compressed by limiting the maximum value of the
independent variable. Instead of the range 0 ≤ X = 65535, X is limited to 0 ≤ X ≤ 1023.
The table has been compressed to only five entries, but up to 256 levels of interpolation
are allowed between entries.
DEPENDENT VARIABLE
Y
256
512
786
1024
X
INDEPENDENT VARIABLE
Figure 5-8. Table Example 2
NOTE
Extreme table compression with many levels of interpolation is
possible only with highly linear functions. The table entries
within the range of interest are listed in Table 5-14.
MOTOROLA
MC68340 USER’S MANUAL
5-31
Table 5-14. Compressed Table Entries
Entry Number
X Value
Y Value
2
512
1311
3
786
1966
Since the table is reduced from 257 to 5 entries, independent variable X must be scaled
appropriately. In this case the scaling factor is 64, and the scaling is done by a single
instruction:
LSR.W #6,Dx
Thus, Dx now contains the following bit pattern:
31
16
NOT USED
15
0
0
0
0
0
0
0
1
0
1
0
0
0
1
1
1
0
Table Entry Offset ⇒ Dx [8:15] = $02 = 2
Interpolation Fraction ⇒ Dx [0:7] = $8E = 142
Using this information, the table instruction calculates dependent variable Y:
Y = 1331 + (142 (1966 – 1311)) / 256 = 1674
The function chosen for Examples 1 and 2 is linear between data points. If another
function had been been used, interpolated values might not have been identical.
5.3.4.3 TABLE EXAMPLE 3: 8-BIT INDEPENDENT VARIABLE. This example shows
how to use a table instruction within an interpolation subroutine. Independent variable X is
calculated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry table. X is
passed to the subroutine, which returns an 8-bit result. The subroutine uses the data listed
in Table 5-15, based on the function shown in Figure 5-9.
5-32
MC68340 USER’S MANUAL
MOTOROLA
INDEPENDENT VARIABLE
Y
2048
1024
4096
3072
X
INDEPENDENT VARIABLE
Figure 5-9. Table Example 3
Table 5-15. 8-Bit Independent
Variable Entries
X
(Subroutine)
X
(Instruction)
Y
0
0
0
1
256
16
2
512
32
3
768
48
4
1024
64
5
1280
80
6
1536
96
7
1792
112
8
2048
128
9
2304
112
10
2560
96
11
2816
80
12
3072
64
13
3328
48
14
3584
32
15
3840
16
16
4096
0
The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the
subroutine.
MOTOROLA
MC68340 USER’S MANUAL
5-33
The following value has been calculated for independent variable X:
31
16
NOT USED
15
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
0
1
Since X is an 8-bit value, the upper four bits are used as a table offset and the lower four
bits are used as an interpolation fraction. The following results are obtained from the
subroutine:
Table Entry Offset ⇒ Dx [4:7] = $B = 11
Interpolation Fraction ⇒ Dx [0:3] = $D = 13
Thus, Y is calculated as follows:
Y = 80 + (13 (64 – 80)) / 16 = 67
If the 8-bit value for X were used directly by the table instruction, interpolation would be
incorrectly performed between entries 0 and 1. Data must be shifted to the left four places
before use:
LSL.W #4, Dx
The new range for X is 0 ≤ X ≤ 4096; however, since a left shift fills the least significant
digits of the word with zeros, the interpolation fraction can only have one of 16 values.
After the shift operation, Dx contains the following value:
31
16
NOT USED
15
0
0
0
0
0
1
0
1
1
1
1
0
1
0
0
0
0
Execution of the table instruction using the new value in Dx yields:
Table Entry Offset ⇒ Dx [8:15] = $0B = 11
Interpolation Fraction ⇒ Dx [0:7] = $D0 = 208
Thus, Y is calculated as follows:
Y = 80 + (208 (64 – 80)) / 256 = 67
5.3.4.4 TABLE EXAMPLE 4: MAINTAINING PRECISION. In this example, three TBL
operations are performed and the results are summed. The calculation is done once with
the result of each TBL rounded before addition and once with only the final result rounded.
Assume that the result of the three interpolations are as follows (a ".'' indicates the binary
radix point).
5-34
TBL # 1
0010 0000 . 0111 0000
TBL# 2
0011 1111 . 0111 0000
TBL # 3
0000 0001 . 0111 0000
MC68340 USER’S MANUAL
MOTOROLA
First, the results of each TBL are rounded with the TBLS round-to-nearest-even algorithm.
The following values would be returned by TBLS:
TBL # 1
TBL # 2
TBL # 3
0010 0000 .
0011 1111 .
0000 0001 .
Summing, the following result is obtained:
0010
0011
0000
0110
0000 .
1111 .
0001 .
0000 .
Now, using the same TBL results, the sum is first calculated and then rounded according
to the same algorithm:
0010
0011
0000
0110
0000 . 0111
1111 . 0111
0001 . 0111
0001 . 0101
0000
0000
0000
0000
Rounding yields:
0110 0001 .
The second result is preferred. The following code sequence illustrates how addition of a
series of table interpolations can be performed without loss of precision in the intermediate
results:
L0:
TBLSN.B
TBLSN.B
TBLSN.B
ADD.L
ADD.L
ASR.L
BCC.B
ADDQ.B
L1: . . .
MOTOROLA
〈ea〉, Dx
〈ea〉, Dx
〈ea〉, Dl
Dx, Dm
Dm, Dl
#8, Dl
L1
#1, Dl
Long addition avoids problems with carry
Move radix point
Fraction MSB in carry
MC68340 USER’S MANUAL
5-35
5.3.4.5 Table Example 5: Surface Interpolations. The various forms of table can be
used to perform surface (3D) TBLs. However, since the calculation must be split into a
series of 2D TBLs, the possibility of losing precision in the intermediate results is possible.
The following code sequence, incorporating both TBLS and TBLSN, eliminates this
possibility.
L0:
MOVE.W
TBLSN.B
TBLSN.B
TBLS.W
ASR.L
BCC.B
ADDQ.B
L1: . . .
Dx, Dl
〈ea〉, Dx
〈ea〉, Dl
Dx:Dl, Dm
#8, Dm
L1
#1, Dl
Copy entry number and fraction number
Surface interpolation, with round
Read just the result
No round necessary
Half round up
Before execution of this code sequence, Dx must contain fraction and entry numbers for
the two TBL, and Dm must contain the fraction for surface interpolation. The 〈ea〉 fields in
the TBLSN instructions point to consecutive columns in a 3D table. The TBLS size
parameter must be word if the TBLSN size parameter is byte, and must be long word if
TBLSN is word. Increased size is necessary because a larger number of significant digits
is needed to accommodate the scaled fractional results of the 2D TBL.
5.3.5 Nested Subroutine Calls
The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack for use. Using this instruction in a
series of subroutine calls will generate a linked list of stack frames.
The UNLK instruction removes a stack frame from the end of the list by loading an
address into the SP and pulling the value at that address from the stack. When the
instruction operand is the address of the link address at the bottom of a stack frame, the
effect is to remove the stack frame from both the stack and the linked list.
5.3.6 Pipeline Synchronization with the NOP Instruction
Although the no operation (NOP) instruction performs no visible operation, it does force
synchronization of the instruction pipeline, since all previous instructions must complete
execution before the NOP begins.
5.4 PROCESSING STATES
This section describes the processing states of the CPU32. It includes a functional
description of the bits in the supervisor portion of the SR and an overview of actions taken
by the processor in response to exception conditions.
5-36
MC68340 USER’S MANUAL
MOTOROLA
5.4.1 State Transitions
The processor is in normal, background, or exception state unless halted.
When the processor fetches instructions and operands or executes instructions, it is in the
normal processing state. The stopped condition, which the processor enters when a
STOP or LPSTOP instruction is executed, is a variation of the normal state in which no
further bus cycles are generated.
Background state is an alternate operational mode used for system debugging. Refer to
5.6 Development Support for more information.
Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other exception
handlers. Exception processing includes the stack operations, the exception vector fetch,
and the filling of the instruction pipeline caused by an exception. Exception processing
ends when execution of an exception handler routine begins. Refer to 5.5 Exception
Processing for comprehensive information.
A catastrophic system failure occurs if the processor detects a bus error or generates an
address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by a
bus error, the CPU32 assumes that the system is not operational and halts.
The halted condition should not be confused with the stopped condition. After the
processor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.
5.4.2 Privilege Levels
To protect system resources, the processor can operate with either of two levels of
access—user or supervisor. Supervisor level is more privileged than user level. All
instructions are available at the supervisor level, but execution of some instructions is not
permitted at the user level. There are separate SPs for each level. The S-bit in the SR
indicates privilege level and determines which SP is used for stack operations. The
processor identifies each bus access (supervisor or user mode) via function codes to
enforce supervisor and user access levels.
In a typical system, most programs execute at the user level. User programs can access
only their own code and data areas and are restricted from accessing other information.
The operating system executes at the supervisor privilege level, has access to all
resources, performs the overhead tasks for the user level programs, and coordinates their
activities.
5.4.2.1 SUPERVISOR PRIVILEGE LEVEL. If the S-bit in the SR is set, supervisor
privilege level applies, and all instructions are executable. The bus cycles generated for
instructions executed in supervisor level are normally classified as supervisor references,
and the values of the function codes on FC2–FC0 refer to supervisor address spaces.
MOTOROLA
MC68340 USER’S MANUAL
5-37
All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references, and all stack accesses use the
SSP.
Instructions that have important system effects can only be executed at supervisor level.
For instance, user programs are not permitted to execute STOP, LPSTOP, or RESET
instructions. To prevent a user program from gaining privileged access, except in a
controlled manner, instructions that can alter the S-bit in the SR are privileged. The TRAP
#n instruction provides controlled user access to operating system services.
5.4.2.2 USER PRIVILEGE LEVEL. If the S-bit in the SR is cleared, the processor
executes instructions at the user privilege level. The bus cycles for an instruction executed
at the user privilege level are classified as user references, and the values of the function
codes on FC2–FC0 specify user address spaces. While the processor is at the user level,
implicit references to the system SP and explicit references to address register seven (A7)
refer to the USP.
5.4.2.3 CHANGING PRIVILEGE LEVEL. To change from user privilege level to
supervisor privilege level, a condition that causes exception processing must occur. When
exception processing begins, the current values in the SR, including the S-bit, are saved
on the supervisor stack, and then the S-bit is set to enable supervisory access. Execution
continues at supervisor privilege level until exception processing is complete.
To return to user access level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute only at supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed, then refilled from the
appropriate address space.
The RTE instruction causes a return to a program that was executing when an exception
occurred. When RTE is executed, the exception stack frame saved on the supervisor
stack can be restored in either of two ways.
If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the
SR and PC are restored to the values saved on the supervisor stack, and execution
resumes at the restored PC address, with access level determined by the S-bit of the
restored SR.
If the frame was generated by a bus error or an address error exception, the entire
processor state is restored from the stack.
5.5 EXCEPTION PROCESSING
An exception is a special condition that preempts normal processing. Exception
processing is the transition from normal mode program execution to execution of a routine
that deals with an exception. The following paragraphs discuss system resources related
to exception handling, exception processing sequence, and specific features of individual
exception processing routines.
5-38
MC68340 USER’S MANUAL
MOTOROLA
5.5.1 Exception Vectors
An exception vector is the address of a routine that handles an exception. The VBR
contains the base address of a 1024-byte exception vector table, which consists of 256
exception vectors. Sixty-four vectors are defined by the processor, and 192 vectors are
reserved for user definition as interrupt vectors. Except for the reset vector which is two
long words, each vector in the table is one long word. Refer to Table 5-16 for information
on vector assignment.
Table 5-16. Exception Vector Assignments
Vector Offset
Vector Number
Dec
Hex
Space
Assignment
0
0
000
SP
Reset: Initial Stack Pointer
1
4
004
SP
Reset: Initial Program Counter
2
8
008
SD
Bus Error
3
12
00C
SD
Address Error
4
16
010
SD
Illegal Instruction
5
20
014
SD
Zero Division
6
24
018
SD
CHK, CHK2 Instructions
7
28
01C
SD
TRAPcc, TRAPV Instructions
8
32
020
SD
Privilege Violation
9
36
024
SD
Trace
10
40
028
SD
Line 1010 Emulator
11
44
02C
SD
Line 1111 Emulator
12
48
030
SD
Hardware Breakpoint
13
52
034
SD
(Reserved for Coprocessor Protocol Violation)
14
56
038
SD
Format Error
15
60
03C
SD
Uninitialized Interrupt
16–23
64
92
040
05C
SD
(Unassigned, Reserved)
—
24
96
060
SD
Spurious Interrupt
25
100
064
SD
Level 1 Interrupt Autovector
26
104
068
SD
Level 2 Interrupt Autovector
27
108
06C
SD
Level 3 Interrupt Autovector
28
112
070
SD
Level 4 Interrupt Autovector
29
116
074
SD
Level 5 Interrupt Autovector
30
120
078
SD
Level 6 Interrupt Autovector
31
124
07C
SD
Level 7 Interrupt Autovector
32–47
128
188
080
0BC
SD
Trap Instruction Vectors (0–15)
—
48–58
192
232
0C0
0E8
SD
(Reserved for Coprocessor)
—
59–63
236
252
0EC
0FC
SD
(Unassigned, Reserved)
256
1020
100
3FC
SD
64–255
MOTOROLA
—
User-Defined Vectors (192)
MC68340 USER’S MANUAL
5-39
CAUTION
Because there is no protection on the 64 processor-defined
vectors, external devices can access vectors reserved for
internal purposes. This practice is strongly discouraged.
All exception vectors, except the reset vector, are located in supervisor data space. The
reset vector is located in supervisor program space. Only the initial reset vector is fixed in
the processor memory map. When initialization is complete, there are no fixed
assignments. Since the VBR stores the vector table base address, the table can be
located anywhere in memory. It can also be dynamically relocated for each task executed
by an operating system.
Each vector is assigned an 8-bit number. Vector numbers for some exceptions are
obtained from an external device; others are supplied by the processor. The processor
multiplies the vector number by 4 to calculate vector offset, then adds the offset to the
contents of the VBR. The sum is the memory address of the vector.
5.5.1.1 TYPES OF EXCEPTIONS. An exception can be caused by internal or external
events.
An internal exception can be generated by an instruction or by an error. The TRAP,
TRAPcc, TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause exceptions
during normal execution. Illegal instructions, instruction fetches from odd addresses, word
or long-word operand accesses from odd addresses, and privilege violations also cause
internal exceptions.
Sources of external exception include interrupts, breakpoints, bus errors, and reset
requests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access control
and processor restart.
5.5.1.2 EXCEPTION PROCESSING SEQUENCE. For all exceptions other than a reset
exception, exception processing occurs in the following sequence. Refer to 5.5.2.1 Reset
for details of reset processing.
As exception processing begins, the processor makes an internal copy of the SR. After
the copy is made, the processor state bits in the SR are changed—the S-bit is set,
establishing supervisor access level, and bits T1 and T0 are cleared, disabling tracing. For
reset and interrupt exceptions, the interrupt priority mask is also updated.
Next, the exception number is obtained. For interrupts, the number is fetched from CPU
space $F (the bus cycle is an interrupt acknowledge). For all other exceptions, internal
logic provides a vector number.
Next, current processor status is saved. An exception stack frame is created and placed
on the supervisor stack. All stack frames contain copies of the SR and the PC for use by
RTE. The type of exception and the context in which the exception occurs determine what
other information is stored in the stack frame.
5-40
MC68340 USER’S MANUAL
MOTOROLA
Finally, the processor prepares to resume normal execution of instructions. The exception
vector offset is determined by multiplying the vector number by 4, and the offset is added
to the contents of the VBR to determine displacement into the exception vector table. The
exception vector is loaded into the PC. If no other exception is pending, the processor will
resume normal execution at the new address in the PC.
5.5.1.3 EXCEPTION STACK FRAME. During exception processing, the most volatile
portion of the current context is saved on the top of the supervisor stack. This context is
organized in a format called the exception stack frame.
The exception stack frame always includes the contents of SR and PC at the time the
exception occurred. To support generic handlers, the processor also places the vector
offset in the exception stack frame and marks the frame with a format code. The format
field allows an RTE instruction to identify stack information so that it can be properly
restored.
The general form of the exception stack frame is illustrated in Figure 5-10. Although some
formats are peculiar to a particular M68000 Family processor, format 0000 is always legal
and always indicates that only the first four words of a frame are present. See 5.5.4
CPU32 Stack Frames for a complete discussion of exception stack frames.
15
0
STATUS REGISTER
PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW
FORMAT
VECTOR OFFSET
OTHER PROCESSOR STATE INFORMATION,
DEPENDING ON EXCEPTION
(0, 2, OR 8 WORDS)
STACKING ORDER
HIGHER ADDRESSES
SP
Figure 5-10. Exception Stack Frame
5.5.1.4 MULTIPLE EXCEPTIONS. Each exception has been assigned a priority based on
its relative importance to system operation. Priority assignments are shown in Table 5-17.
Group 0 exceptions have the highest priorities; group 4 exceptions have the lowest
priorities. Exception processing for exceptions that occur simultaneously is done by
priority, from highest to lowest.
It is important to be aware of the difference between exception processing mode and
execution of an exception handler. Each exception has an assigned vector that points to
an associated handler routine. Exception processing includes steps described in 5.5.1.2
Exception Processing Sequence, but does not include execution of handler routines,
which is done in normal mode.
MOTOROLA
MC68340 USER’S MANUAL
5-41
When the CPU32 completes exception processing, it is ready to begin either exception
processing for a pending exception or execution of a handler routine. Priority assignment
governs the order in which exception processing occurs, not the order in which exception
handlers are executed.
Table 5-17. Exception Priority Groups
Group/
Priority
0
Exception and
Relative Priority
Characteristics
Reset
Aborts all processing (instruction or
exception); does not save old context.
Address Error
Bus Error
Suspends processing (instruction or
exception); saves internal context.
2
BKPT#n, CHK, CHK2,
Division by Zero, RTE,
TRAP#n, TRAPcc, TRAPV
Exception processing is a part of
instruction execution.
3
Illegal Instruction, Line A,
Unimplemented Line F,
Privilege Violation
Exception processing begins before
instruction execution.
Trace
Hardware Breakpoint
Interrupt
Exception processing begins when current
instruction or previous exception
processing is complete.
1.1
1.2
4.1
4.2
4.3
As a general rule, when simultaneous exceptions occur, the handler routines for lower
priority exceptions are executed before the handler routines for higher priority exceptions.
For example, consider the arrival of an interrupt during execution of a TRAP instruction,
while tracing is enabled. Trap exception processing (2) is done first, followed immediately
by exception processing for the trace (4.1), and then by exception processing for the
interrupt (4.3). Each exception places a new context on the stack. When the processor
resumes normal instruction execution, it is vectored to the interrupt handler, which returns
to the trace handler that returns to the trap handler.
There are special cases to which the general rule does not apply. The reset exception will
always be the first exception handled since reset clears all other exceptions. It is also
possible for high-priority exception processing to begin before low-priority exception
processing is complete. For example, if a bus error occurs during trace exception
processing, the bus error will be processed and handled before trace exception
processing is completed.
5-42
MC68340 USER’S MANUAL
MOTOROLA
5.5.2 Processing of Specific Exceptions
The following paragraphs provide details concerning sources of specific exceptions, how
each arises, and how each is processed.
5.5.2.1 RESET. Assertion of RESET by external hardware or assertion of the internal
RESET signal by an internal module causes a reset exception. The reset exception has
the highest priority of any exception. Reset is used for system initialization and for
recovery from catastrophic failure. The reset exception aborts any processing in progress
when it is recognized, and that processing cannot be recovered. Reset performs the
following operations:
1. Clears T0 and T1 in the SR to disable tracing
2. Sets the S-bit in the SR to establish supervisor privilege
3. Sets the interrupt priority mask to the highest priority level (%111)
4. Initializes the VBR to zero ($00000000)
5. Generates a vector number to reference the reset exception vector
6. Loads the first long word of the vector into the interrupt SP
7. Loads the second long word of the vector into the PC
8. Fetches and initiates decode of the first instruction to be executed
Figure 5-11 is a flowchart of the reset exception
After initial instruction prefetches, normal program execution begins at the address in the
PC. The reset exception does not save the value of either the PC or the SR.
If a bus error or address error occurs during reset exception processing sequence, a
double bus fault occurs, the processor halts, and the HALT signal is asserted to indicate
the halted condition.
Execution of the RESET instruction does not cause a reset exception nor does it affect
any internal CPU register. The SIM40 registers and the MCR in each internal peripheral
module (DMA, timers, and serial modules) are not affected. All other internal peripheral
module registers are reset the same as for a hardware reset. The external devices
connected to the RESET signal are reset at the completion of the RESET instruction.
MOTOROLA
MC68340 USER’S MANUAL
5-43
ENTRY
1
0
$7
$0
➧S
➧ T0,T1
➧ I2:I0
➧ VBR
.✎
FETCH VECTOR # 0
OTHERWISE
SP ➧ (VECTOR # 0)
BUS ERROR
FETCH VECTOR # 1
OTHERWISE
PC
BUS ERROR
➧ (VECTOR # 1)
PREFETCH 3 WORDS
OTHERWISE BEGIN
INSTRUCTION
EXECUTION
BUS ERROR/
ADDRESS
ERROR
(DOUBLE BUS FAULT)
ASSERT HALT
EXIT
EXIT
Figure 5-11. Reset Operation Flowchart
5-44
MC68340 USER’S MANUAL
MOTOROLA
5.5.2.2 BUS ERROR. A bus error exception occurs when an assertion of the BERR signal
is acknowledged. The BERR signal can be asserted by one of three sources:
1. External logic by assertion of the BERR input pin
2. Direct assertion of the internal BERR signal by an internal module
3. Direct assertion of the internal BERR signal by the on-chip hardware watchdog
after detecting a no-response condition
Bus error exception processing begins when the processor attempts to use information
from an aborted bus cycle.
When the aborted bus cycle is an instruction prefetch, the processor will not initiate
exception processing unless the prefetched information is used. For example, if a branch
instruction flushes an aborted prefetch, that word is not accessed, and no exception
occurs.
When the aborted bus cycle is a data access, the processor initiates exception processing
immediately, except in the case of released operand writes. Released write bus errors are
delayed until the next instruction boundary or until another operand access is attempted.
Exception processing for bus error exceptions follows the regular sequence, but context
preservation is more involved than for other exceptions because a bus exception can be
initiated while an instruction is executing. Several bus error stack format organizations are
utilized to provide additional information regarding the nature of the fault.
First, any register altered by a faulted-instruction EA calculation is restored to its initial
value. Then a special status word (SSW) is placed on the stack. The SSW contains
specific information about the aborted access—size, type of access (read or write), bus
cycle type, and function code. Finally, fault address, bus error exception vector number,
PC value, and a copy of the SR are saved.
If a bus error occurs during exception processing for a bus error, an address error, a reset,
or while the processor is loading stack information during RTE execution, the processor
halts. This simplifies isolation of catastrophic system failure by preventing processor
interaction with stacks and memory. Only assertion of RESET can restart a halted
processor.
5.5.2.3 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access an instruction, word operand, or long-word operand at an odd address. The
effect is much the same as an internally generated bus error. The exception processing
sequence is the same as that for bus error, except that the vector number refers to the
address error exception vector.
Address error exception processing begins when the processor attempts to use
information from the aborted bus cycle. If the aborted cycle is a data space access,
exception processing begins when the processor attempts to use the data, except in the
MOTOROLA
MC68340 USER’S MANUAL
5-45
case of a released operand write. Released write exceptions are delayed until the next
instruction boundary or attempted operand access.
An address exception on a branch to an odd address is delayed until the PC is changed.
No exception occurs if the branch is not taken. In this case, the fault address and return
PC value placed in the exception stack frame are the odd address, and the current
instruction PC points to the instruction that caused the exception.
If an address error occurs during exception processing for a bus error, another address
error, or a reset, the processor halts.
5.5.2.4 INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
from either processor recognition of abnormal conditions during instruction execution or
from use of specific trapping instructions. Traps are generally used to handle abnormal
conditions that arise in control routines.
The TRAP instruction, which always forces an exception, is useful for implementing
system calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions force
exceptions when a program detects a run-time error. The DIVS and DIVU instructions
force an exception if a division operation is attempted with a divisor of zero.
Exception processing for traps follows the regular sequence. If tracing is enabled when an
instruction that causes a trap begins execution, a trace exception will be generated by the
instruction, but the trap handler routine will not be traced (the trap exception will be
processed first, then the trace exception).
The vector number for the TRAP instruction is internally generated—part of the number
comes from the instruction itself. The trap vector number, PC value, and a copy of the SR
are saved on the supervisor stack. The saved PC value is the address of the instruction
that follows the instruction that generated the trap. For all instruction traps other than
TRAP, a pointer to the instruction causing the trap is also saved in the fifth and sixth
words of the exception stack frame.
5.5.2.5 SOFTWARE BREAKPOINTS. To support hardware emulation, the CPU32 must
provide a means of inserting breakpoints into target code and of announcing when a
breakpoint is reached.
The MC68000 and MC68008 can detect an illegal instruction inserted at a breakpoint
when the processor fetches from the illegal instruction exception vector location. Since the
VBR on the CPU32 allows relocation of exception vectors, the exception vector address is
not a reliable indication of a breakpoint. CPU32 breakpoint support is provided by
extending the function of a set of illegal instructions ($4848–$484F).
When a breakpoint instruction is executed, the CPU32 performs a read from CPU space
$0, at a location corresponding to the breakpoint number. If this bus cycle is terminated by
BERR, the processor performs illegal instruction exception processing. If the bus cycle is
terminated by DSACK≈, the processor uses the data returned to replace the breakpoint in
the instruction pipeline and begins execution of that instruction. See Section 3 Bus
Operation for a description of CPU space operations.
5-46
MC68340 USER’S MANUAL
MOTOROLA
5.5.2.6 HARDWARE BREAKPOINTS. The CPU32 recognizes hardware breakpoint
requests. Hardware breakpoint requests do not force immediate exception processing, but
are left pending. An instruction breakpoint is not made pending until the instruction
corresponding to the request is executed.
A pending breakpoint can be acknowledged between instructions or at the end of
exception processing. To acknowledge a breakpoint, the CPU performs a read from CPU
space $0 at location $1E (see Section 3 Bus Operation).
If the bus cycle terminates normally, instruction execution continues with the next
instruction, as if no breakpoint request occurred. If the bus cycle is terminated by BERR,
the CPU begins exception processing. Data returned during this bus cycle is ignored.
Exception processing follows the regular sequence. Vector number 12 (offset $30) is
internally generated. The PC of the currently executing instruction, the PC of the next
instruction to execute, and a copy of the SR are saved on the supervisor stack.
5.5.2.7 FORMAT ERROR. The processor checks certain data values for control
operations. The validity of the stack format code and, in the case of a bus cycle fault
format, the version number of the processor that generated the frame are checked during
execution of the RTE instruction. This check ensures that the program does not make
erroneous assumptions about information in the stack frame.
If the format of the control data is improper, the processor generates a format error
exception. This exception saves a four-word format exception frame and then vectors
through vector table entry number 14. The stacked PC is the address of the RTE
instruction that discovered the format error.
5.5.2.8 ILLEGAL OR UNIMPLEMENTED INSTRUCTIONS. An instruction is illegal if it
contains a word bit pattern that does not correspond to the bit pattern of the first word of a
legal CPU32 instruction, if it is a MOVEC instruction that contains an undefined register
specification field in the first extension word, or if it contains an indexed addressing mode
extension word with bits 5–4 = 00 or bits 3–0 ≠ 0000.
If an illegal instruction is fetched during instruction execution, an illegal instruction
exception occurs. This facility allows the operating system to detect program errors or to
emulate instructions in software.
Word patterns with bits 15–12 = 1010 (referred to as A-line opcodes) are unimplemented
instructions. A separate exception vector (vector 10, offset $28) is given to unimplemented
instructions to permit efficient emulation.
Word patterns with bits 15–12 = 1111 (referred to as F-line opcodes) are used for M68000
family instruction set extensions. They can generate an unimplemented instruction
exception caused by the first extension word of the instruction or by the addressing mode
extension word. A separate F-line emulation vector (vector 11, offset $2C) is used for the
exception vector.
MOTOROLA
MC68340 USER’S MANUAL
5-47
All unimplemented instructions are reserved for use by Motorola for enhancements and
extensions to the basic M68000 architecture. Opcode pattern $4AFC is defined to be
illegal on all M68000 family members. Those customers requiring the use of an
unimplemented opcode for synthesis of "custom instructions," operating system calls, etc.,
should use this opcode.
Exception processing for illegal and unimplemented instructions is similar to that for traps.
The instruction is fetched and decoding is attempted. When the processor determines that
execution of an illegal instruction is being attempted, exception processing begins. No
registers are altered.
Exception processing follows the regular sequence. The vector number is generated to
refer to the illegal instruction vector or in the case of an unimplemented instruction, to the
corresponding emulation vector. The illegal instruction vector number, current PC, and a
copy of the SR are saved on the supervisor stack, with the saved value of the PC being
the address of the illegal or unimplemented instruction.
5.5.2.9 PRIVILEGE VIOLATIONS. To provide system security, certain instructions can be
executed only at the supervisor access level. An attempt to execute one of these
instructions at the user level will cause an exception. The privileged exceptions are as
follows:
• AND Immediate to SR
• EOR Immediate to SR
• LPSTOP
• MOVE from SR
• MOVE to SR
• MOVE USP
• MOVEC
• MOVES
• OR Immediate to SR
• RESET
• RTE
• STOP
Exception processing for privilege violations is nearly identical to that for illegal
instructions. The instruction is fetched and decoded. If the processor determines that a
privilege violation has occurred, exception processing begins before instruction execution.
Exception processing follows the regular sequence. The vector number (8) is generated to
reference the privilege violation vector. Privilege violation vector offset, current PC, and
SR are saved on the supervisor stack. The saved PC value is the address of the first word
of the instruction causing the privilege violation.
5-48
MC68340 USER’S MANUAL
MOTOROLA
5.5.2.10 TRACING. To aid in program development, M68000 processors include a facility
to allow tracing of instruction execution. CPU32 tracing also has the ability to trap on
changes in program flow. In trace mode, a trace exception is generated after each
instruction executes, allowing a debugging program to monitor the execution of a program
under test. The T1 and T0 bits in the supervisor portion of the SR are used to control
tracing.
When T1–T0 = 00, tracing is disabled, and instruction execution proceeds normally (see
Table 5-18).
Table 5-18. Tracing Control
T1
T0
0
0
Tracing Function
No tracing
0
1
Trace on change of flow
1
0
Trace on instruction execution
1
1
Undefined; reserved
When T1–T0 = 01 at the beginning of instruction execution, a trace exception will be
generated if the PC changes sequence during execution. All branches, jumps, subroutine
calls, returns, and SR manipulations can be traced in this way. No exception occurs if a
branch is not taken.
When T1–T0 = 10 at the beginning of instruction execution, a trace exception will be
generated when execution is complete. If the instruction is not executed, either because
an interrupt is taken or because the instruction is illegal, unimplemented, or privileged, an
exception is not generated.
At the present time, T1–T0 = 11 is an undefined condition. It is reserved by Motorola for
future use.
Exception processing for trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. Exception processing follows the
regular sequence; tracing is disabled so that the trace exception itself is not traced. A
vector number is generated to reference the trace exception vector. The address of the
instruction that caused the trace exception, the trace exception vector offset, the current
PC, and a copy of the SR are saved on the supervisor stack. The saved value of the PC is
the address of the next instruction to be executed.
A trace exception can be viewed as an extension to the function of any instruction. If a
trace exception is generated by an instruction, the execution of that instruction is not
complete until the trace exception processing associated with it is also complete.
If an instruction is aborted by a bus error or address error exception, trace exception
processing is deferred until the suspended instruction is restarted and completed
normally. An RTE from a bus error or address error will not be traced because of the
possibility of continuing the instruction from the fault.
MOTOROLA
MC68340 USER’S MANUAL
5-49
If an instruction is executed and an interrupt is pending on completion, the trace exception
is processed before the interrupt exception.
If an instruction forces an exception, the forced exception is processed before the trace
exception.
If an instruction is executed and a breakpoint is pending upon completion of the
instruction, the trace exception is processed before the breakpoint.
If an attempt is made to execute an illegal, unimplemented, or privileged instruction while
tracing is enabled, no trace exception will occur because the instruction is not executed.
This is particularly important to an emulation routine that performs an instruction function,
adjusts the stacked PC to beyond the unimplemented instruction, and then returns. The
SR on the stack must be checked to determine if tracing is on before the return is
executed. If tracing is on, trace exception processing must be emulated so that the trace
exception handler can account for the emulated instruction.
Tracing also affects normal operation of the STOP and LPSTOP instructions. If either
instruction begins execution with T1 set, a trace exception will be taken after the
instruction loads the SR. Upon return from the trace handler routine, execution will
continue with the instruction following STOP (LPSTOP), and the processor will not enter
the stopped condition.
5.5.2.11 INTERRUPTS. There are seven levels of interrupt priority and 192 assignable
interrupt vectors within each exception vector table. Careful use of multiple vector tables
and hardware chaining will permit a virtually unlimited number of peripherals to interrupt
the processor.
Interrupt recognition and subsequent processing are based on internal interrupt request
signals ( IRQ7 – IRQ1 ) and the current priority set in SR priority mask I2–I0. Interrupt
request level zero (IRQ7– IRQ1 negated) indicates that no service is requested. When an
interrupt of level one through six is requested via IRQ6– IRQ1, the processor compares
the request level with the interrupt mask to determine whether the interrupt should be
processed. Interrupt requests are inhibited for all priority levels less than or equal to the
current priority. Level seven interrupts are nonmaskable.
IRQ7– IRQ1 are synchronized and debounced by input circuitry on consecutive rising
edges of the processor clock. To be valid, an interrupt request must be held constant for
at least two consecutive clock periods.
Interrupt requests do not force immediate exception processing, but are left pending. A
pending interrupt is detected between instructions or at the end of exception processing—
all interrupt requests must be held asserted until they are acknowledged by the CPU. If
the priority of the interrupt is greater than the current priority level, exception processing
begins.
Exception processing occurs as follows. First, the processor makes an internal copy of the
SR. After the copy is made, the processor state bits in the SR are changed—the S-bit is
set, establishing supervisor access level, and bits T1 and T0 are cleared, disabling
5-50
MC68340 USER’S MANUAL
MOTOROLA
tracing. Priority level is then set to the level of the interrupt, and the processor fetches a
vector number from the interrupting device (CPU space $F). The fetch bus cycle is
classified as an interrupt acknowledge, and the encoded level number of the interrupt is
placed on the address bus.
If an interrupting device requests automatic vectoring, the processor generates a vector
number (25 to 31) determined by the interrupt level number.
If the response to the interrupt acknowledge bus cycle is a bus error, the interrupt is taken
to be spurious, and the spurious interrupt vector number (24) is generated.
The exception vector number, PC, and SR are saved on the supervisor stack. The saved
value of the PC is the address of the instruction that would have executed if the interrupt
had not occurred.
Priority level 7 interrupt is a special case. Level 7 interrupts are nonmaskable interrupts
(NMI). Level 7 requests are transition sensitive to eliminate redundant servicing and
resultant stack overflow. Transition sensitive means that the level 7 input must change
state before the CPU will detect an interrupt.
An NMI is generated each time the interrupt request level changes to level 7 (regardless
of priority mask value), and each time the priority mask changes from 7 to a lower number
while the request level remains at 7.
Many M68000 peripherals provide for programmable interrupt vector numbers to be used
in the system interrupt request/acknowledge mechanism. If the vector number is not
initialized after reset and if the peripheral must acknowledge an interrupt request, the
peripheral should return the uninitialized interrupt vector number (15).
See Section 3 Bus Operation for detailed information on interrupt acknowledge cycles.
5.5.2.12 RETURN FROM EXCEPTION. When exception stacking operations for all
pending exceptions are complete, the processor begins execution of the handler for the
last exception processed. After the exception handler has executed, the processor must
restore the system context in existence prior to the exception. The RTE instruction is
designed to accomplish this task.
When RTE is executed, the processor examines the stack frame on top of the supervisor
stack to determine if it is valid and determines what type of context restoration must be
performed. See 5.5.4 CPU32 Stack Frames for a description of stack frames.
For a normal four-word frame, the processor updates the SR and PC with data pulled from
the stack, increments the SSP by 8, and resumes normal instruction execution. For a sixword frame, the SR and PC are updated from the stack, the active SSP is incremented by
12, and normal instruction execution resumes.
For a bus fault frame, the format value on the stack is first checked for validity. In addition,
the version number on the stack must match the version number of the processor that is
MOTOROLA
MC68340 USER’S MANUAL
5-51
attempting to read the stack frame. The version number is located in the most significant
byte (bits 15–8) of the internal register word at location SP + $14 in the stack frame. The
validity check ensures that stack frame data will be properly interpreted in multiprocessor
systems.
If a frame is invalid, a format error exception is taken. If it is inaccessible, a bus error
exception is taken. Otherwise, the processor reads the entire frame into the proper
internal registers, de-allocates the stack (12 words), and resumes normal processing. Bus
error frames for faults during exception processing require the RTE instruction to rewrite
the faulted stack frame. If an error occurs during any of the bus cycles required by rewrite,
the processor halts.
If a format error occurs during RTE execution, the processor creates a normal four-word
fault stack frame below the frame that it was attempting to use. If a bus error occurs, a
bus-error stack frame will be created. The faulty stack frame remains intact, so that it may
be examined and repaired by an exception handler or used by a different type of
processor (e.g., MC68010, MC68020, or future M68000 processor) in a multiprocessor
system.
5.5.3 Fault Recovery
There are four phases of recovery from a fault: recognizing the fault, saving the processor
state, repairing the fault (if possible), and restoring the processor state. Saving and
restoring the processor state are described in the following paragraphs.
The stack contents are identified by the special status word (SSW). In addition to
identifying the fault type represented by the stack frame, the SSW contains the internal
processor state corresponding to the fault.
15
14
13
12
11
10
9
8
7
6
5
TP
MV
0
TR
B1
B0
RR
RM
IN
RW
LG
4
3
SIZ
2
1
0
FUNC
TP—BERR frame type
MV—MOVEM in progress
TR—Trace pending
B1—Breakpoint channel 1 pending
B0—Breakpoint channel 0 pending
RR—Rerun write cycle after RTE
RM—Faulted cycle was read-modify-write
IN—Instruction/other
RW—Read/write of faulted bus cycle
LG—Original operand size was long word
SIZ—Remaining size of faulted bus cycle
FUNC—Function code of faulted bus cycle
5-52
MC68340 USER’S MANUAL
MOTOROLA
The TP field defines the class of the faulted bus operation. Two bus error exception
frame types are defined. One is for faults on prefetch and operand accesses, and the
other is for faults during exception frame stacking:
0 = Operand or prefetch bus fault
1 = Exception processing bus fault
MV is set when the operand transfer portion of the MOVEM instruction is in progress at
the time of a bus fault. If a prefetch bus fault occurs while prefetching the MOVEM
opcode and extension word, both the MV and IN bits will be set.
0 = MOVEM was not in progress when fault occurred
1 = MOVEM was in progress when fault occurred
TR indicates that a trace exception was pending when a bus error exception was
processed. The instruction that generated the trace will not be restarted upon return
from the exception handler. This includes MOVEM and released write bus errors
indicated by the assertion of either MV or RR in the SSW.
0 = Trace not pending
1 = Trace pending
B1 indicates that a breakpoint exception was pending on channel 1 (external breakpoint
source) when a bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.
0 = Breakpoint not pending
1 = Breakpoint pending
B0 indicates that a breakpoint exception was pending on channel 0 (internal breakpoint
source) when the bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.
0 = Breakpoint not pending
1 = Breakpoint pending
RR will be set if the faulted bus cycle was a released write. A released write is one that
is overlapped. If the write is completed (rerun) in the exception handler, the RR bit
should be cleared before executing RTE. The bus cycle will be rerun if the RR bit is set
upon return from the exception handler.
0 = Faulted cycle was read, RMW, or unreleased write
1 = Faulted cycle was a released write
Faulted RMW bus cycles set the RM bit. RM is ignored during unstacking.
0 = Faulted cycle was non-RMW cycle
1 = Faulted cycle was either the read or write of an RMW cycle
Instruction prefetch faults are distinguished from operand (both read and write) faults by
the IN bit. If IN is cleared, the error was on an operand cycle; if IN is set, the error was
on an instruction prefetch. IN is ignored during unstacking.
0 = Operand
1 = Prefetch
MOTOROLA
MC68340 USER’S MANUAL
5-53
Read and write bus cycles are distinguished by the RW bit. Read bus cycles will set this
bit, and write bus cycles will clear it. RW is reloaded into the bus controller if the RR bit
is set during unstacking.
0 = Faulted cycle was an operand write
1 = Faulted cycle was a prefetch or operand read
The LG bit indicates an original operand size of long word. LG is cleared if the original
operand was a byte or word—SIZ will indicate original (and remaining) size. LG is set if
the original was a long word—SIZ will indicate the remaining size at the time of fault. LG
is ignored during unstacking.
0 = Original operand size was byte or word
1 = Original operand size was long word
The SSW SIZ field shows operand size remaining when a fault was detected. This field
does not indicate the initial size of the operand, nor does it necessarily indicate the
proper status of a dynamically sized bus cycle. Dynamic sizing occurs on the external
bus and is transparent to the CPU. Byte size is shown only when the original operand
was a byte. The field is reloaded into the bus controller if the RR bit is set during
unstacking. The SIZ field is encoded as follows:
00—Long word
01—Byte
10—Word
11—Unused, reserved
The function code for the faulted cycle is stacked in the FUNC field of the SSW, which is
a copy of FC2–FC0 for the faulted bus cycle. This field is reloaded into the bus
controller if the RR bit is set during unstacking. All unused bits are stacked as zeros and
are ignored during unstacking. Further discussion of the SSW is included in 5.5.3.1
Types of Faults.
5.5.3.1 TYPES OF FAULTS. An efficient implementation of instruction restart dictates that
faults on some bus cycles be treated differently than faults on other bus cycles. The
CPU32 defines four fault types: released write faults, faults during exception processing,
faults during MOVEM operand transfer, and faults on any other bus cycle.
5.5.3.1.1 Type I—Released Write Faults. CPU32 instruction pipelining can cause a final
instruction write to overlap the execution of a following instruction. A write that is
overlapped is called a released write. A released write fault occurs when a bus error or
some other fault occurs on the released write.
Released write faults are taken at the next instruction boundary. The stacked PC is that of
the next unexecuted instruction. If a subsequent instruction attempts an operand access
while a released write fault is pending, the instruction is aborted and the write fault is
acknowledged. This action prevents stale data from being used by the instruction.
5-54
MC68340 USER’S MANUAL
MOTOROLA
The SSW for a released write fault contains the following bit pattern:
15
14
13
12
11
10
9
8
7
6
5
0
0
0
TR
B1
B0
1
0
0
0
LG
4
3
2
SIZ
0
FUNC
TR, B1, and B0 are set if the corresponding exception is pending when the bus error
exception is taken. Status regarding the faulted bus cycle is reflected in the LG, SIZ, and
FUNC fields.
The remainder of the stack contains the PC of the next unexecuted instruction, the current
SR, the address of the faulted memory location, and the contents of the data buffer that
was to be written to memory. This data is written on the stack in the format depicted in
Figure 5-15. When a released write fault exception handler executes, the machine will
complete the faulted write and then continue executing instructions wherever the PC
indicates.
5.5.3.1.2 Type II—Prefetch, Operand, RMW, and MOVEP Faults. The majority of bus
error exceptions are included in this category—all instruction prefetches, all operand
reads, all RMW cycles, and all operand accesses resulting from execution of MOVEP
(except the last write of a MOVEP Rn,〈ea〉 or the last write of MOVEM, which are type I
faults). The TAS, MOVEP, and MOVEM instructions account for all operand writes not
considered released.
All type II faults cause an immediate exception that aborts the current instruction. Any
registers that were altered as the result of an EA calculation (i.e., postincrement or
predecrement) are restored prior to processing the bus cycle fault.
The SSW for faults in this category contains the following bit pattern:
15
14
13
12
11
10
9
8
7
6
5
0
0
0
0
B1
B0
0
RM
IN
RW
LG
4
3
SIZ
2
0
FUNC
The trace pending bit is always cleared, since the instruction will be restarted upon return
from the handler. Saving a pending exception on the stack causes a trace exception to be
taken prior to restarting the instruction. If the exception handler does not alter the stacked
SR trace bits, the trace is requeued when the instruction is started.
The breakpoint pending bits are stacked in the SSW, even though the instruction is
restarted upon return from the handler. This avoids problems with bus state analyzer
equipment that has been programmed to breakpoint only the first access to a specific
location or to count accesses to that location. If this response is not desired, the exception
handler can clear the bits before return. The RM, IN, RW, LG, FUNC, and SIZ fields all
reflect the type of bus cycle that caused the fault. If the bus cycle was an RMW, the RM bit
will be set, and the RW bit will show whether the fault was on a read or write.
MOTOROLA
MC68340 USER’S MANUAL
5-55
5.5.3.1.3 Type III—Faults During MOVEM Operand Transfer. Bus faults that occur as a
result of MOVEM operand transfer are classified as type III faults. MOVEM instruction
prefetch faults are type II faults.
Type III faults cause an immediate exception that aborts the current instruction. None of
the registers altered during execution of the faulted instruction are restored prior to
execution of the fault handler. This includes any register predecremented as a result of the
effective address calculation or any register overwritten during instruction execution. Since
postincremented registers are not updated until the end of an instruction, the register
retains its pre-instruction value unless overwritten by operand movement.
The SSW for faults in this category contains the following bit pattern:
15
14
13
12
11
10
9
8
7
6
5
0
1
0
TR
B1
B0
RR
0
IN
RW
LG
4
3
2
SIZ
0
FUNC
MV is set, indicating that MOVEM should be continued from the point where the fault
occurred upon return from the exception handler. TR, B1, and B0 are set if a
corresponding exception is pending when the bus error exception is taken. IN is set if a
bus fault occurs while prefetching an opcode or an extension word during instruction
restart. RW, LG, SIZ, and FUNC all reflect the type of bus cycle that caused the fault. All
write faults have the RR bit set to indicate that the write should be rerun upon return from
the exception handler.
The remainder of the stack frame contains sufficient information to continue MOVEM with
operand transfer following a faulted transfer. The address of the next operand to be
transferred, incremented or decremented by operand size, is stored in the faulted address
location ($08). The stacked transfer counter is set to 16 minus the number of transfers
attempted (including the faulted cycle). Refer to Figure 5-12 for the stacking format.
5.5.3.1.4 Type IV—Faults During Exception Processing. The fourth type of fault occurs
during exception processing. If this exception is a second address or bus error, the
machine halts in the double bus fault condition. However, if the exception is one that
causes a four- or six-word stack frame to be written, a bus cycle fault frame is written
below the faulted exception stack frame.
The SSW for a fault within an exception contains the following bit pattern:
15
14
13
12
11
10
9
8
7
6
5
1
0
0
TR
B1
B0
0
0
0
1
LG
4
3
SIZ
2
0
FUNC
TR, B1, and B0 are set if a corresponding exception is pending when the bus error
exception is taken.
The contents of the faulted exception stack frame are included in the bus fault stack
frame. The pre-exception SR and the format/vector word of the faulted frame are stacked.
The type of exception can be determined from the format/vector word. If the faulted
exception stack frame contains six words, the PC of the instruction that caused the initial
5-56
MC68340 USER’S MANUAL
MOTOROLA
exception is also stacked. This data is placed on the stack in the format shown in Figure
5-13. The return address from the initial exception is stacked for RTE .
5.5.3.2 CORRECTING A FAULT. There are two ways to complete a faulted released write
bus cycle. The first is to use a software handler. The second is to rerun the bus cycle via
RTE.
Type II fault handlers must terminate with RTE, but specific requirements must also be
met before an instruction is restarted.
There are three varieties of type III operand fault recovery. The first is completion of an
instruction in software. The second is conversion to type II with restart via RTE. The third
is continuation from the fault via RTE.
5.5.3.2.1 Type I—Completing Released Writes via Software. To complete a bus cycle
in software, a handler must first read the SSW function code field to determine the
appropriate address space, access the fault address pointer on the stack, and then
transfer data from the stacked image of the output buffer to the fault address.
Because the CPU32 has a 16-bit internal data bus, long operands require two bus
accesses. A fault during the second access of a long operand causes the LG bit in the
SSW to be set. The SIZ field indicates remaining operand size. If operand coherency is
important, the complete operand must be rewritten. After a long operand is rewritten, the
RR bit must be cleared. Failure to clear the RR bit can cause the RTE instruction to rerun
the bus cycle. Following rewrite, it is not necessary to adjust the PC (or other stack
contents) before executing RTE.
5.5.3.2.2 Type I—Completing Released Writes via RTE. An exception handler can use
the RTE instruction to complete a faulted bus cycle. When RTE executes, the fault
address, data output buffer, PC, and SR are restored from the stack. Any pending
breakpoint or trace exceptions, as indicated by TR, B1, and B0 in the stacked SSW, are
requeued during SSW restoration. The RR bit in the SSW is checked during the
unstacking operation; if it is set, the RW, FUNC, and SIZ fields are restored and the
released write cycle is rerun.
To maintain long-word operand coherence, stack contents must be adjusted prior to RTE
execution. The fault address must be decremented by 2 if LG is set and SIZ indicates a
remaining byte or word. SIZ must be set to long. All other fields should be left unchanged.
The bus controller uses the modified fault address and SIZ field to rerun the complete
released write cycle.
Manipulating the stacked SSW can cause unpredictable results because RTE checks only
the RR bit to determine if a bus cycle must be rerun. Inadvertent alteration of the control
bits could cause the bus cycle to be a read instead of a write or could cause access to a
different address space than the original bus cycle. If the rerun bus cycle is a read,
returned data will be ignored.
MOTOROLA
MC68340 USER’S MANUAL
5-57
5.5.3.2.3 Type II—Correcting Faults via RTE. Instructions aborted because of a type II
fault are restarted upon return from the exception handler. A fault handler must establish
safe restart conditions. If a fault is caused by a nonresident page in a demand-paged
virtual memory configuration, the fault address must be read from the stack, and the
appropriate page retrieved. An RTE instruction terminates the exception handler. After
unstacking the machine state, the instruction is refetched and restarted.
5.5.3.2.4 Type III—Correcting Faults via Software. Sufficient information is contained in
the stack frame to complete MOVEM in software. After the cause of the fault is corrected,
the faulted bus cycle must be rerun. Perform the following procedures to complete an
instruction through software:
A. Setup for Rerun
Read the MOVEM opcode and extension from locations pointed to by stackframe PC and
PC + 2. The EA need not be recalculated since the next operand address is saved in the
stack frame. However, the opcode EA field must be examined to determine how to update
the address register and PC when the instruction is complete.
Adjust the mask to account for operands already transferred. Subtract the stacked
operand transfer count from 16 to obtain the number of operands transferred. Scan the
mask using this count value. Each time a set bit is found, clear it and decrement the
counter. When the count is zero, the mask is ready for use.
Adjust the operand address. If the predecrement addressing mode is in effect, subtract the
operand size from the stacked value; otherwise, add the operand size to the stacked
value.
B. Rerun Instruction
Scan the mask for set bits. Read/write the selected register from/to the operand address
as each bit is found.
As each operand is transferred, clear the mask bit and increment (decrement) the operand
address. When all bits in the mask are cleared, all operands have been transferred.
If the addressing mode is predecrement or postincrement, update the register to complete
the execution of the instruction.
If TR is set in the stacked SSW, create a six-word stack frame and execute the trace
handler. If either B1 or B0 is set in the SSW, create another six-word stack frame and
execute the hardware breakpoint handler.
De-allocate the stack and return control to the faulted program.
5.5.3.2.5 Type III—Correcting Faults by Conversion and Restart. In some situations it
may be necessary to rerun all the operand transfers for a faulted instruction rather than
continue from a faulted operand. Clearing the MV bit in the stacked SSW converts a type
III fault into a type II fault. Consequently, MOVEM, like all other type II
5-58
MC68340 USER’S MANUAL
MOTOROLA
exceptions, will be restarted upon return from the exception handler. When a fault occurs
after an operand has transferred, that transfer is not "undone". However, these memory
locations are accessed a second time when the instruction is restarted. If a register used
in an EA calculation is overwritten before a fault occurs, an incorrect EA is calculated upon
instruction restart.
5.5.3.2.6 Type III—Correcting Faults via RTE. The preferred method of MOVEM bus
fault recovery is to correct the cause of the fault and then execute an RTE instruction
without altering the stack contents.
The RTE recognizes that MOVEM was in progress when a fault occurred, restores the
appropriate machine state, refetches the instruction, repeats the faulted transfer, and
continues the instruction.
MOVEM is the only instruction continued upon return from an exception handler. Although
the instruction is refetched, the EA is not recalculated, and the mask is rescanned the
same number of times as before the fault; modifying the code prior to RTE can cause
unexpected results.
5.5.3.2.7 Type IV—Correcting Faults via Software. Bus error exceptions can occur
during exception processing while the processor is fetching an exception vector or while it
is stacking. The same stack frame and SSW are used in both cases, but each has a
distinct fault address. The stacked faulted exception format/vector word identifies the type
of faulted exception and the contents of the remainder of the frame. A fault address
corresponding to the vector specified in the stacked format/vector word indicates that the
processor could not obtain the address of the exception handler.
A bus error exception handler should execute RTE after correcting a fault. RTE restores
the internal machine state, fetches the address of the original exception handler, recreates
the original exception stack frame, and resumes execution at the exception handler
address.
If the fault is intractable, the exception handler should rewrite the faulted exception stack
frame at SP + $14 + $06 and then jump directly to the original exception handler. The
stack frame can be generated from the information in the bus error frame: the preexception SR (SP + $0C), the format/vector word (SP + $0E), and, if the frame being
written is a six-word frame, the PC of the instruction causing the exception (SP + $10).
The return PC value is available at SP + $02.
A stacked fault address equal to the current SP may indicate that, although the first
exception received a bus error while stacking, the bus error exception stacking
successfully completed. This occurrence is extremely improbable, but the CPU32
supports recovery from it. Once the exception handler determines that the fault has been
corrected, recovery can proceed as described previously. If the fault cannot be corrected,
move the supervisor stack to another area of memory, copy all valid stack frames to the
new stack, create a faulted exception frame on top of the stack, and resume execution at
the exception handler address.
MOTOROLA
MC68340 USER’S MANUAL
5-59
5.5.4 CPU32 Stack Frames
The CPU32 generates three different stack frames: four-word frames, six-word frames,
and twelve-word bus error frames.
5.5.4.1 FOUR-WORD STACK FRAME. This stack frame is created by interrupt, format
error, TRAP #n, illegal instruction, A-line and F-line emulator trap, and privilege violation
exceptions. Depending on the exception type, the PC value is either the address of the
next instruction to be executed or the address of the instruction that caused the exception
(see Figure 5-12).
15
0
SP ⇒
STATUS REGISTER
+$02
PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW
+$06
0
0
0
0
VECTOR OFFSET
Figure 5-12. Format $0—Four-Word Stack Frame
5.5.4.2 SIX-WORD STACK FRAME. This stack frame (see Figure 5-13) is created by
instruction-related traps, which include CHK, CHK2, TRAPcc, TRAPV, and divide-by-zero,
and by trace exceptions. The faulted instruction PC value is the address of the instruction
that caused the exception. The next PC value (the address to which RTE returns) is the
address of the next instruction to be executed.
15
0
SP ⇒
STATUS REGISTER
+$02
NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
+$06
+$08
0
0
1
0
VECTOR OFFSET
FAULTED INSTRUCTION PROGRAM COUNTER HIGH
FAULTED INSTRUCTION PROGRAM COUNTER LOW
Figure 5-13. Format $2—Six-Word Stack Frame
Hardware breakpoints also utilize this format. The faulted instruction PC value is the
address of the instruction executing when the breakpoint was sensed. Usually this is the
address of the instruction that caused the breakpoint, but, because released writes can
overlap following instructions, the faulted instruction PC may point to an instruction
following the instruction that caused the breakpoint. The address to which RTE returns is
the address of the next instruction to be executed.
5.5.4.3 BUS ERROR STACK FRAME. This stack frame is created when a bus cycle fault
is detected. The CPU32 bus error stack frame differs significantly from the equivalent
stack frames of other M68000 Family members. The only internal machine state required
in the CPU32 stack frame is the bus controller state at the time of the error and a single
register.
5-60
MC68340 USER’S MANUAL
MOTOROLA
Bus operation in progress at the time of a fault is conveyed by the SSW.
15
14
13
12
11
10
9
8
7
6
5
4
TP
MV
0
TR
B1
B0
RR
RM
IN
RW
LG
3
SIZ
2
1
0
FUNC
The bus error stack frame is 12 words in length. There are three variations of the frame,
each distinguished by different values in the SSW TP and MV fields.
An internal transfer count register appears at location SP + $14 in all bus error stack
frames. The register contains an 8-bit microcode revision number, and, for type III faults,
an 8-bit transfer count. Register format is shown in Figure 5-14.
15
8 7
MICROCODE REVISION NUMBER
0
TRANSFER COUNT
Figure 5-14. Internal Transfer Count Register
The microcode revision number is checked before a bus error stack frame is restored via
RTE. In a multiprocessor system, this check ensures that a processor using stacked
information is at the same revision level as the processor that created it.
The transfer count is ignored unless the MV bit in the stacked SSW is set. If the MV bit is
set, the least significant byte of the internal register is reloaded into the MOVEM transfer
counter during RTE execution.
For faults occurring during normal instruction execution (both prefetches and non-MOVEM
operand accesses) SSW TP, MV = 00. Stack frame format is shown in Figure 5-15.
Faults that occur during the operand portion of the MOVEM instruction are identified by
SSW TP, MV = 01. Stack frame format is shown in Figure 5-16.
When a bus error occurs during exception processing, SSW TP, MV = 10. The frame
shown in Figure 5-17 is written below the faulting frame. Stacking begins at the address
pointed to by SP – 6 (SP value is the value before initial stacking on the faulted frame).
The frame can have either four or six words, depending on the type of error. Four-word
stack frames do not include the faulted instruction PC (the internal transfer count register
is located at SP + $10 and the SSW is located at SP + $12).
The fault address of a dynamically sized bus cycle is the address of the upper byte,
regardless of the byte that caused the error.
MOTOROLA
MC68340 USER’S MANUAL
5-61
15
0
SP ⇒
STATUS REGISTER
+$02
RETURN PROGRAM COUNTER HIGH
RETURN PROGRAM COUNTER LOW
+$06
1
1
0
0
+$08
VECTOR OFFSET
FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C
DBUF HIGH
DBUF LOW
+$10
CURRENT INSTRUCTION PROGRAM COUNTER HIGH
CURRENT INSTRUCTION PROGRAM COUNTER LOW
+$14
+$16
INTERNAL TRANSFER COUNT REGISTER
0
0
SPECIAL STATUS WORD
Figure 5-15. Format $C—BERR Stack for Prefetches and Operands
15
0
SP ⇒
STATUS REGISTER
+$02
RETURN PROGRAM COUNTER HIGH
RETURN PROGRAM COUNTER LOW
+$06
1
1
+$08
0
0
VECTOR OFFSET
FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C
DBUF HIGH
DBUF LOW
+$10
CURRENT INSTRUCTION PROGRAM COUNTER HIGH
CURRENT INSTRUCTION PROGRAM COUNTER LOW
+$14
+$16
INTERNAL TRANSFER COUNT REGISTER
0
1
SPECIAL STATUS WORD
Figure 5-16. Format $C—BERR Stack on MOVEM Operand
5-62
MC68340 USER’S MANUAL
MOTOROLA
15
0
SP ⇒
STATUS REGISTER
+$02
NEXT INSTRUCTION PROGRAM COUNTER HIGH
NEXT INSTRUCTION PROGRAM COUNTER LOW
+$06
1
1
0
0
VECTOR OFFSET
+$08
FAULTED ADDRESS HIGH
FAULTED ADDRESS LOW
+$0C
PRE-EXCEPTION STATUS REGISTER
FAULTED EXCEPTION FORMAT/VECTOR WORD
+$10
FAULTED INSTRUCTION PROGRAM COUNTER HIGH (SIX WORD FRAME ONLY)
FAULTED INSTRUCTION PROGRAM COUNTER LOW (SIX WORD FRAME ONLY)
+$14
+$16
INTERNAL TRANSFER COUNT REGISTER
1
0
SPECIAL STATUS WORD
Figure 5-17. Format $C—Four- and Six-Word BERR Stack
5.6 DEVELOPMENT SUPPORT
All M68000 family members have the following special features that facilitate applications
development.
Trace on Instruction Execution—All M68000 processors include an instruction-byinstruction tracing facility to aid in program development. The MC68020, MC68030, and
CPU32 can also trace those instructions that change program flow. In trace mode, an
exception is generated after each instruction is executed, allowing a debugger program to
monitor execution of a program under test. See 5.5.2.10 Tracing for more information.
Breakpoint Instruction—An emulator can insert software breakpoints into target code to
indicate when a breakpoint occurs. On the MC68010, MC68020, MC68030, and CPU32,
this function is provided via illegal instructions ($4848–$484F) that serve as breakpoint
instructions. See 5.5.2.5 Software Breakpoints for more information.
Unimplemented Instruction Emulation—When an attempt is made to execute an illegal
instruction, an illegal instruction exception occurs. Unimplemented instructions (F-line, Aline) utilize separate exception vectors to permit efficient emulation of unimplemented
instructions in software. See 5.5.2.8 Illegal or Unimplemented Instructions for more
information.
5.6.1 CPU32 Integrated Development Support
In addition to standard MC68000 family capabilities, the CPU32 has features to support
advanced integrated system development. These features include background debug
mode, deterministic opcode tracking, hardware breakpoints, and internal visibility in a
single-chip environment.
MOTOROLA
MC68340 USER’S MANUAL
5-63
5.6.1.1 BACKGROUND DEBUG MODE (BDM) OVERVIEW. Microprocessor systems
generally provide a debugger, implemented in software, for system analysis at the lowest
level. The BDM on the CPU32 is unique because the debugger is implemented in CPU
microcode.
BDM incorporates a full set of debug options—registers can be viewed and/or altered,
memory can be read or written, and test features can be invoked.
A resident debugger simplifies implementation of an in-circuit emulator. In a common
setup (see Figure 5-18), emulator hardware replaces the target system processor. A
complex, expensive pod-and-cable interface provides a communication path between
target system and emulator.
IN-CIRCUIT
EMULATOR
TARGET
SYSTEM
TARGET
MCU
.. .
Figure 5-18. In-Circuit Emulator Configuration
By contrast, an integrated debugger supports use of a bus state analyzer (BSA) for incircuit emulation. The processor remains in the target system (see Figure 5-19), and the
interface is simplified. The BSA monitors target processor operation and the on-chip
debugger controls the operating environment. Emulation is much closer to target
hardware; thus, many interfacing problems (i.e., limitations on high-frequency operation,
AC and DC parametric mismatches, and restrictions on cable length) are minimized.
TARGET
SYSTEM
TARGET
MCU
BUS STATE
ANALYZER
.
Figure 5-19. Bus State Analyzer Configuration
5.6.1.2 DETERMINISTIC OPCODE TRACKING OVERVIEW. CPU32 function code
outputs are augmented by two supplementary signals that monitor the instruction pipeline.
The IFETCH output signal identifies bus cycles in which data is loaded into the pipeline
and signals pipeline flushes. The IPIPE output signal indicates when each mid-instruction
pipeline advance occurs and when instruction execution begins. These signals allow a
BSA to synchronize with instruction stream activity. Refer to 5.6.3 Deterministic Opcode
Tracking for complete information.
5.6.1.3 ON-CHIP HARDWARE BREAKPOINT OVERVIEW. An external breakpoint input
and an on-chip hardware breakpoint capability permit breakpoint trap on any
5-64
MC68340 USER’S MANUAL
MOTOROLA
memory access. Off-chip address comparators will not detect breakpoints on internal
accesses unless show cycles are enabled. Breakpoints on prefetched instructions, which
are flushed from the pipeline before execution, are not acknowledged, but operand
breakpoints are always acknowledged. Acknowledged breakpoints can initiate either
exception processing or BDM. See 5.5.2.6 Hardware Breakpoints for more information.
5.6.2 Background Debug Mode
BDM is an alternate CPU32 operating mode. During BDM, normal instruction execution is
suspended, and special microcode performs debugging functions under external control.
Figure 5-20 is a BDM block diagram.
BDM can be initiated in several ways—by externally generated breakpoints, by internal
peripheral breakpoints, by the background instruction (BGND), or by catastrophic
exception conditions. While in BDM, the CPU32 ceases to fetch instructions via the
parallel bus and communicates with the development system via a dedicated, high-speed,
SPI-type serial command interface.
SERIAL
INTERFACE
IPIPE/DSO
MICROCODE
SEQUENCER
IFETCH/DSI
IRC
IRB
IR
BERR
BERR
BERR
BKPT
BKPT
BKPT
BKPT/DSCLK
BUS
CONTROL
DATA BUS
BERR
FREEZE
. . ...
EXECUTION
UNIT
ADDRESS BUS
Figure 5-20. BDM Block Diagram
5.6.2.1 ENABLING BDM. Accidentally entering BDM in a nondevelopment environment
could lock up the CPU32 since the serial command interface would probably not be
available. For this reason, BDM is enabled during reset via the BKPT signal.
MOTOROLA
MC68340 USER’S MANUAL
5-65
BDM operation is enabled when BKPT is asserted (low) at the rising edge of RESET. BDM
remains enabled until the next system reset. A high BKPT on the trailing edge of RESET
disables BDM. BKPT is relatched on each rising transition of RESET . BKPT is
synchronized internally and must be held low for at least two clock cycles prior to negation
of RESET.
BDM enable logic must be designed with special care. If hold time on BKPT (after the
trailing edge of RESET) extends into the first bus cycle following reset, this bus cycle could
be tagged with a breakpoint. Refer to Section 3 Bus Operation for timing information.
5.6.2.2 BDM SOURCES. When BDM is enabled, any of several sources can cause the
transition from normal mode to BDM. These sources include external BKPT hardware, the
BGND instruction, a double bus fault, and internal peripheral breakpoints. If BDM is not
enabled when an exception condition occurs, the exception is processed normally. Table
5-19 summarizes the processing of each source for both enabled and disabled cases. As
depicted in the table, the BKPT instruction never causes a transition into BDM.
Table 5-19. BDM Source Summary
Source
BDM Enabled
BDM Disabled
BKPT
Background
Breakpoint Exception
Double Bus Fault
Background
Halted
BGND Instruction
Background
Illegal Instruction
BKPT Instruction
Opcode Substitution/
Illegal Instruction
Opcode Substitution/
Illegal Instruction
5.6.2.2.1 External BKPT Signal. Once enabled, BDM is initiated whenever assertion of
BKPT is acknowledged. If BDM is disabled, a breakpoint exception (vector $0C) is
acknowledged. The BKPT input has the same timing relationship to the data strobe trailing
edge as does read cycle data. There is no breakpoint acknowledge bus cycle when BDM
is entered.
5.6.2.2.2 BGND Instruction. An illegal instruction, $4AFA, is reserved for use by
development tools. The CPU32 defines $4AFA (BGND) to be a BDM entry point when
BDM is enabled. If BDM is disabled, an illegal instruction trap is acknowledged. Illegal
instruction traps are discussed in 5.5.2.8 Illegal or Unimplemented Instructions.
5.6.2.2.3 Double Bus Fault. The CPU32 normally treats a double bus fault (two bus faults
in succession) as a catastrophic system error and halts. When this condition occurs during
initial system debug (a fault in the reset logic), further debugging is impossible until the
problem is corrected. In BDM, the fault can be temporarily bypassed so that its origin can
be isolated and eliminated.
5.6.2.3 ENTERING BDM. When the processor detects a BKPT or a double bus fault or
decodes a BGND instruction, it suspends instruction execution and asserts the FREEZE
output. FREEZE assertion is the first indication that the processor has entered BDM. Once
FREEZE has been asserted, the CPU enables the serial communication hardware and
awaits a command.
5-66
MC68340 USER’S MANUAL
MOTOROLA
The CPU writes a unique value indicating the source of BDM transition into temporary
register A (ATEMP) as part of the process of entering BDM. A user can poll ATEMP and
determine the source (see Table 5-20) by issuing a read system register command
(RSREG). ATEMP is used in most debugger commands for temporary storage—it is
imperative that the RSREG command be the first command issued after transition into
BDM.
Table 5-20. Polling the BDM Entry Source
Source
ATEMP 31–16
ATEMP 15–0
Double Bus Fault
SSW*
$FFFF
BGND Instruction
$0000
$0001
Hardware Breakpoint
$0000
$0000
*SSW is described in detail in 5.5.3 Fault Recovery.
A double bus fault during initial SP/PC fetch sequence is distinguished by a value of
$FFFFFFFF in the current instruction PC. At no other time will the processor write an odd
value into this register.
5.6.2.4 COMMAND EXECUTION. Figure 5-21 summarizes BDM command execution.
Commands consist of one 16-bit operation word and can include one or more 16-bit
extension words. Each incoming word is read as it is assembled by the serial interface.
The microcode routine corresponding to a command is executed as soon as the command
is complete. Result operands are loaded into the output shift register to be shifted out as
the next command is read. This process is repeated for each command until the CPU
returns to normal operating mode.
5.6.2.5 BDM REGISTERS. BDM processing uses three special-purpose registers to track
program context during development. A description of each register follows.
5.6.2.5.1 Fault Address Register (FAR). The FAR contains the address of the faulting
bus cycle immediately following a bus or address error. This address remains available
until overwritten by a subsequent bus cycle. Following a double bus fault, the FAR
contains the address of the last bus cycle. The address of the first fault (if one occurred) is
not visible to the user.
5.6.2.5.2 Return Program Counter (RPC). The RPC points to the location where fetching
will commence after transition from BDM to normal mode. This register should be
accessed to change the flow of a program under development. Changing the RPC to an
odd value will cause an address error when normal mode prefetching begins.
5.6.2.5.3 Current Instruction Program Counter (PCC). The PCC holds a pointer to the
first word of the last instruction executed prior to transition into BDM. Due to instruction
pipelining, the instruction pointed to may not be the instruction which caused the
transition. An example is a breakpoint on a released write. The bus cycle may overlap as
many as two subsequent instructions before stalling the instruction sequencer. A BKPT
asserted during this cycle will not be acknowledged until the end of the instruction
MOTOROLA
MC68340 USER’S MANUAL
5-67
executing at completion of the bus cycle. PCC will contain $00000001 if BDM is entered
via a double bus fault immediately out of reset.
CPU32 ACTIVITY
DEVELOPMENT SYSTEM ACTIVITY
.
ENTER (BDM)
• ASSERT FREEZE SIGNAL
• WAIT FOR COMMAND
SEND INITIAL COMMAND
• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT OUT 17 BITS
• DISABLE SHIFT CLOCK
EXECUTE COMMAND
• LOAD: NOT READY/ RESPONSE
• PERFORM COMMAND
• STORE RESULTS
READ RESULTS/NEW COMMAND
• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT IN/OUT 17 BITS
• DISABLE SHIFT CLOCK
• READ RESULT REGISTER
IF RESULTS =
"NOT READY"
YES
NO
CONTINUE
Figure 5-21. BDM Command Execution Flowchart
5.6.2.6 RETURNING FROM BDM. BDM is terminated when a resume execution (GO) or
call user code (CALL) command is received. Both GO and CALL flush the instruction
pipeline and prefetch instructions from the location pointed to by the RPC.
The return PC and the memory space referred to by the SR SUPV bit reflect any changes
made during BDM. FREEZE is negated prior to initiating the first prefetch. Upon negation
of FREEZE, the serial subsystem is disabled, and the signals revert to IPIPE and IFETCH
functionality.
5.6.2.7 SERIAL INTERFACE. Communication with the CPU32 during BDM occurs via a
dedicated serial interface, which shares pins with other development features. The BKPT
signal becomes the DSCLK; DSI is received on IFETCH , and DSO is transmitted on
IPIPE.
5-68
MC68340 USER’S MANUAL
MOTOROLA
The serial interface uses a full-duplex synchronous protocol similar to the serial peripheral
interface (SPI) protocol. The development system serves as the master of the serial link
since it is responsible for the generation of DSCLK. If DSCLK is derived from the CPU32
system clock, development system serial logic is unhindered by the operating frequency of
the target processor. Operable frequency range of the serial clock is from DC to one-half
the processor system clock frequency.
The serial interface operates in full-duplex mode—i.e., data is transmitted and received
simultaneously by both master and slave devices. In general, data transitions occur on the
falling edge of DSCLK and are stable by the following rising edge of DSCLK. Data is
transmitted MSB first and is latched on the rising edge of DSCLK.
The serial data word is 17 bits wide—16 data bits and a status/control (S/C) bit.
16
15
0
S/C
DATA FIELD
Bit 16 indicates the status of CPU-generated messages as shown in Table 5-21.
Table 5-21. CPU Generated Message Encoding
Encoding
Data
Message Type
0
xxxx
Valid Data Transfer
0
FFFF
Command Complete; Status OK
1
0000
Not Ready with Response; Come Again
1
0001
BERR Terminated Bus Cycle; Data Invalid
1
FFFF
Illegal Command
Command and data transfers initiated by the development system should clear bit 16. The
current implementation ignores this bit; however, Motorola reserves the right to use this bit
for future enhancements.
5.6.2.7.1 CPU Serial Logic. CPU serial logic, shown in the left-hand portion of Figure 522, consists of transmit and receive shift registers and of control logic that includes
synchronization, serial clock generation circuitry, and a received bit counter.
Both DSCLK and DSI are synchronized to on-chip clocks, thereby minimizing the chance
of propagating metastable states into the serial state machine. Data is sampled during the
high phase of CLKOUT. At the falling edge of CLKOUT, the sampled value is made
available to internal logic. If there is no synchronization between CPU32 and development
system hardware, the minimum hold time on DSI with respect to DSCLK is one full period
of CLKOUT.
MOTOROLA
MC68340 USER’S MANUAL
5-69
CPU
DEVELOPMENT SYSTEM
INSTRUCTION
REGISTER BUS
DATA
16
16
0
.
RCV DATA LATCH
SERIAL IN
PARALLEL OUT
COMMAND LATCH
DSI
PARALLEL IN
SERIAL OUT
DSO
SERIAL IN
PARALLEL OUT
PARALLEL IN
SERIAL OUT
16
STATUS
RESULT LATCH
EXECUTION
UNIT
16
STATUS
SYNCHRONIZE
MICROSEQUENCER
CONTROL
LOGIC
DSCLK
DATA
CONTROL
LOGIC
SERIAL
CLOCK
Figure 5-22. Debug Serial I/O Block Diagram
The serial state machine begins a sequence of events based on the rising edge of the
synchronized DSCLK (see Figure 5-23). Synchronized serial data is transferred to the
input shift register, and the received bit counter is decremented. One-half clock period
later, the output shift register is updated, bringing the next output bit to the DSO signal.
DSO changes relative to the rising edge of DSCLK and does not necessarily remain
stable until the falling edge of DSCLK.
One clock period after the synchronized DSCLK has been seen internally, the updated
counter value is checked. If the counter has reached zero, the receive data latch is
updated from the input shift register. At this same time, the output shift register is reloaded
with the “not ready/come again” response. Once the receive data latch has been loaded,
the CPU is released to act on the new data. Response data overwrites the “not ready”
response when the CPU has completed the current operation.
Data written into the output shift register appears immediately on the DSO signal. In
general, this action changes the state of the signal from a high (“not ready” response
status bit) to a low (valid data status bit) logic level. However, this level change only
occurs if the command completes successfully. Error conditions overwrite the “not ready”
response with the appropriate response that also has the status bit set.
5-70
MC68340 USER’S MANUAL
MOTOROLA
CLKOUT
FREEZE
DSCLK
DSI
SAMPLE
WINDOW
INTERNAL
SYNCHRONIZED
DSCLK
INTERNAL
SYNCHRONIZED
DSI
DSO
.
CLKOUT
Figure 5-23. Serial Interface Timing Diagram
A user can use the state change on DSO to signal hardware that the next serial transfer
may begin. A timeout of sufficient length to trap error conditions that do not change the
state of DSO should also be incorporated into the design. Hardware interlocks in the CPU
prevent result data from corrupting serial transfers in progress.
5.6.2.7.2 Development System Serial Logic. The development system, as the master of
the serial data link, must supply the serial clock. However, normal and BDM operations
could interact if the clock generator is not properly designed.
Breakpoint requests are made by asserting BKPT to the low state in either of two ways.
The primary method is to assert BKPT during a single bus cycle for which an exception is
desired. Another method is to assert BKPT , then continue to assert it until the CPU32
responds by asserting FREEZE. This method is useful for forcing a transition into BDM
when the bus is not being monitored. Each method requires a slightly different serial logic
design to avoid spurious serial clocks.
Figure 5-24 represents the timing required for asserting BKPT during a single bus cycle.
MOTOROLA
MC68340 USER’S MANUAL
5-71
SHIFT_CLK
FORCE_BGND
BKPT_TAG
BKPT
. . .... .. . . . . .. . . . .
FREEZE
Figure 5-24. BKPT Timing for Single Bus Cycle
Figure 5-25 depicts the timing of the BKPT/FREEZE method. In both cases, the serial
clock is left high after the final shift of each transfer. This technique eliminates the
possibility of accidentally tagging the prefetch initiated at the conclusion of a BDM session.
As mentioned previously, all timing within the CPU is derived from the rising edge of the
clock; the falling edge is effectively ignored.
SHIFT_CLK
FORCE_BGND
BKPT_TAG
BKPT
. . .... .. . . . . .. . . . .. .
FREEZE
Figure 5-25. BKPT Timing for Forcing BDM
Figure 5-26 represents a sample circuit providing for both BKPT assertion methods. As
the name implies, FORCE_BGND is used to force a transition into BDM by the assertion
of BKPT. FORCE_BGND can be a short pulse or can remain asserted until FREEZE is
asserted. Once asserted, the set-reset latch holds BKPT low until the first SHIFT_CLK is
applied.
BKPT_TAG
SHIFT_CLK
...
BKPT/DSCLK
S1
RESET
FORCE_BGND
Q
S2
R
Q
Figure 5-26. BKPT/DSCLK Logic Diagram
BKPT_TAG should be timed to the bus cycles since it is not latched. If extended past the
assertion of FREEZE, the negation of BKPT_TAG appears to the CPU32 as the first
DSCLK.
5-72
MC68340 USER’S MANUAL
MOTOROLA
DSCLK, the gated serial clock, is normally high, but it pulses low for each bit to be
transferred. At the end of the seventeenth clock period, it remains high until the start of the
next transmission. Clock frequency is implementation dependent and may range from DC
to the maximum specified frequency. Although performance considerations might dictate a
hardware implementation, software solutions can be used provided serial bus timing is
maintained.
5.6.2.8 COMMAND SET. The following paragraphs describe the command set available in
BDM.
5.6.2.8.1 Command Format. The following standard bit format is utilized by all BDM
commands.
15
10
OPERATION
9
8
0
R/W
7
6
OP SIZE
5
4
3
0
0
A/D
2
0
REGISTER
EXTENSION WORD(S)
Bits 15–0—Operation Field
The operation field specifies the commands. This 6-bit field provides for a maximum of
64 unique commands.
R/W Field
The R/W field specifies the direction of operand transfer. When the bit is set, the
transfer is from CPU to development system. When the bit is cleared, data is written to
the CPU or to memory from the development system.
Operand Size
For sized operations, this field specifies the operand data size. All addresses are
expressed as 32-bit absolute values. The size field is encoded as listed in Table 5-22.
Table 5-22. Size Field Encoding
Encoding
Operand Size
00
Byte
01
Word
10
Long
11
Reserved
Address/Data (A/D) Field
The A/D field is used by commands that operate on address and data registers. It
determines whether the register field specifies a data or address register. One indicates
an address register; zero indicates a data register. For other commands, this field may
be interpreted differently.
MOTOROLA
MC68340 USER’S MANUAL
5-73
Register Field:
In most commands, this field specifies the register number for operations performed on
an address or data register.
Extension Word(s) (as required):
At this time, no command requires an extension word to specify fully the operation to be
performed, but some commands require extension words for addresses or immediate
data. Addresses require two extension words because only absolute long addressing is
permitted. Immediate data can be either one or two words in length—byte and word
data each require a single extension word, long-word data requires two words. Both
operands and addresses are transferred most significant word first.
5.6.2.8.2 Command Sequence Diagram. A command sequence diagram (see Figure 527) illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each diagram
corresponds to the data transmitted by the development system to the CPU; the bottom
half corresponds to the data returned by the CPU in response to the development system
commands. Command and result transactions are overlapped to minimize latency.
The cycle in which the command is issued contains the development system command
mnemonic (in this example, read memory location). During the same cycle, the CPU
responds with either the lowest order results of the previous command or with a command
complete status (if no results were required).
During the second cycle, the development system supplies the high-order 16 bits of the
memory address. The CPU returns a "not ready" response unless the received command
was decoded as unimplemented, in which case the response data is the illegal command
encoding. If an illegal command response occurs, the development system should
retransmit the command.
NOTE
The “not ready” response can be ignored unless a memory bus
cycle is in progress. Otherwise, the CPU can accept a new
serial transfer with eight system clock periods.
In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The CPU always returns the “not ready” response in this cycle. At the completion
of the third cycle, the CPU initiates a memory read operation. Any serial transfers that
begin while the memory access is in progress return the “not ready” response.
Results are returned in the two serial transfer cycles following the completion of memory
access. The data transmitted to the CPU during the final transfer is the opcode for the
following command. Should a memory access generate either a bus or address error, an
error status is returned in place of the result data.
5-74
MC68340 USER’S MANUAL
MOTOROLA
COMMANDS TRANSMITTED TO THE CPU32
COMMAND CODE TRANSMITTED DURING THIS CYCLE
HIGH-ORDER 16 BITS OF MEMORY ADDRESS
LOW-ORDER 16 BITS OF MEMORY ADDRESS
NONSERIAL-RELATED ACTIVITY
SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED
READ (LONG)
???
MS ADDR
"NOT READY"
LS ADDR
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
READ
MEMORY
LOCATION
XXX
"NOT READY"
NEXT
COMMAND
CODE
XXX
XXX
MS RESULT
NEXT CMD
LS RESULT
XXX
BERR/AERR
NEXT CMD
"NOT READY"
DATA UNUSED FROM
THIS TRANSFER
SEQUENCE TAKEN IF BUS ERROR
OR ADDRESS ERROR OCCURS ON
MEMORY ACCESS
SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY CPU32
RESULTS FROM PREVIOUS COMMAND
HIGH- AND LOW-ORDER
16 BITS OF RESULT
. . .... .. . . . . .. . . . .. .. .. .
RESPONSES FROM THE CPU
Figure 5-27. Command-Sequence Diagram
5.6.2.8.3 Command Set Summary. The BDM command set is summarized in Table 5-23.
Subsequent paragraphs contain detailed descriptions of each command.
MOTOROLA
MC68340 USER’S MANUAL
5-75
Table 5-23. BDM Command Summary
Command
Mnemonic
Description
Read A/D Register
Read the selected address or data register and return the results
via the serial interface.
RAREG/RDREG
Write A/D Register
WAREG/WDREG The data operand is written to the specified address or data
register.
Read System Register
RSREG
The specified system control register is read. All registers that can
be read in supervisor mode can be read in BDM.
Write System Register
WSREG
The operand data is written into the specified system control
register.
Read Memory Location
READ
Read the sized data at the memory location specified by the longword address. The SFC register determines the address space
accessed.
Write Memory Location
WRITE
Write the operand data to the memory location specified by the
long-word address. The DFC register determines the address
space accessed.
Dump Memory Block
DUMP
Used in conjunction with the READ command to dump large blocks
of memory. An initial READ is executed to set up the starting
address of the block and to retrieve the first result. Subsequent
operands are retrieved with the DUMP command.
Fill Memory Block
FILL
Used in conjunction with the WRITE command to fill large blocks of
memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent
operands are written with the FILL command.
Resume Execution
GO
The pipeline is flushed and refilled before resuming instruction
execution at the return PC.
Call User Code
CALL
Current PC is stacked at the location of the current SP. Instruction
execution begins at user patch code.
Reset Peripherals
RST
Asserts RESET for 512 clock cycles. The CPU is not reset by this
command. Synonymous with the CPU RESET instruction.
No Operation
NOP
NOP performs no operation and may be used as a null command.
5.6.2.8.4 Read A/D Register (RAREG/RDREG). Read the selected address or data
register and return the results via the serial interface.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
3
0
0
1
0
0
0
0
1
1
0
0
0
A/D
2
1
0
REGISTER
Command Sequence:
RDREG/RAREG
???
XXX
MS RESULT
NEXT CMD
LS RESULT
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
Operand Data:
None
5-76
MC68340 USER’S MANUAL
MOTOROLA
Result Data:
The contents of the selected register are returned as a long-word value. The data is
returned most significant word first.
5.6.2.8.5 Write A/D Register (WAREG/WDREG). The operand (long-word) data is written
to the specified address or data register. All 32 bits of the register are altered by the write.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
3
0
0
1
0
0
0
0
0
1
0
0
0
A/D
2
0
REGISTER
Command Sequence:
WDREG/WAREG
???
MS DATA
"NOT READY"
LS DATA
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
NEXT CMD
"CMD COMPLETE"
Operand Data:
Long-word data is written into the specified address or data register. The data is
supplied most significant word first.
Result Data:
Command complete status ($0FFFF) is returned when register write is complete.
5.6.2.8.6 Read System Register (RSREG). The specified system control register is read.
All registers that can be read in supervisor mode can be read in BDM. Several internal
temporary registers are also accessible.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
0
0
1
0
0
1
0
0
1
0
0
0
3
0
REGISTER
Command Sequence:
RSREG
???
XXX
MS RESULT
NEXT CMD
LS RESULT
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
Operand Data:
None
MOTOROLA
MC68340 USER’S MANUAL
5-77
Result Data:
Always returns 32 bits of data, regardless of the size of the register being read. If the
register is less than 32 bits, the result is returned zero extended.
Register Field:
The system control register is specified by the register field (see Table 5-24).
Table 5-24. Register Field for RSREG and WSREG
System Register
Select Code
Return Program Counter (RPC)
0000
Current Instruction Program Counter (PCC)
0001
Status Register (SR)
1011
User Stack Pointer (USP)
1100
Supervisor Stack Pointer (SSP)
1101
Source Function Code Register (SFC)
1110
Destination Function Code Register (DFC)
1111
Temporary Register A (ATEMP)
1000
Fault Address Register (FAR)
1001
Vector Base Register (VBR)
1010
5.6.2.8.7 Write System Register (WSREG). Operand data is written into the specified
system control register. All registers that can be written in supervisor mode can be written
in BDM. Several internal temporary registers are also accessible.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
0
0
1
0
0
1
0
0
1
0
0
0
3
0
REGISTER
Command Sequence:
WSREG
???
MS DATA
"NOT READY"
LS DATA
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
NEXT CMD
"CMD COMPLETE"
Operand Data:
The data to be written into the register is always supplied as a 32-bit long word. If the
register is less than 32 bits, the least significant word is used.
Result Data:
“Command complete” status is returned when register write is complete.
5-78
MC68340 USER’S MANUAL
MOTOROLA
Register Field:
The system control register is specified by the register field (see Table 5-24). The FAR
is a read-only register—any write to it is ignored.
5.6.2.8.8 Read Memory Location (READ). Read the sized data at the memory location
specified by the long-word address. Only absolute addressing is supported. The SFC
register determines the address space accessed. Valid data sizes include byte, word, or
long word.
Command Format:
15
14
13
12
11
10
9
8
7
6
0
0
0
1
1
0
0
1
OP SIZE
5
4
3
2
1
0
0
0
0
0
0
0
Command Sequence:
READ (B/W)
???
MS ADDR
"NOT READY"
LS ADDR
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
READ
MEMORY
LOCATION
XXX
"NOT READY"
NEXT CMD
RESULT
XXX
BERR/AERR
READ (LONG)
???
MS ADDR
"NOT READY"
LS ADDR
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
READ
MEMORY
LOCATION
NEXT CMD
"NOT READY"
XXX
"NOT READY"
XXX
MS RESULT
NEXT CMD
LS RESULT
XXX
BERR/AERR
NEXT CMD
"NOT READY"
Operand Data:
The single operand is the long-word address of the requested memory location.
Result Data:
The requested data is returned as either a word or long word. Byte data is returned in
the least significant byte of a word result, with the upper byte cleared. Word results
return 16 bits of significant data; long-word results return 32 bits.
A successful read operation returns data bit 16 cleared. If a bus or address error is
encountered, the returned data is $10001.
5.6.2.8.9 Write Memory Location (WRITE). Write the operand data to the memory
location specified by the long-word address. The DFC register determines the address
MOTOROLA
MC68340 USER’S MANUAL
5-79
space accessed. Only absolute addressing is supported. Valid data sizes include byte,
word, and long word.
Command Format:
15
14
13
12
11
10
9
8
7
6
0
0
0
1
1
0
0
0
OP SIZE
5
4
3
2
1
0
0
0
0
0
0
0
Command Sequence:
WRITE (B/W)
???
MS ADDR
"NOT READY"
LS ADDR
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
DATA
"NOT READY"
WRITE
MEMORY
LOCATION
XXX
"NOT READY"
XXX CMD
NEXT
"CMD COMPLETE"
XXX
BERR/AERR
NEXT CMD
"NOT READY"
WRITE (LONG)
???
MS ADDR
"NOT READY"
XXX
"ILLEGAL"
LS ADDR
"NOT READY"
MS DATA
"NOT READY"
NEXT CMD
"NOT READY"
LS DATA
"NOT READY"
WRITE
MEMORY
LOCATION
XXX
"NOT READY"
NEXT
XXX CMD
"CMD COMPLETE"
XXX
BERR/AERR
NEXT CMD
"NOT READY"
Operand Data:
Two operands are required for this instruction. The first operand is a long-word absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least
significant byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.
Result Data:
Successful write operations return a status of $0FFFF. Bus or address errors on the
write cycle are indicated by the assertion of bit 16 in the status message and by a data
pattern of $0001.
5.6.2.8.10 Dump Memory Block (DUMP). DUMP is used in conjunction with the READ
command to dump large blocks of memory. An initial READ is executed to set up the
5-80
MC68340 USER’S MANUAL
MOTOROLA
starting address of the block and to retrieve the first result. Subsequent operands are
retrieved with the DUMP command. The initial address is incremented by the operand size
(1, 2, or 4) and saved in a temporary register. Subsequent DUMP commands use this
address, increment it by the current operand size, and store the updated address back in
the temporary register.
NOTE
The DUMP command does not check for a valid address in the
temporary register—DUMP is a valid command only when
preceded by another DUMP or by a READ command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.
The size field is examined each time a DUMP command is given, allowing the operand
size to be altered dynamically.
Command Format:
15
14
13
12
11
10
9
8
7
0
0
0
1
1
1
0
1
OP SIZE
6
5
4
3
2
1
0
0
0
0
0
0
0
Command Sequence:
DUMP (LONG)
???
READ
MEMORY
LOCATION
XXX
"NOT READY"
NEXT CMD
RESULT
DUMP (LONG)
???
READ
MEMORY
LOCATION
XXX
BERR/AERR
NEXT CMD
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
XXX
"NOT READY"
NEXT CMD
MS RESULT
MOTOROLA
NEXT CMR
LS RESULT
XXX
BERR/AERR
NEXT CMD
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
MC68340 USER’S MANUAL
5-81
Operand Data:
None
Result Data:
Requested data is returned as either a word or long word. Byte data is returned in the
least significant byte of a word result. Word results return 16 bits of significant data;
long-word results return 32 bits. Status of the read operation is returned as in the READ
command: $0xxxx for success, $10001 for bus or address errors.
5.6.2.8.11 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE
command to fill large blocks of memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent operands are written
with the FILL command. The initial address is incremented by the operand size (1, 2, or 4)
and is saved in a temporary register. Subsequent FILL commands use this address,
increment it by the current operand size, and store the updated address back in the
temporary register.
NOTE
The FILL command does not check for a valid address in the
temporary register—FILL is a valid command only when
preceded by another FILL or by a WRITE command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.
The size field is examined each time a FILL command is given, allowing the operand size
to be altered dynamically.
Command Format:
15
14
13
12
11
10
9
8
7
0
0
0
1
1
1
0
0
OP SIZE
5-82
6
MC68340 USER’S MANUAL
5
4
3
2
1
0
0
0
0
0
0
0
MOTOROLA
Command Sequence:
FILL (B/W)
???
WRITE
MEMORY
LOCATION
LS DATA
"NOT READY"
MS DATA
"NOT READY"
XXX
"ILLEGAL"
XXX
"NOT READY"
NEXT CMD
"CMD COMPLETE"
NEXT CMD
"NOT READY"
XXX
BERR/AERR
FILL (LONG)
???
DATA
"NOT READY"
WRITE
MEMORY
LOCATION
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
NEXT CMD
"NOT READY"
XXX
"NOT READY"
NEXT CMD
"CMD COMPLETE"
NEXT CMD
"NOT READY"
XXX
BERR/AERR
Operand Data:
A single operand is data to be written to the memory location. Byte data is transmitted
as a 16-bit word, justified in the least significant byte; 16- and 32-bit operands are
transmitted as 16 and 32 bits, respectively.
Result Data:
Status is returned as in the WRITE command: $0FFFF for a successful operation and
$10001 for a bus or address error during write.
5.6.2.8.12 Resume Execution (GO). The pipeline is flushed and refilled before normal
instruction execution is resumed. Prefetching begins at the return PC and current privilege
level. If either the PC or SR is altered during BDM, the updated value of these registers is
used when prefetching commences.
NOTE
The processor exits BDM when a bus error or address error
occurs on the first instruction prefetch from the new PC—the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
MOTOROLA
MC68340 USER’S MANUAL
5-83
Command Sequence:
GO
???
NORMAL
MODE
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
Operand Data:
None
Result Data:
None
5.6.2.8.13 Call User Code (CALL). This instruction provides a convenient way to patch
user code. The return PC is stacked at the location pointed to by the current SP. The
stacked PC serves as a return address to be restored by the RTS command that
terminates the patch routine. After stacking is complete, the 32-bit operand data is loaded
into the PC. The pipeline is flushed and refilled from the location pointed to by the new
PC, BDM is exited, and normal mode instruction execution begins.
NOTE
If a bus error or address error occurs during return address
stacking, the CPU returns an error status via the serial
interface and remains in BDM.
If a bus error or address error occurs on the first instruction
prefetch from the new PC, the processor exits BDM and the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
5-84
MC68340 USER’S MANUAL
MOTOROLA
Command Sequence:
CALL
???
MS ADDR
"NOT READY"
LS ADDR
"NOT READY"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
STACK
RETURN PC
FREEZE
NEGATED
PREFETCH
STARTED
NORMAL
MODE
XXX
BERR/AERR
NEXT CMD
"NOT READY"
Operand Data:
The 32-bit operand data is the starting location of the patch routine, which is the initial
PC upon exiting BDM.
Result Data:
None
As an example, consider the following code segment. It outputs a character from the
MC68340 serial module channel A.
CHKSTAT:
MOVE.B
BNE.B
MOVE.B
SRA,D0
CHKSTAT
TBA,OUTPUT
Move serial status to D0
Loop until condition true
Transmit character
MISSING:
ANDI.B
RTS
#3,D0
Check for TxEMP flag
BDM and the CALL command can be used to patch the code as follows:
1.
2.
3.
4.
5.
6.
Breakpoint user program at CHKSTAT
Enter BDM
Execute CALL command to MISSING
Exit BDM
Execute MISSING code
Return to user program
5.6.2.8.14 Reset Peripherals (RST). RST asserts RESET for 512 clock cycles. The CPU
is not reset by this command. This command is synonymous with the CPU RESET
instruction.
MOTOROLA
MC68340 USER’S MANUAL
5-85
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Command Sequence:
RESET
???
ASSERT
RESET
XXX
"NOT READY"
NEXT CMD
"CMD COMPLETE"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
Operand Data:
None
Result Data:
The “command complete” response ($0FFFF) is loaded into the serial shifter after
negation of RESET.
5.6.2.8.15 No Operation (NOP). NOP performs no operation and may be used as a null
command where required.
Command Format:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Command Sequence:
NOP
???
NEXT CMD
"CMD COMPLETE"
XXX
"ILLEGAL"
NEXT CMD
"NOT READY"
Operand Data:
None
Result Data:
The “command complete” response ($0FFFF) is returned during the next shift
operation.
5-86
MC68340 USER’S MANUAL
MOTOROLA
5.6.2.8.16 Future Commands. Unassigned command opcodes are reserved by Motorola
for future expansion. All unused formats within any revision level will perform a NOP and
return the ILLEGAL command response.
5.6.3 Deterministic Opcode Tracking
The CPU32 utilizes deterministic opcode tracking to trace program execution. Two
signals, IPIPE and IFETCH, provide all information required to analyze instruction pipeline
operation.
5.6.3.1 INSTRUCTION FETCH (IFETCH ) . IFETCH indicates which bus cycles are
accessing data to fill the instruction pipeline. IFETCH is pulse-width modulated to
multiplex two indications on a single pin. Asserted for a single clock cycle, IFETCH
indicates that the data from the current bus cycle is to be routed to the instruction pipeline.
IFETCH held low for two clock cycles indicates that the instruction pipeline has been
flushed. The data from the bus cycle is used to begin filling the empty pipeline. Both user
and supervisor mode fetches are signaled by IFETCH.
Proper tracking of bus cycles via IFETCH on a fast bus requires a simple state machine.
On a two-clock bus, IFETCH may signal a pipeline flush with associated prefetch followed
immediately by a second prefetch. That is, IFETCH remains asserted for three clocks, two
clocks indicating the flush/fetch and a third clock signaling the second fetch. These two
operations are easily discerned if the tracking logic samples IFETCH on the two rising
edges of CLKOUT, which follow the AS ( DS during show cycles) falling edge. Three-clock
and slower bus cycles allow time for negation of the signal between consecutive
indications and do not experience this operation.
5.6.3.2 INSTRUCTION PIPE (IPIPE ) . The internal instruction pipeline can be modeled as
a three-stage FIFO (see Figure 5-28). Stage A is an input buffer—data can be used out of
stages B and C. IPIPE signals advances of instructions in the pipeline.
Instruction register A (IRA) holds incoming words as they are prefetched. No decoding
takes place in the buffer. Instruction register B (IRB) provides initial decoding of the
opcode and decoding of extension words; it is a source of immediate data. Instruction
register C (IRC) supplies residual opcode decoding during instruction execution.
DATA
BUS
I
I
I
R
R
R
A
B
C
EXTENSION
WORDS
OPCODES
RESIDUAL
.
Figure 5-28. Functional Model of Instruction Pipeline
MOTOROLA
MC68340 USER’S MANUAL
5-87
Assertion of IPIPE for a single clock cycle indicates the use of data from IRB. Regardless
of the presence of valid data in IRA, the contents of IRB are invalidated when IPIPE is
asserted. If IRA contains valid data, the data is copied into IRB (IRA ⇒ IRB), and the IRB
stage is revalidated.
Assertion of IPIPE for two clock cycles indicates the start of a new instruction and
subsequent replacement of data in IRC. This action causes a full advance of the pipeline
(IRB ⇒ IRC and IRA ⇒ IRB). IRA is refilled during the next instruction fetch bus cycle.
Data loaded into IRA propagates automatically through subsequent empty pipeline stages.
Signals that show the progress of instructions through IRB and IRC are necessary to
accurately monitor pipeline operation. These signals are provided by IRA and IRB validity
bits. When a pipeline advance occurs, the validity bit of the stage being loaded is set, and
the validity bit of the stage supplying the data is negated.
Because instruction execution is not timed to bus activity, IPIPE is synchronized with the
system clock, not the bus. Figure 5-29 illustrates the timing in relation to the system clock.
IR
IR
IR
IRB
IR
IRC
IR
IRB
.. .
IR
IR
IR
IRC
CLKOUT
IPIPE
EXTENSION
WORD USED
INSTRUCTION
START
EXTENSION
WORD USED
INSTRUCTION
START
Figure 5-29. Instruction Pipeline Timing Diagram
IPIPE should be sampled on the falling edge of the clock. The assertion of IPIPE for a
single cycle after one or more cycles of negation indicates use of the data in IRB (advance
of IRA into IRB). Assertion for two clock cycles indicates that a new instruction has started
(IRB ⇒ IRC and IRA ⇒ IRB transfers have occurred). Loading IRC always indicates that
an instruction is beginning execution—the opcode is loaded into IRC by the transfer.
In some cases, instructions using immediate addressing begin executing and initiate a
second pipeline advance simultaneously at the same time. IPIPE will not be negated
between the two indications, which implies the need for a state machine to track the state
of IPIPE. The state machine can be resynchronized during periods of inactivity on the
signal.
5.6.3.3 OPCODE TRACKING DURING LOOP MODE. IPIPE and IFETCH continue to
work normally during loop mode. IFETCH indicates all instruction fetches up through the
point that data begins recirculating within the instruction pipeline. IPIPE continues to
signal the start of instructions and the use of extension words even though data is being
recirculated internally. IFETCH returns to normal operation with the first fetch after exiting
loop mode.
5-88
MC68340 USER’S MANUAL
MOTOROLA
5.7 INSTRUCTION EXECUTION TIMING
This section describes the instruction execution timing of the CPU32. External clock
cycles are used to provide accurate execution and operation timing guidelines, but not
exact timing for every possible circumstance. This approach is used because exact
execution time for an instruction or operation depends on concurrence of independently
scheduled resources, on memory speeds, and on other variables.
An assembly language programmer or compiler writer can use the information in this
section to predict the performance of the CPU32. Additionally, timing for exception
processing is included so that designers of multitasking or real-time systems can predict
task-switch overhead, maximum interrupt latency, and similar timing parameters.
Instruction timing is given in clock cycles to eliminate clock frequency dependency.
5.7.1 Resource Scheduling
The CPU32 contains several independently scheduled resources. The organization of
these resources within the CPU32 is shown in Figure 5-30. Some variation in instruction
execution timing results from concurrent resource utilization. Because resource
scheduling is not directly related to instruction boundaries, it is impossible to make an
accurate prediction of the time required to complete an instruction without knowing the
entire context within which the instruction is executing.
5.7.1.1 MICROSEQUENCER. The microsequencer either executes microinstructions or
awaits completion of accesses necessary to continue microcode execution. The
microsequencer supervises the bus controller, instruction execution, and internal
processor operations such as calculation of EA and setting of condition codes. It also
initiates instruction word prefetches after a change of flow and controls validation of
instruction words in the instruction pipeline.
5.7.1.2 INSTRUCTION PIPELINE. The CPU32 contains a two-word instruction pipeline
where instruction opcodes are decoded. Each stage of the pipeline is initially filled under
microsequencer control and subsequently refilled by the prefetch controller as it empties.
Stage A of the instruction pipeline is a buffer. Prefetches completed on the bus before
stage B empties are temporarily stored in this buffer. Instruction words (instruction
operation words and all extension words) are decoded at stage B. Residual decoding and
execution occur in stage C.
Each pipeline stage has an associated status bit that shows whether the word in that
stage was loaded with data from a bus cycle that terminated abnormally.
5.7.1.3 BUS CONTROLLER RESOURCES. The bus controller consists of the instruction
prefetch controller, the write pending buffer, and the microbus controller. These three
resources transact all reads, writes, and instruction prefetches required for instruction
execution.
MOTOROLA
MC68340 USER’S MANUAL
5-89
The bus controller and microsequencer operate concurrently. The bus controller can
perform a read or write or schedule a prefetch while the microsequencer controls EA
calculation or sets condition codes.
The microsequencer can also request a bus cycle that the bus controller cannot perform
immediately. When this happens, the bus cycle is queued, and the bus controller runs the
cycle when the current cycle is complete.
INSTRUCTION PIPELINE
MICROSEQUENCER AND CONTROL
STAGE
B
STAGE
C
CONTROL STORE
CONTROL LOGIC
EXECUTION UNIT
PROGRAM
COUNTER
SECTION
DATA
SECTION
WRITE-PENDING
BUFFER
DATA
BUS
PREFETCH
CONTROLLER
ADDRESS
BUS
MICROBUS
CONTROLLER
BUS CONTROL
SIGNALS
Figure 5-30. Block Diagram of Independent Resources
5.7.1.3.1 Prefetch Controller. The instruction prefetch controller receives an initial
request from the microsequencer to initiate prefetching at a given address. Subsequent
prefetches are initiated by the prefetch controller whenever a pipeline stage is invalidated,
either through instruction completion or through use of extension words. Prefetch occurs
as soon as the bus is free of operand accesses previously requested by the
microsequencer. Additional state information permits the controller to inhibit prefetch
requests when a change in instruction flow (e.g., a jump or branch instruction) is
anticipated.
In a typical program, 10 to 25 percent of the instructions cause a change of flow. Each
time a change occurs, the instruction pipeline must be flushed and refilled from the new
instruction stream. If instruction prefetches, rather than operand accesses, were given
5-90
MC68340 USER’S MANUAL
MOTOROLA
priority, many instruction words would be flushed unused, and necessary operand cycles
would be delayed. To maximize available bus bandwidth, the CPU32 will schedule a
prefetch only when the next instruction is not a change-of-flow instruction and when there
is room in the pipeline for the prefetch.
5.7.1.3.2 Write Pending Buffer. The CPU32 incorporates a single-operand write pending
buffer. The buffer permits the microsequencer to continue execution after a request for a
write cycle is queued in the bus controller. The time needed for a write at the end of an
instruction can overlap the head cycle time for the following instruction, thus reducing
overall execution time. Interlocks prevent the microsequencer from overwriting the buffer.
5.7.1.3.3 Microbus Controller. The microbus controller performs bus cycles issued by
the microsequencer. Operand accesses always have priority over instruction prefetches.
Word and byte operands are accessed in a single CPU-initiated bus cycle, although the
external bus interface may be required to initiate a second cycle when a word operand is
sent to a byte-sized external port. Long operands are accessed in two bus cycles, most
significant word first.
The instruction pipeline is capable of recognizing instructions that cause a change of flow.
It informs the bus controller when a change of flow is imminent, and the bus controller
refrains from starting prefetches that would be discarded due to the change of flow.
5.7.1.4 INSTRUCTION EXECUTION OVERLAP. Overlap is the time, measured in clock
cycles, that an instruction executes concurrently with the previous instruction. As shown in
Figure 5-31, portions of instructions A and B execute simultaneously, reducing total
execution time. Because portions of instructions B and C also overlap, overall execution
time for all three instructions is also reduced.
Each instruction contributes to the total overlap time. The portion of execution time at the
end of instruction A that can overlap the beginning of instruction B is called the tail of
instruction A. The portion of execution time at the beginning of instruction B that can
overlap the end of instruction A is called the head of instruction B. The total overlap time
between instructions A and B is the smaller tail of A and the head of B.
INSTRUCTION A
INSTRUCTION B
INSTRUCTION C
OVERLAP
OVERLAP
Figure 5-31. Simultaneous Instruction Execution
MOTOROLA
MC68340 USER’S MANUAL
5-91
The execution time attributed to instructions A, B, and C after considering the overlap is
illustrated in Figure 5-32. The overlap time is attributed to the execution time of the
completing instruction. The following equation shows the method for calculating the
overlap time:
Overlap = min (Tail N, HeadN+1 )
INSTRUCTION A
INSTRUCTION B
INSTRUCTION C
OVERLAP
PERIOD
OVERLAP
PERIOD
(ABSORBED BY
INSTRUCTION A)
(ABSORBED BY
INSTRUCTION B)
Figure 5-32. Attributed Instruction Times
5.7.1.5 EFFECTS OF WAIT STATES. The CPU32 access time for on-chip peripherals is
two clocks. While two-clock external accesses are possible when the bus is operated in a
synchronous mode, a typical external memory speed is three or more clocks.
All instruction times listed in this section are for word access only (unless an explicit
exception is given), and are based on the assumption that both instruction fetches and
operand cycles are to a two-clock memory. Any time a long access is made, time for the
additional bus cycle(s) must be added to the overall execution time. Wait states due to
slow external memory must be added to the access time for each bus cycle.
A typical application has a mixture of bus speeds—program execution from an off-chip
ROM, accesses to on-chip peripherals, storage of variables in slow off-chip RAM, and
accesses to external peripherals with speeds ranging from moderate to very slow. To
arrive at an accurate instruction time calculation, each bus access must be individually
considered. Many instructions have a head cycle count, which can overlap the cycles of
an operand fetch to slower memory started by a previous instruction. In these cases, an
increase in access time has no effect on the total execution time of the pair of instructions.
To trace instruction execution time by monitoring the external bus, note that the order of
operand accesses for a particular instruction sequence is always the same provided bus
speed is unchanged and the interleaving of instruction prefetches with operands within
each sequence is identical.
5.7.1.6 INSTRUCTION EXECUTION TIME CALCULATION. The overall execution time
for an instruction depends on the amount of overlap with previous and subsequent
instructions. To calculate an instruction time estimate, the entire code sequence must be
5-92
MC68340 USER’S MANUAL
MOTOROLA
analyzed. To derive the actual instruction execution times for an instruction sequence, the
instruction times listed in the tables must be adjusted to account for overlap.
The formula for this calculation is as follows:
C1 − min (T1 , H2 ) + C 2 − min (T2 , H3 ) + C 3 − min (T3 , H4 ) + .. .. .
where:
CN is the number of cycles listed for instruction N
TN is the tail time for instruction N
HN is the head time for instruction N
min (T N, HM) is the minimum of parameters T N and HM
The number of cycles for the instruction (CN) can include one or two EA calculations in
addition to the raw number in the cycles column. In these cases, calculate overall
instruction time as if it were for multiple instructions, using the following equation:
〈CEA〉 − min (T EA, HOP) + C OP
where:
〈CEA〉 is the instruction’s EA time
COP is the instruction’s operation time
TEA is the EA’s tail time
HOP is the instruction operation’s head time
min (T N, HM) is the minimum of parameters T N and HM
The overall head for the instruction is the head for the EA, and the overall tail for the
instruction is the tail for the operation. Therefore, the actual equation for execution time
becomes:
COP1 − min (TOP1 , HEA2 ) + 〈CEA〉2 − min (TEA2 , HOP2 ) + C OP2 − min (TOP2 , HEA3 ) + . . .
Every instruction must prefetch to replace itself in the instruction pipe. Usually, these
prefetches occur during or after an instruction. A prefetch is permitted to begin in the first
clock of any indexed EA mode operation.
Additionally, a prefetch for an instruction is permitted to begin two clocks before the end of
an instruction provided the bus is not being used. If the bus is being used, then the
prefetch occurs at the next available time when the bus would otherwise be idle.
5.7.1.7 EFFECTS OF NEGATIVE TAILS. When the CPU32 changes instruction flow, the
instruction decode pipeline must begin refilling before instruction execution can resume.
Refilling forces a two-clock idle period at the end of the change-of-flow instruction. This
idle period can be used to prefetch an additional word on the new instruction path.
MOTOROLA
MC68340 USER’S MANUAL
5-93
Because of the stipulation that each instruction must prefetch to replace itself, the concept
of negative tails has been introduced to account for these free clocks on the bus.
On a two-clock bus, it is not necessary to adjust instruction timing to account for the
potential extra prefetch. The cycle times of the microsequencer and bus are matched, and
no additional benefit or penalty is obtained. In the instruction execution time equations, a
zero should be used instead of a negative number.
Negative tails are used to adjust for slower fetches on slower buses. Normally, increasing
the length of prefetch bus cycles directly affects the cycle count and tail values found in
the tables.
In the following equations, negative tail values are used to negate the effects of a slower
bus. The equations are generalized, however, so that they may be used on any speed bus
with any tail value.
NEW_TAIL = OLD_TAIL + (NEW_CLOCK – 2)
IF ((NEW_CLOCK – 4) >0) THEN
NEW_CYCLE = OLD_CYCLE + (NEW_CLOCK -2) + (NEW_CLOCK – 4)
ELSE
NEW_CYCLE = OLD_CYCLE + (NEW _CLOCK – 2)
where:
NEW_TAIL/NEW_CYCLE
OLD_TAIL/OLD_CYCLE
NEW_CLOCK
is the adjusted tail/cycle at the slower speed
is the value listed in the instruction timing tables
is the number of clocks per cycle at the slower speed
Note that many instructions listed as having negative tails are change-of-flow instructions
and that the bus speed used in the calculation is that of the new instruction stream.
5.7.2 Instruction Stream Timing Examples
The following programming examples provide a detailed examination of timing effects. In
all examples, the memory access is from external synchronous memory, the bus is idle,
and the instruction pipeline is full at the start.
5.7.2.1 TIMING EXAMPLE 1—EXECUTION OVERLAP. Figure 5-33 illustrates execution
overlap caused by the bus controller's completion of bus cycles while the sequencer is
calculating the next EA. One clock is saved between instructions since that is the
minimum time of the individual head and tail numbers.
Instructions
MOVE.W
ADDQ.W
CLR.W
5-94
A1, (A0) +
#1, (A0)
$30 (A1)
MC68340 USER’S MANUAL
MOTOROLA
1
2
3
4
5
6
7
8
9
0
1
2
4
3
5
6
7
8
CLOCK
1 PREFETCH
BUS
CONTROLLER
WRITE
FOR 1
INSTRUCTION
CONTROLLER
MOVE A1,(AO)+
EXECUTION
TIME
READ
FOR 2
EA FETCH
ADDQ
2 PREFETCH
WRITE
FOR 2
ADDQ
TO
MOVE.W A1,(AO)+
3 PREFETCH
EA CALC
CLR
3 PREFETCH
WRITE
FOR 3
CLR
CLR.W $30(A1)
ADDQ.W #1,(AO)
Figure 5-33. Example 1—Instruction Stream
5.7.2.2 TIMING EXAMPLE 2—BRANCH INSTRUCTIONS. Example 2 shows what
happens when a branch instruction is executed for both the taken and not-taken cases.
(see Figures 5-34 and 5-35). The instruction stream is for a simple limit check with the
variable already in a data register.
Instructions
MOVEQ
CMP.L
BLE.B
MOVE.L
1
2
3
4
5
6
#7, D1
D1, D0
NEXT
D1, (A0)
7
8
9
0
1
2
4
3
CLOCK
BUS
CONTROLLER
1 PREFETCH
2 PREFETCH
INSTRUCTION
CONTROLLER
MOVEQ
CMP
EXECUTION
TIME
MOVEQ
#7,D1
CMP
D1,D0
OFFSET
CALC
PREFETCH
PREFETCH
TAKEN
TAKEN
PREFETCH
TAKEN
WRITE
FOR 3
NEXT
INST.
BLE.B NOT TAKEN
Figure 5-34. Example 2—Branch Taken
MOTOROLA
MC68340 USER’S MANUAL
5-95
1
2
3
4
5
6
7
8
9
0
1
2
4
3
CLOCK
BUS
CONTROLLER
1 PREFETCH
2 PREFETCH
INSTRUCTION
CONTROLLER
MOVEQ
CMP
EXECUTION
TIME
MOVEQ
#7,D1
CMP
D1,D0
OFFSET
CALC
3 PREFETCH
4 PREFETCH
NOT
TAKEN
MOVE TO
(A0)
BLE.B NOT TAKEN
WRITE
FOR 4
WRITE
FOR 4
MOVE.L D1,(AO)
Figure 5-35. Example 2—Branch Not Taken
5.7.2.3 TIMING EXAMPLE 3—NEGATIVE TAILS. This example (see Figure 5-36) shows
how to use negative tail figures for branches and other change-of-flow instructions. In this
example, bus speed is assumed to be four clocks per access. Instruction three is at the
branch destination.
Although the CPU32 has a two-word instruction pipeline, internal delay causes minimum
branch instruction time to be three bus cycles. The negative tail is a reminder that an extra
two clocks are available for prefetching a third word on a fast bus; on a slower bus, there
is no extra time for the third word.
Instructions
MOVEQ
BRA.W
MOVE.L
1
2
3
4
5
6
7
#7, D1
FARAWAY
D1, D0
8
9
0
1
2
3
4
5
6
7
8
9
CLOCK
BUS
CONTROLLER
INSTRUCTION
CONTROLLER
EXECUTION
TIME
BRANCH OFFSET
MOVEQ
MOVEQ #7,D1
FETCH MOVE.L
OFFSET
CALC
TAKEN
FETCH NEXT
INSTRUCTION
TAKEN
BRA.W FARAWAY
PREFETCH
MOVE
TO D0
MOVE.L D1,D0
Figure 5-36. Example 3—Branch Negative Tail
5-96
MC68340 USER’S MANUAL
MOTOROLA
Example 3 illustrates three different aspects of instruction time calculation:
1. The branch instruction does not attempt to prefetch beyond the minimum number of
words needed for itself.
2. The negative tail allows execution to begin sooner than a three-word pipeline would
allow.
3. There is a one-clock delay due to late arrival of the displacement at the CPU.
Only changes of flow require negative tail calculation, but the concept can be generalized
to any instruction—only two words are required to be in the pipeline, but up to three words
may be present. When there is an opportunity for an extra prefetch, it is made. A prefetch
to replace an instruction can begin ahead of the instruction, resulting in a faster processor.
5.7.3 Instruction Timing Tables
The following assumptions apply to the times shown in the subsequent tables.
—A 16-bit data bus is used for all memory accesses.
—Memory access times are based on two clock bus cycles with no wait states.
—The instruction pipeline is full at the beginning of the instruction and is refilled by
the end of the instruction.
Three values are listed for each instruction and addressing mode:
Head:
The number of cycles available at the beginning of an instruction to complete a
previous instruction write or to perform a prefetch.
Tail:
The number of cycles an instruction uses to complete a write.
Cycles: Four numbers per entry, three contained in parentheses. The outer number is the
minimum number of cycles required for the instruction to complete. Numbers
within the parentheses represent the number of bus accesses performed by the
instruction. The first number is the number of operand read accesses performed
by the instruction. The second number is the number of instruction fetches
performed by the instruction, including all prefetches that keep the instruction and
the instruction pipeline filled. The third number is the number of write accesses
performed by the instruction.
As an example, consider an ADD.L (12, A3, D7.W ∗ 4), D2 instruction.
Paragraph 5.7.3.5 Arithmetic/Logic Instructions shows that the instruction has a head =
0, a tail = 0, and cycles = 2 (0/1/0). However, in indexed, address register indirect
addressing mode, additional time is required to fetch the EA. Paragraph 5.7.3.1 Fetch
Effective Address gives addressing mode data. For (d 8 , An, Xn.Sz ∗ Scale), head = 4,
tail = 2, cycles = 8 (2/1/0). Because this example is for a long access and the fetch EA
table lists data for word accesses, add two clocks to the tail and to the number of cycles
(“X” in table notation) to obtain head = 4, tail = 4, cycles = 10 (2/1/0).
Assuming that no trailing write exists from the previous instruction, EA calculation requires
six clocks. Replacement fetch for the EA occurs during these six clocks, leaving a head of
MOTOROLA
MC68340 USER’S MANUAL
5-97
four. If there is no time in the head to perform a prefetch due to a previous trailing write,
then additional time to perform the prefetches must be allotted in the middle of the
instruction or after the tail.
8 (2 /1 /0)
TOTAL NUMBER OF CLOCKS
NUMBER OF READ CYCLES
NUMBER OF INSTRUCTION ACCESS CYCLES
NUMBER OF WRITE CYCLES
The total number of clocks for bus activity is as follows:
(2 Reads × 2 Clocks/Read) + (1 Instruction Access × 2 Clocks/Access) +
(0 Writes × 2 Clocks/Write) = 6 Clocks of Bus Activity
The number of internal clocks (not overlapped by bus activity) is as follows:
10 Clocks Total − 6 Clocks Bus Activity = 4 Internal Clocks
Memory read requires two bus cycles at two clocks each. This read time, implied in the tail
figure for the EA, cannot be overlapped with the instruction because the instruction has a
head of zero. An additional two clocks are required for the ADD instruction itself. The total
is 6 + 4 + 2 = 12 clocks. If bus cycles take more time (i.e., the memory is off-chip), add an
appropriate number of clocks to each memory access.
The instruction sequence MOVE.L D0, (A0) followed by LSL.L #7, D2 provides an
example of overlapped execution. The MOVE instruction has a head of zero and a tail of
four because it is a long write. The LSL instruction has a head of four. The trailing write
from the MOVE overlaps the LSL head completely. Thus, the two-instruction sequence
has a head of zero and a tail of zero, and a total execution of 8 rather than 12 clocks.
General observations regarding calculation of execution time are as follows:
• Any time the number of bus cycles is listed as "X", substitute a value of one for byte
and word cycles and a value of two for long cycles. For long bus cycles, usually add a
value of two to the tail.
• The time calculated for an instruction on a three-clock (or longer) bus is usually longer
than the actual execution time. All times shown are for two-clock bus cycles.
• If the previous instruction has a negative tail, then a prefetch for the current
instruction can begin during the execution of that previous instruction.
• Certain instructions requiring an immediate extension word (immediate word EA,
absolute word EA, address register indirect with displacement EA, conditional
branches with word offsets, bit operations, LPSTOP, TBL, MOVEM, MOVEC,
MOVES, MOVEP, MUL.L, DIV.L, CHK2, CMP2, and DBcc) are not permitted to begin
until the extension word has been in the instruction pipeline for at least one cycle.
This does not apply to long offsets or displacements.
5-98
MC68340 USER’S MANUAL
MOTOROLA
5.7.3.1 FETCH EFFECTIVE ADDRESS. The fetch EA table indicates the number of clock
periods needed for the processor to calculate and fetch the specified EA. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.
Instruction
Head
Tail
Cycles
Notes
Dn
–
–
0(0/0/0)
–
An
–
–
0(0/0/0)
–
(An)
1
1
3(X/0/0)
1
(An) +
1
1
3(X/0/0)
1
−(An)
2
2
4(X/0/0)
1
(d 16 ,An) or (d16 ,PC)
1
3
5(X/1/0)
1,3
(xxx).W
1
3
5(X/1/0)
1
(xxx).L
1
5
7(X/2/0)
1
#〈data〉.B
1
1
3(0/1/0)
1
#〈data〉.W
1
1
3(0/1/0)
1
#〈data〉.L
1
3
5(0/2/0)
1
(d 8,An,Xn.Sz × Sc) or (d8,PC,Xn.Sz × Sc)
4
2
8(X/1/0)
1,2,3,4
(0) (All Suppressed)
2
2
6(X/1/0)
1,4
(d 16 )
1
3
7(X/2/0)
1,4
(d 32 )
1
5
9(X/3/0)
1,4
(An)
1
1
5(X/1/0)
1,2,4
(Xm.Sz × Sc)
4
2
8(X/1/0)
1,2,4
(An,Xm.Sz × Sc)
4
2
8(X/1/0)
1,2,3,4
(d 16 ,An) or (d16 ,PC)
1
3
7(X/2/0)
1,3,4
(d 32 ,An) or (d32 ,PC)
1
5
9(X/3/0)
1,3,4
(d 16 ,An,Xm) or (d16 ,PC,Xm)
2
2
8(X/2/0)
1,3,4
(d 32 ,An,Xm) or (d32 ,PC,Xm)
1
3
9(X/3/0)
1,3,4
(d 16 ,An,Xm.Sz × Sc) or (d16 ,PC,Xm.Sz × Sc)
2
2
8(X/2/0)
1,2,3,4
(d 32 ,An,Xm.Sz × Sc) or (d32 ,PC,Xm.Sz × Sc)
1
3
9(X/3/0)
1,2,3,4
X = There is one bus cycle for byte and word operands and two bus cycles for long-word operands.
For long-word bus cycles, add two clocks to the tail and to the number of cycles.
NOTES:
1. The read of the EA and replacement fetches overlap the head of the operation by the amount
specified in the tail.
2. Size and scale of the index register do not affect execution time.
3. The PC may be substituted for the base address register An.
4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from the
head until the head reaches zero, at which time additional clocks must be added to both the tail
and cycle counts.
MOTOROLA
MC68340 USER’S MANUAL
5-99
5.7.3.2 CALCULATE EFFECTIVE ADDRESS. The calculate EA table indicates the
number of clock periods needed for the processor to calculate a specified EA. The timing
is equivalent to fetch EA except there is no read cycle. The tail and cycle time are reduced
by the amount of time the read would occupy. The total number of clock cycles is outside
the parentheses. The numbers inside parentheses (r/p/w) are included in the total clock
cycle number. All timing data assumes two-clock reads and writes.
Head
Tail
Cycles
Notes
Dn
Instruction
–
–
0(0/0/0)
–
An
–
–
0(0/0/0)
–
(An)
1
0
2(0/0/0)
–
(An) +
1
0
2(0/0/0)
–
−(An)
2
0
2(0/0/0)
–
(d 16 ,An) or (d16 ,PC)
1
1
3(0/1/0)
1,3
(xxx).W
1
1
3(0/1/0)
1
(xxx).L
1
3
5(0/2/0)
1
(d 8,An,Xn.Sz × Sc) or (d 8,PC,Xn.Sz × Sc)
4
0
6(0/1/0)
2,3,4
(0) (All Suppressed)
2
0
4(0/1/0)
4
(d 16 )
1
1
5(0/2/0)
1,4
(d 32 )
1
3
7(0/3/0)
1,4
(An)
1
0
4(0/1/0)
4
(Xm.Sz × Sc)
4
0
6(0/1/0)
2,4
(An,Xm.Sz × Sc)
4
0
6(0/1/0)
2,4
(d 16 ,An) or (d16 ,PC)
1
1
5(0/2/0)
1,3,4
(d 32 ,An) or (d32 ,PC)
1
3
7(0/3/0)
1,3,4
(d 16 ,An,Xm) or (d16 ,PC,Xm)
2
0
6(0/2/0)
3,4
(d 32 ,An,Xm) or (d32 ,PC,Xm)
1
1
7(0/3/0)
1,3,4
(d 16 ,An,Xm.Sz × Sc) or (d16 ,PC,Xm.Sz × Sc)
2
0
6(0/2/0)
2,3,4
(d 32 ,An,Xm.Sz × Sc) or (d32 ,PC,Xm.Sz × Sc)
1
1
7(0/3/0)
1,2,3,4
X = There is one bus cycle for byte and word operands and two bus cycles for long operands.
For long bus cycles, add two clocks to the tail and to the number of cycles.
NOTES:
1. Replacement fetches overlap the head of the operation by the amount specified in the tail.
2. Size and scale of the index register do not affect execution time.
3. The PC may be substituted for the base address register An.
4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from the
head until the head reaches zero, at which time additional clocks must be added to both the tail
and cycle counts.
5-100
MC68340 USER’S MANUAL
MOTOROLA
5.7.3.3 MOVE INSTRUCTION. The MOVE instruction table indicates the number of clock
periods needed for the processor to calculate the destination EA and to perform a MOVE
or MOVEA instruction. For entries with CEA or FEA, refer to the appropriate table to
calculate that portion of the instruction time.
Destination EAs are divided by their formats (see 5.3.4.4 Effective Address Encoding
Summary). The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.
When using this table, begin at the top and move downward. Use the first entry that
matches both source and destination addressing modes.
Head
Tail
Cycles
MOVE
Rn, Rn
Instruction
0
0
2(0/1/0)
MOVE
〈FEA〉, Rn
0
0
2(0/1/0)
MOVE
Rn, (Am)
0
2
4(0/1/x)
MOVE
Rn, (Am) +
1
1
5(0/1/x)
MOVE
Rn, −(Am)
2
2
6(0/1/x)
MOVE
Rn, 〈CEA 〉
1
3
5(0/1/x)
MOVE
〈FEA〉, (An)
2
2
6(0/1/x)
MOVE
〈FEA〉, (An) +
2
2
6(0/1/x)
MOVE
〈FEA〉, −(An)
2
2
6(0/1/x)
MOVE
#, 〈CEA〉
2
2
6(0/1/x) ∗
MOVE
〈CEA〉, 〈FEA 〉
2
2
6(0/1/x)
X = There is one bus cycle for byte and word operands and two bus cycles for long-word
operands. For long-word bus cycles, add two clocks to the tail and to the number of cycles.
∗ = An # fetch EA time must be added for this instruction: 〈 FEA 〉 +〈CEA〉 + 〈 OPER〉
NOTE:
For instructions not explicitly listed, use the MOVE 〈CEA 〉, 〈FEA〉 entry. The source
EA is calculated by the calculate EA table, and the destination EA is calculated by
the fetch EA table, even though the bus cycle is for the source EA.
5.7.3.4 SPECIAL-PURPOSE MOVE INSTRUCTION. The special-purpose MOVE
instruction table indicates the number of clock periods needed for the processor to fetch,
calculate, and perform the special-purpose MOVE operation on control registers or a
specified EA. Footnotes indicate when to account for the appropriate EA times. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.
MOTOROLA
MC68340 USER’S MANUAL
5-101
Instruction
Head
Tail
Cycles
EXG
Rn, Rm
2
0
4(0/1/0)
MOVEC
Cr, Rn
10
0
14(0/2/0)
MOVEC
Rn, Cr
12
0
14-16(0/1/0)
MOVE
CCR, Dn
2
0
4(0/1/0)
MOVE
CCR, 〈CEA 〉
0
2
4(0/1/1)
MOVE
Dn, CCR
2
0
4(0/1/0)
MOVE
〈FEA〉, CCR
0
0
4(0/1/0)
MOVE
SR, Dn
2
0
4(0/1/0)
MOVE
SR, 〈CEA 〉
0
2
4(0/1/1)
MOVE
Dn, SR
4
−2
10(0/3/0)
MOVE
〈FEA〉, SR
0
−2
10(0/3/0)
MOVEM.W
〈CEA〉, RL
1
0
8 + n × 4 (n + 1, 2, 0) ∗
MOVEM.W
RL, 〈CEA 〉
1
0
8 + n × 4 (0, 2, n) ∗
MOVEM.L
〈CEA〉, RL
1
0
12 + n × 4(2n + 2, 2, 0)
MOVEM.L
RL, 〈CEA 〉
1
2
10 + n × 4 (0, 2, 2n)
MOVEP.W
Dn, (d16 , An)
2
0
10(0/2/2)
MOVEP.W
(d 16 , An), Dn
1
2
11(2/2/0)
MOVEP.L
Dn, (d16 , An)
2
0
14(0/2/4)
MOVEP.L
(d 16 , An), Dn
1
2
19(4/2/0)
MOVES (Save)
〈CEA〉, Rn
1
1
3(0/1/0)
MOVES (Op)
〈CEA〉, Rn
7
1
11(X/1/0)
MOVES (Save)
Rn, 〈CEA 〉
1
1
3(0/1/0)
MOVES (Op)
Rn, 〈CEA 〉
9
2
12(0/1/X)
MOVE
USP, An
0
0
2(0/1/0)
MOVE
An, USP
0
0
2(0/1/0)
SWAP
Dn
4
0
6(0/1/0)
X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.
∗ = Each bus cycle may take up to four clocks without increasing total execution time.
Cr = Control registers USP, VBR, SFC, and DFC
n = Number of registers to transfer
RL = Register List
< = Maximum time (certain data or mode combinations may execute faster).
NOTE: The MOVES instruction has an additional save step which other instructions do not
have. To calculate the total instruction time, calculate the save, the EA, and the
operation execution times, and combine in the order listed, using the equations
given in 5.7.1.6 Instruction Execution Time Calculation.
5.7.3.5 ARITHMETIC/LOGIC INSTRUCTIONS. The arithmetic/logic instruction table
indicates the number of clock periods needed to perform the specified arithmetic/logical
instruction using the specified addressing mode. Footnotes indicate when to account for
the appropriate EA times. The total number of clock cycles is outside the parentheses.
5-102
MC68340 USER’S MANUAL
MOTOROLA
The numbers inside parentheses (r/p/w) are included in the total clock cycle number. All
timing data assumes two-clock reads and writes.
Head
Tail
Cycles
ADD(A)
Instruction
Rn, Rm
0
0
2(0/1/0)
ADD(A)
〈FEA〉, Rn
0
0
2(0/1/0)
ADD
Dn, 〈FEA 〉
0
3
5(0/1/x)
AND
Dn, Dm
0
0
2(0/1/0)
AND
〈FEA〉, Dn
0
0
2(0/1/0)
AND
Dn, 〈FEA 〉
0
3
5(0/1/x)
EOR
Dn, Dm
0
0
2(0/1/0)
EOR
Dn, 〈FEA 〉
0
3
5(0/1/x)
OR
Dn, Dm
0
0
2(0/1/0)
OR
〈FEA〉, Dn
0
0
2(0/1/0)
OR
Dn, 〈FEA 〉
0
3
5(0/1/x)
SUB(A)
Rn, Rm
0
0
2(0/1/0)
SUB(A)
〈FEA〉, Rn
0
0
2(0/1/0)
SUB
Dn, 〈FEA 〉
0
3
5(0/1/x)
CMP(A)
Rn, Rm
0
0
2(0/1/0)
CMP(A)
〈FEA〉, Rn
0
0
2(0/1/0)
CMP2 (Save) *
〈FEA〉, Rn
1
1
3(0/1/0)
CMP2 (Op)
〈FEA〉, Rn
2
0
16-18(X/1/0)
MUL(su).W
〈FEA〉, Dn
0
0
26(0/1/0)
MUL(su).L (Save) * 〈FEA〉, Dn
1
1
3(0/1/0)
MUL(su).L (Op)
〈FEA〉, Dl
2
0
46-52(0/1/0)
MUL(su).L (Op)
〈FEA〉, Dn:Dl
2
0
46(0/1/0)
DIVU.W
〈FEA〉, Dn
0
0
32(0/1/0)
DIVS.W
〈FEA〉, Dn
0
0
42(0/1/0)
DIVU.L (Save)*
〈FEA〉, Dn
1
1
3(0/1/0)
DIVU.L (Op)
〈FEA〉, Dn
2
0