MC9S12XDP512
Data Sheet
Covers
S12XD, S12XB & S12XA Families
HCS12X
Microcontrollers
MC9S12XDP512RMV2
Rev. 2.21
October 2009
freescale.com
MC9S12XDP512RMV2 Data Sheet
MC9S12XDP512RMV2
Rev. 2.21
October 2009
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:
http://freescale.com/
A full list of family members and options is included in the appendices.
Read page 29 first to understand the maskset specific chapters of this document
This document contains information for all constituent modules, with the exception of the S12X CPU. For
S12X CPU information please refer to the CPU S12X Reference Manual.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
This product incorporates SuperFlash® technology licensed from SST.
© Freescale Semiconductor, Inc., 2008. All rights reserved.
MC9S12XDP512 Data Sheet, Rev. 2.21
4
Freescale Semiconductor
Revision History
Date
Revision
Level
April, 2005
02.07
New Book
May, 2005
02.08
Minor corrections
May, 2005
02.09
removed ESD Machine Model from electrical characteristics
added thermal characteristics
added more details to run current measurement configurations
VDDA supply voltage range 3.15V - 3.6V fot ATD Operating Characteristics
I/O Chararcteristics for alll pins except EXTAL, XTAL ....
corrected VREG electrical spec
IDD wait max 95mA
May 2005
02.10
Improvements to NVM reliabity spec, added part numbers
July 2005
02.11
Added ROM parts to App.
October 2005
02.12
Single Souce S12XD Fam. Document, New Memory Map Figures,
May 2006
2.13
SPI electricals updated
Voltage Regulator electricals updated
Added Partnumbers and 1L15Y maskset
Updated App. E 6SCI’s on 112 pin DT/P512 and 3 SPI’s on all D256 parts
June 2006
2.14
Data Sheet covers S12XD/B & A Family
Included differnt pull device specification for differnt masksets
July 2006
2.15
Minor Corrections and Improvments
June 2007
2.16
Added 2M42E and 1M84E masksets
July 2007
2.17
Modified Appendix
April 2008
2.18
Better explanation of ATD0/1 for S12XD-Family see page 1305
S12XB256 ATD specification changed see Appendix E.6
added M23S maskset
August 2008
2.19
Corrected XGRAMSIZE of S12XD256 on page 44
Corrected 17.4.2.4 XGATE Memory Map Scheme
Corrected 18.4.2.4 XGATE Memory Map Scheme
September
2009
2.20
Corrected Table E-6 , 30K flash memory available for XGATE on B256
October 2009
2.21
Corrected Footnote in Appendix E3 regarding Shared XGATE/CPU area
Description
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
5
MC9S12XDP512 Data Sheet, Rev. 2.21
6
Freescale Semiconductor
Section Number
Title
Page
Chapter 1
Device Overview MC9S12XD-Family . . . . . . . . . . . . . . . . . . . . 31
Chapter 2
Clocks and Reset Generator (S12CRGV6) . . . . . . . . . . . . . . . . 79
Chapter 3
Pierce Oscillator (S12XOSCLCPV1) . . . . . . . . . . . . . . . . . . . . 119
Chapter 4
Analog-to-Digital Converter (ATD10B16CV4)
Block Description125
Chapter 5
Analog-to-Digital Converter (S12ATD10B8CV3) . . . . . . . . . . 159
Chapter 6
XGATE (S12XGATEV2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Chapter 7
Enhanced Capture Timer (S12ECT16B8CV2) . . . . . . . . . . . . 309
Chapter 8
Pulse-Width Modulator (S12PWM8B8CV1) . . . . . . . . . . . . . . 363
Chapter 9
Inter-Integrated Circuit (IICV2) Block Description. . . . . . . . . 395
Chapter 10
419
Freescale’s Scalable Controller Area Network (S12MSCANV3).
Chapter 11
Serial Communication Interface (S12SCIV5) . . . . . . . . . . . . . 477
Chapter 12
Serial Peripheral Interface (S12SPIV4) . . . . . . . . . . . . . . . . . . 515
Chapter 13
Periodic Interrupt Timer (S12PIT24B4CV1) . . . . . . . . . . . . . . 541
Chapter 14
Voltage Regulator (S12VREG3V3V5) . . . . . . . . . . . . . . . . . . . 555
Chapter 15
Background Debug Module (S12XBDMV2) . . . . . . . . . . . . . . 569
Chapter 16
Interrupt (S12XINTV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Chapter 17
Memory Mapping Control (S12XMMCV2) . . . . . . . . . . . . . . . . 613
Chapter 18
Memory Mapping Control (S12XMMCV3) . . . . . . . . . . . . . . . 651
Chapter 19
S12X Debug (S12XDBGV2) Module . . . . . . . . . . . . . . . . . . . . 693
Chapter 20
S12X Debug (S12XDBGV3) Module . . . . . . . . . . . . . . . . . . . . 745
Chapter 21
External Bus Interface (S12XEBIV2) . . . . . . . . . . . . . . . . . . . 787
Chapter 22
DP512 Port Integration Module (S12XDP512PIMV2) . . . . . . . 807
Chapter 23
DQ256 Port Integration Module (S12XDQ256PIMV2) . . . . . . 901
Chapter 24
DG128 Port Integration Module (S12XDG128PIMV2) . . . . . . 975
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
5
Section Number
Title
Page
Chapter 25
2 Kbyte EEPROM Module (S12XEETX2KV1) . . . . . . . . . . . . 1039
Chapter 26
4 Kbyte EEPROM Module (S12XEETX4KV2) . . . . . . . . . . . . 1073
Chapter 27
512 Kbyte Flash Module (S12XFTX512K4V2). . . . . . . . . . . . 1107
Chapter 28
256 Kbyte Flash Module (S12XFTX256K2V1). . . . . . . . . . . . 1149
Chapter 29
128 Kbyte Flash Module (S12XFTX128K1V1). . . . . . . . . . . . 1191
Chapter 30
Security (S12X9SECV2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231
Appendix A Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
Appendix B Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
Appendix C Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . 1294
Appendix D Using L15Y Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
Appendix E Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
Appendix F Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
Appendix G Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
MC9S12XDP512 Data Sheet, Rev. 2.21
6
Freescale Semiconductor
Section Number
Title
Page
Chapter 1Device Overview MC9S12XD-Family
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1.1 MC9S12XD/B/A Family Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.1.4 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.1.5 Part ID Assignments & Maskset Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.2.3 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
System Clock Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.5.1 User Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.5.2 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.5.3 Freeze Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Resets and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.6.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.6.2 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
COP Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
ATD0 External Trigger Input Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ATD1 External Trigger Input Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Chapter 2
Clocks and Reset Generator (S12CRGV6)
2.1
2.2
2.3
2.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.2.1 VDDPLL and VSSPLL — Operating and Ground Voltage Pins . . . . . . . . . . . . . . . . . . . . . 82
2.2.2 XFC — External Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.2.3 RESET — Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.4.1 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.4.2 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.4.3 Low Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
9
Section Number
2.5
2.6
Title
Page
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.5.1 Description of Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.5.2 Clock Monitor Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.5.3 Computer Operating Properly Watchdog (COP) Reset . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.5.4 Power On Reset, Low Voltage Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.1 Real Time Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.2 PLL Lock Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.3 Self Clock Mode Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Chapter 3
Pierce Oscillator (S12XOSCLCPV1)
3.1
3.2
3.3
3.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2.1 VDDPLL and VSSPLL — Operating and Ground Voltage Pins . . . . . . . . . . . . . . . . . . . . 120
3.2.2 EXTAL and XTAL — Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.2.3 XCLKS — Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.1 Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.2 Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.3 Wait Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.4.4 Stop Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter 4
Analog-to-Digital Converter (ATD10B16CV4)
Block Description
4.1
4.2
4.3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2.1 ANx (x = 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) — Analog Input Channel x Pins
127
4.2.2 ETRIG3, ETRIG2, ETRIG1, ETRIG0 — External Trigger Pins . . . . . . . . . . . . . . . . . 127
4.2.3 VRH, VRL — High Reference Voltage Pin, Low Reference Voltage Pin . . . . . . . . . . . . 127
4.2.4 VDDA, VSSA — Analog Circuitry Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . 127
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
MC9S12XDP512 Data Sheet, Rev. 2.21
10
Freescale Semiconductor
Section Number
4.4
4.5
4.6
Title
Page
4.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.1 Analog Sub-block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.2 Digital Sub-Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4.3 Operation in Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Chapter 5Analog-to-Digital Converter (S12ATD10B8CV3)
5.1
5.2
5.3
5.4
5.5
5.6
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.1 ANx (x = 7, 6, 5, 4, 3, 2, 1, 0) — Analog Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 ETRIG3, ETRIG2, ETRIG1, and ETRIG0 — External Trigger Pins . . . . . . . . . . . . . . 160
5.2.3 VRH and VRL — High and Low Reference Voltage Pins . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.4 VDDA and VSSA — Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.1 Analog Sub-Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.2 Digital Sub-Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Chapter 6
XGATE (S12XGATEV2)
6.1
6.2
6.3
6.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.1.1 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4.1 XGATE RISC Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4.2 Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
11
Section Number
6.5
6.6
6.7
6.8
6.9
Title
Page
6.4.4 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.4.5 Software Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.5.1 Incoming Interrupt Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.5.2 Outgoing Interrupt Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.6.1 Debug Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.6.2 Entering Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.6.3 Leaving Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.8.1 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.8.2 Instruction Summary and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.8.3 Cycle Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.8.4 Thread Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.8.5 Instruction Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.8.6 Instruction Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Initialization and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
6.9.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
6.9.2 Code Example (Transmit "Hello World!" on SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Chapter 7
Enhanced Capture Timer (S12ECT16B8CV2)
7.1
7.2
7.3
7.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.1 IOC7 — Input Capture and Output Compare Channel 7 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.2 IOC6 — Input Capture and Output Compare Channel 6 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.3 IOC5 — Input Capture and Output Compare Channel 5 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.4 IOC4 — Input Capture and Output Compare Channel 4 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.5 IOC3 — Input Capture and Output Compare Channel 3 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.6 IOC2 — Input Capture and Output Compare Channel 2 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.7 IOC1 — Input Capture and Output Compare Channel 1 . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2.8 IOC0 — Input Capture and Output Compare Channel 0 . . . . . . . . . . . . . . . . . . . . . . . . 311
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
7.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
7.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
7.4.1 Enhanced Capture Timer Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
7.4.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
MC9S12XDP512 Data Sheet, Rev. 2.21
12
Freescale Semiconductor
Section Number
Title
Page
7.4.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Chapter 8
Pulse-Width Modulator (S12PWM8B8CV1)
8.1
8.2
8.3
8.4
8.5
8.6
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
8.2.1 PWM7 — PWM Channel 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
8.2.2 PWM6 — PWM Channel 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
8.2.3 PWM5 — PWM Channel 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.2.4 PWM4 — PWM Channel 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.2.5 PWM3 — PWM Channel 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.2.6 PWM3 — PWM Channel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.2.7 PWM3 — PWM Channel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.2.8 PWM3 — PWM Channel 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
8.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
8.4.1 PWM Clock Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
8.4.2 PWM Channel Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Chapter 9
Inter-Integrated Circuit (IICV2) Block Description
9.1
9.2
9.3
9.4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
9.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
9.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
9.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
9.2.1 IIC_SCL — Serial Clock Line Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
9.2.2 IIC_SDA — Serial Data Line Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
9.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
9.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
9.4.1 I-Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
9.4.2 Operation in Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
9.4.3 Operation in Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
13
Section Number
9.5
9.6
9.7
Title
Page
9.4.4 Operation in Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
9.7.1 IIC Programming Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Chapter 10
Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
10.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
10.1.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
10.1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
10.1.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.2.1 RXCAN — CAN Receiver Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.2.2 TXCAN — CAN Transmitter Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.2.3 CAN System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
10.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
10.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
10.3.3 Programmer’s Model of Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
10.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
10.4.2 Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
10.4.3 Identifier Acceptance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
10.4.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
10.4.5 Low-Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
10.4.6 Reset Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
10.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
10.5.1 MSCAN initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
10.5.2 Bus-Off Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Chapter 11
Serial Communication Interface (S12SCIV5)
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
11.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
11.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
11.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
11.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
11.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
11.2.1 TXD — Transmit Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
MC9S12XDP512 Data Sheet, Rev. 2.21
14
Freescale Semiconductor
Section Number
Title
Page
11.2.2 RXD — Receive Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
11.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
11.3.1 Module Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
11.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
11.4.1 Infrared Interface Submodule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
11.4.2 LIN Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
11.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
11.4.4 Baud Rate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
11.4.5 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
11.4.6 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
11.4.7 Single-Wire Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
11.4.8 Loop Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.5.1 Reset Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.5.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
11.5.3 Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
11.5.4 Recovery from Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
11.5.5 Recovery from Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Chapter 12
Serial Peripheral Interface (S12SPIV4)
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
12.1.1 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
12.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
12.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
12.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
12.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
12.2.1 MOSI — Master Out/Slave In Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
12.2.2 MISO — Master In/Slave Out Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
12.2.3 SS — Slave Select Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
12.2.4 SCK — Serial Clock Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
12.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
12.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
12.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12.4.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
12.4.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
12.4.3 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
12.4.4 SPI Baud Rate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
12.4.5 Special Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
12.4.6 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
15
Section Number
Title
Page
12.4.7 Low Power Mode Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Chapter 13
Periodic Interrupt Timer (S12PIT24B4CV1)
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
13.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
13.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
13.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
13.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
13.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
13.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
13.4.1 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
13.4.2 Interrupt Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
13.4.3 Hardware Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
13.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
13.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
13.5.2 Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
13.5.3 Flag Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Chapter 14
Voltage Regulator (S12VREG3V3V5)
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
14.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
14.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
14.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
14.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
14.2.1 VDDR — Regulator Power Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
14.2.2 VDDA, VSSA — Regulator Reference Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
14.2.3 VDD, VSS — Regulator Output1 (Core Logic) Pins . . . . . . . . . . . . . . . . . . . . . . . . . . 557
14.2.4 VDDPLL, VSSPLL — Regulator Output2 (PLL) Pins . . . . . . . . . . . . . . . . . . . . . . . . . 558
14.2.5 VREGEN — Optional Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
14.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
14.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
14.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
14.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
14.4.2 Regulator Core (REG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
14.4.3 Low-Voltage Detect (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
14.4.4 Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
14.4.5 Low-Voltage Reset (LVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
14.4.6 Regulator Control (CTRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
MC9S12XDP512 Data Sheet, Rev. 2.21
16
Freescale Semiconductor
Section Number
Title
Page
14.4.7 Autonomous Periodical Interrupt (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
14.4.8 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
14.4.9 Description of Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
14.4.10Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
Chapter 15
Background Debug Module (S12XBDMV2)
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
15.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
15.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
15.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
15.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
15.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
15.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
15.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
15.3.3 Family ID Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
15.4.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
15.4.2 Enabling and Activating BDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
15.4.3 BDM Hardware Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
15.4.4 Standard BDM Firmware Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
15.4.5 BDM Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
15.4.6 BDM Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
15.4.7 Serial Interface Hardware Handshake Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
15.4.8 Hardware Handshake Abort Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
15.4.9 SYNC — Request Timed Reference Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
15.4.10Instruction Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
15.4.11Serial Communication Time Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Chapter 16
Interrupt (S12XINTV1)
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
16.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
16.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
16.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
16.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
16.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
16.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
16.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
16.4.1 S12X Exception Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
16.4.2 Interrupt Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
17
Section Number
Title
Page
16.4.3 XGATE Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
16.4.4 Priority Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
16.4.5 Reset Exception Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
16.4.6 Exception Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
16.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
16.5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
16.5.2 Interrupt Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
16.5.3 Wake Up from Stop or Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Chapter 17
Memory Mapping Control (S12XMMCV2)
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
17.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
17.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
17.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
17.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
17.3 Memory Map and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
17.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
17.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
17.4.1 MCU Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
17.4.2 Memory Map Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
17.4.3 Chip Access Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
17.4.4 Chip Bus Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
17.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
17.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
17.5.1 CALL and RTC Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
17.5.2 Port Replacement Registers (PRRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
17.5.3 On-Chip ROM Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
Chapter 18
Memory Mapping Control (S12XMMCV3)
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
18.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
18.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
18.1.3 S12X Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
18.1.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
18.1.5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
18.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
18.3 Memory Map and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
18.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
18.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
MC9S12XDP512 Data Sheet, Rev. 2.21
18
Freescale Semiconductor
Section Number
Title
Page
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
18.4.1 MCU Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
18.4.2 Memory Map Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
18.4.3 Chip Access Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
18.4.4 Chip Bus Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
18.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
18.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
18.5.1 CALL and RTC Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
18.5.2 Port Replacement Registers (PRRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
18.5.3 On-Chip ROM Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
Chapter 19
S12X Debug (S12XDBGV2) Module
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
19.1.1 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
19.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
19.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
19.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
19.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
19.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
19.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
19.4.1 DBG Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
19.4.2 Comparator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
19.4.3 Trigger Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
19.4.4 State Sequence Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
19.4.5 Trace Buffer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
19.4.6 Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
19.4.7 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
Chapter 20
S12X Debug (S12XDBGV3) Module
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
20.1.1 Glossary Of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
20.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
20.1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
20.1.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
20.1.5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
20.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
20.3 Memory Map and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
20.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
20.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
19
Section Number
Title
Page
20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
20.4.1 S12XDBG Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
20.4.2 Comparator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
20.4.3 Trigger Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
20.4.4 State Sequence Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
20.4.5 Trace Buffer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
20.4.6 Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
20.4.7 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
Chapter 21
External Bus Interface (S12XEBIV2)
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
21.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
21.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
21.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
21.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
21.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
21.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
21.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
21.4.1 Operating Modes and External Bus Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
21.4.2 Internal Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
21.4.3 Accesses to Port Replacement Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
21.4.4 Stretched External Bus Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
21.4.5 Data Select and Data Direction Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
21.4.6 Low-Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
21.5 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
21.5.1 Normal Expanded Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
21.5.2 Emulation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
Chapter 22
DP512 Port Integration Module (S12XDP512PIMV2)
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
22.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
22.1.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
22.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
22.2.1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
22.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
22.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
22.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
22.4.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
MC9S12XDP512 Data Sheet, Rev. 2.21
20
Freescale Semiconductor
Section Number
Title
Page
22.4.2 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
22.4.3 Pin Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
22.4.4 Expanded Bus Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
22.4.5 Low-Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
22.5 Initialization and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
Chapter 23
DQ256 Port Integration Module (S12XDQ256PIMV2)
Chapter 23Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
23.0.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
23.0.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902
Figure 23-1.External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
23.0.3 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
Table 23-1.Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
23.0.4 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
23.0.5 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913
Table 23-66.Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
23.0.6 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
23.0.7 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
23.0.8 Pin Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
23.0.9 Expanded Bus Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
23.0.10Low-Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
23.0.10.3Initialization and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
Chapter 24
DG128 Port Integration Module (S12XDG128PIMV2)
Chapter 24Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
24.0.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
24.0.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
Figure 24-1.External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
24.0.3 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
Table 24-1.Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
24.0.4 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
24.0.5 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
Table 24-59.Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
24.0.6 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
24.0.7 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
24.0.8 Pin Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
24.0.9 Low-Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034
24.0.9.3Initialization and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
21
Section Number
Title
Page
Chapter 25
2 Kbyte EEPROM Module (S12XEETX2KV1)
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
25.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
25.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
25.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
25.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
25.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
25.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
25.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
25.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
25.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
25.4.1 EEPROM Command Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
25.4.2 EEPROM Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
25.4.3 Illegal EEPROM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068
25.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
25.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
25.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
25.5.3 Background Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
25.6 EEPROM Module Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
25.6.1 Unsecuring the MCU in Special Single Chip Mode using BDM . . . . . . . . . . . . . . . . 1070
25.7 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
25.7.1 EEPROM Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
25.7.2 Reset While EEPROM Command Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
25.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
25.8.1 Description of EEPROM Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071
Chapter 26
4 Kbyte EEPROM Module (S12XEETX4KV2)
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
26.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
26.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
26.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
26.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
26.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
26.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
26.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
26.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
26.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
26.4.1 EEPROM Command Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
26.4.2 EEPROM Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
26.4.3 Illegal EEPROM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
MC9S12XDP512 Data Sheet, Rev. 2.21
22
Freescale Semiconductor
Section Number
Title
Page
26.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
26.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
26.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
26.5.3 Background Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
26.6 EEPROM Module Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
26.6.1 Unsecuring the MCU in Special Single Chip Mode using BDM . . . . . . . . . . . . . . . . 1105
26.7 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
26.7.1 EEPROM Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
26.7.2 Reset While EEPROM Command Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
26.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
26.8.1 Description of EEPROM Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
Chapter 27
512 Kbyte Flash Module (S12XFTX512K4V2)
27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
27.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
27.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
27.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
27.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
27.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
27.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
27.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
27.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
27.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
27.4.1 Flash Command Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
27.4.2 Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
27.4.3 Illegal Flash Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
27.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
27.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
27.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
27.5.3 Background Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
27.6 Flash Module Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
27.6.1 Unsecuring the MCU using Backdoor Key Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
27.6.2 Unsecuring the MCU in Special Single Chip Mode using BDM . . . . . . . . . . . . . . . . 1147
27.7 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
27.7.1 Flash Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
27.7.2 Reset While Flash Command Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
27.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
27.8.1 Description of Flash Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
23
Section Number
Title
Page
Chapter 28
256 Kbyte Flash Module (S12XFTX256K2V1)
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
28.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
28.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
28.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
28.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
28.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
28.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
28.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
28.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
28.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166
28.4.1 Flash Command Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166
28.4.2 Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
28.4.3 Illegal Flash Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
28.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
28.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
28.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
28.5.3 Background Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
28.6 Flash Module Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
28.6.1 Unsecuring the MCU using Backdoor Key Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
28.6.2 Unsecuring the MCU in Special Single Chip Mode using BDM . . . . . . . . . . . . . . . . 1188
28.7 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
28.7.1 Flash Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
28.7.2 Reset While Flash Command Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
28.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
28.8.1 Description of Flash Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
Chapter 29
128 Kbyte Flash Module (S12XFTX128K1V1)
29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
29.1.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
29.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
29.1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
29.1.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
29.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
29.3 Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
29.3.1 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
29.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
29.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
29.4.1 Flash Command Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
29.4.2 Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211
MC9S12XDP512 Data Sheet, Rev. 2.21
24
Freescale Semiconductor
Section Number
29.5
29.6
29.7
29.8
Title
Page
29.4.3 Illegal Flash Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
29.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
29.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
29.5.3 Background Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
Flash Module Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
29.6.1 Unsecuring the MCU using Backdoor Key Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
29.6.2 Unsecuring the MCU in Special Single Chip Mode using BDM . . . . . . . . . . . . . . . . 1229
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229
29.7.1 Flash Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229
29.7.2 Reset While Flash Command Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229
29.8.1 Description of Flash Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230
Chapter 30
Security (S12X9SECV2)
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231
30.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231
30.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
30.1.3 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
30.1.4 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233
30.1.5 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
30.1.6 Reprogramming the Security Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236
30.1.7 Complete Memory Erase (Special Modes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236
Appendix A
Electrical Characteristics
A.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
A.1.4 Current Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
A.1.6 ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243
A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1249
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
A.2.1 ATD Operating Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
A.2.2 Factors Influencing Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
A.2.3 ATD Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
25
Section Number
Title
Page
A.3 NVM, Flash, and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
A.3.1 NVM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
A.3.2 NVM Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
A.4 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
A.4.1 Chip Power-up and Voltage Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
A.4.2 Output Loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
A.5 Reset, Oscillator, and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
A.5.2 Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
A.5.3 Phase Locked Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273
A.7 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
A.8.1 Normal Expanded Mode (External Wait Feature Disabled). . . . . . . . . . . . . . . . . . . . . 1279
A.8.2 Normal Expanded Mode (External Wait Feature Enabled) . . . . . . . . . . . . . . . . . . . . . 1281
A.8.3 Emulation Single-Chip Mode (Without Wait States) . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
A.8.4 Emulation Expanded Mode (With Optional Access Stretching) . . . . . . . . . . . . . . . . . 1286
A.8.5 External Tag Trigger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
Appendix B
Package Information
B.1 144-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
B.2 112-Pin LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
B.3 80-Pin QFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293
Appendix C
Recommended PCB Layout
Appendix D
Using L15Y Silicon
Appendix E
Derivative Differences
E.1
E.2
E.3
E.4
E.5
E.6
Memory Sizes and Package Options S12XD - Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
Memory Sizes and Package Options S12XA & S12XB Family. . . . . . . . . . . . . . . . . . . . . . . . . 1302
MC9S12XD-Family Flash Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303
MC9S12XD/A/B -Family SRAM & EEPROM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 1304
Peripheral Sets S12XD - Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
Peripheral Sets S12XA & S12XB - Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306
MC9S12XDP512 Data Sheet, Rev. 2.21
26
Freescale Semiconductor
Section Number
E.7
Title
Page
Pinout explanations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
Appendix F
Ordering Information
Appendix G
Detailed Register Map
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
27
Section Number
Title
Page
MC9S12XDP512 Data Sheet, Rev. 2.21
28
Freescale Semiconductor
NOTE
This documentation covers all devices in the S12XD, S12XB and S12XA
families. A full list of these devices and their features can be found in the
following chapters:
• E.1 Memory Sizes and Package Options S12XD - Family
• E.2 Memory Sizes and Package Options S12XA & S12XB Family
• E.5 Peripheral Sets S12XD - Family
• E.6 Peripheral Sets S12XA & S12XB - Family
• Table 1-6 Partnames, Masksets and assigned PartID’s
This document includes different sections for S12XDPIM, S1XMMC,
S12XDBG, S12XEETX and S12XFTX because the different masksets of
the S12XD, S12XB and S12XA families include differnt configurations or
versions of the modules or have different memory sizes. Table 0-1 shows the
maskset specific chapters in this documentation.
Table 0-1. Maskset Specific Documentation
Chapters in this Documentation
L15Y
(512k
Flash)
M84E
(256K
Flash)
Chapter 21 External Bus Interface (S12XEBIV2) 787
✓
✓
Chapter 17 Memory Mapping Control (S12XMMCV2) 613
✓
Chapter 18 Memory Mapping Control (S12XMMCV3) 649
Chapter 19 Debug (S12XDBGV2) 691
✓
✓
✓
✓
✓
Chapter 20 S12X Debug (S12XDBGV3) Module 743
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2) 805
M42E
(128K
Flash)
✓
✓
Chapter 23 DQ256 Port Integration Module (S12XDQ256PIMV2) 899
Chapter 24 DG128 Port Integration Module (S12XDG128PIMV2) 973
✓
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1) 1037
✓
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2) 1071
✓
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2) 1105
✓
✓
✓
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1) 1147
✓
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1) 1189
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV3) 157
✓
✓
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
29
Chapter 1 Device Overview MC9S12XD-Family describes pinouts, detailed pin description , interrupts
and register map of the cover part MC9S12XDP512 (maskset L15Y). For availability of the modules on
other members of the S12XA, S12XB and S12XD families please refer to Appendix E Derivative
Differences. For pinout explanations of the different parts refer to E.7 Pinout explanations:. For a list of
available partnames /masksets refer to Table 1-6.
MC9S12XDP512 Data Sheet, Rev. 2.21
30
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
Chapter 1 Device Overview MC9S12XD-Family
1.1
Introduction
The MC9S12XD family will retain the low cost, power consumption, EMC and code-size efficiency
advantages currently enjoyed by users of Freescale's existing 16-Bit MC9S12 MCU Family.
Based around an enhanced S12 core, the MC9S12XD family will deliver 2 to 5 times the performance of
a 25-MHz S12 whilst retaining a high degree of pin and code compatibility with the S12.
The MC9S12XD family introduces the performance boosting XGATE module. Using enhanced DMA
functionality, this parallel processing module offloads the CPU by providing high-speed data processing
and transfer between peripheral modules, RAM, Flash EEPROM and I/O ports. Providing up to 80 MIPS
of performance additional to the CPU, the XGATE can access all peripherals, Flash EEPROM and the
RAM block.
The MC9S12XD family is composed of standard on-chip peripherals including up to 512 Kbytes of Flash
EEPROM, 32 Kbytes of RAM, 4 Kbytes of EEPROM, six asynchronous serial communications interfaces
(SCI), three serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, an 8-channel,
10-bit analog-to-digital converter, a 16-channel, 10-bit analog-to-digital converter, an 8-channel
pulse-width modulator (PWM), five CAN 2.0 A, B software compatible modules (MSCAN12), two
inter-IC bus blocks, and a periodic interrupt timer. The MC9S12XD family has full 16-bit data paths
throughout.
The non-multiplexed expanded bus interface available on the 144-pin versions allows an easy interface to
external memories
The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit
operational requirements. System power consumption can be further improved with the new “fast exit from
stop mode” feature.
In addition to the I/O ports available in each module, up to 25 further I/O ports are available with interrupt
capability allowing wake-up from stop or wait mode.
Family members in 144-pin LQFP will be available with external bus interface and parts in 112-pin LQFP
or 80-pin QFP package without external bus interface. See Appendix E Derivative Differences for package
options.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
31
Chapter 1 Device Overview MC9S12XD-Family
1.1.1
MC9S12XD/B/A Family Features
This section lists the features which are available on
MC9S12XDP512RMV2. See Appendix E Derivative Differences for
availability of features and memory sizes on other family members.
•
•
•
•
•
•
•
HCS12X Core
— 16-bit HCS12X CPU
– Upward compatible with MC9S12 instruction set
– Interrupt stacking and programmer’s model identical to MC9S12
– Instruction queue
– Enhanced indexed addressing
– Enhanced instruction set
— EBI (external bus interface)
— MMC (module mapping control)
— INT (interrupt controller)
— DBG (debug module to monitor HCS12X CPU and XGATE bus activity)
— BDM (background debug mode)
XGATE (peripheral coprocessor)
— Parallel processing module off loads the CPU by providing high-speed data processing and
transfer
— Data transfer between Flash EEPROM, RAM, peripheral modules, and I/O ports
PIT (periodic interrupt timer)
— Four timers with independent time-out periods
— Time-out periods selectable between 1 and 224 bus clock cycles
CRG (clock and reset generator)
— Low noise/low power Pierce oscillator
— PLL
— COP watchdog
— Real time interrupt
— Clock monitor
— Fast wake-up from stop mode
Port H & Port J with interrupt functionality
— Digital filtering
— Programmable rising or falling edge trigger
Memory
— 512, 256 and 128-Kbyte Flash EEPROM
— 4 and 2-Kbyte EEPROM
— 32, 16 and 12-Kbyte RAM
One 16-channel and one 8-channel ADC (analog-to-digital converter)
MC9S12XDP512 Data Sheet, Rev. 2.21
32
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
•
•
•
•
•
•
— 10-bit resolution
— External and internal conversion trigger capabilityFiveFourTwo 1M bit per second,
CAN 2.0 A, B software compatible modules
— Five receive and three transmit buffers
— Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit, or 8 x 8 bit
— Four separate interrupt channels for Rx, Tx, error, and wake-up
— Low-pass filter wake-up function
— Loop-back for self-test operation
ECT (enhanced capture timer)
— 16-bit main counter with 7-bit prescaler
— 8 programmable input capture or output compare channels
— Four 8-bit or two 16-bit pulse accumulators
8 PWM (pulse-width modulator) channels
— Programmable period and duty cycle
— 8-bit 8-channel or 16-bit 4-channel
— Separate control for each pulse width and duty cycle
— Center-aligned or left-aligned outputs
— Programmable clock select logic with a wide range of frequencies
— Fast emergency shutdown input
Serial interfaces
— SixFourTwo asynchronous serial communication interfaces (SCI) with additional LIN support
and selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse width
— ThreeTwo Synchronous Serial Peripheral Interfaces (SPI)
TwoOne IIC (Inter-IC bus) Modules
— Compatible with IIC bus standard
— Multi-master operation
— Software programmable for one of 256 different serial clock frequencies
On-Chip Voltage Regulator
— Two parallel, linear voltage regulators with bandgap reference
— Low-voltage detect (LVD) with low-voltage interrupt (LVI)
— Power-on reset (POR) circuit
— 3.3-V–5.5-V operation
— Low-voltage reset (LVR)
— Ultra low-power wake-up timer
144-pin LQFP, 112-pin LQFP, and 80-pin QFP packages
— I/O lines with 5-V input and drive capability
— Input threshold on external bus interface inputs switchable for 3.3-V or 5-V operation
— 5-V A/D converter inputs
— Operation at 80 MHz equivalent to 40-MHz bus speed
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
33
Chapter 1 Device Overview MC9S12XD-Family
•
1.1.2
Development support
— Single-wire background debug™ mode (BDM)
— Four on-chip hardware breakpoints
Modes of Operation
Normal expanded mode, Emulation of single-chip mode and Emulation of
expanded mode are ony available on family members with an external bus
interface in 144-pin LQFP. See Appendix E Derivative Differences for
package options.
User modes:
•
•
Normal and emulation operating modes
— Normal single-chip mode
— Normal expanded mode
— Emulation of single-chip mode
— Emulation of expanded mode
Special Operating Modes
— Special single-chip mode with active background debug mode
— Special test mode (Freescale use only)
Low-power modes:
• System stop modes
— Pseudo stop mode
— Full stop mode
• System wait mode
1.1.3
Block Diagram
Figure 1-1 shows a block diagram of theMC9S12X-Family. The block diagram shows all modules
available on cover part MC9S12XDP512RMV2. Availability of modules on other family members see
Appendix E Derivative Differences. Figure 1-2 shows blocks integrated on maskset M42E. The 16 channel
ATD Converter is routed to pins PAD00 - PAD15 on maskset M42E. See Chapter 4 Analog-to-Digital
Converter (ATD10B16CV4) Block Description 123.
MC9S12XDP512 Data Sheet, Rev. 2.21
34
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
SCI1
SPI0
DDRA
PTA
Timer
4-Channel
16-Bit with Prescaler
for Internal Timebases
Non-Multiplexed External Bus Interface (EBI)
DDRB
DDRC
DDRD
PTB
SCI3
RXD
TXD
Digital Supply 2.5 V
VDD1,2
VSS1,2
PLL Supply 2.5 V
VDDPLL
VSSPLL
Analog Supply 3-5 V
VDDA
VSSA
CAN1
CAN2
CAN3
CAN4
SCI2
IIC1
IIC0
PWM
I/O Supply 3-5 V
VDDX1,2
VSSX1,2
Voltage Regulator 3-5 V
VDDR1,2
VSSR1,2
SCI4
SCI5
RXD
TXD
RXD
TXD
SPI1
SPI2
MISO
MOSI
SCK
SS
RXCAN
TXCAN
RXCAN
TXCAN
RXCAN
TXCAN
RXCAN
TXCAN
RXCAN
TXCAN
RXD
TXD
SDA
SCL
SDA
SCL
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
MISO
MOSI
SCK
SS
MISO
MOSI
SCK
SS
KWJ0
KWJ1
KWJ2
KWJ4
KWJ5
KWJ6
KWJ7
KWP0
KWP1
KWP2
KWP3
KWP4
KWP5
KWP6
KWP7
KWH0
KWH1
KWH2
KWH3
KWH4
KWH5
KWH6
KWH7
DDRAD1 & AD1
PTT
VRH
VRL
VDDA
VSSA
PAD08
PAD09
PAD10
PAD11
PAD12
PAD13
PAD14
PAD15
PAD16
PAD17
PAD18
PAD19
PAD20
PAD21
PAD22
PAD23
PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7
PJ0 CS3
PJ1
PJ2 CS1
PJ4 CS0
PJ5 CS2
PJ6
PJ7
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PH0
PH1
PH2
PH3
PH4
PH5
PH6
PH7
Signals shown in Bold-Italics are neither available on the 112-pin nor on the 80-pin oackage option
Signals shown in Bold are not available on the 80-pin package
SCI0
DDRT
Enhanced Capture
Timer
PTS
XIRQ
IRQ
R/W/WE
LSTRB/LDS/EROMCTL
ECLK
MODA/RE/TAGLO
MODB/TAGHI
ECLKX2/XCLKS
IQSTAT0
IQSTAT1
IQSTAT2
IQSTAT3
8-Bit PPAGE
ACC0
Allows 4-MByte
ACC1
Program space
ACC2
ROMCTL/EWAIT
XGATE
Peripheral Co-Processor
DDRS
Periodic Interrupt
COP Watchdog
Clock Monitor
Breakpoints
PTM
Enhanced Multilevel
Interrupt Module
DDRM
DDRE
DDRK
PTE
PTK
Clock
and Reset
Generation
Module
CAN0
PTC
UDS
ADDR16
ADDR17
ADDR18
ADDR19
ADDR20
ADDR21
ADDR22
EWAIT
ADDR15
ADDR14
ADDR13
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
PK0
PK1
PK2
PK3
PK4
PK5
PK6
PK7
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PLL
PTD
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
TEST
PTJ
CPU12X
XFC
DDRJ
Single-Wire
Background
Debug Module
BKGD
PTP
Voltage Regulator
AN8
AN9
AN10
AN11
AN12
AN13
AN14
AN15
AN16
AN17
AN18
AN19
AN20
AN21
AN22
AN23
IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
RXD
TXD
RXD
TXD
DDRP
VREGEN
VDD1,2
VSS1,2
PAD00
PAD01
PAD02
PAD03
PAD04
PAD05
PAD06
PAD07
VRH
VRL
VDDA
VSSA
PTH
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
4/2/1-Kbyte EEPROM
VDDR
VSSR
ATD1
DDRH
32/20/16/14/10/8/4-Kbyte RAM
VRH
VRL
VDDA
VSSA
Module to Port Routing
ATD0
DDRAD0 & AD0
512/384/256/128/64-Kbyte Flash
Figure 1-1. MC9S12XD-Family Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
35
Chapter 1 Device Overview MC9S12XD-Family
XGATE
Peripheral
Co-Processor
SCI1
CAN4
RXCAN
TXCAN
Digital Supply 2.5 V
VDD1,2
VSS1,2
Analog Supply 3-5 V
VDDA
VSSA
IIC0
PWM
I/O Supply 3-5 V
VDDX
VSSX
Voltage Regulator 3-5 V
VDDR
VSSR
PTAD1
PJ0
PJ1
DDRJ
PLL Supply 2.5 V
VDDPLL
VSSPLL
KWJ0
KWJ1
SPI1
SDA
SCL
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
MISO
MOSI
SCK
SS
KWJ6
KWJ7
KWP0
KWP1
KWP2
KWP3
KWP4
KWP5
KWP6
KWP7
KWH0
KWH1
KWH2
KWH3
KWH4
KWH5
KWH6
KWH7
PTJ
Timer
4-Channel
16-Bit with Prescaler
for Internal Timebases
MISO
MOSI
SCK
SS
RXCAN
CAN0
TXCAN
SPI0
PTP
8-Bit PPAGE
Allows 4-MByte
Program space
PTH
DDRK
DDRA
PTK
SCI0
DDRP
DDRE
PTE
Enhanced Capture
Timer
ECLK
PAD00
PAD01
PAD02
PAD03
PAD04
PAD05
PAD06
PAD07
PAD08
PAD09
PAD10
PAD11
PAD12
PAD13
PAD14
PAD15
PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7
PJ6
PJ7
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PH0
PH1
PH2
PH3
PH4
PH5
PH6
PH7
Signals shown in Bold-Italics are neither available on the 112-pin nor on the 80-pin oackage option
Signals shown in Bold are not available on the 80-pin package
Periodic Interrupt
COP Watchdog
Clock Monitor
Breakpoints
PTT
Enhanced Multilevel
Interrupt Module
ECLKX2/XCLKS
DDRB
PK7
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
Clock
and Reset
Generation
Module
XIRQ
IRQ
PTA
PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
PK0
PK1
PK2
PK3
PK4
PK5
PLL
PTB
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
TEST
PTS
CPU12X
XFC
DDRH
Single-Wire
Background
Debug Module
BKGD
PTM
Voltage Regulator
Module to Port Routing
VREGEN
VDD1,2
VSS1,2
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
AN8
AN9
AN10
AN11
AN12
AN13
AN14
AN15
IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
RXD
TXD
RXD
TXD
DDRAD1
2-Kbyte EEPROM
VDDR
VSSR
VRH
VRL
VDDA
VSSA
VDDA
VSSA
DDRT
12 Kbyte RAM
VRH
VRL
DDRS
ATD1
DDRM
128-Kbyte Flash
Figure 1-2. Block Diagram Maskset M42E
MC9S12XDP512 Data Sheet, Rev. 2.21
36
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.1.4
Device Memory Map
Table 1-1shows the device register memory map of the MC9S12XDP512. Available modules on other
Family members please refer to Appendix E Derivative Differences
Unimplemented register space shown in Table 1-1 is not allocated to any module. Writing to these
locations have no effect. Read access to these locations returns zero. Figure 1-1 shows the global address
mapping for the parts listed in Table 1-2.
Table 1-1. Device Register Memory Map
Address
Module
Size
(Bytes)
0x0000–0x0009
PIM (port integration module)
10
0x000A–0x000B
MMC (memory map control)
2
0x000C–0x000D
PIM (port integration module)
2
0x000E–0x000F
EBI (external bus interface)
2
0x0010–0x0017
MMC (memory map control)
8
0x0018–0x0019
Unimplemented
2
0x001A–0x001B
Device ID register
2
0x001C–0x001F
PIM (port integration module)
4
0x0020–0x002F
DBG (debug module)
16
0x0030–0x0031
MMC (memory map control)
2
0x0032–0x0033
PIM (port integration module)
2
0x0034–0x003F
CRG (clock and reset generator)
12
0x0040–0x007F
ECT (enhanced capture timer 16-bit 8-channel)s
64
0x0080–0x00AF
ATD1 (analog-to-digital converter 10-bit 16-channel)
48
0x00B0–0x00B7
IIC1 (inter IC bus)
8
0x00B8–0x00C7
Reserved
16
0x00B8–0x00BF
SCI2 (serial communications interface)
8
0x00C0–0x00C7
SCI3 (serial communications interface)
8
0x00C8–0x00CF
SCI0 (serial communications interface)
8
0x00D0–0x00D7
SCI1 (serial communications interface)
8
0x00D8–0x00DF
SPI0 (serial peripheral interface)
8
0x00E0–0x00E7
IIC0 (inter IC bus)
8
0x00E8–0x00EF
Unimplemented
8
0x00F0–0x00F7
SPI1 (serial peripheral interface)
8
0x00F8–0x013F
Reserved
8
0x00F8–0x00FF
SPI2 (serial peripheral interface)
8
0x0100–0x010F
Flash control register
16
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
37
Chapter 1 Device Overview MC9S12XD-Family
Table 1-1. Device Register Memory Map (continued)
Address
Module
Size
(Bytes)
0x0110–0x011B
EEPROM control register
12
0x011C–0x011F
MMC (memory map control)
4
0x0120–0x012F
INT (interrupt module)
16
0x0130–0x013F
Reserved
16
0x0130–0x0137
SCI4 (serial communications interface)
8
0x0138–0x013F
SCI5 (serial communications interface)
8
0x0140–0x017F
CAN0 (scalable CAN)
64
0x0180–0x01BF
CAN1 (scalable CAN)
64
0x0180–0x023F
Reserved
192
0x01C0–0x01FF
CAN2 (scalable CAN)
64
0x0200–0x023F
Reserved
64
0x0200–0x023F
CAN3 (scalable CAN)
64
0x0240–0x027F
PIM (port integration module)
64
0x0280–0x02BF
CAN4 (scalable CAN)
64
0x02C0–0x02DF
Reserved
32
0x02C0–0x02DF
ATD0 (analog-to-digital converter 10 bit 8-channel)
32
0x02E0–0x02EF
Unimplemented
16
0x02F0–0x02F7
Voltage regulator
8
0x02F8–0x02FF
Unimplemented
8
0x0300–0x0327
PWM (pulse-width modulator 8 channels)
40
0x0328–0x033F
Unimplemented
24
0x0340–0x0367
Periodic interrupt timer
40
0x0368–0x037F
Unimplemented
24
0x0380–0x03BF
XGATE
64
0x03C0–0x03FF
Unimplemented
64
0x0400–0x07FF
Unimplemented
1024
MC9S12XDP512 Data Sheet, Rev. 2.21
38
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
CPU and BDM
Local Memory Map
Global Memory Map
0x00_0000
0x00_07FF
2K REGISTERS
CS3
Unimplemented
RAM
0x0800
0x0C00
0x1000
RAM
2K REGISTERS
1K EEPROM window
EPAGE
0x0F_FFFF
1K EEPROM
4K RAM window
Unimplemented
EEPROM
RPAGE
CS2
0x0000
RAMSIZE
RAM_LOW
8K RAM
EEPROM_LOW
EEPROM
0x4000
0x13_FFFF
CS2
Unpaged
16K FLASH
EEPROMSIZE
0x2000
0x1F_FFFF
External
Space
CS1
0x8000
PPAGE
0x3F_FFFF
0xC000
CS0
16K FLASH window
Unimplemented
FLASH
Unpaged
16K FLASH
Reset Vectors
FLASH_LOW
FLASH
FLASHSIZE
0xFFFF
0x7F_FFFF
Figure 1-3. S12X CPU & BDM Global Address Mapping
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
39
Chapter 1 Device Overview MC9S12XD-Family
Table 1-2. Device Internal Resources (see Figure 1-3)
RAMSIZE/
RAM_LOW
EEPROMSIZE/
EEPROM_LOW
FLASHSIZE/
FLASH_LOW
9S12XDP512
32K
0x0F_8000
4K
0x13_F000
512K
0x78_0000
9S12XDT512
20K
0x0F_B000
4K
0x13_F000
512K
0x78_0000
9S12XA512
32K
0x0F_8000
4K
0x13_F000
512K
0x78_0000
9S12XDG128
12K
0x0F_D000
2K
0x13_F800
128K
7E_0000
3S12XDG128
12K
0x0F_D000
2K
0x13_F800
128K
7E_0000
9S12XD128
8K
0x0F_E000
2K
0x13_F800
128K
7E_0000
9S12XD64
4K
0x0F_F000
1K
0x13_FC00
64K
7F_0000
9S12XB128
6K
0x0F_E800
1K
0x13_FC00
128K
7E_0000
9S12XA128
12K
0x0F_D000
2K
0x13_F800
128K
7E_0000
Device
MC9S12XDP512 Data Sheet, Rev. 2.21
40
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
CPU and BDM
Local Memory Map
Global Memory Map
0x00_0000
0x00_07FF
2K REGISTERS
CS3
Unimplemented
RAM
0x0800
0x0C00
0x1000
RAM
2K REGISTERS
1K EEPROM window
EPAGE
0x0F_FFFF
1K EEPROM
4K RAM window
Unimplemented
EEPROM
RPAGE
CS2
0x0000
RAMSIZE
RAM_LOW
8K RAM
EEPROM_LOW
EEPROM
0x4000
0x13_FFFF
CS2
Unpaged
16K FLASH
EEPROMSIZE
0x2000
0x1F_FFFF
External
Space
CS1
0x8000
PPAGE
0x3F_FFFF
0xC000
CS0
16K FLASH window
Unimplemented
FLASH
Unpaged
16K FLASH
0xFFFF
Reset Vectors
0x78_0000
Unimplemented
FLASH
FLASH1_HIGH
CS0
FLASH0_LOW
FLASHSIZE
FLASH0
FLASH1
0x7F_FFFF
Figure 1-4. S12X CPU & BDM Global Address Mapping
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
41
Chapter 1 Device Overview MC9S12XD-Family
Table 1-3. Device Internal Resources (see Figure 1-4)
RAMSIZE/
RAM_LOW
EEPROMSIZE/
EEPROM_LOW
FLASHSIZE0/
FLASH_LOW
FLASHSIZE1/
FLASH_HIGH
9S12XDT384
20K
0x0F_B000
4K
0x13_F000
128K
0x79_FFFF
256K
0x7C_0000
9S12XDQ256
16K
0x0F_C000
4K
0x13_F000
9S12XDT256
16K
0x0F_C000
4K
0x13_F000
9S12XD256
14K
0x0F_C800
4K
0x13_F000
128K
0x79_FFFF
128K
0x7E_0000
9S12XA256
16K
0x0F_C000
4K
0x13_F000
9S12XB256
10K
0x0F_D800
2K
0x13_F800
Device
MC9S12XDP512 Data Sheet, Rev. 2.21
42
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
XGATE
Local Memory Map
Figure 1-5. GATE Global Address Mapping
Global Memory Map
0x00_0000
Registers
0x00_07FF
XGRAM_LOW
0x0800
RAM
0x0F_FFFF
RAMSIZE
Registers
XGRAMSIZE
0x0000
FLASH
RAM
0x78_0800
0xFFFF
FLASHSIZE
FLASH
XGFLASH_HIGH
0x7F_FFFF
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
43
Chapter 1 Device Overview MC9S12XD-Family
Table 1-4. XGATE Resources (see Figure 1-5)
Device
1
XGRANMSIZE
XGRAM_LOW
9S12XDP512
32K
0x0F_8000
9S12XDT512
20K
0x0F_B000
9S12XDT384
20K
0x0F_B000
9S12XA512
32K
0x0F_8000
9S12XDQ256
16K
0x0F_C000
9S12XD256
14K
0x0F_C800
9S12XB256
10K
0x0F_D800
9S12XA256
16K
0x0F_C000
XGFLASHSIZE1
XGFLASH_HIGH
30K
0x78_7FFF
Available Flah Memory 30K on all listed parts
MC9S12XDP512 Data Sheet, Rev. 2.21
44
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
XGATE
Local Memory Map
Figure 1-6. XGATE Global Address Mapping
Global Memory Map
0x00_0000
Registers
0x00_07FF
XGRAM_LOW
0x0800
RAM
0x0F_FFFF
RAMSIZE
Registers
XGRAMSIZE
0x0000
RAM
0xFFFF
0x7F_FFFF
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
45
Chapter 1 Device Overview MC9S12XD-Family
Table 1-5. XGATE Resources (see Figure 1-6)
Device
XGRAMSIZE
XGRAM_LOW
9S12XDG128
12K
0x0F_D000
3S12XDG128
12K
0x0F_D000
9S12XD128
8K
0x0F_E000
9S12XD64
4K
0x0F_F000
9S12XB128
6K
0x0F_E800
9S12XA128
12K
0x0F_D000
MC9S12XDP512 Data Sheet, Rev. 2.21
46
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.1.5
Part ID Assignments & Maskset Numbers
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses 0x001A and 0x001B).
The read-only value is a unique part ID for each revision of the chip. Table 1-6 shows the assigned part ID
number and Mask Set number.
Table 1-6. Part Names, Masksets and Assigned Part ID Numbers
Part Names
Mask Set Number
Part ID1
MC9S12XDP512
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
MC9S12XDT512
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
MC9S12XA512
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
MC9S12XDT384
MC9S12XDQ256
MC9S12XDT256
0M84E/1M84E
0xC000/0xC001
0L15Y/1L15Y/0M23S
0xC410/0xC4110xC412
0M84E/1M84E
0xC000/0xC001
0xC410/0xC411/0xC412
0M84E/1M84E
0xC000/0xC001
MC9S12XB256
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
0M84E/1M84E
0xC000/0xC001
MC9S12XA256
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
0M84E/1M84E
0xC000/0xC001
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
0M42E/1M42E/2M42E
0xC100/0xC101/0xC102
0L15Y/1L15Y/0M23S
0xC410/0xC4110xC412
0M42E/1M42E/2M42E
0xC100/0xC101/0xC102
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
0M42E/1M42E/2M42E
0xC100/0xC101/0xC102
0L15Y/1L15Y/0M23S
0xC410/0xC411/0xC412
0M42E/1M42E/2M42E
0xC100/0xC101/0xC102
MC9S12XDG128
MC9S12XD128
MC9S12XA128
MC9S12XB128
1.2
0xC410/0xC411/0xC412
0xC410/0xC411/0xC412
0L15Y/1L15Y/0M23S
MC9S12XD256
1
0L15Y/1L15Y/0M23S
0L15Y/1L15Y/0M23S
The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor — non full — mask set revision
Signal Description
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals.
1.2.1
Device Pinout
The MC9S12XD family of devices offers pin-compatible packaged devices to assist with system
development and accommodate expansion of the application.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
47
Chapter 1 Device Overview MC9S12XD-Family
The S12XD, S12XA and S12XB family devices are offered in the following packages:
• 144-pin LQFP package with an external bus interface (address/data bus)
• 112-pin LQFP without external bus interface
• 80-pin QFP without external bus interface
See Appendix E Derivative Differences for package options.
CAUTION
Most the I/O Pins have different functionality depending on the module
configuration. Not all functions are shown in the following pinouts. Please
refer to Table 1-7 for a complete description. For avalability of the modules
on different family members refer to Appendix E Derivative Differences.
For pinout explanations of the different parts refer to E.7 Pinout
explanations:
MC9S12XDP512 Data Sheet, Rev. 2.21
48
Freescale Semiconductor
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PP4/KWP4/PWM4/MISO2
PP5/KPW5/PWM5/MOSI2
PP6/KWP6/PWM6/SS2
PP7/KWP7/PWM7/SCK2
PK7/ROMCTL/EWAIT
VDDX1
VSSX1
PM0/RXCAN0
PM1/TXCAN0
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN2/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN2/TXCAN0/TXCAN4/SCK0
PJ4/KWJ4/SDA1/CS0
PJ5/KWJ5/SCL1/CS2
PJ6/KWJ6/RXCAN4/SDA0/RXCAN0
PJ7/KWJ7/TXCAN4/SCL0/TXCAN0
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
PM6/RXCAN3/RXCAN4/RXD3
PM7/TXCAN3/TXCAN4/TXD3
PAD23/AN23
PAD22/AN22
PAD21/AN21
PAD20/AN20
PAD19/AN19
PAD18/AN18
VSSA
VRL
Chapter 1 Device Overview MC9S12XD-Family
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
MC9S12XD-Family
144-Pin LQFP
Pins shown in BOLD-ITALICS are not available on the
112-Pin LQFP or the 80-Pin QFP package option
Pins shown in BOLD are not available on the
80-Pin QFP package option
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VRH
VDDA
PAD17/AN17
PAD16/AN16
PAD15/AN15
PAD07/AN07
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PD7/DATA7
PD6/DATA6
PD5/DATA5
PD4/DATA4
VDDR2
VSSR2
PA7/ADDR15
PA6/ADDR14
PA5/ADDR13
PA4/ADDR12
PA3/ADDR11
PA2/ADDR10
PA1/ADDR9
PA0/ADDR8
ADDR5/PB5
ADDR6/PB6
ADDR7/PB7
DATA12/PC4
DATA13/PC5
DATA14/PC6
DATA15/PC7
TXD5/SS2/KWH7/PH7
RXD5/SCK2/KWH6/PH6
TXD4/MOSI2/KWH5/PH5
RXD4/MISO2/KWH4/PH4
XCLKS/ECLKX2/PE7
TAGHI/MODB/PE6
RE/TAGLO/MODA/PE5
ECLK/PE4
VSSR1
VDDR1
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
PD0/DATA0
PD1/DATA1
PD2/DATA2
PD3/DATA3
LDS/LSTRB/PE3/EROMCTL
WE/R/W/PE2
IRQ/PE1
XIRQ/PE0
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
CS1/KWJ2/PJ2
ACC2/ADDR22/PK6
IQSTAT3/ADDR19/PK3
IQSTAT2/ADDR18/PK2
IQSTAT1/ADDR17/PK1
IQSTAT0/ADDR16/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
ACC1/ADDR21/PK5
ACC0/ADDR20/PK4
TXD2/KWJ1/PJ1
CS3/RXD2/KWJ0/PJ0
MODC/BKGD
VDDX2
VSSX2
DATA8/PC0
DATA9/PC1
DATA10/PC2
DATA11/PC3
UDS/ADDR0/PB0
ADDR1/PB1
ADDR2/PB2
ADDR3/PB3
ADDR4/PB4
Figure 1-7. MC9S12XD Family Pin Assignment 144-Pin LQFP Package
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
49
MC9S12XD-Family
112-Pin LQFP
Pins shown in BOLD are not available on the
80-Pin QFP package option
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VRH
VDDA
PAD15/AN15
PAD07/AN07
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PB5
PB6
PB7
TXD5/SS2/KWH7/PH7
RXD5/SCK2/KWH6/PH6
TXD4/MOSI2/KWH5/PH5
RXD4/MISO2/KWH4/PH4
XCLKS/PE7
PE6
PE5
ECLK/PE4
VSSR1
VDDR1
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
PE3
PE2
IRQ/PE1
XIRQ/PE0
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
PK3
PK2
PK1
PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
PK5
PK4
TXD2/KWJ1/PJ1
RXD2/KWJ0/PJ0
MODC/BKGD
PB0
PB1
PB2
PB3
PB4
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
PP4/KWP4/PWM4/MISO2
PP5/KPW5/PWM5/MOSI2
PP6/KWP6/PWM6/SS2
PP7/KWP7/PWM7/SCK2
PK7
VDDX
VSSX
PM0/RXCAN0
PM1/TXCAN0
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN2/RXCAN0/RXCAN4/MOS
PM5/TXCAN2/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA0/RXCAN0
PJ7/KWJ7/TXCAN4/SCL0/TXCAN0
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
PM6/RXCAN3/RXCAN4/RXD3
PM7/TXCAN3/TXCAN4/TXD3
VSSA
VRL
Chapter 1 Device Overview MC9S12XD-Family
Figure 1-8. MC9S12XD Family Pin Assignments 112-Pin LQFP Package
MC9S12XDP512 Data Sheet, Rev. 2.21
50
Freescale Semiconductor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MC9S12XD-Family
80-Pin QFP
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PB5
PB6
PB7
XCLKS/PE7
PE6
PE5
ECLK/PE4
VSSR1
VDDR1
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
PE3
PE2
IRQ/PE1
XIRQ/PE0
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/BKGD
PB0
PB1
PB2
PB3
PB4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PP4/KWP4/PWM4/MISO2
PP5/KWP5/PWM5/MOSI2
PP7/KWP7/PWM7/SCK2
VDDX
VSSX
PM0/RXCAN0
PM1/TXCAN0
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN2/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN2/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA0/RXCAN0
PJ7/KWJ7/TXCAN4/SCL0/TXCAN0
VREGEN
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
VSSA
VRL
Chapter 1 Device Overview MC9S12XD-Family
Figure 1-9. MC9S12XD Family Pin Assignments 80-Pin QFP Package
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
51
Chapter 1 Device Overview MC9S12XD-Family
1.2.2
Signal Properties Summary
Table 1-7 summarizes the pin functionality of the MC9S12XDP512. For available modules on other parts
of the S12XD, S12XB and S12XA family please refer to Appendix E Derivative Differences.
Table 1-7. Signal Properties Summary (Sheet 1 of 4)
Pin
Pin
Pin
Pin
Pin
Power
Name
Name
Name
Name
Name
Supply
Function 1 Function 2 Function 3 Function 4 Function 5
Internal Pull
Resistor
Description
CTRL
Reset
State
EXTAL
—
—
—
—
VDDPLL
NA
NA
XTAL
—
—
—
—
VDDPLL
NA
NA
RESET
—
—
—
—
VDDR
TEST
—
—
—
—
N.A.
RESET pin
VREGEN
—
—
—
—
VDDX
PUCR
Up
Voltage regulator enable
Input
PULLUP
Oscillator pins
External reset
DOWN Test input
XFC
—
—
—
—
VDDPLL
NA
NA
PLL loop filter
BKGD
MODC
—
—
—
VDDX
Always on
Up
Background debug
PAD[23:08]
AN[23:8]
—
—
—
VDDA
PER0/
PER1
Disabled Port AD I/O, Port AD inputs
of ATD1 and
analog inputs of ATD1
PAD[07:00]
AN[7:0]
—
—
—
VDDA
PER1
Disabled Port AD I/O, Port AD inputs
of ATD0 and
analog inputs of ATD0
PA[7:0]
—
—
—
—
VDDR
PUCR
Disabled Port A I/O
PB[7:0]
—
—
—
—
VDDR
PUCR
Disabled Port BI/O
PA[7:0]
ADDR[15:8] IVD[15:8]
—
—
VDDR
PUCR
Disabled Port A I/O, address bus,
internal visibility data
PB[7:1]
ADDR[7:1]
IVD[7:0]
—
—
VDDR
PUCR
Disabled Port B I/O, address bus,
internal visibility data
PB0
ADDR0
UDS
VDDR
PUCR
Disabled Port B I/O, address bus,
upper data strobe
PC[7:0]
DATA[15:8]
—
—
—
VDDR
PUCR
Disabled Port C I/O, data bus
PD[7:0]
DATA[7:0]
—
—
—
VDDR
PUCR
Disabled Port D I/O, data bus
PE7
ECLKX2
XCLKS
—
—
VDDR
PUCR
PE6
TAGHI
MODB
—
—
VDDR
While RESET
pin is low: down
Port E I/O, tag high, mode
input
PE5
RE
MODA
TAGLO
—
VDDR
While RESET
pin is low: down
Port E I/O, read enable,
mode input, tag low input
Up
Port E I/O, system clock
output, clock select
PE4
ECLK
—
—
—
VDDR
PUCR
Up
Port E I/O, bus clock output
PE3
LSTRB
LDS
EROMCTL
—
VDDR
PUCR
Up
Port E I/O, low byte data
strobe, EROMON control
PE2
R/W
WE
—
—
VDDR
PUCR
Up
Port E I/O, read/write
PE1
IRQ
—
—
—
VDDR
PUCR
Up
Port E Input, maskable
interrupt
MC9S12XDP512 Data Sheet, Rev. 2.21
52
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
Table 1-7. Signal Properties Summary (Sheet 2 of 4)
Pin
Pin
Pin
Pin
Pin
Power
Name
Name
Name
Name
Name
Supply
Function 1 Function 2 Function 3 Function 4 Function 5
Internal Pull
Resistor
Description
CTRL
Reset
State
PUCR
Up
PE0
XIRQ
—
—
—
VDDR
Port E input, non-maskable
interrupt
PH7
KWH7
SS2
TXD5
—
VDDR
PH6
KWH6
SCK2
RXD5
—
VDDR
PERH/
PPSH
Disabled Port H I/O, interrupt, SCK of
SPI2, RXD of SCI5
PH5
KWH5
MOSI2
TXD4
—
VDDR
PERH/
PPSH
Disabled Port H I/O, interrupt, MOSI
of SPI2, TXD of SCI4
PH4
KWH4
MISO2
RXD4
—
VDDR
PERH/PPSH Disabled Port H I/O, interrupt, MISO
of SPI2, RXD of SCI4
PH3
KWH3
SS1
—
—
VDDR
PERH/PPSH Disabled Port H I/O, interrupt, SS of
SPI1
PH2
KWH2
SCK1
—
—
VDDR
PERH/PPSH Disabled Port H I/O, interrupt, SCK of
SPI1
PH1
KWH1
MOSI1
—
—
VDDR
PERH/PPSH Disabled Port H I/O, interrupt, MOSI
of SPI1
PH0
KWH0
MISO1
—
—
VDDR
PERH/PPSH Disabled Port H I/O, interrupt, MISO
of SPI1
PJ7
KWJ7
TXCAN4
SCL0
TXCAN0
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, TX of
CAN4, SCL of IIC0, TX of
CAN0
PJ6
KWJ6
RXCAN4
SDA0
RXCAN0
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, RX of
CAN4, SDA of IIC0, RX of
CAN0
PJ5
KWJ5
SCL1
CS2
—
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, SCL of
IIC1, chip select 2
PJ4
KWJ4
SDA1
CS0
—
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, SDA of
IIC1, chip select 0
PJ2
KWJ2
CS1
—
—
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, chip
select 1
PJ1
KWJ1
TXD2
—
—
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, TXD of
SCI2
PJ0
KWJ0
RXD2
CS3
—
VDDX
PERJ/
PPSJ
Up
Port J I/O, interrupt, RXD of
SCI2
PK7
—
—
—
—
VDDX
PUCR
Up
Port K I/O
PK[5:4]
—
—
—
—
VDDX
PUCR
Up
Port K I/O
PK7
EWAIT
ROMCTL
—
—
VDDX
PUCR
Up
Port K I/O, EWAIT input,
ROM on control
PK[6:4]
ADDR
[22:20]
ACC[2:0]
—
—
VDDX
PUCR
Up
Port K I/O, extended
addresses, access source
for external access
PK3
ADDR19
IQSTAT3
—
—
VDDX
PUCR
Up
Extended address, PIPE
status
PERH/PPSH Disabled Port H I/O, interrupt, SS of
SPI2, TXD of SCI5
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
53
Chapter 1 Device Overview MC9S12XD-Family
Table 1-7. Signal Properties Summary (Sheet 3 of 4)
Pin
Pin
Pin
Pin
Pin
Power
Name
Name
Name
Name
Name
Supply
Function 1 Function 2 Function 3 Function 4 Function 5
Internal Pull
Resistor
Description
CTRL
Reset
State
PK2
ADDR18
IQSTAT2
—
—
VDDX
PUCR
Up
Extended address, PIPE
status
PK1
ADDR17
IQSTAT1
—
—
VDDX
PUCR
Up
Extended address, PIPE
status
PK0
ADDR16
IQSTAT0
—
—
VDDX
PUCR
Up
Extended address, PIPE
status
PM7
TXCAN3
TXD3
TXCAN4
—
VDDX
PERM/
PPSM
PM6
RXCAN3
RXD3
RXCAN4
—
VDDX PERM/PPSM Disabled Port M I/O RX of CAN3 and
CAN4, RXD of SCI3
PM5
TXCAN2
TXCAN0
TXCAN4
SCK0
VDDX PERM/PPSM Disabled Port M I/O CAN0, CAN2,
CAN4, SCK of SPI0
PM4
RXCAN2
RXCAN0
RXCAN4
MOSI0
VDDX PERM/PPSM Disabled Port M I/O, CAN0, CAN2,
CAN4, MOSI of SPI0
PM3
TXCAN1
TXCAN0
—
SS0
VDDX PERM/PPSM Disabled Port M I/O TX of CAN1,
CAN0, SS of SPI0
PM2
RXCAN1
RXCAN0
—
MISO0
VDDX PERM/PPSM Disabled Port M I/O, RX of CAN1,
CAN0, MISO of SPI0
PM1
TXCAN0
—
—
VDDX PERM/PPSM Disabled Port M I/O, TX of CAN0
PM0
RXCAN0
—
—
VDDX PERM/PPSM Disabled Port M I/O, RX of CAN0
PP7
KWP7
PWM7
SCK2
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
7
of PWM, SCK of SPI2
PP6
KWP6
PWM6
SS2
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
6 of PWM, SS of SPI2
PP5
KWP5
PWM5
MOSI2
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
5 of PWM, MOSI of SPI2
PP4
KWP4
PWM4
MISO2
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
4 of PWM, MISO2 of SPI2
PP3
KWP3
PWM3
SS1
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
3 of PWM, SS of SPI1
PP2
KWP2
PWM2
SCK1
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
2 of PWM, SCK of SPI1
PP1
KWP1
PWM1
MOSI1
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
1 of PWM, MOSI of SPI1
PP0
KWP0
PWM0
MISO1
—
VDDX
PERP/
PPSP
Disabled Port P I/O, interrupt, channel
0 of PWM, MISO2 of SPI1
PS7
SS0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, SS of SPI0
PS6
SCK0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, SCK of SPI0
Disabled Port M I/O, TX of CAN3 and
CAN4, TXD of SCI3
MC9S12XDP512 Data Sheet, Rev. 2.21
54
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
Table 1-7. Signal Properties Summary (Sheet 4 of 4)
Pin
Pin
Pin
Pin
Pin
Power
Name
Name
Name
Name
Name
Supply
Function 1 Function 2 Function 3 Function 4 Function 5
Internal Pull
Resistor
Description
CTRL
Reset
State
PS5
MOSI0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, MOSI of SPI0
PS4
MISO0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, MISO of SPI0
PS3
TXD1
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, TXD of SCI1
PS2
RXD1
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, RXD of SCI1
PS1
TXD0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, TXD of SCI0
PS0
RXD0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, RXD of SCI0
PT[7:0]
IOC[7:0]
—
—
—
VDDX
PERT/
PPST
Disabled Port T I/O, timer channels
NOTE
For devices assembled in 80-pin and 112-pin packages all non-bonded out
pins should be configured as outputs after reset in order to avoid current
drawn from floating inputs. Refer to Table 1-7 for affected pins.
1.2.3
Detailed Signal Descriptions
NOTE
This section describes all pins which are availabe on the cover part
MC9S12XDP512 in 144-pin LQFP package. For modules and pinout
explanations of the different family members refer to E.7 Pinout
explanations: and E.5 Peripheral Sets S12XD - Family and E.6 Peripheral
Sets S12XA & S12XB - Family
1.2.3.1
EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
1.2.3.2
RESET — External Reset Pin
The RESET pin is an active low bidirectional control signal. It acts as an input to initialize the MCU to a
known start-up state. As an output it is driven ;ow to indicate when any internal MCU reset source triggers.
The RESET pin has an internal pullup device.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
55
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.3
TEST — Test Pin
This input only pin is reserved for test. This pin has a pulldown device.
NOTE
The TEST pin must be tied to VSS in all applications.
1.2.3.4
VREGEN — Voltage Regulator Enable Pin
This input only pin enables or disables the on-chip voltage regulator. The input has a pullup device.
1.2.3.5
XFC — PLL Loop Filter Pin
Please ask your Freescale representative for the interactive application note to compute PLL loop filter
elements. Any current leakage on this pin must be avoided.
VDDPLL
VDDPLL
CS
MCU
R0
CP
XFC
Figure 1-10. PLL Loop Filter Connections
1.2.3.6
BKGD / MODC — Background Debug and Mode Pin
The BKGD/MODC pin is used as a pseudo-open-drain pin for the background debug communication. It
is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit
at the rising edge of RESET. The BKGD pin has a pullup device.
1.2.3.7
PAD[23:8] / AN[23:8] — Port AD Input Pins of ATD1
PAD[23:8] are general-purpose input or output pins and analog inputs AN[23:8] of the analog-to-digital
converter ATD1.
1.2.3.8
PAD[7:0] / AN[7:0] — Port AD Input Pins of ATD0
PAD[7:0] are general-purpose input or output pins and analog inputs AN[7:0] of the analog-to-digital
converter ATD0.
1.2.3.9
PAD[15:0] / AN[15:0] — Port AD Input Pins of ATD1
PAD[15:0] are general-purpose input or output pins and analog inputs AN[15:0] of the analog-to-digital
converter ATD1.
MC9S12XDP512 Data Sheet, Rev. 2.21
56
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.10
PA[7:0] / ADDR[15:8] / IVD[15:8] — Port A I/O Pins
PA[7:0] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the external address bus. In MCU emulation modes of operation, these pins are used for external
address bus and internal visibility read data.
1.2.3.11
PB[7:1] / ADDR[7:1] / IVD[7:1] — Port B I/O Pins
PB[7:1] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the external address bus. In MCU emulation modes of operation, these pins are used for external
address bus and internal visibility read data.
1.2.3.12
PB0 / ADDR0 / UDS / IVD[0] — Port B I/O Pin 0
PB0 is a general-purpose input or output pin. In MCU expanded modes of operation, this pin is used for
the external address bus ADDR0 or as upper data strobe signal. In MCU emulation modes of operation,
this pin is used for external address bus ADDR0 and internal visibility read data IVD0.
1.2.3.13
PB[7:0] — Port B I/O Pins
PB[7:0] are general-purpose input or output pins.
1.2.3.14
PC[7:0] / DATA [15:8] — Port C I/O Pins
PC[7:0] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the external data bus.
The input voltage thresholds for PC[7:0] can be configured to reduced levels, to allow data from an external
3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage thresholds for PC[7:0] are
configured to reduced levels out of reset in expanded and emulation modes. The input voltage thresholds
for PC[7:0] are configured to 5-V levels out of reset in normal modes.
1.2.3.15
PD[7:0] / DATA [7:0] — Port D I/O Pins
PD[7:0] are general-purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the external data bus.
The input voltage thresholds for PD[7:0] can be configured to reduced levels, to allow data from an
external 3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage thresholds for
PD[7:0] are configured to reduced levels out of reset in expanded and emulation modes. The input voltage
thresholds for PC[7:0] are configured to 5-V levels out of reset in normal modes.
1.2.3.16
PE7 / ECLKX2 / XCLKS — Port E I/O Pin 7
PE7 is a general-purpose input or output pin. The XCLKS is an input signal which controls whether a
crystal in combination with the internal loop controlled (low power) Pierce oscillator is used or whether
full swing Pierce oscillator/external clock circuitry is used.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
57
Chapter 1 Device Overview MC9S12XD-Family
The XCLKS signal selects the oscillator configuration during reset low phase while a clock quality check
is ongoing. This is the case for:
• Power on reset or low-voltage reset
• Clock monitor reset
• Any reset while in self-clock mode or full stop mode
The selected oscillator configuration is frozen with the rising edge of reset.
The pin can be configured to drive the internal system clock ECLKX2.
EXTAL
C1
MCU
Crystal or
Ceramic Resonator
XTAL
C2
VSSPLL
Figure 1-11. Loop Controlled Pierce Oscillator Connections (PE7 = 1)
EXTAL
C1
MCU
RB
RS
Crystal or
Ceramic Resonator
XTAL
C2
VSSPLL
Figure 1-12. Full Swing Pierce Oscillator Connections (PE7 = 0)
EXTAL
CMOS-Compatible
External Oscillator
MCU
XTAL
Not Connected
Figure 1-13. External Clock Connections (PE7 = 0)
1.2.3.17
PE6 / MODB / TAGHI — Port E I/O Pin 6
PE6 is a general-purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is an input with a
MC9S12XDP512 Data Sheet, Rev. 2.21
58
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
pull-down device which is only active when RESET is low. TAGHI is used to tag the high half of the
instruction word being read into the instruction queue.
The input voltage threshold for PE6 can be configured to reduced levels, to allow data from an external
3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage threshold for PE6 is
configured to reduced levels out of reset in expanded and emulation modes.
1.2.3.18
PE5 / MODA / TAGLO / RE — Port E I/O Pin 5
PE5 is a general-purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
read enable RE output. This pin is an input with a pull-down device which is only active when RESET is
low. TAGLO is used to tag the low half of the instruction word being read into the instruction queue.
The input voltage threshold for PE5 can be configured to reduced levels, to allow data from an external
3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage threshold for PE5 is
configured to reduced levels out of reset in expanded and emulation modes.
1.2.3.19
PE4 / ECLK — Port E I/O Pin 4
PE4 is a general-purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.
1.2.3.20
PE3 / LSTRB / LDS / EROMCTL— Port E I/O Pin 3
PE3 is a general-purpose input or output pin. In MCU expanded modes of operation, LSTRB or LDS can
be used for the low byte strobe function to indicate the type of bus access. At the rising edge of RESET
the state of this pin is latched to the EROMON bit.
1.2.3.21
PE2 / R/W / WE— Port E I/O Pin 2
PE2 is a general-purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal or write enable output signal for the external bus. It indicates the direction of data
on the external bus
1.2.3.22
PE[6:2] — Port E I/O Pins
PE[6:2] are general-purpose input or output pins.
1.2.3.23
PE1 / IRQ — Port E Input Pin 1
PE1 is a general-purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from stop or wait mode.
1.2.3.24
PE0 / XIRQ — Port E Input Pin 0
PE0 is a general-purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from stop or wait mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
59
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.25
PH7 / KWH7 / SS2 / TXD5 — Port H I/O Pin 7
PH7 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as slave select pin SS of the serial peripheral
interface 2 (SPI2). It can be configured as the transmit pin TXD of serial communication interface 5
(SCI5).
1.2.3.26
PH6 / KWH6 / SCK2 / RXD5 — Port H I/O Pin 6
PH6 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as serial clock pin SCK of the serial peripheral
interface 2 (SPI2). It can be configured as the receive pin (RXD) of serial communication interface 5
(SCI5).
1.2.3.27
PH5 / KWH5 / MOSI2 / TXD4 — Port H I/O Pin 5
PH5 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the serial peripheral interface 2 (SPI2). It can be configured as the
transmit pin TXD of serial communication interface 4 (SCI4).
1.2.3.28
PH4 / KWH4 / MISO2 / RXD4 — Port H I/O Pin 4
PH4 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the serial peripheral interface 2 (SPI2). It can be configured as the receive
pin RXD of serial communication interface 4 (SCI4).
1.2.3.29
PH3 / KWH3 / SS1 — Port H I/O Pin 3
PH3 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as slave select pin SS of the serial peripheral
interface 1 (SPI1).
1.2.3.30
PH2 / KWH2 / SCK1 — Port H I/O Pin 2
PH2 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as serial clock pin SCK of the serial peripheral
interface 1 (SPI1).
1.2.3.31
PH1 / KWH1 / MOSI1 — Port H I/O Pin 1
PH1 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the serial peripheral interface 1 (SPI1).
MC9S12XDP512 Data Sheet, Rev. 2.21
60
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.32
PH0 / KWH0 / MISO1 — Port H I/O Pin 0
PH0 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the serial peripheral interface 1 (SPI1).
1.2.3.33
PJ7 / KWJ7 / TXCAN4 / SCL0 / TXCAN0— PORT J I/O Pin 7
PJ7 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as the transmit pin TXCAN for the scalable controller area
network controller 0 or 4 (CAN0 or CAN4) or as the serial clock pin SCL of the IIC0 module.
1.2.3.34
PJ6 / KWJ6 / RXCAN4 / SDA0 / RXCAN0 — PORT J I/O Pin 6
PJ6 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as the receive pin RXCAN for the scalable controller area
network controller 0 or 4 (CAN0 or CAN4) or as the serial data pin SDA of the IIC0 module.
1.2.3.35
PJ5 / KWJ5 / SCL1 / CS2 — PORT J I/O Pin 5
PJ5 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as the serial clock pin SCL of the IIC1 module. It can be
configured to provide a chip-select output.
1.2.3.36
PJ4 / KWJ4 / SDA1 / CS0 — PORT J I/O Pin 4
PJ4 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as the serial data pin SDA of the IIC1 module. It can be
configured to provide a chip-select output.
1.2.3.37
PJ2 / KWJ2 / CS1 — PORT J I/O Pin 2
PJ2 is a general-purpose input or output pins. It can be configured to generate an interrupt causing the
MCU to exit stop or wait mode. It can be configured to provide a chip-select output.
1.2.3.38
PJ1 / KWJ1 / TXD2 — PORT J I/O Pin 1
PJ1 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as the transmit pin TXD of the serial communication
interface 2 (SCI2).
1.2.3.39
PJ0 / KWJ0 / RXD2 / CS3 — PORT J I/O Pin 0
PJ0 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as the receive pin RXD of the serial communication interface
2 (SCI2).It can be configured to provide a chip-select output.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
61
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.40
PK7 / EWAIT / ROMCTL — Port K I/O Pin 7
PK7 is a general-purpose input or output pin. During MCU emulation modes and normal expanded modes
of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At
the rising edge of RESET, the state of this pin is latched to the ROMON bit. The EWAIT input signal
maintains the external bus access until the external device is ready to capture data (write) or provide data
(read).
The input voltage threshold for PK7 can be configured to reduced levels, to allow data from an external
3.3-V peripheral to be read by the MCU operating at 5.0 V. The input voltage threshold for PK7 is
configured to reduced levels out of reset in expanded and emulation modes.
1.2.3.41
PK[6:4] / ADDR[22:20] / ACC[2:0] — Port K I/O Pin [6:4]
PK[6:4] are general-purpose input or output pins. During MCU expanded modes of operation, the
ACC[2:0] signals are used to indicate the access source of the bus cycle. This pins also provide the
expanded addresses ADDR[22:20] for the external bus. In Emulation modes ACC[2:0] is available and is
time multiplexed with the high addresses
1.2.3.42
PK[3:0] / ADDR[19:16] / IQSTAT[3:0] — Port K I/O Pins [3:0]
PK3-PK0 are general-purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address ADDR[19:16] for the external bus and carry instruction pipe information.
1.2.3.43
PK7,PK[5:0] — Port K I/O Pins 7 & [5:0]
PK7 and PK[5:0] are general-purpose input or output pins.
1.2.3.44
PM7 / TXCAN3 / TXCAN4 / TXD3 — Port M I/O Pin 7
PM7 is a general-purpose input or output pin. It can be configured as the transmit pin TXCAN of the
scalable controller area network controller 3 or 4 (CAN3 or CAN4). PM7 can be configured as the transmit
pin TXD3 of the serial communication interface 3 (SCI3).
1.2.3.45
PM6 / RXCAN3 / RXCAN4 / RXD3 — Port M I/O Pin 6
PM6 is a general-purpose input or output pin. It can be configured as the receive pin RXCAN of the
scalable controller area network controller 3 or 4 (CAN3 or CAN4). PM6 can be configured as the receive
pin RXD3 of the serial communication interface 3 (SCI3).
1.2.3.46
PM5 / TXCAN0 / TXCAN2 / TXCAN4 / SCK0 — Port M I/O Pin 5
PM5 is a general-purpose input or output pin. It can be configured as the transmit pin TXCAN of the
scalable controller area network controllers 0, 2 or 4 (CAN0, CAN2, or CAN4). It can be configured as
the serial clock pin SCK of the serial peripheral interface 0 (SPI0).
MC9S12XDP512 Data Sheet, Rev. 2.21
62
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.47
PM4 / RXCAN0 / RXCAN2 / RXCAN4 / MOSI0 — Port M I/O Pin 4
PM4 is a general-purpose input or output pin. It can be configured as the receive pin RXCAN of the
scalable controller area network controllers 0, 2, or 4 (CAN0, CAN2, or CAN4). It can be configured as
the master output (during master mode) or slave input pin (during slave mode) MOSI for the serial
peripheral interface 0 (SPI0).
1.2.3.48
PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3
PM3 is a general-purpose input or output pin. It can be configured as the transmit pin TXCAN of the
scalable controller area network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave
select pin SS of the serial peripheral interface 0 (SPI0).
1.2.3.49
PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2
PM2 is a general-purpose input or output pin. It can be configured as the receive pin RXCAN of the
scalable controller area network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master
input (during master mode) or slave output pin (during slave mode) MISO for the serial peripheral
interface 0 (SPI0).
1.2.3.50
PM1 / TXCAN0 — Port M I/O Pin 1
PM1 is a general-purpose input or output pin. It can be configured as the transmit pin TXCAN of the
scalable controller area network controller 0 (CAN0).
1.2.3.51
PM0 / RXCAN0 — Port M I/O Pin 0
PM0 is a general-purpose input or output pin. It can be configured as the receive pin RXCAN of the
scalable controller area network controller 0 (CAN0).
1.2.3.52
PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7
PP7 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 7 output. It can
be configured as serial clock pin SCK of the serial peripheral interface 2 (SPI2).
1.2.3.53
PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6
PP6 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 6 output. It can
be configured as slave select pin SS of the serial peripheral interface 2 (SPI2).
1.2.3.54
PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5
PP5 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 5 output. It can
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
63
Chapter 1 Device Overview MC9S12XD-Family
be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the
serial peripheral interface 2 (SPI2).
1.2.3.55
PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4
PP4 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 4 output. It can
be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the
serial peripheral interface 2 (SPI2).
1.2.3.56
PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3
PP3 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 3 output. It can
be configured as slave select pin SS of the serial peripheral interface 1 (SPI1).
1.2.3.57
PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2
PP2 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 2 output. It can
be configured as serial clock pin SCK of the serial peripheral interface 1 (SPI1).
1.2.3.58
PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1
PP1 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 1 output. It can
be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the
serial peripheral interface 1 (SPI1).
1.2.3.59
PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0
PP0 is a general-purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit stop or wait mode. It can be configured as pulse width modulator (PWM) channel 0 output. It can
be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the
serial peripheral interface 1 (SPI1).
1.2.3.60
PS7 / SS0 — Port S I/O Pin 7
PS7 is a general-purpose input or output pin. It can be configured as the slave select pin SS of the serial
peripheral interface 0 (SPI0).
1.2.3.61
PS6 / SCK0 — Port S I/O Pin 6
PS6 is a general-purpose input or output pin. It can be configured as the serial clock pin SCK of the serial
peripheral interface 0 (SPI0).
MC9S12XDP512 Data Sheet, Rev. 2.21
64
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.2.3.62
PS5 / MOSI0 — Port S I/O Pin 5
PS5 is a general-purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the serial peripheral interface 0 (SPI0).
1.2.3.63
PS4 / MISO0 — Port S I/O Pin 4
PS4 is a general-purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the serial peripheral interface 0 (SPI0).
1.2.3.64
PS3 / TXD1 — Port S I/O Pin 3
PS3 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial
communication interface 1 (SCI1).
1.2.3.65
PS2 / RXD1 — Port S I/O Pin 2
PS2 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial
communication interface 1 (SCI1).
1.2.3.66
PS1 / TXD0 — Port S I/O Pin 1
PS1 is a general-purpose input or output pin. It can be configured as the transmit pin TXD of serial
communication interface 0 (SCI0).
1.2.3.67
PS0 / RXD0 — Port S I/O Pin 0
PS0 is a general-purpose input or output pin. It can be configured as the receive pin RXD of serial
communication interface 0 (SCI0).
1.2.3.68
PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]
PT[7:0] are general-purpose input or output pins. They can be configured as input capture or output
compare pins IOC[7:0] of the enhanced capture timer (ECT).
1.2.4
Power Supply Pins
MC9S12XDP512RMV2 power and ground pins are described below.
NOTE
All VSS pins must be connected together in the application.
1.2.4.1
VDDX1, VDDX2, VSSX1,VSSX2 — Power and Ground Pins for I/O Drivers
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
65
Chapter 1 Device Overview MC9S12XD-Family
1.2.4.2
VDDR1, VDDR2, VSSR1, VSSR2 — Power and Ground Pins for I/O Drivers
and for Internal Voltage Regulator
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.
1.2.4.3
VDD1, VDD2, VSS1, VSS2 — Core Power Pins
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5-V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.
NOTE
No load allowed except for bypass capacitors.
1.2.4.4
VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog-to-digital
converters.
1.2.4.5
VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog-to-digital converter.
1.2.4.6
VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the oscillator and the phased-locked loop. This allows the
supply voltage to the oscillator and PLL to be bypassed independently. This 2.5-V voltage is generated by
the internal voltage regulator.
NOTE
No load allowed except for bypass capacitors.
MC9S12XDP512 Data Sheet, Rev. 2.21
66
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
Table 1-8. MC9S12XD Family Power and Ground Connection Summary
Pin Number
Mnemonic
Nominal
Voltage
144-Pin
LQFP
112-Pin
LQFP
80-Pin
QFP
VDD1, 2
15, 87
13, 65
9, 49
2.5 V
VSS1, 2
16, 88
14, 66
10, 50
0V
VDDR1
53
41
29
5.0 V
VSSR1
52
40
28
0V
VDDX1
139
107
77
5.0 V
VSSX1
138
106
76
0V
VDDX2
26
N.A.
N.A.
5.0 V
VSSX2
27
N.A.
N.A.
0V
VDDR2
82
N.A.
N.A.
5.0 V
VSSR2
81
N.A.
N.A.
0V
VDDA
107
83
59
5.0 V
VSSA
110
86
62
0V
VRL
109
85
61
0V
VRH
108
84
60
5.0 V
VDDPLL
55
43
31
2.5 V
VSSPLL
57
45
33
0V
Description
Internal power and ground generated by
internal regulator
External power and ground, supply to pin
drivers and internal voltage regulator
External power and ground, supply to pin
drivers
External power and ground, supply to pin
drivers
External power and ground, supply to pin
drivers
Operating voltage and ground for the
analog-to-digital converters and the
reference for the internal voltage regulator,
allows the supply voltage to the A/D to be
bypassed independently.
Reference voltages for the analog-to-digital
converter.
Provides operating voltage and ground for
the phased-locked loop. This allows the
supply voltage to the PLL to be bypassed
independently. Internal power and ground
generated by internal regulator.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
67
Chapter 1 Device Overview MC9S12XD-Family
1.3
System Clock Description
The clock and reset generator module (CRG) provides the internal clock signals for the core and all
peripheral modules. Figure 1-12 shows the clock connections from the CRG to all modules.
See 79Chapterf or details on clock generation.
SCI Modules
SPI Modules
CAN Modules
IIC Modules
ATD Modules
Bus Clock
PIT
EXTAL
Oscillator Clock
ECT
CRG
PIM
XTAL
Core Clock
RAM
S12X
XGATE
FLASH
EEPROM
Figure 1-14. MC9S12XD Family Clock Connections
The MCU’s system clock can be supplied in several ways enabling a range of system operating frequencies
to be supported:
• The on-chip phase locked loop (PLL)
• the PLL self clocking
• the oscillator
The clock generated by the PLL or oscillator provides the main system clock frequencies core clock and
bus clock. As shown in Figure 1-12, this system clocks are used throughout the MCU to drive the core, the
memories, and the peripherals.
The program Flash memory and the EEPROM are supplied by the bus clock and the oscillator clock.The
oscillator clock is used as a time base to derive the program and erase times for the NVM’s. See the Flash
and EEPROM section for more details on the operation of the NVM’s.
MC9S12XDP512 Data Sheet, Rev. 2.21
68
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
The CAN modules may be configured to have their clock sources derived either from the bus clock or
directly from the oscillator clock. This allows the user to select its clock based on the required jitter
performance. Consult MSCAN block description for more details on the operation and configuration of
the CAN blocks.
In order to ensure the presence of the clock the MCU includes an on-chip clock monitor connected to the
output of the oscillator. The clock monitor can be configured to invoke the PLL self-clocking mode or to
generate a system reset if it is allowed to time out as a result of no oscillator clock being present.
In addition to the clock monitor, the MCU also provides a clock quality checker which performs a more
accurate check of the clock. The clock quality checker counts a predetermined number of clock edges
within a defined time window to insure that the clock is running. The checker can be invoked following
specific events such as on wake-up or clock monitor failure.
1.4
Chip Configuration Summary
CAUTION
Emulation single chip mode, Normal expanded mode, Emulation expanded
mode and ROMCTL/EROMCTL functionality is only available on parts
with external bus interface in 144 LQFP package. see Appendix E
Derivative Differences.
The MCU can operate in six different modes. The different modes, the state of ROMCTL and EROMCTL
signal on rising edge of RESET, and the security state of the MCU affects the following device
characteristics:
• External bus interface configuration
• Flash in memory map, or not
• Debug features enabled or disabled
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA signals
during reset (see Table 1-9). The MODC, MODB, and MODA bits in the MODE register show the current
operating mode and provide limited mode switching during operation. The states of the MODC, MODB,
and MODA signals are latched into these bits on the rising edge of RESET.
In normal expanded mode and in emulation modes the ROMON bit and the EROMON bit in the
MMCCTL1 register defines if the on chip flash memory is the memory map, or not. (See Table 1-9.) For
a detailed description of the ROMON and EROMON bits refer to the S12X_MMC section.
The state of the ROMCTL signal is latched into the ROMON bit in the MMCCTL1 register on the rising
edge of RESET. The state of the EROMCTL signal is latched into the EROMON bit in the MISC register
on the rising edge of RESET.
The MCU can operate in two different modes. The operating mode out of reset is determined by the state
of the MODC signal during reset. The MODC bit in the MODE register shows the current operating mode
and provide limited mode switching during operation. The state of the MODC signal is latched into this
bit on the rising edge of RESET.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
69
Chapter 1 Device Overview MC9S12XD-Family
Table 1-9. Chip Modes and Data Sources
BKGD =
MODC
PE6 =
MODB
PE5 =
MODA
PK7 =
ROMCTL
PE3 =
EROMCTL
1
0
0
X
X
Internal
Special single chip
0
0
0
Emulation single chip
0
0
1
X
0
Emulation memory
X
1
Internal Flash
0
X
External application
1
X
Internal Flash
0
X
External application
1
0
Emulation memory
1
1
Internal Flash
Chip Modes
Normal single chip
Normal expanded
1
0
1
Emulation expanded
0
1
1
Special test
1
0
1
0
Data Source1
0
X
External application
1
X
Internal Flash
Internal means resources inside the MCU are read/written.
Internal Flash means Flash resources inside the MCU are read/written.
Emulation memory means resources inside the emulator are read/written (PRU registers, Flash replacement, RAM, EEPROM,
and register space are always considered internal).
External application means resources residing outside the MCU are read/written.
The configuration of the oscillator can be selected using the XCLKS signal (see Table 1-10). For a detailed
description please refer to the S12CRG section.
Table 1-10. Clock Selection Based on PE7
PE7 = XCLKS
Description
0
Full swing Pierce oscillator or external clock source selected
1
Loop controlled Pierce oscillator selected
The logic level on the voltage regulator enable pin VREGEN determines whether the on-chip voltage
regulator is enabled or disabled (see Table 1-11).
Table 1-11. Voltage Regulator VREGEN
VREGEN
Description
1
Internal voltage regulator enabled
0
Internal voltage regulator disabled, VDD1,2 and VDDPLL must be
supplied externally
MC9S12XDP512 Data Sheet, Rev. 2.21
70
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.5
1.5.1
1.5.1.1
Modes of Operation
User Modes
Normal Expanded Mode
Ports K, A, and B are configured as a 23-bit address bus, ports C and D are configured as a 16-bit data bus,
and port E provides bus control and status signals. This mode allows 16-bit external memory and
peripheral devices to be interfaced to the system. The fastest external bus rate is divide by 2 from the
internal bus rate.
1.5.1.2
Normal Single-Chip Mode
There is no external bus in this mode. The processor program is executed from internal memory. Ports A,
B,C,D, K, and most pins of port E are available as general-purpose I/O.
1.5.1.3
Special Single-Chip Mode
This mode is used for debugging single-chip operation, boot-strapping, or security related operations. The
background debug module BDM is active in this mode. The CPU executes a monitor program located in
an on-chip ROM. BDM firmware is waiting for additional serial commands through the BKGD pin. There
is no external bus after reset in this mode.
1.5.1.4
Emulation of Expanded Mode
Developers use this mode for emulation systems in which the users target application is normal expanded
mode. Code is executed from external memory or from internal memory depending on the state of
ROMON and EROMON bit. In this mode the internal operation is visible on external bus interface.
1.5.1.5
Emulation of Single-Chip Mode
Developers use this mode for emulation systems in which the user’s target application is normal
single-chip mode. Code is executed from external memory or from internal memory depending on the state
of ROMON and EROMON bit. In this mode the internal operation is visible on external bus interface.
1.5.1.6
Special Test Mode
Freescale internal use only.
1.5.2
Low-Power Modes
The microcontroller features two main low-power modes. Consult the respective sections for information
on the module behavior in system stop, system pseudo stop, and system wait mode. An important source
of information about the clock system is the Clock and Reset Generator S12CRG section.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
71
Chapter 1 Device Overview MC9S12XD-Family
1.5.2.1
System Stop Modes
The system stop modes are entered if the CPU executes the STOP instruction and the XGATE doesn’t
execute a thread and the XGFACT bit in the XGMCTL register is cleared. Depending on the state of the
PSTP bit in the CLKSEL register the MCU goes into pseudo stop mode or full stop mode. Please refer to
CRG section. Asserting RESET, XIRQ, IRQ or any other interrupt ends the system stop modes.
1.5.2.2
Pseudo Stop Mode
In this mode the clocks are stopped but the oscillator is still running and the real time interrupt (RTI) or
watchdog (COP) submodule can stay active. Other peripherals are turned off. This mode consumes more
current than the system stop mode, but the wake up time from this mode is significantly shorter.
1.5.2.3
Full Stop Mode
The oscillator is stopped in this mode. All clocks are switched off. All counters and dividers remain frozen.
1.5.2.4
System Wait Mode
This mode is entered when the CPU executes the WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU clock is switched off. All peripherals and the XGATE can be active in
system wait mode. For further power consumption the peripherals can individually turn off their local
clocks. Asserting RESET, XIRQ, IRQ or any other interrupt that has not been masked ends system wait
mode.
1.5.3
Freeze Mode
The enhanced capture timer, pulse width modulator, analog-to-digital converters, the periodic interrupt
timer and the XGATE module provide a software programmable option to freeze the module status during
the background debug module is active. This is useful when debugging application software. For detailed
description of the behavior of the ATD0, ATD1, ECT, PWM, XGATE and PIT when the background debug
module is active consult the corresponding sections..
1.6
Resets and Interrupts
Consult the S12XCPU Block Guide for information on exception processing.
1.6.1
Vectors
Table 1-12 lists all interrupt sources and vectors in the default order of priority. The interrupt module
(S12XINT) provides an interrupt vector base register (IVBR) to relocate the vectors. Associated with each
I-bit maskable service request is a configuration register. It selects if the service request is enabled, the
service request priority level and whether the service request is handled either by the S12X CPU or by the
XGATE module.
MC9S12XDP512 Data Sheet, Rev. 2.21
72
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
Table 1-12. Interrupt Vector Locations (Sheet 1 of 3)
Vector Address1
XGATE
Channel ID2
Interrupt Source
CCR
Mask
Local Enable
$FFFE
—
System reset or illegal access reset
None
None
$FFFC
—
Clock monitor reset
None
PLLCTL (CME, SCME)
$FFFA
—
COP watchdog reset
None
COP rate select
Vector base + $F8
—
Unimplemented instruction trap
None
None
Vector base+ $F6
—
SWI
None
None
Vector base+ $F4
—
XIRQ
X Bit
None
Vector base+ $F2
—
IRQ
I bit
IRQCR (IRQEN)
Vector base+ $F0
$78
Real time interrupt
I bit
CRGINT (RTIE)
Vector base+ $EE
$77
Enhanced capture timer channel 0
I bit
TIE (C0I)
Vector base + $EC
$76
Enhanced capture timer channel 1
I bit
TIE (C1I)
Vector base+ $EA
$75
Enhanced capture timer channel 2
I bit
TIE (C2I)
Vector base+ $E8
$74
Enhanced capture timer channel 3
I bit
TIE (C3I)
Vector base+ $E6
$73
Enhanced capture timer channel 4
I bit
TIE (C4I)
Vector base+ $E4
$72
Enhanced capture timer channel 5
I bit
TIE (C5I)
Vector base + $E2
$71
Enhanced capture timer channel 6
I bit
TIE (C6I)
Vector base+ $E0
$70
Enhanced capture timer channel 7
I bit
TIE (C7I)
Vector base+ $DE
$6F
Enhanced capture timer overflow
I bit
TSRC2 (TOF)
Vector base+ $DC
$6E
Pulse accumulator A overflow
I bit
PACTL (PAOVI)
Vector base + $DA
$6D
Pulse accumulator input edge
I bit
PACTL (PAI)
Vector base + $D8
$6C
SPI0
I bit
SPI0CR1 (SPIE, SPTIE)
Vector base+ $D6
$6B
SCI0
I bit
SCI0CR2
(TIE, TCIE, RIE, ILIE)
Vector base + $D4
$6A
SCI1
I bit
SCI1CR2
(TIE, TCIE, RIE, ILIE)
Vector base + $D2
$69
ATD0
I bit
ATD0CTL2 (ASCIE)
Vector base + $D2
Reserved
Vector base + $D0
$68
ATD1
I bit
ATD1CTL2 (ASCIE)
Vector base + $CE
$67
Port J
I bit
PIEJ (PIEJ7-PIEJ0)
Vector base + $CC
$66
Port H
I bit
PIEH (PIEH7-PIEH0)
Vector base + $CA
$65
Modulus down counter underflow
I bit
MCCTL(MCZI)
Vector base + $C8
$64
Pulse accumulator B overflow
I bit
PBCTL(PBOVI)
Vector base + $C6
$63
CRG PLL lock
I bit
CRGINT(LOCKIE)
Vector base + $C4
$62
CRG self-clock mode
I bit
CRGINT (SCMIE)
I bit
IBCR0 (IBIE)
Vector base + $C2
Vector base + $C0
Reserved
$60
IIC0 bus
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
73
Chapter 1 Device Overview MC9S12XD-Family
Table 1-12. Interrupt Vector Locations (Sheet 2 of 3)
Vector Address1
XGATE
Channel ID2
Interrupt Source
CCR
Mask
Local Enable
Vector base + $BE
$5F
SPI1
I bit
SPI1CR1 (SPIE, SPTIE)
Vector base + $BC
$5E
SPI2
I bit
SPI2CR1 (SPIE, SPTIE)
Vector base + $BC
RESERVED
Vector base + $BA
$5D
EEPROM
I bit
ECNFG (CCIE, CBEIE)
Vector base + $B8
$5C
FLASH
I bit
FCNFG (CCIE, CBEIE)
Vector base + $B6
$5B
CAN0 wake-up
I bit
CAN0RIER (WUPIE)
Vector base + $B4
$5A
CAN0 errors
I bit
CAN0RIER (CSCIE, OVRIE)
Vector base + $B2
$59
CAN0 receive
I bit
CAN0RIER (RXFIE)
Vector base + $B0
$58
CAN0 transmit
I bit
CAN0TIER (TXEIE[2:0])
Vector base + $AE
$57
CAN1 wake-up
I bit
CAN1RIER (WUPIE)
Vector base + $AC
$56
CAN1 errors
I bit
CAN1RIER (CSCIE, OVRIE)
Vector base + $AA
$55
CAN1 receive
I bit
CAN1RIER (RXFIE)
Vector base + $A8
$54
CAN1 transmit
I bit
CAN1TIER (TXEIE[2:0])
Vector base + $A6
$53
CAN2 wake-up
I bit
CAN2RIER (WUPIE)
Vector base + $A4
$52
CAN2 errors
I bit
CAN2RIER (CSCIE, OVRIE)
Vector base + $A2
$51
CAN2 receive
I bit
CAN2RIER (RXFIE)
Vector base + $A0
$50
CAN2 transmit
I bit
CAN2TIER (TXEIE[2:0])
Vector base + $9E
$4F
CAN3 wake-up
I bit
CAN3RIER (WUPIE)
Vector base+ $9C
$4E
CAN3 errors
I bit
CAN3RIER (CSCIE, OVRIE)
Vector base+ $9A
$4D
CAN3 receive
I bit
CAN3RIER (RXFIE)
Vector base + $98
$4C
CAN3 transmit
I bit
CAN3TIER (TXEIE[2:0])
Vector base + $AE
to
Vector base + 98
Reserved
Vector base + $9E
to
Vector base + 98
Reserved
Vector base + $96
$4B
CAN4 wake-up
I bit
CAN4RIER (WUPIE)
Vector base + $94
$4A
CAN4 errors
I bit
CAN4RIER (CSCIE, OVRIE)
Vector base + $92
$49
CAN4 receive
I bit
CAN4RIER (RXFIE)
Vector base + $90
$48
CAN4 transmit
I bit
CAN4TIER (TXEIE[2:0])
Vector base + $8E
$47
Port P Interrupt
I bit
PIEP (PIEP7-PIEP0)
Vector base+ $8C
$46
PWM emergency shutdown
I bit
PWMSDN (PWMIE)
Vector base + $8A
$45
SCI2
I bit
SCI2CR2
(TIE, TCIE, RIE, ILIE)
MC9S12XDP512 Data Sheet, Rev. 2.21
74
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
Table 1-12. Interrupt Vector Locations (Sheet 3 of 3)
Vector Address1
XGATE
Channel ID2
Interrupt Source
CCR
Mask
Vector base + $88
$44
SCI3
I bit
SCI3CR2
(TIE, TCIE, RIE, ILIE)
Vector base + $8A
to
Vector base + $88
Reserved
Vector base + $86
$43
SCI4
I bit
SCI4CR2
(TIE, TCIE, RIE, ILIE)
Vector base + $84
$42
SCI5
I bit
SCI5CR2
(TIE, TCIE, RIE, ILIE)
I bit
IBCR (IBIE)
Vector base + $86
to
Vector base + $84
Vector base + $82
Reserved
$41
Vector base + $82
Vector base + $80
$40
Low-voltage interrupt (LVI)
I bit
VREGCTRL (LVIE)
Vector base + $7E
$3F
Autonomous periodical interrupt (API)
I bit
VREGAPICTRL (APIE)
Reserved
Vector base + $7A
$3D
Periodic interrupt timer channel 0
I bit
PITINTE (PINTE0)
Vector base + $78
$3C
Periodic interrupt timer channel 1
I bit
PITINTE (PINTE1)
Vector base + $76
$3B
Periodic interrupt timer channel 2
I bit
PITINTE (PINTE2)
Vector base + $74
$3A
Periodic interrupt timer channel 3
I bit
PITINTE (PINTE3)
Vector base + $72
$39
XGATE software trigger 0
I bit
XGMCTL (XGIE)
Vector base + $70
$38
XGATE software trigger 1
I bit
XGMCTL (XGIE)
Vector base + $6E
$37
XGATE software trigger 2
I bit
XGMCTL (XGIE)
Vector base + $6C
$36
XGATE software trigger 3
I bit
XGMCTL (XGIE)
Vector base + $6A
$35
XGATE software trigger 4
I bit
XGMCTL (XGIE)
Vector base + $68
$34
XGATE software trigger 5
I bit
XGMCTL (XGIE)
Vector base + $66
$33
XGATE software trigger 6
I bit
XGMCTL (XGIE)
Vector base + $64
$32
XGATE software trigger 7
I bit
XGMCTL (XGIE)
Vector base + $62
—
XGATE software error interrupt
I bit
XGMCTL (XGIE)
Vector base + $60
—
S12XCPU RAM access violation
I bit
RAMWPC (AVIE)
—
None
Vector base+ $12
to
Vector base + $5E
Vector base + $10
2
IIC1 Bus
Reserved
Vector base + $7C
1
Local Enable
Reserved
—
Spurious interrupt
16 bits vector address based
For detailed description of XGATE channel ID refer to XGATE Block Guide
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
75
Chapter 1 Device Overview MC9S12XD-Family
1.6.2
Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block Guides for register reset states.
1.6.2.1
I/O Pins
Refer to the PIM Block Guide for reset configurations of all peripheral module ports.
1.6.2.2
Memory
The RAM array is not initialized out of reset.
1.7
COP Configuration
The COP timeout rate bits CR[2:0] and the WCOP bit in the COPCTL register are loaded on rising edge
of RESET from the Flash control register FCTL ($0107) located in the Flash EEPROM block. See
Table 1-13 and Table 1-14 for coding. The FCTL register is loaded from the Flash configuration field byte
at global address $7FFF0E during the reset sequence
NOTE
If the MCU is secured the COP timeout rate is always set to the longest
period (CR[2:0] = 111) after COP reset.
Table 1-13. Initial COP Rate Configuration
NV[2:0] in
FCTL Register
CR[2:0] in
COPCTL Register
000
111
001
110
010
101
011
100
100
011
101
010
110
001
111
000
Table 1-14. Initial WCOP Configuration
NV[3] in
FCTL Register
WCOP in
COPCTL Register
1
0
0
1
MC9S12XDP512 Data Sheet, Rev. 2.21
76
Freescale Semiconductor
Chapter 1 Device Overview MC9S12XD-Family
1.8
ATD0 External Trigger Input Connection
The ATD_10B8C module includes four external trigger inputs ETRIG0, ETRIG1, ETRIG, and ETRIG3.
The external trigger allows the user to synchronize ATD conversion to external trigger events. Table 1-15
shows the connection of the external trigger inputs on MC9S12XDP512RMV2.
Table 1-15. ATD0 External Trigger Sources
External Trigger
Input
Connected to . .
ETRIG0
Pulse width modulator channel 1
ETRIG1
Pulse width modulator channel 3
ETRIG2
Periodic interrupt timer hardware trigger0
PITTRIG[0].
ETRIG3
Periodic interrupt timer hardware trigger1
PITTRIG[1].
See Section Chapter 5, “Analog-to-Digital Converter (S12ATD10B8CV2) for information about the
analog-to-digital converter module. When this section refers to freeze mode this is equivalent to active
BDM mode.
1.9
ATD1 External Trigger Input Connection
The ATD_10B16C module includes four external trigger inputs ETRIG0, ETRIG1, ETRIG, and ETRIG3.
The external trigger feature allows the user to synchronize ATD conversion to external trigger events.
Table 1-16 shows the connection of the external trigger inputs on MC9S12XDP512RMV2.
Table 1-16. ATD1 External Trigger Sources
External Trigger
Input
Connected to . .
ETRIG0
Pulse width modulator channel 1
ETRIG1
Pulse width modulator channel 3
ETRIG2
Periodic interrupt timer hardware trigger0
PITTRIG[0].
ETRIG3
Periodic interrupt timer hardware trigger1
PITTRIG[1].
See Section Chapter 4, “Analog-to-Digital Converter (ATD10B16CV4) Block Description for information
about the analog-to-digital converter module. When this section refers to freeze mode this is equivalent to
active BDM mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
77
Chapter 1 Device Overview MC9S12XD-Family
MC9S12XDP512 Data Sheet, Rev. 2.21
78
Freescale Semiconductor
Chapter 2
Clocks and Reset Generator (S12CRGV6)
2.1
Introduction
This specification describes the function of the clocks and reset generator (CRG).
2.1.1
Features
The main features of this block are:
• Phase locked loop (PLL) frequency multiplier
— Reference divider
— Automatic bandwidth control mode for low-jitter operation
— Automatic frequency lock detector
— Interrupt request on entry or exit from locked condition
— Self clock mode in absence of reference clock
• System clock generator
— Clock quality check
— User selectable fast wake-up from Stop in self-clock mode for power saving and immediate
program execution
— Clock switch for either oscillator or PLL based system clocks
• Computer operating properly (COP) watchdog timer with time-out clear window
• System reset generation from the following possible sources:
— Power on reset
— Low voltage reset
— Illegal address reset
— COP reset
— Loss of clock reset
— External pin reset
• Real-time interrupt (RTI)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
79
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.1.2
Modes of Operation
This subsection lists and briefly describes all operating modes supported by the CRG.
• Run mode
All functional parts of the CRG are running during normal run mode. If RTI or COP functionality
is required, the individual bits of the associated rate select registers (COPCTL, RTICTL) have to
be set to a nonzero value.
• Wait mode
In this mode, the PLL can be disabled automatically depending on the PLLSEL bit in the CLKSEL
register.
• Stop mode
Depending on the setting of the PSTP bit, stop mode can be differentiated between full stop mode
(PSTP = 0) and pseudo stop mode (PSTP = 1).
— Full stop mode
The oscillator is disabled and thus all system and core clocks are stopped. The COP and the
RTI remain frozen.
— Pseudo stop mode
The oscillator continues to run and most of the system and core clocks are stopped. If the
respective enable bits are set, the COP and RTI will continue to run, or else they remain frozen.
• Self clock mode
Self clock mode will be entered if the clock monitor enable bit (CME) and the self clock mode
enable bit (SCME) are both asserted and the clock monitor in the oscillator block detects a loss of
clock. As soon as self clock mode is entered, the CRG starts to perform a clock quality check. Self
clock mode remains active until the clock quality check indicates that the required quality of the
incoming clock signal is met (frequency and amplitude). Self clock mode should be used for safety
purposes only. It provides reduced functionality to the MCU in case a loss of clock is causing
severe system conditions.
MC9S12XDP512 Data Sheet, Rev. 2.21
80
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.1.3
Block Diagram
Figure 2-1 shows a block diagram of the CRG.
S12X_MMC
Voltage
Regulator
Illegal Address Reset
Power on Reset
Low Voltage Reset
CRG
RESET
CM fail
Clock
Monitor
OSCCLK
EXTAL
Oscillator
XTAL
COP Timeout
XCLKS
Reset
Generator
Clock Quality
Checker
COP
RTI
System Reset
Bus Clock
Core Clock
Oscillator Clock
Registers
XFC
VDDPLL
VSSPLL
PLLCLK
PLL
Clock and Reset
Control
Real Time Interrupt
PLL Lock Interrupt
Self Clock Mode
Interrupt
Figure 2-1. CRG Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
81
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.2
External Signal Description
This section lists and describes the signals that connect off chip.
2.2.1
VDDPLL and VSSPLL — Operating and Ground Voltage Pins
These pins provide operating voltage (VDDPLL) and ground (VSSPLL) for the PLL circuitry. This allows
the supply voltage to the PLL to be independently bypassed. Even if PLL usage is not required, VDDPLL
and VSSPLL must be connected to properly.
2.2.2
XFC — External Loop Filter Pin
A passive external loop filter must be placed on the XFC pin. The filter is a second-order, low-pass filter
that eliminates the VCO input ripple. The value of the external filter network and the reference frequency
determines the speed of the corrections and the stability of the PLL. Refer to the device specification for
calculation of PLL Loop Filter (XFC) components. If PLL usage is not required, the XFC pin must be tied
to VDDPLL.
VDDPLL
CS
CP
MCU
RS
XFC
Figure 2-2. PLL Loop Filter Connections
2.2.3
RESET — Reset Pin
RESET is an active low bidirectional reset pin. As an input. it initializes the MCU asynchronously to a
known start-up state. As an open-drain output, it indicates that a system reset (internal to the MCU) has
been triggered.
2.3
Memory Map and Register Definition
This section provides a detailed description of all registers accessible in the CRG.
MC9S12XDP512 Data Sheet, Rev. 2.21
82
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.1
Module Memory Map
Table 2-1 gives an overview on all CRG registers.
Table 2-1. CRG Memory Map
Address
Offset
Use
Access
0x_00
CRG Synthesizer Register (SYNR)
R/W
0x_01
CRG Reference Divider Register (REFDV)
R/W
1
0x_02
CRG Test Flags Register (CTFLG)
R/W
0x_03
CRG Flags Register (CRGFLG)
R/W
0x_04
CRG Interrupt Enable Register (CRGINT)
R/W
0x_05
CRG Clock Select Register (CLKSEL)
R/W
0x_06
CRG PLL Control Register (PLLCTL)
R/W
0x_07
CRG RTI Control Register (RTICTL)
R/W
0x_08
CRG COP Control Register (COPCTL)
R/W
0x_09
0x_0A
0x_0B
CRG Force and Bypass Test Register
CRG Test Control Register
(FORBYP)2
(CTCTL)3
CRG COP Arm/Timer Reset (ARMCOP)
R/W
R/W
R/W
1
CTFLG is intended for factory test purposes only.
FORBYP is intended for factory test purposes only.
3 CTCTL is intended for factory test purposes only.
2
NOTE
Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
83
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2
Register Descriptions
This section describes in address order all the CRG registers and their individual bits.
Register
Name
SYNR
R
Bit 7
6
5
4
3
2
1
Bit 0
0
0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
0
0
REFDV5
REFDV4
REFDV3
REFDV2
REFDV1
REFDV0
0
0
0
0
0
0
0
0
RTIF
PORF
LVRF
LOCKIF
LOCK
TRACK
RTIE
ILAF
0
0
PLLSEL
PSTP
CME
W
REFDV
R
W
CTFLG
R
W
CRGFLG
R
W
CRGINT
R
W
CLKSEL
R
0
PLLON
AUTO
ACQ
FSTWKP
RTDEC
RTR6
RTR5
RTR4
RTR3
WCOP
RSBCK
0
0
0
0
0
0
0
1
0
0
R
0
0
W
Bit 7
Bit 6
R
W
RTICTL
R
W
COPCTL
R
W
FORBYP
LOCKIE
0
W
PLLCTL
0
R
PLLWAI
0
SCMIF
SCMIE
SCM
0
RTIWAI
COPWAI
PRE
PCE
SCME
RTR2
RTR1
RTR0
CR2
CR1
CR0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
WRTMASK
W
CTCTL
R
W
ARMCOP
= Unimplemented or Reserved
Figure 2-3. S12CRGV6 Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
84
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.1
CRG Synthesizer Register (SYNR)
The SYNR register controls the multiplication factor of the PLL. If the PLL is on, the count in the loop
divider (SYNR) register effectively multiplies up the PLL clock (PLLCLK) from the reference frequency
by 2 x (SYNR + 1). PLLCLK will not be below the minimum VCO frequency (fSCM).
( SYNR + 1 )
PLLCLK = 2xOSCCLKx -----------------------------------( REFDV + 1 )
NOTE
If PLL is selected (PLLSEL=1), Bus Clock = PLLCLK / 2
Bus Clock must not exceed the maximum operating system frequency.
R
7
6
0
0
0
0
W
Reset
5
4
3
2
1
0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 2-4. CRG Synthesizer Register (SYNR)
Read: Anytime
Write: Anytime except if PLLSEL = 1
NOTE
Write to this register initializes the lock detector bit and the track detector
bit.
2.3.2.2
CRG Reference Divider Register (REFDV)
The REFDV register provides a finer granularity for the PLL multiplier steps. The count in the reference
divider divides OSCCLK frequency by REFDV + 1.
R
7
6
0
0
W
Reset
0
0
5
4
3
2
1
0
REFDV5
REFDV4
REFDV3
REFDV2
REFDV1
REFDV0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 2-5. CRG Reference Divider Register (REFDV)
Read: Anytime
Write: Anytime except when PLLSEL = 1
NOTE
Write to this register initializes the lock detector bit and the track detector
bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
85
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.3
Reserved Register (CTFLG)
This register is reserved for factory testing of the CRG module and is not available in normal modes.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 2-6. Reserved Register (CTFLG)
Read: Always reads 0x_00 in normal modes
Write: Unimplemented in normal modes
NOTE
Writing to this register when in special mode can alter the CRG
fucntionality.
2.3.2.4
CRG Flags Register (CRGFLG)
This register provides CRG status bits and flags.
7
R
W
Reset
6
5
4
RTIF
PORF
LVRF
LOCKIF
0
1
2
0
3
2
LOCK
TRACK
0
0
1
SCMIF
0
0
SCM
0
1. PORF is set to 1 when a power on reset occurs. Unaffected by system reset.
2. LVRF is set to 1 when a low-voltage reset occurs. Unaffected by system reset.
= Unimplemented or Reserved
Figure 2-7. CRG Flags Register (CRGFLG)
Read: Anytime
Write: Refer to each bit for individual write conditions
Table 2-2. CRGFLG Field Descriptions
Field
Description
7
RTIF
Real Time Interrupt Flag — RTIF is set to 1 at the end of the RTI period. This flag can only be cleared by writing
a 1. Writing a 0 has no effect. If enabled (RTIE = 1), RTIF causes an interrupt request.
0 RTI time-out has not yet occurred.
1 RTI time-out has occurred.
6
PORF
Power on Reset Flag — PORF is set to 1 when a power on reset occurs. This flag can only be cleared by writing
a 1. Writing a 0 has no effect.
0 Power on reset has not occurred.
1 Power on reset has occurred.
MC9S12XDP512 Data Sheet, Rev. 2.21
86
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-2. CRGFLG Field Descriptions (continued)
Field
Description
5
LVRF
Low Voltage Reset Flag — If low voltage reset feature is not available (see device specification) LVRF always
reads 0. LVRF is set to 1 when a low voltage reset occurs. This flag can only be cleared by writing a 1. Writing
a 0 has no effect.
0 Low voltage reset has not occurred.
1 Low voltage reset has occurred.
4
LOCKIF
PLL Lock Interrupt Flag — LOCKIF is set to 1 when LOCK status bit changes. This flag can only be cleared
by writing a 1. Writing a 0 has no effect.If enabled (LOCKIE = 1), LOCKIF causes an interrupt request.
0 No change in LOCK bit.
1 LOCK bit has changed.
3
LOCK
Lock Status Bit — LOCK reflects the current state of PLL lock condition. This bit is cleared in self clock mode.
Writes have no effect.
0 PLL VCO is not within the desired tolerance of the target frequency.
1 PLL VCO is within the desired tolerance of the target frequency.
2
TRACK
Track Status Bit — TRACK reflects the current state of PLL track condition. This bit is cleared in self clock mode.
Writes have no effect.
0 Acquisition mode status.
1Tracking mode status.
1
SCMIF
Self Clock Mode Interrupt Flag — SCMIF is set to 1 when SCM status bit changes. This flag can only be
cleared by writing a 1. Writing a 0 has no effect. If enabled (SCMIE = 1), SCMIF causes an interrupt request.
0 No change in SCM bit.
1 SCM bit has changed.
0
SCM
Self Clock Mode Status Bit — SCM reflects the current clocking mode. Writes have no effect.
0 MCU is operating normally with OSCCLK available.
1 MCU is operating in self clock mode with OSCCLK in an unknown state. All clocks are derived from PLLCLK
running at its minimum frequency fSCM.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
87
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.5
CRG Interrupt Enable Register (CRGINT)
This register enables CRG interrupt requests.
7
R
W
Reset
6
RTIE
ILAF
0
1
5
0
0
4
LOCKIE
0
3
2
0
0
0
0
1
SCMIE
0
0
0
0
1. ILAF is set to 1 when an illegal address reset occurs. Unaffected by system reset. Cleared by power on or low
voltage reset.
= Unimplemented or Reserved
Figure 2-8. CRG Interrupt Enable Register (CRGINT)
Read: Anytime
Write: Anytime
Table 2-3. CRGINT Field Descriptions
Field
Description
7
RTIE
Real Time Interrupt Enable Bit
0 Interrupt requests from RTI are disabled.
1 Interrupt will be requested whenever RTIF is set.
6
ILAF
Illegal Address Reset Flag — ILAF is set to 1 when an illegal address reset occurs. Refer to S12XMMC Block
Guide for details. This flag can only be cleared by writing a 1. Writing a 0 has no effect.
0 Illegal address reset has not occurred.
1 Illegal address reset has occurred.
4
LOCKIE
Lock Interrupt Enable Bit
0 LOCK interrupt requests are disabled.
1 Interrupt will be requested whenever LOCKIF is set.
1
SCMIE
Self ClockMmode Interrupt Enable Bit
0 SCM interrupt requests are disabled.
1 Interrupt will be requested whenever SCMIF is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
88
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.6
CRG Clock Select Register (CLKSEL)
This register controls CRG clock selection. Refer to Figure 2-17 for more details on the effect of each bit.
7
R
W
Reset
6
PLLSEL
PSTP
0
0
5
4
0
0
0
0
3
PLLWAI
0
2
0
1
0
RTIWAI
COPWAI
0
0
0
= Unimplemented or Reserved
Figure 2-9. CRG Clock Select Register (CLKSEL)
Read: Anytime
Write: Refer to each bit for individual write conditions
Table 2-4. CLKSEL Field Descriptions
Field
Description
7
PLLSEL
PLL Select Bit — Write anytime. Writing a1 when LOCK = 0 and AUTO = 1, or TRACK = 0 and AUTO = 0 has
no effect This prevents the selection of an unstable PLLCLK as SYSCLK. PLLSEL bit is cleared when the MCU
enters self clock mode, Stop mode or wait mode with PLLWAI bit set.
0 System clocks are derived from OSCCLK (Bus Clock = OSCCLK / 2).
1 System clocks are derived from PLLCLK (Bus Clock = PLLCLK / 2).
6
PSTP
Pseudo Stop Bit
Write: Anytime
This bit controls the functionality of the oscillator during stop mode.
0 Oscillator is disabled in stop mode.
1 Oscillator continues to run in stop mode (pseudo stop).
Note: Pseudo stop mode allows for faster STOP recovery and reduces the mechanical stress and aging of the
resonator in case of frequent STOP conditions at the expense of a slightly increased power consumption.
3
PLLWAI
PLL Stops in Wait Mode Bit
Write: Anytime
If PLLWAI is set, the CRG will clear the PLLSEL bit before entering wait mode. The PLLON bit remains set during
wait mode, but the PLL is powered down. Upon exiting wait mode, the PLLSEL bit has to be set manually if PLL
clock is required.
While the PLLWAI bit is set, the AUTO bit is set to 1 in order to allow the PLL to automatically lock on the selected
target frequency after exiting wait mode.
0 PLL keeps running in wait mode.
1 PLL stops in wait mode.
1
RTIWAI
RTI Stops in Wait Mode Bit
Write: Anytime
0 RTI keeps running in wait mode.
1 RTI stops and initializes the RTI dividers whenever the part goes into wait mode.
0
COPWAI
COP Stops in Wait Mode Bit
Normal modes: Write once
Special modes: Write anytime
0 COP keeps running in wait mode.
1 COP stops and initializes the COP counter whenever the part goes into wait mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
89
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.7
CRG PLL Control Register (PLLCTL)
This register controls the PLL functionality.
R
W
Reset
7
6
5
4
3
2
1
0
CME
PLLON
AUTO
ACQ
FSTWKP
PRE
PCE
SCME
1
1
1
1
0
0
0
1
Figure 2-10. CRG PLL Control Register (PLLCTL)
Read: Anytime
Write: Refer to each bit for individual write conditions
Table 2-5. PLLCTL Field Descriptions
Field
Description
7
CME
Clock Monitor Enable Bit — CME enables the clock monitor. Write anytime except when SCM = 1.
0 Clock monitor is disabled.
1 Clock monitor is enabled. Slow or stopped clocks will cause a clock monitor reset sequence or self clock
mode.
Note: Operating with CME = 0 will not detect any loss of clock. In case of poor clock quality, this could cause
unpredictable operation of the MCU!
Note: In stop mode (PSTP = 0) the clock monitor is disabled independently of the CME bit setting and any loss
of external clock will not be detected. Also after wake-up from stop mode (PSTP = 0) with fast wake-up
enabled (FSTWKP = 1) the clock monitor is disabled independently of the CME bit setting and any loss of
external clock will not be detected.
6
PLLON
Phase Lock Loop On Bit — PLLON turns on the PLL circuitry. In self clock mode, the PLL is turned on, but the
PLLON bit reads the last latched value. Write anytime except when PLLSEL = 1.
0 PLL is turned off.
1 PLL is turned on. If AUTO bit is set, the PLL will lock automatically.
5
AUTO
Automatic Bandwidth Control Bit — AUTO selects either the high bandwidth (acquisition) mode or the low
bandwidth (tracking) mode depending on how close to the desired frequency the VCO is running. Write anytime
except when PLLWAI = 1, because PLLWAI sets the AUTO bit to 1.
0 Automatic mode control is disabled and the PLL is under software control, using ACQ bit.
1 Automatic mode control is enabled and ACQ bit has no effect.
4
ACQ
Acquisition Bit
Write anytime. If AUTO=1 this bit has no effect.
0 Low bandwidth filter is selected.
1 High bandwidth filter is selected.
3
FSTWKP
Fast Wake-up from Full Stop Bit — FSTWKP enables fast wake-up from full stop mode. Write anytime. If
self-clock mode is disabled (SCME = 0) this bit has no effect.
0 Fast wake-up from full stop mode is disabled.
1 Fast wake-up from full stop mode is enabled.
When waking up from full stop mode the system will immediately resume operation i self-clock mode (see
Section 2.4.1.4, “Clock Quality Checker”). The SCMIF flag will not be set. The system will remain in self-clock
mode with oscillator and clock monitor disabled until FSTWKP bit is cleared. The clearing of FSTWKP will
start the oscillator, the clock monitor and the clock quality check. If the clock quality check is successful, the
CRG will switch all system clocks to OSCCLK. The SCMIF flag will be set. See application examples in
Figure 2-23 and Figure 2-24.
MC9S12XDP512 Data Sheet, Rev. 2.21
90
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-5. PLLCTL Field Descriptions (continued)
Field
Description
2
PRE
RTI Enable during Pseudo Stop Bit — PRE enables the RTI during pseudo stop mode. Write anytime.
0 RTI stops running during pseudo stop mode.
1 RTI continues running during pseudo stop mode.
Note: If the PRE bit is cleared the RTI dividers will go static while pseudo stop mode is active. The RTI dividers
will not initialize like in wait mode with RTIWAI bit set.
1
PCE
COP Enable during Pseudo Stop Bit — PCE enables the COP during pseudo stop mode. Write anytime.
0 COP stops running during pseudo stop mode
1 COP continues running during pseudo stop mode
Note: If the PCE bit is cleared, the COP dividers will go static while pseudo stop mode is active. The COP
dividers will not initialize like in wait mode with COPWAI bit set.
0
SCME
2.3.2.8
Self Clock Mode Enable Bit
Normal modes: Write once
Special modes: Write anytime
SCME can not be cleared while operating in self clock mode (SCM = 1).
0 Detection of crystal clock failure causes clock monitor reset (see Section 2.5.2, “Clock Monitor Reset”).
1 Detection of crystal clock failure forces the MCU in self clock mode (see Section 2.4.2.2, “Self Clock Mode”).
CRG RTI Control Register (RTICTL)
This register selects the timeout period for the real time interrupt.
R
W
Reset
7
6
5
4
3
2
1
0
RTDEC
RTR6
RTR5
RTR4
RTR3
RTR2
RTR1
RTR0
0
0
0
0
0
0
0
0
Figure 2-11. CRG RTI Control Register (RTICTL)
Read: Anytime
Write: Anytime
NOTE
A write to this register initializes the RTI counter.
Table 2-6. RTICTL Field Descriptions
Field
Description
7
RTDEC
Decimal or Binary Divider Select Bit — RTDEC selects decimal or binary based prescaler values.
0 Binary based divider value. See Table 2-7
1 Decimal based divider value. See Table 2-8
6–4
RTR[6:4]
Real Time Interrupt Prescale Rate Select Bits — These bits select the prescale rate for the RTI. See Table 2-7
and Table 2-8.
3–0
RTR[3:0]
Real Time Interrupt Modulus Counter Select Bits — These bits select the modulus counter target value to
provide additional granularity.Table 2-7 and Table 2-8 show all possible divide values selectable by the RTICTL
register. The source clock for the RTI is OSCCLK.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
91
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-7. RTI Frequency Divide Rates for RTDEC = 0
RTR[6:4] =
RTR[3:0]
000
(OFF)
001
(210)
010
(211)
011
(212)
100
(213)
101
(214)
110
(215)
111
(216)
0000 (÷1)
OFF*
210
211
212
213
214
215
216
0001 (÷2)
OFF
2x210
2x211
2x212
2x213
2x214
2x215
2x216
0010 (÷3)
OFF
3x210
3x211
3x212
3x213
3x214
3x215
3x216
0011 (÷4)
OFF
4x210
4x211
4x212
4x213
4x214
4x215
4x216
0100 (÷5)
OFF
5x210
5x211
5x212
5x213
5x214
5x215
5x216
0101 (÷6)
OFF
6x210
6x211
6x212
6x213
6x214
6x215
6x216
0110 (÷7)
OFF
7x210
7x211
7x212
7x213
7x214
7x215
7x216
0111 (÷8)
OFF
8x210
8x211
8x212
8x213
8x214
8x215
8x216
1000 (÷9)
OFF
9x210
9x211
9x212
9x213
9x214
9x215
9x216
1001 (÷10)
OFF
10x210
10x211
10x212
10x213
10x214
10x215
10x216
1010 (÷11)
OFF
11x210
11x211
11x212
11x213
11x214
11x215
11x216
1011 (÷12)
OFF
12x210
12x211
12x212
12x213
12x214
12x215
12x216
1100 (÷13)
OFF
13x210
13x211
13x212
13x213
13x214
13x215
13x216
1101 (÷14)
OFF
14x210
14x211
14x212
14x213
14x214
14x215
14x216
1110 (÷15)
OFF
15x210
15x211
15x212
15x213
15x214
15x215
15x216
1111 (÷16)
OFF
16x210
16x211
16x212
16x213
16x214
16x215
16x216
* Denotes the default value out of reset.This value should be used to disable the RTI to ensure future backwards compatibility.
MC9S12XDP512 Data Sheet, Rev. 2.21
92
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-8. RTI Frequency Divide Rates for RTDEC = 1
RTR[6:4] =
RTR[3:0]
000
(1x103)
001
(2x103)
010
(5x103)
011
(10x103)
100
(20x103)
101
(50x103)
110
(100x103)
111
(200x103)
0000 (÷1)
1x103
2x103
5x103
10x103
20x103
50x103
100x103
200x103
0001 (÷2)
2x103
4x103
10x103
20x103
40x103
100x103
200x103
400x103
0010 (÷3)
3x103
6x103
15x103
30x103
60x103
150x103
300x103
600x103
0011 (÷4)
4x103
8x103
20x103
40x103
80x103
200x103
400x103
800x103
0100 (÷5)
5x103
10x103
25x103
50x103
100x103
250x103
500x103
1x106
0101 (÷6)
6x103
12x103
30x103
60x103
120x103
300x103
600x103
1.2x106
0110 (÷7)
7x103
14x103
35x103
70x103
140x103
350x103
700x103
1.4x106
0111 (÷8)
8x103
16x103
40x103
80x103
160x103
400x103
800x103
1.6x106
1000 (÷9)
9x103
18x103
45x103
90x103
180x103
450x103
900x103
1.8x106
1001 (÷10)
10 x103
20x103
50x103
100x103
200x103
500x103
1x106
2x106
1010 (÷11)
11 x103
22x103
55x103
110x103
220x103
550x103
1.1x106
2.2x106
1011 (÷12)
12x103
24x103
60x103
120x103
240x103
600x103
1.2x106
2.4x106
1100 (÷13)
13x103
26x103
65x103
130x103
260x103
650x103
1.3x106
2.6x106
1101 (÷14)
14x103
28x103
70x103
140x103
280x103
700x103
1.4x106
2.8x106
1110 (÷15)
15x103
30x103
75x103
150x103
300x103
750x103
1.5x106
3x106
1111 (÷16)
16x103
32x103
80x103
160x103
320x103
800x103
1.6x106
3.2x106
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
93
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.9
CRG COP Control Register (COPCTL)
This register controls the COP (computer operating properly) watchdog.
7
R
W
WCOP
Reset1
6
RSBCK
0
5
4
3
0
0
0
0
0
WRTMASK
0
2
1
0
CR2
CR1
CR0
1. Refer to Device User Guide (Section: CRG) for reset values of WCOP, CR2, CR1, and CR0.
= Unimplemented or Reserved
Figure 2-12. CRG COP Control Register (COPCTL)
Read: Anytime
Write:
1. RSBCK: Anytime in special modes; write to “1” but not to “0” in all other modes
2. WCOP, CR2, CR1, CR0:
— Anytime in special modes
— Write once in all other modes
Writing CR[2:0] to “000” has no effect, but counts for the “write once” condition.
Writing WCOP to “0” has no effect, but counts for the “write once” condition.
The COP time-out period is restarted if one these two conditions is true:
1. Writing a nonzero value to CR[2:0] (anytime in special modes, once in all other modes) with
WRTMASK = 0.
or
2. Changing RSBCK bit from “0” to “1”.
Table 2-9. COPCTL Field Descriptions
Field
Description
7
WCOP
Window COP Mode Bit — When set, a write to the ARMCOP register must occur in the last 25% of the selected
period. A write during the first 75% of the selected period will reset the part. As long as all writes occur during
this window, 0x_55 can be written as often as desired. Once 0x_AA is written after the 0x_55, the time-out logic
restarts and the user must wait until the next window before writing to ARMCOP. Table 2-10 shows the duration
of this window for the seven available COP rates.
0 Normal COP operation
1 Window COP operation
6
RSBCK
COP and RTI Stop in Active BDM Mode Bit
0 Allows the COP and RTI to keep running in active BDM mode.
1 Stops the COP and RTI counters whenever the part is in active BDM mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
94
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-9. COPCTL Field Descriptions (continued)
Field
Description
5
WRTMASK
Write Mask for WCOP and CR[2:0] Bit — This write-only bit serves as a mask for the WCOP and CR[2:0] bits
while writing the COPCTL register. It is intended for BDM writing the RSBCK without touching the contents of
WCOP and CR[2:0].
0 Write of WCOP and CR[2:0] has an effect with this write of COPCTL
1 Write of WCOP and CR[2:0] has no effect with this write of COPCTL. (Does not count for “write once”.)
2–0
CR[1:0]
COP Watchdog Timer Rate Select — These bits select the COP time-out rate (see Table 2-10). The COP
time-out period is OSCCLK period divided by CR[2:0] value. Writing a nonzero value to CR[2:0] enables the
COP counter and starts the time-out period. A COP counter time-out causes a system reset. This can be
avoided by periodically (before time-out) reinitializing the COP counter via the ARMCOP register.
While all of the following four conditions are true the CR[2:0], WCOP bits are ignored and the COP operates at
highest time-out period (2 24 cycles) in normal COP mode (Window COP mode disabled):
1) COP is enabled (CR[2:0] is not 000)
2) BDM mode active
3) RSBCK = 0
4) Operation in emulation or special modes
Table 2-10. COP Watchdog Rates1
1
CR2
CR1
CR0
OSCCLK
Cycles to Time-out
0
0
0
COP disabled
0
0
1
214
0
1
0
216
0
1
1
218
1
0
0
220
1
0
1
222
1
1
0
223
1
1
1
224
OSCCLK cycles are referenced from the previous COP time-out reset
(writing 0x_55/0x_AA to the ARMCOP register)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
95
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.10
Reserved Register (FORBYP)
NOTE
This reserved register is designed for factory test purposes only, and is not
intended for general user access. Writing to this register when in special
modes can alter the CRG’s functionality.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 2-13. Reserved Register (FORBYP)
Read: Always read 0x_00 except in special modes
Write: Only in special modes
2.3.2.11
Reserved Register (CTCTL)
NOTE
This reserved register is designed for factory test purposes only, and is not
intended for general user access. Writing to this register when in special test
modes can alter the CRG’s functionality.
R
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 2-14. Reserved Register (CTCTL)
Read: always read 0x_80 except in special modes
Write: only in special modes
MC9S12XDP512 Data Sheet, Rev. 2.21
96
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.3.2.12
CRG COP Timer Arm/Reset Register (ARMCOP)
This register is used to restart the COP time-out period.
7
6
5
4
3
2
1
0
R
0
0
0
0
0
0
0
0
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Reset
Figure 2-15. ARMCOP Register Diagram
Read: Always reads 0x_00
Write: Anytime
When the COP is disabled (CR[2:0] = “000”) writing to this register has no effect.
When the COP is enabled by setting CR[2:0] nonzero, the following applies:
Writing any value other than 0x_55 or 0x_AA causes a COP reset. To restart the COP time-out
period you must write 0x_55 followed by a write of 0x_AA. Other instructions may be executed
between these writes but the sequence (0x_55, 0x_AA) must be completed prior to COP end of
time-out period to avoid a COP reset. Sequences of 0x_55 writes or sequences of 0x_AA writes
are allowed. When the WCOP bit is set, 0x_55 and 0x_AA writes must be done in the last 25% of
the selected time-out period; writing any value in the first 75% of the selected period will cause a
COP reset.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
97
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.4
Functional Description
2.4.1
Functional Blocks
2.4.1.1
Phase Locked Loop (PLL)
The PLL is used to run the MCU from a different time base than the incoming OSCCLK. For increased
flexibility, OSCCLK can be divided in a range of 1 to 16 to generate the reference frequency. This offers
a finer multiplication granularity. The PLL can multiply this reference clock by a multiple of 2, 4, 6,...
126,128 based on the SYNR register.
[ SYNR + 1 ]
PLLCLK = 2 × OSCCLK × -----------------------------------[ REFDV + 1 ]
CAUTION
Although it is possible to set the two dividers to command a very high clock
frequency, do not exceed the specified bus frequency limit for the MCU.
If (PLLSEL = 1), Bus Clock = PLLCLK / 2
The PLL is a frequency generator that operates in either acquisition mode or tracking mode, depending on
the difference between the output frequency and the target frequency. The PLL can change between
acquisition and tracking modes either automatically or manually.
The VCO has a minimum operating frequency, which corresponds to the self clock mode frequency fSCM.
REFERENCE
REFDV
EXTAL
REDUCED
CONSUMPTION
OSCILLATOR
OSCCLK
FEEDBACK
REFERENCE
PROGRAMMABLE
DIVIDER
XTAL
CRYSTAL
MONITOR
supplied by:
LOOP
PROGRAMMABLE
DIVIDER
LOCK
LOCK
DETECTOR
VDDPLL/VSSPLL
PDET
PHASE
DETECTOR
UP
DOWN
CPUMP
VCO
VDDPLL
LOOP
FILTER
SYN
VDDPLL/VSSPLL
XFC
PIN
PLLCLK
VDD/VSS
Figure 2-16. PLL Functional Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
98
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.4.1.1.1
PLL Operation
The oscillator output clock signal (OSCCLK) is fed through the reference programmable divider and is
divided in a range of 1 to 64 (REFDV + 1) to output the REFERENCE clock. The VCO output clock,
(PLLCLK) is fed back through the programmable loop divider and is divided in a range of 2 to 128 in
increments of [2 x (SYNR + 1)] to output the FEEDBACK clock. Figure 2-16.
The phase detector then compares the FEEDBACK clock, with the REFERENCE clock. Correction pulses
are generated based on the phase difference between the two signals. The loop filter then slightly alters the
DC voltage on the external filter capacitor connected to XFC pin, based on the width and direction of the
correction pulse. The filter can make fast or slow corrections depending on its mode, as described in the
next subsection. The values of the external filter network and the reference frequency determine the speed
of the corrections and the stability of the PLL.
The minimum VCO frequency is reached with the XFC pin forced to VDDPLL. This is the self clock mode
frequency.
2.4.1.1.2
Acquisition and Tracking Modes
The lock detector compares the frequencies of the FEEDBACK clock, and the REFERENCE clock.
Therefore, the speed of the lock detector is directly proportional to the final reference frequency. The
circuit determines the mode of the PLL and the lock condition based on this comparison.
The PLL filter can be manually or automatically configured into one of two possible operating modes:
• Acquisition mode
In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used
at PLL start-up or when the PLL has suffered a severe noise hit and the VCO frequency is far off
the desired frequency. When in acquisition mode, the TRACK status bit is cleared in the CRGFLG
register.
• Tracking mode
In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter
is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking
mode when the VCO frequency is nearly correct and the TRACK bit is set in the CRGFLG register.
The PLL can change the bandwidth or operational mode of the loop filter manually or automatically.
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between
acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the
PLL clock (PLLCLK) is safe to use as the source for the system and core clocks. If PLL LOCK interrupt
requests are enabled, the software can wait for an interrupt request and then check the LOCK bit. If
interrupt requests are disabled, software can poll the LOCK bit continuously (during PLL start-up, usually)
or at periodic intervals. In either case, only when the LOCK bit is set, is the PLLCLK clock safe to use as
the source for the system and core clocks. If the PLL is selected as the source for the system and core clocks
and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate
action, depending on the application.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
99
Chapter 2 Clocks and Reset Generator (S12CRGV6)
The following conditions apply when the PLL is in automatic bandwidth control mode (AUTO = 1):
• The TRACK bit is a read-only indicator of the mode of the filter.
• The TRACK bit is set when the VCO frequency is within a certain tolerance, ∆trk, and is clear when
the VCO frequency is out of a certain tolerance, ∆unt.
• The LOCK bit is a read-only indicator of the locked state of the PLL.
• The LOCK bit is set when the VCO frequency is within a certain tolerance, ∆Lock, and is cleared
when the VCO frequency is out of a certain tolerance, ∆unl.
• Interrupt requests can occur if enabled (LOCKIE = 1) when the lock condition changes, toggling
the LOCK bit.
The PLL can also operate in manual mode (AUTO = 0). Manual mode is used by systems that do not
require an indicator of the lock condition for proper operation. Such systems typically operate well below
the maximum system frequency (fsys) and require fast start-up. The following conditions apply when in
manual mode:
• ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in
manual mode, the ACQ bit should be asserted to configure the filter in acquisition mode.
• After turning on the PLL by setting the PLLON bit software must wait a given time (tacq) before
entering tracking mode (ACQ = 0).
• After entering tracking mode software must wait a given time (tal) before selecting the PLLCLK
as the source for system and core clocks (PLLSEL = 1).
2.4.1.2
System Clocks Generator
PLLSEL or SCM
PHASE
LOCK
LOOP
PLLCLK
STOP
1
SYSCLK
÷2
SCM
EXTAL
1
OSCILLATOR
CORE CLOCK
0
WAIT(RTIWAI),
STOP(PSTP,PRE),
RTI ENABLE
BUS CLOCK
RTI
OSCCLK
0
XTAL
CLOCK PHASE
GENERATOR
WAIT(COPWAI),
STOP(PSTP,PCE),
COP ENABLE
COP
CLOCK
MONITOR
GATING
CONDITION
STOP
OSCILLATOR
CLOCK
= CLOCK GATE
Figure 2-17. System Clocks Generator
MC9S12XDP512 Data Sheet, Rev. 2.21
100
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
The clock generator creates the clocks used in the MCU (see Figure 2-17). The gating condition placed on
top of the individual clock gates indicates the dependencies of different modes (STOP, WAIT) and the
setting of the respective configuration bits.
The peripheral modules use the bus clock. Some peripheral modules also use the oscillator clock. The
memory blocks use the bus clock. If the MCU enters self clock mode (see Section 2.4.2.2, “Self Clock
Mode”) oscillator clock source is switched to PLLCLK running at its minimum frequency fSCM. The bus
clock is used to generate the clock visible at the ECLK pin. The core clock signal is the clock for the CPU.
The core clock is twice the bus clock as shown in Figure 2-18. But note that a CPU cycle corresponds to
one bus clock.
PLL clock mode is selected with PLLSEL bit in the CLKSEL registerr. When selected, the PLL output
clock drives SYSCLK for the main system including the CPU and peripherals. The PLL cannot be turned
off by clearing the PLLON bit, if the PLL clock is selected. When PLLSEL is changed, it takes a maximum
of 4 OSCCLK plus 4 PLLCLK cycles to make the transition. During the transition, all clocks freeze and
CPU activity ceases.
CORE CLOCK
BUS CLOCK / ECLK
Figure 2-18. Core Clock and Bus Clock Relationship
2.4.1.3
Clock Monitor (CM)
If no OSCCLK edges are detected within a certain time, the clock monitor within the oscillator block
generates a clock monitor fail event. The CRG then asserts self clock mode or generates a system reset
depending on the state of SCME bit. If the clock monitor is disabled or the presence of clocks is detected
no failure is indicated by the oscillator block.The clock monitor function is enabled/disabled by the CME
control bit.
2.4.1.4
Clock Quality Checker
The clock monitor performs a coarse check on the incoming clock signal. The clock quality checker
provides a more accurate check in addition to the clock monitor.
A clock quality check is triggered by any of the following events:
• Power on reset (POR)
• Low voltage reset (LVR)
• Wake-up from full stop mode (exit full stop)
• Clock monitor fail indication (CM fail)
A time window of 50,000 VCO clock cycles1 is called check window.
1. VCO clock cycles are generated by the PLL when running at minimum frequency fSCM.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
101
Chapter 2 Clocks and Reset Generator (S12CRGV6)
A number greater equal than 4096 rising OSCCLK edges within a check window is called osc ok. Note that
osc ok immediately terminates the current check window. See Figure 2-19 as an example.
check window
1
3
2
50000
49999
VCO
Clock
1
2
3
4
5
4096
OSCCLK
4095
osc ok
Figure 2-19. Check Window Example
The sequence for clock quality check is shown in Figure 2-20.
CM fail
Clock OK
no
exit full stop
POR
SCME = 1 &
FSTWKP = 1
?
LVR
yes
num = 0
FSTWKP = 0
?
Enter SCM
yes
no
Clock Monitor Reset
Enter SCM
num = 50
yes
check window
SCM
active?
num=num–1
yes
osc ok
num = 0
no
no
?
num > 0
?
yes
no
SCME=1
?
no
yes
SCM
active?
yes
Switch to OSCCLK
no
Exit SCM
Figure 2-20. Sequence for Clock Quality Check
MC9S12XDP512 Data Sheet, Rev. 2.21
102
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
NOTE
Remember that in parallel to additional actions caused by self clock mode
or clock monitor reset1 handling the clock quality checker continues to
check the OSCCLK signal.
The clock quality checker enables the PLL and the voltage regulator
(VREG) anytime a clock check has to be performed. An ongoing clock
quality check could also cause a running PLL (fSCM) and an active VREG
during pseudo stop mode or wait mode.
2.4.1.5
Computer Operating Properly Watchdog (COP)
The COP (free running watchdog timer) enables the user to check that a program is running and
sequencing properly. When the COP is being used, software is responsible for keeping the COP from
timing out. If the COP times out it is an indication that the software is no longer being executed in the
intended sequence; thus a system reset is initiated (see Section 2.4.1.5, “Computer Operating Properly
Watchdog (COP)”). The COP runs with a gated OSCCLK. Three control bits in the COPCTL register
allow selection of seven COP time-out periods.
When COP is enabled, the program must write 0x_55 and 0x_AA (in this order) to the ARMCOP register
during the selected time-out period. Once this is done, the COP time-out period is restarted. If the program
fails to do this and the COP times out, the part will reset. Also, if any value other than 0x_55 or 0x_AA is
written, the part is immediately reset.
Windowed COP operation is enabled by setting WCOP in the COPCTL register. In this mode, writes to
the ARMCOP register to clear the COP timer must occur in the last 25% of the selected time-out period.
A premature write will immediately reset the part.
If PCE bit is set, the COP will continue to run in pseudo stop mode.
2.4.1.6
Real Time Interrupt (RTI)
The RTI can be used to generate a hardware interrupt at a fixed periodic rate. If enabled (by setting
RTIE = 1), this interrupt will occur at the rate selected by the RTICTL register. The RTI runs with a gated
OSCCLK. At the end of the RTI time-out period the RTIF flag is set to 1 and a new RTI time-out period
starts immediately.
A write to the RTICTL register restarts the RTI time-out period.
If the PRE bit is set, the RTI will continue to run in pseudo stop mode.
2.4.2
2.4.2.1
Operating Modes
Normal Mode
The CRG block behaves as described within this specification in all normal modes.
1. A Clock Monitor Reset will always set the SCME bit to logical 1.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
103
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.4.2.2
Self Clock Mode
The VCO has a minimum operating frequency, fSCM. If the external clock frequency is not available due
to a failure or due to long crystal start-up time, the bus clock and the core clock are derived from the VCO
running at minimum operating frequency; this mode of operation is called self clock mode. This requires
CME = 1 and SCME = 1. If the MCU was clocked by the PLL clock prior to entering self clock mode, the
PLLSEL bit will be cleared. If the external clock signal has stabilized again, the CRG will automatically
select OSCCLK to be the system clock and return to normal mode. Section 2.4.1.4, “Clock Quality
Checker” for more information on entering and leaving self clock mode.
NOTE
In order to detect a potential clock loss the CME bit should be always
enabled (CME = 1)!
If CME bit is disabled and the MCU is configured to run on PLL clock
(PLLCLK), a loss of external clock (OSCCLK) will not be detected and will
cause the system clock to drift towards the VCO’s minimum frequency
fSCM. As soon as the external clock is available again the system clock
ramps up to its PLL target frequency. If the MCU is running on external
clock any loss of clock will cause the system to go static.
2.4.3
Low Power Options
This section summarizes the low power options available in the CRG.
2.4.3.1
Run Mode
The RTI can be stopped by setting the associated rate select bits to 0.
The COP can be stopped by setting the associated rate select bits to 0.
2.4.3.2
Wait Mode
The WAI instruction puts the MCU in a low power consumption stand-by mode depending on setting of
the individual bits in the CLKSEL register. All individual wait mode configuration bits can be superposed.
This provides enhanced granularity in reducing the level of power consumption during wait mode.
Table 2-11 lists the individual configuration bits and the parts of the MCU that are affected in wait mode
.
Table 2-11. MCU Configuration During Wait Mode
PLLWAI
RTIWAI
COPWAI
PLL
Stopped
—
—
RTI
—
Stopped
—
COP
—
—
Stopped
After executing the WAI instruction the core requests the CRG to switch MCU into wait mode. The CRG
then checks whether the PLLWAI bit is asserted (Figure 2-21). Depending on the configuration, the CRG
switches the system and core clocks to OSCCLK by clearing the PLLSEL bit and disables the PLL. As
soon as all clocks are switched off wait mode is active.
MC9S12XDP512 Data Sheet, Rev. 2.21
104
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
CPU Req’s
Wait Mode.
PLLWAI=1
?
No
Yes
Clear PLLSEL,
Disable PLL
No
Enter
Wait Mode
CME=1
?
Wait Mode left
due to external reset
No
Yes
Exit Wait w.
ext.RESET
CM Fail
?
INT
?
Yes
No
Yes
Exit Wait w.
CMRESET
No
SCME=1
?
Yes
SCMIE=1
?
Generate
SCM Interrupt
(Wakeup from Wait)
No
Exit
Wait Mode
Yes
Exit
Wait Mode
SCM=1
?
No
Yes
Enter
SCM
Enter
SCM
Continue w.
Normal OP
Figure 2-21. Wait Mode Entry/Exit Sequence
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
105
Chapter 2 Clocks and Reset Generator (S12CRGV6)
There are four different scenarios for the CRG to restart the MCU from wait mode:
• External reset
• Clock monitor reset
• COP reset
• Any interrupt
If the MCU gets an external reset or COP reset during wait mode active, the CRG asynchronously restores
all configuration bits in the register space to its default settings and starts the reset generator. After
completing the reset sequence processing begins by fetching the normal or COP reset vector. Wait mode
is left and the MCU is in run mode again.
If the clock monitor is enabled (CME = 1) the MCU is able to leave wait mode when loss of
oscillator/external clock is detected by a clock monitor fail. If the SCME bit is not asserted the CRG
generates a clock monitor fail reset (CMRESET). The CRG’s behavior for CMRESET is the same
compared to external reset, but another reset vector is fetched after completion of the reset sequence. If the
SCME bit is asserted the CRG generates a SCM interrupt if enabled (SCMIE = 1). After generating the
interrupt the CRG enters self-clock mode and starts the clock quality checker (Section 2.4.1.4, “Clock
Quality Checker”). Then the MCU continues with normal operation.If the SCM interrupt is blocked by
SCMIE = 0, the SCMIF flag will be asserted and clock quality checks will be performed but the MCU will
not wake-up from wait-mode.
If any other interrupt source (e.g., RTI) triggers exit from wait mode, the MCU immediately continues with
normal operation. If the PLL has been powered-down during wait mode, the PLLSEL bit is cleared and
the MCU runs on OSCCLK after leaving wait mode. The software must manually set the PLLSEL bit
again, in order to switch system and core clocks to the PLLCLK.
If wait mode is entered from self-clock mode the CRG will continue to check the clock quality until clock
check is successful. The PLL and voltage regulator (VREG) will remain enabled.
Table 2-12 summarizes the outcome of a clock loss while in wait mode.
2.4.3.3
System Stop Mode
All clocks are stopped in STOP mode, dependent of the setting of the PCE, PRE, and PSTP bit. The
oscillator is disabled in STOP mode unless the PSTP bit is set. All counters and dividers remain frozen but
do not initialize. If the PRE or PCE bits are set, the RTI or COP continues to run in pseudo stop mode. In
addition to disabling system and core clocks the CRG requests other functional units of the MCU (e.g.,
voltage-regulator) to enter their individual power saving modes (if available). This is the main difference
between pseudo stop mode and wait mode.
If the PLLSEL bit is still set when entering stop mode, the CRG will switch the system and core clocks to
OSCCLK by clearing the PLLSEL bit. Then the CRG disables the PLL, disables the core clock and finally
disables the remaining system clocks. As soon as all clocks are switched off, stop mode is active.
If pseudo stop mode (PSTP = 1) is entered from self-clock mode, the CRG will continue to check the clock
quality until clock check is successful. The PLL and the voltage regulator (VREG) will remain enabled. If
full stop mode (PSTP = 0) is entered from self-clock mode, an ongoing clock quality check will be
stopped. A complete timeout window check will be started when stop mode is left again.
Wake-up from stop mode also depends on the setting of the PSTP bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
106
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-12. Outcome of Clock Loss in Wait Mode
CME
SCME
SCMIE
0
X
X
Clock failure -->
No action, clock loss not detected.
1
0
X
Clock failure -->
CRG performs Clock Monitor Reset immediately
0
Clock failure -->
Scenario 1: OSCCLK recovers prior to exiting wait mode.
– MCU remains in wait mode,
– VREG enabled,
– PLL enabled,
– SCM activated,
– Start clock quality check,
– Set SCMIF interrupt flag.
Some time later OSCCLK recovers.
– CM no longer indicates a failure,
– 4096 OSCCLK cycles later clock quality check indicates clock o.k.,
– SCM deactivated,
– PLL disabled depending on PLLWAI,
– VREG remains enabled (never gets disabled in wait mode).
– MCU remains in wait mode.
Some time later either a wakeup interrupt occurs (no SCM interrupt)
– Exit wait mode using OSCCLK as system clock (SYSCLK),
– Continue normal operation.
or an External Reset is applied.
– Exit wait mode using OSCCLK as system clock,
– Start reset sequence.
Scenario 2: OSCCLK does not recover prior to exiting wait mode.
– MCU remains in wait mode,
– VREG enabled,
– PLL enabled,
– SCM activated,
– Start clock quality check,
– Set SCMIF interrupt flag,
– Keep performing clock quality checks (could continue infinitely) while in wait mode.
Some time later either a wakeup interrupt occurs (no SCM interrupt)
– Exit wait mode in SCM using PLL clock (fSCM) as system clock,
– Continue to perform additional clock quality checks until OSCCLK is o.k. again.
or an External RESET is applied.
– Exit wait mode in SCM using PLL clock (fSCM) as system clock,
– Start reset sequence,
– Continue to perform additional clock quality checks until OSCCLKis o.k.again.
1
Clock failure -->
– VREG enabled,
– PLL enabled,
– SCM activated,
– Start clock quality check,
– SCMIF set.
SCMIF generates self clock mode wakeup interrupt.
– Exit wait mode in SCM using PLL clock (fSCM) as system clock,
– Continue to perform a additional clock quality checks until OSCCLK is o.k. again.
1
1
1
1
CRG Actions
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
107
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Core req’s
Stop Mode.
Clear PLLSEL,
Disable PLL
Exit Stop w.
ext.RESET
Stop Mode left
due to external reset
No
INT
?
Yes
No
Enter
Stop Mode
PSTP=1
?
Yes
CME=1
?
No
Yes
SCME=1 &
FSTWKP=1
?
No
INT
?
Yes
Yes
CM fail
?
No
No
Yes
No
Exit Stop w.
CMRESET
No
SCME=1
?
Yes
Clock
OK
?
Exit Stop w.
CMRESET
SCME=1
?
Yes
Yes
Exit
Stop Mode
Exit
Stop Mode
no
Exit
Stop Mode
SCMIE=1
?
Generate
SCM Interrupt
(Wakeup from Stop)
No
Exit
Stop Mode
Yes
Exit
Stop Mode
No
SCM=1
?
Yes
Enter
SCM
Enter SCM
SCMIF not
set!
Enter
SCM
Enter
SCM
Continue w.
normal OP
Figure 2-22. Stop Mode Entry/Exit Sequence
MC9S12XDP512 Data Sheet, Rev. 2.21
108
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.4.3.3.1
Wake-up from Pseudo Stop Mode (PSTP=1)
Wake-up from pseudo stop mode is the same as wake-up from wait mode. There are also four different
scenarios for the CRG to restart the MCU from pseudo stop mode:
• External reset
• Clock monitor fail
• COP reset
• Wake-up interrupt
If the MCU gets an external reset or COP reset during pseudo stop mode active, the CRG asynchronously
restores all configuration bits in the register space to its default settings and starts the reset generator. After
completing the reset sequence processing begins by fetching the normal or COP reset vector. pseudo stop
mode is left and the MCU is in run mode again.
If the clock monitor is enabled (CME = 1), the MCU is able to leave pseudo stop mode when loss of
oscillator/external clock is detected by a clock monitor fail. If the SCME bit is not asserted the CRG
generates a clock monitor fail reset (CMRESET). The CRG’s behavior for CMRESET is the same
compared to external reset, but another reset vector is fetched after completion of the reset sequence. If the
SCME bit is asserted the CRG generates a SCM interrupt if enabled (SCMIE = 1). After generating the
interrupt the CRG enters self-clock mode and starts the clock quality checker (Section 2.4.1.4, “Clock
Quality Checker”). Then the MCU continues with normal operation. If the SCM interrupt is blocked by
SCMIE=0, the SCMIF flag will be asserted but the CRG will not wake-up from pseudo stop mode.
If any other interrupt source (e.g., RTI) triggers exit from pseudo stop mode, the MCU immediately
continues with normal operation. Because the PLL has been powered-down during stop mode, the
PLLSEL bit is cleared and the MCU runs on OSCCLK after leaving stop mode. The software must set the
PLLSEL bit again, in order to switch system and core clocks to the PLLCLK.
Table 2-13 summarizes the outcome of a clock loss while in pseudo stop mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
109
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-13. Outcome of Clock Loss in Pseudo Stop Mode
CME
SCME
SCMIE
0
X
X
Clock failure -->
No action, clock loss not detected.
1
0
X
Clock failure -->
CRG performs Clock Monitor Reset immediately
0
Clock Monitor failure -->
Scenario 1: OSCCLK recovers prior to exiting pseudo stop mode.
– MCU remains in pseudo stop mode,
– VREG enabled,
– PLL enabled,
– SCM activated,
– Start clock quality check,
– Set SCMIF interrupt flag.
Some time later OSCCLK recovers.
– CM no longer indicates a failure,
– 4096 OSCCLK cycles later clock quality check indicates clock o.k.,
– SCM deactivated,
– PLL disabled,
– VREG disabled.
– MCU remains in pseudo stop mode.
Some time later either a wakeup interrupt occurs (no SCM interrupt)
– Exit pseudo stop mode using OSCCLK as system clock (SYSCLK),
– Continue normal operation.
or an External Reset is applied.
– Exit pseudo stop mode using OSCCLK as system clock,
– Start reset sequence.
Scenario 2: OSCCLK does not recover prior to exiting pseudo stop mode.
– MCU remains in pseudo stop mode,
– VREG enabled,
– PLL enabled,
– SCM activated,
– Start clock quality check,
– Set SCMIF interrupt flag,
– Keep performing clock quality checks (could continue infinitely) while
in pseudo stop mode.
Some time later either a wakeup interrupt occurs (no SCM interrupt)
– Exit pseudo stop mode in SCM using PLL clock (fSCM) as system clock
– Continue to perform additional clock quality checks until OSCCLK is o.k. again.
or an External RESET is applied.
– Exit pseudo stop mode in SCM using PLL clock (fSCM) as system clock
– Start reset sequence,
– Continue to perform additional clock quality checks until OSCCLK is o.k.again.
1
Clock failure -->
– VREG enabled,
– PLL enabled,
– SCM activated,
– Start clock quality check,
– SCMIF set.
SCMIF generates self clock mode wakeup interrupt.
– Exit pseudo stop mode in SCM using PLL clock (fSCM) as system clock,
– Continue to perform a additional clock quality checks until OSCCLK is o.k. again.
1
1
1
1
CRG Actions
MC9S12XDP512 Data Sheet, Rev. 2.21
110
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.4.3.3.2
Wake-up from Full Stop (PSTP = 0)
The MCU requires an external interrupt or an external reset in order to wake-up from stop-mode.
If the MCU gets an external reset during full stop mode active, the CRG asynchronously restores all
configuration bits in the register space to its default settings and will perform a maximum of 50 clock
check_windows (see Section 2.4.1.4, “Clock Quality Checker”). After completing the clock quality check
the CRG starts the reset generator. After completing the reset sequence processing begins by fetching the
normal reset vector. Full stop-mode is left and the MCU is in run mode again.
If the MCU is woken-up by an interrupt and the fast wake-up feature is disabled (FSTWKP = 0 or
SCME = 0), the CRG will also perform a maximum of 50 clock check_windows (see Section 2.4.1.4,
“Clock Quality Checker”). If the clock quality check is successful, the CRG will release all system and
core clocks and will continue with normal operation. If all clock checks within the Timeout-Window are
failing, the CRG will switch to self-clock mode or generate a clock monitor reset (CMRESET) depending
on the setting of the SCME bit.
If the MCU is woken-up by an interrupt and the fast wake-up feature is enabled (FSTWKP = 1 and
SCME = 1), the system will immediately resume operation in self-clock mode (see Section 2.4.1.4, “Clock
Quality Checker”). The SCMIF flag will not be set. The system will remain in self-clock mode with
oscillator disabled until FSTWKP bit is cleared. The clearing of FSTWKP will start the oscillator and the
clock quality check. If the clock quality check is successful, the CRG will switch all system clocks to
oscillator clock. The SCMIF flag will be set. See application examples in Figure 2-23 and Figure 2-24.
Because the PLL has been powered-down during stop-mode the PLLSEL bit is cleared and the MCU runs
on OSCCLK after leaving stop-mode. The software must manually set the PLLSEL bit again, in order to
switch system and core clocks to the PLLCLK.
NOTE
In full stop mode or self-clock mode caused by the fast wake-up feature, the
clock monitor and the oscillator are disabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
111
Chapter 2 Clocks and Reset Generator (S12CRGV6)
CPU resumes program execution immediately
Instruction
FSTWKP=1
SCME=1 STOP
IRQ Service STOP
IRQ Service
IRQ Service STOP
Interrupt
Interrupt
Interrupt
Power Saving
Oscillator Clock
Oscillator Disabled
PLL Clock
Core Clock
Self-Clock Mode
Figure 2-23. Fast Wake-up from Full Stop Mode: Example 1
.
CPU resumes program execution immediately
Instruction
FSTWKP=1 SCME=1 STOP
IRQ Service FSTWKP=0
SCMIE=1
Freq. Uncritical
Instructions
IRQ Interrupt
Freq. Critical
Instr. Possible
SCM Interrupt
Clock Quality Check
Oscillator Clock
Oscillator Disabled
OSC Startup
PLL Clock
Core Clock
Self-Clock Mode
Figure 2-24. Fast Wake-up from Full Stop Mode: Example 2
MC9S12XDP512 Data Sheet, Rev. 2.21
112
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.5
Resets
This section describes how to reset the CRG, and how the CRG itself controls the reset of the MCU. It
explains all special reset requirements. Since the reset generator for the MCU is part of the CRG, this
section also describes all automatic actions that occur during or as a result of individual reset conditions.
The reset values of registers and signals are provided in Section 2.3, “Memory Map and Register
Definition”. All reset sources are listed in Table 2-14. Refer to MCU specification for related vector
addresses and priorities.
Table 2-14. Reset Summary
2.5.1
Reset Source
Local Enable
Power on Reset
None
Low Voltage Reset
None
External Reset
None
Illegal Address Reset
None
Clock Monitor Reset
PLLCTL (CME = 1, SCME = 0)
COP Watchdog Reset
COPCTL (CR[2:0] nonzero)
Description of Reset Operation
The reset sequence is initiated by any of the following events:
• Low level is detected at the RESET pin (external reset)
• Power on is detected
• Low voltage is detected
• Illegal Address Reset is detected (see S12XMMC Block Guide for details)
• COP watchdog times out
• Clock monitor failure is detected and self-clock mode was disabled (SCME=0)
Upon detection of any reset event, an internal circuit drives the RESET pin low for 128 SYSCLK cycles
(see Figure 2-25). Since entry into reset is asynchronous, it does not require a running SYSCLK. However,
the internal reset circuit of the CRG cannot sequence out of current reset condition without a running
SYSCLK. The number of 128 SYSCLK cycles might be increased by n = 3 to 6 additional SYSCLK cycles
depending on the internal synchronization latency. After 128 + n SYSCLK cycles the RESET pin is
released. The reset generator of the CRG waits for additional 64 SYSCLK cycles and then samples the
RESET pin to determine the originating source. Table 2-15 shows which vector will be fetched.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
113
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Table 2-15. Reset Vector Selection
Sampled RESET Pin
(64 cycles
after release)
Clock Monitor
Reset Pending
COP
Reset Pending
Vector Fetch
1
0
0
POR / LVR / Illegal Address Reset / External Reset
1
1
X
Clock Monitor Reset
1
0
1
COP Reset
0
X
X
POR / LVR / Illegal Address Reset / External Reset
with rise of RESET pin
NOTE
External circuitry connected to the RESET pin should not include a large
capacitance that would interfere with the ability of this signal to rise to a
valid logic 1 within 64 SYSCLK cycles after the low drive is released.
The internal reset of the MCU remains asserted while the reset generator completes the 192 SYSCLK long
reset sequence. The reset generator circuitry always makes sure the internal reset is deasserted
synchronously after completion of the 192 SYSCLK cycles. In case the RESET pin is externally driven
low for more than these 192 SYSCLK cycles (external reset), the internal reset remains asserted too.
RESET
)(
)(
CRG drives RESET pin low
RESET pin
released
)
)
SYSCLK
(
(
128 + n cycles
Possibly
SYSCLK
not
running
)
(
64 cycles
With n being
min 3 / max 6
cycles depending
on internal
synchronization
delay
Possibly
RESET
driven low
externally
Figure 2-25. RESET Timing
MC9S12XDP512 Data Sheet, Rev. 2.21
114
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.5.2
Clock Monitor Reset
The CRG generates a clock monitor reset in case all of the following conditions are true:
• Clock monitor is enabled (CME = 1)
• Loss of clock is detected
• Self-clock mode is disabled (SCME = 0).
The reset event asynchronously forces the configuration registers to their default settings (see Section 2.3,
“Memory Map and Register Definition”). In detail the CME and the SCME are reset to logical ‘1’ (which
doesn’t change the state of the CME bit, because it has already been set). As a consequence the CRG
immediately enters self clock mode and starts its internal reset sequence. In parallel the clock quality check
starts. As soon as clock quality check indicates a valid oscillator clock the CRG switches to OSCCLK and
leaves self clock mode. Since the clock quality checker is running in parallel to the reset generator, the
CRG may leave self clock mode while still completing the internal reset sequence. When the reset
sequence is finished, the CRG checks the internally latched state of the clock monitor fail circuit. If a clock
monitor fail is indicated, processing begins by fetching the clock monitor reset vector.
2.5.3
Computer Operating Properly Watchdog (COP) Reset
When COP is enabled, the CRG expects sequential write of 0x_55 and 0x_AA (in this order) to the
ARMCOP register during the selected time-out period. Once this is done, the COP time-out period restarts.
If the program fails to do this the CRG will generate a reset. Also, if any value other than 0x_55 or 0x_AA
is written, the CRG immediately generates a reset. In case windowed COP operation is enabled writes
(0x_55 or 0x_AA) to the ARMCOP register must occur in the last 25% of the selected time-out period. A
premature write the CRG will immediately generate a reset.
As soon as the reset sequence is completed the reset generator checks the reset condition. If no clock
monitor failure is indicated and the latched state of the COP timeout is true, processing begins by fetching
the COP vector.
2.5.4
Power On Reset, Low Voltage Reset
The on-chip voltage regulator detects when VDD to the MCU has reached a certain level and asserts power
on reset or low voltage reset or both. As soon as a power on reset or low voltage reset is triggered the CRG
performs a quality check on the incoming clock signal. As soon as clock quality check indicates a valid
oscillator clock signal, the reset sequence starts using the oscillator clock. If after 50 check windows the
clock quality check indicated a non-valid oscillator clock, the reset sequence starts using self-clock mode.
Figure 2-26 and Figure 2-27 show the power-up sequence for cases when the RESET pin is tied to VDD
and when the RESET pin is held low.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
115
Chapter 2 Clocks and Reset Generator (S12CRGV6)
Clock Quality Check
(no Self-Clock Mode)
RESET
)(
Internal POR
)(
128 SYSCLK
Internal RESET
)(
64 SYSCLK
Figure 2-26. RESET Pin Tied to VDD (by a pull-up resistor)
Clock Quality Check
(no Self Clock Mode)
)(
RESET
Internal POR
)(
128 SYSCLK
Internal RESET
)(
64 SYSCLK
Figure 2-27. RESET Pin Held Low Externally
2.6
Interrupts
The interrupts/reset vectors requested by the CRG are listed in Table 2-16. Refer to MCU specification for
related vector addresses and priorities.
Table 2-16. CRG Interrupt Vectors
2.6.1
Interrupt Source
CCR
Mask
Local Enable
Real time interrupt
I bit
CRGINT (RTIE)
LOCK interrupt
I bit
CRGINT (LOCKIE)
SCM interrupt
I bit
CRGINT (SCMIE)
Real Time Interrupt
The CRG generates a real time interrupt when the selected interrupt time period elapses. RTI interrupts are
locally disabled by setting the RTIE bit to 0. The real time interrupt flag (RTIF) is set to1 when a timeout
occurs, and is cleared to 0 by writing a 1 to the RTIF bit.
The RTI continues to run during pseudo stop mode if the PRE bit is set to 1. This feature can be used for
periodic wakeup from pseudo stop if the RTI interrupt is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
116
Freescale Semiconductor
Chapter 2 Clocks and Reset Generator (S12CRGV6)
2.6.2
PLL Lock Interrupt
The CRG generates a PLL Lock interrupt when the LOCK condition of the PLL has changed, either from
a locked state to an unlocked state or vice versa. Lock interrupts are locally disabled by setting the
LOCKIE bit to 0. The PLL Lock interrupt flag (LOCKIF) is set to1 when the LOCK condition has
changed, and is cleared to 0 by writing a 1 to the LOCKIF bit.
2.6.3
Self Clock Mode Interrupt
The CRG generates a self clock mode interrupt when the SCM condition of the system has changed, either
entered or exited self clock mode. SCM conditions can only change if the self clock mode enable bit
(SCME) is set to 1. SCM conditions are caused by a failing clock quality check after power on reset (POR)
or low voltage reset (LVR) or recovery from full stop mode (PSTP = 0) or clock monitor failure. For details
on the clock quality check refer to Section 2.4.1.4, “Clock Quality Checker”. If the clock monitor is
enabled (CME = 1) a loss of external clock will also cause a SCM condition (SCME = 1).
SCM interrupts are locally disabled by setting the SCMIE bit to 0. The SCM interrupt flag (SCMIF) is set
to1 when the SCM condition has changed, and is cleared to 0 by writing a 1 to the SCMIF bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
117
Chapter 2 Clocks and Reset Generator (S12CRGV6)
MC9S12XDP512 Data Sheet, Rev. 2.21
118
Freescale Semiconductor
Chapter 3
Pierce Oscillator (S12XOSCLCPV1)
3.1
Introduction
The Pierce oscillator (XOSC) module provides a robust, low-noise and low-power clock source. The
module will be operated from the VDDPLL supply rail (2.5 V nominal) and require the minimum number
of external components. It is designed for optimal start-up margin with typical crystal oscillators.
3.1.1
Features
The XOSC will contain circuitry to dynamically control current gain in the output amplitude. This ensures
a signal with low harmonic distortion, low power and good noise immunity.
• High noise immunity due to input hysteresis
• Low RF emissions with peak-to-peak swing limited dynamically
• Transconductance (gm) sized for optimum start-up margin for typical oscillators
• Dynamic gain control eliminates the need for external current limiting resistor
• Integrated resistor eliminates the need for external bias resistor
• Low power consumption:
— Operates from 2.5 V (nominal) supply
— Amplitude control limits power
• Clock monitor
3.1.2
Modes of Operation
Two modes of operation exist:
1. Loop controlled Pierce oscillator
2. External square wave mode featuring also full swing Pierce without internal feedback resistor
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
119
Chapter 3 Pierce Oscillator (S12XOSCLCPV1)
3.1.3
Block Diagram
Figure 3-1 shows a block diagram of the XOSC.
Monitor_Failure
Clock
Monitor
OSCCLK
Peak
Detector
Gain Control
VDDPLL = 2.5 V
Rf
XTAL
EXTAL
Figure 3-1. XOSC Block Diagram
3.2
External Signal Description
This section lists and describes the signals that connect off chip
3.2.1
VDDPLL and VSSPLL — Operating and Ground Voltage Pins
Theses pins provides operating voltage (VDDPLL) and ground (VSSPLL) for the XOSC circuitry. This
allows the supply voltage to the XOSC to be independently bypassed.
3.2.2
EXTAL and XTAL — Input and Output Pins
These pins provide the interface for either a crystal or a CMOS compatible clock to control the internal
clock generator circuitry. EXTAL is the external clock input or the input to the crystal oscillator amplifier.
XTAL is the output of the crystal oscillator amplifier. The MCU internal system clock is derived from the
MC9S12XDP512 Data Sheet, Rev. 2.21
120
Freescale Semiconductor
Chapter 3 Pierce Oscillator (S12XOSCLCPV1)
EXTAL input frequency. In full stop mode (PSTP = 0), the EXTAL pin is pulled down by an internal
resistor of typical 200 kΩ.
NOTE
Freescale recommends an evaluation of the application board and chosen
resonator or crystal by the resonator or crystal supplier.
Loop controlled circuit is not suited for overtone resonators and crystals.
EXTAL
C1
MCU
Crystal or
Ceramic Resonator
XTAL
C2
VSSPLL
Figure 3-2. Loop Controlled Pierce Oscillator Connections (XCLKS = 1)
NOTE
Full swing Pierce circuit is not suited for overtone resonators and crystals
without a careful component selection.
EXTAL
C1
MCU
RB
Crystal or
Ceramic Resonator
RS*
XTAL
C2
VSSPLL
* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.
Figure 3-3. Full Swing Pierce Oscillator Connections (XCLKS = 0)
EXTAL
CMOS Compatible
External Oscillator
(VDDPLL Level)
MCU
XTAL
Not Connected
Figure 3-4. External Clock Connections (XCLKS = 0)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
121
Chapter 3 Pierce Oscillator (S12XOSCLCPV1)
3.2.3
XCLKS — Input Signal
The XCLKS is an input signal which controls whether a crystal in combination with the internal loop
controlled (low power) Pierce oscillator is used or whether full swing Pierce oscillator/external clock
circuitry is used. Refer to the Device Overview chapter for polarity and sampling conditions of the XCLKS
pin. Table 3-1 lists the state coding of the sampled XCLKS signal.
.
Table 3-1. Clock Selection Based on XCLKS
XCLKS
3.3
Description
1
Loop controlled Pierce oscillator selected
0
Full swing Pierce oscillator/external clock selected
Memory Map and Register Definition
The CRG contains the registers and associated bits for controlling and monitoring the oscillator module.
3.4
Functional Description
The XOSC module has control circuitry to maintain the crystal oscillator circuit voltage level to an optimal
level which is determined by the amount of hysteresis being used and the maximum oscillation range.
The oscillator block has two external pins, EXTAL and XTAL. The oscillator input pin, EXTAL, is
intended to be connected to either a crystal or an external clock source. The selection of loop controlled
Pierce oscillator or full swing Pierce oscillator/external clock depends on the XCLKS signal which is
sampled during reset. The XTAL pin is an output signal that provides crystal circuit feedback.
A buffered EXTAL signal becomes the internal clock. To improve noise immunity, the oscillator is
powered by the VDDPLL and VSSPLL power supply pins.
3.4.1
Gain Control
A closed loop control system will be utilized whereby the amplifier is modulated to keep the output
waveform sinusoidal and to limit the oscillation amplitude. The output peak to peak voltage will be kept
above twice the maximum hysteresis level of the input buffer. Electrical specification details are provided
in the Electrical Characteristics appendix.
3.4.2
Clock Monitor
The clock monitor circuit is based on an internal RC time delay so that it can operate without any MCU
clocks. If no OSCCLK edges are detected within this RC time delay, the clock monitor indicates failure
which asserts self-clock mode or generates a system reset depending on the state of SCME bit. If the clock
monitor is disabled or the presence of clocks is detected no failure is indicated.The clock monitor function
is enabled/disabled by the CME control bit, described in the CRG block description chapter.
MC9S12XDP512 Data Sheet, Rev. 2.21
122
Freescale Semiconductor
Chapter 3 Pierce Oscillator (S12XOSCLCPV1)
3.4.3
Wait Mode Operation
During wait mode, XOSC is not impacted.
3.4.4
Stop Mode Operation
XOSC is placed in a static state when the part is in stop mode except when pseudo-stop mode is enabled.
During pseudo-stop mode, XOSC is not impacted.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
123
Chapter 3 Pierce Oscillator (S12XOSCLCPV1)
MC9S12XDP512 Data Sheet, Rev. 2.21
124
Freescale Semiconductor
Chapter 4
Analog-to-Digital Converter (ATD10B16CV4)
Block Description
4.1
Introduction
The ATD10B16C is a 16-channel, 10-bit, multiplexed input successive approximation analog-to-digital
converter. Refer to the Electrical Specifications chapter for ATD accuracy.
4.1.1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
4.1.2
Features
8-/10-bit resolution
7 µs, 10-bit single conversion time
Sample buffer amplifier
Programmable sample time
Left/right justified, signed/unsigned result data
External trigger control
Conversion completion interrupt generation
Analog input multiplexer for 16 analog input channels
Analog/digital input pin multiplexing
1 to 16 conversion sequence lengths
Continuous conversion mode
Multiple channel scans
Configurable external trigger functionality on any AD channel or any of four additional trigger
inputs. The four additional trigger inputs can be chip external or internal. Refer to device
specification for availability and connectivity
Configurable location for channel wrap around (when converting multiple channels in a sequence)
Modes of Operation
There is software programmable selection between performing single or continuous conversion on a
single channel or multiple channels.
4.1.3
Block Diagram
Refer to Figure 4-1 for a block diagram of the ATD0B16C block.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
125
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Bus Clock
ATD clock
Clock
Prescaler
Trigger
Mux
ETRIG0
ETRIG1
ETRIG2
ATD10B16C
Sequence Complete
Mode and
Timing Control
Interrupt
ETRIG3
(see Device Overview
chapter for availability
and connectivity)
ATDCTL1
ATDDIEN
Results
ATD 0
ATD 1
ATD 2
ATD 3
ATD 4
ATD 5
ATD 6
ATD 7
ATD 8
ATD 9
ATD 10
ATD 11
ATD 12
ATD 13
ATD 14
ATD 15
PORTAD
VDDA
VSSA
Successive
Approximation
Register (SAR)
and DAC
VRH
VRL
AN15
AN14
AN13
AN12
AN11
+
AN10
Sample & Hold
AN9
1
1
AN8
AN7
Analog
MUX
Comparator
AN6
AN5
AN4
AN3
AN2
AN1
AN0
Figure 4-1. ATD10B16C Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
126
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.2
External Signal Description
This section lists all inputs to the ATD10B16C block.
4.2.1
ANx (x = 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) — Analog Input
Channel x Pins
This pin serves as the analog input channel x. It can also be configured as general-purpose digital input
and/or external trigger for the ATD conversion.
4.2.2
ETRIG3, ETRIG2, ETRIG1, ETRIG0 — External Trigger Pins
These inputs can be configured to serve as an external trigger for the ATD conversion.
Refer to the Device Overview chapter for availability and connectivity of these inputs.
4.2.3
VRH, VRL — High Reference Voltage Pin, Low Reference Voltage Pin
VRH is the high reference voltage, VRL is the low reference voltage for ATD conversion.
4.2.4
VDDA, VSSA — Analog Circuitry Power Supply Pins
These pins are the power supplies for the analog circuitry of the ATD10B16CV4 block.
4.3
Memory Map and Register Definition
This section provides a detailed description of all registers accessible in the ATD10B16C.
4.3.1
Module Memory Map
Table 4-1 gives an overview of all ATD10B16C registers
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
127
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
.
Table 4-1. ATD10B16CV4 Memory Map
1
Address Offset
Use
Access
0x0000
ATD Control Register 0 (ATDCTL0)
R/W
0x0001
ATD Control Register 1 (ATDCTL1)
R/W
0x0002
ATD Control Register 2 (ATDCTL2)
R/W
0x0003
ATD Control Register 3 (ATDCTL3)
R/W
0x0004
ATD Control Register 4 (ATDCTL4)
R/W
0x0005
ATD Control Register 5 (ATDCTL5)
R/W
R/W
0x0006
ATD Status Register 0 (ATDSTAT0)
0x0007
Unimplemented
0x0008
ATD Test Register 0 (ATDTEST0)1
R
0x0009
ATD Test Register 1 (ATDTEST1)
R/W
0x000A
ATD Status Register 2 (ATDSTAT2)
R
0x000B
ATD Status Register 1 (ATDSTAT1)
R
0x000C
ATD Input Enable Register 0 (ATDDIEN0)
R/W
0x000D
ATD Input Enable Register 1 (ATDDIEN1)
R/W
0x000E
Port Data Register 0 (PORTAD0)
R
0x000F
Port Data Register 1 (PORTAD1)
R
0x0010, 0x0011
ATD Result Register 0 (ATDDR0H, ATDDR0L)
R/W
0x0012, 0x0013
ATD Result Register 1 (ATDDR1H, ATDDR1L)
R/W
0x0014, 0x0015
ATD Result Register 2 (ATDDR2H, ATDDR2L)
R/W
0x0016, 0x0017
ATD Result Register 3 (ATDDR3H, ATDDR3L)
R/W
0x0018, 0x0019
ATD Result Register 4 (ATDDR4H, ATDDR4L)
R/W
0x001A, 0x001B
ATD Result Register 5 (ATDDR5H, ATDDR5L)
R/W
0x001C, 0x001D
ATD Result Register 6 (ATDDR6H, ATDDR6L)
R/W
0x001E, 0x001F
ATD Result Register 7 (ATDDR7H, ATDDR7L)
R/W
0x0020, 0x0021
ATD Result Register 8 (ATDDR8H, ATDDR8L)
R/W
0x0022, 0x0023
ATD Result Register 9 (ATDDR9H, ATDDR9L)
R/W
0x0024, 0x0025
ATD Result Register 10 (ATDDR10H, ATDDR10L)
R/W
0x0026, 0x0027
ATD Result Register 11 (ATDDR11H, ATDDR11L)
R/W
0x0028, 0x0029
ATD Result Register 12 (ATDDR12H, ATDDR12L)
R/W
0x002A, 0x002B
ATD Result Register 13 (ATDDR13H, ATDDR13L)
R/W
0x002C, 0x002D
ATD Result Register 14 (ATDDR14H, ATDDR14L)
R/W
0x002E, 0x002F
ATD Result Register 15 (ATDDR15H, ATDDR15L)
R/W
ATDTEST0 is intended for factory test purposes only.
NOTE
Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.
MC9S12XDP512 Data Sheet, Rev. 2.21
128
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2
Register Descriptions
This section describes in address order all the ATD10B16C registers and their individual bits.
Register
Name
0x0000
ATDCTL0
0x0001
ATDCTL1
R
R
W
W
0x0003
ATDCTL3
W
R
R
W
W
0x0006
ATDSTAT0
W
0x0008
ATDTEST0
R
R
0
0
0
0
0
0
0
AFFC
AWAI
ETRIGLE
ETRIGP
ETRIGE
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SRES8
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DJM
DSGN
SCAN
MULT
CD
CC
CB
CA
ETORF
FIFOR
CC3
CC2
CC1
CC0
ADPU
0
SCF
0
3
2
1
Bit 0
WRAP3
WRAP2
WRAP1
WRAP0
ETRIGCH3 ETRIGCH2 ETRIGCH1 ETRIGCH0
ASCIF
W
R
Unimplemented
W
W
0x000A
ATDSTAT2
W
0x000C
ATDDIEN0
4
R
0x0009
ATDTEST1
0x000B
ATDSTAT1
5
ETRIGSEL
R
0x0005
ATDCTL5
0x0007
Unimplemented
6
W
0x0002
ATDCTL2
0x0004
ATDCTL4
Bit 7
R
R
R
Unimplemented
SC
CCF15
CCF14
CCF13
CCF12
CCF11
CCF10
CCF9
CCF8
CCF7
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
IEN15
IEN14
IEN13
IEN12
IEN11
IEN10
IEN9
IEN8
W
R
W
= Unimplemented or Reserved
u = Unaffected
Figure 4-2. ATD Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
129
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Register
Name
0x000D
ATDDIEN1
R
W
0x000E
PORTAD0
W
R
0x000F
PORTAD1
R
Bit 7
6
5
4
3
2
1
Bit 0
IEN7
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
PTAD15
PTAD14
PTAD13
PTAD12
PTAD11
PTAD10
PTAD9
PTAD8
PTAD7
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
BIT 0
u
0
0
0
0
0
0
0
0
0
0
0
0
W
R BIT 9 MSB
BIT 7 MSB
0x0010–0x002F W
ATDDRxH–
ATDDRxL R
BIT 1
u
W
= Unimplemented or Reserved
u = Unaffected
Figure 4-2. ATD Register Summary (continued)
4.3.2.1
ATD Control Register 0 (ATDCTL0)
Writes to this register will abort current conversion sequence but will not start a new sequence.
R
7
6
5
4
0
0
0
0
3
2
1
0
WRAP3
WRAP2
WRAP1
WRAP0
1
1
1
1
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 4-3. ATD Control Register 0 (ATDCTL0)
Read: Anytime
Write: Anytime
Table 4-2. ATDCTL0 Field Descriptions
Field
3:0
WRAP[3:0]
Description
Wrap Around Channel Select Bits — These bits determine the channel for wrap around when doing
multi-channel conversions. The coding is summarized in Table 4-3.
MC9S12XDP512 Data Sheet, Rev. 2.21
130
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-3. Multi-Channel Wrap Around Coding
4.3.2.2
WRAP3
WRAP2
WRAP1
WRAP0
Multiple Channel Conversions
(MULT = 1) Wrap Around to AN0
after Converting
0
0
0
0
Reserved
0
0
0
1
AN1
0
0
1
0
AN2
0
0
1
1
AN3
0
1
0
0
AN4
0
1
0
1
AN5
0
1
1
0
AN6
0
1
1
1
AN7
1
0
0
0
AN8
1
0
0
1
AN9
1
0
1
0
AN10
1
0
1
1
AN11
1
1
0
0
AN12
1
1
0
1
AN13
1
1
1
0
AN14
1
1
1
1
AN15
ATD Control Register 1 (ATDCTL1)
Writes to this register will abort current conversion sequence but will not start a new sequence.
7
R
6
5
4
0
0
0
ETRIGSEL
3
2
1
0
ETRIGCH3
ETRIGCH2
ETRIGCH1
ETRIGCH0
1
1
1
1
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 4-4. ATD Control Register 1 (ATDCTL1)
Read: Anytime
Write: Anytime
Table 4-4. ATDCTL1 Field Descriptions
Field
Description
7
ETRIGSEL
External Trigger Source Select — This bit selects the external trigger source to be either one of the AD
channels or one of the ETRIG[3:0] inputs. See device specification for availability and connectivity of
ETRIG[3:0] inputs. If ETRIG[3:0] input option is not available, writing a 1 to ETRISEL only sets the bit but has
no effect, that means one of the AD channels (selected by ETRIGCH[3:0]) remains the source for external
trigger. The coding is summarized in Table 4-5.
3:0
External Trigger Channel Select — These bits select one of the AD channels or one of the ETRIG[3:0] inputs
ETRIGCH[3:0] as source for the external trigger. The coding is summarized in Table 4-5.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
131
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-5. External Trigger Channel Select Coding
1
4.3.2.3
ETRIGSEL
ETRIGCH3
ETRIGCH2
ETRIGCH1
ETRIGCH0
External Trigger Source
0
0
0
0
0
AN0
0
0
0
0
1
AN1
0
0
0
1
0
AN2
0
0
0
1
1
AN3
0
0
1
0
0
AN4
0
0
1
0
1
AN5
0
0
1
1
0
AN6
0
0
1
1
1
AN7
0
1
0
0
0
AN8
0
1
0
0
1
AN9
0
1
0
1
0
AN10
0
1
0
1
1
AN11
0
1
1
0
0
AN12
0
1
1
0
1
AN13
0
1
1
1
0
AN14
0
1
1
1
1
AN15
1
0
0
0
0
ETRIG01
1
0
0
0
1
ETRIG11
1
0
0
1
0
ETRIG21
1
0
0
1
1
ETRIG31
1
0
1
X
X
Reserved
1
1
X
X
X
Reserved
Only if ETRIG[3:0] input option is available (see device specification), else ETRISEL is ignored, that means
external trigger source remains on one of the AD channels selected by ETRIGCH[3:0]
ATD Control Register 2 (ATDCTL2)
This register controls power down, interrupt and external trigger. Writes to this register will abort current
conversion sequence but will not start a new sequence.
MC9S12XDP512 Data Sheet, Rev. 2.21
132
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
7
6
5
4
3
2
1
ADPU
AFFC
AWAI
ETRIGLE
ETRIGP
ETRIGE
ASCIE
0
0
0
0
0
0
0
R
0
ASCIF
W
Reset
0
= Unimplemented or Reserved
Figure 4-5. ATD Control Register 2 (ATDCTL2)
Read: Anytime
Write: Anytime
Table 4-6. ATDCTL2 Field Descriptions
Field
Description
7
ADPU
ATD Power Down — This bit provides on/off control over the ATD10B16C block allowing reduced MCU power
consumption. Because analog electronic is turned off when powered down, the ATD requires a recovery time
period after ADPU bit is enabled.
0 Power down ATD
1 Normal ATD functionality
6
AFFC
ATD Fast Flag Clear All
0 ATD flag clearing operates normally (read the status register ATDSTAT1 before reading the result register
to clear the associate CCF flag).
1 Changes all ATD conversion complete flags to a fast clear sequence. Any access to a result register will
cause the associate CCF flag to clear automatically.
5
AWAI
ATD Power Down in Wait Mode — When entering Wait Mode this bit provides on/off control over the
ATD10B16C block allowing reduced MCU power. Because analog electronic is turned off when powered down,
the ATD requires a recovery time period after exit from Wait mode.
0 ATD continues to run in Wait mode
1 Halt conversion and power down ATD during Wait mode
After exiting Wait mode with an interrupt conversion will resume. But due to the recovery time the result of
this conversion should be ignored.
4
ETRIGLE
External Trigger Level/Edge Control — This bit controls the sensitivity of the external trigger signal. See
Table 4-7 for details.
3
ETRIGP
External Trigger Polarity — This bit controls the polarity of the external trigger signal. See Table 4-7 for
details.
2
ETRIGE
External Trigger Mode Enable — This bit enables the external trigger on one of the AD channels or one of
the ETRIG[3:0] inputs as described in Table 4-5. If external trigger source is one of the AD channels, the digital
input buffer of this channel is enabled. The external trigger allows to synchronize the start of conversion with
external events.
0 Disable external trigger
1 Enable external trigger
1
ASCIE
ATD Sequence Complete Interrupt Enable
0 ATD Sequence Complete interrupt requests are disabled.
1 ATD Interrupt will be requested whenever ASCIF = 1 is set.
0
ASCIF
ATD Sequence Complete Interrupt Flag — If ASCIE = 1 the ASCIF flag equals the SCF flag (see
Section 4.3.2.7, “ATD Status Register 0 (ATDSTAT0)”), else ASCIF reads zero. Writes have no effect.
0 No ATD interrupt occurred
1 ATD sequence complete interrupt pending
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
133
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-7. External Trigger Configurations
ETRIGLE
ETRIGP
External Trigger Sensitivity
0
0
Falling Edge
0
1
Ring Edge
1
0
Low Level
1
1
High Level
MC9S12XDP512 Data Sheet, Rev. 2.21
134
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.4
ATD Control Register 3 (ATDCTL3)
This register controls the conversion sequence length, FIFO for results registers and behavior in Freeze
Mode. Writes to this register will abort current conversion sequence but will not start a new sequence.
7
R
6
5
4
3
2
1
0
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
0
1
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 4-6. ATD Control Register 3 (ATDCTL3)
Read: Anytime
Write: Anytime
Table 4-8. ATDCTL3 Field Descriptions
Field
Description
6
S8C
Conversion Sequence Length — This bit controls the number of conversions per sequence. Table 4-9 shows
all combinations. At reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12
Family.
5
S4C
Conversion Sequence Length — This bit controls the number of conversions per sequence. Table 4-9 shows
all combinations. At reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12
Family.
4
S2C
Conversion Sequence Length — This bit controls the number of conversions per sequence. Table 4-9 shows
all combinations. At reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12
Family.
3
S1C
Conversion Sequence Length — This bit controls the number of conversions per sequence. Table 4-9 shows
all combinations. At reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12
Family.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
135
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-8. ATDCTL3 Field Descriptions (continued)
Field
Description
2
FIFO
Result Register FIFO Mode —If this bit is zero (non-FIFO mode), the A/D conversion results map into the
result registers based on the conversion sequence; the result of the first conversion appears in the first result
register, the second result in the second result register, and so on.
If this bit is one (FIFO mode) the conversion counter is not reset at the beginning or ending of a conversion
sequence; sequential conversion results are placed in consecutive result registers. In a continuously scanning
conversion sequence, the result register counter will wrap around when it reaches the end of the result register
file. The conversion counter value (CC3-0 in ATDSTAT0) can be used to determine where in the result register
file, the current conversion result will be placed.
Aborting a conversion or starting a new conversion by write to an ATDCTL register (ATDCTL5-0) clears the
conversion counter even if FIFO=1. So the first result of a new conversion sequence, started by writing to
ATDCTL5, will always be place in the first result register (ATDDDR0). Intended usage of FIFO mode is
continuos conversion (SCAN=1) or triggered conversion (ETRIG=1).
Finally, which result registers hold valid data can be tracked using the conversion complete flags. Fast flag clear
mode may or may not be useful in a particular application to track valid data.
0 Conversion results are placed in the corresponding result register up to the selected sequence length.
1 Conversion results are placed in consecutive result registers (wrap around at end).
1:0
FRZ[1:0]
Background Debug Freeze Enable — When debugging an application, it is useful in many cases to have the
ATD pause when a breakpoint (Freeze Mode) is encountered. These 2 bits determine how the ATD will respond
to a breakpoint as shown in Table 4-10. Leakage onto the storage node and comparator reference capacitors
may compromise the accuracy of an immediately frozen conversion depending on the length of the freeze
period.
Table 4-9. Conversion Sequence Length Coding
S8C
S4C
S2C
S1C
Number of Conversions
per Sequence
0
0
0
0
16
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
1
0
0
1
9
1
0
1
0
10
1
0
1
1
11
1
1
0
0
12
1
1
0
1
13
1
1
1
0
14
1
1
1
1
15
MC9S12XDP512 Data Sheet, Rev. 2.21
136
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-10. ATD Behavior in Freeze Mode (Breakpoint)
FRZ1
FRZ0
Behavior in Freeze Mode
0
0
Continue conversion
0
1
Reserved
1
0
Finish current conversion, then freeze
1
1
Freeze Immediately
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
137
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.5
ATD Control Register 4 (ATDCTL4)
This register selects the conversion clock frequency, the length of the second phase of the sample time and
the resolution of the A/D conversion (i.e., 8-bits or 10-bits). Writes to this register will abort current
conversion sequence but will not start a new sequence.
7
6
5
4
3
2
1
0
SRES8
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
0
0
0
0
0
1
0
1
R
W
Reset
Figure 4-7. ATD Control Register 4 (ATDCTL4)
Read: Anytime
Write: Anytime
Table 4-11. ATDCTL4 Field Descriptions
Field
Description
7
SRES8
A/D Resolution Select — This bit selects the resolution of A/D conversion results as either 8 or 10 bits. The
A/D converter has an accuracy of 10 bits. However, if low resolution is required, the conversion can be speeded
up by selecting 8-bit resolution.
0 10 bit resolution
1 8 bit resolution
6:5
SMP[1:0]
Sample Time Select —These two bits select the length of the second phase of the sample time in units of ATD
conversion clock cycles. Note that the ATD conversion clock period is itself a function of the prescaler value
(bits PRS4-0). The sample time consists of two phases. The first phase is two ATD conversion clock cycles
long and transfers the sample quickly (via the buffer amplifier) onto the A/D machine’s storage node. The
second phase attaches the external analog signal directly to the storage node for final charging and high
accuracy. Table 4-12 lists the lengths available for the second sample phase.
4:0
PRS[4:0]
ATD Clock Prescaler — These 5 bits are the binary value prescaler value PRS. The ATD conversion clock
frequency is calculated as follows:
[ BusClock ]
ATDclock = -------------------------------- × 0.5
[ PRS + 1 ]
Note: The maximum ATD conversion clock frequency is half the bus clock. The default (after reset) prescaler
value is 5 which results in a default ATD conversion clock frequency that is bus clock divided by 12.
Table 4-13 illustrates the divide-by operation and the appropriate range of the bus clock.
Table 4-12. Sample Time Select
SMP1
SMP0
Length of 2nd Phase of Sample Time
0
0
2 A/D conversion clock periods
0
1
4 A/D conversion clock periods
1
0
8 A/D conversion clock periods
1
1
16 A/D conversion clock periods
MC9S12XDP512 Data Sheet, Rev. 2.21
138
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-13. Clock Prescaler Values
Prescale Value
Total Divisor
Value
Max. Bus Clock1
Min. Bus Clock2
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
Divide by 2
Divide by 4
Divide by 6
Divide by 8
Divide by 10
Divide by 12
Divide by 14
Divide by 16
Divide by 18
Divide by 20
Divide by 22
Divide by 24
Divide by 26
Divide by 28
Divide by 30
Divide by 32
Divide by 34
Divide by 36
Divide by 38
Divide by 40
Divide by 42
Divide by 44
Divide by 46
Divide by 48
Divide by 50
Divide by 52
Divide by 54
Divide by 56
Divide by 58
Divide by 60
Divide by 62
Divide by 64
4 MHz
8 MHz
12 MHz
16 MHz
20 MHz
24 MHz
28 MHz
32 MHz
36 MHz
40 MHz
44 MHz
48 MHz
52 MHz
56 MHz
60 MHz
64 MHz
68 MHz
72 MHz
76 MHz
80 MHz
84 MHz
88 MHz
92 MHz
96 MHz
100 MHz
104 MHz
108 MHz
112 MHz
116 MHz
120 MHz
124 MHz
128 MHz
1 MHz
2 MHz
3 MHz
4 MHz
5 MHz
6 MHz
7 MHz
8 MHz
9 MHz
10 MHz
11 MHz
12 MHz
13 MHz
14 MHz
15 MHz
16 MHz
17 MHz
18 MHz
19 MHz
20 MHz
21 MHz
22 MHz
23 MHz
24 MHz
25 MHz
26 MHz
27 MHz
28 MHz
29 MHz
30 MHz
31 MHz
32 MHz
1
Maximum ATD conversion clock frequency is 2 MHz. The maximum allowed bus clock frequency is
shown in this column.
2
Minimum ATD conversion clock frequency is 500 kHz. The minimum allowed bus clock frequency is
shown in this column.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
139
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.6
ATD Control Register 5 (ATDCTL5)
This register selects the type of conversion sequence and the analog input channels sampled. Writes to this
register will abort current conversion sequence and start a new conversion sequence. If external trigger is
enabled (ETRIGE = 1) an initial write to ATDCTL5 is required to allow starting of a conversion sequence
which will then occur on each trigger event. Start of conversion means the beginning of the sampling
phase.
7
6
5
4
3
2
1
0
DJM
DSGN
SCAN
MULT
CD
CC
CB
CA
0
0
0
0
0
0
0
0
R
W
Reset
Figure 4-8. ATD Control Register 5 (ATDCTL5)
Read: Anytime
Write: Anytime
Table 4-14. ATDCTL5 Field Descriptions
Field
Description
7
DJM
Result Register Data Justification — This bit controls justification of conversion data in the result registers.
See Section 4.3.2.16, “ATD Conversion Result Registers (ATDDRx)” for details.
0 Left justified data in the result registers.
1 Right justified data in the result registers.
6
DSGN
Result Register Data Signed or Unsigned Representation — This bit selects between signed and unsigned
conversion data representation in the result registers. Signed data is represented as 2’s complement. Signed
data is not available in right justification. See 4.3.2.16 ATD Conversion Result Registers (ATDDRx)
for details.
0 Unsigned data representation in the result registers.
1 Signed data representation in the result registers.
Table 4-15 summarizes the result data formats available and how they are set up using the control bits.
Table 4-16 illustrates the difference between the signed and unsigned, left justified output codes for an input
signal range between 0 and 5.12 Volts.
5
SCAN
Continuous Conversion Sequence Mode — This bit selects whether conversion sequences are performed
continuously or only once. If external trigger is enabled (ETRIGE=1) setting this bit has no effect, that means
each trigger event starts a single conversion sequence.
0 Single conversion sequence
1 Continuous conversion sequences (scan mode)
4
MULT
Multi-Channel Sample Mode — When MULT is 0, the ATD sequence controller samples only from the
specified analog input channel for an entire conversion sequence. The analog channel is selected by channel
selection code (control bits CD/CC/CB/CA located in ATDCTL5). When MULT is 1, the ATD sequence controller
samples across channels. The number of channels sampled is determined by the sequence length value (S8C,
S4C, S2C, S1C). The first analog channel examined is determined by channel selection code (CC, CB, CA
control bits); subsequent channels sampled in the sequence are determined by incrementing the channel
selection code or wrapping around to AN0 (channel 0.
0 Sample only one channel
1 Sample across several channels
MC9S12XDP512 Data Sheet, Rev. 2.21
140
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-14. ATDCTL5 Field Descriptions (continued)
Field
Description
3:0
C[D:A}
Analog Input Channel Select Code — These bits select the analog input channel(s) whose signals are
sampled and converted to digital codes. Table 4-17 lists the coding used to select the various analog input
channels.
In the case of single channel conversions (MULT = 0), this selection code specified the channel to be examined.
In the case of multiple channel conversions (MULT = 1), this selection code represents the first channel to be
examined in the conversion sequence. Subsequent channels are determined by incrementing the channel
selection code or wrapping around to AN0 (after converting the channel defined by the Wrap Around Channel
Select Bits WRAP[3:0] in ATDCTL0). In case starting with a channel number higher than the one defined by
WRAP[3:0] the first wrap around will be AN15 to AN0.
Table 4-15. Available Result Data Formats.
SRES8
DJM
DSGN
Result Data Formats
Description and Bus Bit Mapping
1
0
0
8-bit / left justified / unsigned — bits 15:8
1
0
1
8-bit / left justified / signed — bits 15:8
1
1
X
8-bit / right justified / unsigned — bits 7:0
0
0
0
10-bit / left justified / unsigned — bits 15:6
0
0
1
10-bit / left justified / signed -— bits 15:6
0
1
X
10-bit / right justified / unsigned — bits 9:0
Table 4-16. Left Justified, Signed and Unsigned ATD Output Codes.
Input Signal
VRL = 0 Volts
VRH = 5.12 Volts
Signed
8-Bit Codes
Unsigned
8-Bit Codes
Signed
10-Bit Codes
Unsigned
10-Bit Codes
5.120 Volts
7F
FF
7FC0
FFC0
5.100
7F
FF
7F00
FF00
5.080
7E
FE
7E00
FE00
2.580
01
81
0100
8100
2.560
00
80
0000
8000
2.540
FF
7F
FF00
7F00
0.020
81
01
8100
0100
0.000
80
00
8000
0000
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
141
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-17. Analog Input Channel Select Coding
CD
CC
CB
CA
Analog Input
Channel
0
0
0
0
AN0
0
0
0
1
AN1
0
0
1
0
AN2
0
0
1
1
AN3
0
1
0
0
AN4
0
1
0
1
AN5
0
1
1
0
AN6
0
1
1
1
AN7
1
0
0
0
AN8
1
0
0
1
AN9
1
0
1
0
AN10
1
0
1
1
AN11
1
1
0
0
AN12
1
1
0
1
AN13
1
1
1
0
AN14
1
1
1
1
AN15
MC9S12XDP512 Data Sheet, Rev. 2.21
142
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.7
ATD Status Register 0 (ATDSTAT0)
This read-only register contains the Sequence Complete Flag, overrun flags for external trigger and FIFO
mode, and the conversion counter.
7
6
R
5
4
ETORF
FIFOR
0
0
0
SCF
3
2
1
0
CC3
CC2
CC1
CC0
0
0
0
0
W
Reset
0
0
= Unimplemented or Reserved
Figure 4-9. ATD Status Register 0 (ATDSTAT0)
Read: Anytime
Write: Anytime (No effect on CC[3:0])
Table 4-18. ATDSTAT0 Field Descriptions
Field
7
SCF
5
ETORF
Description
Sequence Complete Flag — This flag is set upon completion of a conversion sequence. If conversion
sequences are continuously performed (SCAN = 1), the flag is set after each one is completed. This flag is
cleared when one of the following occurs:
• Write “1” to SCF
• Write to ATDCTL5 (a new conversion sequence is started)
• If AFFC = 1 and read of a result register
0 Conversion sequence not completed
1 Conversion sequence has completed
External Trigger Overrun Flag —While in edge trigger mode (ETRIGLE = 0), if additional active edges are
detected while a conversion sequence is in process the overrun flag is set. This flag is cleared when one of the
following occurs:
• Write “1” to ETORF
• Write to ATDCTL0,1,2,3,4 (a conversion sequence is aborted)
• Write to ATDCTL5 (a new conversion sequence is started)
0 No External trigger over run error has occurred
1 External trigger over run error has occurred
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
143
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-18. ATDSTAT0 Field Descriptions (continued)
Field
Description
4
FIFOR
FIFO Over Run Flag — This bit indicates that a result register has been written to before its associated
conversion complete flag (CCF) has been cleared. This flag is most useful when using the FIFO mode because
the flag potentially indicates that result registers are out of sync with the input channels. However, it is also
practical for non-FIFO modes, and indicates that a result register has been over written before it has been read
(i.e., the old data has been lost). This flag is cleared when one of the following occurs:
• Write “1” to FIFOR
• Start a new conversion sequence (write to ATDCTL5 or external trigger)
0 No over run has occurred
1 Overrun condition exists (result register has been written while associated CCFx flag remained set)
3:0
CC[3:0}
Conversion Counter — These 4 read-only bits are the binary value of the conversion counter. The conversion
counter points to the result register that will receive the result of the current conversion. For example, CC3 = 0,
CC2 = 1, CC1 = 1, CC0 = 0 indicates that the result of the current conversion will be in ATD Result Register 6.
If in non-FIFO mode (FIFO = 0) the conversion counter is initialized to zero at the begin and end of the
conversion sequence. If in FIFO mode (FIFO = 1) the register counter is not initialized. The conversion
counters wraps around when its maximum value is reached.
Aborting a conversion or starting a new conversion by write to an ATDCTL register (ATDCTL5-0) clears the
conversion counter even if FIFO=1.
MC9S12XDP512 Data Sheet, Rev. 2.21
144
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.8
R
Reserved Register 0 (ATDTEST0)
7
6
5
4
3
2
1
0
u
u
u
u
u
u
u
u
1
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
u = Unaffected
Figure 4-10. Reserved Register 0 (ATDTEST0)
Read: Anytime, returns unpredictable values
Write: Anytime in special modes, unimplemented in normal modes
NOTE
Writing to this register when in special modes can alter functionality.
4.3.2.9
ATD Test Register 1 (ATDTEST1)
This register contains the SC bit used to enable special channel conversions.
R
7
6
5
4
3
2
1
u
u
u
u
u
u
u
0
SC
W
Reset
0
0
0
0
0
= Unimplemented or Reserved
0
0
0
u = Unaffected
Figure 4-11. Reserved Register 1 (ATDTEST1)
Read: Anytime, returns unpredictable values for bit 7 and bit 6
Write: Anytime
NOTE
Writing to this register when in special modes can alter functionality.
Table 4-19. ATDTEST1 Field Descriptions
Field
Description
0
SC
Special Channel Conversion Bit — If this bit is set, then special channel conversion can be selected using
CC, CB, and CA of ATDCTL5. Table 4-20 lists the coding.
0 Special channel conversions disabled
1 Special channel conversions enabled
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
145
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
Table 4-20. Special Channel Select Coding
SC
CD
CC
CB
CA
Analog Input Channel
1
0
0
X
X
Reserved
1
0
1
0
0
VRH
1
0
1
0
1
VRL
1
0
1
1
0
(VRH+VRL) / 2
1
0
1
1
1
Reserved
1
1
X
X
X
Reserved
4.3.2.10
ATD Status Register 2 (ATDSTAT2)
This read-only register contains the Conversion Complete Flags CCF15 to CCF8.
R
7
6
5
4
3
2
1
0
CCF15
CCF14
CCF13
CCF12
CCF11
CCF10
CCF9
CCF8
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 4-12. ATD Status Register 2 (ATDSTAT2)
Read: Anytime
Write: Anytime, no effect
Table 4-21. ATDSTAT2 Field Descriptions
Field
Description
7:0
CCF[15:8]
Conversion Complete Flag Bits — A conversion complete flag is set at the end of each conversion in a
conversion sequence. The flags are associated with the conversion position in a sequence (and also the result
register number). Therefore, CCF8 is set when the ninth conversion in a sequence is complete and the result
is available in result register ATDDR8; CCF9 is set when the tenth conversion in a sequence is complete and
the result is available in ATDDR9, and so forth. A flag CCFx (x = 15, 14, 13, 12, 11, 10, 9, 8) is cleared when
one of the following occurs:
• Write to ATDCTL5 (a new conversion sequence is started)
• If AFFC = 0 and read of ATDSTAT2 followed by read of result register ATDDRx
• If AFFC = 1 and read of result register ATDDRx
In case of a concurrent set and clear on CCFx: The clearing by method A) will overwrite the set. The clearing
by methods B) or C) will be overwritten by the set.
0 Conversion number x not completed
1 Conversion number x has completed, result ready in ATDDRx
MC9S12XDP512 Data Sheet, Rev. 2.21
146
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.11
ATD Status Register 1 (ATDSTAT1)
This read-only register contains the Conversion Complete Flags CCF7 to CCF0
R
7
6
5
4
3
2
1
0
CCF7
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 4-13. ATD Status Register 1 (ATDSTAT1)
Read: Anytime
Write: Anytime, no effect
Table 4-22. ATDSTAT1 Field Descriptions
Field
Description
7:0
CCF[7:0]
Conversion Complete Flag Bits — A conversion complete flag is set at the end of each conversion in a
conversion sequence. The flags are associated with the conversion position in a sequence (and also the result
register number). Therefore, CCF0 is set when the first conversion in a sequence is complete and the result is
available in result register ATDDR0; CCF1 is set when the second conversion in a sequence is complete and
the result is available in ATDDR1, and so forth. A CCF flag is cleared when one of the following occurs:
• Write to ATDCTL5 (a new conversion sequence is started)
• If AFFC = 0 and read of ATDSTAT1 followed by read of result register ATDDRx
• If AFFC = 1 and read of result register ATDDRx
In case of a concurrent set and clear on CCFx: The clearing by method A) will overwrite the set. The clearing
by methods B) or C) will be overwritten by the set.
Conversion number x not completed
Conversion number x has completed, result ready in ATDDRx
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
147
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.12
ATD Input Enable Register 0 (ATDDIEN0)
7
6
5
4
3
2
1
0
IEN15
IEN14
IEN13
IEN12
IEN11
IEN10
IEN9
IEN8
0
0
0
0
0
0
0
0
R
W
Reset
Figure 4-14. ATD Input Enable Register 0 (ATDDIEN0)
Read: Anytime
Write: anytime
Table 4-23. ATDDIEN0 Field Descriptions
Field
Description
7:0
IEN[15:8]
ATD Digital Input Enable on Channel Bits — This bit controls the digital input buffer from the analog input
pin (ANx) to PTADx data register.
0 Disable digital input buffer to PTADx
1 Enable digital input buffer to PTADx.
Note: Setting this bit will enable the corresponding digital input buffer continuously. If this bit is set while
simultaneously using it as an analog port, there is potentially increased power consumption because the
digital input buffer maybe in the linear region.
4.3.2.13
ATD Input Enable Register 1 (ATDDIEN1)
7
6
5
4
3
2
1
0
IEN7
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 4-15. ATD Input Enable Register 1 (ATDDIEN1)
Read: Anytime
Write: Anytime
Table 4-24. ATDDIEN1 Field Descriptions
Field
Description
7:0
IEN[7:0]
ATD Digital Input Enable on Channel Bits — This bit controls the digital input buffer from the analog input
pin (ANx) to PTADx data register.
0 Disable digital input buffer to PTADx
1 Enable digital input buffer to PTADx.
Note: Setting this bit will enable the corresponding digital input buffer continuously. If this bit is set while
simultaneously using it as an analog port, there is potentially increased power consumption because the
digital input buffer maybe in the linear region.
MC9S12XDP512 Data Sheet, Rev. 2.21
148
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.14
Port Data Register 0 (PORTAD0)
The data port associated with the ATD is input-only. The port pins are shared with the analog A/D inputs
AN[15:8].
R
7
6
5
4
3
2
1
0
PTAD15
PTAD14
PTAD13
PTAD12
PTAD11
PTAD10
PTAD9
PTAD8
1
1
1
1
1
1
1
1
AN15
AN14
AN13
AN12
AN11
AN10
AN9
AN8
W
Reset
Pin
Function
= Unimplemented or Reserved
Figure 4-16. Port Data Register 0 (PORTAD0)
Read: Anytime
Write: Anytime, no effect
The A/D input channels may be used for general-purpose digital input.
Table 4-25. PORTAD0 Field Descriptions
Field
Description
7:0
PTAD[15:8]
A/D Channel x (ANx) Digital Input Bits— If the digital input buffer on the ANx pin is enabled (IENx = 1) or
channel x is enabled as external trigger (ETRIGE = 1, ETRIGCH[3-0] = x, ETRIGSEL = 0) read returns the
logic level on ANx pin (signal potentials not meeting VIL or VIH specifications will have an indeterminate value)).
If the digital input buffers are disabled (IENx = 0) and channel x is not enabled as external trigger, read returns
a “1”.
Reset sets all PORTAD0 bits to “1”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
149
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.15
Port Data Register 1 (PORTAD1)
The data port associated with the ATD is input-only. The port pins are shared with the analog A/D inputs
AN7-0.
R
7
6
5
4
3
2
1
0
PTAD7
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
1
1
1
1
1
1
1
1
AN 7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
W
Reset
Pin
Function
= Unimplemented or Reserved
Figure 4-17. Port Data Register 1 (PORTAD1)
Read: Anytime
Write: Anytime, no effect
The A/D input channels may be used for general-purpose digital input.
Table 4-26. PORTAD1 Field Descriptions
Field
Description
7:0
PTAD[7:8]
A/D Channel x (ANx) Digital Input Bits — If the digital input buffer on the ANx pin is enabled (IENx=1) or
channel x is enabled as external trigger (ETRIGE = 1, ETRIGCH[3-0] = x, ETRIGSEL = 0) read returns the
logic level on ANx pin (signal potentials not meeting VIL or VIH specifications will have an indeterminate value)).
If the digital input buffers are disabled (IENx = 0) and channel x is not enabled as external trigger, read returns
a “1”.
Reset sets all PORTAD1 bits to “1”.
MC9S12XDP512 Data Sheet, Rev. 2.21
150
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.16
ATD Conversion Result Registers (ATDDRx)
The A/D conversion results are stored in 16 read-only result registers. The result data is formatted in the
result registers bases on two criteria. First there is left and right justification; this selection is made using
the DJM control bit in ATDCTL5. Second there is signed and unsigned data; this selection is made using
the DSGN control bit in ATDCTL5. Signed data is stored in 2’s complement format and only exists in left
justified format. Signed data selected for right justified format is ignored.
Read: Anytime
Write: Anytime in special mode, unimplemented in normal modes
4.3.2.16.1
Left Justified Result Data
7
R (10-BIT) BIT 9 MSB
R (8-BIT) BIT 7 MSB
6
5
4
3
2
1
0
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 4-18. Left Justified, ATD Conversion Result Register x, High Byte (ATDDRxH)
R (10-BIT)
R (8-BIT)
7
6
5
4
3
2
1
0
BIT 1
u
BIT 0
u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
u = Unaffected
Figure 4-19. Left Justified, ATD Conversion Result Register x, Low Byte (ATDDRxL)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
151
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.3.2.16.2
R (10-BIT)
R (8-BIT)
Right Justified Result Data
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 4-20. Right Justified, ATD Conversion Result Register x, High Byte (ATDDRxH)
7
R (10-BIT)
BIT 7
R (8-BIT) BIT 7 MSB
6
5
4
3
2
1
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 4-21. Right Justified, ATD Conversion Result Register x, Low Byte (ATDDRxL)
4.4
Functional Description
The ATD10B16C is structured in an analog and a digital sub-block.
4.4.1
Analog Sub-block
The analog sub-block contains all analog electronics required to perform a single conversion. Separate
power supplies VDDA and VSSA allow to isolate noise of other MCU circuitry from the analog sub-block.
4.4.1.1
Sample and Hold Machine
The sample and hold (S/H) machine accepts analog signals from the external world and stores them as
capacitor charge on a storage node.
The sample process uses a two stage approach. During the first stage, the sample amplifier is used to
quickly charge the storage node.The second stage connects the input directly to the storage node to
complete the sample for high accuracy.
When not sampling, the sample and hold machine disables its own clocks. The analog electronics continue
drawing their quiescent current. The power down (ADPU) bit must be set to disable both the digital clocks
and the analog power consumption.
The input analog signals are unipolar and must fall within the potential range of VSSA to VDDA.
MC9S12XDP512 Data Sheet, Rev. 2.21
152
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.4.1.2
Analog Input Multiplexer
The analog input multiplexer connects one of the 16 external analog input channels to the sample and hold
machine.
4.4.1.3
Sample Buffer Amplifier
The sample amplifier is used to buffer the input analog signal so that the storage node can be quickly
charged to the sample potential.
4.4.1.4
Analog-to-Digital (A/D) Machine
The A/D machine performs analog to digital conversions. The resolution is program selectable at either 8
or 10 bits. The A/D machine uses a successive approximation architecture. It functions by comparing the
stored analog sample potential with a series of digitally generated analog potentials. By following a binary
search algorithm, the A/D machine locates the approximating potential that is nearest to the sampled
potential.
When not converting the A/D machine disables its own clocks. The analog electronics continue drawing
quiescent current. The power down (ADPU) bit must be set to disable both the digital clocks and the analog
power consumption.
Only analog input signals within the potential range of VRL to VRH (A/D reference potentials) will result
in a non-railed digital output codes.
4.4.2
Digital Sub-Block
This subsection explains some of the digital features in more detail. See register descriptions for all details.
4.4.2.1
External Trigger Input
The external trigger feature allows the user to synchronize ATD conversions to the external environment
events rather than relying on software to signal the ATD module when ATD conversions are to take place.
The external trigger signal (out of reset ATD channel 15, configurable in ATDCTL1) is programmable to
be edge or level sensitive with polarity control. Table 4-27 gives a brief description of the different
combinations of control bits and their effect on the external trigger function.
Table 4-27. External Trigger Control Bits
ETRIGLE
ETRIGP
ETRIGE
SCAN
Description
X
X
0
0
Ignores external trigger. Performs one conversion sequence and stops.
X
X
0
1
Ignores external trigger. Performs continuous conversion sequences.
0
0
1
X
Falling edge triggered. Performs one conversion sequence per trigger.
0
1
1
X
Rising edge triggered. Performs one conversion sequence per trigger.
1
0
1
X
Trigger active low. Performs continuous conversions while trigger is active.
1
1
1
X
Trigger active high. Performs continuous conversions while trigger is active.
During a conversion, if additional active edges are detected the overrun error flag ETORF is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
153
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
In either level or edge triggered modes, the first conversion begins when the trigger is received. In both
cases, the maximum latency time is one bus clock cycle plus any skew or delay introduced by the trigger
circuitry.
After ETRIGE is enabled, conversions cannot be started by a write to ATDCTL5, but rather must be
triggered externally.
If the level mode is active and the external trigger both de-asserts and re-asserts itself during a conversion
sequence, this does not constitute an overrun. Therefore, the flag is not set. If the trigger remains asserted
in level mode while a sequence is completing, another sequence will be triggered immediately.
4.4.2.2
General-Purpose Digital Input Port Operation
The input channel pins can be multiplexed between analog and digital data. As analog inputs, they are
multiplexed and sampled to supply signals to the A/D converter. As digital inputs, they supply external
input data that can be accessed through the digital port registers (PORTAD0 & PORTAD1) (input-only).
The analog/digital multiplex operation is performed in the input pads. The input pad is always connected
to the analog inputs of the ATD10B16C. The input pad signal is buffered to the digital port registers. This
buffer can be turned on or off with the ATDDIEN0 & ATDDIEN1 register. This is important so that the
buffer does not draw excess current when analog potentials are presented at its input.
4.4.3
Operation in Low Power Modes
The ATD10B16C can be configured for lower MCU power consumption in three different ways:
• Stop Mode
Stop Mode: This halts A/D conversion. Exit from Stop mode will resume A/D conversion, But due
to the recovery time the result of this conversion should be ignored.
Entering stop mode causes all clocks to halt and thus the system is placed in a minimum power
standby mode. This halts any conversion sequence in progress. During recovery from stop mode,
there must be a minimum delay for the stop recovery time tSR before initiating a new ATD
conversion sequence.
• Wait Mode
Wait Mode with AWAI = 1: This halts A/D conversion. Exit from Wait mode will resume A/D
conversion, but due to the recovery time the result of this conversion should be ignored.
Entering wait mode, the ATD conversion either continues or halts for low power depending on the
logical value of the AWAIT bit.
• Freeze Mode
Writing ADPU = 0 (Note that all ATD registers remain accessible.): This aborts any A/D
conversion in progress.
In freeze mode, the ATD10B16C will behave according to the logical values of the FRZ1 and FRZ0
bits. This is useful for debugging and emulation.
NOTE
The reset value for the ADPU bit is zero. Therefore, when this module is
reset, it is reset into the power down state.
MC9S12XDP512 Data Sheet, Rev. 2.21
154
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
4.5
Resets
At reset the ATD10B16C is in a power down state. The reset state of each individual bit is listed within
Section 4.3, “Memory Map and Register Definition,” which details the registers and their bit fields.
4.6
Interrupts
The interrupt requested by the ATD10B16C is listed in Table 4-28. Refer to MCU specification for related
vector address and priority.
Table 4-28. ATD Interrupt Vectors
Interrupt Source
Sequence Complete Interrupt
CCR Mask
Local Enable
I bit
ASCIE in ATDCTL2
See Section 4.3.2, “Register Descriptions,” for further details.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
155
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
MC9S12XDP512 Data Sheet, Rev. 2.21
156
Freescale Semiconductor
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
157
Chapter 4 Analog-to-Digital Converter (ATD10B16CV4) Block Description
MC9S12XDP512 Data Sheet, Rev. 2.21
158
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.1
Introduction
The ATD10B8C is an 8-channel, 10-bit, multiplexed input successive approximation analog-to-digital
converter. Refer to device electrical specifications for ATD accuracy.
5.1.1
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Features
8/10-bit resolution
7 µsec, 10-bit single conversion time
Sample buffer amplifier
Programmable sample time
Left/right justified, signed/unsigned result data
External trigger control
Conversion completion interrupt generation
Analog input multiplexer for 8 analog input channels
Analog/digital input pin multiplexing
1-to-8 conversion sequence lengths
Continuous conversion mode
Multiple channel scans
Configurable external trigger functionality on any AD channel or any of four additional external
trigger inputs. The four additional trigger inputs can be chip external or internal. Refer to the device
overview chapter for availability and connectivity.
Configurable location for channel wrap around (when converting multiple channels in a sequence).
5.1.2
5.1.2.1
Modes of Operation
Conversion Modes
There is software programmable selection between performing single or continuous conversion on a single
channel or multiple channels.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
159
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.1.2.2
•
•
•
5.1.3
MCU Operating Modes
Stop mode
Entering stop mode causes all clocks to halt and thus the system is placed in a minimum power
standby mode. This aborts any conversion sequence in progress. During recovery from stop mode,
there must be a minimum delay for the stop recovery time tSR before initiating a new ATD
conversion sequence.
Wait mode
Entering wait mode the ATD conversion either continues or aborts for low power depending on the
logical value of the AWAIT bit.
Freeze mode
In freeze mode the ATD will behave according to the logical values of the FRZ1 and FRZ0 bits.
This is useful for debugging and emulation.
Block Diagram
Figure 5-1 shows a block diagram of the ATD.
5.2
External Signal Description
This section lists all inputs to the ATD block.
5.2.1
ANx (x = 7, 6, 5, 4, 3, 2, 1, 0) — Analog Input Pin
This pin serves as the analog input channel x. It can also be configured as general purpose digital port pin
and/or external trigger for the ATD conversion.
5.2.2
ETRIG3, ETRIG2, ETRIG1, and ETRIG0 — External Trigger Pins
These inputs can be configured to serve as an external trigger for the ATD conversion.
Refer to the device overview chapter for availability and connectivity of these inputs.
5.2.3
VRH and VRL — High and Low Reference Voltage Pins
VRH is the high reference voltage and VRL is the low reference voltage for ATD conversion.
5.2.4
VDDA and VSSA — Power Supply Pins
These pins are the power supplies for the analog circuitry of the ATD block.
MC9S12XDP512 Data Sheet, Rev. 2.21
160
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Bus Clock
ETRIG0
ETRIG1
ETRIG2
Clock
Prescaler
ATD clock
Trigger
Mux
ATD10B8C
Sequence Complete
Mode and
Timing Control
Interrupt
ETRIG3
(See Device Overview
chapter for availability
and connectivity)
ATDDIEN
ATDCTL1
PORTAD
Results
ATD 0
ATD 1
ATD 2
ATD 3
ATD 4
ATD 5
ATD 6
ATD 7
VDDA
VSSA
Successive
Approximation
Register (SAR)
and DAC
VRH
VRL
AN7
AN6
+
AN5
Sample & Hold
AN4
1
1
AN3
Analog
AN2
–
Comparator
MUX
AN1
AN0
Figure 5-1. ATD Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
161
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3
Memory Map and Register Definition
This section provides a detailed description of all registers accessible in the ATD.
5.3.1
Module Memory Map
Figure 5-2 gives an overview of all ATD registers.
NOTE
Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.
5.3.2
Register Descriptions
This section describes in address order all the ATD registers and their individual bits.
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
WRAP2
WRAP1
WRAP0
0
0
0
0
AFFC
AWAI
ETRIGLE
ETRIGP
ETRIGE
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
PRS3
PRS2
PRS1
PRS0
CC
CB
CA
0
CC2
CC1
CC0
U
ATDCTL0
R
W
ATDCTL1
R
ETRIGSEL
W
ATDCTL2
R
W
ATDCTL3
R
W
ATDCTL4
R
W
SRES8
SMP1
SMP0
PRS4
ATDCTL5
R
W
DJM
DSGN
SCAN
MULT
ATDSTAT0
R
W
SCF
ETORF
FIFOR
Unimplemente
d
R
W
ATDTEST0
R
W
U
U
U
U
U
U
U
ATDTEST1
R
W
U
U
0
0
0
0
0
ADPU
0
0
ETRIGCH2 ETRIGCH1 ETRIGCH0
0
ASCIF
SC
= Unimplemented or Reserved
Figure 5-2. ATD Register Summary (Sheet 1 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
162
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Register
Name
Unimplemente
d
R
W
ATDSTAT1
R
W
Unimplemente
d
R
W
ATDDIEN
R
W
Unimplemente
d
R
W
PORTAD
R
W
Bit 7
6
5
4
3
2
1
Bit 0
CCF7
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
IEN7
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
PTAD7
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
Left Justified Result Data
Note: The read portion of the left justified result data registers has been divided to show the bit position when reading 10-bit and
8-bit conversion data. For more detailed information refer to Section 5.3.2.13, “ATD Conversion Result Registers
(ATDDRx)”.
ATDDR0H
10-BIT BIT 9 MSB
BIT 8
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
8-BIT BIT 7 MSB
W
ATDDR0L
10-BIT
8-BIT
W
ATDDR1H
BIT 1
U
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
ATDDR1L
10-BIT
8-BIT
W
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
ATDDR2H
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
ATDDR2L
10-BIT
8-BIT
W
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
ATDDR3H
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
BIT 1
U
BIT 1
U
= Unimplemented or Reserved
Figure 5-2. ATD Register Summary (Sheet 2 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
163
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
BIT 1
U
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
ATDDR3L
10-BIT
8-BIT
W
ATDDR4H
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
ATDDR4L
10-BIT
8-BIT
W
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
ATDD45H
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
ATDD45L
10-BIT
8-BIT
W
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
ATDD46H
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
ATDDR6L
10-BIT
8-BIT
W
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
ATDD47H
10-BIT BIT 9 MSB
8-BIT BIT 7 MSB
W
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
ATDD47L
10-BIT
8-BIT
W
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
BIT 1
U
BIT 1
U
BIT 1
U
BIT 1
U
Right Justified Result Data
Note: The read portion of the right justified result data registers has been divided to show the bit position when reading 10-bit
and 8-bit conversion data. For more detailed information refer to Section 5.3.2.13, “ATD Conversion Result Registers
(ATDDRx)”.
ATDDR0H
10-BIT
0
0
0
0
0
0
BIT 9 MSB
BIT 8
0
0
0
0
0
0
0
0
8-BIT
W
ATDDR0L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
= Unimplemented or Reserved
Figure 5-2. ATD Register Summary (Sheet 3 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
164
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
ATDDR1H
10-BIT
8-BIT
W
ATDDR1L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
ATDDR2H
10-BIT
8-BIT
W
ATDDR2L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
ATDDR3H
10-BIT
8-BIT
W
ATDDR3L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
ATDDR4H
10-BIT
8-BIT
W
ATDDR4L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
ATDD45H
10-BIT
8-BIT
W
ATDD45L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
ATDD46H
10-BIT
8-BIT
W
ATDDR6L
10-BIT
BIT 7
8-BIT BIT 7 MSB
W
0
0
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 5-2. ATD Register Summary (Sheet 4 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
165
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
ATDD47H
10-BIT
8-BIT
W
0
0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
ATDD47L
10-BIT
BIT 7
BIT 7 MSB
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
8-BIT
= Unimplemented or Reserved
Figure 5-2. ATD Register Summary (Sheet 5 of 5)
5.3.2.1
ATD Control Register 0 (ATDCTL0)
Writes to this register will abort current conversion sequence but will not start a new sequence.
R
7
6
5
4
3
0
0
0
0
0
0
0
0
0
0
W
Reset
2
1
0
WRAP2
WRAP1
WRAP0
1
1
1
= Unimplemented or Reserved
Figure 5-3. ATD Control Register 0 (ATDCTL0)
Read: Anytime
Write: Anytime
Table 5-1. ATDCTL0 Field Descriptions
Field
2–0
WRAP[2:0]
Description
Wrap Around Channel Select Bits — These bits determine the channel for wrap around when doing
multi-channel conversions. The coding is summarized in Table 5-2.
Table 5-2. Multi-Channel Wrap Around Coding
WRAP2
WRAP1
WRAP0
Multiple Channel Conversions (MULT = 1)
Wrap Around to AN0 after Converting
0
0
0
Reserved
0
0
1
AN1
0
1
0
AN2
0
1
1
AN3
1
0
0
AN4
1
0
1
AN5
1
1
0
AN6
1
1
1
AN7
MC9S12XDP512 Data Sheet, Rev. 2.21
166
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.2
ATD Control Register 1 (ATDCTL1)
Writes to this register will abort current conversion sequence but will not start a new sequence.
7
R
W
ETRIGSEL
Reset
0
6
5
4
3
0
0
0
0
0
0
0
0
2
1
0
ETRIGCH2
ETRIGCH1
ETRIGCH0
1
1
1
= Unimplemented or Reserved
Figure 5-4. ATD Control Register 1 (ATDCTL1)
Read: Anytime
Write: Anytime
Table 5-3. ATDCTL1 Field Descriptions
Field
Description
7
ETRIGSEL
External Trigger Source Select — This bit selects the external trigger source to be either one of the AD
channels or one of the ETRIG3–0 inputs. See the device overview chapter for availability and connectivity of
ETRIG3–0 inputs. If ETRIG3–0 input option is not available, writing a 1 to ETRISEL only sets the bit but has
not effect, that means still one of the AD channels (selected by ETRIGCH2–0) is the source for external trigger.
The coding is summarized in Table 5-4.
2–0
External Trigger Channel Select — These bits select one of the AD channels or one of the ETRIG3–0 inputs
ETRIGCH[2:0] as source for the external trigger. The coding is summarized in Table 5-4.
Table 5-4. External Trigger Channel Select Coding
1
ETRIGSEL
ETRIGCH2
ETRIGCH1
ETRIGCH0
External trigger source is
0
0
0
0
AN0
0
0
0
1
AN1
0
0
1
0
AN2
0
0
1
1
AN3
0
1
0
0
AN4
0
1
0
1
AN5
0
1
1
0
AN6
0
1
1
1
AN7
1
0
0
0
ETRIG01
1
0
0
1
ETRIG11
1
0
1
0
ETRIG21
1
0
1
1
ETRIG31
1
1
X
X
Reserved
Only if ETRIG3–0 input option is available (see device overview chapter), else ETRISEL is
ignored, that means external trigger source is still on one of the AD channels selected by
ETRIGCH2–0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
167
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.3
ATD Control Register 2 (ATDCTL2)
This register controls power down, interrupt and external trigger. Writes to this register will abort current
conversion sequence but will not start a new sequence.
7
R
W
Reset
ADPU
0
6
5
4
3
2
1
AFFC
AWAI
ETRIGLE
ETRIGP
ETRIGE
ASCIE
0
0
0
0
0
0
0
ASCIF
0
= Unimplemented or Reserved
Figure 5-5. ATD Control Register 2 (ATDCTL2)
Read: Anytime
Write: Anytime
Table 5-5. ATDCTL2 Field Descriptions
Field
Description
7
ADPU
ATD Power Up — This bit provides on/off control over the ATD block allowing reduced MCU power
consumption. Because analog electronic is turned off when powered down, the ATD requires a recovery time
period after ADPU bit is enabled.
0 Power down ATD
1 Normal ATD functionality
6
AFFC
ATD Fast Flag Clear All
0 ATD flag clearing operates normally (read the status register ATDSTAT1 before reading the result register to
clear the associate CCF flag).
1 Changes all ATD conversion complete flags to a fast clear sequence. Any access to a result register will
cause the associate CCF flag to clear automatically.
5
AWAI
ATD Power Down in Wait Mode — When entering wait mode this bit provides on/off control over the ATD block
allowing reduced MCU power. Because analog electronic is turned off when powered down, the ATD requires
a recovery time period after exit from Wait mode.
0 ATD continues to run in Wait mode
1 Halt conversion and power down ATD during wait mode
After exiting wait mode with an interrupt conversion will resume. But due to the recovery time the result of
this conversion should be ignored.
4
ETRIGLE
External Trigger Level/Edge Control — This bit controls the sensitivity of the external trigger signal. See
Table 5-6 for details.
3
ETRIGP
External Trigger Polarity — This bit controls the polarity of the external trigger signal. See Table 5-6 for
details.
2
ETRIGE
External Trigger Mode Enable — This bit enables the external trigger on one of the AD channels or one of
the ETRIG3–0 inputs as described in Table 5-4. If external trigger source is one of the AD channels, the digital
input buffer of this channel is enabled. The external trigger allows to synchronize sample and ATD conversions
processes with external events.
0 Disable external trigger
1 Enable external trigger
Note: If using one of the AD channel as external trigger (ETRIGSEL = 0) the conversion results for this channel
have no meaning while external trigger mode is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
168
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Table 5-5. ATDCTL2 Field Descriptions (continued)
Field
Description
1
ASCIE
ATD Sequence Complete Interrupt Enable
0 ATD Sequence Complete interrupt requests are disabled.
1 ATD Interrupt will be requested whenever ASCIF = 1 is set.
0
ASCIF
ATD Sequence Complete Interrupt Flag — If ASCIE = 1 the ASCIF flag equals the SCF flag (see
Section 5.3.2.7, “ATD Status Register 0 (ATDSTAT0)”), else ASCIF reads zero. Writes have no effect.
0 No ATD interrupt occurred
1 ATD sequence complete interrupt pending
Table 5-6. External Trigger Configurations
5.3.2.4
ETRIGLE
ETRIGP
External Trigger Sensitivity
0
0
Falling edge
0
1
Rising edge
1
0
Low level
1
1
High level
ATD Control Register 3 (ATDCTL3)
This register controls the conversion sequence length, FIFO for results registers and behavior in freeze
mode. Writes to this register will abort current conversion sequence but will not start a new sequence.
7
R
0
W
Reset
0
6
5
4
3
2
1
0
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 5-6. ATD Control Register 3 (ATDCTL3)
Read: Anytime
Write: Anytime
Table 5-7. ATDCTL3 Field Descriptions
Field
Description
6–3
S8C, S4C,
S2C, S1C
Conversion Sequence Length — These bits control the number of conversions per sequence. Table 5-8 shows
all combinations. At reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12
Family.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
169
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Table 5-7. ATDCTL3 Field Descriptions (continued)
Field
Description
2
FIFO
Result Register FIFO Mode — If this bit is zero (non-FIFO mode), the A/D conversion results map into the result
registers based on the conversion sequence; the result of the first conversion appears in the first result register,
the second result in the second result register, and so on.
If this bit is one (FIFO mode) the conversion counter is not reset at the beginning or ending of a conversion
sequence; sequential conversion results are placed in consecutive result registers. In a continuously scanning
conversion sequence, the result register counter will wrap around when it reaches the end of the result register
file. The conversion counter value (CC2-0 in ATDSTAT0) can be used to determine where in the result register
file, the current conversion result will be placed.
Aborting a conversion or starting a new conversion by write to an ATDCTL register (ATDCTL5-0) clears the
conversion counter even if FIFO=1. So the first result of a new conversion sequence, started by writing to
ATDCTL5, will always be place in the first result register (ATDDDR0). Intended usage of FIFO mode is continuos
conversion (SCAN=1) or triggered conversion (ETRIG=1).
Finally, which result registers hold valid data can be tracked using the conversion complete flags. Fast flag clear
mode may or may not be useful in a particular application to track valid data.
0 Conversion results are placed in the corresponding result register up to the selected sequence length.
1 Conversion results are placed in consecutive result registers (wrap around at end).
1–0
FRZ[1:0]
Background Debug Freeze Enable — When debugging an application, it is useful in many cases to have the
ATD pause when a breakpoint (Freeze Mode) is encountered. These 2 bits determine how the ATD will respond
to a breakpoint as shown in Table 5-9. Leakage onto the storage node and comparator reference capacitors may
compromise the accuracy of an immediately frozen conversion depending on the length of the freeze period.
Table 5-8. Conversion Sequence Length Coding
S8C
S4C
S2C
S1C
Number of Conversions
per Sequence
0
0
0
0
8
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
X
X
X
8
Table 5-9. ATD Behavior in Freeze Mode (Breakpoint)
FRZ1
FRZ0
Behavior in Freeze Mode
0
0
Continue conversion
0
1
Reserved
1
0
Finish current conversion, then freeze
1
1
Freeze Immediately
MC9S12XDP512 Data Sheet, Rev. 2.21
170
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.5
ATD Control Register 4 (ATDCTL4)
This register selects the conversion clock frequency, the length of the second phase of the sample time and
the resolution of the A/D conversion (i.e.: 8-bits or 10-bits). Writes to this register will abort current
conversion sequence but will not start a new sequence.
R
W
Reset
7
6
5
4
3
2
1
0
SRES8
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
0
0
0
0
0
1
0
1
Figure 5-7. ATD Control Register 4 (ATDCTL4)
Read: Anytime
Write: Anytime
Table 5-10. ATDCTL4 Field Descriptions
Field
Description
7
SRES8
A/D Resolution Select — This bit selects the resolution of A/D conversion results as either 8 or 10 bits. The
A/D converter has an accuracy of 10 bits; however, if low resolution is required, the conversion can be speeded
up by selecting 8-bit resolution.
0 10-bit resolution
8-bit resolution
6–5
SMP[1:0]
Sample Time Select — These two bits select the length of the second phase of the sample time in units of
ATD conversion clock cycles. Note that the ATD conversion clock period is itself a function of the prescaler
value (bits PRS4–0). The sample time consists of two phases. The first phase is two ATD conversion clock
cycles long and transfers the sample quickly (via the buffer amplifier) onto the A/D machine’s storage node.
The second phase attaches the external analog signal directly to the storage node for final charging and high
accuracy. Table 5-11 lists the lengths available for the second sample phase.
4–0
PRS[4:0]
ATD Clock Prescaler — These 5 bits are the binary value prescaler value PRS. The ATD conversion clock
frequency is calculated as follows:
[ BusClock ]
ATDclock = --------------------------------- × 0.5
[ PRS + 1 ]
Note: The maximum ATD conversion clock frequency is half the bus clock. The default (after reset) prescaler
value is 5 which results in a default ATD conversion clock frequency that is bus clock divided by 12.
Table 5-12 illustrates the divide-by operation and the appropriate range of the bus clock.
Table 5-11. Sample Time Select
SMP1
SMP0
Length of 2nd Phase of Sample Time
0
0
2 A/D conversion clock periods
0
1
4 A/D conversion clock periods
1
0
8 A/D conversion clock periods
1
1
16 A/D conversion clock periods
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
171
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Table 5-12. Clock Prescaler Values
Prescale Value
Total Divisor
Value
Max. Bus Clock1
Min. Bus Clock2
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
Divide by 2
Divide by 4
Divide by 6
Divide by 8
Divide by 10
Divide by 12
Divide by 14
Divide by 16
Divide by 18
Divide by 20
Divide by 22
Divide by 24
Divide by 26
Divide by 28
Divide by 30
Divide by 32
Divide by 34
Divide by 36
Divide by 38
Divide by 40
Divide by 42
Divide by 44
Divide by 46
Divide by 48
Divide by 50
Divide by 52
Divide by 54
Divide by 56
Divide by 58
Divide by 60
Divide by 62
Divide by 64
4 MHz
8 MHz
12 MHz
16 MHz
20 MHz
24 MHz
28 MHz
32 MHz
36 MHz
40 MHz
44 MHz
48 MHz
52 MHz
56 MHz
60 MHz
64 MHz
68 MHz
72 MHz
76 MHz
80 MHz
84 MHz
88 MHz
92 MHz
96 MHz
100 MHz
104 MHz
108 MHz
112 MHz
116 MHz
120 MHz
124 MHz
128 MHz
1 MHz
2 MHz
3 MHz
4 MHz
5 MHz
6 MHz
7 MHz
8 MHz
9 MHz
10 MHz
11 MHz
12 MHz
13 MHz
14 MHz
15 MHz
16 MHz
17 MHz
18 MHz
19 MHz
20 MHz
21 MHz
22 MHz
23 MHz
24 MHz
25 MHz
26 MHz
27 MHz
28 MHz
29 MHz
30 MHz
31 MHz
32 MHz
1
Maximum ATD conversion clock frequency is 2 MHz. The maximum allowed bus clock frequency is
shown in this column.
2 Minimum ATD conversion clock frequency is 500 kHz. The minimum allowed bus clock frequency is
shown in this column.
MC9S12XDP512 Data Sheet, Rev. 2.21
172
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.6
ATD Control Register 5 (ATDCTL5)
This register selects the type of conversion sequence and the analog input channels sampled. Writes to this
register will abort current conversion sequence and start a new conversion sequence.
7
R
W
Reset
6
DJM
0
5
4
DSGN
SCAN
MULT
0
0
0
3
0
0
2
1
0
CC
CB
CA
0
0
0
= Unimplemented or Reserved
Figure 5-8. ATD Control Register 5 (ATDCTL5)
Read: Anytime
Write: Anytime
Table 5-13. ATDCTL5 Field Descriptions
Field
Description
7
DJM
Result Register Data Justification — This bit controls justification of conversion data in the result registers.
See Section 5.3.2.13, “ATD Conversion Result Registers (ATDDRx),” for details.
0 Left justified data in the result registers
1 Right justified data in the result registers
6
DSGN
Result Register Data Signed or Unsigned Representation — This bit selects between signed and unsigned
conversion data representation in the result registers. Signed data is represented as 2’s complement. Signed
data is not available in right justification. See Section 5.3.2.13, “ATD Conversion Result Registers (ATDDRx),”
for details.
0 Unsigned data representation in the result registers
1 Signed data representation in the result registers
Table 5-14 summarizes the result data formats available and how they are set up using the control bits.
Table 5-15 illustrates the difference between the signed and unsigned, left justified output codes for an input
signal range between 0 and 5.12 Volts.
5
SCAN
Continuous Conversion Sequence Mode — This bit selects whether conversion sequences are performed
continuously or only once.
0 Single conversion sequence
1 Continuous conversion sequences (scan mode)
4
MULT
Multi-Channel Sample Mode — When MULT is 0, the ATD sequence controller samples only from the specified
analog input channel for an entire conversion sequence. The analog channel is selected by channel selection
code (control bits CC/CB/CA located in ATDCTL5). When MULT is 1, the ATD sequence controller samples
across channels. The number of channels sampled is determined by the sequence length value (S8C, S4C,
S2C, S1C). The first analog channel examined is determined by channel selection code (CC, CB, CA control
bits); subsequent channels sampled in the sequence are determined by incrementing the channel selection
code.
0 Sample only one channel
1 Sample across several channels
2–0
CC, CB, CA
Analog Input Channel Select Code — These bits select the analog input channel(s) whose signals are
sampled and converted to digital codes. Table 5-16 lists the coding used to select the various analog input
channels. In the case of single channel scans (MULT = 0), this selection code specified the channel examined.
In the case of multi-channel scans (MULT = 1), this selection code represents the first channel to be examined
in the conversion sequence. Subsequent channels are determined by incrementing channel selection code;
selection codes that reach the maximum value wrap around to the minimum value.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
173
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
Table 5-14. Available Result Data Formats
SRES8
DJM
DSGN
Result Data Formats
Description and Bus Bit Mapping
1
1
1
0
0
0
0
0
1
0
0
1
0
1
X
0
1
X
8-bit / left justified / unsigned — bits 8–15
8-bit / left justified / signed — bits 8–15
8-bit / right justified / unsigned — bits 0–7
10-bit / left justified / unsigned — bits 6–15
10-bit / left justified / signed — bits 6–15
10-bit / right justified / unsigned — bits 0–9
Table 5-15. Left Justified, Signed, and Unsigned ATD Output Codes
Input Signal
VRL = 0 Volts
VRH = 5.12 Volts
Signed
8-Bit
Codes
Unsigned
8-Bit
Codes
Signed
10-Bit
Codes
Unsigned
10-Bit
Codes
5.120 Volts
5.100
5.080
7F
7F
7E
FF
FF
FE
7FC0
7F00
7E00
FFC0
FF00
FE00
2.580
2.560
2.540
01
00
FF
81
80
7F
0100
0000
FF00
8100
8000
7F00
0.020
0.000
81
80
01
00
8100
8000
0100
0000
Table 5-16. Analog Input Channel Select Coding
CC
CB
CA
Analog Input
Channel
0
0
0
AN0
0
0
1
AN1
0
1
0
AN2
0
1
1
AN3
1
0
0
AN4
1
0
1
AN5
1
1
0
AN6
1
1
1
AN7
MC9S12XDP512 Data Sheet, Rev. 2.21
174
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.7
ATD Status Register 0 (ATDSTAT0)
This read-only register contains the sequence complete flag, overrun flags for external trigger and FIFO
mode, and the conversion counter.
7
R
W
Reset
6
0
SCF
0
0
5
4
ETORF
FIFOR
0
0
3
2
1
0
0
CC2
CC1
CC0
0
0
0
0
= Unimplemented or Reserved
Figure 5-9. ATD Status Register 0 (ATDSTAT0)
Read: Anytime
Write: Anytime (No effect on (CC2, CC1, CC0))
Table 5-17. ATDSTAT0 Field Descriptions
Field
7
SCF
Description
Sequence Complete Flag — This flag is set upon completion of a conversion sequence. If conversion
sequences are continuously performed (SCAN = 1), the flag is set after each one is completed. This flag is
cleared when one of the following occurs:
A) Write “1” to SCF
B) Write to ATDCTL5 (a new conversion sequence is started)
C) If AFFC=1 and read of a result register
0 Conversion sequence not completed
1 Conversion sequence has completed
5
ETORF
External Trigger Overrun Flag — While in edge trigger mode (ETRIGLE = 0), if additional active edges are
detected while a conversion sequence is in process the overrun flag is set. This flag is cleared when one of the
following occurs:
A) Write “1” to ETORF
B) Write to ATDCTL2, ATDCTL3 or ATDCTL4 (a conversion sequence is aborted)
C) Write to ATDCTL5 (a new conversion sequence is started)
0 No External trigger over run error has occurred
1 External trigger over run error has occurred
4
FIFOR
FIFO Over Run Flag — This bit indicates that a result register has been written to before its associated
conversion complete flag (CCF) has been cleared. This flag is most useful when using the FIFO mode because
the flag potentially indicates that result registers are out of sync with the input channels. However, it is also
practical for non-FIFO modes, and indicates that a result register has been over written before it has been read
(i.e., the old data has been lost). This flag is cleared when one of the following occurs:
A) Write “1” to FIFOR
B) Start a new conversion sequence (write to ATDCTL5 or external trigger)
0 No over run has occurred
1 An over run condition exists
2–0
CC[2:0]
Conversion Counter — These 3 read-only bits are the binary value of the conversion counter. The conversion
counter points to the result register that will receive the result of the current conversion. E.g. CC2 = 1, CC1 = 1,
CC0 = 0 indicates that the result of the current conversion will be in ATD result register 6. If in non-FIFO mode
(FIFO = 0) the conversion counter is initialized to zero at the begin and end of the conversion sequence. If in
FIFO mode (FIFO = 1) the register counter is not initialized. The conversion counters wraps around when its
maximum value is reached.
Aborting a conversion or starting a new conversion by write to an ATDCTL register (ATDCTL5-0) clears the
conversion counter even if FIFO=1.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
175
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.8
R
Reserved Register (ATDTEST0)
7
6
5
4
3
2
1
0
U
U
U
U
U
U
U
U
1
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 5-10. Reserved Register (ATDTEST0)
Read: Anytime, returns unpredictable values
Write: Anytime in special modes, unimplemented in normal modes
NOTE
Writing to this register when in special modes can alter functionality.
5.3.2.9
ATD Test Register 1 (ATDTEST1)
This register contains the SC bit used to enable special channel conversions.
R
7
6
5
4
3
2
1
U
U
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
SC
0
= Unimplemented or Reserved
Figure 5-11. ATD Test Register 1 (ATDTEST1)
Read: Anytime, returns unpredictable values for Bit7 and Bit6
Write: Anytime
Table 5-18. ATDTEST1 Field Descriptions
Field
Description
0
SC
Special Channel Conversion Bit — If this bit is set, then special channel conversion can be selected using CC,
CB and CA of ATDCTL5. Table 5-19 lists the coding.
0 Special channel conversions disabled
1 Special channel conversions enabled
Note: Always write remaining bits of ATDTEST1 (Bit7 to Bit1) zero when writing SC bit. Not doing so might result
in unpredictable ATD behavior.
Table 5-19. Special Channel Select Coding
SC
CC
CB
CA
Analog Input Channel
1
0
X
X
Reserved
1
1
0
0
VRH
1
1
0
1
VRL
1
1
1
0
(VRH+VRL) / 2
1
1
1
1
Reserved
MC9S12XDP512 Data Sheet, Rev. 2.21
176
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.10
ATD Status Register 1 (ATDSTAT1)
This read-only register contains the conversion complete flags.
R
7
6
5
4
3
2
1
0
CCF7
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 5-12. ATD Status Register 1 (ATDSTAT1)
Read: Anytime
Write: Anytime, no effect
Table 5-20. ATDSTAT1 Field Descriptions
Field
Description
7–0
CCF[7:0]
Conversion Complete Flag x (x = 7, 6, 5, 4, 3, 2, 1, 0) — A conversion complete flag is set at the end of each
conversion in a conversion sequence. The flags are associated with the conversion position in a sequence (and
also the result register number). Therefore, CCF0 is set when the first conversion in a sequence is complete and
the result is available in result register ATDDR0; CCF1 is set when the second conversion in a sequence is
complete and the result is available in ATDDR1, and so forth. A flag CCFx (x = 7, 6, 5, 4, 3, 2,1, 70) is cleared
when one of the following occurs:
A) Write to ATDCTL5 (a new conversion sequence is started)
B) If AFFC=0 and read of ATDSTAT1 followed by read of result register ATDDRx
C) If AFFC=1 and read of result register ATDDRx
In case of a concurrent set and clear on CCFx: The clearing by method A) will overwrite the set. The clearing by
methods B) or C) will be overwritten by the set.
0 Conversion number x not completed
1 Conversion number x has completed, result ready in ATDDRx
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
177
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.11
R
W
Reset
ATD Input Enable Register (ATDDIEN)
7
6
5
4
3
2
1
0
IEN7
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
0
0
0
0
0
0
0
0
Figure 5-13. ATD Input Enable Register (ATDDIEN)
Read: Anytime
Write: Anytime
Table 5-21. ATDDIEN Field Descriptions
Field
Description
7–0
IEN[7:0]
ATD Digital Input Enable on channel x (x = 7, 6, 5, 4, 3, 2, 1, 0) — This bit controls the digital input buffer from
the analog input pin (ANx) to PTADx data register.
0 Disable digital input buffer to PTADx
1 Enable digital input buffer to PTADx.
Note: Setting this bit will enable the corresponding digital input buffer continuously. If this bit is set while
simultaneously using it as an analog port, there is potentially increased power consumption because the
digital input buffer maybe in the linear region.
5.3.2.12
Port Data Register (PORTAD)
The data port associated with the ATD can be configured as general-purpose I/O or input only, as specified
in the device overview. The port pins are shared with the analog A/D inputs AN7–0.
R
7
6
5
4
3
2
1
0
PTAD7
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
1
1
1
1
1
1
1
1
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
W
Reset
Pin
Function
= Unimplemented or Reserved
Figure 5-14. Port Data Register (PORTAD)
Read: Anytime
Write: Anytime, no effect
The A/D input channels may be used for general purpose digital input.
Table 5-22. PORTAD Field Descriptions
Field
Description
7–0
PTAD[7:0]
A/D Channel x (ANx) Digital Input (x = 7, 6, 5, 4, 3, 2, 1, 0) — If the digital input buffer on the ANx pin is enabled
(IENx = 1) or channel x is enabled as external trigger (ETRIGE = 1,ETRIGCH[2–0] = x,ETRIGSEL = 0) read
returns the logic level on ANx pin (signal potentials not meeting VIL or VIH specifications will have an
indeterminate value).
If the digital input buffers are disabled (IENx = 0) and channel x is not enabled as external trigger, read returns
a “1”.
Reset sets all PORTAD0 bits to “1”.
MC9S12XDP512 Data Sheet, Rev. 2.21
178
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.3.2.13
ATD Conversion Result Registers (ATDDRx)
The A/D conversion results are stored in 8 read-only result registers. The result data is formatted in the
result registers based on two criteria. First there is left and right justification; this selection is made using
the DJM control bit in ATDCTL5. Second there is signed and unsigned data; this selection is made using
the DSGN control bit in ATDCTL5. Signed data is stored in 2’s complement format and only exists in left
justified format. Signed data selected for right justified format is ignored.
Read: Anytime
Write: Anytime in special mode, unimplemented in normal modes
5.3.2.13.1
Left Justified Result Data
7
R BIT 9 MSB
R BIT 7 MSB
6
5
4
3
2
1
0
BIT 8
BIT 6
BIT 7
BIT 5
BIT 6
BIT 4
BIT 5
BIT 3
BIT 4
BIT 2
BIT 3
BIT 1
BIT 2
BIT 0
0
0
0
0
0
0
0
10-bit data
8-bit data
W
Reset
0
= Unimplemented or Reserved
Figure 5-15. Left Justified, ATD Conversion Result Register, High Byte (ATDDRxH)
R
R
7
6
5
4
3
2
1
0
BIT 1
U
BIT 0
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 5-16. Left Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)
5.3.2.13.2
R
R
Right Justified Result Data
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
BIT 9 MSB
0
BIT 8
0
0
0
0
0
0
0
0
0
10-bit data
8-bit data
W
Reset
= Unimplemented or Reserved
Figure 5-17. Right Justified, ATD Conversion Result Register, High Byte (ATDDRxH)
7
R
BIT 7
R BIT 7 MSB
6
5
4
3
2
1
0
BIT 6
BIT 6
BIT 5
BIT 5
BIT 4
BIT 4
BIT 3
BIT 3
BIT 2
BIT 2
BIT 1
BIT 1
BIT 0
BIT 0
0
0
0
0
0
0
0
10-bit data
8-bit data
W
Reset
0
= Unimplemented or Reserved
Figure 5-18. Right Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
179
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.4
Functional Description
The ATD is structured in an analog and a digital sub-block.
5.4.1
Analog Sub-Block
The analog sub-block contains all analog electronics required to perform a single conversion. Separate
power supplies VDDA and VSSA allow to isolate noise of other MCU circuitry from the analog sub-block.
5.4.1.1
Sample and Hold Machine
The sample and hold (S/H) machine accepts analog signals from the external surroundings and stores them
as capacitor charge on a storage node.
The sample process uses a two stage approach. During the first stage, the sample amplifier is used to
quickly charge the storage node.The second stage connects the input directly to the storage node to
complete the sample for high accuracy.
When not sampling, the sample and hold machine disables its own clocks. The analog electronics still draw
their quiescent current. The power down (ADPU) bit must be set to disable both the digital clocks and the
analog power consumption.
The input analog signals are unipolar and must fall within the potential range of VSSA to VDDA.
5.4.1.2
Analog Input Multiplexer
The analog input multiplexer connects one of the 8 external analog input channels to the sample and hold
machine.
5.4.1.3
Sample Buffer Amplifier
The sample amplifier is used to buffer the input analog signal so that the storage node can be quickly
charged to the sample potential.
5.4.1.4
Analog-to-Digital (A/D) Machine
The A/D Machine performs analog to digital conversions. The resolution is program selectable at either 8
or 10 bits. The A/D machine uses a successive approximation architecture. It functions by comparing the
stored analog sample potential with a series of digitally generated analog potentials. By following a binary
search algorithm, the A/D machine locates the approximating potential that is nearest to the sampled
potential.
When not converting the A/D machine disables its own clocks. The analog electronics still draws quiescent
current. The power down (ADPU) bit must be set to disable both the digital clocks and the analog power
consumption.
Only analog input signals within the potential range of VRL to VRH (A/D reference potentials) will result
in a non-railed digital output codes.
MC9S12XDP512 Data Sheet, Rev. 2.21
180
Freescale Semiconductor
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.4.2
Digital Sub-Block
This subsection explains some of the digital features in more detail. See register descriptions for all details.
5.4.2.1
External Trigger Input
The external trigger feature allows the user to synchronize ATD conversions to the external environment
events rather than relying on software to signal the ATD module when ATD conversions are to take place.
The external trigger signal (out of reset ATD channel 7, configurable in ATDCTL1) is programmable to
be edge or level sensitive with polarity control. Table 5-23 gives a brief description of the different
combinations of control bits and their effect on the external trigger function.
Table 5-23. External Trigger Control Bits
ETRIGLE
ETRIGP
ETRIGE
SCAN
Description
X
X
0
0
Ignores external trigger. Performs one
conversion sequence and stops.
X
X
0
1
Ignores external trigger. Performs
continuous conversion sequences.
0
0
1
X
Falling edge triggered. Performs one
conversion sequence per trigger.
0
1
1
X
Rising edge triggered. Performs one
conversion sequence per trigger.
1
0
1
X
Trigger active low. Performs
continuous conversions while trigger
is active.
1
1
1
X
Trigger active high. Performs
continuous conversions while trigger
is active.
During a conversion, if additional active edges are detected the overrun error flag ETORF is set.
In either level or edge triggered modes, the first conversion begins when the trigger is received. In both
cases, the maximum latency time is one bus clock cycle plus any skew or delay introduced by the trigger
circuitry.
NOTE
The conversion results for the external trigger ATD channel 7 have no
meaning while external trigger mode is enabled.
Once ETRIGE is enabled, conversions cannot be started by a write to ATDCTL5, but rather must be
triggered externally.
If the level mode is active and the external trigger both de-asserts and re-asserts itself during a conversion
sequence, this does not constitute an overrun; therefore, the flag is not set. If the trigger is left asserted in
level mode while a sequence is completing, another sequence will be triggered immediately.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
181
Chapter 5 Analog-to-Digital Converter (S12ATD10B8CV2)
5.4.2.2
General Purpose Digital Input Port Operation
The input channel pins can be multiplexed between analog and digital data. As analog inputs, they are
multiplexed and sampled to supply signals to the A/D converter. As digital inputs, they supply external
input data that can be accessed through the digital port register PORTAD (input-only).
The analog/digital multiplex operation is performed in the input pads. The input pad is always connected
to the analog inputs of the ATD. The input pad signal is buffered to the digital port registers. This buffer
can be turned on or off with the ATDDIEN register. This is important so that the buffer does not draw
excess current when analog potentials are presented at its input.
5.4.2.3
Low Power Modes
The ATD can be configured for lower MCU power consumption in 3 different ways:
1. Stop mode: This halts A/D conversion. Exit from stop mode will resume A/D conversion, but due
to the recovery time the result of this conversion should be ignored.
2. Wait mode with AWAI = 1: This halts A/D conversion. Exit from wait mode will resume A/D
conversion, but due to the recovery time the result of this conversion should be ignored.
3. Writing ADPU = 0 (Note that all ATD registers remain accessible.): This aborts any A/D
conversion in progress.
Note that the reset value for the ADPU bit is zero. Therefore, when this module is reset, it is reset into the
power down state.
5.5
Resets
At reset the ATD is in a power down state. The reset state of each individual bit is listed within the Register
Description section (see Section 5.3, “Memory Map and Register Definition”), which details the registers
and their bit-field.
5.6
Interrupts
The interrupt requested by the ATD is listed in Table 5-24. Refer to the device overview chapter for related
vector address and priority.
Table 5-24. ATD Interrupt Vectors
Interrupt Source
Sequence complete
interrupt
CCR
Mask
Local Enable
I bit
ASCIE in ATDCTL2
See register descriptions for further details.
MC9S12XDP512 Data Sheet, Rev. 2.21
182
Freescale Semiconductor
Chapter 6
XGATE (S12XGATEV2)
6.1
Introduction
The XGATE module is a peripheral co-processor that allows autonomous data transfers between the
MCU’s peripherals and the internal memories. It has a built in RISC core that is able to pre-process the
transferred data and perform complex communication protocols.
The XGATE module is intended to increase the MCU’s data throughput by lowering the S12X_CPU’s
interrupt load.
Figure 6-1 gives an overview on the XGATE architecture.
This document describes the functionality of the XGATE module, including:
• XGATE registers (Section 6.3, “Memory Map and Register Definition”)
• XGATE RISC core (Section 6.4.1, “XGATE RISC Core”)
• Hardware semaphores (Section 6.4.4, “Semaphores”)
• Interrupt handling (Section 6.5, “Interrupts”)
• Debug features (Section 6.6, “Debug Mode”)
• Security (Section 6.7, “Security”)
• Instruction set (Section 6.8, “Instruction Set”)
6.1.1
Glossary of Terms
XGATE Request
A service request from a peripheral module which is directed to the XGATE by the S12X_INT
module (see Figure 6-1).
XGATE Channel
The resources in the XGATE module (i.e. Channel ID number, Priority level, Service Request
Vector, Interrupt Flag) which are associated with a particular XGATE Request.
XGATE Channel ID
A 7-bit identifier associated with an XGATE channel. In S12X designs valid Channel IDs range
from $78 to $09.
XGATE Channel Interrupt
An S12X_CPU interrupt that is triggered by a code sequence running on the XGATE module.
XGATE Software Channel
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
183
Chapter 6 XGATE (S12XGATEV2)
Special XGATE channel that is not associated with any peripheral service request. A Software
Channel is triggered by its Software Trigger Bit which is implemented in the XGATE module.
XGATE Semaphore
A set of hardware flip-flops that can be exclusively set by either the S12X_CPU or the XGATE.
(see 6.4.4/6-204)
XGATE Thread
A code sequence which is executed by the XGATE’s RISC core after receiving an XGATE request.
XGATE Debug Mode
A special mode in which the XGATE’s RISC core is halted for debug purposes. This mode enables
the XGATE’s debug features (see 6.6/6-206).
XGATE Software Error
The XGATE is able to detect a number of error conditions caused by erratic software (see
6.4.5/6-205). These error conditions will cause the XGATE to seize program execution and flag an
Interrupt to the S12X_CPU.
Word
A 16 bit entity.
Byte
An 8 bit entity.
6.1.2
Features
The XGATE module includes these features:
• Data movement between various targets (i.e Flash, RAM, and peripheral modules)
• Data manipulation through built in RISC core
• Provides up to 112 XGATE channels
— 104 hardware triggered channels
— 8 software triggered channels
• Hardware semaphores which are shared between the S12X_CPU and the XGATE module
• Able to trigger S12X_CPU interrupts upon completion of an XGATE transfer
• Software error detection to catch erratic application code
6.1.3
Modes of Operation
There are four run modes on S12X devices.
• Run mode, wait mode, stop mode
The XGATE is able to operate in all of these three system modes. Clock activity will be
automatically stopped when the XGATE module is idle.
• Freeze mode (BDM active)
MC9S12XDP512 Data Sheet, Rev. 2.21
184
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
In freeze mode all clocks of the XGATE module may be stopped, depending on the module
configuration (see Section 6.3.1.1, “XGATE Control Register (XGMCTL)”).
6.1.4
Block Diagram
Figure Figure 6-1 shows a block diagram of the XGATE.
Peripheral Interrupts
XGATE
REQUESTS
XGATE
XGATE
INTERRUPTS
S12X_INT
Interrupt Flags
Semaphores
RISC Core
Software
Triggers
Data/Code
Software Triggers
S12X_DBG
S12X_MMC
Peripherals
Figure 6-1. XGATE Block Diagram
6.2
External Signal Description
The XGATE module has no external pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
185
Chapter 6 XGATE (S12XGATEV2)
6.3
Memory Map and Register Definition
This section provides a detailed description of address space and registers used by the XGATE module.
The memory map for the XGATE module is given below in Figure 6-2.The address listed for each register
is the sum of a base address and an address offset. The base address is defined at the SoC level and the
address offset is defined at the module level. Reserved registers read zero. Write accesses to the reserved
registers have no effect.
6.3.1
Register Descriptions
This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Details of register bit and field function follow the register
diagrams, in bit order.
Register
Name
XGMCTL
R
W
15
14
13
12
11
10
9
8
0
0
0
0
0
0
0
0
XGEM
XG
XG
XG
XGSSM
FRZM DBGM
FACTM
XGMCHID R
XG
SWEIFM
XGIEM
7
6
5
4
XGE XGFRZ XGDBG XGSS
0
3
XG
FACT
2
0
1
0
XG
XGIE
SWEIF
XGCHID[6:0]
W
Reserved
R
W
Reserved
R
W
Reserved
R
W
XGVBR
R
XGVBR[15:1]
W
0
= Unimplemented or Reserved
Figure 6-2. XGATE Register Summary (Sheet 1 of 3)
MC9S12XDP512 Data Sheet, Rev. 2.21
186
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
XGIF
R
127
126
125
124
123
122
121
0
0
0
0
0
0
0
111
Register
Name
113
112
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
XGIF_4F XGIF_4E XGIF_4D XGIF_4C XGIF_4B XGIF_4A XGIF_49 XGIF_48 XGF _47 XGIF_46 XGIF_45 XGIF_44 XGIF_43 XGIF_42 XGIF_41 XGIF_40
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
R
W
XGIF_3F XGIF_3E XGIF_3D XGIF_3C XGIF_3B XGIF_3A XGIF_39 XGIF_38 XGF _37 XGIF_36 XGIF_35 XGIF_34 XGIF_33 XGIF_32 XGIF_31 XGIF_30
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
R
W
XGIF_2F XGIF_2E XGIF_2D XGIF_2C XGIF_2B XGIF_2A XGIF_29 XGIF_28 XGF _27 XGIF_26 XGIF_25 XGIF_24 XGIF_23 XGIF_22 XGIF_21 XGIF_20
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R
W
XGIF_1F XGIF_1E XGIF_1D XGIF_1C XGIF_1B XGIF_1A XGIF_19 XGIF_18 XGF _17 XGIF_16 XGIF_15 XGIF_14 XGIF_13 XGIF_12 XGIF_11 XGIF_10
15
XGIF
114
R
W
XGIF
115
XGIF_5F XGIF_5E XGIF_5D XGIF_5C XGIF_5B XGIF_5A XGIF_59 XGIF_58 XGF_57 XGIF_56 XGIF_55 XGIF_54 XGIF_53 XGIF_52 XGIF_51 XGIF_50
79
XGIF
116
R
W
XGIF
117
XGIF_6F XGIF_6E XGIF_6D XGIF_6C XGIF_6B XGIF_6A XGIF_69 XGIF_68 XGF_67 XGIF_66 XGIF_65 XGIF_64 XGIF_63 XGIF_62 XGIF_61 XGIF_60
95
XGIF
118
R
W
XGIF
119
XGIF_78 XGF_77 XGIF_76 XGIF_75 XGIF_74 XGIF_73 XGIF_72 XGIF_71 XGIF_70
W
XGIF
120
14
13
12
11
10
9
R
W
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
XGIF_0F XGIF_0E XGIF_0D XGIF_0C XGIF_0B XGIF_0A XGIF_09
= Unimplemented or Reserved
Figure 6-2. XGATE Register Summary (Sheet 2 of 3)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
187
Chapter 6 XGATE (S12XGATEV2)
XGSWTM R
15
14
13
0
0
0
W
XGSEMM
R
W
Reserved
12
11
10
9
8
0
0
0
0
0
0
0
0
7
6
5
0
0
0
0
3
2
1
0
XGSWT[7:0]
XGSWTM[7:0]
0
4
XGSEM[7:0]
XGSEMM[7:0]
R
W
XGCCR
R
0
0
0
W
XGPC
R
XGN XGZ
XGV XGC
XGPC
W
Reserved
0
R
W
Reserved
R
W
XGR1
R
XGR1
W
XGR2
R
XGR2
W
XGR3
R
XGR3
W
XGR4
R
XGR4
W
XGR5
R
XGR5
W
XGR6
R
XGR6
W
XGR7
R
XGR7
W
= Unimplemented or Reserved
Figure 6-2. XGATE Register Summary (Sheet 3 of 3)
MC9S12XDP512 Data Sheet, Rev. 2.21
188
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.3.1.1
XGATE Control Register (XGMCTL)
All module level switches and flags are located in the module control register Figure 6-3.
15
14
13
12
11
10
9
8
0
0
0
0
0
0
0
0
XG
SSM
XG
FACTM
0
0
R
W
XGEM
Reset
0
XG
XG
FRZM DBGM
0
0
7
0
0
5
4
3
2
0
XG
XGIEM
SWEIFM
0
6
XGE
XGFRZ XGDBG XGSS XGFACT
0
0
0
0
0
0
1
0
XG
SWEIF
XGIE
0
0
= Unimplemented or Reserved
Figure 6-3. XGATE Control Register (XGMCTL)
Read: Anytime
Write: Anytime
Table 6-1. XGMCTL Field Descriptions (Sheet 1 of 3)
Field
Description
15
XGEM
XGE Mask — This bit controls the write access to the XGE bit. The XGE bit can only be set or cleared if a "1" is
written to the XGEM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGE in the same bus cycle
1 Enable write access to the XGE in the same bus cycle
14
XGFRZM
XGFRZ Mask — This bit controls the write access to the XGFRZ bit. The XGFRZ bit can only be set or cleared
if a "1" is written to the XGFRZM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGFRZ in the same bus cycle
1 Enable write access to the XGFRZ in the same bus cycle
13
XGDBGM
XGDBG Mask — This bit controls the write access to the XGDBG bit. The XGDBG bit can only be set or cleared
if a "1" is written to the XGDBGM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGDBG in the same bus cycle
1 Enable write access to the XGDBG in the same bus cycle
12
XGSSM
XGSS Mask — This bit controls the write access to the XGSS bit. The XGSS bit can only be set or cleared if a
"1" is written to the XGSSM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGSS in the same bus cycle
1 Enable write access to the XGSS in the same bus cycle
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
189
Chapter 6 XGATE (S12XGATEV2)
Table 6-1. XGMCTL Field Descriptions (Sheet 2 of 3)
Field
11
XGFACTM
Description
XGFACT Mask — This bit controls the write access to the XGFACT bit. The XGFACT bit can only be set or
cleared if a "1" is written to the XGFACTM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGFACT in the same bus cycle
1 Enable write access to the XGFACT in the same bus cycle
XGSWEIF Mask — This bit controls the write access to the XGSWEIF bit. The XGSWEIF bit can only be cleared
9
XGSWEIFM if a "1" is written to the XGSWEIFM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGSWEIF in the same bus cycle
1 Enable write access to the XGSWEIF in the same bus cycle
8
XGIEM
XGIE Mask — This bit controls the write access to the XGIE bit. The XGIE bit can only be set or cleared if a "1"
is written to the XGIEM bit in the same register access.
Read:
This bit will always read "0".
Write:
0 Disable write access to the XGIE in the same bus cycle
1 Enable write access to the XGIE in the same bus cycle
7
XGE
XGATE Module Enable — This bit enables the XGATE module. If the XGATE module is disabled, pending
XGATE requests will be ignored. The thread that is executed by the RISC core while the XGE bit is cleared will
continue to run.
Read:
0 XGATE module is disabled
1 XGATE module is enabled
Write:
0 Disable XGATE module
1 Enable XGATE module
6
XGFRZ
Halt XGATE in Freeze Mode — The XGFRZ bit controls the XGATE operation in Freeze Mode (BDM active).
Read:
0 RISC core operates normally in Freeze (BDM active)
1 RISC core stops in Freeze Mode (BDM active)
Write:
0 Don’t stop RISC core in Freeze Mode (BDM active)
1 Stop RISC core in Freeze Mode (BDM active)
5
XGDBG
XGATE Debug Mode — This bit indicates that the XGATE is in Debug Mode (see Section 6.6, “Debug Mode”).
Debug Mode can be entered by Software Breakpoints (BRK instruction), Tagged or Forced Breakpoints (see
S12X_DBG Section), or by writing a "1" to this bit.
Read:
0 RISC core is not in Debug Mode
1 RISC core is in Debug Mode
Write:
0 Leave Debug Mode
1 Enter Debug Mode
Note: Freeze Mode and Software Error Interrupts have no effect on the XGDBG bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
190
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
Table 6-1. XGMCTL Field Descriptions (Sheet 3 of 3)
Field
Description
4
XGSS
XGATE Single Step — This bit forces the execution of a single instruction if the XGATE is in DEBUG Mode and
no software error has occurred (XGSWEIF cleared).
Read:
0 No single step in progress
1 Single step in progress
Write
0 No effect
1 Execute a single RISC instruction
Note: Invoking a Single Step will cause the XGATE to temporarily leave Debug Mode until the instruction has
been executed.
3
XGFACT
Fake XGATE Activity — This bit forces the XGATE to flag activity to the MCU even when it is idle. When it is set
the MCU will never enter system stop mode which assures that peripheral modules will be clocked during XGATE
idle periods
Read:
0 XGATE will only flag activity if it is not idle or in debug mode.
1 XGATE will always signal activity to the MCU.
Write:
0 Only flag activity if not idle or in debug mode.
1 Always signal XGATE activity.
1
XGSWEIF
XGATE Software Error Interrupt Flag — This bit signals a pending Software Error Interrupt. It is set if the RISC
core detects an error condition (see Section 6.4.5, “Software Error Detection”). The RISC core is stopped while
this bit is set. Clearing this bit will terminate the current thread and cause the XGATE to become idle.
Read:
0 Software Error Interrupt is not pending
1 Software Error Interrupt is pending if XGIE is set
Write:
0 No effect
1 Clears the XGSWEIF bit
0
XGIE
XGATE Interrupt Enable — This bit acts as a global interrupt enable for the XGATE module
Read:
0 All XGATE interrupts disabled
1 All XGATE interrupts enabled
Write:
0 Disable all XGATE interrupts
1 Enable all XGATE interrupts
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
191
Chapter 6 XGATE (S12XGATEV2)
6.3.1.2
XGATE Channel ID Register (XGCHID)
The XGATE channel ID register (Figure 6-4) shows the identifier of the XGATE channel that is currently
active. This register will read “$00” if the XGATE module is idle. In debug mode this register can be used
to start and terminate threads (see Section 6.6.1, “Debug Features”).
7
R
6
5
4
3
0
2
1
0
0
0
0
XGCHID[6:0]
W
Reset
0
0
0
0
0
= Unimplemented or Reserved
Figure 6-4. XGATE Channel ID Register (XGCHID)
Read: Anytime
Write: In Debug Mode
Table 6-2. XGCHID Field Descriptions
Field
Description
6–0
Request Identifier — ID of the currently active channel
XGCHID[6:0]
6.3.1.3
XGATE Vector Base Address Register (XGVBR)
The vector base address register (Figure 6-5 and Figure 6-6) determines the location of the XGATE vector
block.
15
14
13
12
11
10
9
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
XGVBR[15:1]
W
Reset
8
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 6-5. XGATE Vector Base Address Register (XGVBR)
Read: Anytime
Write: Only if the module is disabled (XGE = 0) and idle (XGCHID = $00))
Table 6-3. XGVBR Field Descriptions
Field
Description
15–1
Vector Base Address — The XGVBR register holds the start address of the vector block in the XGATE
XBVBR[15:1] memory map.
MC9S12XDP512 Data Sheet, Rev. 2.21
192
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.3.1.4
XGATE Channel Interrupt Flag Vector (XGIF)
The interrupt flag vector (Figure 6-6) provides access to the interrupt flags bits of each channel. Each flag
may be cleared by writing a "1" to its bit location.
R
127
126
125
124
123
122
121
0
0
0
0
0
0
0
120
119
XGIF_78
XGF_77
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
XGIF_6F XGIF_6E XGIF_6D XGIF_6C XGIF_6B XGIF_6A XGIF_69 XGIF_68
XGF_67
118
117
116
115
114
113
112
XGIF_76 XGIF_75 XGIF_74 XGIF_73 XGIF_72 XGIF_71 XGIF_70
XGIF_66 XGIF_65 XGIF_64 XGIF_63 XGIF_62 XGIF_61 XGIF_60
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
XGIF_5F XGIF_5E XGIF_5D XGIF_5C XGIF_5B XGIF_5A XGIF_59 XGIF_58
XGF_57
XGIF_56 XGIF_55 XGIF_54 XGIF_53 XGIF_52 XGIF_51 XGIF_50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
XGIF_4F XGIF_4E XGIF_4D XGIF_4C XGIF_4B XGIF_4A XGIF_49 XGIF_48 XGF _47 XGIF_46 XGIF_45 XGIF_44 XGIF_43 XGIF_42 XGIF_41 XGIF_40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
XGIF_3F XGIF_3E XGIF_3D XGIF_3C XGIF_3B XGIF_3A XGIF_39 XGIF_38 XGF _37 XGIF_36 XGIF_35 XGIF_34 XGIF_33 XGIF_32 XGIF_31 XGIF_30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
XGIF_2F XGIF_2E XGIF_2D XGIF_2C XGIF_2B XGIF_2A XGIF_29 XGIF_28 XGF _27 XGIF_26 XGIF_25 XGIF_24 XGIF_23 XGIF_22 XGIF_21 XGIF_20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
XGIF_1F XGIF_1E XGIF_1D XGIF_1C XGIF_1B XGIF_1A XGIF_19 XGIF_18 XGF _17 XGIF_16 XGIF_15 XGIF_14 XGIF_13 XGIF_12 XGIF_11 XGIF_10
0
0
0
0
0
0
0
15
14
13
12
11
10
9
XGIF_0F XGIF_0E XGIF_0D XGIF_0C XGIF_0B XGIF_0A XGIF_09
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 6-6. XGATE Channel Interrupt Flag Vector (XGIF)
Read: Anytime
Write: Anytime
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
193
Chapter 6 XGATE (S12XGATEV2)
Table 6-4. XGIV Field Descriptions
Field
Description
127–9
XGIF[78:9]
Channel Interrupt Flags — These bits signal pending channel interrupts. They can only be set by the RISC
core. Each flag can be cleared by writing a "1" to its bit location. Unimplemented interrupt flags will always read
"0". Refer to Section “Interrupts” of the SoC Guide for a list of implemented Interrupts.
Read:
0 Channel interrupt is not pending
1 Channel interrupt is pending if XGIE is set
Write:
0 No effect
1 Clears the interrupt flag
NOTE
Suggested Mnemonics for accessing the interrupt flag vector on a word
basis are:
XGIF_7F_70 (XGIF[127:112]),
XGIF_6F_60 (XGIF[111:96]),
XGIF_5F_50 (XGIF[95:80]),
XGIF_4F_40 (XGIF[79:64]),
XGIF_3F_30 (XGIF[63:48]),
XGIF_2F_20 (XGIF[47:32]),
XGIF_1F_10 (XGIF[31:16]),
XGIF_0F_00 (XGIF[15:0])
MC9S12XDP512 Data Sheet, Rev. 2.21
194
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.3.1.5
XGATE Software Trigger Register (XGSWT)
The eight software triggers of the XGATE module can be set and cleared through the XGATE software
trigger register (Figure 6-7). The upper byte of this register, the software trigger mask, controls the write
access to the lower byte, the software trigger bits. These bits can be set or cleared if a "1" is written to the
associated mask in the same bus cycle.
R
15
14
13
12
11
10
9
8
0
0
0
0
0
0
0
0
0
0
0
6
5
0
0
0
0
0
4
3
2
1
0
0
0
0
XGSWT[7:0]
XGSWTM[7:0]
W
Reset
7
0
0
0
0
0
Figure 6-7. XGATE Software Trigger Register (XGSWT)
Read: Anytime
Write: Anytime
Table 6-5. XGSWT Field Descriptions
Field
Description
15–8
Software Trigger Mask — These bits control the write access to the XGSWT bits. Each XGSWT bit can only
XGSWTM[7:0] be written if a "1" is written to the corresponding XGSWTM bit in the same access.
Read:
These bits will always read "0".
Write:
0 Disable write access to the XGSWT in the same bus cycle
1 Enable write access to the corresponding XGSWT bit in the same bus cycle
7–0
XGSWT[7:0]
Software Trigger Bits — These bits act as interrupt flags that are able to trigger XGATE software channels.
They can only be set and cleared by software.
Read:
0 No software trigger pending
1 Software trigger pending if the XGIE bit is set
Write:
0 Clear Software Trigger
1 Set Software Trigger
NOTE
The XGATE channel IDs that are associated with the eight software triggers
are determined on chip integration level. (see Section “Interrupts” of the Soc
Guide)
XGATE software triggers work like any peripheral interrupt. They can be
used as XGATE requests as well as S12X_CPU interrupts. The target of the
software trigger must be selected in the S12X_INT module.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
195
Chapter 6 XGATE (S12XGATEV2)
6.3.1.6
XGATE Semaphore Register (XGSEM)
The XGATE provides a set of eight hardware semaphores that can be shared between the S12X_CPU and
the XGATE RISC core. Each semaphore can either be unlocked, locked by the S12X_CPU or locked by
the RISC core. The RISC core is able to lock and unlock a semaphore through its SSEM and CSEM
instructions. The S12X_CPU has access to the semaphores through the XGATE semaphore register
(Figure 6-8). Refer to section Section 6.4.4, “Semaphores” for details.
R
15
14
13
12
11
10
9
8
0
0
0
0
0
0
0
0
0
0
0
W
Reset
7
6
5
0
0
0
0
3
2
1
0
0
0
0
XGSEM[7:0]
XGSEMM[7:0]
0
4
0
0
0
0
0
Figure 6-8. XGATE Semaphore Register (XGSEM)
Read: Anytime
Write: Anytime (see Section 6.4.4, “Semaphores”)
Table 6-6. XGSEM Field Descriptions
Field
Description
15–8
Semaphore Mask — These bits control the write access to the XGSEM bits.
XGSEMM[7:0] Read:
These bits will always read "0".
Write:
0 Disable write access to the XGSEM in the same bus cycle
1 Enable write access to the XGSEM in the same bus cycle
7–0
XGSEM[7:0]
Semaphore Bits — These bits indicate whether a semaphore is locked by the S12X_CPU. A semaphore can
be attempted to be set by writing a "1" to the XGSEM bit and to the corresponding XGSEMM bit in the same
write access. Only unlocked semaphores can be set. A semaphore can be cleared by writing a "0" to the
XGSEM bit and a "1" to the corresponding XGSEMM bit in the same write access.
Read:
0 Semaphore is unlocked or locked by the RISC core
1 Semaphore is locked by the S12X_CPU
Write:
0 Clear semaphore if it was locked by the S12X_CPU
1 Attempt to lock semaphore by the S12X_CPU
MC9S12XDP512 Data Sheet, Rev. 2.21
196
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.3.1.7
XGATE Condition Code Register (XGCCR)
The XGCCR register (Figure 6-9) provides access to the RISC core’s condition code register.
R
7
6
5
4
0
0
0
0
0
0
0
0
W
Reset
3
2
1
0
XGN
XGZ
XGV
XGC
0
0
0
0
= Unimplemented or Reserved
Figure 6-9. XGATE Condition Code Register (XGCCR)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-7. XGCCR Field Descriptions
Field
Description
3
XGN
Sign Flag — The RISC core’s Sign flag
2
XGZ
Zero Flag — The RISC core’s Zero flag
1
XGV
Overflow Flag — The RISC core’s Overflow flag
0
XGC
Carry Flag — The RISC core’s Carry flag
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
197
Chapter 6 XGATE (S12XGATEV2)
6.3.1.8
XGATE Program Counter Register (XGPC)
The XGPC register (Figure 6-10) provides access to the RISC core’s program counter.
15
14
13
12
11
10
9
8
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGPC
W
Reset
0
0
0
0
0
0
0
0
Figure 6-10. XGATE Program Counter Register (XGPC)
Figure 6-11.
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-8. XGPC Field Descriptions
Field
15–0
XGPC[15:0]
6.3.1.9
Description
Program Counter — The RISC core’s program counter
XGATE Register 1 (XGR1)
The XGR1 register (Figure 6-12) provides access to the RISC core’s register 1.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR1
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-12. XGATE Register 1 (XGR1)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-9. XGR1 Field Descriptions
Field
15–0
XGR1[15:0]
Description
XGATE Register 1 — The RISC core’s register 1
MC9S12XDP512 Data Sheet, Rev. 2.21
198
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.3.1.10
XGATE Register 2 (XGR2)
The XGR2 register (Figure 6-13) provides access to the RISC core’s register 2.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR2
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-13. XGATE Register 2 (XGR2)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-10. XGR2 Field Descriptions
Field
15–0
XGR2[15:0]
6.3.1.11
Description
XGATE Register 2 — The RISC core’s register 2
XGATE Register 3 (XGR3)
The XGR3 register (Figure 6-14) provides access to the RISC core’s register 3.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR3
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-14. XGATE Register 3 (XGR3)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-11. XGR3 Field Descriptions
Field
15–0
XGR3[15:0]
Description
XGATE Register 3 — The RISC core’s register 3
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
199
Chapter 6 XGATE (S12XGATEV2)
6.3.1.12
XGATE Register 4 (XGR4)
The XGR4 register (Figure 6-15) provides access to the RISC core’s register 4.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR4
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-15. XGATE Register 4 (XGR4)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-12. XGR4 Field Descriptions
Field
15–0
XGR4[15:0]
6.3.1.13
Description
XGATE Register 4 — The RISC core’s register 4
XGATE Register 5 (XGR5)
The XGR5 register (Figure 6-16) provides access to the RISC core’s register 5.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR5
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-16. XGATE Register 5 (XGR5)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-13. XGR5 Field Descriptions
Field
15–0
XGR5[15:0]
Description
XGATE Register 5 — The RISC core’s register 5
MC9S12XDP512 Data Sheet, Rev. 2.21
200
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.3.1.14
XGATE Register 6 (XGR6)
The XGR6 register (Figure 6-17) provides access to the RISC core’s register 6.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR6
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-17. XGATE Register 6 (XGR6)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-14. XGR6 Field Descriptions
Field
15–0
XGR6[15:0]
6.3.1.15
Description
XGATE Register 6 — The RISC core’s register 6
XGATE Register 7 (XGR7)
The XGR7 register (Figure 6-18) provides access to the RISC core’s register 7.
15
14
13
12
11
10
9
8
R
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
XGR7
W
Reset
7
0
0
0
0
0
0
0
0
Figure 6-18. XGATE Register 7 (XGR7)
Read: In debug mode if unsecured
Write: In debug mode if unsecured
Table 6-15. XGR7 Field Descriptions
Field
15–0
XGR7[15:0]
Description
XGATE Register 7 — The RISC core’s register 7
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
201
Chapter 6 XGATE (S12XGATEV2)
6.4
Functional Description
The core of the XGATE module is a RISC processor which is able to access the MCU’s internal memories
and peripherals (see Figure 6-1). The RISC processor always remains in an idle state until it is triggered
by an XGATE request. Then it executes a code sequence that is associated with the request and optionally
triggers an interrupt to the S12X_CPU upon completion. Code sequences are not interruptible. A new
XGATE request can only be serviced when the previous sequence is finished and the RISC core becomes
idle.
The XGATE module also provides a set of hardware semaphores which are necessary to ensure data
consistency whenever RAM locations or peripherals are shared with the S12X_CPU.
The following sections describe the components of the XGATE module in further detail.
6.4.1
XGATE RISC Core
The RISC core is a 16 bit processor with an instruction set that is well suited for data transfers, bit
manipulations, and simple arithmetic operations (see Section 6.8, “Instruction Set”).
It is able to access the MCU’s internal memories and peripherals without blocking these resources from
the S12X_CPU1. Whenever the S12X_CPU and the RISC core access the same resource, the RISC core
will be stalled until the resource becomes available again1.
The XGATE offers a high access rate to the MCU’s internal RAM. Depending on the bus load, the RISC
core can perform up to two RAM accesses per S12X_CPU bus cycle.
Bus accesses to peripheral registers or flash are slower. A transfer rate of one bus access per S12X_CPU
cycle can not be exceeded.
The XGATE module is intended to execute short interrupt service routines that are triggered by peripheral
modules or by software.
6.4.2
Programmer’s Model
Register Block
15
15
R7
R6
15
R5
15
R4
Program Counter
0
PC
0
0
0
0
15
R3
15
R2
15
R1(Variable Pointer)
15
15
0
Condition
Code
Register
NZVC
3 2 1 0
0
0
R0 = 0
0
Figure 6-19. Programmer’s Model
1. With the exception of PRR registers (see Section “S12X_MMC”).
MC9S12XDP512 Data Sheet, Rev. 2.21
202
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
The programmer’s model of the XGATE RISC core is shown in Figure 6-19. The processor offers a set of
seven general purpose registers (R1 - R7), which serve as accumulators and index registers. An additional
eighth register (R0) is tied to the value “$0000”. Register R1 has an additional functionality. It is preloaded
with the initial variable pointer of the channel’s service request vector (see Figure 6-20). The initial content
of the remaining general purpose registers is undefined.
The 16 bit program counter allows the addressing of a 64 kbyte address space.
The condition code register contains four bits: the sign bit (S), the zero flag (Z), the overflow flag (V), and
the carry bit (C). The initial content of the condition code register is undefined.
6.4.3
Memory Map
The XGATE’s RISC core is able to access an address space of 64K bytes. The allocation of memory blocks
within this address space is determined on chip level. Refer to the S12X_MMC Section for a detailed
information.
The XGATE vector block assigns a start address and a variable pointer to each XGATE channel. Its
position in the XGATE memory map can be adjusted through the XGVBR register (see Section 6.3.1.3,
“XGATE Vector Base Address Register (XGVBR)”). Figure 6-20 shows the layout of the vector block.
Each vector consists of two 16 bit words. The first contains the start address of the service routine. This
value will be loaded into the program counter before a service routine is executed. The second word is a
pointer to the service routine’s variable space. This value will be loaded into register R1 before a service
routine is executed.
XGVBR
+$0000
unused
Code
+$0024
Channel $09 Initial Program Counter
Channel $09 Initial Variable Pointer
+$0028
Channel $0A Initial Program Counter
Variables
Channel $0A Initial Variable Pointer
+$002C
Channel $0B Initial Program Counter
Channel $0B Initial Variable Pointer
+$0030
Channel $0C Initial Program Counter
Code
Channel $0C Initial Variable Pointer
+$01E0
Channel $78 Initial Program Counter
Variables
Channel $78 Initial Variable Pointer
Figure 6-20. XGATE Vector Block
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
203
Chapter 6 XGATE (S12XGATEV2)
6.4.4
Semaphores
The XGATE module offers a set of eight hardware semaphores. These semaphores provide a mechanism
to protect system resources that are shared between two concurrent threads of program execution; one
thread running on the S12X_CPU and one running on the XGATE RISC core.
Each semaphore can only be in one of the three states: “Unlocked”, “Locked by S12X_CPU”, and “Locked
by XGATE”. The S12X_CPU can check and change a semaphore’s state through the XGATE semaphore
register (XGSEM, see Section 6.3.1.6, “XGATE Semaphore Register (XGSEM)”). The RISC core does
this through its SSEM and CSEM instructions.
Figure 6-21 illustrates the valid state transitions.
%1 ⇒ XGSEM
%0 ⇒ XGSEM
SSEM Instruction
LOCKED BY
S12X_CPU
LOCKED BY
XGATE
M
SE
XG
EM
⇒
0
.
GS
%
EM str
X
r
⇒ o GS In
X M
1
%
⇒ E
1 SS
% nd
a
In CS
st E
ru M
ct
In SS
io
st E
n
ru M
ct
io
n
%1 ⇒ XGSEM
SSEM Instruction
CSEM Instruction
UNLOCKED
%0 ⇒ XGSEM
CSEM Instruction
Figure 6-21. Semaphore State Transitions
MC9S12XDP512 Data Sheet, Rev. 2.21
204
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
Figure 6-22 gives an example of the typical usage of the XGATE hardware semaphores.
Two concurrent threads are running on the system. One is running on the S12X_CPU and the other is
running on the RISC core. They both have a critical section of code that accesses the same system resource.
To guarantee that the system resource is only accessed by one thread at a time, the critical code sequence
must be embedded in a semaphore lock/release sequence as shown.
S12X_CPU
.........
XGATE
.........
%1 ⇒ XGSEMx
SSEM
XGSEM ≡ %1?
BCC?
critical
code
sequence
critical
code
sequence
XGSEM ⇒ %0
CSEM
.........
.........
Figure 6-22. Algorithm for Locking and Releasing Semaphores
6.4.5
Software Error Detection
The XGATE module will immediately terminate program execution after detecting an error condition
caused by erratic application code. There are three error conditions:
• Execution of an illegal opcode
• Illegal vector or opcode fetches
• Illegal load or store accesses
All opcodes which are not listed in section Section 6.8, “Instruction Set” are illegal opcodes. Illegal vector
and opcode fetches as well as illegal load and store accesses are defined on chip level. Refer to the
S12X_MMC Section for a detailed information.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
205
Chapter 6 XGATE (S12XGATEV2)
6.5
6.5.1
Interrupts
Incoming Interrupt Requests
XGATE threads are triggered by interrupt requests which are routed to the XGATE module (see
S12X_INT Section). Only a subset of the MCU’s interrupt requests can be routed to the XGATE. Which
specific interrupt requests these are and which channel ID they are assigned to is documented in Section
“Interrupts” of the SoC Guide.
6.5.2
Outgoing Interrupt Requests
There are three types of interrupt requests which can be triggered by the XGATE module:
4. Channel interrupts
For each XGATE channel there is an associated interrupt flag in the XGATE interrupt flag vector
(XGIF, see Section 6.3.1.4, “XGATE Channel Interrupt Flag Vector (XGIF)”). These flags can be
set through the "SIF" instruction by the RISC core. They are typically used to flag an interrupt to
the S12X_CPU when the XGATE has completed one of its tasks.
5. Software triggers
Software triggers are interrupt flags, which can be set and cleared by software (see Section 6.3.1.5,
“XGATE Software Trigger Register (XGSWT)”). They are typically used to trigger XGATE tasks
by the S12X_CPU software. However these interrupts can also be routed to the S12X_CPU (see
S12X_INT Section) and triggered by the XGATE software.
6. Software error interrupt
The software error interrupt signals to the S12X_CPU the detection of an error condition in the
XGATE application code (see Section 6.4.5, “Software Error Detection”).
All XGATE interrupts can be disabled by the XGIE bit in the XGATE module control register (XGMCTL,
see Section 6.3.1.1, “XGATE Control Register (XGMCTL)”).
6.6
Debug Mode
The XGATE debug mode is a feature to allow debugging of application code.
6.6.1
Debug Features
In debug mode the RISC core will be halted and the following debug features will be enabled:
• Read and Write accesses to RISC core registers (XGCCR, XGPC, XGR1–XGR7)1
All RISC core registers can be modified. Leaving debug mode will cause the RISC core to continue
program execution with the modified register values.
1. Only possible if MCU is unsecured
MC9S12XDP512 Data Sheet, Rev. 2.21
206
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
•
•
6.6.2
Single Stepping
Writing a "1" to the XGSS bit will call the RISC core to execute a single instruction. All RISC core
registers will be updated accordingly.
Write accesses to the XGCHID register
Three operations can be performed by writing to the XGCHID register:
– Change of channel ID
If a non-zero value is written to the XGCHID while a thread is active (XGCHID ≠ $00), then
the current channel ID will be changed without any influence on the program counter or the
other RISC core registers.
– Start of a thread
If a non-zero value is written to the XGCHID while the XGATE is idle (XGCHID = $00),
then the thread that is associated with the new channel ID will be executed upon leaving
debug mode.
– Termination of a thread
If zero is written to the XGCHID while a thread is active (XGCHID ≠ $00), then the current
thread will be terminated and the XGATE will become idle.
Entering Debug Mode
Debug mode can be entered in four ways:
1. Setting XGDBG to "1"
Writing a "1" to XGDBG and XGDBGM in the same write access causes the XGATE to enter
debug mode upon completion of the current instruction.
NOTE
After writing to the XGDBG bit the XGATE will not immediately enter
debug mode. Depending on the instruction that is executed at this time there
may be a delay of several clock cycles. The XGDBG will read "0" until
debug mode is entered.
2. Software breakpoints
XGATE programs which are stored in the internal RAM allow the use of software breakpoints. A
software breakpoint is set by replacing an instruction of the program code with the "BRK"
instruction.
As soon as the program execution reaches the "BRK" instruction, the XGATE enters debug mode.
Additionally a software breakpoint request is sent to the S12X_DBG module (see section 4.9 of
the S12X_DBG Section).
Upon entering debug mode, the program counter will point to the "BRK" instruction. The other
RISC core registers will hold the result of the previous instruction.
To resume program execution, the "BRK" instruction must be replaced by the original instruction
before leaving debug mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
207
Chapter 6 XGATE (S12XGATEV2)
3. Tagged Breakpoints
The S12X_DBG module is able to place tags on fetched opcodes. The XGATE is able to enter
debug mode right before a tagged opcode is executed (see section 4.9 of the S12X_DBG Section).
Upon entering debug mode, the program counter will point to the tagged instruction. The other
RISC core registers will hold the result of the previous instruction.
4. Forced Breakpoints
Forced breakpoints are triggered by the S12X_DBG module (see section 4.9 of the S12X_DBG
Section). When a forced breakpoint occurs, the XGATE will enter debug mode upon completion
of the current instruction.
6.6.3
Leaving Debug Mode
Debug mode can only be left by setting the XGDBG bit to "0". If a thread is active (XGCHID has not been
cleared in debug mode), program execution will resume at the value of XGPC.
6.7
Security
In order to protect XGATE application code on secured S12X devices, a few restrictions in the debug
features have been made. These are:
• Registers XGCCR, XGPC, and XGR1–XGR7 will read zero on a secured device
• Registers XGCCR, XGPC, and XGR1–XGR7 can not be written on a secured device
• Single stepping is not possible on a secured device
6.8
6.8.1
Instruction Set
Addressing Modes
For the ease of implementation the architecture is a strict Load/Store RISC machine, which means all
operations must have one of the eight general purpose registers R0 … R7 as their source as well their
destination.
All word accesses must work with a word aligned address, that is A[0] = 0!
MC9S12XDP512 Data Sheet, Rev. 2.21
208
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.8.1.1
Naming Conventions
RD
RD.L
RD.H
RS, RS1, RS2
RS.L, RS1.L, RS2.L
RS.H, RS1.H, RS2.H
RB
RI
RI+
–RI
Destination register, allowed range is R0–R7
Low byte of the destination register, bits [7:0]
High byte of the destination register, bits [15:8]
Source register, allowed range is R0–R7
Low byte of the source register, bits [7:0]
High byte of the source register, bits[15:8]
Base register for indexed addressing modes, allowed
range is R0–R7
Offset register for indexed addressing modes with
register offset, allowed range is R0–R7
Offset register for indexed addressing modes with
register offset and post-increment,
Allowed range is R0–R7 (R0+ is equivalent to R0)
Offset register for indexed addressing modes with
register offset and pre-decrement,
Allowed range is R0–R7 (–R0 is equivalent to R0)
NOTE
Even though register R1 is intended to be used as a pointer to the variable
segment, it may be used as a general purpose data register as well.
Selecting R0 as destination register will discard the result of the instruction.
Only the condition code register will be updated
6.8.1.2
Inherent Addressing Mode (INH)
Instructions that use this addressing mode either have no operands or all operands are in internal XGATE
registers:.
Examples
BRK
RTS
6.8.1.3
Immediate 3-Bit Wide (IMM3)
Operands for immediate mode instructions are included in the instruction stream and are fetched into the
instruction queue along with the rest of the 16 bit instruction. The ’#’ symbol is used to indicate an
immediate addressing mode operand. This address mode is used for semaphore instructions.
Examples:
CSEM
SSEM
#1
#3
; Unlock semaphore 1
; Lock Semaphore 3
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
209
Chapter 6 XGATE (S12XGATEV2)
6.8.1.4
Immediate 4 Bit Wide (IMM4)
The 4 bit wide immediate addressing mode is supported by all shift instructions.
RD = RD ∗ imm4
Examples:
LSL
LSR
6.8.1.5
R4,#1
R4,#3
; R4 = R4 > 3; shift register R4 by 3 bits to the right
Immediate 8 Bit Wide (IMM8)
The 8 bit wide immediate addressing mode is supported by four major commands (ADD, SUB, LD, CMP).
RD = RD ∗ imm8
Examples:
ADDL
SUBL
LDH
CMPL
6.8.1.6
R1,#1
R2,#2
R3,#3
R4,#4
;
;
;
;
adds an 8 bit value to register R1
subtracts an 8 bit value from register R2
loads an 8 bit immediate into the high byte of Register R3
compares the low byte of register R4 with an immediate value
Immediate 16 Bit Wide (IMM16)
The 16 bit wide immediate addressing mode is a construct to simplify assembler code. Instructions which
offer this mode are translated into two opcodes using the eight bit wide immediate addressing mode.
RD = RD ∗ imm16
Examples:
LDW
ADD
6.8.1.7
R4,#$1234
R4,#$5678
; translated to LDL R4,#$34; LDH R4,#$12
; translated to ADDL R4,#$78; ADDH R4,#$56
Monadic Addressing (MON)
In this addressing mode only one operand is explicitly given. This operand can either be the source (f(RD)),
the target (RD = f()), or both source and target of the operation (RD = f(RD)).
Examples:
JAL
SIF
R1
R2
; PC = R1, R1 = PC+2
; Trigger IRQ associated with the channel number in R2.L
MC9S12XDP512 Data Sheet, Rev. 2.21
210
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.8.1.8
Dyadic Addressing (DYA)
In this mode the result of an operation between two registers is stored in one of the registers used as
operands.
RD = RD ∗ RS is the general register to register format, with register RD being the first operand and RS
the second. RD and RS can be any of the 8 general purpose registers R0 … R7. If R0 is used as the
destination register, only the condition code flags are updated. This addressing mode is used only for shift
operations with a variable shift value
Examples:
LSL
LSR
6.8.1.9
R4,R5
R4,R5
; R4 = R4 > R5
Triadic Addressing (TRI)
In this mode the result of an operation between two or three registers is stored into a third one.
RD = RS1 ∗ RS2 is the general format used in the order RD, RS1, RS1. RD, RS1, RS2 can be any of the
8 general purpose registers R0 … R7. If R0 is used as the destination register RD, only the condition code
flags are updated. This addressing mode is used for all arithmetic and logical operations.
Examples:
ADC
SUB
6.8.1.10
R5,R6,R7
R5,R6,R7
; R5 = R6 + R7 + Carry
; R5 = R6 - R7
Relative Addressing 9-Bit Wide (REL9)
A 9-bit signed word address offset is included in the instruction word. This addressing mode is used for
conditional branch instructions.
Examples:
BCC
BEQ
6.8.1.11
REL9
REL9
; PC = PC + 2 + (REL9 R2;arithmetic shift register R4 right by the amount
;
of bits contained in R2[3:0].
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
213
Chapter 6 XGATE (S12XGATEV2)
6.8.2.5
Bit Field Operations
This addressing mode is used to identify the position and size of a bit field for insertion or extraction. The
width and offset are coded in the lower byte of the source register 2, RS2. The content of the upper byte is
ignored. An offset of 0 denotes the right most position and a width of 0 denotes 1 bit. These instructions
are very useful to extract, insert, clear, set or toggle portions of a 16 bit word.
W4
O4
5
2
W4=3, O4=2
15
RS2
0
RS1
Bit Field Extract
Bit Field Insert
15
3
0
RD
Figure 6-23. Bit Field Addressing
BFEXT
6.8.2.6
R3,R4,R5 ; R5: W4 bits offset O4, will be extracted from R4 into R3
Special Instructions for DMA Usage
The XGATE offers a number of additional instructions for flag manipulation, program flow control and
debugging:
1. SIF: Set a channel interrupt flag
2. SSEM: Test and set a hardware semaphore
3. CSEM: Clear a hardware semaphore
4. BRK: Software breakpoint
5. NOP: No Operation
6. RTS: Terminate the current thread
MC9S12XDP512 Data Sheet, Rev. 2.21
214
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
6.8.3
Cycle Notation
Table 6-16 show the XGATE access detail notation. Each code letter equals one XGATE cycle. Each letter
implies additional wait cycles if memories or peripherals are not accessible. Memories or peripherals are
not accessible if they are blocked by the S12X_CPU. In addition to this Peripherals are only accessible
every other XGATE cycle. Uppercase letters denote 16 bit operations. Lowercase letters denote 8 bit
operations. The XGATE is able to perform two bus or wait cycles per S12X_CPU cycle.
Table 6-16. Access Detail Notation
V — Vector fetch: always an aligned word read, lasts for at least one RISC core cycle
P — Program word fetch: always an aligned word read, lasts for at least one RISC core cycle
r — 8 bit data read: lasts for at least one RISC core cycle
R — 16 bit data read: lasts for at least one RISC core cycle
w — 8 bit data write: lasts for at least one RISC core cycle
W — 16 bit data write: lasts for at least one RISC core cycle
A — Alignment cycle: no read or write, lasts for zero or one RISC core cycles
f — Free cycle: no read or write, lasts for one RISC core cycles
Special Cases
PP/P — Branch: PP if branch taken, P if not
6.8.4
Thread Execution
When the RISC core is triggered by an interrupt request (see Figure 6-1) it first executes a vector fetch
sequence which performs three bus accesses:
1. A V-cycle to fetch the initial content of the program counter.
2. A V-cycle to fetch the initial content of the data segment pointer (R1).
3. A P-cycle to load the initial opcode.
Afterwards a sequence of instructions (thread) is executed which is terminated by an "RTS" instruction. If
further interrupt requests are pending after a thread has been terminated, a new vector fetch will be
performed. Otherwise the RISC core will idle until a new interrupt request is received. A thread can not be
interrupted by an interrupt request.
6.8.5
Instruction Glossary
This section describes the XGATE instruction set in alphabetical order.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
215
Chapter 6 XGATE (S12XGATEV2)
ADC
ADC
Add with Carry
Operation
RS1 + RS2 + C ⇒ RD
Adds the content of register RS1, the content of register RS2 and the value of the Carry bit using binary
addition and stores the result in the destination register RD. The Zero Flag is also carried forward from the
previous operation allowing 32 and more bit additions.
Example:
ADC
ADC
BCC
R6,R2,R2
R7,R3,R3 ; R7:R6 = R5:R4 + R3:R2
; conditional branch on 32 bit addition
CCR Effects
N
Z
V
C
∆
∆
∆
∆
N:
Set if bit 15 of the result is set; cleared otherwise.
Z:
Set if the result is $0000 and Z was set before this operation; cleared otherwise.
V:
Set if a two´s complement overflow resulted from the operation; cleared otherwise.
RS1[15] & RS2[15] & RD[15]new | RS1[15] & RS2[15] & RD[15]new
C:
Set if there is a carry from bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & RD[15]new | RS2[15] & RD[15]new
Code and CPU Cycles
Source Form
ADC RD, RS1, RS2
Address
Mode
TRI
Machine Code
0
0
0
1
1
RD
RS1
Cycles
RS2
1
1
P
MC9S12XDP512 Data Sheet, Rev. 2.21
216
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
ADD
ADD
Add without Carry
Operation
RS1 + RS2 ⇒ RD
RD + IMM16 ⇒ RD (translates to ADDL RD, #IMM16[7:0]; ADDH RD, #[15:8])
Performs a 16 bit addition and stores the result in the destination register RD.
CCR Effects
N
Z
V
C
∆
∆
∆
∆
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
Set if a two´s complement overflow resulted from the operation; cleared otherwise.
RS1[15] & RS2[15] & RD[15]new | RS1[15] & RS2[15] & RD[15]new
Refer to ADDH instruction for #IMM16 operations.
Set if there is a carry from bit 15 of the result; cleared otherwise.
RS1[15] & RS2[15] | RS1[15] & RD[15]new | RS2[15] & RD[15]new
Refer to ADDH instruction for #IMM16 operations.
Code and CPU Cycles
Source Form
Address
Mode
Machine Code
RS1
Cycles
ADD RD, RS1, RS2
TRI
0
0
0
1
1
RD
RS2
1
0
P
ADD RD, #IMM16
IMM8
1
1
1
0
0
RD
IMM16[7:0]
P
IMM8
1
1
1
0
1
RD
IMM16[15:8]
P
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
217
Chapter 6 XGATE (S12XGATEV2)
ADDH
ADDH
Add Immediate 8 bit Constant
(High Byte)
Operation
RD + IMM8:$00 ⇒ RD
Adds the content of high byte of register RD and a signed immediate 8 bit constant using binary addition
and stores the result in the high byte of the destination register RD. This instruction can be used after an
ADDL for a 16 bit immediate addition.
Example:
ADDL
ADDH
R2,#LOWBYTE
R2,#HIGHBYTE
; R2 = R2 + 16 bit immediate
CCR Effects
N
Z
V
C
∆
∆
∆
∆
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
Set if a two´s complement overflow resulted from the operation; cleared otherwise.
RD[15]old & IMM8[7] & RD[15]new | RD[15]old & IMM8[7] & RD[15]new
Set if there is a carry from the bit 15 of the result; cleared otherwise.
RD[15]old & IMM8[7] | RD[15]old & RD[15]new | IMM8[7] & RD[15]new
Code and CPU Cycles
Source Form
ADDH RD, #IMM8
Address
Mode
IMM8
Machine Code
1
1
1
0
1
RD
Cycles
IMM8
P
MC9S12XDP512 Data Sheet, Rev. 2.21
218
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
ADDL
Add Immediate 8 bit Constant
(Low Byte)
ADDL
Operation
RD + $00:IMM8 ⇒ RD
Adds the content of register RD and an unsigned immediate 8 bit constant using binary addition and stores
the result in the destination register RD. This instruction must be used first for a 16 bit immediate addition
in conjunction with the ADDH instruction.
CCR Effects
N
Z
V
C
∆
∆
∆
∆
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
Set if a two´s complement overflow resulted from the 8 bit operation; cleared otherwise.
RD[15]old & RD[15]new
Set if there is a carry from the bit 15 of the result; cleared otherwise.
RD[15]old & RD[15]new
Code and CPU Cycles
Source Form
ADDL RD, #IMM8
Address
Mode
IMM8
Machine Code
1
1
1
0
0
RD
Cycles
IMM8
P
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
219
Chapter 6 XGATE (S12XGATEV2)
AND
AND
Logical AND
Operation
RS1 & RS2 ⇒ RD
RD & IMM16 ⇒ RD (translates to ANDL RD, #IMM16[7:0]; ANDH RD, #IMM16[15:8])
Performs a bit wise logical AND of two 16 bit values and stores the result in the destination register RD.
Remark: There is no complement to the BITH and BITL functions. This can be imitated by using R0 as a
destination register. AND R0, RS1, RS2 performs a bit wise test without storing a result.
CCR Effects
N
Z
V
C
∆
∆
0
—
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
Refer to ANDH instruction for #IMM16 operations.
0; cleared.
Not affected.
Code and CPU Cycles
Source Form
AND RD, RS1, RS2
AND RD, #IMM16
Address
Mode
Machine Code
RS1
Cycles
TRI
0
0
0
1
0
RD
RS2
0
0
P
IMM8
1
0
0
0
0
RD
IMM16[7:0]
P
IMM8
1
0
0
0
1
RD
IMM16[15:8]
P
MC9S12XDP512 Data Sheet, Rev. 2.21
220
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
ANDH
Logical AND Immediate 8 bit Constant
(High Byte)
ANDH
Operation
RD.H & IMM8 ⇒ RD.H
Performs a bit wise logical AND between the high byte of register RD and an immediate 8 bit constant and
stores the result in the destination register RD.H. The low byte of RD is not affected.
CCR Effects
N
Z
V
C
∆
∆
0
—
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the 8 bit result is $00; cleared otherwise.
0; cleared.
Not affected.
Code and CPU Cycles
Source Form
ANDH RD, #IMM8
Address
Mode
IMM8
Machine Code
1
0
0
0
1
RD
Cycles
IMM8
P
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
221
Chapter 6 XGATE (S12XGATEV2)
ANDL
Logical AND Immediate 8 bit Constant
(Low Byte)
ANDL
Operation
RD.L & IMM8 ⇒ RD.L
Performs a bit wise logical AND between the low byte of register RD and an immediate 8 bit constant and
stores the result in the destination register RD.L. The high byte of RD is not affected.
CCR Effects
N
Z
V
C
∆
∆
0
—
N:
Z:
V:
C:
Set if bit 7 of the result is set; cleared otherwise.
Set if the 8 bit result is $00; cleared otherwise.
0; cleared.
Not affected.
Code and CPU Cycles
Source Form
ANDL RD, #IMM8
Address
Mode
IMM8
Machine Code
1
0
0
0
0
RD
Cycles
IMM8
P
MC9S12XDP512 Data Sheet, Rev. 2.21
222
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
ASR
ASR
Arithmetic Shift Right
Operation
n
b15
RD
C
n = RS or IMM4
Shifts the bits in register RD n positions to the right. The higher n bits of the register RD become filled
with the sign bit (RD[15]). The carry flag will be updated to the bit contained in RD[n-1] before the shift
for n > 0.
n can range from 0 to 16.
In immediate address mode, n is determined by the operand IMM4. n is considered to be 16 in IMM4 is
equal to 0.
In dyadic address mode, n is determined by the content of RS. n is considered to be 16 if the content of RS
is greater than 15.
CCR Effects
N
Z
V
C
∆
∆
0
∆
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
Set if a two´s complement overflow resulted from the operation; cleared otherwise.
RD[15]old ^ RD[15]new
Set if n > 0 and RD[n-1] = 1; if n = 0 unaffected.
Code and CPU Cycles
Source Form
ASR RD, #IMM4
ASR RD, RS
Address
Mode
Machine Code
IMM4
0
0
0
0
1
RD
IMM4
DYA
0
0
0
0
1
RD
RS
Cycles
1
1
0
0
1
P
0
0
0
1
P
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
223
Chapter 6 XGATE (S12XGATEV2)
BCC
BCC
Branch if Carry Cleared
(Same as BHS)
Operation
If C = 0, then PC + $0002 + (REL9 15 the upper bits are ignored. Using
R0 as a RS1, this command can be used to set bits.
15
7
4
3
0
W4
O4
15
RS2
3
0
RS1
Inverted Bit Field Insert
15
5
2
W4=3, O4=2
0
RD
CCR Effects
N
Z
V
C
∆
∆
0
—
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
0; cleared.
Not affected.
Code and CPU Cycles
Source Form
BFINSI RD, RS1, RS2
Address
Mode
TRI
Machine Code
0
1
1
1
0
RD
RS1
Cycles
RS2
1
1
P
MC9S12XDP512 Data Sheet, Rev. 2.21
230
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
BFINSX
BFINSX
Bit Field Insert and XNOR
Operation
!(RS1[w:0] ^ RD[w+o:o]) ⇒ RD[w+o:o];
w = (RS2[7:4])
o = (RS2[3:0])
Extracts w+1 bits from register RS1 starting at position 0, performs an XNOR with RD[w+o:o] and writes
the bits back io RD. The remaining bits in RD are not affected. If (o+w) > 15 the upper bits are ignored.
Using R0 as a RS1, this command can be used to toggle bits.
15
7
4
3
0
W4
O4
15
RS2
3
0
RS1
Bit Field Insert XNOR
15
5
2
W4=3, O4=2
0
RD
CCR Effects
N
Z
V
C
∆
∆
0
—
N:
Z:
V:
C:
Set if bit 15 of the result is set; cleared otherwise.
Set if the result is $0000; cleared otherwise.
0; cleared.
Not affected.
Code and CPU Cycles
Source Form
BFINSX RD, RS1, RS2
Address
Mode
TRI
Machine Code
0
1
1
1
1
RD
RS1
Cycles
RS2
1
1
P
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
231
Chapter 6 XGATE (S12XGATEV2)
BGE
BGE
Branch if Greater than or Equal to Zero
Operation
If N ^ V = 0, then PC + $0002 + (REL9 1)
MC9S12XDP512 Data Sheet, Rev. 2.21
292
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
INIT_XGATE
INIT_XGATE_BUSY_LOOP
;###########################################
;#
INITIALIZE XGATE
#
;###########################################
MOVW #XGMCTL_CLEAR , XGMCTL;clear all XGMCTL bits
TST
BNE
XGCHID
;wait until current thread is finished
INIT_XGATE_BUSY_LOOP
LDX
LDD
STD
STD
STD
STD
STD
STD
STD
STD
#XGIF
#$FFFF
2,X+
2,X+
2,X+
2,X+
2,X+
2,X+
2,X+
2,X+
;clear all channel interrupt flags
MOVW #XGATE_VECTORS_XG, XGVBR;set vector base register
MOVW #$FF00, XGSWT
INIT_XGATE_VECTAB_LOOP
;clear all software triggers
;###########################################
;#
INITIALIZE XGATE VECTOR TABLE
#
;###########################################
LDAA #128
;build XGATE vector table
LDY #XGATE_VECTORS
MOVW #XGATE_DUMMY_ISR_XG, 4,Y+
DBNE A, INIT_XGATE_VECTAB_LOOP
MOVW #XGATE_CODE_XG, RAM_START+(2*SCI_VEC)
MOVW #XGATE_DATA_XG, RAM_START+(2*SCI_VEC)+2
COPY_XGATE_CODE
COPY_XGATE_CODE_LOOP
START_XGATE
DUMMY_ISR
;###########################################
;#
COPY XGATE CODE
#
;###########################################
LDX #XGATE_DATA_FLASH
MOVW 2,X+, 2,Y+
MOVW 2,X+, 2,Y+
MOVW 2,X+, 2,Y+
MOVW 2,X+, 2,Y+
CPX #XGATE_CODE_FLASH_END
BLS COPY_XGATE_CODE_LOOP
;###########################################
;#
START XGATE
#
;###########################################
MOVW #XGMCTL_ENABLE, XGMCTL;enable XGATE
BRA *
;###########################################
;#
DUMMY INTERRUPT SERVICE ROUTINE
#
;###########################################
RTI
CPU
XGATE
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
293
Chapter 6 XGATE (S12XGATEV2)
XGATE_DATA_FLASH
XGATE_DATA_SCI
XGATE_DATA_IDX
XGATE_DATA_MSG
XGATE_CODE_FLASH
XGATE_CODE_DONE
XGATE_CODE_FLASH_END
XGATE_DUMMY_ISR_XG
;###########################################
;#
XGATE DATA
#
;###########################################
ALIGN 1
EQU *
EQU *-XGATE_DATA_FLASH
DW
SCI_REGS
;pointer to SCI register space
EQU *-XGATE_DATA_FLASH
DB
XGATE_DATA_MSG ;string pointer
EQU *-XGATE_DATA_FLASH
FCC "Hello World!
;ASCII string
DB
$0D
;CR
;###########################################
;#
XGATE CODE
#
;###########################################
ALIGN 1
LDW R2,(R1,#XGATE_DATA_SCI);SCI -> R2
LDB R3,(R1,#XGATE_DATA_IDX);msg -> R3
LDB R4,(R1,R3+)
;curr. char -> R4
STB R3,(R1,#XGATE_DATA_IDX);R3 -> idx
LDB R0,(R2,#(SCISR1-SCI_REGS));initiate SCI transmit
STB R4,(R2,#(SCIDRL-SCI_REGS));initiate SCI transmit
CMPL R4,#$0D
BEQ XGATE_CODE_DONE
RTS
LDL R4,#$00
;disable SCI interrupts
STB R4,(R2,#(SCICR2-SCI_REGS))
LDL R3,#XGATE_DATA_MSG;reset R3
STB R3,(R1,#XGATE_DATA_IDX)
RTS
EQU (XGATE_CODE_FLASH_END-XGATE_CODE_FLASH)+XGATE_CODE_XG
MC9S12XDP512 Data Sheet, Rev. 2.21
294
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
295
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
296
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
297
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
298
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
299
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
300
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
301
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
302
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
303
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
304
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
305
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
306
Freescale Semiconductor
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
307
Chapter 6 XGATE (S12XGATEV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
308
Freescale Semiconductor
Chapter 7
Enhanced Capture Timer (S12ECT16B8CV2)
7.1
Introduction
The HCS12 enhanced capture timer module has the features of the HCS12 standard timer module
enhanced by additional features in order to enlarge the field of applications, in particular for automotive
ABS applications.
This design specification describes the standard timer as well as the additional features.
The basic timer consists of a 16-bit, software-programmable counter driven by a prescaler. This timer can
be used for many purposes, including input waveform measurements while simultaneously generating an
output waveform. Pulse widths can vary from microseconds to many seconds.
A full access for the counter registers or the input capture/output compare registers will take place in one
clock cycle. Accessing high byte and low byte separately for all of these registers will not yield the same
result as accessing them in one word.
7.1.1
•
•
•
•
7.1.2
•
•
•
•
Features
16-bit buffer register for four input capture (IC) channels.
Four 8-bit pulse accumulators with 8-bit buffer registers associated with the four buffered IC
channels. Configurable also as two 16-bit pulse accumulators.
16-bit modulus down-counter with 8-bit prescaler.
Four user-selectable delay counters for input noise immunity increase.
Modes of Operation
Stop — Timer and modulus counter are off since clocks are stopped.
Freeze — Timer and modulus counter keep on running, unless the TSFRZ bit in the TSCR1 register
is set to one.
Wait — Counters keep on running, unless the TSWAI bit in the TSCR1 register is set to one.
Normal — Timer and modulus counter keep on running, unless the TEN bit in the TSCR1 register
or the MCEN bit in the MCCTL register are cleared.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
309
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.1.3
Block Diagram
Bus Clock
Prescaler
Channel 0
Input Capture
16-bit Counter
Output Compare
Channel 1
Input Capture
Modulus Counter
Interrupt
16-Bit Modulus Counter
Output Compare
IOC0
IOC1
Channel 2
Input Capture
Output Compare
Timer Overflow
Interrupt
Timer Channel 0
Interrupt
Channel 3
Input Capture
Output Compare
Registers
Channel 4
Input Capture
Output Compare
Channel 5
Input Capture
Output Compare
Timer Channel 7
Interrupt
PA Overflow
Interrupt
PA Input
Interrupt
PB Overflow
Interrupt
16-Bit
Pulse Accumulator A
16-Bit
Pulse Accumulator B
Channel 6
Input Capture
Output Compare
Channel 7
Input Capture
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
Output Compare
Figure 7-1. ECT Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
310
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.2
External Signal Description
The ECT module has a total of eight external pins.
7.2.1
IOC7 — Input Capture and Output Compare Channel 7
This pin serves as input capture or output compare for channel 7.
7.2.2
IOC6 — Input Capture and Output Compare Channel 6
This pin serves as input capture or output compare for channel 6.
7.2.3
IOC5 — Input Capture and Output Compare Channel 5
This pin serves as input capture or output compare for channel 5.
7.2.4
IOC4 — Input Capture and Output Compare Channel 4
This pin serves as input capture or output compare for channel 4.
7.2.5
IOC3 — Input Capture and Output Compare Channel 3
This pin serves as input capture or output compare for channel 3.
7.2.6
IOC2 — Input Capture and Output Compare Channel 2
This pin serves as input capture or output compare for channel 2.
7.2.7
IOC1 — Input Capture and Output Compare Channel 1
This pin serves as input capture or output compare for channel 1.
7.2.8
IOC0 — Input Capture and Output Compare Channel 0
This pin serves as input capture or output compare for channel 0.
NOTE
For the description of interrupts see Section 7.4.3, “Interrupts”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
311
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3
Memory Map and Register Definition
This section provides a detailed description of all memory and registers.
7.3.1
Module Memory Map
The memory map for the ECT module is given below in Table 7-1. The address listed for each register is
the address offset. The total address for each register is the sum of the base address for the ECT module
and the address offset for each register.
Table 7-1. ECT Memory Map
Address
Offset
Register
Access
0x0000
Timer Input Capture/Output Compare Select (TIOS)
R/W
0x0001
Timer Compare Force Register (CFORC)
R/W1
0x0002
Output Compare 7 Mask Register (OC7M)
R/W
0x0003
Output Compare 7 Data Register (OC7D)
R/W
0x0004
Timer Count Register High (TCNT)
R/W2
0x0005
Timer Count Register Low (TCNT)
R/W2
0x0006
Timer System Control Register 1 (TSCR1)
R/W
0x0007
Timer Toggle Overflow Register (TTOV)
R/W
0x0008
Timer Control Register 1 (TCTL1)
R/W
0x0009
Timer Control Register 2 (TCTL2)
R/W
0x000A
Timer Control Register 3 (TCTL3)
R/W
0x000B
Timer Control Register 4 (TCTL4)
R/W
0x000C
Timer Interrupt Enable Register (TIE)
R/W
0x000D
Timer System Control Register 2 (TSCR2)
R/W
0x000E
Main Timer Interrupt Flag 1 (TFLG1)
R/W
0x000F
Main Timer Interrupt Flag 2 (TFLG2)
R/W
0x0010
Timer Input Capture/Output Compare Register 0 High (TC0)
R/W3
0x0011
Timer Input Capture/Output Compare Register 0 Low (TC0)
R/W3
0x0012
Timer Input Capture/Output Compare Register 1 High (TC1)
R/W3
0x0013
Timer Input Capture/Output Compare Register 1 Low (TC1)
R/W3
0x0014
Timer Input Capture/Output Compare Register 2 High (TC2)
R/W3
0x0015
Timer Input Capture/Output Compare Register 2 Low (TC2)
R/W3
0x0016
Timer Input Capture/Output Compare Register 3 High (TC3)
R/W3
0x0017
Timer Input Capture/Output Compare Register 3 Low (TC3)
R/W3
0x0018
Timer Input Capture/Output Compare Register 4 High (TC4)
R/W3
0x0019
Timer Input Capture/Output Compare Register 4 Low (TC4)
R/W3
0x001A
Timer Input Capture/Output Compare Register 5 High (TC5)
R/W3
0x001B
Timer Input Capture/Output Compare Register 5 Low (TC5)
R/W3
0x001C
Timer Input Capture/Output Compare Register 6 High (TC6)
R/W3
0x001D
Timer Input Capture/Output Compare Register 6 Low (TC6)
R/W3
MC9S12XDP512 Data Sheet, Rev. 2.21
312
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Table 7-1. ECT Memory Map (continued)
Address
Offset
Register
Access
0x001E
Timer Input Capture/Output Compare Register 7 High (TC7)
R/W3
0x001F
Timer Input Capture/Output Compare Register 7 Low (TC7)
R/W3
0x0020
16-Bit Pulse Accumulator A Control Register (PACTL)
R/W
0x0021
Pulse Accumulator A Flag Register (PAFLG)
R/W
0x0022
Pulse Accumulator Count Register 3 (PACN3)
R/W
0x0023
Pulse Accumulator Count Register 2 (PACN2)
R/W
0x0024
Pulse Accumulator Count Register 1 (PACN1)
R/W
0x0025
Pulse Accumulator Count Register 0 (PACN0)
R/W
0x0026
16-Bit Modulus Down Counter Register (MCCTL)
R/W
0x0027
16-Bit Modulus Down Counter Flag Register (MCFLG)
R/W
0x0028
Input Control Pulse Accumulator Register (ICPAR)
R/W
0x0029
Delay Counter Control Register (DLYCT)
R/W
0x002A
Input Control Overwrite Register (ICOVW)
R/W
0x002B
Input Control System Control Register (ICSYS)
R/W4
0x002C
Reserved
0x002D
Timer Test Register (TIMTST)
R/W2
0x002E
Precision Timer Prescaler Select Register (PTPSR)
R/W
0x002F
Precision Timer Modulus Counter Prescaler Select Register (PTMCPSR)
R/W
0x0030
16-Bit Pulse Accumulator B Control Register (PBCTL)
R/W
0x0031
16-Bit Pulse Accumulator B Flag Register (PBFLG)
R/W
0x0032
8-Bit Pulse Accumulator Holding Register 3 (PA3H)
R/W5
0x0033
8-Bit Pulse Accumulator Holding Register 2 (PA2H)
R/W5
0x0034
8-Bit Pulse Accumulator Holding Register 1 (PA1H)
R/W5
0x0035
8-Bit Pulse Accumulator Holding Register 0 (PA0H)
R/W5
0x0036
Modulus Down-Counter Count Register High (MCCNT)
R/W
0x0037
Modulus Down-Counter Count Register Low (MCCNT)
R/W
0x0038
Timer Input Capture Holding Register 0 High (TC0H)
R/W5
0x0039
Timer Input Capture Holding Register 0 Low (TC0H)
R/W5
0x003A
Timer Input Capture Holding Register 1 High(TC1H)
R/W5
0x003B
Timer Input Capture Holding Register 1 Low (TC1H)
R/W5
0x003C
Timer Input Capture Holding Register 2 High (TC2H)
R/W5
0x003D
Timer Input Capture Holding Register 2 Low (TC2H)
R/W5
0x003E
Timer Input Capture Holding Register 3 High (TC3H)
R/W5
0x003F
Timer Input Capture Holding Register 3 Low (TC3H)
R/W5
--
1
Always read 0x0000.
Only writable in special modes (test_mode = 1).
3 Writes to these registers have no meaning or effect during input capture.
4 May be written once when not in test00mode but writes are always permitted when test00mode is enabled.
5 Writes have no effect.
2
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
313
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2
Register Descriptions
This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Details of register bit and field function follow the register
diagrams, in bit order.
Register
Name
TIOS
Bit 7
6
5
4
3
2
1
Bit 0
IOS7
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
R
0
0
0
0
0
0
0
0
W
FOC7
FOC6
FOC5
FOC4
FOC3
FOC2
FOC1
FOC0
OC7M7
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
OC7D7
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
TCNT15
TCNT14
TCNT13
TCNT12
TCNT11
TCNT10
TCNT9
TCNT8
TCNT7
TCNT6
TCNT5
TCNT4
TCNT3
TCNT2
TCNT1
TCNT0
TEN
TSWAI
TSFRZ
TFFCA
PRNT
0
0
0
TOV7
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
OM7
OL7
OM6
OL6
OM5
OL5
OM4
OL4
OM3
OL3
OM2
OL2
OM1
OL1
OM0
OL0
EDG7B
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
EDG3B
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
C7I
C6I
C5I
C4I
C3I
C2I
C1I
C0I
R
W
CFORC
OC7M
R
W
OC7D
R
W
TCNT (High) R
W
TCNT (Low) R
W
TSCR1
R
W
TTOF
R
W
TCTL1
R
W
TCTL2
R
W
TCTL3
R
W
TCTL4
R
W
TIE
R
W
= Unimplemented or Reserved
Figure 7-2. ECT Register Summary (Sheet 1 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
314
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Register
Name
TSCR2
Bit 7
R
W
TFLG1
R
W
TFLG2
R
W
TC0 (High)
R
W
TC0 (Low)
R
W
TC1 (High)
R
W
TC1 (Low)
R
W
TC2 (High)
R
W
TC2 (Low)
R
W
TC3 (High)
R
W
TC3 (Low)
R
W
TC4 (High)
R
W
TC4 (Low)
R
W
TC5 (High)
R
W
TC5 (Low)
R
W
6
5
4
3
2
1
Bit 0
0
0
0
TCRE
PR2
PR1
PR0
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TOI
C7F
TOF
= Unimplemented or Reserved
Figure 7-2. ECT Register Summary (Sheet 2 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
315
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Register
Name
TC6 (High)
R
W
TC6 (Low)
R
W
TC7 (High)
R
W
TC7 (Low)
R
W
PACTL
R
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PA0VI
PAI
0
0
0
0
0
PA0VF
PAIF
0
W
PAFLG
R
0
W
PACN3
R
W
PACN2
R
W
PACN1
R
W
PACN0
R
W
MCCTL
R
W
MCFLG
R
W
ICPAR
R
PACNT7(15) PACNT6(14) PACNT5(13) PACNT4(12) PACNT3(11) PACNT2(10) PACNT1(9) PACNT0(8)
PACNT7
PACNT6
PACNT5
PACNT4
R
W
ICOVW
R
W
PACNT2
PACNT1
PACNT0
PACNT7(15) PACNT6(14) PACNT5(13) PACNT4(12) PACNT3(11) PACNT2(10) PACNT1(9) PACNT0(8)
PACNT7
PACNT6
PACNT5
PACNT4
PACNT3
MCZI
MODMC
RDMCL
0
0
ICLAT
FLMC
0
0
0
0
0
0
0
DLY7
DLY6
DLY5
NOVW7
NOVW6
NOVW5
MCZF
PACNT2
PACNT1
PACNT0
MCEN
MCPR1
MCPR0
POLF3
POLF2
POLF1
POLF0
PA3EN
PA2EN
PA1EN
PA0EN
DLY4
DLY3
DLY2
DLY1
DLY0
NOVW4
NOVW3
NOVW2
NOVW1
NOVW0
W
DLYCT
PACNT3
= Unimplemented or Reserved
Figure 7-2. ECT Register Summary (Sheet 3 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
316
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Register
Name
ICSYS
R
W
Reserved
Bit 7
6
5
4
3
2
1
Bit 0
SH37
SH26
SH15
SH04
TFMOD
PACMX
BUFEN
LATQ
R
Reserved
W
TIMTST
R
Timer Test Register
W
PTPSR
R
W
PTMCPSR
R
W
PBCTL
R
PTPS7
PTPS6
PTPS5
PTPS4
PTPS3
PTPS2
PTPS1
PTPS0
PTMPS7
PTMPS6
PTMPS5
PTMPS4
PTMPS3
PTMPS2
PTMPS1
PTMPS0
0
0
0
0
0
W
PBFLG
R
PBEN
R
0
0
0
0
0
0
0
PA3H7
PA3H6
PA3H5
PA3H4
PA3H3
PA3H2
PA3H1
PA3H0
PA2H7
PA2H6
PA2H5
PA2H4
PA2H3
PA2H2
PA2H1
PA2H0
PA1H7
PA1H6
PA1H5
PA1H4
PA1H3
PA1H2
PA1H1
PA1H0
PA0H7
PA0H6
PA0H5
PA0H4
PA0H3
PA0H2
PA0H1
PA0H0
MCCNT15
MCCNT14
MCCNT13
MCCNT12
MCCNT11
MCCNT10
MCCNT9
MCCNT8
MCCNT7
MCCNT6
MCCNT5
MCCNT4
MCCNT3
MCCNT2
MCCNT1
MCCNT9
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
W
PA3H
PBOVI
PBOVF
0
W
PA2H
R
W
PA1H
R
W
PA0H
R
W
MCCNT
(High)
MCCNT
(Low)
R
W
R
W
TC0H (High) R
W
TC0H (Low) R
= Unimplemented or Reserved
Figure 7-2. ECT Register Summary (Sheet 4 of 5)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
317
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Register
Name
TC1H (High) R
Bit 7
6
5
4
3
2
1
Bit 0
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
W
TC1H (Low) R
W
TC2H (High) R
W
TC2H (Low) R
W
TC3H (High) R
W
TC3H (Low) R
W
= Unimplemented or Reserved
Figure 7-2. ECT Register Summary (Sheet 5 of 5)
7.3.2.1
R
W
Reset
Timer Input Capture/Output Compare Select Register (TIOS)
7
6
5
4
3
2
1
0
IOS7
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
0
0
0
0
0
0
0
0
Figure 7-3. Timer Input Capture/Output Compare Register (TIOS)
Read or write: Anytime
All bits reset to zero.
Table 7-2. TIOS Field Descriptions
Field
7:0
IOS[7:0]
Description
Input Capture or Output Compare Channel Configuration
0 The corresponding channel acts as an input capture.
1 The corresponding channel acts as an output compare.
MC9S12XDP512 Data Sheet, Rev. 2.21
318
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.2
Timer Compare Force Register (CFORC)
7
6
5
4
3
2
1
0
R
0
0
0
0
0
0
0
0
W
FOC7
FOC6
FOC5
FOC4
FOC3
FOC2
FOC1
FOC0
0
0
0
0
0
0
0
0
Reset
Figure 7-4. Timer Compare Force Register (CFORC)
Read or write: Anytime but reads will always return 0x0000 (1 state is transient).
All bits reset to zero.
Table 7-3. CFORC Field Descriptions
Field
Description
7:0
FOC[7:0]
Force Output Compare Action for Channel 7:0 — A write to this register with the corresponding data bit(s) set
causes the action which is programmed for output compare “x” to occur immediately. The action taken is the
same as if a successful comparison had just taken place with the TCx register except the interrupt flag does not
get set.
Note: A successful channel 7 output compare overrides any channel 6:0 compares. If a forced output compare
on any channel occurs at the same time as the successful output compare, then the forced output compare
action will take precedence and the interrupt flag will not get set.
7.3.2.3
R
W
Reset
Output Compare 7 Mask Register (OC7M)
7
6
5
4
3
2
1
0
OC7M7
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
0
0
0
0
0
0
0
0
Figure 7-5. Output Compare 7 Mask Register (OC7M)
Read or write: Anytime
All bits reset to zero.
Table 7-4. OC7M Field Descriptions
Field
Description
7:0
OC7M[7:0]
Output Compare Mask Action for Channel 7:0
0 The corresponding OC7Dx bit in the output compare 7 data register will not be transferred to the timer port on
a successful channel 7 output compare, even if the corresponding pin is setup for output compare.
1 The corresponding OC7Dx bit in the output compare 7 data register will be transferred to the timer port on a
successful channel 7 output compare.
Note: The corresponding channel must also be setup for output compare (IOSx = 1) for data to be transferred
from the output compare 7 data register to the timer port.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
319
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.4
R
W
Reset
Output Compare 7 Data Register (OC7D)
7
6
5
4
3
2
1
0
OC7D7
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
0
0
0
0
0
0
0
0
Figure 7-6. Output Compare 7 Data Register (OC7D)
Read or write: Anytime
All bits reset to zero.
Table 7-5. OC7D Field Descriptions
Field
7:0
OC7D[7:0]
Description
Output Compare 7 Data Bits — A channel 7 output compare can cause bits in the output compare 7 data
register to transfer to the timer port data register depending on the output compare 7 mask register.
MC9S12XDP512 Data Sheet, Rev. 2.21
320
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.5
R
W
Reset
Timer Count Register (TCNT)
15
14
13
12
11
10
9
8
TCNT15
TCNT14
TCNT13
TCNT12
TCNT11
TCNT10
TCNT9
TCNT8
0
0
0
0
0
0
0
0
Figure 7-7. Timer Count Register High (TCNT)
R
W
Reset
7
6
5
4
3
2
1
0
TCNT7
TCNT6
TCNT5
TCNT4
TCNT3
TCNT2
TCNT1
TCNT0
0
0
0
0
0
0
0
0
Figure 7-8. Timer Count Register Low (TCNT)
Read: Anytime
Write: Has no meaning or effect
All bits reset to zero.
Table 7-6. TCNT Field Descriptions
Field
Description
15:0
Timer Counter Bits — The 16-bit main timer is an up counter. A read to this register will return the current value
TCNT[15:0] of the counter. Access to the counter register will take place in one clock cycle.
Note: A separate read/write for high byte and low byte in test mode will give a different result than accessing them
as a word. The period of the first count after a write to the TCNT registers may be a different size because
the write is not synchronized with the prescaler clock.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
321
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.6
Timer System Control Register 1 (TSCR1)
7
R
W
Reset
6
5
4
3
TEN
TSWAI
TSFRZ
TFFCA
PRNT
0
0
0
0
0
2
1
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 7-9. Timer System Control Register 1 (TSCR1)
Read or write: Anytime except PRNT bit is write once
All bits reset to zero.
Table 7-7. TSCR1 Field Descriptions
Field
Description
7
TEN
Timer Enable
0 Disables the main timer, including the counter. Can be used for reducing power consumption.
1 Allows the timer to function normally.
Note: If for any reason the timer is not active, there is no ÷64 clock for the pulse accumulator since the ÷64 is
generated by the timer prescaler.
6
TSWAI
Timer Module Stops While in Wait
0 Allows the timer module to continue running during wait.
1 Disables the timer counter, pulse accumulators and modulus down counter when the MCU is in wait mode.
Timer interrupts cannot be used to get the MCU out of wait.
5
TSFRZ
Timer and Modulus Counter Stop While in Freeze Mode
0 Allows the timer and modulus counter to continue running while in freeze mode.
1 Disables the timer and modulus counter whenever the MCU is in freeze mode. This is useful for emulation.
The pulse accumulators do not stop in freeze mode.
4
TFFCA
Timer Fast Flag Clear All
0 Allows the timer flag clearing to function normally.
1 A read from an input capture or a write to the output compare channel registers causes the corresponding
channel flag, CxF, to be cleared in the TFLG1 register. Any access to the TCNT register clears the TOF flag
in the TFLG2 register. Any access to the PACN3 and PACN2 registers clears the PAOVF and PAIF flags in the
PAFLG register. Any access to the PACN1 and PACN0 registers clears the PBOVF flag in the PBFLG register.
Any access to the MCCNT register clears the MCZF flag in the MCFLG register. This has the advantage of
eliminating software overhead in a separate clear sequence. Extra care is required to avoid accidental flag
clearing due to unintended accesses.
Note: The flags cannot be cleared via the normal flag clearing mechanism (writing a one to the flag) when
TFFCA = 1.
3
PRNT
Precision Timer
0 Enables legacy timer. Only bits DLY0 and DLY1 of the DLYCT register are used for the delay selection of the
delay counter. PR0, PR1, and PR2 bits of the TSCR2 register are used for timer counter prescaler selection.
MCPR0 and MCPR1 bits of the MCCTL register are used for modulus down counter prescaler selection.
1 Enables precision timer. All bits in the DLYCT register are used for the delay selection, all bits of the PTPSR
register are used for Precision Timer Prescaler Selection, and all bits of PTMCPSR register are used for the
prescaler Precision Timer Modulus Counter Prescaler selection.
MC9S12XDP512 Data Sheet, Rev. 2.21
322
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.7
R
W
Reset
Timer Toggle On Overflow Register 1 (TTOV)
7
6
5
4
3
2
1
0
TOV7
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
0
0
0
0
0
0
0
0
Figure 7-10. Timer Toggle On Overflow Register 1 (TTOV)
Read or write: Anytime
All bits reset to zero.
Table 7-8. TTOV Field Descriptions
Field
Description
7:0
TOV[7:0]
Toggle On Overflow Bits — TOV97:0] toggles output compare pin on timer counter overflow. This feature only
takes effect when in output compare mode. When set, it takes precedence over forced output compare but not
channel 7 override events.
0 Toggle output compare pin on overflow feature disabled.
1 Toggle output compare pin on overflow feature enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
323
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.8
R
W
Reset
Timer Control Register 1/Timer Control Register 2 (TCTL1/TCTL2)
7
6
5
4
3
2
1
0
OM7
OL7
OM6
OL6
OM5
OL5
OM4
OL4
0
0
0
0
0
0
0
0
Figure 7-11. Timer Control Register 1 (TCTL1)
R
W
Reset
7
6
5
4
3
2
1
0
OM3
OL3
OM2
OL2
OM1
OL1
OM0
OL0
0
0
0
0
0
0
0
0
Figure 7-12. Timer Control Register 2 (TCTL2)
Read or write: Anytime
All bits reset to zero.
Table 7-9. TCTL1/TCTL2 Field Descriptions
Field
Description
OM[7:0]
7, 5, 3, 1
OMx — Output Mode
OLx — Output Level
These eight pairs of control bits are encoded to specify the output action to be taken as a result of a successful
OCx compare. When either OMx or OLx is one, the pin associated with OCx becomes an output tied to OCx.
See Table 7-10.
OL[7:0]
6, 4, 2, 0
Table 7-10. Compare Result Output Action
OMx
OLx
Action
0
0
Timer disconnected from output pin logic
0
1
Toggle OCx output line
1
0
Clear OCx output line to zero
1
1
Set OCx output line to one
NOTE
To enable output action by OMx and OLx bits on timer port, the
corresponding bit in OC7M should be cleared.
MC9S12XDP512 Data Sheet, Rev. 2.21
324
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.9
R
W
Reset
Timer Control Register 3/Timer Control Register 4 (TCTL3/TCTL4)
7
6
5
4
3
2
1
0
EDG7B
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
0
0
0
0
0
0
0
0
Figure 7-13. Timer Control Register 3 (TCTL3)
R
W
Reset
7
6
5
4
3
2
1
0
EDG3B
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
0
0
0
0
0
0
0
0
Figure 7-14. Timer Control Register 4 (TCTL4)
Read or write: Anytime
All bits reset to zero.
Table 7-11. TCTL3/TCTL4 Field Descriptions
Field
Description
EDG[7:0]B
7, 5, 3, 1
Input Capture Edge Control — These eight pairs of control bits configure the input capture edge detector
circuits for each input capture channel. The four pairs of control bits in TCTL4 also configure the input capture
edge control for the four 8-bit pulse accumulators PAC0–PAC3.EDG0B and EDG0A in TCTL4 also determine the
active edge for the 16-bit pulse accumulator PACB. See Table 7-12.
EDG[7:0]A
6, 4, 2, 0
Table 7-12. Edge Detector Circuit Configuration
EDGxB
EDGxA
Configuration
0
0
Capture disabled
0
1
Capture on rising edges only
1
0
Capture on falling edges only
1
1
Capture on any edge (rising or falling)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
325
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.10
R
W
Reset
Timer Interrupt Enable Register (TIE)
7
6
5
4
3
2
1
0
C7I
C6I
C5I
C4I
C3I
C2I
C1I
C0I
0
0
0
0
0
0
0
0
Figure 7-15. Timer Interrupt Enable Register (TIE)
Read or write: Anytime
All bits reset to zero.
The bits C7I–C0I correspond bit-for-bit with the flags in the TFLG1 status register.
Table 7-13. TIE Field Descriptions
Field
7:0
C[7:0]I
Description
Input Capture/Output Compare “x” Interrupt Enable
0 The corresponding flag is disabled from causing a hardware interrupt.
1 The corresponding flag is enabled to cause an interrupt.
MC9S12XDP512 Data Sheet, Rev. 2.21
326
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.11
Timer System Control Register 2 (TSCR2)
7
R
W
Reset
TOI
0
6
5
4
0
0
0
0
0
0
3
2
1
0
TCRE
PR2
PR1
PR0
0
0
0
0
= Unimplemented or Reserved
Figure 7-16. Timer System Control Register 2 (TSCR2)
Read or write: Anytime
All bits reset to zero.
Table 7-14. TSCR2 Field Descriptions
Field
7
TOI
Description
Timer Overflow Interrupt Enable
0 Timer overflow interrupt disabled.
1 Hardware interrupt requested when TOF flag set.
3
TCRE
Timer Counter Reset Enable — This bit allows the timer counter to be reset by a successful channel 7 output
compare. This mode of operation is similar to an up-counting modulus counter.
0 Counter reset disabled and counter free runs.
1 Counter reset by a successful output compare on channel 7.
Note: If register TC7 = 0x0000 and TCRE = 1, then the TCNT register will stay at 0x0000 continuously. If register
TC7 = 0xFFFF and TCRE = 1, the TOF flag will never be set when TCNT is reset from 0xFFFF to 0x0000.
2:0
PR[2:0]
Timer Prescaler Select — These three bits specify the division rate of the main Timer prescaler when the PRNT
bit of register TSCR1 is set to 0. The newly selected prescale factor will not take effect until the next synchronized
edge where all prescale counter stages equal zero. See Table 7-15.
Table 7-15. Prescaler Selection
PR2
PR1
PR0
Prescale Factor
0
0
0
1
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
16
1
0
1
32
1
1
0
64
1
1
1
128
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
327
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.12
R
W
Reset
Main Timer Interrupt Flag 1 (TFLG1)
7
6
5
4
3
2
1
0
C7F
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
0
Figure 7-17. Main Timer Interrupt Flag 1 (TFLG1)
Read: Anytime
Write used in the flag clearing mechanism. Writing a one to the flag clears the flag. Writing a zero will not
affect the current status of the bit.
NOTE
When TFFCA = 1, the flags cannot be cleared via the normal flag clearing
mechanism (writing a one to the flag). Reference Section 7.3.2.6, “Timer
System Control Register 1 (TSCR1)”.
All bits reset to zero.
TFLG1 indicates when interrupt conditions have occurred. The flags can be cleared via the normal flag
clearing mechanism (writing a one to the flag) or via the fast flag clearing mechanism (reference TFFCA
bit in Section 7.3.2.6, “Timer System Control Register 1 (TSCR1)”).
Use of the TFMOD bit in the ICSYS register in conjunction with the use of the ICOVW register allows a
timer interrupt to be generated after capturing two values in the capture and holding registers, instead of
generating an interrupt for every capture.
Table 7-16. TFLG1 Field Descriptions
Field
Description
7:0
C[7:0]F
Input Capture/Output Compare Channel “x” Flag — A CxF flag is set when a corresponding input capture or
output compare is detected. C0F can also be set by 16-bit Pulse Accumulator B (PACB). C3F–C0F can also be
set by 8-bit pulse accumulators PAC3–PAC0.
If the delay counter is enabled, the CxF flag will not be set until after the delay.
MC9S12XDP512 Data Sheet, Rev. 2.21
328
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.13
Main Timer Interrupt Flag 2 (TFLG2)
7
R
W
Reset
TOF
0
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 7-18. Main Timer Interrupt Flag 2 (TFLG2)
Read: Anytime
Write used in the flag clearing mechanism. Writing a one to the flag clears the flag. Writing a zero will not
affect the current status of the bit.
NOTE
When TFFCA = 1, the flag cannot be cleared via the normal flag clearing
mechanism (writing a one to the flag). Reference Section 7.3.2.6, “Timer
System Control Register 1 (TSCR1)”.
All bits reset to zero.
TFLG2 indicates when interrupt conditions have occurred. The flag can be cleared via the normal flag
clearing mechanism (writing a one to the flag) or via the fast flag clearing mechanism (Reference TFFCA
bit in Section 7.3.2.6, “Timer System Control Register 1 (TSCR1)”).
Table 7-17. TFLG2 Field Descriptions
Field
7
TOF
Description
Timer Overflow Flag — Set when 16-bit free-running timer overflows from 0xFFFF to 0x0000.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
329
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.14
R
W
Reset
Timer Input Capture/Output Compare Registers 0–7
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-19. Timer Input Capture/Output Compare Register 0 High (TC0)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-20. Timer Input Capture/Output Compare Register 0 Low (TC0)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-21. Timer Input Capture/Output Compare Register 1 High (TC1)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-22. Timer Input Capture/Output Compare Register 1 Low (TC1)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-23. Timer Input Capture/Output Compare Register 2 High (TC2)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-24. Timer Input Capture/Output Compare Register 2 Low (TC2)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-25. Timer Input Capture/Output Compare Register 3 High (TC3)
MC9S12XDP512 Data Sheet, Rev. 2.21
330
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-26. Timer Input Capture/Output Compare Register 3 Low (TC3)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-27. Timer Input Capture/Output Compare Register 4 High (TC4)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-28. Timer Input Capture/Output Compare Register 4 Low (TC4)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-29. Timer Input Capture/Output Compare Register 5 High (TC5)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-30. Timer Input Capture/Output Compare Register 5 Low (TC5)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-31. Timer Input Capture/Output Compare Register 6 High (TC6)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-32. Timer Input Capture/Output Compare Register 6 Low (TC6)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
331
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
R
W
Reset
15
14
13
12
11
10
9
8
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 7-33. Timer Input Capture/Output Compare Register 7 High (TC7)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 7-34. Timer Input Capture/Output Compare Register 7 Low (TC7)
Read: Anytime
Write anytime for output compare function. Writes to these registers have no meaning or effect during
input capture.
All bits reset to zero.
Depending on the TIOS bit for the corresponding channel, these registers are used to latch the value of the
free-running counter when a defined transition is sensed by the corresponding input capture edge detector
or to trigger an output action for output compare.
7.3.2.15
16-Bit Pulse Accumulator A Control Register (PACTL)
7
R
0
W
Reset
0
6
5
4
3
2
1
0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PAOVI
PAI
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 7-35. 16-Bit Pulse Accumulator Control Register (PACTL)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-18. PACTL Field Descriptions
Field
Description
6
PAEN
Pulse Accumulator A System Enable — PAEN is independent from TEN. With timer disabled, the pulse
accumulator can still function unless pulse accumulator is disabled.
0 16-Bit Pulse Accumulator A system disabled. 8-bit PAC3 and PAC2 can be enabled when their related enable
bits in ICPAR are set. Pulse Accumulator Input Edge Flag (PAIF) function is disabled.
1 16-Bit Pulse Accumulator A system enabled. The two 8-bit pulse accumulators PAC3 and PAC2 are cascaded
to form the PACA 16-bit pulse accumulator. When PACA in enabled, the PACN3 and PACN2 registers contents
are respectively the high and low byte of the PACA. PA3EN and PA2EN control bits in ICPAR have no effect.
Pulse Accumulator Input Edge Flag (PAIF) function is enabled. The PACA shares the input pin with IC7.
MC9S12XDP512 Data Sheet, Rev. 2.21
332
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Table 7-18. PACTL Field Descriptions (continued)
Field
Description
5
PAMOD
Pulse Accumulator Mode — This bit is active only when the Pulse Accumulator A is enabled (PAEN = 1).
0 Event counter mode
1 Gated time accumulation mode
4
PEDGE
Pulse Accumulator Edge Control — This bit is active only when the Pulse Accumulator A is enabled
(PAEN = 1). Refer to Table 7-19.
For PAMOD bit = 0 (event counter mode).
0 Falling edges on PT7 pin cause the count to be incremented
1 Rising edges on PT7 pin cause the count to be incremented
For PAMOD bit = 1 (gated time accumulation mode).
0 PT7 input pin high enables bus clock divided by 64 to Pulse Accumulator and the trailing falling edge on PT7
sets the PAIF flag.
1 PT7 input pin low enables bus clock divided by 64 to Pulse Accumulator and the trailing rising edge on PT7
sets the PAIF flag.
If the timer is not active (TEN = 0 in TSCR1), there is no divide-by-64 since the ÷64 clock is generated by the
timer prescaler.
3:2
CLK[1:0]
2
PAOVI
0
PAI
Clock Select Bits — For the description of PACLK please refer to Figure 7-70.
If the pulse accumulator is disabled (PAEN = 0), the prescaler clock from the timer is always used as an input
clock to the timer counter. The change from one selected clock to the other happens immediately after these bits
are written. Refer to Table 7-20.
Pulse Accumulator A Overflow Interrupt Enable
0 Interrupt inhibited
1 Interrupt requested if PAOVF is set
Pulse Accumulator Input Interrupt Enable
0 Interrupt inhibited
1 Interrupt requested if PAIF is set
.
Table 7-19. Pin Action
PAMOD
PEDGE
Pin Action
0
0
Falling edge
0
1
Rising edge
1
0
Divide by 64 clock enabled with pin high level
1
1
Divide by 64 clock enabled with pin low level
Table 7-20. Clock Selection
CLK1
CLK0
Clock Source
0
0
Use timer prescaler clock as timer counter clock
0
1
Use PACLK as input to timer counter clock
1
0
Use PACLK/256 as timer counter clock frequency
1
1
Use PACLK/65536 as timer counter clock frequency
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
333
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.16
R
Pulse Accumulator A Flag Register (PAFLG)
7
6
5
4
3
2
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
1
0
PAOVF
PAIF
0
0
= Unimplemented or Reserved
Figure 7-36. Pulse Accumulator A Flag Register (PAFLG)
Read: Anytime
Write used in the flag clearing mechanism. Writing a one to the flag clears the flag. Writing a zero will not
affect the current status of the bit.
NOTE
When TFFCA = 1, the flags cannot be cleared via the normal flag clearing
mechanism (writing a one to the flag). Reference Section 7.3.2.6, “Timer
System Control Register 1 (TSCR1)”.
All bits reset to zero.
PAFLG indicates when interrupt conditions have occurred. The flags can be cleared via the normal flag
clearing mechanism (writing a one to the flag) or via the fast flag clearing mechanism (Reference TFFCA
bit in Section 7.3.2.6, “Timer System Control Register 1 (TSCR1)”).
Table 7-21. PAFLG Field Descriptions
Field
Description
1
PAOVF
Pulse Accumulator A Overflow Flag — Set when the 16-bit pulse accumulator A overflows from 0xFFFF to
0x0000, or when 8-bit pulse accumulator 3 (PAC3) overflows from 0x00FF to 0x0000.
When PACMX = 1, PAOVF bit can also be set if 8-bit pulse accumulator 3 (PAC3) reaches 0x00FF followed by
an active edge on PT3.
0
PAIF
Pulse Accumulator Input edge Flag — Set when the selected edge is detected at the PT7 input pin. In event
mode the event edge triggers PAIF and in gated time accumulation mode the trailing edge of the gate signal at
the PT7 input pin triggers PAIF.
7.3.2.17
Pulse Accumulators Count Registers (PACN3 and PACN2)
7
R
W
Reset
6
5
4
3
2
PACNT7(15) PACNT6(14) PACNT5(13) PACNT4(12) PACNT3(11) PACNT2(10)
0
0
0
0
0
0
1
0
PACNT1(9)
PACNT0(8)
0
0
Figure 7-37. Pulse Accumulators Count Register 3 (PACN3)
MC9S12XDP512 Data Sheet, Rev. 2.21
334
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
R
W
Reset
7
6
5
4
3
2
1
0
PACNT7
PACNT6
PACNT5
PACNT4
PACNT3
PACNT2
PACNT1
PACNT0
0
0
0
0
0
0
0
0
Figure 7-38. Pulse Accumulators Count Register 2 (PACN2)
Read: Anytime
Write: Anytime
All bits reset to zero.
The two 8-bit pulse accumulators PAC3 and PAC2 are cascaded to form the PACA 16-bit pulse
accumulator. When PACA in enabled (PAEN = 1 in PACTL), the PACN3 and PACN2 registers contents
are respectively the high and low byte of the PACA.
When PACN3 overflows from 0x00FF to 0x0000, the interrupt flag PAOVF in PAFLG is set.
Full count register access will take place in one clock cycle.
NOTE
A separate read/write for high byte and low byte will give a different result
than accessing them as a word.
When clocking pulse and write to the registers occurs simultaneously, write
takes priority and the register is not incremented.
7.3.2.18
Pulse Accumulators Count Registers (PACN1 and PACN0)
7
R
W
Reset
6
5
4
3
2
PACNT7(15) PACNT6(14) PACNT5(13) PACNT4(12) PACNT3(11) PACNT2(10)
0
0
0
0
0
0
1
0
PACNT1(9)
PACNT0(8)
0
0
Figure 7-39. Pulse Accumulators Count Register 1 (PACN1)
R
W
Reset
7
6
5
4
3
2
1
0
PACNT7
PACNT6
PACNT5
PACNT4
PACNT3
PACNT2
PACNT1
PACNT0
0
0
0
0
0
0
0
0
Figure 7-40. Pulse Accumulators Count Register 0 (PACN0)
Read: Anytime
Write: Anytime
All bits reset to zero.
The two 8-bit pulse accumulators PAC1 and PAC0 are cascaded to form the PACB 16-bit pulse
accumulator. When PACB in enabled, (PBEN = 1 in PBCTL) the PACN1 and PACN0 registers contents
are respectively the high and low byte of the PACB.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
335
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
When PACN1 overflows from 0x00FF to 0x0000, the interrupt flag PBOVF in PBFLG is set.
Full count register access will take place in one clock cycle.
NOTE
A separate read/write for high byte and low byte will give a different result
than accessing them as a word.
When clocking pulse and write to the registers occurs simultaneously, write
takes priority and the register is not incremented.
MC9S12XDP512 Data Sheet, Rev. 2.21
336
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.19
16-Bit Modulus Down-Counter Control Register (MCCTL)
7
R
W
Reset
6
5
MCZI
MODMC
RDMCL
0
0
0
4
3
0
0
ICLAT
FLMC
0
0
2
1
0
MCEN
MCPR1
MCPR0
0
0
0
Figure 7-41. 16-Bit Modulus Down-Counter Control Register (MCCTL)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-22. MCCTL Field Descriptions
Field
7
MCZI
Description
Modulus Counter Underflow Interrupt Enable
0 Modulus counter interrupt is disabled.
1 Modulus counter interrupt is enabled.
6
MODMC
Modulus Mode Enable
0 The modulus counter counts down from the value written to it and will stop at 0x0000.
1 Modulus mode is enabled. When the modulus counter reaches 0x0000, the counter is loaded with the latest
value written to the modulus count register.
Note: For proper operation, the MCEN bit should be cleared before modifying the MODMC bit in order to reset
the modulus counter to 0xFFFF.
5
RDMCL
Read Modulus Down-Counter Load
0 Reads of the modulus count register (MCCNT) will return the present value of the count register.
1 Reads of the modulus count register (MCCNT) will return the contents of the load register.
4
ICLAT
Input Capture Force Latch Action — When input capture latch mode is enabled (LATQ and BUFEN bit in
ICSYS are set), a write one to this bit immediately forces the contents of the input capture registers TC0 to TC3
and their corresponding 8-bit pulse accumulators to be latched into the associated holding registers. The pulse
accumulators will be automatically cleared when the latch action occurs.
Writing zero to this bit has no effect. Read of this bit will always return zero.
3
FLMC
Force Load Register into the Modulus Counter Count Register — This bit is active only when the modulus
down-counter is enabled (MCEN = 1).
A write one into this bit loads the load register into the modulus counter count register (MCCNT). This also resets
the modulus counter prescaler.
Write zero to this bit has no effect. Read of this bit will return always zero.
2
MCEN
1:0
MCPR[1:0]
Modulus Down-Counter Enable
0 Modulus counter disabled. The modulus counter (MCCNT) is preset to 0xFFFF. This will prevent an early
interrupt flag when the modulus down-counter is enabled.
1 Modulus counter is enabled.
Modulus Counter Prescaler Select — These two bits specify the division rate of the modulus counter prescaler
when PRNT of TSCR1 is set to 0. The newly selected prescaler division rate will not be effective until a load of
the load register into the modulus counter count register occurs.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
337
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Table 7-23. Modulus Counter Prescaler Select
7.3.2.20
W
Reset
MCPR0
Prescaler Division
0
0
1
0
1
4
1
0
8
1
1
16
16-Bit Modulus Down-Counter FLAG Register (MCFLG)
7
R
MCPR1
MCZF
0
6
5
4
3
2
1
0
0
0
0
POLF3
POLF2
POLF1
POLF0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 7-42. 16-Bit Modulus Down-Counter FLAG Register (MCFLG)
Read: Anytime
Write only used in the flag clearing mechanism for bit 7. Writing a one to bit 7 clears the flag. Writing a
zero will not affect the current status of the bit.
NOTE
When TFFCA = 1, the flag cannot be cleared via the normal flag clearing
mechanism (writing a one to the flag). Reference Section 7.3.2.6, “Timer
System Control Register 1 (TSCR1)”.
All bits reset to zero.
Table 7-24. MCFLG Field Descriptions
Field
7
MCZF
3:0
POLF[3:0]
Description
Modulus Counter Underflow Flag — The flag is set when the modulus down-counter reaches 0x0000.
The flag indicates when interrupt conditions have occurred. The flag can be cleared via the normal flag clearing
mechanism (writing a one to the flag) or via the fast flag clearing mechanism (Reference TFFCA bit in
Section 7.3.2.6, “Timer System Control Register 1 (TSCR1)”).
First Input Capture Polarity Status — These are read only bits. Writes to these bits have no effect.
Each status bit gives the polarity of the first edge which has caused an input capture to occur after capture latch
has been read.
Each POLFx corresponds to a timer PORTx input.
0 The first input capture has been caused by a falling edge.
1 The first input capture has been caused by a rising edge.
MC9S12XDP512 Data Sheet, Rev. 2.21
338
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.21
R
ICPAR — Input Control Pulse Accumulators Register (ICPAR)
7
6
5
4
0
0
0
0
0
0
0
0
W
Reset
3
2
1
0
PA3EN
PA2EN
PA1EN
PA0EN
0
0
0
0
= Unimplemented or Reserved
Figure 7-43. Input Control Pulse Accumulators Register (ICPAR)
Read: Anytime
Write: Anytime.
All bits reset to zero.
The 8-bit pulse accumulators PAC3 and PAC2 can be enabled only if PAEN in PACTL is cleared. If PAEN
is set, PA3EN and PA2EN have no effect.
The 8-bit pulse accumulators PAC1 and PAC0 can be enabled only if PBEN in PBCTL is cleared. If PBEN
is set, PA1EN and PA0EN have no effect.
Table 7-25. ICPAR Field Descriptions
Field
3:0
PA[3:0]EN
Description
8-Bit Pulse Accumulator ‘x’ Enable
0 8-Bit Pulse Accumulator is disabled.
1 8-Bit Pulse Accumulator is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
339
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.22
R
W
Reset
Delay Counter Control Register (DLYCT)
7
6
5
4
3
2
1
0
DLY7
DLY6
DLY5
DLY4
DLY3
DLY2
DLY1
DLY0
0
0
0
0
0
0
0
0
Figure 7-44. Delay Counter Control Register (DLYCT)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-26. DLYCT Field Descriptions
Field
7:0
DLY[7:0]
Description
Delay Counter Select — When the PRNT bit of TSCR1 register is set to 0, only bits DLY0, DLY1 are used to
calculate the delay.Table 7-27 shows the delay settings in this case.
When the PRNT bit of TSCR1 register is set to 1, all bits are used to set a more precise delay. Table 7-28 shows
the delay settings in this case. After detection of a valid edge on an input capture pin, the delay counter counts
the pre-selected number of [(dly_cnt + 1)*4]bus clock cycles, then it will generate a pulse on its output if the level
of input signal, after the preset delay, is the opposite of the level before the transition.This will avoid reaction to
narrow input pulses.
Delay between two active edges of the input signal period should be longer than the selected counter delay.
Note: It is recommended to not write to this register while the timer is enabled, that is when TEN is set in register
TSCR1.
Table 7-27. Delay Counter Select when PRNT = 0
DLY1
DLY0
Delay
0
0
1
1
0
1
0
1
Disabled
256 bus clock cycles
512 bus clock cycles
1024 bus clock cycles
Table 7-28. Delay Counter Select Examples when PRNT = 1
DLY7
DLY6
DLY5
DLY4
DLY3
DLY2
DLY1
DLY0
Delay
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
Disabled (bypassed)
8 bus clock cycles
12 bus clock cycles
16 bus clock cycles
20 bus clock cycles
24 bus clock cycles
28 bus clock cycles
32 bus clock cycles
64 bus clock cycles
128 bus clock cycles
256 bus clock cycles
512 bus clock cycles
1024 bus clock cycles
MC9S12XDP512 Data Sheet, Rev. 2.21
340
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.23
R
W
Reset
Input Control Overwrite Register (ICOVW)
7
6
5
4
3
2
1
0
NOVW7
NOVW6
NOVW5
NOVW4
NOVW3
NOVW2
NOVW1
NOVW0
0
0
0
0
0
0
0
0
Figure 7-45. Input Control Overwrite Register (ICOVW)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-29. ICOVW Field Descriptions
Field
Description
7:0
NOVW[7:0]
No Input Capture Overwrite
0 The contents of the related capture register or holding register can be overwritten when a new input capture
or latch occurs.
1 The related capture register or holding register cannot be written by an event unless they are empty (see
Section 7.4.1.1, “IC Channels”). This will prevent the captured value being overwritten until it is read or latched
in the holding register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
341
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.24
R
W
Reset
Input Control System Control Register (ICSYS)
7
6
5
4
3
2
1
0
SH37
SH26
SH15
SH04
TFMOD
PACMX
BUFEN
LATQ
0
0
0
0
0
0
0
0
Figure 7-46. Input Control System Register (ICSYS)
Read: Anytime
Write: Once in normal modes
All bits reset to zero.
Table 7-30. ICSYS Field Descriptions
Field
Description
7:4
SHxy
Share Input action of Input Capture Channels x and y
0 Normal operation
1 The channel input ‘x’ causes the same action on the channel ‘y’. The port pin ‘x’ and the corresponding edge
detector is used to be active on the channel ‘y’.
3
TFMOD
Timer Flag Setting Mode — Use of the TFMOD bit in conjunction with the use of the ICOVW register allows a
timer interrupt to be generated after capturing two values in the capture and holding registers instead of
generating an interrupt for every capture.
By setting TFMOD in queue mode, when NOVWx bit is set and the corresponding capture and holding registers
are emptied, an input capture event will first update the related input capture register with the main timer
contents. At the next event, the TCx data is transferred to the TCxH register, the TCx is updated and the CxF
interrupt flag is set. In all other input capture cases the interrupt flag is set by a valid external event on PTx.
0 The timer flags C3F–C0F in TFLG1 are set when a valid input capture transition on the corresponding port pin
occurs.
1 If in queue mode (BUFEN = 1 and LATQ = 0), the timer flags C3F–C0F in TFLG1 are set only when a latch
on the corresponding holding register occurs. If the queue mode is not engaged, the timer flags C3F–C0F are
set the same way as for TFMOD = 0.
2
PACMX
8-Bit Pulse Accumulators Maximum Count
0 Normal operation. When the 8-bit pulse accumulator has reached the value 0x00FF, with the next active edge,
it will be incremented to 0x0000.
1 When the 8-bit pulse accumulator has reached the value 0x00FF, it will not be incremented further. The value
0x00FF indicates a count of 255 or more.
1
BUFFEN
IC Buffer Enable
0 Input capture and pulse accumulator holding registers are disabled.
1 Input capture and pulse accumulator holding registers are enabled. The latching mode is defined by LATQ
control bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
342
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Table 7-30. ICSYS Field Descriptions (continued)
Field
Description
0
LATQ
Input Control Latch or Queue Mode Enable — The BUFEN control bit should be set in order to enable the IC
and pulse accumulators holding registers. Otherwise LATQ latching modes are disabled.
Write one into ICLAT bit in MCCTL, when LATQ and BUFEN are set will produce latching of input capture and
pulse accumulators registers into their holding registers.
0 Queue mode of Input Capture is enabled. The main timer value is memorized in the IC register by a valid input
pin transition. With a new occurrence of a capture, the value of the IC register will be transferred to its holding
register and the IC register memorizes the new timer value.
1 Latch mode is enabled. Latching function occurs when modulus down-counter reaches zero or a zero is
written into the count register MCCNT (see Section 7.4.1.1.2, “Buffered IC Channels”). With a latching event
the contents of IC registers and 8-bit pulse accumulators are transferred to their holding registers. 8-bit pulse
accumulators are cleared.
7.3.2.25
R
W
Reset
Precision Timer Prescaler Select Register (PTPSR)
7
6
5
4
3
2
1
0
PTPS7
PTPS6
PTPS5
PTPS4
PTPS3
PTPS2
PTPS1
PTPS0
0
0
0
0
0
0
0
0
Figure 7-47. Precision Timer Prescaler Select Register (PTPSR)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-31. PTPSR Field Descriptions
Field
Description
7:0
PTPS[7:0]
Precision Timer Prescaler Select Bits — These eight bits specify the division rate of the main Timer prescaler.
These are effective only when the PRNT bit of TSCR1 is set to 1. Table 7-32 shows some selection examples in
this case.
The newly selected prescale factor will not take effect until the next synchronized edge where all prescale counter
stages equal zero.
Table 7-32. Precision Timer Prescaler Selection Examples when PRNT = 1
PTPS7
PTPS6
PTPS5
PTPS4
PTPS3
PTPS2
PTPS1
PTPS0
Prescale
Factor
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
1
0
3
0
0
0
0
0
0
1
1
4
0
0
0
0
0
1
0
0
5
0
0
0
0
0
1
0
1
6
0
0
0
0
0
1
1
0
7
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
343
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Table 7-32. Precision Timer Prescaler Selection Examples when PRNT = 1
PTPS7
PTPS6
PTPS5
PTPS4
PTPS3
PTPS2
PTPS1
PTPS0
Prescale
Factor
0
0
0
0
0
1
1
1
8
0
0
0
0
1
1
1
1
16
0
0
0
1
1
1
1
1
32
0
0
1
1
1
1
1
1
64
0
1
1
1
1
1
1
1
128
1
1
1
1
1
1
1
1
256
7.3.2.26
R
W
Reset
Precision Timer Modulus Counter Prescaler Select Register (PTMCPSR)
7
6
5
4
3
2
1
0
PTMPS7
PTMPS6
PTMPS5
PTMPS4
PTMPS3
PTMPS2
PTMPS1
PTMPS0
0
0
0
0
0
0
0
0
Figure 7-48. Precision Timer Modulus Counter Prescaler Select Register (PTMCPSR)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-33. PTMCPSR Field Descriptions
Field
Description
7:0
Precision Timer Modulus Counter Prescaler Select Bits — These eight bits specify the division rate of the
PTMPS[7:0] modulus counter prescaler. These are effective only when the PRNT bit of TSCR1 is set to 1. Table 7-34 shows
some possible division rates.
The newly selected prescaler division rate will not be effective until a load of the load register into the modulus
counter count register occurs.
Table 7-34. Precision Timer Modulus Counter Prescaler Select Examples when PRNT = 1
PTMPS7
PTMPS6
PTMPS5
PTMPS4
PTMPS3
PTMPS2
PTMPS1
PTMPS0
Prescaler
Division
Rate
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
1
0
3
0
0
0
0
0
0
1
1
4
0
0
0
0
0
1
0
0
5
0
0
0
0
0
1
0
1
6
0
0
0
0
0
1
1
0
7
MC9S12XDP512 Data Sheet, Rev. 2.21
344
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Table 7-34. Precision Timer Modulus Counter Prescaler Select Examples when PRNT = 1 (continued)
PTMPS7
PTMPS6
PTMPS5
PTMPS4
PTMPS3
PTMPS2
PTMPS1
PTMPS0
Prescaler
Division
Rate
0
0
0
0
0
1
1
1
8
0
0
0
0
1
1
1
1
16
0
0
0
1
1
1
1
1
32
0
0
1
1
1
1
1
1
64
0
1
1
1
1
1
1
1
128
1
1
1
1
1
1
1
1
256
7.3.2.27
16-Bit Pulse Accumulator B Control Register (PBCTL)
7
R
6
0
PBEN
W
Reset
0
0
5
4
3
2
0
0
0
0
0
0
0
0
1
PBOVI
0
0
0
0
= Unimplemented or Reserved
Figure 7-49. 16-Bit Pulse Accumulator B Control Register (PBCTL)
Read: Anytime
Write: Anytime
All bits reset to zero.
Table 7-35. PBCTL Field Descriptions
Field
Description
6
PBEN
Pulse Accumulator B System Enable — PBEN is independent from TEN. With timer disabled, the pulse
accumulator can still function unless pulse accumulator is disabled.
0 16-bit pulse accumulator system disabled. 8-bit PAC1 and PAC0 can be enabled when their related enable bits
in ICPAR are set.
1 Pulse accumulator B system enabled. The two 8-bit pulse accumulators PAC1 and PAC0 are cascaded to form
the PACB 16-bit pulse accumulator B. When PACB is enabled, the PACN1 and PACN0 registers contents are
respectively the high and low byte of the PACB.
PA1EN and PA0EN control bits in ICPAR have no effect.
The PACB shares the input pin with IC0.
1
PBOVI
Pulse Accumulator B Overflow Interrupt Enable
0 Interrupt inhibited
1 Interrupt requested if PBOVF is set
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
345
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.28
R
Pulse Accumulator B Flag Register (PBFLG)
7
6
5
4
3
2
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
1
PBOVF
0
0
0
0
= Unimplemented or Reserved
Figure 7-50. Pulse Accumulator B Flag Register (PBFLG)
Read: Anytime
Write used in the flag clearing mechanism. Writing a one to the flag clears the flag. Writing a zero will not
affect the current status of the bit.
NOTE
When TFFCA = 1, the flag cannot be cleared via the normal flag clearing
mechanism (writing a one to the flag). Reference Section 7.3.2.6, “Timer
System Control Register 1 (TSCR1)”.
All bits reset to zero.
PBFLG indicates when interrupt conditions have occurred. The flag can be cleared via the normal flag
clearing mechanism (writing a one to the flag) or via the fast flag clearing mechanism (Reference TFFCA
bit in Section 7.3.2.6, “Timer System Control Register 1 (TSCR1)”).
Table 7-36. PBFLG Field Descriptions
Field
1
PBOVF
Description
Pulse Accumulator B Overflow Flag — This bit is set when the 16-bit pulse accumulator B overflows from
0xFFFF to 0x0000, or when 8-bit pulse accumulator 1 (PAC1) overflows from 0x00FF to 0x0000.
When PACMX = 1, PBOVF bit can also be set if 8-bit pulse accumulator 1 (PAC1) reaches 0x00FF and an active
edge follows on PT1.
MC9S12XDP512 Data Sheet, Rev. 2.21
346
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.29
R
8-Bit Pulse Accumulators Holding Registers (PA3H–PA0H)
7
6
5
4
3
2
1
0
PA3H7
PA3H6
PA3H5
PA3H4
PA3H3
PA3H2
PA3H1
PA3H0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-51. 8-Bit Pulse Accumulators Holding Register 3 (PA3H)
R
7
6
5
4
3
2
1
0
PA2H7
PA2H6
PA2H5
PA2H4
PA2H3
PA2H2
PA2H1
PA2H0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 7-52. 8-Bit Pulse Accumulators Holding Register 2 (PA2H)
R
7
6
5
4
3
2
1
0
PA1H7
PA1H6
PA1H5
PA1H4
PA1H3
PA1H2
PA1H1
PA1H0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-53. 8-Bit Pulse Accumulators Holding Register 1 (PA1H)
R
7
6
5
4
3
2
1
0
PA0H7
PA0H6
PA0H5
PA0H4
PA0H3
PA0H2
PA0H1
PA0H0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 7-54. 8-Bit Pulse Accumulators Holding Register 0 (PA0H)
Read: Anytime.
Write: Has no effect.
All bits reset to zero.
These registers are used to latch the value of the corresponding pulse accumulator when the related bits in
register ICPAR are enabled (see Section 7.4.1.3, “Pulse Accumulators”).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
347
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.30
R
W
Reset
Modulus Down-Counter Count Register (MCCNT)
15
14
13
12
11
10
9
8
MCCNT15
MCCNT14
MCCNT13
MCCNT12
MCCNT11
MCCNT10
MCCNT9
MCCNT8
1
1
1
1
1
1
1
1
Figure 7-55. Modulus Down-Counter Count Register High (MCCNT)
R
W
Reset
7
6
5
4
3
2
1
0
MCCNT7
MCCNT6
MCCNT5
MCCNT4
MCCNT3
MCCNT2
MCCNT1
MCCNT9
1
1
1
1
1
1
1
1
Figure 7-56. Modulus Down-Counter Count Register Low (MCCNT)
Read: Anytime
Write: Anytime.
All bits reset to one.
A full access for the counter register will take place in one clock cycle.
NOTE
A separate read/write for high byte and low byte will give different results
than accessing them as a word.
If the RDMCL bit in MCCTL register is cleared, reads of the MCCNT register will return the present value
of the count register. If the RDMCL bit is set, reads of the MCCNT will return the contents of the load
register.
If a 0x0000 is written into MCCNT when LATQ and BUFEN in ICSYS register are set, the input capture
and pulse accumulator registers will be latched.
With a 0x0000 write to the MCCNT, the modulus counter will stay at zero and does not set the MCZF flag
in MCFLG register.
If the modulus down counter is enabled (MCEN = 1) and modulus mode is enabled (MODMC = 1), a write
to MCCNT will update the load register with the value written to it. The count register will not be updated
with the new value until the next counter underflow.
If modulus mode is not enabled (MODMC = 0), a write to MCCNT will clear the modulus prescaler and
will immediately update the counter register with the value written to it and down-counts to 0x0000 and
stops.
The FLMC bit in MCCTL can be used to immediately update the count register with the new value if an
immediate load is desired.
MC9S12XDP512 Data Sheet, Rev. 2.21
348
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.3.2.31
R
Timer Input Capture Holding Registers 0–3 (TCxH)
15
14
13
12
11
10
9
8
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-57. Timer Input Capture Holding Register 0 High (TC0H)
R
7
6
5
4
3
2
1
0
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 7-58. Timer Input Capture Holding Register 0 Low (TC0H)
R
15
14
13
12
11
10
9
8
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-59. Timer Input Capture Holding Register 1 High (TC1H)
R
7
6
5
4
3
2
1
0
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 7-60. Timer Input Capture Holding Register 1 Low (TC1H)
R
15
14
13
12
11
10
9
8
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-61. Timer Input Capture Holding Register 2 High (TC2H)
R
7
6
5
4
3
2
1
0
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-62. Timer Input Capture Holding Register 2 Low (TC2H)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
349
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
R
15
14
13
12
11
10
9
8
TC15
TC14
TC13
TC12
TC11
TC10
TC9
TC8
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 7-63. Timer Input Capture Holding Register 3 High (TC3H)
R
7
6
5
4
3
2
1
0
TC7
TC6
TC5
TC4
TC3
TC2
TC1
TC0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 7-64. Timer Input Capture Holding Register 3 Low (TC3H)
Read: Anytime
Write: Has no effect.
All bits reset to zero.
These registers are used to latch the value of the input capture registers TC0–TC3. The corresponding
IOSx bits in TIOS should be cleared (see Section 7.4.1.1, “IC Channels”).
7.4
Functional Description
This section provides a complete functional description of the ECT block, detailing the operation of the
design from the end user perspective in a number of subsections.
MC9S12XDP512 Data Sheet, Rev. 2.21
350
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Bus Clock
÷ 1, 4, 8, 16
Bus Clock
Timer Prescaler
16-Bit Load Register
16-Bit Modulus
Down Counter
Modulus Prescaler
0
P0
Comparator
Pin Logic
Delay
Counter
EDG0
TC0 Capture/Compare Reg.
PAC0
TC0H Hold Reg.
PA0H Hold Reg.
0
P1
Pin Logic
Delay
Counter
EDG1
TC1 Capture/Compare Reg.
PAC1
TC1H Hold Reg.
PA1H Hold Reg.
Pin Logic
Delay
Counter
EDG2
TC2 Capture/Compare Reg.
PAC2
TC2H Hold Reg.
PA2H Hold Reg.
Pin Logic
Pin Logic
RESET
Comparator
Delay
Counter
EDG3
TC3 Capture/Compare Reg.
PAC3
TC3H Hold Reg.
PA3H Hold Reg.
LATCH
P4
RESET
Comparator
0
P3
RESET
Comparator
0
P2
RESET
Underflow
16-Bit Free-Running
16 BITMain
MAIN
TIMER
Timer
÷ 1, 2, ..., 128
Comparator
EDG4
EDG0
TC4 Capture/Compare Reg.
MUX
ICLAT, LATQ, BUFEN
(Force Latch)
SH04
P5
Pin Logic
Comparator
EDG5
EDG1
TC5 Capture/Compare Reg.
MUX
Write 0x0000
to Modulus Counter
SH15
P6
Pin Logic
Comparator
EDG6
EDG2
LATQ
(MDC Latch Enable)
TC6 Capture/Compare Reg.
MUX
SH26
P7
Pin Logic
Comparator
EDG7
EDG3
TC7 Capture/Compare Reg.
MUX
SH37
Figure 7-65. Detailed Timer Block Diagram in Latch Mode when PRNT = 0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
351
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Bus Clock
÷ 1, 2,3, ..., 256
Bus Clock
Timer Prescaler
16-Bit Load Register
16-Bit Modulus
Down Counter
Modulus Prescaler
0
P0
RESET
Underflow
16-Bit Free-Running
16 BITMain
MAINTimer
TIMER
÷ 1, 2,3, ..., 256
Comparator
Pin Logic
Delay
Counter
EDG0
TC0 Capture/Compare Reg.
PAC0
TC0H Hold Reg.
PA0H Hold Reg.
8, 12, 16, ..., 1024
0
P1
RESET
Comparator
Pin Logic
Delay
Counter
EDG1
TC1 Capture/Compare Reg.
PAC1
TC1H Hold Reg.
PA1H Hold Reg.
8, 12, 16, ..., 1024
0
P2
RESET
Comparator
Pin Logic
Delay
Counter
EDG2
TC2 Capture/Compare Reg.
PAC2
TC2H Hold Reg.
PA2H Hold Reg.
8, 12, 16, ..., 1024
0
P3
RESET
Comparator
Pin Logic
Delay
Counter
EDG3
TC3 Capture/Compare Reg.
PAC3
TC3H Hold Reg.
PA3H Hold Reg.
P4
Pin Logic
LATCH
8, 12, 16, ..., 1024
Comparator
EDG4
EDG0
TC4 Capture/Compare Reg.
MUX
ICLAT, LATQ, BUFEN
(Force Latch)
SH04
P5
Pin Logic
Comparator
EDG5
EDG1
TC5 Capture/Compare Reg.
MUX
Write 0x0000
to Modulus Counter
SH15
P6
Pin Logic
Comparator
EDG6
EDG2
LATQ
(MDC Latch Enable)
TC6 Capture/Compare Reg.
MUX
SH26
P7
Pin Logic
Comparator
EDG7
EDG3
TC7 Capture/Compare Reg.
MUX
SH37
Figure 7-66. Detailed Timer Block Diagram in Latch Mode when PRNT = 1
MC9S12XDP512 Data Sheet, Rev. 2.21
352
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
16-Bit Free-Running
16 BITMain
MAIN
TIMER
Timer
÷ 1, 4, 8, 16
Bus Clock
16-Bit Load Register
16-Bit Modulus
Down Counter
Modulus
Prescaler
0
Delay
Counter
EDG0
TC0 Capture/Compare Reg.
PAC0
TC0H Hold Reg.
PA0H Hold Reg.
0
Pin Logic
Delay
Counter
EDG1
TC1 Capture/Compare Reg.
PAC1
TC1H Hold Reg.
PA1H Hold Reg.
0
P2
P4
Pin Logic
Delay
Counter
EDG2
TC2 Capture/Compare Reg.
PAC2
TC2H Hold Reg.
PA2H Hold Reg.
Delay
Counter
EDG3
TC3 Capture/Compare Reg.
PAC3
TC3H Hold Reg.
PA3H Hold Reg.
Comparator
EDG4
TC4 Capture/Compare Reg.
LATQ, BUFEN
(Queue Mode)
Comparator
Read TC3H
Hold Reg.
MUX
EDG0
SH04
P5
Pin Logic
EDG5
TC5 Capture/Compare Reg.
MUX
EDG1
Read TC2H
Hold Reg.
SH15
P6
Pin Logic
RESET
Comparator
Pin Logic
Pin Logic
RESET
Comparator
0
P3
RESET
Comparator
LATCH1
P1
LATCH0
Pin Logic
LATCH2
P0
RESET
Comparator
LATCH3
Bus Clock
÷1, 2, ..., 128
Timer
Prescaler
Comparator
EDG6
TC6 Capture/Compare Reg.
MUX
EDG2
Read TC1H
Hold Reg.
SH26
P7
Pin Logic
Comparator
EDG7
EDG3
SH37
TC7 Capture/Compare Reg.
Read TC0H
Hold Reg.
MUX
Figure 7-67. Detailed Timer Block Diagram in Queue Mode when PRNT = 0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
353
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
÷1, 2, 3, ... 256
Bus Clock
16-Bit Free-Running
16 BITMain
MAIN
TIMER
Timer
Timer
Prescaler
÷ 1, 2, 3, ... 256
16-Bit Load Register
Modulus
Prescaler
16-Bit Modulus
Down Counter
Bus Clock
0
P0
RESET
Comparator
Pin Logic
Delay
Counter
EDG0
TC0 Capture/Compare Reg.
PAC0
TC0H Hold Reg.
PA0H Hold Reg.
0
P1
LATCH0
8, 12, 16, ... 1024
RESET
Comparator
Pin Logic
Delay
Counter
EDG1
TC1 Capture/Compare Reg.
PAC1
TC1H Hold Reg.
PA1H Hold Reg.
0
P2
LATCH1
8, 12, 16, ... 1024
RESET
Comparator
Pin Logic
Delay
Counter
EDG2
TC2 Capture/Compare Reg.
PAC2
TC2H Hold Reg.
PA2H Hold Reg.
0
RESET
Comparator
Pin Logic
Delay
Counter
EDG3
TC3 Capture/Compare Reg.
PAC3
TC3H Hold Reg.
PA3H Hold Reg.
8, 12, 16, ... 1024
P4
Pin Logic
Comparator
EDG4
TC4 Capture/Compare Reg.
LATQ, BUFEN
(Queue Mode)
Comparator
Read TC3H
Hold Reg.
MUX
EDG0
SH04
P5
Pin Logic
EDG5
TC5 Capture/Compare Reg.
MUX
EDG1
Read TC2H
Hold Reg.
SH15
P6
Pin Logic
LATCH3
P3
LATCH2
8, 12, 16, ... 1024
Comparator
EDG6
TC6 Capture/Compare Reg.
MUX
EDG2
Read TC1H
Hold Reg.
SH26
P7
Pin Logic
Comparator
EDG7
EDG3
SH37
TC7 Capture/Compare Reg.
Read TC0H
Hold Reg.
MUX
Figure 7-68. Detailed Timer Block Diagram in Queue Mode when PRNT = 1
MC9S12XDP512 Data Sheet, Rev. 2.21
354
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
Load Holding Register and Reset Pulse Accumulator
0
8, 12,16, ..., 1024
8-Bit PAC0 (PACN0)
EDG0
P0
Edge Detector
Delay Counter
PA0H Holding
Register
Interrupt
0
8, 12,16, ..., 1024
EDG1
P1
Edge Detector
8-Bit PAC1 (PACN1)
Delay Counter
PA1H Holding
Register
0
8, 12,16, ..., 1024
EDG2
P2
Edge Detector
8-Bit PAC2 (PACN2)
Delay Counter
PA2H Holding
Register
Interrupt
8, 12,16, ..., 1024
P3
Edge Detector
0
EDG3
8-Bit PAC3 (PACN3)
Delay Counter
PA3H Holding
Register
Figure 7-69. 8-Bit Pulse Accumulators Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
355
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
TIMCLK (Timer Clock)
CLK1
CLK0
PACLK / 256
Clock Select
(PAMOD)
PACLK
PACLK / 65536
Prescaled Clock
(PCLK)
4:1 MUX
Edge Detector
P7
Interrupt
8-Bit PAC3
(PACN3)
8-Bit PAC2
(PACN2)
MUX
PACA
Bus Clock
Divide by 64
Interrupt
8-Bit PAC1
(PACN1)
8-Bit PAC0
(PACN0)
Delay Counter
PACB
Edge Detector
P0
Figure 7-70. 16-Bit Pulse Accumulators Block Diagram
16-Bit Main Timer
Px
Edge
Detector
Delay
Counter
Set CxF
Interrupt
TCx Input
Capture Register
TCxH I.C.
Holding Register
BUFEN • LATQ • TFMOD
Figure 7-71. Block Diagram for Port 7 with Output Compare/Pulse Accumulator A
MC9S12XDP512 Data Sheet, Rev. 2.21
356
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.4.1
Enhanced Capture Timer Modes of Operation
The enhanced capture timer has 8 input capture, output compare (IC/OC) channels, same as on the HC12
standard timer (timer channels TC0 to TC7). When channels are selected as input capture by selecting the
IOSx bit in TIOS register, they are called input capture (IC) channels.
Four IC channels (channels 7–4) are the same as on the standard timer with one capture register each that
memorizes the timer value captured by an action on the associated input pin.
Four other IC channels (channels 3–0), in addition to the capture register, also have one buffer each called
a holding register. This allows two different timer values to be saved without generating any interrupts.
Four 8-bit pulse accumulators are associated with the four buffered IC channels (channels 3–0). Each pulse
accumulator has a holding register to memorize their value by an action on its external input. Each pair of
pulse accumulators can be used as a 16-bit pulse accumulator.
The 16-bit modulus down-counter can control the transfer of the IC registers and the pulse accumulators
contents to the respective holding registers for a given period, every time the count reaches zero.
The modulus down-counter can also be used as a stand-alone time base with periodic interrupt capability.
7.4.1.1
IC Channels
The IC channels are composed of four standard IC registers and four buffered IC channels.
• An IC register is empty when it has been read or latched into the holding register.
• A holding register is empty when it has been read.
7.4.1.1.1
Non-Buffered IC Channels
The main timer value is memorized in the IC register by a valid input pin transition. If the corresponding
NOVWx bit of the ICOVW register is cleared, with a new occurrence of a capture, the contents of IC
register are overwritten by the new value. If the corresponding NOVWx bit of the ICOVW register is set,
the capture register cannot be written unless it is empty. This will prevent the captured value from being
overwritten until it is read.
7.4.1.1.2
Buffered IC Channels
There are two modes of operations for the buffered IC channels:
1. IC latch mode (LATQ = 1)
The main timer value is memorized in the IC register by a valid input pin transition (see Figure 7-65
and Figure 7-66).
The value of the buffered IC register is latched to its holding register by the modulus counter for a
given period when the count reaches zero, by a write 0x0000 to the modulus counter or by a write
to ICLAT in the MCCTL register.
If the corresponding NOVWx bit of the ICOVW register is cleared, with a new occurrence of a
capture, the contents of IC register are overwritten by the new value. In case of latching, the
contents of its holding register are overwritten.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
357
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
If the corresponding NOVWx bit of the ICOVW register is set, the capture register or its holding
register cannot be written by an event unless they are empty (see Section 7.4.1.1, “IC Channels”).
This will prevent the captured value from being overwritten until it is read or latched in the holding
register.
2. IC Queue Mode (LATQ = 0)
The main timer value is memorized in the IC register by a valid input pin transition (see Figure 7-67
and Figure 7-68).
If the corresponding NOVWx bit of the ICOVW register is cleared, with a new occurrence of a
capture, the value of the IC register will be transferred to its holding register and the IC register
memorizes the new timer value.
If the corresponding NOVWx bit of the ICOVW register is set, the capture register or its holding
register cannot be written by an event unless they are empty (see Section 7.4.1.1, “IC Channels”).
In queue mode, reads of the holding register will latch the corresponding pulse accumulator value
to its holding register.
7.4.1.1.3
Delayed IC Channels
There are four delay counters in this module associated with IC channels 0–3. The use of this feature is
explained in the diagram and notes below.
BUS CLOCK
DLY_CNT
0
1
2
3
INPUT ON
CH0–3
255 Cycles
INPUT ON
CH0–3
255.5 Cycles
INPUT ON
CH0–3
255.5 Cycles
INPUT ON
CH0–3
256 Cycles
253
254
255
256
Rejected
Rejected
Accepted
Accepted
Figure 7-72. Channel Input Validity with Delay Counter Feature
In Figure 7-72 a delay counter value of 256 bus cycles is considered.
1. Input pulses with a duration of (DLY_CNT – 1) cycles or shorter are rejected.
2. Input pulses with a duration between (DLY_CNT – 1) and DLY_CNT cycles may be rejected or
accepted, depending on their relative alignment with the sample points.
3. Input pulses with a duration between (DLY_CNT – 1) and DLY_CNT cycles may be rejected or
accepted, depending on their relative alignment with the sample points.
4. Input pulses with a duration of DLY_CNT or longer are accepted.
MC9S12XDP512 Data Sheet, Rev. 2.21
358
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.4.1.2
OC Channel Initialization
Internal register whose output drives OCx when TIOS is set, can be force loaded with a desired data by
writing to CFORC register before OCx is configured for output compare action. This allows a glitch free
switch over of port from general purpose I/O to timer output once the output compare is enabled.
7.4.1.3
Pulse Accumulators
There are four 8-bit pulse accumulators with four 8-bit holding registers associated with the four IC
buffered channels 3–0. A pulse accumulator counts the number of active edges at the input of its channel.
The minimum pulse width for the PAI input is greater than two bus clocks.The maximum input frequency
on the pulse accumulator channel is one half the bus frequency or Eclk.
The user can prevent the 8-bit pulse accumulators from counting further than 0x00FF by utilizing the
PACMX control bit in the ICSYS register. In this case, a value of 0x00FF means that 255 counts or more
have occurred.
Each pair of pulse accumulators can be used as a 16-bit pulse accumulator (see Figure 7-70).
Pulse accumulator B operates only as an event counter, it does not feature gated time accumulation
mode.The edge control for pulse accumulator B as a 16-bit pulse accumulator is defined by TCTL4[1:0].
To operate the 16-bit pulse accumulators A and B (PACA and PACB) independently of input capture or
output compare 7 and 0 respectively, the user must set the corresponding bits: IOSx = 1, OMx = 0, and
OLx = 0. OC7M7 or OC7M0 in the OC7M register must also be cleared.
There are two modes of operation for the pulse accumulators:
• Pulse accumulator latch mode
The value of the pulse accumulator is transferred to its holding register when the modulus
down-counter reaches zero, a write 0x0000 to the modulus counter or when the force latch control
bit ICLAT is written.
At the same time the pulse accumulator is cleared.
• Pulse accumulator queue mode
When queue mode is enabled, reads of an input capture holding register will transfer the contents
of the associated pulse accumulator to its holding register.
At the same time the pulse accumulator is cleared.
7.4.1.4
Modulus Down-Counter
The modulus down-counter can be used as a time base to generate a periodic interrupt. It can also be used
to latch the values of the IC registers and the pulse accumulators to their holding registers.
The action of latching can be programmed to be periodic or only once.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
359
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.4.1.5
Precision Timer
By enabling the PRNT bit of the TSCR1 register, the performance of the timer can be enhanced. In this
case, it is possible to set additional prescaler settings for the main timer counter and modulus down counter
and enhance delay counter settings compared to the settings in the present ECT timer.
7.4.1.6
Flag Clearing Mechanisms
The flags in the ECT can be cleared one of two ways:
1. Normal flag clearing mechanism (TFFCA = 0)
Any of the ECT flags can be cleared by writing a one to the flag.
2. Fast flag clearing mechanism (TFFCA = 1)
With the timer fast flag clear all (TFFCA) enabled, the ECT flags can only be cleared by accessing
the various registers associated with the ECT modes of operation as described below. The flags
cannot be cleared via the normal flag clearing mechanism. This fast flag clearing mechanism has
the advantage of eliminating the software overhead required by a separate clear sequence. Extra
care must be taken to avoid accidental flag clearing due to unintended accesses.
— Input capture
A read from an input capture channel register causes the corresponding channel flag, CxF, to
be cleared in the TFLG1 register.
— Output compare
A write to the output compare channel register causes the corresponding channel flag, CxF, to
be cleared in the TFLG1 register.
— Timer counter
Any access to the TCNT register clears the TOF flag in the TFLG2 register.
— Pulse accumulator A
Any access to the PACN3 and PACN2 registers clears the PAOVF and PAIF flags in the
PAFLG register.
— Pulse accumulator B
Any access to the PACN1 and PACN0 registers clears the PBOVF flag in the PBFLG register.
— Modulus down counter
Any access to the MCCNT register clears the MCZF flag in the MCFLG register.
7.4.2
Reset
The reset state of each individual bit is listed within the register description section (Section 7.3, “Memory
Map and Register Definition”) which details the registers and their bit-fields.
MC9S12XDP512 Data Sheet, Rev. 2.21
360
Freescale Semiconductor
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
7.4.3
Interrupts
This section describes interrupts originated by the ECT block. The MCU must service the interrupt
requests. Table 7-37 lists the interrupts generated by the ECT to communicate with the MCU.
Table 7-37. ECT Interrupts
Interrupt Source
Description
Timer channel 7–0
Active high timer channel interrupts 7–0
Modulus counter underflow
Active high modulus counter interrupt
Pulse accumulator B overflow
Active high pulse accumulator B interrupt
Pulse accumulator A input
Active high pulse accumulator A input interrupt
Pulse accumulator A overflow
Pulse accumulator overflow interrupt
Timer overflow
Timer 0verflow interrupt
The ECT only originates interrupt requests. The following is a description of how the module makes a
request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt
number are chip dependent.
7.4.3.1
Channel [7:0] Interrupt
This active high output will be asserted by the module to request a timer channel 7–0 interrupt to be
serviced by the system controller.
7.4.3.2
Modulus Counter Interrupt
This active high output will be asserted by the module to request a modulus counter underflow interrupt
to be serviced by the system controller.
7.4.3.3
Pulse Accumulator B Overflow Interrupt
This active high output will be asserted by the module to request a timer pulse accumulator B overflow
interrupt to be serviced by the system controller.
7.4.3.4
Pulse Accumulator A Input Interrupt
This active high output will be asserted by the module to request a timer pulse accumulator A input
interrupt to be serviced by the system controller.
7.4.3.5
Pulse Accumulator A Overflow Interrupt
This active high output will be asserted by the module to request a timer pulse accumulator A overflow
interrupt to be serviced by the system controller.
7.4.3.6
Timer Overflow Interrupt
This active high output will be asserted by the module to request a timer overflow interrupt to be serviced
by the system controller.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
361
Chapter 7 Enhanced Capture Timer (S12ECT16B8CV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
362
Freescale Semiconductor
Chapter 8
Pulse-Width Modulator (S12PWM8B8CV1)
8.1
Introduction
The PWM definition is based on the HC12 PWM definitions. It contains the basic features from the HC11
with some of the enhancements incorporated on the HC12: center aligned output mode and four available
clock sources.The PWM module has eight channels with independent control of left and center aligned
outputs on each channel.
Each of the eight channels has a programmable period and duty cycle as well as a dedicated counter. A
flexible clock select scheme allows a total of four different clock sources to be used with the counters. Each
of the modulators can create independent continuous waveforms with software-selectable duty rates from
0% to 100%. The PWM outputs can be programmed as left aligned outputs or center aligned outputs.
8.1.1
Features
The PWM block includes these distinctive features:
• Eight independent PWM channels with programmable period and duty cycle
• Dedicated counter for each PWM channel
• Programmable PWM enable/disable for each channel
• Software selection of PWM duty pulse polarity for each channel
• Period and duty cycle are double buffered. Change takes effect when the end of the effective period
is reached (PWM counter reaches zero) or when the channel is disabled.
• Programmable center or left aligned outputs on individual channels
• Eight 8-bit channel or four 16-bit channel PWM resolution
• Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
• Programmable clock select logic
• Emergency shutdown
8.1.2
Modes of Operation
There is a software programmable option for low power consumption in wait mode that disables the input
clock to the prescaler.
In freeze mode there is a software programmable option to disable the input clock to the prescaler. This is
useful for emulation.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
363
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
8.1.3
Block Diagram
Figure 8-1 shows the block diagram for the 8-bit 8-channel PWM block.
PWM8B8C
PWM Channels
Channel 7
Period and Duty
Counter
Channel 6
Bus Clock
Clock Select
PWM Clock
Period and Duty
PWM6
Counter
Channel 5
Period and Duty
PWM7
PWM5
Counter
Control
Channel 4
Period and Duty
PWM4
Counter
Channel 3
Enable
Period and Duty
PWM3
Counter
Channel 2
Polarity
Period and Duty
Alignment
PWM2
Counter
Channel 1
Period and Duty
PWM1
Counter
Channel 0
Period and Duty
Counter
PWM0
Figure 8-1. PWM Block Diagram
8.2
External Signal Description
The PWM module has a total of 8 external pins.
8.2.1
PWM7 — PWM Channel 7
This pin serves as waveform output of PWM channel 7 and as an input for the emergency shutdown
feature.
8.2.2
PWM6 — PWM Channel 6
This pin serves as waveform output of PWM channel 6.
MC9S12XDP512 Data Sheet, Rev. 2.21
364
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
8.2.3
PWM5 — PWM Channel 5
This pin serves as waveform output of PWM channel 5.
8.2.4
PWM4 — PWM Channel 4
This pin serves as waveform output of PWM channel 4.
8.2.5
PWM3 — PWM Channel 3
This pin serves as waveform output of PWM channel 3.
8.2.6
PWM3 — PWM Channel 2
This pin serves as waveform output of PWM channel 2.
8.2.7
PWM3 — PWM Channel 1
This pin serves as waveform output of PWM channel 1.
8.2.8
PWM3 — PWM Channel 0
This pin serves as waveform output of PWM channel 0.
8.3
Memory Map and Register Definition
This section describes in detail all the registers and register bits in the PWM module.
The special-purpose registers and register bit functions that are not normally available to device end users,
such as factory test control registers and reserved registers, are clearly identified by means of shading the
appropriate portions of address maps and register diagrams. Notes explaining the reasons for restricting
access to the registers and functions are also explained in the individual register descriptions.
8.3.1
Module Memory Map
This section describes the content of the registers in the PWM module. The base address of the PWM
module is determined at the MCU level when the MCU is defined. The register decode map is fixed and
begins at the first address of the module address offset. The figure below shows the registers associated
with the PWM and their relative offset from the base address. The register detail description follows the
order they appear in the register map.
Reserved bits within a register will always read as 0 and the write will be unimplemented. Unimplemented
functions are indicated by shading the bit. .
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
365
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
NOTE
Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.
8.3.2
Register Descriptions
This section describes in detail all the registers and register bits in the PWM module.
Register
Name
PWME
R
W
PWMPOL
R
W
PWMCLK
R
W
PWMPRCLK R
Bit 7
6
5
4
3
2
1
Bit 0
PWME7
PWME6
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
PPOL7
PPOL6
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
PCLK7
PCLKL6
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
PCKB2
PCKB1
PCKB0
PCKA2
PCKA1
PCKA0
CAE7
CAE6
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
CON67
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
PWMCAE
R
W
PWMCTL
R
W
PWMTST1
R
0
W
PWMPRSC1 R
W
PWMSCLA
R
W
PWMSCLB
R
W
PWMSCNTA R
1
W
PWMSCNTB R
1
W
= Unimplemented or Reserved
Figure 8-2. PWM Register Summary (Sheet 1 of 3)
MC9S12XDP512 Data Sheet, Rev. 2.21
366
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Register
Name
PWMCNT0
PWMCNT1
PWMCNT2
PWMCNT3
PWMCNT4
PWMCNT5
PWMCNT6
PWMCNT7
PWMPER0
Bit 7
6
5
4
3
2
1
Bit 0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
R
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
R
W
PWMPER1
R
W
PWMPER2
R
W
PWMPER3
R
W
PWMPER4
R
W
PWMPER5
R
W
PWMPER6
R
W
= Unimplemented or Reserved
Figure 8-2. PWM Register Summary (Sheet 2 of 3)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
367
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Register
Name
PWMPER7
R
W
PWMDTY0
R
W
PWMDTY1
R
W
PWMDTY2
R
W
PWMDTY3
R
W
PWMDTY4
R
W
PWMDTY5
R
W
PWMDTY6
R
W
PWMDTY7
R
W
PWMSDN
R
W
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
PWMIF
PWMIE
0
PWM7IN
PWM7INL
PWM7ENA
0
PWMRSTRT
PWMLVL
= Unimplemented or Reserved
Figure 8-2. PWM Register Summary (Sheet 3 of 3)
1
Intended for factory test purposes only.
8.3.2.1
PWM Enable Register (PWME)
Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PWMEx
bits are set (PWMEx = 1), the associated PWM output is enabled immediately. However, the actual PWM
waveform is not available on the associated PWM output until its clock source begins its next cycle due to
the synchronization of PWMEx and the clock source.
NOTE
The first PWM cycle after enabling the channel can be irregular.
An exception to this is when channels are concatenated. Once concatenated mode is enabled (CONxx bits
set in PWMCTL register), enabling/disabling the corresponding 16-bit PWM channel is controlled by the
MC9S12XDP512 Data Sheet, Rev. 2.21
368
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
low order PWMEx bit.In this case, the high order bytes PWMEx bits have no effect and their
corresponding PWM output lines are disabled.
While in run mode, if all eight PWM channels are disabled (PWME7–0 = 0), the prescaler counter shuts
off for power savings.
R
W
Reset
7
6
5
4
3
2
1
0
PWME7
PWME6
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
0
0
0
0
0
0
0
0
Figure 8-3. PWM Enable Register (PWME)
Read: Anytime
Write: Anytime
Table 8-1. PWME Field Descriptions
Field
Description
7
PWME7
Pulse Width Channel 7 Enable
0 Pulse width channel 7 is disabled.
1 Pulse width channel 7 is enabled. The pulse modulated signal becomes available at PWM output bit 7 when
its clock source begins its next cycle.
6
PWME6
Pulse Width Channel 6 Enable
0 Pulse width channel 6 is disabled.
1 Pulse width channel 6 is enabled. The pulse modulated signal becomes available at PWM output bit6 when
its clock source begins its next cycle. If CON67=1, then bit has no effect and PWM output line 6 is disabled.
5
PWME5
Pulse Width Channel 5 Enable
0 Pulse width channel 5 is disabled.
1 Pulse width channel 5 is enabled. The pulse modulated signal becomes available at PWM output bit 5 when
its clock source begins its next cycle.
4
PWME4
Pulse Width Channel 4 Enable
0 Pulse width channel 4 is disabled.
1 Pulse width channel 4 is enabled. The pulse modulated signal becomes available at PWM, output bit 4 when
its clock source begins its next cycle. If CON45 = 1, then bit has no effect and PWM output bit4 is disabled.
3
PWME3
Pulse Width Channel 3 Enable
0 Pulse width channel 3 is disabled.
1 Pulse width channel 3 is enabled. The pulse modulated signal becomes available at PWM, output bit 3 when
its clock source begins its next cycle.
2
PWME2
Pulse Width Channel 2 Enable
0 Pulse width channel 2 is disabled.
1 Pulse width channel 2 is enabled. The pulse modulated signal becomes available at PWM, output bit 2 when
its clock source begins its next cycle. If CON23 = 1, then bit has no effect and PWM output bit2 is disabled.
1
PWME1
Pulse Width Channel 1 Enable
0 Pulse width channel 1 is disabled.
1 Pulse width channel 1 is enabled. The pulse modulated signal becomes available at PWM, output bit 1 when
its clock source begins its next cycle.
0
PWME0
Pulse Width Channel 0 Enable
0 Pulse width channel 0 is disabled.
1 Pulse width channel 0 is enabled. The pulse modulated signal becomes available at PWM, output bit 0 when
its clock source begins its next cycle. If CON01 = 1, then bit has no effect and PWM output line0 is disabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
369
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
8.3.2.2
PWM Polarity Register (PWMPOL)
The starting polarity of each PWM channel waveform is determined by the associated PPOLx bit in the
PWMPOL register. If the polarity bit is one, the PWM channel output is high at the beginning of the cycle
and then goes low when the duty count is reached. Conversely, if the polarity bit is zero, the output starts
low and then goes high when the duty count is reached.
R
W
Reset
7
6
5
4
3
2
1
0
PPOL7
PPOL6
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
0
0
0
0
0
0
0
0
Figure 8-4. PWM Polarity Register (PWMPOL)
Read: Anytime
Write: Anytime
NOTE
PPOLx register bits can be written anytime. If the polarity is changed while
a PWM signal is being generated, a truncated or stretched pulse can occur
during the transition
Table 8-2. PWMPOL Field Descriptions
Field
7–0
PPOL[7:0]
8.3.2.3
Description
Pulse Width Channel 7–0 Polarity Bits
0 PWM channel 7–0 outputs are low at the beginning of the period, then go high when the duty count is
reached.
1 PWM channel 7–0 outputs are high at the beginning of the period, then go low when the duty count is
reached.
PWM Clock Select Register (PWMCLK)
Each PWM channel has a choice of two clocks to use as the clock source for that channel as described
below.
R
W
Reset
7
6
5
4
3
2
1
0
PCLK7
PCLKL6
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
0
0
0
0
0
0
0
0
Figure 8-5. PWM Clock Select Register (PWMCLK)
Read: Anytime
Write: Anytime
MC9S12XDP512 Data Sheet, Rev. 2.21
370
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
NOTE
Register bits PCLK0 to PCLK7 can be written anytime. If a clock select is
changed while a PWM signal is being generated, a truncated or stretched
pulse can occur during the transition.
Table 8-3. PWMCLK Field Descriptions
Field
Description
7
PCLK7
Pulse Width Channel 7 Clock Select
0 Clock B is the clock source for PWM channel 7.
1 Clock SB is the clock source for PWM channel 7.
6
PCLK6
Pulse Width Channel 6 Clock Select
0 Clock B is the clock source for PWM channel 6.
1 Clock SB is the clock source for PWM channel 6.
5
PCLK5
Pulse Width Channel 5 Clock Select
0 Clock A is the clock source for PWM channel 5.
1 Clock SA is the clock source for PWM channel 5.
4
PCLK4
Pulse Width Channel 4 Clock Select
0 Clock A is the clock source for PWM channel 4.
1 Clock SA is the clock source for PWM channel 4.
3
PCLK3
Pulse Width Channel 3 Clock Select
0 Clock B is the clock source for PWM channel 3.
1 Clock SB is the clock source for PWM channel 3.
2
PCLK2
Pulse Width Channel 2 Clock Select
0 Clock B is the clock source for PWM channel 2.
1 Clock SB is the clock source for PWM channel 2.
1
PCLK1
Pulse Width Channel 1 Clock Select
0 Clock A is the clock source for PWM channel 1.
1 Clock SA is the clock source for PWM channel 1.
0
PCLK0
Pulse Width Channel 0 Clock Select
0 Clock A is the clock source for PWM channel 0.
1 Clock SA is the clock source for PWM channel 0.
8.3.2.4
PWM Prescale Clock Select Register (PWMPRCLK)
This register selects the prescale clock source for clocks A and B independently.
7
R
6
0
W
Reset
0
5
4
PCKB2
PCKB1
PCKB0
0
0
0
3
0
0
2
1
0
PCKA2
PCKA1
PCKA0
0
0
0
= Unimplemented or Reserved
Figure 8-6. PWM Prescale Clock Select Register (PWMPRCLK)
Read: Anytime
Write: Anytime
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
371
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
NOTE
PCKB2–0 and PCKA2–0 register bits can be written anytime. If the clock
pre-scale is changed while a PWM signal is being generated, a truncated or
stretched pulse can occur during the transition.
Table 8-4. PWMPRCLK Field Descriptions
Field
Description
6–4
PCKB[2:0]
Prescaler Select for Clock B — Clock B is one of two clock sources which can be used for channels 2, 3, 6, or
7. These three bits determine the rate of clock B, as shown in Table 8-5.
2–0
PCKA[2:0]
Prescaler Select for Clock A — Clock A is one of two clock sources which can be used for channels 0, 1, 4 or
5. These three bits determine the rate of clock A, as shown in Table 8-6.
s
Table 8-5. Clock B Prescaler Selects
PCKB2
PCKB1
PCKB0
Value of Clock B
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bus clock
Bus clock / 2
Bus clock / 4
Bus clock / 8
Bus clock / 16
Bus clock / 32
Bus clock / 64
Bus clock / 128
Table 8-6. Clock A Prescaler Selects
8.3.2.5
PCKA2
PCKA1
PCKA0
Value of Clock A
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bus clock
Bus clock / 2
Bus clock / 4
Bus clock / 8
Bus clock / 16
Bus clock / 32
Bus clock / 64
Bus clock / 128
PWM Center Align Enable Register (PWMCAE)
The PWMCAE register contains eight control bits for the selection of center aligned outputs or left aligned
outputs for each PWM channel. If the CAEx bit is set to a one, the corresponding PWM output will be
center aligned. If the CAEx bit is cleared, the corresponding PWM output will be left aligned. See
Section 8.4.2.5, “Left Aligned Outputs” and Section 8.4.2.6, “Center Aligned Outputs” for a more detailed
description of the PWM output modes.
R
W
Reset
7
6
5
4
3
2
1
0
CAE7
CAE6
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
0
0
0
0
0
0
0
0
Figure 8-7. PWM Center Align Enable Register (PWMCAE)
MC9S12XDP512 Data Sheet, Rev. 2.21
372
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Read: Anytime
Write: Anytime
NOTE
Write these bits only when the corresponding channel is disabled.
Table 8-7. PWMCAE Field Descriptions
Field
7–0
CAE[7:0]
8.3.2.6
Description
Center Aligned Output Modes on Channels 7–0
0 Channels 7–0 operate in left aligned output mode.
1 Channels 7–0 operate in center aligned output mode.
PWM Control Register (PWMCTL)
The PWMCTL register provides for various control of the PWM module.
7
R
W
Reset
6
CON67
0
5
4
3
2
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
1
0
0
0
0
0
= Unimplemented or Reserved
Figure 8-8. PWM Control Register (PWMCTL)
Read: Anytime
Write: Anytime
There are three control bits for concatenation, each of which is used to concatenate a pair of PWM
channels into one 16-bit channel. When channels 6 and 7are concatenated, channel 6 registers become the
high order bytes of the double byte channel. When channels 4 and 5 are concatenated, channel 4 registers
become the high order bytes of the double byte channel. When channels 2 and 3 are concatenated, channel
2 registers become the high order bytes of the double byte channel. When channels 0 and 1 are
concatenated, channel 0 registers become the high order bytes of the double byte channel.
See Section 8.4.2.7, “PWM 16-Bit Functions” for a more detailed description of the concatenation PWM
Function.
NOTE
Change these bits only when both corresponding channels are disabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
373
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Table 8-8. PWMCTL Field Descriptions
Field
Description
7
CON67
Concatenate Channels 6 and 7
0 Channels 6 and 7 are separate 8-bit PWMs.
1 Channels 6 and 7 are concatenated to create one 16-bit PWM channel. Channel 6 becomes the high order
byte and channel 7 becomes the low order byte. Channel 7 output pin is used as the output for this 16-bit
PWM (bit 7 of port PWMP). Channel 7 clock select control-bit determines the clock source, channel 7 polarity
bit determines the polarity, channel 7 enable bit enables the output and channel 7 center aligned enable bit
determines the output mode.
6
CON45
Concatenate Channels 4 and 5
0 Channels 4 and 5 are separate 8-bit PWMs.
1 Channels 4 and 5 are concatenated to create one 16-bit PWM channel. Channel 4 becomes the high order
byte and channel 5 becomes the low order byte. Channel 5 output pin is used as the output for this 16-bit
PWM (bit 5 of port PWMP). Channel 5 clock select control-bit determines the clock source, channel 5 polarity
bit determines the polarity, channel 5 enable bit enables the output and channel 5 center aligned enable bit
determines the output mode.
5
CON23
Concatenate Channels 2 and 3
0 Channels 2 and 3 are separate 8-bit PWMs.
1 Channels 2 and 3 are concatenated to create one 16-bit PWM channel. Channel 2 becomes the high order
byte and channel 3 becomes the low order byte. Channel 3 output pin is used as the output for this 16-bit
PWM (bit 3 of port PWMP). Channel 3 clock select control-bit determines the clock source, channel 3 polarity
bit determines the polarity, channel 3 enable bit enables the output and channel 3 center aligned enable bit
determines the output mode.
4
CON01
Concatenate Channels 0 and 1
0 Channels 0 and 1 are separate 8-bit PWMs.
1 Channels 0 and 1 are concatenated to create one 16-bit PWM channel. Channel 0 becomes the high order
byte and channel 1 becomes the low order byte. Channel 1 output pin is used as the output for this 16-bit
PWM (bit 1 of port PWMP). Channel 1 clock select control-bit determines the clock source, channel 1 polarity
bit determines the polarity, channel 1 enable bit enables the output and channel 1 center aligned enable bit
determines the output mode.
3
PSWAI
PWM Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling
the input clock to the prescaler.
0 Allow the clock to the prescaler to continue while in wait mode.
1 Stop the input clock to the prescaler whenever the MCU is in wait mode.
2
PFREZ
PWM Counters Stop in Freeze Mode — In freeze mode, there is an option to disable the input clock to the
prescaler by setting the PFRZ bit in the PWMCTL register. If this bit is set, whenever the MCU is in freeze mode,
the input clock to the prescaler is disabled. This feature is useful during emulation as it allows the PWM function
to be suspended. In this way, the counters of the PWM can be stopped while in freeze mode so that once normal
program flow is continued, the counters are re-enabled to simulate real-time operations. Since the registers can
still be accessed in this mode, to re-enable the prescaler clock, either disable the PFRZ bit or exit freeze mode.
0 Allow PWM to continue while in freeze mode.
1 Disable PWM input clock to the prescaler whenever the part is in freeze mode. This is useful for emulation.
8.3.2.7
Reserved Register (PWMTST)
This register is reserved for factory testing of the PWM module and is not available in normal modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
374
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 8-9. Reserved Register (PWMTST)
Read: Always read $00 in normal modes
Write: Unimplemented in normal modes
NOTE
Writing to this register when in special modes can alter the PWM
functionality.
8.3.2.8
Reserved Register (PWMPRSC)
This register is reserved for factory testing of the PWM module and is not available in normal modes.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 8-10. Reserved Register (PWMPRSC)
Read: Always read $00 in normal modes
Write: Unimplemented in normal modes
NOTE
Writing to this register when in special modes can alter the PWM
functionality.
8.3.2.9
PWM Scale A Register (PWMSCLA)
PWMSCLA is the programmable scale value used in scaling clock A to generate clock SA. Clock SA is
generated by taking clock A, dividing it by the value in the PWMSCLA register and dividing that by two.
Clock SA = Clock A / (2 * PWMSCLA)
NOTE
When PWMSCLA = $00, PWMSCLA value is considered a full scale value
of 256. Clock A is thus divided by 512.
Any value written to this register will cause the scale counter to load the new scale value (PWMSCLA).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
375
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Figure 8-11. PWM Scale A Register (PWMSCLA)
Read: Anytime
Write: Anytime (causes the scale counter to load the PWMSCLA value)
8.3.2.10
PWM Scale B Register (PWMSCLB)
PWMSCLB is the programmable scale value used in scaling clock B to generate clock SB. Clock SB is
generated by taking clock B, dividing it by the value in the PWMSCLB register and dividing that by two.
Clock SB = Clock B / (2 * PWMSCLB)
NOTE
When PWMSCLB = $00, PWMSCLB value is considered a full scale value
of 256. Clock B is thus divided by 512.
Any value written to this register will cause the scale counter to load the new scale value (PWMSCLB).
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Figure 8-12. PWM Scale B Register (PWMSCLB)
Read: Anytime
Write: Anytime (causes the scale counter to load the PWMSCLB value).
8.3.2.11
Reserved Registers (PWMSCNTx)
The registers PWMSCNTA and PWMSCNTB are reserved for factory testing of the PWM module and are
not available in normal modes.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 8-13. Reserved Registers (PWMSCNTx)
Read: Always read $00 in normal modes
Write: Unimplemented in normal modes
MC9S12XDP512 Data Sheet, Rev. 2.21
376
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
NOTE
Writing to these registers when in special modes can alter the PWM
functionality.
8.3.2.12
PWM Channel Counter Registers (PWMCNTx)
Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock source.
The counter can be read at any time without affecting the count or the operation of the PWM channel. In
left aligned output mode, the counter counts from 0 to the value in the period register - 1. In center aligned
output mode, the counter counts from 0 up to the value in the period register and then back down to 0.
Any value written to the counter causes the counter to reset to $00, the counter direction to be set to up,
the immediate load of both duty and period registers with values from the buffers, and the output to change
according to the polarity bit. The counter is also cleared at the end of the effective period (see
Section 8.4.2.5, “Left Aligned Outputs” and Section 8.4.2.6, “Center Aligned Outputs” for more details).
When the channel is disabled (PWMEx = 0), the PWMCNTx register does not count. When a channel
becomes enabled (PWMEx = 1), the associated PWM counter starts at the count in the PWMCNTx
register. For more detailed information on the operation of the counters, see Section 8.4.2.4, “PWM Timer
Counters”.
In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the low or
high order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be made by
16-bit access to maintain data coherency.
NOTE
Writing to the counter while the channel is enabled can cause an irregular PWM cycle to occur.
R
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
W
0
0
0
0
0
0
0
0
Reset
0
0
0
0
0
0
0
0
Figure 8-14. PWM Channel Counter Registers (PWMCNTx)
Read: Anytime
Write: Anytime (any value written causes PWM counter to be reset to $00).
8.3.2.13
PWM Channel Period Registers (PWMPERx)
There is a dedicated period register for each channel. The value in this register determines the period of
the associated PWM channel.
The period registers for each channel are double buffered so that if they change while the channel is
enabled, the change will NOT take effect until one of the following occurs:
• The effective period ends
• The counter is written (counter resets to $00)
• The channel is disabled
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
377
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
In this way, the output of the PWM will always be either the old waveform or the new waveform, not some
variation in between. If the channel is not enabled, then writes to the period register will go directly to the
latches as well as the buffer.
NOTE
Reads of this register return the most recent value written. Reads do not
necessarily return the value of the currently active period due to the double
buffering scheme.
See Section 8.4.2.3, “PWM Period and Duty” for more information.
To calculate the output period, take the selected clock source period for the channel of interest (A, B, SA,
or SB) and multiply it by the value in the period register for that channel:
•
•
Left aligned output (CAEx = 0)
PWMx Period = Channel Clock Period * PWMPERx Center Aligned Output (CAEx = 1)
PWMx Period = Channel Clock Period * (2 * PWMPERx)
For boundary case programming values, please refer to Section 8.4.2.8, “PWM Boundary Cases”.
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Figure 8-15. PWM Channel Period Registers (PWMPERx)
Read: Anytime
Write: Anytime
8.3.2.14
PWM Channel Duty Registers (PWMDTYx)
There is a dedicated duty register for each channel. The value in this register determines the duty of the
associated PWM channel. The duty value is compared to the counter and if it is equal to the counter value
a match occurs and the output changes state.
The duty registers for each channel are double buffered so that if they change while the channel is enabled,
the change will NOT take effect until one of the following occurs:
• The effective period ends
• The counter is written (counter resets to $00)
• The channel is disabled
In this way, the output of the PWM will always be either the old duty waveform or the new duty waveform,
not some variation in between. If the channel is not enabled, then writes to the duty register will go directly
to the latches as well as the buffer.
MC9S12XDP512 Data Sheet, Rev. 2.21
378
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
NOTE
Reads of this register return the most recent value written. Reads do not
necessarily return the value of the currently active duty due to the double
buffering scheme.
See Section 8.4.2.3, “PWM Period and Duty” for more information.
NOTE
Depending on the polarity bit, the duty registers will contain the count of
either the high time or the low time. If the polarity bit is one, the output starts
high and then goes low when the duty count is reached, so the duty registers
contain a count of the high time. If the polarity bit is zero, the output starts
low and then goes high when the duty count is reached, so the duty registers
contain a count of the low time.
To calculate the output duty cycle (high time as a% of period) for a particular channel:
• Polarity = 0 (PPOL x =0)
Duty Cycle = [(PWMPERx-PWMDTYx)/PWMPERx] * 100%
• Polarity = 1 (PPOLx = 1)
Duty Cycle = [PWMDTYx / PWMPERx] * 100%
For boundary case programming values, please refer to Section 8.4.2.8, “PWM Boundary Cases”.
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Figure 8-16. PWM Channel Duty Registers (PWMDTYx)
Read: Anytime
Write: Anytime
8.3.2.15
PWM Shutdown Register (PWMSDN)
The PWMSDN register provides for the shutdown functionality of the PWM module in the emergency
cases. For proper operation, channel 7 must be driven to the active level for a minimum of two bus clocks.
7
R
W
Reset
6
5
PWMIF
PWMIE
0
0
0
PWMRSTRT
0
4
PWMLVL
0
3
2
0
PWM7IN
0
0
1
0
PWM7INL
PWM7ENA
0
0
= Unimplemented or Reserved
Figure 8-17. PWM Shutdown Register (PWMSDN)
Read: Anytime
Write: Anytime
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
379
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Table 8-9. PWMSDN Field Descriptions
Field
Description
7
PWMIF
PWM Interrupt Flag — Any change from passive to asserted (active) state or from active to passive state will
be flagged by setting the PWMIF flag = 1. The flag is cleared by writing a logic 1 to it. Writing a 0 has no effect.
0 No change on PWM7IN input.
1 Change on PWM7IN input
6
PWMIE
PWM Interrupt Enable — If interrupt is enabled an interrupt to the CPU is asserted.
0 PWM interrupt is disabled.
1 PWM interrupt is enabled.
5
PWM Restart — The PWM can only be restarted if the PWM channel input 7 is de-asserted. After writing a logic
PWMRSTRT 1 to the PWMRSTRT bit (trigger event) the PWM channels start running after the corresponding counter passes
next “counter == 0” phase. Also, if the PWM7ENA bit is reset to 0, the PWM do not start before the counter
passes $00. The bit is always read as “0”.
4
PWMLVL
PWM Shutdown Output Level If active level as defined by the PWM7IN input, gets asserted all enabled PWM
channels are immediately driven to the level defined by PWMLVL.
0 PWM outputs are forced to 0
1 Outputs are forced to 1.
2
PWM7IN
PWM Channel 7 Input Status — This reflects the current status of the PWM7 pin.
1
PWM7INL
PWM Shutdown Active Input Level for Channel 7 — If the emergency shutdown feature is enabled
(PWM7ENA = 1), this bit determines the active level of the PWM7channel.
0 Active level is low
1 Active level is high
0
PWM7ENA
PWM Emergency Shutdown Enable — If this bit is logic 1, the pin associated with channel 7 is forced to input
and the emergency shutdown feature is enabled. All the other bits in this register are meaningful only if
PWM7ENA = 1.
0 PWM emergency feature disabled.
1 PWM emergency feature is enabled.
8.4
8.4.1
Functional Description
PWM Clock Select
There are four available clocks: clock A, clock B, clock SA (scaled A), and clock SB (scaled B). These
four clocks are based on the bus clock.
Clock A and B can be software selected to be 1, 1/2, 1/4, 1/8,..., 1/64, 1/128 times the bus clock. Clock SA
uses clock A as an input and divides it further with a reloadable counter. Similarly, clock SB uses clock B
as an input and divides it further with a reloadable counter. The rates available for clock SA are software
selectable to be clock A divided by 2, 4, 6, 8,..., or 512 in increments of divide by 2. Similar rates are
available for clock SB. Each PWM channel has the capability of selecting one of two clocks, either the
pre-scaled clock (clock A or B) or the scaled clock (clock SA or SB).
The block diagram in Figure 8-18 shows the four different clocks and how the scaled clocks are created.
MC9S12XDP512 Data Sheet, Rev. 2.21
380
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
8.4.1.1
Prescale
The input clock to the PWM prescaler is the bus clock. It can be disabled whenever the part is in freeze
mode by setting the PFRZ bit in the PWMCTL register. If this bit is set, whenever the MCU is in freeze
mode (freeze mode signal active) the input clock to the prescaler is disabled. This is useful for emulation
in order to freeze the PWM. The input clock can also be disabled when all eight PWM channels are
disabled (PWME7-0 = 0). This is useful for reducing power by disabling the prescale counter.
Clock A and clock B are scaled values of the input clock. The value is software selectable for both clock
A and clock B and has options of 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, or 1/128 times the bus clock. The value
selected for clock A is determined by the PCKA2, PCKA1, PCKA0 bits in the PWMPRCLK register. The
value selected for clock B is determined by the PCKB2, PCKB1, PCKB0 bits also in the PWMPRCLK
register.
8.4.1.2
Clock Scale
The scaled A clock uses clock A as an input and divides it further with a user programmable value and
then divides this by 2. The scaled B clock uses clock B as an input and divides it further with a user
programmable value and then divides this by 2. The rates available for clock SA are software selectable to
be clock A divided by 2, 4, 6, 8,..., or 512 in increments of divide by 2. Similar rates are available for clock
SB.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
381
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Clock A
PCKA2
PCKA1
PCKA0
Clock A/2, A/4, A/6,....A/512
8-Bit Down
Counter
Clock to
PWM Ch 0
PCLK0
Count = 1
M
U
X
Load
PWMSCLA
M
U
X
Clock SA
DIV 2
PCLK1
M
U
X
M
Clock to
PWM Ch 1
Clock to
PWM Ch 2
U
PCLK2
M
U
X
2 4 8 16 32 64 128
Divide by
Prescaler Taps:
X
PCLK3
Clock B
Clock B/2, B/4, B/6,....B/512
U
M
U
X
Clock to
PWM Ch 4
PCLK4
M
Count = 1
8-Bit Down
Counter
X
M
U
X
Load
PWMSCLB
DIV 2
Clock SB
PCKB2
PCKB1
PCKB0
Clock to
PWM Ch 5
PCLK5
M
U
X
Clock to
PWM Ch 6
PCLK6
PWME7-0
Bus Clock
PFRZ
Freeze Mode Signal
Clock to
PWM Ch 3
M
U
X
Clock to
PWM Ch 7
PCLK7
Prescale
Scale
Clock Select
Figure 8-18. PWM Clock Select Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
382
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Clock A is used as an input to an 8-bit down counter. This down counter loads a user programmable scale
value from the scale register (PWMSCLA). When the down counter reaches one, a pulse is output and the
8-bit counter is re-loaded. The output signal from this circuit is further divided by two. This gives a greater
range with only a slight reduction in granularity. Clock SA equals clock A divided by two times the value
in the PWMSCLA register.
NOTE
Clock SA = Clock A / (2 * PWMSCLA)
When PWMSCLA = $00, PWMSCLA value is considered a full scale value
of 256. Clock A is thus divided by 512.
Similarly, clock B is used as an input to an 8-bit down counter followed by a divide by two producing clock
SB. Thus, clock SB equals clock B divided by two times the value in the PWMSCLB register.
NOTE
Clock SB = Clock B / (2 * PWMSCLB)
When PWMSCLB = $00, PWMSCLB value is considered a full scale value
of 256. Clock B is thus divided by 512.
As an example, consider the case in which the user writes $FF into the PWMSCLA register. Clock A for
this case will be E divided by 4. A pulse will occur at a rate of once every 255x4 E cycles. Passing this
through the divide by two circuit produces a clock signal at an E divided by 2040 rate. Similarly, a value
of $01 in the PWMSCLA register when clock A is E divided by 4 will produce a clock at an E divided by
8 rate.
Writing to PWMSCLA or PWMSCLB causes the associated 8-bit down counter to be re-loaded.
Otherwise, when changing rates the counter would have to count down to $01 before counting at the proper
rate. Forcing the associated counter to re-load the scale register value every time PWMSCLA or
PWMSCLB is written prevents this.
NOTE
Writing to the scale registers while channels are operating can cause
irregularities in the PWM outputs.
8.4.1.3
Clock Select
Each PWM channel has the capability of selecting one of two clocks. For channels 0, 1, 4, and 5 the clock
choices are clock A or clock SA. For channels 2, 3, 6, and 7 the choices are clock B or clock SB. The clock
selection is done with the PCLKx control bits in the PWMCLK register.
NOTE
Changing clock control bits while channels are operating can cause
irregularities in the PWM outputs.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
383
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
8.4.2
PWM Channel Timers
The main part of the PWM module are the actual timers. Each of the timer channels has a counter, a period
register and a duty register (each are 8-bit). The waveform output period is controlled by a match between
the period register and the value in the counter. The duty is controlled by a match between the duty register
and the counter value and causes the state of the output to change during the period. The starting polarity
of the output is also selectable on a per channel basis. Shown below in Figure 8-19 is the block diagram
for the PWM timer.
Clock Source
From Port PWMP
Data Register
8-Bit Counter
Gate
PWMCNTx
(Clock Edge
Sync)
Up/Down
Reset
8-bit Compare =
T
M
U
X
M
U
X
Q
PWMDTYx
Q
R
To Pin
Driver
8-bit Compare =
PWMPERx
PPOLx
Q
T
CAEx
Q
R
PWMEx
Figure 8-19. PWM Timer Channel Block Diagram
8.4.2.1
PWM Enable
Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PWMEx
bits are set (PWMEx = 1), the associated PWM output signal is enabled immediately. However, the actual
PWM waveform is not available on the associated PWM output until its clock source begins its next cycle
due to the synchronization of PWMEx and the clock source. An exception to this is when channels are
concatenated. Refer to Section 8.4.2.7, “PWM 16-Bit Functions” for more detail.
NOTE
The first PWM cycle after enabling the channel can be irregular.
MC9S12XDP512 Data Sheet, Rev. 2.21
384
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
On the front end of the PWM timer, the clock is enabled to the PWM circuit by the PWMEx bit being high.
There is an edge-synchronizing circuit to guarantee that the clock will only be enabled or disabled at an
edge. When the channel is disabled (PWMEx = 0), the counter for the channel does not count.
8.4.2.2
PWM Polarity
Each channel has a polarity bit to allow starting a waveform cycle with a high or low signal. This is shown
on the block diagram as a mux select of either the Q output or the Q output of the PWM output flip flop.
When one of the bits in the PWMPOL register is set, the associated PWM channel output is high at the
beginning of the waveform, then goes low when the duty count is reached. Conversely, if the polarity bit
is zero, the output starts low and then goes high when the duty count is reached.
8.4.2.3
PWM Period and Duty
Dedicated period and duty registers exist for each channel and are double buffered so that if they change
while the channel is enabled, the change will NOT take effect until one of the following occurs:
• The effective period ends
• The counter is written (counter resets to $00)
• The channel is disabled
In this way, the output of the PWM will always be either the old waveform or the new waveform, not some
variation in between. If the channel is not enabled, then writes to the period and duty registers will go
directly to the latches as well as the buffer.
A change in duty or period can be forced into effect “immediately” by writing the new value to the duty
and/or period registers and then writing to the counter. This forces the counter to reset and the new duty
and/or period values to be latched. In addition, since the counter is readable, it is possible to know where
the count is with respect to the duty value and software can be used to make adjustments
NOTE
When forcing a new period or duty into effect immediately, an irregular
PWM cycle can occur.
Depending on the polarity bit, the duty registers will contain the count of
either the high time or the low time.
8.4.2.4
PWM Timer Counters
Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock source (see
Section 8.4.1, “PWM Clock Select” for the available clock sources and rates). The counter compares to
two registers, a duty register and a period register as shown in Figure 8-19. When the PWM counter
matches the duty register, the output flip-flop changes state, causing the PWM waveform to also change
state. A match between the PWM counter and the period register behaves differently depending on what
output mode is selected as shown in Figure 8-19 and described in Section 8.4.2.5, “Left Aligned Outputs”
and Section 8.4.2.6, “Center Aligned Outputs”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
385
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Each channel counter can be read at anytime without affecting the count or the operation of the PWM
channel.
Any value written to the counter causes the counter to reset to $00, the counter direction to be set to up,
the immediate load of both duty and period registers with values from the buffers, and the output to change
according to the polarity bit. When the channel is disabled (PWMEx = 0), the counter stops. When a
channel becomes enabled (PWMEx = 1), the associated PWM counter continues from the count in the
PWMCNTx register. This allows the waveform to continue where it left off when the channel is
re-enabled. When the channel is disabled, writing “0” to the period register will cause the counter to reset
on the next selected clock.
NOTE
If the user wants to start a new “clean” PWM waveform without any
“history” from the old waveform, the user must write to channel counter
(PWMCNTx) prior to enabling the PWM channel (PWMEx = 1).
Generally, writes to the counter are done prior to enabling a channel in order to start from a known state.
However, writing a counter can also be done while the PWM channel is enabled (counting). The effect is
similar to writing the counter when the channel is disabled, except that the new period is started
immediately with the output set according to the polarity bit.
NOTE
Writing to the counter while the channel is enabled can cause an irregular
PWM cycle to occur.
The counter is cleared at the end of the effective period (see Section 8.4.2.5, “Left Aligned Outputs” and
Section 8.4.2.6, “Center Aligned Outputs” for more details).
Table 8-10. PWM Timer Counter Conditions
Counter Clears ($00)
Counter Counts
Counter Stops
When PWMCNTx register written to
any value
When PWM channel is enabled
(PWMEx = 1). Counts from last value in
PWMCNTx.
When PWM channel is disabled
(PWMEx = 0)
Effective period ends
8.4.2.5
Left Aligned Outputs
The PWM timer provides the choice of two types of outputs, left aligned or center aligned. They are
selected with the CAEx bits in the PWMCAE register. If the CAEx bit is cleared (CAEx = 0), the
corresponding PWM output will be left aligned.
In left aligned output mode, the 8-bit counter is configured as an up counter only. It compares to two
registers, a duty register and a period register as shown in the block diagram in Figure 8-19. When the
PWM counter matches the duty register the output flip-flop changes state causing the PWM waveform to
also change state. A match between the PWM counter and the period register resets the counter and the
output flip-flop, as shown in Figure 8-19, as well as performing a load from the double buffer period and
duty register to the associated registers, as described in Section 8.4.2.3, “PWM Period and Duty”. The
counter counts from 0 to the value in the period register – 1.
MC9S12XDP512 Data Sheet, Rev. 2.21
386
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
NOTE
Changing the PWM output mode from left aligned to center aligned output
(or vice versa) while channels are operating can cause irregularities in the
PWM output. It is recommended to program the output mode before
enabling the PWM channel.
PPOLx = 0
PPOLx = 1
PWMDTYx
Period = PWMPERx
Figure 8-20. PWM Left Aligned Output Waveform
To calculate the output frequency in left aligned output mode for a particular channel, take the selected
clock source frequency for the channel (A, B, SA, or SB) and divide it by the value in the period register
for that channel.
• PWMx Frequency = Clock (A, B, SA, or SB) / PWMPERx
• PWMx Duty Cycle (high time as a% of period):
— Polarity = 0 (PPOLx = 0)
• Duty Cycle = [(PWMPERx-PWMDTYx)/PWMPERx] * 100%
— Polarity = 1 (PPOLx = 1)
Duty Cycle = [PWMDTYx / PWMPERx] * 100%
As an example of a left aligned output, consider the following case:
Clock Source = E, where E = 10 MHz (100 ns period)
PPOLx = 0
PWMPERx = 4
PWMDTYx = 1
PWMx Frequency = 10 MHz/4 = 2.5 MHz
PWMx Period = 400 ns
PWMx Duty Cycle = 3/4 *100% = 75%
The output waveform generated is shown in Figure 8-21.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
387
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
E = 100 ns
Duty Cycle = 75%
Period = 400 ns
Figure 8-21. PWM Left Aligned Output Example Waveform
8.4.2.6
Center Aligned Outputs
For center aligned output mode selection, set the CAEx bit (CAEx = 1) in the PWMCAE register and the
corresponding PWM output will be center aligned.
The 8-bit counter operates as an up/down counter in this mode and is set to up whenever the counter is
equal to $00. The counter compares to two registers, a duty register and a period register as shown in the
block diagram in Figure 8-19. When the PWM counter matches the duty register, the output flip-flop
changes state, causing the PWM waveform to also change state. A match between the PWM counter and
the period register changes the counter direction from an up-count to a down-count. When the PWM
counter decrements and matches the duty register again, the output flip-flop changes state causing the
PWM output to also change state. When the PWM counter decrements and reaches zero, the counter
direction changes from a down-count back to an up-count and a load from the double buffer period and
duty registers to the associated registers is performed, as described in Section 8.4.2.3, “PWM Period and
Duty”. The counter counts from 0 up to the value in the period register and then back down to 0. Thus the
effective period is PWMPERx*2.
NOTE
Changing the PWM output mode from left aligned to center aligned output
(or vice versa) while channels are operating can cause irregularities in the
PWM output. It is recommended to program the output mode before
enabling the PWM channel.
PPOLx = 0
PPOLx = 1
PWMDTYx
PWMDTYx
PWMPERx
PWMPERx
Period = PWMPERx*2
Figure 8-22. PWM Center Aligned Output Waveform
MC9S12XDP512 Data Sheet, Rev. 2.21
388
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
To calculate the output frequency in center aligned output mode for a particular channel, take the selected
clock source frequency for the channel (A, B, SA, or SB) and divide it by twice the value in the period
register for that channel.
• PWMx Frequency = Clock (A, B, SA, or SB) / (2*PWMPERx)
• PWMx Duty Cycle (high time as a% of period):
— Polarity = 0 (PPOLx = 0)
Duty Cycle = [(PWMPERx-PWMDTYx)/PWMPERx] * 100%
— Polarity = 1 (PPOLx = 1)
Duty Cycle = [PWMDTYx / PWMPERx] * 100%
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
389
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
As an example of a center aligned output, consider the following case:
Clock Source = E, where E = 10 MHz (100 ns period)
PPOLx = 0
PWMPERx = 4
PWMDTYx = 1
PWMx Frequency = 10 MHz/8 = 1.25 MHz
PWMx Period = 800 ns
PWMx Duty Cycle = 3/4 *100% = 75%
Shown in Figure 8-23 is the output waveform generated.
E = 100 ns
E = 100 ns
DUTY CYCLE = 75%
PERIOD = 800 ns
Figure 8-23. PWM Center Aligned Output Example Waveform
8.4.2.7
PWM 16-Bit Functions
The PWM timer also has the option of generating 8-channels of 8-bits or 4-channels of 16-bits for greater
PWM resolution. This 16-bit channel option is achieved through the concatenation of two 8-bit channels.
The PWMCTL register contains four control bits, each of which is used to concatenate a pair of PWM
channels into one 16-bit channel. Channels 6 and 7 are concatenated with the CON67 bit, channels 4 and
5 are concatenated with the CON45 bit, channels 2 and 3 are concatenated with the CON23 bit, and
channels 0 and 1 are concatenated with the CON01 bit.
NOTE
Change these bits only when both corresponding channels are disabled.
When channels 6 and 7 are concatenated, channel 6 registers become the high order bytes of the double
byte channel, as shown in Figure 8-24. Similarly, when channels 4 and 5 are concatenated, channel 4
registers become the high order bytes of the double byte channel. When channels 2 and 3 are concatenated,
channel 2 registers become the high order bytes of the double byte channel. When channels 0 and 1 are
concatenated, channel 0 registers become the high order bytes of the double byte channel.
When using the 16-bit concatenated mode, the clock source is determined by the low order 8-bit channel
clock select control bits. That is channel 7 when channels 6 and 7 are concatenated, channel 5 when
channels 4 and 5 are concatenated, channel 3 when channels 2 and 3 are concatenated, and channel 1 when
channels 0 and 1 are concatenated. The resulting PWM is output to the pins of the corresponding low order
8-bit channel as also shown in Figure 8-24. The polarity of the resulting PWM output is controlled by the
PPOLx bit of the corresponding low order 8-bit channel as well.
MC9S12XDP512 Data Sheet, Rev. 2.21
390
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Clock Source 7
High
Low
PWMCNT6
PWCNT7
Period/Duty Compare
PWM7
Clock Source 5
High
Low
PWMCNT4
PWCNT5
Period/Duty Compare
PWM5
Clock Source 3
High
Low
PWMCNT2
PWCNT3
Period/Duty Compare
PWM3
Clock Source 1
High
Low
PWMCNT0
PWCNT1
Period/Duty Compare
PWM1
Figure 8-24. PWM 16-Bit Mode
Once concatenated mode is enabled (CONxx bits set in PWMCTL register), enabling/disabling the
corresponding 16-bit PWM channel is controlled by the low order PWMEx bit. In this case, the high order
bytes PWMEx bits have no effect and their corresponding PWM output is disabled.
In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the low or
high order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be made by
16-bit access to maintain data coherency.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
391
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
Either left aligned or center aligned output mode can be used in concatenated mode and is controlled by
the low order CAEx bit. The high order CAEx bit has no effect.
Table 8-11 is used to summarize which channels are used to set the various control bits when in 16-bit
mode.
Table 8-11. 16-bit Concatenation Mode Summary
8.4.2.8
CONxx
PWMEx
PPOLx
PCLKx
CAEx
PWMx
Output
CON67
PWME7
PPOL7
PCLK7
CAE7
PWM7
CON45
PWME5
PPOL5
PCLK5
CAE5
PWM5
CON23
PWME3
PPOL3
PCLK3
CAE3
PWM3
CON01
PWME1
PPOL1
PCLK1
CAE1
PWM1
PWM Boundary Cases
Table 8-12 summarizes the boundary conditions for the PWM regardless of the output mode (left aligned
or center aligned) and 8-bit (normal) or 16-bit (concatenation).
Table 8-12. PWM Boundary Cases
1
8.5
PWMDTYx
PWMPERx
PPOLx
PWMx Output
$00
(indicates no duty)
>$00
1
Always low
$00
(indicates no duty)
>$00
0
Always high
XX
$001
(indicates no period)
1
Always high
XX
$001
(indicates no period)
0
Always low
>= PWMPERx
XX
1
Always high
>= PWMPERx
XX
0
Always low
Counter = $00 and does not count.
Resets
The reset state of each individual bit is listed within the Section 8.3.2, “Register Descriptions” which
details the registers and their bit-fields. All special functions or modes which are initialized during or just
following reset are described within this section.
• The 8-bit up/down counter is configured as an up counter out of reset.
• All the channels are disabled and all the counters do not count.
MC9S12XDP512 Data Sheet, Rev. 2.21
392
Freescale Semiconductor
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
8.6
Interrupts
The PWM module has only one interrupt which is generated at the time of emergency shutdown, if the
corresponding enable bit (PWMIE) is set. This bit is the enable for the interrupt. The interrupt flag PWMIF
is set whenever the input level of the PWM7 channel changes while PWM7ENA = 1 or when PWMENA
is being asserted while the level at PWM7 is active.
In stop mode or wait mode (with the PSWAI bit set), the emergency shutdown feature will drive the PWM
outputs to their shutdown output levels but the PWMIF flag will not be set.
A description of the registers involved and affected due to this interrupt is explained in Section 8.3.2.15,
“PWM Shutdown Register (PWMSDN)”.
The PWM block only generates the interrupt and does not service it. The interrupt signal name is PWM
interrupt signal.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
393
Chapter 8 Pulse-Width Modulator (S12PWM8B8CV1)
MC9S12XDP512 Data Sheet, Rev. 2.21
394
Freescale Semiconductor
Chapter 9
Inter-Integrated Circuit (IICV2) Block Description
9.1
Introduction
The inter-IC bus (IIC) is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange between devices. Being a two-wire device, the IIC bus minimizes the need for large numbers of
connections between devices, and eliminates the need for an address decoder.
This bus is suitable for applications requiring occasional communications over a short distance between a
number of devices. It also provides flexibility, allowing additional devices to be connected to the bus for
further expansion and system development.
The interface is designed to operate up to 100 kbps with maximum bus loading and timing. The device is
capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The
maximum communication length and the number of devices that can be connected are limited by a
maximum bus capacitance of 400 pF.
9.1.1
Features
The IIC module has the following key features:
• Compatible with I2C bus standard
• Multi-master operation
• Software programmable for one of 256 different serial clock frequencies
• Software selectable acknowledge bit
• Interrupt driven byte-by-byte data transfer
• Arbitration lost interrupt with automatic mode switching from master to slave
• Calling address identification interrupt
• Start and stop signal generation/detection
• Repeated start signal generation
• Acknowledge bit generation/detection
• Bus busy detection
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
395
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.1.2
Modes of Operation
The IIC functions the same in normal, special, and emulation modes. It has two low power modes: wait
and stop modes.
9.1.3
Block Diagram
The block diagram of the IIC module is shown in Figure 9-1.
IIC
Registers
Start
Stop
Arbitration
Control
Clock
Control
In/Out
Data
Shift
Register
Interrupt
bus_clock
SCL
SDA
Address
Compare
Figure 9-1. IIC Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
396
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.2
External Signal Description
The IICV2 module has two external pins.
9.2.1
IIC_SCL — Serial Clock Line Pin
This is the bidirectional serial clock line (SCL) of the module, compatible to the IIC bus specification.
9.2.2
IIC_SDA — Serial Data Line Pin
This is the bidirectional serial data line (SDA) of the module, compatible to the IIC bus specification.
9.3
Memory Map and Register Definition
This section provides a detailed description of all memory and registers for the IIC module.
9.3.1
Module Memory Map
The memory map for the IIC module is given below in Table 1-1. The address listed for each register is
the address offset.The total address for each register is the sum of the base address for the IIC module and
the address offset for each register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
397
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.3.2
Register Descriptions
This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Details of register bit and field function follow the register
diagrams, in bit order.
Register
Name
IBAD
R
W
IBFD
R
W
IBCR
R
W
IBSR
R
Bit 7
6
5
4
3
2
1
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBEN
IBIE
MS/SL
Tx/Rx
TXAK
0
0
TCF
IAAS
IBB
D7
D6
D5
IBAL
W
IBDR
R
W
D4
RSTA
0
SRW
D3
D2
IBIF
D1
Bit 0
0
IBC0
IBSWAI
RXAK
D0
= Unimplemented or Reserved
Figure 9-2. IIC Register Summary
9.3.2.1
IIC Address Register (IBAD)
7
6
5
4
3
2
1
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
0
0
0
0
0
0
0
R
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 9-3. IIC Bus Address Register (IBAD)
Read and write anytime
This register contains the address the IIC bus will respond to when addressed as a slave; note that it is not
the address sent on the bus during the address transfer.
Table 9-1. IBAD Field Descriptions
Field
Description
7:1
ADR[7:1]
Slave Address — Bit 1 to bit 7 contain the specific slave address to be used by the IIC bus module.The default
mode of IIC bus is slave mode for an address match on the bus.
0
Reserved
Reserved — Bit 0 of the IBAD is reserved for future compatibility. This bit will always read 0.
MC9S12XDP512 Data Sheet, Rev. 2.21
398
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.3.2.2
IIC Frequency Divider Register (IBFD)
7
6
5
4
3
2
1
0
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBC0
0
0
0
0
0
0
0
0
R
W
Reset
= Unimplemented or Reserved
Figure 9-4. IIC Bus Frequency Divider Register (IBFD)
Read and write anytime
Table 9-2. IBFD Field Descriptions
Field
Description
7:0
IBC[7:0]
I Bus Clock Rate 7:0 — This field is used to prescale the clock for bit rate selection. The bit clock generator is
implemented as a prescale divider — IBC7:6, prescaled shift register — IBC5:3 select the prescaler divider and
IBC2-0 select the shift register tap point. The IBC bits are decoded to give the tap and prescale values as shown
in Table 9-3.
Table 9-3. I-Bus Tap and Prescale Values
IBC2-0
(bin)
SCL Tap
(clocks)
SDA Tap
(clocks)
000
5
1
001
6
1
010
7
2
011
8
2
100
9
3
101
10
3
110
12
4
111
15
4
IBC5-3
(bin)
scl2start
(clocks)
scl2stop
(clocks)
scl2tap
(clocks)
tap2tap
(clocks)
000
2
7
4
1
001
2
7
4
2
010
2
9
6
4
011
6
9
6
8
100
14
17
14
16
101
30
33
30
32
110
62
65
62
64
111
126
129
126
128
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
399
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-4. Multiplier Factor
IBC7-6
MUL
00
01
01
02
10
04
11
RESERVED
The number of clocks from the falling edge of SCL to the first tap (Tap[1]) is defined by the values shown
in the scl2tap column of Table 9-3, all subsequent tap points are separated by 2IBC5-3 as shown in the
tap2tap column in Table 9-3. The SCL Tap is used to generated the SCL period and the SDA Tap is used
to determine the delay from the falling edge of SCL to SDA changing, the SDA hold time.
IBC7–6 defines the multiplier factor MUL. The values of MUL are shown in the Table 9-4.
SCL Divider
SCL
SDA Hold
SDA
SDA
SCL Hold(stop)
SCL Hold(start)
SCL
START condition
STOP condition
Figure 9-5. SCL Divider and SDA Hold
The equation used to generate the divider values from the IBFD bits is:
SCL Divider = MUL x {2 x (scl2tap + [(SCL_Tap -1) x tap2tap] + 2)}
MC9S12XDP512 Data Sheet, Rev. 2.21
400
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
The SDA hold delay is equal to the CPU clock period multiplied by the SDA Hold value shown in
Table 9-5. The equation used to generate the SDA Hold value from the IBFD bits is:
SDA Hold = MUL x {scl2tap + [(SDA_Tap - 1) x tap2tap] + 3}
The equation for SCL Hold values to generate the start and stop conditions from the IBFD bits is:
SCL Hold(start) = MUL x [scl2start + (SCL_Tap - 1) x tap2tap]
SCL Hold(stop) = MUL x [scl2stop + (SCL_Tap - 1) x tap2tap]
Table 9-5. IIC Divider and Hold Values (Sheet 1 of 5)
IBC[7:0]
(hex)
SCL Divider
(clocks)
SDA Hold
(clocks)
SCL Hold
(start)
SCL Hold
(stop)
20
22
24
26
28
30
34
40
28
32
36
40
44
48
56
68
48
56
64
72
80
88
104
128
80
96
112
128
144
160
192
240
160
192
224
7
7
8
8
9
9
10
10
7
7
9
9
11
11
13
13
9
9
13
13
17
17
21
21
9
9
17
17
25
25
33
33
17
17
33
6
7
8
9
10
11
13
16
10
12
14
16
18
20
24
30
18
22
26
30
34
38
46
58
38
46
54
62
70
78
94
118
78
94
110
11
12
13
14
15
16
18
21
15
17
19
21
23
25
29
35
25
29
33
37
41
45
53
65
41
49
57
65
73
81
97
121
81
97
113
MUL=1
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
401
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-5. IIC Divider and Hold Values (Sheet 2 of 5)
IBC[7:0]
(hex)
SCL Divider
(clocks)
SDA Hold
(clocks)
SCL Hold
(start)
SCL Hold
(stop)
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
256
288
320
384
480
320
384
448
512
576
640
768
960
640
768
896
1024
1152
1280
1536
1920
1280
1536
1792
2048
2304
2560
3072
3840
33
49
49
65
65
33
33
65
65
97
97
129
129
65
65
129
129
193
193
257
257
129
129
257
257
385
385
513
513
126
142
158
190
238
158
190
222
254
286
318
382
478
318
382
446
510
574
638
766
958
638
766
894
1022
1150
1278
1534
1918
129
145
161
193
241
161
193
225
257
289
321
385
481
321
385
449
513
577
641
769
961
641
769
897
1025
1153
1281
1537
1921
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
40
44
48
52
56
60
68
80
56
64
72
80
88
96
112
14
14
16
16
18
18
20
20
14
14
18
18
22
22
26
12
14
16
18
20
22
26
32
20
24
28
32
36
40
48
22
24
26
28
30
32
36
42
30
34
38
42
46
50
58
MUL=2
MC9S12XDP512 Data Sheet, Rev. 2.21
402
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-5. IIC Divider and Hold Values (Sheet 3 of 5)
IBC[7:0]
(hex)
SCL Divider
(clocks)
SDA Hold
(clocks)
SCL Hold
(start)
SCL Hold
(stop)
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
136
96
112
128
144
160
176
208
256
160
192
224
256
288
320
384
480
320
384
448
512
576
640
768
960
640
768
896
1024
1152
1280
1536
1920
1280
1536
1792
2048
2304
2560
3072
3840
2560
3072
3584
4096
26
18
18
26
26
34
34
42
42
18
18
34
34
50
50
66
66
34
34
66
66
98
98
130
130
66
66
130
130
194
194
258
258
130
130
258
258
386
386
514
514
258
258
514
514
60
36
44
52
60
68
76
92
116
76
92
108
124
140
156
188
236
156
188
220
252
284
316
380
476
316
380
444
508
572
636
764
956
636
764
892
1020
1148
1276
1532
1916
1276
1532
1788
2044
70
50
58
66
74
82
90
106
130
82
98
114
130
146
162
194
242
162
194
226
258
290
322
386
482
322
386
450
514
578
642
770
962
642
770
898
1026
1154
1282
1538
1922
1282
1538
1794
2050
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
403
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-5. IIC Divider and Hold Values (Sheet 4 of 5)
IBC[7:0]
(hex)
SCL Divider
(clocks)
SDA Hold
(clocks)
SCL Hold
(start)
SCL Hold
(stop)
7C
7D
7E
7F
4608
5120
6144
7680
770
770
1026
1026
2300
2556
3068
3836
2306
2562
3074
3842
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
80
88
96
104
112
120
136
160
112
128
144
160
176
192
224
272
192
224
256
288
320
352
416
512
320
384
448
512
576
640
768
960
640
768
896
1024
1152
1280
1536
1920
28
28
32
32
36
36
40
40
28
28
36
36
44
44
52
52
36
36
52
52
68
68
84
84
36
36
68
68
100
100
132
132
68
68
132
132
196
196
260
260
24
28
32
36
40
44
52
64
40
48
56
64
72
80
96
120
72
88
104
120
136
152
184
232
152
184
216
248
280
312
376
472
312
376
440
504
568
632
760
952
44
48
52
56
60
64
72
84
60
68
76
84
92
100
116
140
100
116
132
148
164
180
212
260
164
196
228
260
292
324
388
484
324
388
452
516
580
644
772
964
MUL=4
MC9S12XDP512 Data Sheet, Rev. 2.21
404
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-5. IIC Divider and Hold Values (Sheet 5 of 5)
IBC[7:0]
(hex)
SCL Divider
(clocks)
SDA Hold
(clocks)
SCL Hold
(start)
SCL Hold
(stop)
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
1280
1536
1792
2048
2304
2560
3072
3840
2560
3072
3584
4096
4608
5120
6144
7680
5120
6144
7168
8192
9216
10240
12288
15360
132
132
260
260
388
388
516
516
260
260
516
516
772
772
1028
1028
516
516
1028
1028
1540
1540
2052
2052
632
760
888
1016
1144
1272
1528
1912
1272
1528
1784
2040
2296
2552
3064
3832
2552
3064
3576
4088
4600
5112
6136
7672
644
772
900
1028
1156
1284
1540
1924
1284
1540
1796
2052
2308
2564
3076
3844
2564
3076
3588
4100
4612
5124
6148
7684
9.3.2.3
IIC Control Register (IBCR)
7
6
5
4
3
IBEN
IBIE
MS/SL
Tx/Rx
TXAK
R
1
0
0
0
IBSWAI
RSTA
W
Reset
2
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 9-6. IIC Bus Control Register (IBCR)
Read and write anytime
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
405
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-6. IBCR Field Descriptions
Field
Description
7
IBEN
I-Bus Enable — This bit controls the software reset of the entire IIC bus module.
0 The module is reset and disabled. This is the power-on reset situation. When low the interface is held in reset
but registers can be accessed
1 The IIC bus module is enabled.This bit must be set before any other IBCR bits have any effect
If the IIC bus module is enabled in the middle of a byte transfer the interface behaves as follows: slave mode
ignores the current transfer on the bus and starts operating whenever a subsequent start condition is detected.
Master mode will not be aware that the bus is busy, hence if a start cycle is initiated then the current bus cycle
may become corrupt. This would ultimately result in either the current bus master or the IIC bus module losing
arbitration, after which bus operation would return to normal.
6
IBIE
I-Bus Interrupt Enable
0 Interrupts from the IIC bus module are disabled. Note that this does not clear any currently pending interrupt
condition
1 Interrupts from the IIC bus module are enabled. An IIC bus interrupt occurs provided the IBIF bit in the status
register is also set.
5
MS/SL
Master/Slave Mode Select Bit — Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START
signal is generated on the bus, and the master mode is selected. When this bit is changed from 1 to 0, a STOP
signal is generated and the operation mode changes from master to slave.A STOP signal should only be
generated if the IBIF flag is set. MS/SL is cleared without generating a STOP signal when the master loses
arbitration.
0 Slave Mode
1 Master Mode
4
Tx/Rx
Transmit/Receive Mode Select Bit — This bit selects the direction of master and slave transfers. When
addressed as a slave this bit should be set by software according to the SRW bit in the status register. In master
mode this bit should be set according to the type of transfer required. Therefore, for address cycles, this bit will
always be high.
0 Receive
1 Transmit
3
TXAK
Transmit Acknowledge Enable — This bit specifies the value driven onto SDA during data acknowledge cycles
for both master and slave receivers. The IIC module will always acknowledge address matches, provided it is
enabled, regardless of the value of TXAK. Note that values written to this bit are only used when the IIC bus is a
receiver, not a transmitter.
0 An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte data
1 No acknowledge signal response is sent (i.e., acknowledge bit = 1)
2
RSTA
Repeat Start — Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is the
current bus master. This bit will always be read as a low. Attempting a repeated start at the wrong time, if the bus
is owned by another master, will result in loss of arbitration.
1 Generate repeat start cycle
1
Reserved — Bit 1 of the IBCR is reserved for future compatibility. This bit will always read 0.
RESERVED
0
IBSWAI
I Bus Interface Stop in Wait Mode
0 IIC bus module clock operates normally
1 Halt IIC bus module clock generation in wait mode
Wait mode is entered via execution of a CPU WAI instruction. In the event that the IBSWAI bit is set, all
clocks internal to the IIC will be stopped and any transmission currently in progress will halt.If the CPU
were woken up by a source other than the IIC module, then clocks would restart and the IIC would resume
MC9S12XDP512 Data Sheet, Rev. 2.21
406
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
from where was during the previous transmission. It is not possible for the IIC to wake up the CPU when
its internal clocks are stopped.
If it were the case that the IBSWAI bit was cleared when the WAI instruction was executed, the IIC internal
clocks and interface would remain alive, continuing the operation which was currently underway. It is also
possible to configure the IIC such that it will wake up the CPU via an interrupt at the conclusion of the
current operation. See the discussion on the IBIF and IBIE bits in the IBSR and IBCR, respectively.
9.3.2.4
R
IIC Status Register (IBSR)
7
6
5
TCF
IAAS
IBB
4
3
2
0
SRW
IBAL
1
0
RXAK
IBIF
W
Reset
1
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 9-7. IIC Bus Status Register (IBSR)
This status register is read-only with exception of bit 1 (IBIF) and bit 4 (IBAL), which are software
clearable.
Table 9-7. IBSR Field Descriptions
Field
Description
7
TCF
Data Transferring Bit — While one byte of data is being transferred, this bit is cleared. It is set by the falling
edge of the 9th clock of a byte transfer. Note that this bit is only valid during or immediately following a transfer
to the IIC module or from the IIC module.
0 Transfer in progress
1 Transfer complete
6
IAAS
Addressed as a Slave Bit — When its own specific address (I-bus address register) is matched with the calling
address, this bit is set.The CPU is interrupted provided the IBIE is set.Then the CPU needs to check the SRW
bit and set its Tx/Rx mode accordingly.Writing to the I-bus control register clears this bit.
0 Not addressed
1 Addressed as a slave
5
IBB
Bus Busy Bit
0 This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a STOP signal is
detected, IBB is cleared and the bus enters idle state.
1 Bus is busy
4
IBAL
Arbitration Lost — The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost.
Arbitration is lost in the following circumstances:
1. SDA sampled low when the master drives a high during an address or data transmit cycle.
2. SDA sampled low when the master drives a high during the acknowledge bit of a data receive cycle.
3. A start cycle is attempted when the bus is busy.
4. A repeated start cycle is requested in slave mode.
5. A stop condition is detected when the master did not request it.
This bit must be cleared by software, by writing a one to it. A write of 0 has no effect on this bit.
3
Reserved — Bit 3 of IBSR is reserved for future use. A read operation on this bit will return 0.
RESERVED
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
407
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Table 9-7. IBSR Field Descriptions (continued)
Field
Description
2
SRW
Slave Read/Write — When IAAS is set this bit indicates the value of the R/W command bit of the calling address
sent from the master
This bit is only valid when the I-bus is in slave mode, a complete address transfer has occurred with an address
match and no other transfers have been initiated.
Checking this bit, the CPU can select slave transmit/receive mode according to the command of the master.
0 Slave receive, master writing to slave
1 Slave transmit, master reading from slave
1
IBIF
I-Bus Interrupt — The IBIF bit is set when one of the following conditions occurs:
— Arbitration lost (IBAL bit set)
— Byte transfer complete (TCF bit set)
— Addressed as slave (IAAS bit set)
It will cause a processor interrupt request if the IBIE bit is set. This bit must be cleared by software, writing a one
to it. A write of 0 has no effect on this bit.
0
RXAK
Received Acknowledge — The value of SDA during the acknowledge bit of a bus cycle. If the received
acknowledge bit (RXAK) is low, it indicates an acknowledge signal has been received after the completion of 8
bits data transmission on the bus. If RXAK is high, it means no acknowledge signal is detected at the 9th clock.
0 Acknowledge received
1 No acknowledge received
9.3.2.5
IIC Data I/O Register (IBDR)
7
6
5
4
3
2
1
0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 9-8. IIC Bus Data I/O Register (IBDR)
In master transmit mode, when data is written to the IBDR a data transfer is initiated. The most significant
bit is sent first. In master receive mode, reading this register initiates next byte data receiving. In slave
mode, the same functions are available after an address match has occurred.Note that the Tx/Rx bit in the
IBCR must correctly reflect the desired direction of transfer in master and slave modes for the transmission
to begin. For instance, if the IIC is configured for master transmit but a master receive is desired, then
reading the IBDR will not initiate the receive.
Reading the IBDR will return the last byte received while the IIC is configured in either master receive or
slave receive modes. The IBDR does not reflect every byte that is transmitted on the IIC bus, nor can
software verify that a byte has been written to the IBDR correctly by reading it back.
In master transmit mode, the first byte of data written to IBDR following assertion of MS/SL is used for
the address transfer and should com.prise of the calling address (in position D7:D1) concatenated with the
required R/W bit (in position D0).
MC9S12XDP512 Data Sheet, Rev. 2.21
408
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.4
Functional Description
This section provides a complete functional description of the IICV2.
9.4.1
I-Bus Protocol
The IIC bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices
connected to it must have open drain or open collector outputs. Logic AND function is exercised on both
lines with external pull-up resistors. The value of these resistors is system dependent.
Normally, a standard communication is composed of four parts: START signal, slave address transmission,
data transfer and STOP signal. They are described briefly in the following sections and illustrated in
Figure 9-9.
MSB
SCL
SDA
1
LSB
2
3
4
5
6
7
Calling Address
Read/
Write
MSB
SDA
MSB
9
AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W
Start
Signal
SCL
8
1
XXX
3
4
5
6
7
8
Calling Address
Read/
Write
3
4
5
6
7
8
D7
D6
D5
D4
D3
D2
D1
D0
Data Byte
1
XX
Ack
Bit
9
No Stop
Ack Signal
Bit
MSB
9
AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W
Start
Signal
2
Ack
Bit
LSB
2
LSB
1
LSB
2
3
4
5
6
7
8
9
AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W
Repeated
Start
Signal
New Calling Address
Read/
Write
No Stop
Ack Signal
Bit
Figure 9-9. IIC-Bus Transmission Signals
9.4.1.1
START Signal
When the bus is free, i.e. no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal.As shown in Figure 9-9, a START
signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning
of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of
their idle states.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
409
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
SDA
SCL
START Condition
STOP Condition
Figure 9-10. Start and Stop Conditions
9.4.1.2
Slave Address Transmission
The first byte of data transfer immediately after the START signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.
1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.
Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 9-9).
No two slaves in the system may have the same address. If the IIC bus is master, it must not transmit an
address that is equal to its own slave address. The IIC bus cannot be master and slave at the same
time.However, if arbitration is lost during an address cycle the IIC bus will revert to slave mode and operate
correctly even if it is being addressed by another master.
9.4.1.3
Data Transfer
As soon as successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a
direction specified by the R/W bit sent by the calling master
All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device.
Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 9-9. There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte has to be followed by an acknowledge bit, which is signalled from the
receiving device by pulling the SDA low at the ninth clock. So one complete data byte transfer needs nine
clock pulses.
If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to
commence a new calling.
MC9S12XDP512 Data Sheet, Rev. 2.21
410
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means 'end
of data' to the slave, so the slave releases the SDA line for the master to generate STOP or START signal.
9.4.1.4
STOP Signal
The master can terminate the communication by generating a STOP signal to free the bus. However, the
master may generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL at logical 1 (see Figure 9-9).
The master can generate a STOP even if the slave has generated an acknowledge at which point the slave
must release the bus.
9.4.1.5
Repeated START Signal
As shown in Figure 9-9, a repeated START signal is a START signal generated without first generating a
STOP signal to terminate the communication. This is used by the master to communicate with another
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.
9.4.1.6
Arbitration Procedure
The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it. If two
or more masters try to control the bus at the same time, a clock synchronization procedure determines the
bus clock, for which the low period is equal to the longest clock low period and the high is equal to the
shortest one among the masters. The relative priority of the contending masters is determined by a data
arbitration procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits
logic 0. The losing masters immediately switch over to slave receive mode and stop driving SDA output.
In this case the transition from master to slave mode does not generate a STOP condition. Meanwhile, a
status bit is set by hardware to indicate loss of arbitration.
9.4.1.7
Clock Synchronization
Because wire-AND logic is performed on SCL line, a high-to-low transition on SCL line affects all the
devices connected on the bus. The devices start counting their low period and as soon as a device's clock
has gone low, it holds the SCL line low until the clock high state is reached.However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is within its low
period. Therefore, synchronized clock SCL is held low by the device with the longest low period. Devices
with shorter low periods enter a high wait state during this time (see Figure 9-10). When all devices
concerned have counted off their low period, the synchronized clock SCL line is released and pulled high.
There is then no difference between the device clocks and the state of the SCL line and all the devices start
counting their high periods.The first device to complete its high period pulls the SCL line low again.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
411
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
WAIT
Start Counting High Period
SCL1
SCL2
SCL
Internal Counter Reset
Figure 9-11. IIC-Bus Clock Synchronization
9.4.1.8
Handshaking
The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.
9.4.1.9
Clock Stretching
The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it.If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.
9.4.2
Operation in Run Mode
This is the basic mode of operation.
9.4.3
Operation in Wait Mode
IIC operation in wait mode can be configured. Depending on the state of internal bits, the IIC can operate
normally when the CPU is in wait mode or the IIC clock generation can be turned off and the IIC module
enters a power conservation state during wait mode. In the later case, any transmission or reception in
progress stops at wait mode entry.
9.4.4
Operation in Stop Mode
The IIC is inactive in stop mode for reduced power consumption. The STOP instruction does not affect IIC
register states.
MC9S12XDP512 Data Sheet, Rev. 2.21
412
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.5
Resets
The reset state of each individual bit is listed in Section 9.3, “Memory Map and Register Definition,” which
details the registers and their bit-fields.
9.6
Interrupts
IICV2 uses only one interrupt vector.
Table 9-8. Interrupt Summary
Interrupt
Offset
Vector
Priority
IIC
Interrupt
—
—
—
Source
Description
IBAL, TCF, IAAS When either of IBAL, TCF or IAAS bits is set
bits in IBSR
may cause an interrupt based on arbitration
register
lost, transfer complete or address detect
conditions
Internally there are three types of interrupts in IIC. The interrupt service routine can determine the interrupt
type by reading the status register.
IIC Interrupt can be generated on
1. Arbitration lost condition (IBAL bit set)
2. Byte transfer condition (TCF bit set)
3. Address detect condition (IAAS bit set)
The IIC interrupt is enabled by the IBIE bit in the IIC control register. It must be cleared by writing 0 to
the IBF bit in the interrupt service routine.
9.7
9.7.1
9.7.1.1
Initialization/Application Information
IIC Programming Examples
Initialization Sequence
Reset will put the IIC bus control register to its default status. Before the interface can be used to transfer
serial data, an initialization procedure must be carried out, as follows:
1. Update the frequency divider register (IBFD) and select the required division ratio to obtain SCL
frequency from system clock.
2. Update the IIC bus address register (IBAD) to define its slave address.
3. Set the IBEN bit of the IIC bus control register (IBCR) to enable the IIC interface system.
4. Modify the bits of the IIC bus control register (IBCR) to select master/slave mode, transmit/receive
mode and interrupt enable or not.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
413
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.7.1.2
Generation of START
After completion of the initialization procedure, serial data can be transmitted by selecting the 'master
transmitter' mode. If the device is connected to a multi-master bus system, the state of the IIC bus busy bit
(IBB) must be tested to check whether the serial bus is free.
If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the slave calling address and the LSB set to indicate the direction of
transfer required from the slave.
The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system
clock and the SCL period it may be necessary to wait until the IIC is busy after writing the calling address
to the IBDR before proceeding with the following instructions. This is illustrated in the following example.
An example of a program which generates the START signal and transmits the first byte of data (slave
address) is shown below:
CHFLAG
BRSET
IBSR,#$20,*
;WAIT FOR IBB FLAG TO CLEAR
TXSTART
BSET
IBCR,#$30
;SET TRANSMIT AND MASTER MODE;i.e. GENERATE START CONDITION
MOVB
CALLING,IBDR
;TRANSMIT THE CALLING ADDRESS, D0=R/W
BRCLR
IBSR,#$20,*
;WAIT FOR IBB FLAG TO SET
IBFREE
9.7.1.3
Post-Transfer Software Response
Transmission or reception of a byte will set the data transferring bit (TCF) to 1, which indicates one byte
communication is finished. The IIC bus interrupt bit (IBIF) is set also; an interrupt will be generated if the
interrupt function is enabled during initialization by setting the IBIE bit. Software must clear the IBIF bit
in the interrupt routine first. The TCF bit will be cleared by reading from the IIC bus data I/O register
(IBDR) in receive mode or writing to IBDR in transmit mode.
Software may service the IIC I/O in the main program by monitoring the IBIF bit if the interrupt function
is disabled. Note that polling should monitor the IBIF bit rather than the TCF bit because their operation
is different when arbitration is lost.
Note that when an interrupt occurs at the end of the address cycle the master will always be in transmit
mode, i.e. the address is transmitted. If master receive mode is required, indicated by R/W bit in IBDR,
then the Tx/Rx bit should be toggled at this stage.
During slave mode address cycles (IAAS=1), the SRW bit in the status register is read to determine the
direction of the subsequent transfer and the Tx/Rx bit is programmed accordingly. For slave mode data
cycles (IAAS=0) the SRW bit is not valid, the Tx/Rx bit in the control register should be read to determine
the direction of the current transfer.
The following is an example of a software response by a 'master transmitter' in the interrupt routine.
ISR
TRANSMIT
BCLR
BRCLR
BRCLR
BRSET
MOVB
IBSR,#$02
IBCR,#$20,SLAVE
IBCR,#$10,RECEIVE
IBSR,#$01,END
DATABUF,IBDR
;CLEAR THE IBIF FLAG
;BRANCH IF IN SLAVE MODE
;BRANCH IF IN RECEIVE MODE
;IF NO ACK, END OF TRANSMISSION
;TRANSMIT NEXT BYTE OF DATA
MC9S12XDP512 Data Sheet, Rev. 2.21
414
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
9.7.1.4
Generation of STOP
A data transfer ends with a STOP signal generated by the 'master' device. A master transmitter can simply
generate a STOP signal after all the data has been transmitted. The following is an example showing how
a stop condition is generated by a master transmitter.
MASTX
END
EMASTX
TST
BEQ
BRSET
MOVB
DEC
BRA
BCLR
RTI
TXCNT
END
IBSR,#$01,END
DATABUF,IBDR
TXCNT
EMASTX
IBCR,#$20
;GET VALUE FROM THE TRANSMITING COUNTER
;END IF NO MORE DATA
;END IF NO ACK
;TRANSMIT NEXT BYTE OF DATA
;DECREASE THE TXCNT
;EXIT
;GENERATE A STOP CONDITION
;RETURN FROM INTERRUPT
If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data which can be done by setting the transmit acknowledge bit (TXAK)
before reading the 2nd last byte of data. Before reading the last byte of data, a STOP signal must be
generated first. The following is an example showing how a STOP signal is generated by a master receiver.
MASR
DEC
BEQ
MOVB
DEC
BNE
BSET
RXCNT
ENMASR
RXCNT,D1
D1
NXMAR
IBCR,#$08
ENMASR
NXMAR
BRA
BCLR
MOVB
RTI
NXMAR
IBCR,#$20
IBDR,RXBUF
9.7.1.5
Generation of Repeated START
LAMAR
;DECREASE THE RXCNT
;LAST BYTE TO BE READ
;CHECK SECOND LAST BYTE
;TO BE READ
;NOT LAST OR SECOND LAST
;SECOND LAST, DISABLE ACK
;TRANSMITTING
;LAST ONE, GENERATE ‘STOP’ SIGNAL
;READ DATA AND STORE
At the end of data transfer, if the master continues to want to communicate on the bus, it can generate
another START signal followed by another slave address without first generating a STOP signal. A
program example is as shown.
RESTART
BSET
MOVB
IBCR,#$04
CALLING,IBDR
9.7.1.6
Slave Mode
;ANOTHER START (RESTART)
;TRANSMIT THE CALLING ADDRESS;D0=R/W
In the slave interrupt service routine, the module addressed as slave bit (IAAS) should be tested to check
if a calling of its own address has just been received. If IAAS is set, software should set the transmit/receive
mode select bit (Tx/Rx bit of IBCR) according to the R/W command bit (SRW). Writing to the IBCR
clears the IAAS automatically. Note that the only time IAAS is read as set is from the interrupt at the end
of the address cycle where an address match occurred, interrupts resulting from subsequent data transfers
will have IAAS cleared. A data transfer may now be initiated by writing information to IBDR, for slave
transmits, or dummy reading from IBDR, in slave receive mode. The slave will drive SCL low in-between
byte transfers, SCL is released when the IBDR is accessed in the required mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
415
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting the
next byte of data. Setting RXAK means an 'end of data' signal from the master receiver, after which it must
be switched from transmitter mode to receiver mode by software. A dummy read then releases the SCL
line so that the master can generate a STOP signal.
9.7.1.7
Arbitration Lost
If several masters try to engage the bus simultaneously, only one master wins and the others lose
arbitration. The devices which lost arbitration are immediately switched to slave receive mode by the
hardware. Their data output to the SDA line is stopped, but SCL continues to be generated until the end of
the byte during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this
transfer with IBAL=1 and MS/SL=0. If one master attempts to start transmission while the bus is being
engaged by another master, the hardware will inhibit the transmission; switch the MS/SL bit from 1 to 0
without generating STOP condition; generate an interrupt to CPU and set the IBAL to indicate that the
attempt to engage the bus is failed. When considering these cases, the slave service routine should test the
IBAL first and the software should clear the IBAL bit if it is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
416
Freescale Semiconductor
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
Clear
IBIF
Master
Mode
?
Y
TX
N
Arbitration
Lost
?
Y
RX
Tx/Rx
?
N
Last Byte
Transmitted
?
N
Clear IBAL
Y
RXAK=0
?
N
Last
Byte To Be Read
?
N
Y
N
Y
Y
IAAS=1
?
IAAS=1
?
Y
N
Address Transfer
End Of
Addr Cycle
(Master Rx)
?
N
Y
Y
(Read)
2nd Last
Y
Byte To Be Read
?
SRW=1
?
Write Next
Byte To IBDR
Generate
Stop Signal
Set TXAK =1
Generate
Stop Signal
Read Data
From IBDR
And Store
ACK From
Receiver
?
N
Read Data
From IBDR
And Store
Tx Next
Byte
Set RX
Mode
Switch To
Rx Mode
Dummy Read
From IBDR
Dummy Read
From IBDR
Switch To
Rx Mode
RX
TX
Y
Set TX
Mode
Write Data
To IBDR
Dummy Read
From IBDR
TX/RX
?
N (Write)
N
Data Transfer
RTI
Figure 9-12. Flow-Chart of Typical IIC Interrupt Routine
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
417
Chapter 9 Inter-Integrated Circuit (IICV2) Block Description
MC9S12XDP512 Data Sheet, Rev. 2.21
418
Freescale Semiconductor
Chapter 10
Freescale’s Scalable Controller Area Network
(S12MSCANV3)
10.1
Introduction
Freescale’s scalable controller area network (S12MSCANV3) definition is based on the MSCAN12
definition, which is the specific implementation of the MSCAN concept targeted for the M68HC12
microcontroller family.
The module is a communication controller implementing the CAN 2.0A/B protocol as defined in the
Bosch specification dated September 1991. For users to fully understand the MSCAN specification, it is
recommended that the Bosch specification be read first to familiarize the reader with the terms and
concepts contained within this document.
Though not exclusively intended for automotive applications, CAN protocol is designed to meet the
specific requirements of a vehicle serial data bus: real-time processing, reliable operation in the EMI
environment of a vehicle, cost-effectiveness, and required bandwidth.
MSCAN uses an advanced buffer arrangement resulting in predictable real-time behavior and simplified
application software.
10.1.1
Glossary
ACK: Acknowledge of CAN message
CAN: Controller Area Network
CRC: Cyclic Redundancy Code
EOF: End of Frame
FIFO: First-In-First-Out Memory
IFS: Inter-Frame Sequence
SOF: Start of Frame
CPU bus: CPU related read/write data bus
CAN bus: CAN protocol related serial bus
oscillator clock: Direct clock from external oscillator
bus clock: CPU bus realated clock
CAN clock: CAN protocol related clock
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
419
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.1.2
Block Diagram
MSCAN
Oscillator Clock
Bus Clock
CANCLK
MUX
Presc.
Tq Clk
Receive/
Transmit
Engine
RXCAN
TXCAN
Transmit Interrupt Req.
Receive Interrupt Req.
Errors Interrupt Req.
Message
Filtering
and
Buffering
Control
and
Status
Wake-Up Interrupt Req.
Configuration
Registers
Wake-Up
Low Pass Filter
Figure 10-1. MSCAN Block Diagram
10.1.3
Features
The basic features of the MSCAN are as follows:
• Implementation of the CAN protocol — Version 2.0A/B
— Standard and extended data frames
— Zero to eight bytes data length
— Programmable bit rate up to 1 Mbps1
— Support for remote frames
• Five receive buffers with FIFO storage scheme
• Three transmit buffers with internal prioritization using a “local priority” concept
• Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, or four
16-bit filters, or eight 8-bit filters
• Programmable wakeup functionality with integrated low-pass filter
• Programmable loopback mode supports self-test operation
• Programmable listen-only mode for monitoring of CAN bus
• Programmable bus-off recovery functionality
• Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states
(warning, error passive, bus-off)
• Programmable MSCAN clock source either bus clock or oscillator clock
1. Depending on the actual bit timing and the clock jitter of the PLL.
MC9S12XDP512 Data Sheet, Rev. 2.21
420
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
•
•
•
Internal timer for time-stamping of received and transmitted messages
Three low-power modes: sleep, power down, and MSCAN enable
Global initialization of configuration registers
10.1.4
Modes of Operation
The following modes of operation are specific to the MSCAN. See Section 10.4, “Functional Description,”
for details.
• Listen-Only Mode
• MSCAN Sleep Mode
• MSCAN Initialization Mode
• MSCAN Power Down Mode
10.2
External Signal Description
The MSCAN uses two external pins:
10.2.1
RXCAN — CAN Receiver Input Pin
RXCAN is the MSCAN receiver input pin.
10.2.2
TXCAN — CAN Transmitter Output Pin
TXCAN is the MSCAN transmitter output pin. The TXCAN output pin represents the logic level on the
CAN bus:
0 = Dominant state
1 = Recessive state
10.2.3
CAN System
A typical CAN system with MSCAN is shown in Figure 10-2. Each CAN station is connected physically
to the CAN bus lines through a transceiver device. The transceiver is capable of driving the large current
needed for the CAN bus and has current protection against defective CAN or defective stations.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
421
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
CAN node 2
CAN node 1
CAN node n
MCU
CAN Controller
(MSCAN)
TXCAN
RXCAN
Transceiver
CAN_H
CAN_L
CAN Bus
Figure 10-2. CAN System
10.3
Memory Map and Register Definition
This section provides a detailed description of all registers accessible in the MSCAN.
10.3.1
Module Memory Map
Figure 10-3 gives an overview on all registers and their individual bits in the MSCAN memory map. The
register address results from the addition of base address and address offset. The base address is
determined at the MCU level and can be found in the MCU memory map description. The address offset
is defined at the module level.
The MSCAN occupies 64 bytes in the memory space. The base address of the MSCAN module is
determined at the MCU level when the MCU is defined. The register decode map is fixed and begins at the
first address of the module address offset.
The detailed register descriptions follow in the order they appear in the register map.
Register
Name
Bit 7
0x0000
CANCTL0
R
0x0001
CANCTL1
R
W
W
RXFRM
CANE
6
RXACT
CLKSRC
5
CSWAI
LOOPB
4
SYNCH
LISTEN
3
2
1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
BORM
WUPM
SLPAK
INITAK
= Unimplemented or Reserved
u = Unaffected
Figure 10-3. MSCAN Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
422
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Register
Name
0x0002
CANBTR0
R
0x0003
CANBTR1
R
0x0004
CANRFLG
R
0x0005
CANRIER
0x0006
CANTFLG
0x000D
CANMISC
3
2
1
Bit 0
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
SAMP
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
WUPIF
CSCIF
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
WUPIE
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
0
TX2
TX1
TX0
0
0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXERR7
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR7
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
R
W
R
W
R
0x000C
Reserved
4
W
0x0008
CANTARQ
0x000B
CANIDAC
5
W
R
0x000A
CANTBSEL
6
W
0x0007
CANTIER
0x0009
CANTAAK
Bit 7
W
W
R
W
R
W
R
W
R
W
R
W
0x000E
CANRXERR
R
0x000F
CANTXERR
R
0x0010–0x0013
CANIDAR0–3
R
BOHOLD
W
W
W
= Unimplemented or Reserved
u = Unaffected
Figure 10-3. MSCAN Register Summary (continued)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
423
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Register
Name
0x0014–0x0017
CANIDMRx
R
0x0018–0x001B
CANIDAR4–7
R
0x001C–0x001F
CANIDMR4–7
R
0x0020–0x002F
CANRXFG
R
0x0030–0x003F
CANTXFG
R
W
W
W
Bit 7
6
5
4
3
2
1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
See Section 10.3.3, “Programmer’s Model of Message Storage”
W
See Section 10.3.3, “Programmer’s Model of Message Storage”
W
= Unimplemented or Reserved
u = Unaffected
Figure 10-3. MSCAN Register Summary (continued)
10.3.2
Register Descriptions
This section describes in detail all the registers and register bits in the MSCAN module. Each description
includes a standard register diagram with an associated figure number. Details of register bit and field
function follow the register diagrams, in bit order. All bits of all registers in this module are completely
synchronous to internal clocks during a register read.
10.3.2.1
MSCAN Control Register 0 (CANCTL0)
The CANCTL0 register provides various control bits of the MSCAN module as described below.
7
R
6
5
RXACT
RXFRM
4
3
2
1
0
TIME
WUPE
SLPRQ
INITRQ
0
0
0
1
SYNCH
CSWAI
W
Reset:
0
0
0
0
= Unimplemented
Figure 10-4. MSCAN Control Register 0 (CANCTL0)
NOTE
The CANCTL0 register, except WUPE, INITRQ, and SLPRQ, is held in the
reset state when the initialization mode is active (INITRQ = 1 and
INITAK = 1). This register is writable again as soon as the initialization
mode is exited (INITRQ = 0 and INITAK = 0).
Read: Anytime
MC9S12XDP512 Data Sheet, Rev. 2.21
424
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Write: Anytime when out of initialization mode; exceptions are read-only RXACT and SYNCH, RXFRM
(which is set by the module only), and INITRQ (which is also writable in initialization mode).
Table 10-1. CANCTL0 Register Field Descriptions
Field
Description
7
RXFRM1
Received Frame Flag — This bit is read and clear only. It is set when a receiver has received a valid message
correctly, independently of the filter configuration. After it is set, it remains set until cleared by software or reset.
Clearing is done by writing a 1. Writing a 0 is ignored. This bit is not valid in loopback mode.
0 No valid message was received since last clearing this flag
1 A valid message was received since last clearing of this flag
6
RXACT
Receiver Active Status — This read-only flag indicates the MSCAN is receiving a message. The flag is
controlled by the receiver front end. This bit is not valid in loopback mode.
0 MSCAN is transmitting or idle2
1 MSCAN is receiving a message (including when arbitration is lost)2
5
CSWAI3
CAN Stops in Wait Mode — Enabling this bit allows for lower power consumption in wait mode by disabling all
the clocks at the CPU bus interface to the MSCAN module.
0 The module is not affected during wait mode
1 The module ceases to be clocked during wait mode
4
SYNCH
Synchronized Status — This read-only flag indicates whether the MSCAN is synchronized to the CAN bus and
able to participate in the communication process. It is set and cleared by the MSCAN.
0 MSCAN is not synchronized to the CAN bus
1 MSCAN is synchronized to the CAN bus
3
TIME
Timer Enable — This bit activates an internal 16-bit wide free running timer which is clocked by the bit clock rate.
If the timer is enabled, a 16-bit time stamp will be assigned to each transmitted/received message within the
active TX/RX buffer. Right after the EOF of a valid message on the CAN bus, the time stamp is written to the
highest bytes (0x000E, 0x000F) in the appropriate buffer (see Section 10.3.3, “Programmer’s Model of Message
Storage”). The internal timer is reset (all bits set to 0) when disabled. This bit is held low in initialization mode.
0 Disable internal MSCAN timer
1 Enable internal MSCAN timer
2
WUPE4
Wake-Up Enable — This configuration bit allows the MSCAN to restart from sleep mode when traffic on CAN is
detected (see Section 10.4.5.4, “MSCAN Sleep Mode”). This bit must be configured before sleep mode entry for
the selected function to take effect.
0 Wake-up disabled — The MSCAN ignores traffic on CAN
1 Wake-up enabled — The MSCAN is able to restart
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
425
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-1. CANCTL0 Register Field Descriptions (continued)
Field
Description
1
SLPRQ5
Sleep Mode Request — This bit requests the MSCAN to enter sleep mode, which is an internal power saving
mode (see Section 10.4.5.4, “MSCAN Sleep Mode”). The sleep mode request is serviced when the CAN bus is
idle, i.e., the module is not receiving a message and all transmit buffers are empty. The module indicates entry
to sleep mode by setting SLPAK = 1 (see Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”). SLPRQ
cannot be set while the WUPIF flag is set (see Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”).
Sleep mode will be active until SLPRQ is cleared by the CPU or, depending on the setting of WUPE, the MSCAN
detects activity on the CAN bus and clears SLPRQ itself.
0 Running — The MSCAN functions normally
1 Sleep mode request — The MSCAN enters sleep mode when CAN bus idle
0
INITRQ6,7
Initialization Mode Request — When this bit is set by the CPU, the MSCAN skips to initialization mode (see
Section 10.4.5.5, “MSCAN Initialization Mode”). Any ongoing transmission or reception is aborted and
synchronization to the CAN bus is lost. The module indicates entry to initialization mode by setting INITAK = 1
(Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”).
The following registers enter their hard reset state and restore their default values: CANCTL08, CANRFLG9,
CANRIER10, CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL.
The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, and CANIDMR0-7 can only be
written by the CPU when the MSCAN is in initialization mode (INITRQ = 1 and INITAK = 1). The values of the
error counters are not affected by initialization mode.
When this bit is cleared by the CPU, the MSCAN restarts and then tries to synchronize to the CAN bus. If the
MSCAN is not in bus-off state, it synchronizes after 11 consecutive recessive bits on the CAN bus; if the MSCAN
is in bus-off state, it continues to wait for 128 occurrences of 11 consecutive recessive bits.
Writing to other bits in CANCTL0, CANRFLG, CANRIER, CANTFLG, or CANTIER must be done only after
initialization mode is exited, which is INITRQ = 0 and INITAK = 0.
0 Normal operation
1 MSCAN in initialization mode
1
The MSCAN must be in normal mode for this bit to become set.
See the Bosch CAN 2.0A/B specification for a detailed definition of transmitter and receiver states.
3 In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when
the CPU enters wait (CSWAI = 1) or stop mode (see Section 10.4.5.2, “Operation in Wait Mode” and Section 10.4.5.3,
“Operation in Stop Mode”).
4 The CPU has to make sure that the WUPE register and the WUPIE wake-up interrupt enable register (see Section 10.3.2.6,
“MSCAN Receiver Interrupt Enable Register (CANRIER)) is enabled, if the recovery mechanism from stop or wait is required.
5
The CPU cannot clear SLPRQ before the MSCAN has entered sleep mode (SLPRQ = 1 and SLPAK = 1).
6
The CPU cannot clear INITRQ before the MSCAN has entered initialization mode (INITRQ = 1 and INITAK = 1).
7
In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when
the initialization mode is requested by the CPU. Thus, the recommended procedure is to bring the MSCAN into sleep mode
(SLPRQ = 1 and SLPAK = 1) before requesting initialization mode.
8
Not including WUPE, INITRQ, and SLPRQ.
9 TSTAT1 and TSTAT0 are not affected by initialization mode.
10 RSTAT1 and RSTAT0 are not affected by initialization mode.
2
10.3.2.2
MSCAN Control Register 1 (CANCTL1)
The CANCTL1 register provides various control bits and handshake status information of the MSCAN
module as described below.
MC9S12XDP512 Data Sheet, Rev. 2.21
426
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
7
6
5
4
3
2
CANE
CLKSRC
LOOPB
LISTEN
BORM
WUPM
0
0
0
1
0
0
R
1
0
SLPAK
INITAK
0
1
W
Reset:
= Unimplemented
Figure 10-5. MSCAN Control Register 1 (CANCTL1)
Read: Anytime
Write: Anytime when INITRQ = 1 and INITAK = 1, except CANE which is write once in normal and
anytime in special system operation modes when the MSCAN is in initialization mode (INITRQ = 1 and
INITAK = 1).
Table 10-2. CANCTL1 Register Field Descriptions
Field
7
CANE
Description
MSCAN Enable
0 MSCAN module is disabled
1 MSCAN module is enabled
6
CLKSRC
MSCAN Clock Source — This bit defines the clock source for the MSCAN module (only for systems with a clock
generation module; Section 10.4.3.2, “Clock System,” and Section Figure 10-43., “MSCAN Clocking Scheme,”).
0 MSCAN clock source is the oscillator clock
1 MSCAN clock source is the bus clock
5
LOOPB
Loopback Self Test Mode — When this bit is set, the MSCAN performs an internal loopback which can be used
for self test operation. The bit stream output of the transmitter is fed back to the receiver internally. The RXCAN
input pin is ignored and the TXCAN output goes to the recessive state (logic 1). The MSCAN behaves as it does
normally when transmitting and treats its own transmitted message as a message received from a remote node.
In this state, the MSCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field to ensure
proper reception of its own message. Both transmit and receive interrupts are generated.
0 Loopback self test disabled
1 Loopback self test enabled
4
LISTEN
Listen Only Mode — This bit configures the MSCAN as a CAN bus monitor. When LISTEN is set, all valid CAN
messages with matching ID are received, but no acknowledgement or error frames are sent out (see
Section 10.4.4.4, “Listen-Only Mode”). In addition, the error counters are frozen. Listen only mode supports
applications which require “hot plugging” or throughput analysis. The MSCAN is unable to transmit any
messages when listen only mode is active.
0 Normal operation
1 Listen only mode activated
3
BORM
Bus-Off Recovery Mode — This bits configures the bus-off state recovery mode of the MSCAN. Refer to
Section 10.5.2, “Bus-Off Recovery,” for details.
0 Automatic bus-off recovery (see Bosch CAN 2.0A/B protocol specification)
1 Bus-off recovery upon user request
2
WUPM
Wake-Up Mode — If WUPE in CANCTL0 is enabled, this bit defines whether the integrated low-pass filter is
applied to protect the MSCAN from spurious wake-up (see Section 10.4.5.4, “MSCAN Sleep Mode”).
0 MSCAN wakes up on any dominant level on the CAN bus
1 MSCAN wakes up only in case of a dominant pulse on the CAN bus that has a length of Twup
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
427
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-2. CANCTL1 Register Field Descriptions (continued)
Field
Description
1
SLPAK
Sleep Mode Acknowledge — This flag indicates whether the MSCAN module has entered sleep mode (see
Section 10.4.5.4, “MSCAN Sleep Mode”). It is used as a handshake flag for the SLPRQ sleep mode request.
Sleep mode is active when SLPRQ = 1 and SLPAK = 1. Depending on the setting of WUPE, the MSCAN will
clear the flag if it detects activity on the CAN bus while in sleep mode.
0 Running — The MSCAN operates normally
1 Sleep mode active — The MSCAN has entered sleep mode
0
INITAK
Initialization Mode Acknowledge — This flag indicates whether the MSCAN module is in initialization mode
(see Section 10.4.5.5, “MSCAN Initialization Mode”). It is used as a handshake flag for the INITRQ initialization
mode request. Initialization mode is active when INITRQ = 1 and INITAK = 1. The registers CANCTL1,
CANBTR0, CANBTR1, CANIDAC, CANIDAR0–CANIDAR7, and CANIDMR0–CANIDMR7 can be written only by
the CPU when the MSCAN is in initialization mode.
0 Running — The MSCAN operates normally
1 Initialization mode active — The MSCAN has entered initialization mode
10.3.2.3
MSCAN Bus Timing Register 0 (CANBTR0)
The CANBTR0 register configures various CAN bus timing parameters of the MSCAN module.
7
6
5
4
3
2
1
0
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
0
0
0
0
0
0
0
0
R
W
Reset:
Figure 10-6. MSCAN Bus Timing Register 0 (CANBTR0)
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)
Table 10-3. CANBTR0 Register Field Descriptions
Field
Description
7:6
SJW[1:0]
Synchronization Jump Width — The synchronization jump width defines the maximum number of time quanta
(Tq) clock cycles a bit can be shortened or lengthened to achieve resynchronization to data transitions on the
CAN bus (see Table 10-4).
5:0
BRP[5:0]
Baud Rate Prescaler — These bits determine the time quanta (Tq) clock which is used to build up the bit timing
(see Table 10-5).
Table 10-4. Synchronization Jump Width
SJW1
SJW0
Synchronization Jump Width
0
0
1 Tq clock cycle
0
1
2 Tq clock cycles
1
0
3 Tq clock cycles
1
1
4 Tq clock cycles
MC9S12XDP512 Data Sheet, Rev. 2.21
428
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-5. Baud Rate Prescaler
10.3.2.4
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
Prescaler value (P)
0
0
0
0
0
0
1
0
0
0
0
0
1
2
0
0
0
0
1
0
3
0
0
0
0
1
1
4
:
:
:
:
:
:
:
1
1
1
1
1
1
64
MSCAN Bus Timing Register 1 (CANBTR1)
The CANBTR1 register configures various CAN bus timing parameters of the MSCAN module.
7
6
5
4
3
2
1
0
SAMP
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
0
0
0
0
0
0
0
0
R
W
Reset:
Figure 10-7. MSCAN Bus Timing Register 1 (CANBTR1)
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)
Table 10-6. CANBTR1 Register Field Descriptions
Field
Description
7
SAMP
Sampling — This bit determines the number of CAN bus samples taken per bit time.
0 One sample per bit.
1 Three samples per bit1.
If SAMP = 0, the resulting bit value is equal to the value of the single bit positioned at the sample point. If
SAMP = 1, the resulting bit value is determined by using majority rule on the three total samples. For higher bit
rates, it is recommended that only one sample is taken per bit time (SAMP = 0).
6:4
Time Segment 2 — Time segments within the bit time fix the number of clock cycles per bit time and the location
TSEG2[2:0] of the sample point (see Figure 10-44). Time segment 2 (TSEG2) values are programmable as shown in
Table 10-7.
3:0
Time Segment 1 — Time segments within the bit time fix the number of clock cycles per bit time and the location
TSEG1[3:0] of the sample point (see Figure 10-44). Time segment 1 (TSEG1) values are programmable as shown in
Table 10-8.
1
In this case, PHASE_SEG1 must be at least 2 time quanta (Tq).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
429
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-7. Time Segment 2 Values
1
TSEG22
TSEG21
TSEG20
Time Segment 2
0
0
0
1 Tq clock cycle1
0
0
1
2 Tq clock cycles
:
:
:
:
1
1
0
7 Tq clock cycles
1
1
1
8 Tq clock cycles
This setting is not valid. Please refer to Table 10-35 for valid settings.
Table 10-8. Time Segment 1 Values
1
TSEG13
TSEG12
TSEG11
TSEG10
Time segment 1
0
0
0
0
1 Tq clock cycle1
0
0
0
1
2 Tq clock cycles1
0
0
1
0
3 Tq clock cycles1
0
0
1
1
4 Tq clock cycles
:
:
:
:
:
1
1
1
0
15 Tq clock cycles
1
1
1
1
16 Tq clock cycles
This setting is not valid. Please refer to Table 10-35 for valid settings.
The bit time is determined by the oscillator frequency, the baud rate prescaler, and the number of time
quanta (Tq) clock cycles per bit (as shown in Table 10-7 and Table 10-8).
Eqn. 10-1
( Prescaler value )
Bit Time = ------------------------------------------------------ • ( 1 + TimeSegment1 + TimeSegment2 )
f CANCLK
10.3.2.5
MSCAN Receiver Flag Register (CANRFLG)
A flag can be cleared only by software (writing a 1 to the corresponding bit position) when the condition
which caused the setting is no longer valid. Every flag has an associated interrupt enable bit in the
CANRIER register.
7
6
WUPIF
CSCIF
0
0
R
5
4
3
2
RSTAT1
RSTAT0
TSTAT1
TSTAT0
1
0
OVRIF
RXF
0
0
W
Reset:
0
0
0
0
= Unimplemented
Figure 10-8. MSCAN Receiver Flag Register (CANRFLG)
MC9S12XDP512 Data Sheet, Rev. 2.21
430
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
NOTE
The CANRFLG register is held in the reset state1 when the initialization
mode is active (INITRQ = 1 and INITAK = 1). This register is writable again
as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).
Read: Anytime
Write: Anytime when out of initialization mode, except RSTAT[1:0] and TSTAT[1:0] flags which are
read-only; write of 1 clears flag; write of 0 is ignored.
Table 10-9. CANRFLG Register Field Descriptions
Field
Description
7
WUPIF
Wake-Up Interrupt Flag — If the MSCAN detects CAN bus activity while in sleep mode (see Section 10.4.5.4,
“MSCAN Sleep Mode,”) and WUPE = 1 in CANTCTL0 (see Section 10.3.2.1, “MSCAN Control Register 0
(CANCTL0)”), the module will set WUPIF. If not masked, a wake-up interrupt is pending while this flag is set.
0
No wake-up activity observed while in sleep mode
1
MSCAN detected activity on the CAN bus and requested wake-up
6
CSCIF
CAN Status Change Interrupt Flag — This flag is set when the MSCAN changes its current CAN bus status
due to the actual value of the transmit error counter (TEC) and the receive error counter (REC). An additional
4-bit (RSTAT[1:0], TSTAT[1:0]) status register, which is split into separate sections for TEC/REC, informs the
system on the actual CAN bus status (see Section 10.3.2.6, “MSCAN Receiver Interrupt Enable Register
(CANRIER)”). If not masked, an error interrupt is pending while this flag is set. CSCIF provides a blocking
interrupt. That guarantees that the receiver/transmitter status bits (RSTAT/TSTAT) are only updated when no
CAN status change interrupt is pending. If the TECs/RECs change their current value after the CSCIF is
asserted, which would cause an additional state change in the RSTAT/TSTAT bits, these bits keep their status
until the current CSCIF interrupt is cleared again.
0
No change in CAN bus status occurred since last interrupt
1
MSCAN changed current CAN bus status
5:4
RSTAT[1:0]
Receiver Status Bits — The values of the error counters control the actual CAN bus status of the MSCAN. As
soon as the status change interrupt flag (CSCIF) is set, these bits indicate the appropriate receiver related CAN
bus status of the MSCAN. The coding for the bits RSTAT1, RSTAT0 is:
00
RxOK: 0 ≤ receive error counter ≤ 96
01
RxWRN: 96 < receive error counter ≤ 127
10
RxERR: 127 < receive error counter
11
Bus-off1: transmit error counter > 255
3:2
TSTAT[1:0]
Transmitter Status Bits — The values of the error counters control the actual CAN bus status of the MSCAN.
As soon as the status change interrupt flag (CSCIF) is set, these bits indicate the appropriate transmitter related
CAN bus status of the MSCAN. The coding for the bits TSTAT1, TSTAT0 is:
00
TxOK: 0 ≤ transmit error counter ≤ 96
01
TxWRN: 96 < transmit error counter ≤ 127
10
TxERR: 127 < transmit error counter ≤ 255
11
Bus-Off: transmit error counter > 255
1. The RSTAT[1:0], TSTAT[1:0] bits are not affected by initialization mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
431
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-9. CANRFLG Register Field Descriptions (continued)
Field
Description
1
OVRIF
Overrun Interrupt Flag — This flag is set when a data overrun condition occurs. If not masked, an error interrupt
is pending while this flag is set.
0
No data overrun condition
1
A data overrun detected
0
RXF2
Receive Buffer Full Flag — RXF is set by the MSCAN when a new message is shifted in the receiver FIFO.
This flag indicates whether the shifted buffer is loaded with a correctly received message (matching identifier,
matching cyclic redundancy code (CRC) and no other errors detected). After the CPU has read that message
from the RxFG buffer in the receiver FIFO, the RXF flag must be cleared to release the buffer. A set RXF flag
prohibits the shifting of the next FIFO entry into the foreground buffer (RxFG). If not masked, a receive interrupt
is pending while this flag is set.
0
No new message available within the RxFG
1
The receiver FIFO is not empty. A new message is available in the RxFG
1
Redundant Information for the most critical CAN bus status which is “bus-off”. This only occurs if the Tx error counter exceeds
a number of 255 errors. Bus-off affects the receiver state. As soon as the transmitter leaves its bus-off state the receiver state
skips to RxOK too. Refer also to TSTAT[1:0] coding in this register.
2 To ensure data integrity, do not read the receive buffer registers while the RXF flag is cleared. For MCUs with dual CPUs,
reading the receive buffer registers while the RXF flag is cleared may result in a CPU fault condition.
10.3.2.6
MSCAN Receiver Interrupt Enable Register (CANRIER)
This register contains the interrupt enable bits for the interrupt flags described in the CANRFLG register.
7
6
5
4
3
2
1
0
WUPIE
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
0
0
0
0
R
W
Reset:
Figure 10-9. MSCAN Receiver Interrupt Enable Register (CANRIER)
NOTE
The CANRIER register is held in the reset state when the initialization mode
is active (INITRQ=1 and INITAK=1). This register is writable when not in
initialization mode (INITRQ=0 and INITAK=0).
The RSTATE[1:0], TSTATE[1:0] bits are not affected by initialization
mode.
Read: Anytime
Write: Anytime when not in initialization mode
MC9S12XDP512 Data Sheet, Rev. 2.21
432
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-10. CANRIER Register Field Descriptions
Field
7
WUPIE1
6
CSCIE
Description
Wake-Up Interrupt Enable
0 No interrupt request is generated from this event.
1 A wake-up event causes a Wake-Up interrupt request.
CAN Status Change Interrupt Enable
0 No interrupt request is generated from this event.
1 A CAN Status Change event causes an error interrupt request.
5:4
Receiver Status Change Enable — These RSTAT enable bits control the sensitivity level in which receiver state
RSTATE[1:0] changes are causing CSCIF interrupts. Independent of the chosen sensitivity level the RSTAT flags continue to
indicate the actual receiver state and are only updated if no CSCIF interrupt is pending.
00 Do not generate any CSCIF interrupt caused by receiver state changes.
01 Generate CSCIF interrupt only if the receiver enters or leaves “bus-off” state. Discard other receiver state
changes for generating CSCIF interrupt.
10 Generate CSCIF interrupt only if the receiver enters or leaves “RxErr” or “bus-off”2 state. Discard other
receiver state changes for generating CSCIF interrupt.
11 Generate CSCIF interrupt on all state changes.
3:2
Transmitter Status Change Enable — These TSTAT enable bits control the sensitivity level in which transmitter
TSTATE[1:0] state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level, the TSTAT flags
continue to indicate the actual transmitter state and are only updated if no CSCIF interrupt is pending.
00 Do not generate any CSCIF interrupt caused by transmitter state changes.
01 Generate CSCIF interrupt only if the transmitter enters or leaves “bus-off” state. Discard other transmitter
state changes for generating CSCIF interrupt.
10 Generate CSCIF interrupt only if the transmitter enters or leaves “TxErr” or “bus-off” state. Discard other
transmitter state changes for generating CSCIF interrupt.
11 Generate CSCIF interrupt on all state changes.
1
OVRIE
Overrun Interrupt Enable
0 No interrupt request is generated from this event.
1 An overrun event causes an error interrupt request.
0
RXFIE
Receiver Full Interrupt Enable
0 No interrupt request is generated from this event.
1 A receive buffer full (successful message reception) event causes a receiver interrupt request.
1
WUPIE and WUPE (see Section 10.3.2.1, “MSCAN Control Register 0 (CANCTL0)”) must both be enabled if the recovery
mechanism from stop or wait is required.
2
Bus-off state is defined by the CAN standard (see Bosch CAN 2.0A/B protocol specification: for only transmitters. Because the
only possible state change for the transmitter from bus-off to TxOK also forces the receiver to skip its current state to RxOK,
the coding of the RXSTAT[1:0] flags define an additional bus-off state for the receiver (see Section 10.3.2.5, “MSCAN Receiver
Flag Register (CANRFLG)”).
10.3.2.7
MSCAN Transmitter Flag Register (CANTFLG)
The transmit buffer empty flags each have an associated interrupt enable bit in the CANTIER register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
433
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
R
7
6
5
4
3
0
0
0
0
0
2
1
0
TXE2
TXE1
TXE0
1
1
1
W
Reset:
0
0
0
0
0
= Unimplemented
Figure 10-10. MSCAN Transmitter Flag Register (CANTFLG)
NOTE
The CANTFLG register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK = 1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).
Read: Anytime
Write: Anytime for TXEx flags when not in initialization mode; write of 1 clears flag, write of 0 is ignored
Table 10-11. CANTFLG Register Field Descriptions
Field
Description
2:0
TXE[2:0]
Transmitter Buffer Empty — This flag indicates that the associated transmit message buffer is empty, and thus
not scheduled for transmission. The CPU must clear the flag after a message is set up in the transmit buffer and
is due for transmission. The MSCAN sets the flag after the message is sent successfully. The flag is also set by
the MSCAN when the transmission request is successfully aborted due to a pending abort request (see
Section 10.3.2.9, “MSCAN Transmitter Message Abort Request Register (CANTARQ)”). If not masked, a
transmit interrupt is pending while this flag is set.
Clearing a TXEx flag also clears the corresponding ABTAKx (see Section 10.3.2.10, “MSCAN Transmitter
Message Abort Acknowledge Register (CANTAAK)”). When a TXEx flag is set, the corresponding ABTRQx bit
is cleared (see Section 10.3.2.9, “MSCAN Transmitter Message Abort Request Register (CANTARQ)”).
When listen-mode is active (see Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”) the TXEx flags
cannot be cleared and no transmission is started.
Read and write accesses to the transmit buffer will be blocked, if the corresponding TXEx bit is cleared
(TXEx = 0) and the buffer is scheduled for transmission.
0 The associated message buffer is full (loaded with a message due for transmission)
1 The associated message buffer is empty (not scheduled)
10.3.2.8
MSCAN Transmitter Interrupt Enable Register (CANTIER)
This register contains the interrupt enable bits for the transmit buffer empty interrupt flags.
R
7
6
5
4
3
0
0
0
0
0
2
1
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
W
Reset:
0
0
0
0
0
= Unimplemented
Figure 10-11. MSCAN Transmitter Interrupt Enable Register (CANTIER)
MC9S12XDP512 Data Sheet, Rev. 2.21
434
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
NOTE
The CANTIER register is held in the reset state when the initialization mode
is active (INITRQ = 1 and INITAK = 1). This register is writable when not
in initialization mode (INITRQ = 0 and INITAK = 0).
Read: Anytime
Write: Anytime when not in initialization mode
Table 10-12. CANTIER Register Field Descriptions
Field
Description
2:0
TXEIE[2:0]
10.3.2.9
Transmitter Empty Interrupt Enable
0 No interrupt request is generated from this event.
1 A transmitter empty (transmit buffer available for transmission) event causes a transmitter empty interrupt
request.
MSCAN Transmitter Message Abort Request Register (CANTARQ)
The CANTARQ register allows abort request of queued messages as described below.
R
7
6
5
4
3
0
0
0
0
0
2
1
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
W
Reset:
0
0
0
0
0
= Unimplemented
Figure 10-12. MSCAN Transmitter Message Abort Request Register (CANTARQ)
NOTE
The CANTARQ register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK = 1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).
Read: Anytime
Write: Anytime when not in initialization mode
Table 10-13. CANTARQ Register Field Descriptions
Field
Description
2:0
Abort Request — The CPU sets the ABTRQx bit to request that a scheduled message buffer (TXEx = 0) be
ABTRQ[2:0] aborted. The MSCAN grants the request if the message has not already started transmission, or if the
transmission is not successful (lost arbitration or error). When a message is aborted, the associated TXE (see
Section 10.3.2.7, “MSCAN Transmitter Flag Register (CANTFLG)”) and abort acknowledge flags (ABTAK, see
Section 10.3.2.10, “MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)”) are set and a
transmit interrupt occurs if enabled. The CPU cannot reset ABTRQx. ABTRQx is reset whenever the associated
TXE flag is set.
0 No abort request
1 Abort request pending
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
435
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.3.2.10 MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)
The CANTAAK register indicates the successful abort of a queued message, if requested by the
appropriate bits in the CANTARQ register.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
0
0
0
0
W
Reset:
= Unimplemented
Figure 10-13. MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)
NOTE
The CANTAAK register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK = 1).
Read: Anytime
Write: Unimplemented for ABTAKx flags
Table 10-14. CANTAAK Register Field Descriptions
Field
Description
2:0
Abort Acknowledge — This flag acknowledges that a message was aborted due to a pending abort request
ABTAK[2:0] from the CPU. After a particular message buffer is flagged empty, this flag can be used by the application
software to identify whether the message was aborted successfully or was sent anyway. The ABTAKx flag is
cleared whenever the corresponding TXE flag is cleared.
0 The message was not aborted.
1 The message was aborted.
10.3.2.11 MSCAN Transmit Buffer Selection Register (CANTBSEL)
The CANTBSEL register allows the selection of the actual transmit message buffer, which then will be
accessible in the CANTXFG register space.
R
7
6
5
4
3
0
0
0
0
0
2
1
0
TX2
TX1
TX0
0
0
0
W
Reset:
0
0
0
0
0
= Unimplemented
Figure 10-14. MSCAN Transmit Buffer Selection Register (CANTBSEL)
MC9S12XDP512 Data Sheet, Rev. 2.21
436
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
NOTE
The CANTBSEL register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK=1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).
Read: Find the lowest ordered bit set to 1, all other bits will be read as 0
Write: Anytime when not in initialization mode
Table 10-15. CANTBSEL Register Field Descriptions
Field
Description
2:0
TX[2:0]
Transmit Buffer Select — The lowest numbered bit places the respective transmit buffer in the CANTXFG
register space (e.g., TX1 = 1 and TX0 = 1 selects transmit buffer TX0; TX1 = 1 and TX0 = 0 selects transmit
buffer TX1). Read and write accesses to the selected transmit buffer will be blocked, if the corresponding TXEx
bit is cleared and the buffer is scheduled for transmission (see Section 10.3.2.7, “MSCAN Transmitter Flag
Register (CANTFLG)”).
0 The associated message buffer is deselected
1 The associated message buffer is selected, if lowest numbered bit
The following gives a short programming example of the usage of the CANTBSEL register:
To get the next available transmit buffer, application software must read the CANTFLG register and write
this value back into the CANTBSEL register. In this example Tx buffers TX1 and TX2 are available. The
value read from CANTFLG is therefore 0b0000_0110. When writing this value back to CANTBSEL, the
Tx buffer TX1 is selected in the CANTXFG because the lowest numbered bit set to 1 is at bit position 1.
Reading back this value out of CANTBSEL results in 0b0000_0010, because only the lowest numbered
bit position set to 1 is presented. This mechanism eases the application software the selection of the next
available Tx buffer.
• LDD CANTFLG; value read is 0b0000_0110
• STD CANTBSEL; value written is 0b0000_0110
• LDD CANTBSEL; value read is 0b0000_0010
If all transmit message buffers are deselected, no accesses are allowed to the CANTXFG registers.
10.3.2.12 MSCAN Identifier Acceptance Control Register (CANIDAC)
The CANIDAC register is used for identifier acceptance control as described below.
R
7
6
0
0
5
4
IDAM1
IDAM0
0
0
3
2
1
0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
W
Reset:
0
0
= Unimplemented
Figure 10-15. MSCAN Identifier Acceptance Control Register (CANIDAC)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
437
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1), except bits IDHITx, which are
read-only
Table 10-16. CANIDAC Register Field Descriptions
Field
Description
5:4
IDAM[1:0]
Identifier Acceptance Mode — The CPU sets these flags to define the identifier acceptance filter organization
(see Section 10.4.3, “Identifier Acceptance Filter”). Table 10-17 summarizes the different settings. In filter closed
mode, no message is accepted such that the foreground buffer is never reloaded.
2:0
IDHIT[2:0]
Identifier Acceptance Hit Indicator — The MSCAN sets these flags to indicate an identifier acceptance hit (see
Section 10.4.3, “Identifier Acceptance Filter”). Table 10-18 summarizes the different settings.
Table 10-17. Identifier Acceptance Mode Settings
IDAM1
IDAM0
Identifier Acceptance Mode
0
0
Two 32-bit acceptance filters
0
1
Four 16-bit acceptance filters
1
0
Eight 8-bit acceptance filters
1
1
Filter closed
Table 10-18. Identifier Acceptance Hit Indication
IDHIT2
IDHIT1
IDHIT0
Identifier Acceptance Hit
0
0
0
Filter 0 hit
0
0
1
Filter 1 hit
0
1
0
Filter 2 hit
0
1
1
Filter 3 hit
1
0
0
Filter 4 hit
1
0
1
Filter 5 hit
1
1
0
Filter 6 hit
1
1
1
Filter 7 hit
The IDHITx indicators are always related to the message in the foreground buffer (RxFG). When a
message gets shifted into the foreground buffer of the receiver FIFO the indicators are updated as well.
10.3.2.13 MSCAN Reserved Register
This register is reserved for factory testing of the MSCAN module and is not available in normal system
operation modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
438
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset:
= Unimplemented
Figure 10-16. MSCAN Reserved Register
Read: Always read 0x0000 in normal system operation modes
Write: Unimplemented in normal system operation modes
NOTE
Writing to this register when in special modes can alter the MSCAN
functionality.
10.3.2.14 MSCAN Miscellaneous Register (CANMISC)
This register provides additional features.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
BOHOLD
W
Reset:
0
0
0
0
0
0
0
0
= Unimplemented
Figure 10-17. MSCAN Miscellaneous Register (CANMISC)
Read: Anytime
Write: Anytime; write of ‘1’ clears flag; write of ‘0’ ignored
Table 10-19. CANMISC Register Field Descriptions
Field
0
BOHOLD
Description
Bus-off State Hold Until User Request — If BORM is set in Section 10.3.2.2, “MSCAN Control Register 1
(CANCTL1), this bit indicates whether the module has entered the bus-off state. Clearing this bit requests the
recovery from bus-off. Refer to Section 10.5.2, “Bus-Off Recovery,” for details.
0 Module is not bus-off or recovery has been requested by user in bus-off state
1 Module is bus-off and holds this state until user request
10.3.2.15 MSCAN Receive Error Counter (CANRXERR)
This register reflects the status of the MSCAN receive error counter.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
439
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
R
7
6
5
4
3
2
1
0
RXERR7
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
0
0
0
0
0
0
0
0
W
Reset:
= Unimplemented
Figure 10-18. MSCAN Receive Error Counter (CANRXERR)
Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and
INITAK = 1)
Write: Unimplemented
NOTE
Reading this register when in any other mode other than sleep or
initialization mode may return an incorrect value. For MCUs with dual
CPUs, this may result in a CPU fault condition.
Writing to this register when in special modes can alter the MSCAN
functionality.
10.3.2.16 MSCAN Transmit Error Counter (CANTXERR)
This register reflects the status of the MSCAN transmit error counter.
R
7
6
5
4
3
2
1
0
TXERR7
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
0
0
0
0
0
0
0
0
W
Reset:
= Unimplemented
Figure 10-19. MSCAN Transmit Error Counter (CANTXERR)
Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and
INITAK = 1)
Write: Unimplemented
NOTE
Reading this register when in any other mode other than sleep or
initialization mode, may return an incorrect value. For MCUs with dual
CPUs, this may result in a CPU fault condition.
Writing to this register when in special modes can alter the MSCAN
functionality.
MC9S12XDP512 Data Sheet, Rev. 2.21
440
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.3.2.17 MSCAN Identifier Acceptance Registers (CANIDAR0-7)
On reception, each message is written into the background receive buffer. The CPU is only signalled to
read the message if it passes the criteria in the identifier acceptance and identifier mask registers
(accepted); otherwise, the message is overwritten by the next message (dropped).
The acceptance registers of the MSCAN are applied on the IDR0–IDR3 registers (see Section 10.3.3.1,
“Identifier Registers (IDR0–IDR3)”) of incoming messages in a bit by bit manner (see Section 10.4.3,
“Identifier Acceptance Filter”).
For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only
the first two (CANIDAR0/1, CANIDMR0/1) are applied.
Module Base + 0x0010 (CANIDAR0)
0x0011 (CANIDAR1)
0x0012 (CANIDAR2)
0x0013 (CANIDAR3)
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
Figure 10-20. MSCAN Identifier Acceptance Registers (First Bank) — CANIDAR0–CANIDAR3
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
441
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-20. CANIDAR0–CANIDAR3 Register Field Descriptions
Field
Description
7:0
AC[7:0]
Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits
of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison
is then masked with the corresponding identifier mask register.
Module Base + 0x0018 (CANIDAR4)
0x0019 (CANIDAR5)
0x001A (CANIDAR6)
0x001B (CANIDAR7)
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
0
0
0
0
0
0
0
0
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
Figure 10-21. MSCAN Identifier Acceptance Registers (Second Bank) — CANIDAR4–CANIDAR7
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)
MC9S12XDP512 Data Sheet, Rev. 2.21
442
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-21. CANIDAR4–CANIDAR7 Register Field Descriptions
Field
Description
7:0
AC[7:0]
Acceptance Code Bits — AC[7:0] comprise a user-defined sequence of bits with which the corresponding bits
of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison
is then masked with the corresponding identifier mask register.
10.3.2.18 MSCAN Identifier Mask Registers (CANIDMR0–CANIDMR7)
The identifier mask register specifies which of the corresponding bits in the identifier acceptance register
are relevant for acceptance filtering. To receive standard identifiers in 32 bit filter mode, it is required to
program the last three bits (AM[2:0]) in the mask registers CANIDMR1 and CANIDMR5 to “don’t care.”
To receive standard identifiers in 16 bit filter mode, it is required to program the last three bits (AM[2:0])
in the mask registers CANIDMR1, CANIDMR3, CANIDMR5, and CANIDMR7 to “don’t care.”
Module Base + 0x0014 (CANIDMR0)
0x0015 (CANIDMR1)
0x0016 (CANIDMR2)
0x0017 (CANIDMR3)
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
Figure 10-22. MSCAN Identifier Mask Registers (First Bank) — CANIDMR0–CANIDMR3
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
443
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)
Table 10-22. CANIDMR0–CANIDMR3 Register Field Descriptions
Field
Description
7:0
AM[7:0]
Acceptance Mask Bits — If a particular bit in this register is cleared, this indicates that the corresponding bit in
the identifier acceptance register must be the same as its identifier bit before a match is detected. The message
is accepted if all such bits match. If a bit is set, it indicates that the state of the corresponding bit in the identifier
acceptance register does not affect whether or not the message is accepted.
0 Match corresponding acceptance code register and identifier bits
1 Ignore corresponding acceptance code register bit
Module Base + 0x001C (CANIDMR4)
0x001D (CANIDMR5)
0x001E (CANIDMR6)
0x001F (CANIDMR7)
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
R
W
Reset
R
W
Reset
R
W
Reset
R
W
Reset
Figure 10-23. MSCAN Identifier Mask Registers (Second Bank) — CANIDMR4–CANIDMR7
Read: Anytime
Write: Anytime in initialization mode (INITRQ = 1 and INITAK = 1)
MC9S12XDP512 Data Sheet, Rev. 2.21
444
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-23. CANIDMR4–CANIDMR7 Register Field Descriptions
Field
Description
7:0
AM[7:0]
Acceptance Mask Bits — If a particular bit in this register is cleared, this indicates that the corresponding bit in
the identifier acceptance register must be the same as its identifier bit before a match is detected. The message
is accepted if all such bits match. If a bit is set, it indicates that the state of the corresponding bit in the identifier
acceptance register does not affect whether or not the message is accepted.
0 Match corresponding acceptance code register and identifier bits
1 Ignore corresponding acceptance code register bit
10.3.3
Programmer’s Model of Message Storage
The following section details the organization of the receive and transmit message buffers and the
associated control registers.
To simplify the programmer interface, the receive and transmit message buffers have the same outline.
Each message buffer allocates 16 bytes in the memory map containing a 13 byte data structure.
An additional transmit buffer priority register (TBPR) is defined for the transmit buffers. Within the last
two bytes of this memory map, the MSCAN stores a special 16-bit time stamp, which is sampled from an
internal timer after successful transmission or reception of a message. This feature is only available for
transmit and receiver buffers, if the TIME bit is set (see Section 10.3.2.1, “MSCAN Control Register 0
(CANCTL0)”).
The time stamp register is written by the MSCAN. The CPU can only read these registers.
Table 10-24. Message Buffer Organization
Offset
Address
Register
0x00X0
Identifier Register 0
0x00X1
Identifier Register 1
0x00X2
Identifier Register 2
0x00X3
Identifier Register 3
0x00X4
Data Segment Register 0
0x00X5
Data Segment Register 1
0x00X6
Data Segment Register 2
0x00X7
Data Segment Register 3
0x00X8
Data Segment Register 4
0x00X9
Data Segment Register 5
0x00XA
Data Segment Register 6
0x00XB
Data Segment Register 7
0x00XC
Data Length Register
0x00XD
Transmit Buffer Priority Register1
0x00XE
Time Stamp Register (High Byte)2
0x00XF
Time Stamp Register (Low Byte)3
Access
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
445
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
1
Not applicable for receive buffers
Read-only for CPU
3 Read-only for CPU
2
Figure 10-24 shows the common 13-byte data structure of receive and transmit buffers for extended
identifiers. The mapping of standard identifiers into the IDR registers is shown in Figure 10-25.
All bits of the receive and transmit buffers are ‘x’ out of reset because of RAM-based implementation1.
All reserved or unused bits of the receive and transmit buffers always read ‘x’.
1. Exception: The transmit priority registers are 0 out of reset.
MC9S12XDP512 Data Sheet, Rev. 2.21
446
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
447
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Figure 10-24. Receive/Transmit Message Buffer — Extended Identifier Mapping
Register
Name
Bit 7
6
5
4
3
2
1
Bit0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
R
IDR0
W
MC9S12XDP512 Data Sheet, Rev. 2.21
448
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Figure 10-24. Receive/Transmit Message Buffer — Extended Identifier Mapping
Register
Name
Bit 7
6
5
4
3
2
1
Bit0
ID20
ID19
ID18
SRR (=1)
IDE (=1)
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
R
IDR1
W
R
IDR2
W
R
IDR3
W
R
DSR0
W
R
DSR1
W
R
DSR2
W
R
DSR3
W
R
DSR4
W
R
DSR5
W
R
DSR6
W
R
DSR7
W
R
DLR
W
= Unused, always read ‘x’
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
449
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Read: For transmit buffers, anytime when TXEx flag is set (see Section 10.3.2.7, “MSCAN Transmitter
Flag Register (CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see
Section 10.3.2.11, “MSCAN Transmit Buffer Selection Register (CANTBSEL)”). For receive buffers,
only when RXF flag is set (see Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”).
Write: For transmit buffers, anytime when TXEx flag is set (see Section 10.3.2.7, “MSCAN Transmitter
Flag Register (CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see
Section 10.3.2.11, “MSCAN Transmit Buffer Selection Register (CANTBSEL)”). Unimplemented for
receive buffers.
Reset: Undefined (0x00XX) because of RAM-based implementation
Figure 10-25. Receive/Transmit Message Buffer — Standard Identifier Mapping
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
IDE (=0)
R
IDR0
W
R
IDR1
W
R
IDR2
W
R
IDR3
W
= Unused, always read ‘x’
10.3.3.1
Identifier Registers (IDR0–IDR3)
The identifier registers for an extended format identifier consist of a total of 32 bits; ID[28:0], SRR, IDE,
and RTR bits. The identifier registers for a standard format identifier consist of a total of 13 bits; ID[10:0],
RTR, and IDE bits.
10.3.3.1.1
IDR0–IDR3 for Extended Identifier Mapping
7
6
5
4
3
2
1
0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
x
x
x
x
x
x
x
x
R
W
Reset:
Figure 10-26. Identifier Register 0 (IDR0) — Extended Identifier Mapping
MC9S12XDP512 Data Sheet, Rev. 2.21
450
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-25. IDR0 Register Field Descriptions — Extended
Field
Description
7:0
ID[28:21]
Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number.
7
6
5
4
3
2
1
0
ID20
ID19
ID18
SRR (=1)
IDE (=1)
ID17
ID16
ID15
x
x
x
x
x
x
x
x
R
W
Reset:
Figure 10-27. Identifier Register 1 (IDR1) — Extended Identifier Mapping
Table 10-26. IDR1 Register Field Descriptions — Extended
Field
Description
7:5
ID[20:18]
Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number.
4
SRR
Substitute Remote Request — This fixed recessive bit is used only in extended format. It must be set to 1 by
the user for transmission buffers and is stored as received on the CAN bus for receive buffers.
3
IDE
ID Extended — This flag indicates whether the extended or standard identifier format is applied in this buffer. In
the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer
identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)
2:0
ID[17:15]
Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number.
7
6
5
4
3
2
1
0
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
x
x
x
x
x
x
x
x
R
W
Reset:
Figure 10-28. Identifier Register 2 (IDR2) — Extended Identifier Mapping
Table 10-27. IDR2 Register Field Descriptions — Extended
Field
Description
7:0
ID[14:7]
Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
451
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
7
6
5
4
3
2
1
0
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
x
x
x
x
x
x
x
x
R
W
Reset:
Figure 10-29. Identifier Register 3 (IDR3) — Extended Identifier Mapping
Table 10-28. IDR3 Register Field Descriptions — Extended
Field
Description
7:1
ID[6:0]
Extended Format Identifier — The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number.
0
RTR
Remote Transmission Request — This flag reflects the status of the remote transmission request bit in the
CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the
transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of
the RTR bit to be sent.
0 Data frame
1 Remote frame
10.3.3.1.2
IDR0–IDR3 for Standard Identifier Mapping
7
6
5
4
3
2
1
0
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
x
x
x
x
x
x
x
x
R
W
Reset:
Figure 10-30. Identifier Register 0 — Standard Mapping
Table 10-29. IDR0 Register Field Descriptions — Standard
Field
Description
7:0
ID[10:3]
Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number. See also ID bits in Table 10-30.
7
6
5
4
3
ID2
ID1
ID0
RTR
IDE (=0)
x
x
x
x
x
2
1
0
x
x
x
R
W
Reset:
= Unused; always read ‘x’
Figure 10-31. Identifier Register 1 — Standard Mapping
MC9S12XDP512 Data Sheet, Rev. 2.21
452
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-30. IDR1 Register Field Descriptions
Field
Description
7:5
ID[2:0]
Standard Format Identifier — The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the
most significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an
identifier is defined to be highest for the smallest binary number. See also ID bits in Table 10-29.
4
RTR
Remote Transmission Request — This flag reflects the status of the Remote Transmission Request bit in the
CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the
transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of
the RTR bit to be sent.
0 Data frame
1 Remote frame
3
IDE
ID Extended — This flag indicates whether the extended or standard identifier format is applied in this buffer. In
the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer
identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)
7
6
5
4
3
2
1
0
x
x
x
x
x
x
x
x
R
W
Reset:
= Unused; always read ‘x’
Figure 10-32. Identifier Register 2 — Standard Mapping
7
6
5
4
3
2
1
0
x
x
x
x
x
x
x
x
R
W
Reset:
= Unused; always read ‘x’
Figure 10-33. Identifier Register 3 — Standard Mapping
10.3.3.2
Data Segment Registers (DSR0-7)
The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received.
The number of bytes to be transmitted or received is determined by the data length code in the
corresponding DLR register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
453
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Module Base + 0x0004 (DSR0)
0x0005 (DSR1)
0x0006 (DSR2)
0x0007 (DSR3)
0x0008 (DSR4)
0x0009 (DSR5)
0x000A (DSR6)
0x000B (DSR7)
7
6
5
4
3
2
1
0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
x
x
x
x
x
x
x
x
R
W
Reset:
Figure 10-34. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping
Table 10-31. DSR0–DSR7 Register Field Descriptions
Field
Description
7:0
DB[7:0]
Data bits 7:0
10.3.3.3
Data Length Register (DLR)
This register keeps the data length field of the CAN frame.
7
6
5
4
3
2
1
0
DLC3
DLC2
DLC1
DLC0
x
x
x
x
R
W
Reset:
x
x
x
x
= Unused; always read “x”
Figure 10-35. Data Length Register (DLR) — Extended Identifier Mapping
Table 10-32. DLR Register Field Descriptions
Field
Description
3:0
DLC[3:0]
Data Length Code Bits — The data length code contains the number of bytes (data byte count) of the respective
message. During the transmission of a remote frame, the data length code is transmitted as programmed while
the number of transmitted data bytes is always 0. The data byte count ranges from 0 to 8 for a data frame.
Table 10-33 shows the effect of setting the DLC bits.
MC9S12XDP512 Data Sheet, Rev. 2.21
454
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-33. Data Length Codes
Data Length Code
10.3.3.4
DLC3
DLC2
DLC1
DLC0
Data Byte
Count
0
0
0
0
0
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
Transmit Buffer Priority Register (TBPR)
This register defines the local priority of the associated message buffer. The local priority is used for the
internal prioritization process of the MSCAN and is defined to be highest for the smallest binary number.
The MSCAN implements the following internal prioritization mechanisms:
• All transmission buffers with a cleared TXEx flag participate in the prioritization immediately
before the SOF (start of frame) is sent.
• The transmission buffer with the lowest local priority field wins the prioritization.
In cases of more than one buffer having the same lowest priority, the message buffer with the lower index
number wins.
7
6
5
4
3
2
1
0
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
0
0
0
0
0
0
0
0
R
W
Reset:
Figure 10-36. Transmit Buffer Priority Register (TBPR)
Read: Anytime when TXEx flag is set (see Section 10.3.2.7, “MSCAN Transmitter Flag Register
(CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see Section 10.3.2.11,
“MSCAN Transmit Buffer Selection Register (CANTBSEL)”).
Write: Anytime when TXEx flag is set (see Section 10.3.2.7, “MSCAN Transmitter Flag Register
(CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see Section 10.3.2.11,
“MSCAN Transmit Buffer Selection Register (CANTBSEL)”).
10.3.3.5
Time Stamp Register (TSRH–TSRL)
If the TIME bit is enabled, the MSCAN will write a time stamp to the respective registers in the active
transmit or receive buffer right after the EOF of a valid message on the CAN bus (see Section 10.3.2.1,
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
455
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
“MSCAN Control Register 0 (CANCTL0)”). In case of a transmission, the CPU can only read the time
stamp after the respective transmit buffer has been flagged empty.
The timer value, which is used for stamping, is taken from a free running internal CAN bit clock. A timer
overrun is not indicated by the MSCAN. The timer is reset (all bits set to 0) during initialization mode. The
CPU can only read the time stamp registers.
R
7
6
5
4
3
2
1
0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
x
x
x
x
x
x
x
x
W
Reset:
Figure 10-37. Time Stamp Register — High Byte (TSRH)
R
7
6
5
4
3
2
1
0
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
x
x
x
x
x
x
x
x
W
Reset:
Figure 10-38. Time Stamp Register — Low Byte (TSRL)
Read: Anytime when TXEx flag is set (see Section 10.3.2.7, “MSCAN Transmitter Flag Register
(CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see Section 10.3.2.11,
“MSCAN Transmit Buffer Selection Register (CANTBSEL)”).
Write: Unimplemented
10.4
10.4.1
Functional Description
General
This section provides a complete functional description of the MSCAN. It describes each of the features
and modes listed in the introduction.
MC9S12XDP512 Data Sheet, Rev. 2.21
456
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.4.2
Message Storage
CAN
Receive / Transmit
Engine
CPU12
Memory Mapped
I/O
Rx0
RXF
Receiver
TxBG
Tx0
MSCAN
TxFG
Tx1
TxBG
Tx2
Transmitter
CPU bus
RxFG
RxBG
MSCAN
Rx1
Rx2
Rx3
Rx4
TXE0
PRIO
TXE1
CPU bus
PRIO
TXE2
PRIO
Figure 10-39. User Model for Message Buffer Organization
MSCAN facilitates a sophisticated message storage system which addresses the requirements of a broad
range of network applications.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
457
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.4.2.1
Message Transmit Background
Modern application layer software is built upon two fundamental assumptions:
• Any CAN node is able to send out a stream of scheduled messages without releasing the CAN bus
between the two messages. Such nodes arbitrate for the CAN bus immediately after sending the
previous message and only release the CAN bus in case of lost arbitration.
• The internal message queue within any CAN node is organized such that the highest priority
message is sent out first, if more than one message is ready to be sent.
The behavior described in the bullets above cannot be achieved with a single transmit buffer. That buffer
must be reloaded immediately after the previous message is sent. This loading process lasts a finite amount
of time and must be completed within the inter-frame sequence (IFS) to be able to send an uninterrupted
stream of messages. Even if this is feasible for limited CAN bus speeds, it requires that the CPU reacts
with short latencies to the transmit interrupt.
A double buffer scheme de-couples the reloading of the transmit buffer from the actual message sending
and, therefore, reduces the reactiveness requirements of the CPU. Problems can arise if the sending of a
message is finished while the CPU re-loads the second buffer. No buffer would then be ready for
transmission, and the CAN bus would be released.
At least three transmit buffers are required to meet the first of the above requirements under all
circumstances. The MSCAN has three transmit buffers.
The second requirement calls for some sort of internal prioritization which the MSCAN implements with
the “local priority” concept described in Section 10.4.2.2, “Transmit Structures.”
10.4.2.2
Transmit Structures
The MSCAN triple transmit buffer scheme optimizes real-time performance by allowing multiple
messages to be set up in advance. The three buffers are arranged as shown in Figure 10-39.
All three buffers have a 13-byte data structure similar to the outline of the receive buffers (see
Section 10.3.3, “Programmer’s Model of Message Storage”). An additional Section 10.3.3.4, “Transmit
Buffer Priority Register (TBPR) contains an 8-bit local priority field (PRIO) (see Section 10.3.3.4,
“Transmit Buffer Priority Register (TBPR)”). The remaining two bytes are used for time stamping of a
message, if required (see Section 10.3.3.5, “Time Stamp Register (TSRH–TSRL)”).
To transmit a message, the CPU must identify an available transmit buffer, which is indicated by a set
transmitter buffer empty (TXEx) flag (see Section 10.3.2.7, “MSCAN Transmitter Flag Register
(CANTFLG)”). If a transmit buffer is available, the CPU must set a pointer to this buffer by writing to the
CANTBSEL register (see Section 10.3.2.11, “MSCAN Transmit Buffer Selection Register
(CANTBSEL)”). This makes the respective buffer accessible within the CANTXFG address space (see
Section 10.3.3, “Programmer’s Model of Message Storage”). The algorithmic feature associated with the
CANTBSEL register simplifies the transmit buffer selection. In addition, this scheme makes the handler
software simpler because only one address area is applicable for the transmit process, and the required
address space is minimized.
The CPU then stores the identifier, the control bits, and the data content into one of the transmit buffers.
Finally, the buffer is flagged as ready for transmission by clearing the associated TXE flag.
MC9S12XDP512 Data Sheet, Rev. 2.21
458
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
The MSCAN then schedules the message for transmission and signals the successful transmission of the
buffer by setting the associated TXE flag. A transmit interrupt (see Section 10.4.7.2, “Transmit Interrupt”)
is generated1 when TXEx is set and can be used to drive the application software to re-load the buffer.
If more than one buffer is scheduled for transmission when the CAN bus becomes available for arbitration,
the MSCAN uses the local priority setting of the three buffers to determine the prioritization. For this
purpose, every transmit buffer has an 8-bit local priority field (PRIO). The application software programs
this field when the message is set up. The local priority reflects the priority of this particular message
relative to the set of messages being transmitted from this node. The lowest binary value of the PRIO field
is defined to be the highest priority. The internal scheduling process takes place whenever the MSCAN
arbitrates for the CAN bus. This is also the case after the occurrence of a transmission error.
When a high priority message is scheduled by the application software, it may become necessary to abort
a lower priority message in one of the three transmit buffers. Because messages that are already in
transmission cannot be aborted, the user must request the abort by setting the corresponding abort request
bit (ABTRQ) (see Section 10.3.2.9, “MSCAN Transmitter Message Abort Request Register
(CANTARQ)”.) The MSCAN then grants the request, if possible, by:
1. Setting the corresponding abort acknowledge flag (ABTAK) in the CANTAAK register.
2. Setting the associated TXE flag to release the buffer.
3. Generating a transmit interrupt. The transmit interrupt handler software can determine from the
setting of the ABTAK flag whether the message was aborted (ABTAK = 1) or sent (ABTAK = 0).
10.4.2.3
Receive Structures
The received messages are stored in a five stage input FIFO. The five message buffers are alternately
mapped into a single memory area (see Figure 10-39). The background receive buffer (RxBG) is
exclusively associated with the MSCAN, but the foreground receive buffer (RxFG) is addressable by the
CPU (see Figure 10-39). This scheme simplifies the handler software because only one address area is
applicable for the receive process.
All receive buffers have a size of 15 bytes to store the CAN control bits, the identifier (standard or
extended), the data contents, and a time stamp, if enabled (see Section 10.3.3, “Programmer’s Model of
Message Storage”).
The receiver full flag (RXF) (see Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”)
signals the status of the foreground receive buffer. When the buffer contains a correctly received message
with a matching identifier, this flag is set.
On reception, each message is checked to see whether it passes the filter (see Section 10.4.3, “Identifier
Acceptance Filter”) and simultaneously is written into the active RxBG. After successful reception of a
valid message, the MSCAN shifts the content of RxBG into the receiver FIFO2, sets the RXF flag, and
generates a receive interrupt (see Section 10.4.7.3, “Receive Interrupt”) to the CPU3. The user’s receive
handler must read the received message from the RxFG and then reset the RXF flag to acknowledge the
interrupt and to release the foreground buffer. A new message, which can follow immediately after the IFS
1. The transmit interrupt occurs only if not masked. A polling scheme can be applied on TXEx also.
2. Only if the RXF flag is not set.
3. The receive interrupt occurs only if not masked. A polling scheme can be applied on RXF also.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
459
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
field of the CAN frame, is received into the next available RxBG. If the MSCAN receives an invalid
message in its RxBG (wrong identifier, transmission errors, etc.) the actual contents of the buffer will be
over-written by the next message. The buffer will then not be shifted into the FIFO.
When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the
background receive buffer, RxBG, but does not shift it into the receiver FIFO, generate a receive interrupt,
or acknowledge its own messages on the CAN bus. The exception to this rule is in loopback mode (see
Section 10.3.2.2, “MSCAN Control Register 1 (CANCTL1)”) where the MSCAN treats its own messages
exactly like all other incoming messages. The MSCAN receives its own transmitted messages in the event
that it loses arbitration. If arbitration is lost, the MSCAN must be prepared to become a receiver.
An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly
received messages with accepted identifiers and another message is correctly received from the CAN bus
with an accepted identifier. The latter message is discarded and an error interrupt with overrun indication
is generated if enabled (see Section 10.4.7.5, “Error Interrupt”). The MSCAN remains able to transmit
messages while the receiver FIFO being filled, but all incoming messages are discarded. As soon as a
receive buffer in the FIFO is available again, new valid messages will be accepted.
10.4.3
Identifier Acceptance Filter
The MSCAN identifier acceptance registers (see Section 10.3.2.12, “MSCAN Identifier Acceptance
Control Register (CANIDAC)”) define the acceptable patterns of the standard or extended identifier
(ID[10:0] or ID[28:0]). Any of these bits can be marked ‘don’t care’ in the MSCAN identifier mask
registers (see Section 10.3.2.18, “MSCAN Identifier Mask Registers (CANIDMR0–CANIDMR7)”).
A filter hit is indicated to the application software by a set receive buffer full flag (RXF = 1) and three bits
in the CANIDAC register (see Section 10.3.2.12, “MSCAN Identifier Acceptance Control Register
(CANIDAC)”). These identifier hit flags (IDHIT[2:0]) clearly identify the filter section that caused the
acceptance. They simplify the application software’s task to identify the cause of the receiver interrupt. If
more than one hit occurs (two or more filters match), the lower hit has priority.
A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU
interrupt loading. The filter is programmable to operate in four different modes (see Bosch CAN 2.0A/B
protocol specification):
• Two identifier acceptance filters, each to be applied to:
— The full 29 bits of the extended identifier and to the following bits of the CAN 2.0B frame:
– Remote transmission request (RTR)
– Identifier extension (IDE)
– Substitute remote request (SRR)
— The 11 bits of the standard identifier plus the RTR and IDE bits of the CAN 2.0A/B messages1.
This mode implements two filters for a full length CAN 2.0B compliant extended identifier.
Figure 10-40 shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3,
CANIDMR0–CANIDMR3) produces a filter 0 hit. Similarly, the second filter bank
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces a filter 1 hit.
1.Although this mode can be used for standard identifiers, it is recommended to use the four or eight identifier acceptance
filters for standard identifiers
MC9S12XDP512 Data Sheet, Rev. 2.21
460
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
•
•
•
Four identifier acceptance filters, each to be applied to
— a) the 14 most significant bits of the extended identifier plus the SRR and IDE bits of CAN 2.0B
messages or
— b) the 11 bits of the standard identifier, the RTR and IDE bits of CAN 2.0A/B messages.
Figure 10-41 shows how the first 32-bit filter bank (CANIDAR0–CANIDA3,
CANIDMR0–3CANIDMR) produces filter 0 and 1 hits. Similarly, the second filter bank
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces filter 2 and 3 hits.
Eight identifier acceptance filters, each to be applied to the first 8 bits of the identifier. This mode
implements eight independent filters for the first 8 bits of a CAN 2.0A/B compliant standard
identifier or a CAN 2.0B compliant extended identifier. Figure 10-42 shows how the first 32-bit
filter bank (CANIDAR0–CANIDAR3, CANIDMR0–CANIDMR3) produces filter 0 to 3 hits.
Similarly, the second filter bank (CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7)
produces filter 4 to 7 hits.
Closed filter. No CAN message is copied into the foreground buffer RxFG, and the RXF flag is
never set.
CAN 2.0B
Extended Identifier ID28
IDR0
ID21
ID20
IDR1
CAN 2.0A/B
Standard Identifier ID10
IDR0
ID3
ID2
IDR1
ID15
IDE
ID14
IDR2
ID7
ID6
IDR3
RTR
ID10
IDR2
ID3
ID10
IDR3
ID3
AM7
CANIDMR0
AM0
AM7
CANIDMR1
AM0
AM7
CANIDMR2
AM0
AM7
CANIDMR3
AM0
AC7
CANIDAR0
AC0
AC7
CANIDAR1
AC0
AC7
CANIDAR2
AC0
AC7
CANIDAR3
AC0
ID Accepted (Filter 0 Hit)
Figure 10-40. 32-bit Maskable Identifier Acceptance Filter
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
461
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
CAN 2.0B
Extended Identifier
ID28
IDR0
ID21
ID20
IDR1
CAN 2.0A/B
Standard Identifier
ID10
IDR0
ID3
ID2
IDR1
AM7
CANIDMR0
AM0
AM7
CANIDMR1
AM0
AC7
CANIDAR0
AC0
AC7
CANIDAR1
AC0
ID15
IDE
ID14
IDR2
ID7
ID6
IDR3
RTR
ID10
IDR2
ID3
ID10
IDR3
ID3
ID Accepted (Filter 0 Hit)
AM7
CANIDMR2
AM0
AM7
CANIDMR3
AM0
AC7
CANIDAR2
AC0
AC7
CANIDAR3
AC0
ID Accepted (Filter 1 Hit)
Figure 10-41. 16-bit Maskable Identifier Acceptance Filters
MC9S12XDP512 Data Sheet, Rev. 2.21
462
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
CAN 2.0B
Extended Identifier ID28
IDR0
ID21
ID20
IDR1
CAN 2.0A/B
Standard Identifier ID10
IDR0
ID3
ID2
IDR1
AM7
CIDMR0
AM0
AC7
CIDAR0
AC0
ID15
IDE
ID14
IDR2
ID7
ID6
IDR3
RTR
ID10
IDR2
ID3
ID10
IDR3
ID3
ID Accepted (Filter 0 Hit)
AM7
CIDMR1
AM0
AC7
CIDAR1
AC0
ID Accepted (Filter 1 Hit)
AM7
CIDMR2
AM0
AC7
CIDAR2
AC0
ID Accepted (Filter 2 Hit)
AM7
CIDMR3
AM0
AC7
CIDAR3
AC0
ID Accepted (Filter 3 Hit)
Figure 10-42. 8-bit Maskable Identifier Acceptance Filters
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
463
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.4.3.1
Protocol Violation Protection
The MSCAN protects the user from accidentally violating the CAN protocol through programming errors.
The protection logic implements the following features:
• The receive and transmit error counters cannot be written or otherwise manipulated.
• All registers which control the configuration of the MSCAN cannot be modified while the MSCAN
is on-line. The MSCAN has to be in Initialization Mode. The corresponding INITRQ/INITAK
handshake bits in the CANCTL0/CANCTL1 registers (see Section 10.3.2.1, “MSCAN Control
Register 0 (CANCTL0)”) serve as a lock to protect the following registers:
— MSCAN control 1 register (CANCTL1)
— MSCAN bus timing registers 0 and 1 (CANBTR0, CANBTR1)
— MSCAN identifier acceptance control register (CANIDAC)
— MSCAN identifier acceptance registers (CANIDAR0–CANIDAR7)
— MSCAN identifier mask registers (CANIDMR0–CANIDMR7)
• The TXCAN pin is immediately forced to a recessive state when the MSCAN goes into the power
down mode or initialization mode (see Section 10.4.5.6, “MSCAN Power Down Mode,” and
Section 10.4.5.5, “MSCAN Initialization Mode”).
• The MSCAN enable bit (CANE) is writable only once in normal system operation modes, which
provides further protection against inadvertently disabling the MSCAN.
10.4.3.2
Clock System
Figure 10-43 shows the structure of the MSCAN clock generation circuitry.
MSCAN
Bus Clock
CANCLK
CLKSRC
Prescaler
(1 .. 64)
Time quanta clock (Tq)
CLKSRC
Oscillator Clock
Figure 10-43. MSCAN Clocking Scheme
The clock source bit (CLKSRC) in the CANCTL1 register (10.3.2.2/10-426) defines whether the internal
CANCLK is connected to the output of a crystal oscillator (oscillator clock) or to the bus clock.
The clock source has to be chosen such that the tight oscillator tolerance requirements (up to 0.4%) of the
CAN protocol are met. Additionally, for high CAN bus rates (1 Mbps), a 45% to 55% duty cycle of the
clock is required.
MC9S12XDP512 Data Sheet, Rev. 2.21
464
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
If the bus clock is generated from a PLL, it is recommended to select the oscillator clock rather than the
bus clock due to jitter considerations, especially at the faster CAN bus rates.
For microcontrollers without a clock and reset generator (CRG), CANCLK is driven from the crystal
oscillator (oscillator clock).
A programmable prescaler generates the time quanta (Tq) clock from CANCLK. A time quantum is the
atomic unit of time handled by the MSCAN.
Eqn. 10-2
f CANCLK
=
----------------------------------------------------Tq ( Prescaler value )A bit time is subdivided into three segments as described in the Bosch CAN specification. (see
Figure 10-44):
• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section.
• Time Segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN
standard. It can be programmed by setting the parameter TSEG1 to consist of 4 to 16 time quanta.
• Time Segment 2: This segment represents the PHASE_SEG2 of the CAN standard. It can be
programmed by setting the TSEG2 parameter to be 2 to 8 time quanta long.
Eqn. 10-3
f Tq
Bit Rate = --------------------------------------------------------------------------------( number of Time Quanta )
NRZ Signal
SYNC_SEG
Time Segment 1
(PROP_SEG + PHASE_SEG1)
Time Segment 2
(PHASE_SEG2)
1
4 ... 16
2 ... 8
8 ... 25 Time Quanta
= 1 Bit Time
Transmit Point
Sample Point
(single or triple sampling)
Figure 10-44. Segments within the Bit Time
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
465
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-34. Time Segment Syntax
Syntax
Description
System expects transitions to occur on the CAN bus during this
period.
SYNC_SEG
Transmit Point
A node in transmit mode transfers a new value to the CAN bus at
this point.
Sample Point
A node in receive mode samples the CAN bus at this point. If the
three samples per bit option is selected, then this point marks the
position of the third sample.
The synchronization jump width (see the Bosch CAN specification for details) can be programmed in a
range of 1 to 4 time quanta by setting the SJW parameter.
The SYNC_SEG, TSEG1, TSEG2, and SJW parameters are set by programming the MSCAN bus timing
registers (CANBTR0, CANBTR1) (see Section 10.3.2.3, “MSCAN Bus Timing Register 0 (CANBTR0)”
and Section 10.3.2.4, “MSCAN Bus Timing Register 1 (CANBTR1)”).
Table 10-35 gives an overview of the CAN compliant segment settings and the related parameter values.
NOTE
It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard.
Table 10-35. CAN Standard Compliant Bit Time Segment Settings
Synchronization
Jump Width
Time Segment 1
TSEG1
Time Segment 2
TSEG2
5 .. 10
4 .. 9
2
1
1 .. 2
0 .. 1
4 .. 11
3 .. 10
3
2
1 .. 3
0 .. 2
5 .. 12
4 .. 11
4
3
1 .. 4
0 .. 3
6 .. 13
5 .. 12
5
4
1 .. 4
0 .. 3
7 .. 14
6 .. 13
6
5
1 .. 4
0 .. 3
8 .. 15
7 .. 14
7
6
1 .. 4
0 .. 3
9 .. 16
8 .. 15
8
7
1 .. 4
0 .. 3
10.4.4
10.4.4.1
SJW
Modes of Operation
Normal Modes
The MSCAN module behaves as described within this specification in all normal system operation modes.
10.4.4.2
Special Modes
The MSCAN module behaves as described within this specification in all special system operation modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
466
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
10.4.4.3
Emulation Modes
In all emulation modes, the MSCAN module behaves just like normal system operation modes as
described within this specification.
10.4.4.4
Listen-Only Mode
In an optional CAN bus monitoring mode (listen-only), the CAN node is able to receive valid data frames
and valid remote frames, but it sends only “recessive” bits on the CAN bus. In addition, it cannot start a
transmision. If the MAC sub-layer is required to send a “dominant” bit (ACK bit, overload flag, or active
error flag), the bit is rerouted internally so that the MAC sub-layer monitors this “dominant” bit, although
the CAN bus may remain in recessive state externally.
10.4.4.5
Security Modes
The MSCAN module has no security features.
10.4.5
Low-Power Options
If the MSCAN is disabled (CANE = 0), the MSCAN clocks are stopped for power saving.
If the MSCAN is enabled (CANE = 1), the MSCAN has two additional modes with reduced power
consumption, compared to normal mode: sleep and power down mode. In sleep mode, power consumption
is reduced by stopping all clocks except those to access the registers from the CPU side. In power down
mode, all clocks are stopped and no power is consumed.
Table 10-36 summarizes the combinations of MSCAN and CPU modes. A particular combination of
modes is entered by the given settings on the CSWAI and SLPRQ/SLPAK bits.
For all modes, an MSCAN wake-up interrupt can occur only if the MSCAN is in sleep mode (SLPRQ = 1
and SLPAK = 1), wake-up functionality is enabled (WUPE = 1), and the wake-up interrupt is enabled
(WUPIE = 1).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
467
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
Table 10-36. CPU vs. MSCAN Operating Modes
MSCAN Mode
Reduced Power Consumption
CPU Mode
Normal
Sleep
RUN
CSWAI = X1
SLPRQ = 0
SLPAK = 0
CSWAI = X
SLPRQ = 1
SLPAK = 1
WAIT
CSWAI = 0
SLPRQ = 0
SLPAK = 0
CSWAI = 0
SLPRQ = 1
SLPAK = 1
STOP
1
Power Down
Disabled
(CANE=0)
CSWAI = X
SLPRQ = X
SLPAK = X
CSWAI = 1
SLPRQ = X
SLPAK = X
CSWAI = X
SLPRQ = X
SLPAK = X
CSWAI = X
SLPRQ = X
SLPAK = X
CSWAI = X
SLPRQ = X
SLPAK = X
‘X’ means don’t care.
10.4.5.1
Operation in Run Mode
As shown in Table 10-36, only MSCAN sleep mode is available as low power option when the CPU is in
run mode.
10.4.5.2
Operation in Wait Mode
The WAI instruction puts the MCU in a low power consumption stand-by mode. If the CSWAI bit is set,
additional power can be saved in power down mode because the CPU clocks are stopped. After leaving
this power down mode, the MSCAN restarts its internal controllers and enters normal mode again.
While the CPU is in wait mode, the MSCAN can be operated in normal mode and generate interrupts
(registers can be accessed via background debug mode). The MSCAN can also operate in any of the
low-power modes depending on the values of the SLPRQ/SLPAK and CSWAI bits as seen in Table 10-36.
10.4.5.3
Operation in Stop Mode
The STOP instruction puts the MCU in a low power consumption stand-by mode. In stop mode, the
MSCAN is set in power down mode regardless of the value of the SLPRQ/SLPAK and CSWAI bits
(Table 10-36).
10.4.5.4
MSCAN Sleep Mode
The CPU can request the MSCAN to enter this low power mode by asserting the SLPRQ bit in the
CANCTL0 register. The time when the MSCAN enters sleep mode depends on a fixed synchronization
delay and its current activity:
MC9S12XDP512 Data Sheet, Rev. 2.21
468
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
•
•
•
If there are one or more message buffers scheduled for transmission (TXEx = 0), the MSCAN will
continue to transmit until all transmit message buffers are empty (TXEx = 1, transmitted
successfully or aborted) and then goes into sleep mode.
If the MSCAN is receiving, it continues to receive and goes into sleep mode as soon as the CAN
bus next becomes idle.
If the MSCAN is neither transmitting nor receiving, it immediately goes into sleep mode.
Bus Clock Domain
CAN Clock Domain
SLPRQ
SYNC
sync.
SLPRQ
sync.
SYNC
SLPAK
CPU
Sleep Request
SLPAK
Flag
SLPAK
SLPRQ
Flag
MSCAN
in Sleep Mode
Figure 10-45. Sleep Request / Acknowledge Cycle
NOTE
The application software must avoid setting up a transmission (by clearing
one or more TXEx flag(s)) and immediately request sleep mode (by setting
SLPRQ). Whether the MSCAN starts transmitting or goes into sleep mode
directly depends on the exact sequence of operations.
If sleep mode is active, the SLPRQ and SLPAK bits are set (Figure 10-45). The application software must
use SLPAK as a handshake indication for the request (SLPRQ) to go into sleep mode.
When in sleep mode (SLPRQ = 1 and SLPAK = 1), the MSCAN stops its internal clocks. However, clocks
that allow register accesses from the CPU side continue to run.
If the MSCAN is in bus-off state, it stops counting the 128 occurrences of 11 consecutive recessive bits
due to the stopped clocks. The TXCAN pin remains in a recessive state. If RXF = 1, the message can be
read and RXF can be cleared. Shifting a new message into the foreground buffer of the receiver FIFO
(RxFG) does not take place while in sleep mode.
It is possible to access the transmit buffers and to clear the associated TXE flags. No message abort takes
place while in sleep mode.
If the WUPE bit in CANCTL0 is not asserted, the MSCAN will mask any activity it detects on CAN. The
RXCAN pin is therefore held internally in a recessive state. This locks the MSCAN in sleep mode
(Figure 10-46). WUPE must be set before entering sleep mode to take effect.
The MSCAN is able to leave sleep mode (wake up) only when:
• CAN bus activity occurs and WUPE = 1
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
469
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
•
or
the CPU clears the SLPRQ bit
NOTE
The CPU cannot clear the SLPRQ bit before sleep mode (SLPRQ = 1 and
SLPAK = 1) is active.
After wake-up, the MSCAN waits for 11 consecutive recessive bits to synchronize to the CAN bus. As a
consequence, if the MSCAN is woken-up by a CAN frame, this frame is not received.
The receive message buffers (RxFG and RxBG) contain messages if they were received before sleep mode
was entered. All pending actions will be executed upon wake-up; copying of RxBG into RxFG, message
aborts and message transmissions. If the MSCAN remains in bus-off state after sleep mode was exited, it
continues counting the 128 occurrences of 11 consecutive recessive bits.
CAN Activity
(CAN Activity & WUPE) | SLPRQ
Wait
for Idle
StartUp
CAN Activity
SLPRQ
CAN Activity &
SLPRQ
Sleep
Idle
(CAN Activity & WUPE) |
CAN Activity
CAN Activity &
SLPRQ
CAN Activity
Tx/Rx
Message
Active
CAN Activity
Figure 10-46. Simplified State Transitions for Entering/Leaving Sleep Mode
10.4.5.5
MSCAN Initialization Mode
In initialization mode, any on-going transmission or reception is immediately aborted and synchronization
to the CAN bus is lost, potentially causing CAN protocol violations. To protect the CAN bus system from
fatal consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.
MC9S12XDP512 Data Sheet, Rev. 2.21
470
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
NOTE
The user is responsible for ensuring that the MSCAN is not active when
initialization mode is entered. The recommended procedure is to bring the
MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before setting the
INITRQ bit in the CANCTL0 register. Otherwise, the abort of an on-going
message can cause an error condition and can impact other CAN bus
devices.
In initialization mode, the MSCAN is stopped. However, interface registers remain accessible. This mode
is used to reset the CANCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ,
CANTAAK, and CANTBSEL registers to their default values. In addition, the MSCAN enables the
configuration of the CANBTR0, CANBTR1 bit timing registers; CANIDAC; and the CANIDAR,
CANIDMR message filters. See Section 10.3.2.1, “MSCAN Control Register 0 (CANCTL0),” for a
detailed description of the initialization mode.
Bus Clock Domain
CAN Clock Domain
INITRQ
SYNC
sync.
INITRQ
sync.
SYNC
INITAK
CPU
Init Request
INITAK
Flag
INITAK
INIT
Flag
Figure 10-47. Initialization Request/Acknowledge Cycle
Due to independent clock domains within the MSCAN, INITRQ must be synchronized to all domains by
using a special handshake mechanism. This handshake causes additional synchronization delay (see
Section Figure 10-47., “Initialization Request/Acknowledge Cycle”).
If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus
clocks and three additional CAN clocks. When all parts of the MSCAN are in initialization mode, the
INITAK flag is set. The application software must use INITAK as a handshake indication for the request
(INITRQ) to go into initialization mode.
NOTE
The CPU cannot clear INITRQ before initialization mode (INITRQ = 1 and
INITAK = 1) is active.
10.4.5.6
MSCAN Power Down Mode
The MSCAN is in power down mode (Table 10-36) when
• CPU is in stop mode
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
471
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
•
or
CPU is in wait mode and the CSWAI bit is set
When entering the power down mode, the MSCAN immediately stops all ongoing transmissions and
receptions, potentially causing CAN protocol violations. To protect the CAN bus system from fatal
consequences of violations to the above rule, the MSCAN immediately drives the TXCAN pin into a
recessive state.
NOTE
The user is responsible for ensuring that the MSCAN is not active when
power down mode is entered. The recommended procedure is to bring the
MSCAN into Sleep mode before the STOP or WAI instruction (if CSWAI
is set) is executed. Otherwise, the abort of an ongoing message can cause an
error condition and impact other CAN bus devices.
In power down mode, all clocks are stopped and no registers can be accessed. If the MSCAN was not in
sleep mode before power down mode became active, the module performs an internal recovery cycle after
powering up. This causes some fixed delay before the module enters normal mode again.
10.4.5.7
Programmable Wake-Up Function
The MSCAN can be programmed to wake up the MSCAN as soon as CAN bus activity is detected (see
control bit WUPE in Section 10.3.2.1, “MSCAN Control Register 0 (CANCTL0)”). The sensitivity to
existing CAN bus action can be modified by applying a low-pass filter function to the RXCAN input line
while in sleep mode (see control bit WUPM in Section 10.3.2.2, “MSCAN Control Register 1
(CANCTL1)”).
This feature can be used to protect the MSCAN from wake-up due to short glitches on the CAN bus lines.
Such glitches can result from—for example—electromagnetic interference within noisy environments.
10.4.6
Reset Initialization
The reset state of each individual bit is listed in Section 10.3.2, “Register Descriptions,” which details all
the registers and their bit-fields.
10.4.7
Interrupts
This section describes all interrupts originated by the MSCAN. It documents the enable bits and generated
flags. Each interrupt is listed and described separately.
10.4.7.1
Description of Interrupt Operation
The MSCAN supports four interrupt vectors (see Table 10-37), any of which can be individually masked
(for details see sections from Section 10.3.2.6, “MSCAN Receiver Interrupt Enable Register
(CANRIER),” to Section 10.3.2.8, “MSCAN Transmitter Interrupt Enable Register (CANTIER)”).
MC9S12XDP512 Data Sheet, Rev. 2.21
472
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
NOTE
The dedicated interrupt vector addresses are defined in the Resets and
Interrupts chapter.
Table 10-37. Interrupt Vectors
Interrupt Source
10.4.7.2
CCR Mask
Local Enable
Wake-Up Interrupt (WUPIF)
I bit
CANRIER (WUPIE)
Error Interrupts Interrupt (CSCIF, OVRIF)
I bit
CANRIER (CSCIE, OVRIE)
Receive Interrupt (RXF)
I bit
CANRIER (RXFIE)
Transmit Interrupts (TXE[2:0])
I bit
CANTIER (TXEIE[2:0])
Transmit Interrupt
At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message
for transmission. The TXEx flag of the empty message buffer is set.
10.4.7.3
Receive Interrupt
A message is successfully received and shifted into the foreground buffer (RxFG) of the receiver FIFO.
This interrupt is generated immediately after receiving the EOF symbol. The RXF flag is set. If there are
multiple messages in the receiver FIFO, the RXF flag is set as soon as the next message is shifted to the
foreground buffer.
10.4.7.4
Wake-Up Interrupt
A wake-up interrupt is generated if activity on the CAN bus occurs during MSCAN internal sleep mode.
WUPE (see Section 10.3.2.1, “MSCAN Control Register 0 (CANCTL0)”) must be enabled.
10.4.7.5
Error Interrupt
An error interrupt is generated if an overrun of the receiver FIFO, error, warning, or bus-off condition
occurrs. Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG) indicates one of the following
conditions:
• Overrun — An overrun condition of the receiver FIFO as described in Section 10.4.2.3, “Receive
Structures,” occurred.
• CAN Status Change — The actual value of the transmit and receive error counters control the
CAN bus state of the MSCAN. As soon as the error counters skip into a critical range
(Tx/Rx-warning, Tx/Rx-error, bus-off) the MSCAN flags an error condition. The status change,
which caused the error condition, is indicated by the TSTAT and RSTAT flags (see
Section 10.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)” and Section 10.3.2.6, “MSCAN
Receiver Interrupt Enable Register (CANRIER)”).
10.4.7.6
Interrupt Acknowledge
Interrupts are directly associated with one or more status flags in either the Section 10.3.2.5, “MSCAN
Receiver Flag Register (CANRFLG)” or the Section 10.3.2.7, “MSCAN Transmitter Flag Register
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
473
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
(CANTFLG).” Interrupts are pending as long as one of the corresponding flags is set. The flags in
CANRFLG and CANTFLG must be reset within the interrupt handler to handshake the interrupt. The flags
are reset by writing a 1 to the corresponding bit position. A flag cannot be cleared if the respective
condition prevails.
NOTE
It must be guaranteed that the CPU clears only the bit causing the current
interrupt. For this reason, bit manipulation instructions (BSET) must not be
used to clear interrupt flags. These instructions may cause accidental
clearing of interrupt flags which are set after entering the current interrupt
service routine.
10.4.7.7
Recovery from Stop or Wait
The MSCAN can recover from stop or wait via the wake-up interrupt. This interrupt can only occur if the
MSCAN was in sleep mode (SLPRQ = 1 and SLPAK = 1) before entering power down mode, the wake-up
option is enabled (WUPE = 1), and the wake-up interrupt is enabled (WUPIE = 1).
10.5
10.5.1
Initialization/Application Information
MSCAN initialization
The procedure to initially start up the MSCAN module out of reset is as follows:
1. Assert CANE
2. Write to the configuration registers in initialization mode
3. Clear INITRQ to leave initialization mode and enter normal mode
If the configuration of registers which are writable in initialization mode needs to be changed only when
the MSCAN module is in normal mode:
1. Bring the module into sleep mode by setting SLPRQ and awaiting SLPAK to assert after the CAN
bus becomes idle.
2. Enter initialization mode: assert INITRQ and await INITAK
3. Write to the configuration registers in initialization mode
4. Clear INITRQ to leave initialization mode and continue in normal mode
10.5.2
Bus-Off Recovery
The bus-off recovery is user configurable. The bus-off state can either be left automatically or on user
request.
For reasons of backwards compatibility, the MSCAN defaults to automatic recovery after reset. In this
case, the MSCAN will become error active again after counting 128 occurrences of 11 consecutive
recessive bits on the CAN bus (See the Bosch CAN specification for details).
MC9S12XDP512 Data Sheet, Rev. 2.21
474
Freescale Semiconductor
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
If the MSCAN is configured for user request (BORM set in Section 10.3.2.2, “MSCAN Control Register
1 (CANCTL1)”), the recovery from bus-off starts after both independent events have become true:
• 128 occurrences of 11 consecutive recessive bits on the CAN bus have been monitored
• BOHOLD in Section 10.3.2.14, “MSCAN Miscellaneous Register (CANMISC) has been cleared
by the user
These two events may occur in any order.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
475
Chapter 10 Freescale’s Scalable Controller Area Network (S12MSCANV3)
MC9S12XDP512 Data Sheet, Rev. 2.21
476
Freescale Semiconductor
Chapter 11
Serial Communication Interface (S12SCIV5)
11.1
Introduction
This block guide provides an overview of the serial communication interface (SCI) module.
The SCI allows asynchronous serial communications with peripheral devices and other CPUs.
11.1.1
Glossary
IR: InfraRed
IrDA: Infrared Design Associate
IRQ: Interrupt Request
LIN: Local Interconnect Network
LSB: Least Significant Bit
MSB: Most Significant Bit
NRZ: Non-Return-to-Zero
RZI: Return-to-Zero-Inverted
RXD: Receive Pin
SCI : Serial Communication Interface
TXD: Transmit Pin
11.1.2
Features
The SCI includes these distinctive features:
• Full-duplex or single-wire operation
• Standard mark/space non-return-to-zero (NRZ) format
• Selectable IrDA 1.4 return-to-zero-inverted (RZI) format with programmable pulse widths
• 13-bit baud rate selection
• Programmable 8-bit or 9-bit data format
• Separately enabled transmitter and receiver
• Programmable polarity for transmitter and receiver
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
477
Chapter 11 Serial Communication Interface (S12SCIV5)
•
•
•
•
•
•
Programmable transmitter output parity
Two receiver wakeup methods:
— Idle line wakeup
— Address mark wakeup
Interrupt-driven operation with eight flags:
— Transmitter empty
— Transmission complete
— Receiver full
— Idle receiver input
— Receiver overrun
— Noise error
— Framing error
— Parity error
— Receive wakeup on active edge
— Transmit collision detect supporting LIN
— Break Detect supporting LIN
Receiver framing error detection
Hardware parity checking
1/16 bit-time noise detection
11.1.3
Modes of Operation
The SCI functions the same in normal, special, and emulation modes. It has two low power modes, wait
and stop modes.
• Run mode
• Wait mode
• Stop mode
11.1.4
Block Diagram
Figure 11-1 is a high level block diagram of the SCI module, showing the interaction of various function
blocks.
MC9S12XDP512 Data Sheet, Rev. 2.21
478
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
SCI Data Register
RXD Data In
Infrared
Decoder
Receive Shift Register
IDLE
Receive & Wakeup
Control
Bus Clock
Baud Rate
Generator
Receive
RDRF/OR
Interrupt
Generation BRKD
RXEDG
BERR
Data Format Control
1/16
Transmit Control
Transmit Shift Register
SCI
Interrupt
Request
Transmit
TDRE
Interrupt
Generation TC
Infrared
Encoder
Data Out TXD
SCI Data Register
Figure 11-1. SCI Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
479
Chapter 11 Serial Communication Interface (S12SCIV5)
11.2
External Signal Description
The SCI module has a total of two external pins.
11.2.1
TXD — Transmit Pin
The TXD pin transmits SCI (standard or infrared) data. It will idle high in either mode and is high
impedance anytime the transmitter is disabled.
11.2.2
RXD — Receive Pin
The RXD pin receives SCI (standard or infrared) data. An idle line is detected as a line high. This input is
ignored when the receiver is disabled and should be terminated to a known voltage.
11.3
Memory Map and Register Definition
This section provides a detailed description of all the SCI registers.
11.3.1
Module Memory Map and Register Definition
The memory map for the SCI module is given below in Figure 11-2. The address listed for each register is
the address offset. The total address for each register is the sum of the base address for the SCI module and
the address offset for each register.
MC9S12XDP512 Data Sheet, Rev. 2.21
480
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2
Register Descriptions
This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Writes to a reserved register locations do not have any effect
and reads of these locations return a zero. Details of register bit and field function follow the register
diagrams, in bit order.
Register
Name
SCIBDH1
R
W
SCIBDL1
R
W
SCICR11
R
W
SCIASR12
R
W
SCIACR12
R
W
SCIACR22
Bit 7
6
5
4
3
2
1
Bit 0
IREN
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR7
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
LOOPS
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
0
BERRM1
BERRM0
BKDFE
TIE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TDRE
TC
RDRF
IDLE
OR
NF
FE
PF
0
0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
RXEDGIF
RXEDGIE
R
W
SCICR2
R
W
SCISR1
R
0
W
SCISR2
R
W
SCIDRH
R
AMAP
R8
W
SCIDRL
T8
RAF
R
R7
R6
R5
R4
R3
R2
R1
R0
W
T7
T6
T5
T4
T3
T2
T1
T0
1.These registers are accessible if the AMAP bit in the SCISR2 register is set to zero.
2,These registers are accessible if the AMAP bit in the SCISR2 register is set to one.
= Unimplemented or Reserved
Figure 11-2. SCI Register Summary
1
2
Those registers are accessible if the AMAP bit in the SCISR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCISR2 register is set to one
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
481
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.1
R
W
Reset
SCI Baud Rate Registers (SCIBDH, SCIBDL)
7
6
5
4
3
2
1
0
IREN
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
0
0
0
0
0
0
0
0
Figure 11-3. SCI Baud Rate Register (SCIBDH)
R
W
Reset
7
6
5
4
3
2
1
0
SBR7
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
0
0
0
0
0
0
0
0
Figure 11-4. SCI Baud Rate Register (SCIBDL)
Read: Anytime, if AMAP = 0. If only SCIBDH is written to, a read will not return the correct data until
SCIBDL is written to as well, following a write to SCIBDH.
Write: Anytime, if AMAP = 0.
NOTE
Those two registers are only visible in the memory map if AMAP = 0 (reset
condition).
The SCI baud rate register is used by to determine the baud rate of the SCI, and to control the infrared
modulation/demodulation submodule.
Table 11-1. SCIBDH and SCIBDL Field Descriptions
Field
7
IREN
Description
Infrared Enable Bit — This bit enables/disables the infrared modulation/demodulation submodule.
0 IR disabled
1 IR enabled
6:5
TNP[1:0]
Transmitter Narrow Pulse Bits — These bits enable whether the SCI transmits a 1/16, 3/16, 1/32 or 1/4 narrow
pulse. See Table 11-2.
4:0
7:0
SBR[12:0]
SCI Baud Rate Bits — The baud rate for the SCI is determined by the bits in this register. The baud rate is
calculated two different ways depending on the state of the IREN bit.
The formulas for calculating the baud rate are:
When IREN = 0 then,
SCI baud rate = SCI bus clock / (16 x SBR[12:0])
When IREN = 1 then,
SCI baud rate = SCI bus clock / (32 x SBR[12:1])
Note: The baud rate generator is disabled after reset and not started until the TE bit or the RE bit is set for the
first time. The baud rate generator is disabled when (SBR[12:0] = 0 and IREN = 0) or (SBR[12:1] = 0 and
IREN = 1).
Note: Writing to SCIBDH has no effect without writing to SCIBDL, because writing to SCIBDH puts the data in
a temporary location until SCIBDL is written to.
MC9S12XDP512 Data Sheet, Rev. 2.21
482
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
Table 11-2. IRSCI Transmit Pulse Width
11.3.2.2
R
W
Reset
TNP[1:0]
Narrow Pulse Width
11
1/4
10
1/32
01
1/16
00
3/16
SCI Control Register 1 (SCICR1)
7
6
5
4
3
2
1
0
LOOPS
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
0
0
0
0
Figure 11-5. SCI Control Register 1 (SCICR1)
Read: Anytime, if AMAP = 0.
Write: Anytime, if AMAP = 0.
NOTE
This register is only visible in the memory map if AMAP = 0 (reset
condition).
Table 11-3. SCICR1 Field Descriptions
Field
Description
7
LOOPS
Loop Select Bit — LOOPS enables loop operation. In loop operation, the RXD pin is disconnected from the SCI
and the transmitter output is internally connected to the receiver input. Both the transmitter and the receiver must
be enabled to use the loop function.
0 Normal operation enabled
1 Loop operation enabled
The receiver input is determined by the RSRC bit.
6
SCISWAI
5
RSRC
4
M
3
WAKE
SCI Stop in Wait Mode Bit — SCISWAI disables the SCI in wait mode.
0 SCI enabled in wait mode
1 SCI disabled in wait mode
Receiver Source Bit — When LOOPS = 1, the RSRC bit determines the source for the receiver shift register
input. See Table 11-4.
0 Receiver input internally connected to transmitter output
1 Receiver input connected externally to transmitter
Data Format Mode Bit — MODE determines whether data characters are eight or nine bits long.
0 One start bit, eight data bits, one stop bit
1 One start bit, nine data bits, one stop bit
Wakeup Condition Bit — WAKE determines which condition wakes up the SCI: a logic 1 (address mark) in the
most significant bit position of a received data character or an idle condition on the RXD pin.
0 Idle line wakeup
1 Address mark wakeup
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
483
Chapter 11 Serial Communication Interface (S12SCIV5)
Table 11-3. SCICR1 Field Descriptions (continued)
Field
Description
2
ILT
Idle Line Type Bit — ILT determines when the receiver starts counting logic 1s as idle character bits. The
counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of
logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the
stop bit avoids false idle character recognition, but requires properly synchronized transmissions.
0 Idle character bit count begins after start bit
1 Idle character bit count begins after stop bit
1
PE
Parity Enable Bit — PE enables the parity function. When enabled, the parity function inserts a parity bit in the
most significant bit position.
0 Parity function disabled
1 Parity function enabled
0
PT
Parity Type Bit — PT determines whether the SCI generates and checks for even parity or odd parity. With even
parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an
odd number of 1s clears the parity bit and an even number of 1s sets the parity bit.
1 Even parity
1 Odd parity
Table 11-4. Loop Functions
LOOPS
RSRC
Function
0
x
Normal operation
1
0
Loop mode with transmitter output internally connected to receiver input
1
1
Single-wire mode with TXD pin connected to receiver input
MC9S12XDP512 Data Sheet, Rev. 2.21
484
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.3
SCI Alternative Status Register 1 (SCIASR1)
7
R
W
Reset
RXEDGIF
0
6
5
4
3
2
0
0
0
0
BERRV
0
0
0
0
0
1
0
BERRIF
BKDIF
0
0
= Unimplemented or Reserved
Figure 11-6. SCI Alternative Status Register 1 (SCIASR1)
Read: Anytime, if AMAP = 1
Write: Anytime, if AMAP = 1
Table 11-5. SCIASR1 Field Descriptions
Field
7
RXEDGIF
Description
Receive Input Active Edge Interrupt Flag — RXEDGIF is asserted, if an active edge (falling if RXPOL = 0,
rising if RXPOL = 1) on the RXD input occurs. RXEDGIF bit is cleared by writing a “1” to it.
0 No active receive on the receive input has occurred
1 An active edge on the receive input has occurred
2
BERRV
Bit Error Value — BERRV reflects the state of the RXD input when the bit error detect circuitry is enabled and
a mismatch to the expected value happened. The value is only meaningful, if BERRIF = 1.
0 A low input was sampled, when a high was expected
1 A high input reassembled, when a low was expected
1
BERRIF
Bit Error Interrupt Flag — BERRIF is asserted, when the bit error detect circuitry is enabled and if the value
sampled at the RXD input does not match the transmitted value. If the BERRIE interrupt enable bit is set an
interrupt will be generated. The BERRIF bit is cleared by writing a “1” to it.
0 No mismatch detected
1 A mismatch has occurred
0
BKDIF
Break Detect Interrupt Flag — BKDIF is asserted, if the break detect circuitry is enabled and a break signal is
received. If the BKDIE interrupt enable bit is set an interrupt will be generated. The BKDIF bit is cleared by writing
a “1” to it.
0 No break signal was received
1 A break signal was received
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
485
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.4
SCI Alternative Control Register 1 (SCIACR1)
7
R
W
Reset
RXEDGIE
0
6
5
4
3
2
0
0
0
0
0
0
0
0
0
0
1
0
BERRIE
BKDIE
0
0
= Unimplemented or Reserved
Figure 11-7. SCI Alternative Control Register 1 (SCIACR1)
Read: Anytime, if AMAP = 1
Write: Anytime, if AMAP = 1
Table 11-6. SCIACR1 Field Descriptions
Field
Description
7
RSEDGIE
Receive Input Active Edge Interrupt Enable — RXEDGIE enables the receive input active edge interrupt flag,
RXEDGIF, to generate interrupt requests.
0 RXEDGIF interrupt requests disabled
1 RXEDGIF interrupt requests enabled
1
BERRIE
0
BKDIE
Bit Error Interrupt Enable — BERRIE enables the bit error interrupt flag, BERRIF, to generate interrupt
requests.
0 BERRIF interrupt requests disabled
1 BERRIF interrupt requests enabled
Break Detect Interrupt Enable — BKDIE enables the break detect interrupt flag, BKDIF, to generate interrupt
requests.
0 BKDIF interrupt requests disabled
1 BKDIF interrupt requests enabled
MC9S12XDP512 Data Sheet, Rev. 2.21
486
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.5
R
SCI Alternative Control Register 2 (SCIACR2)
7
6
5
4
3
0
0
0
0
0
0
0
0
0
0
W
Reset
2
1
0
BERRM1
BERRM0
BKDFE
0
0
0
= Unimplemented or Reserved
Figure 11-8. SCI Alternative Control Register 2 (SCIACR2)
Read: Anytime, if AMAP = 1
Write: Anytime, if AMAP = 1
Table 11-7. SCIACR2 Field Descriptions
Field
Description
2:1
Bit Error Mode — Those two bits determines the functionality of the bit error detect feature. See Table 11-8.
BERRM[1:0]
0
BKDFE
Break Detect Feature Enable — BKDFE enables the break detect circuitry.
0 Break detect circuit disabled
1 Break detect circuit enabled
Table 11-8. Bit Error Mode Coding
BERRM1
BERRM0
Function
0
0
Bit error detect circuit is disabled
0
1
Receive input sampling occurs during the 9th time tick of a transmitted bit
(refer to Figure 11-19)
1
0
Receive input sampling occurs during the 13th time tick of a transmitted bit
(refer to Figure 11-19)
1
1
Reserved
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
487
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.6
R
W
Reset
SCI Control Register 2 (SCICR2)
7
6
5
4
3
2
1
0
TIE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
Figure 11-9. SCI Control Register 2 (SCICR2)
Read: Anytime
Write: Anytime
Table 11-9. SCICR2 Field Descriptions
Field
7
TIE
Description
Transmitter Interrupt Enable Bit — TIE enables the transmit data register empty flag, TDRE, to generate
interrupt requests.
0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled
6
TCIE
Transmission Complete Interrupt Enable Bit — TCIE enables the transmission complete flag, TC, to generate
interrupt requests.
0 TC interrupt requests disabled
1 TC interrupt requests enabled
5
RIE
Receiver Full Interrupt Enable Bit — RIE enables the receive data register full flag, RDRF, or the overrun flag,
OR, to generate interrupt requests.
0 RDRF and OR interrupt requests disabled
1 RDRF and OR interrupt requests enabled
4
ILIE
Idle Line Interrupt Enable Bit — ILIE enables the idle line flag, IDLE, to generate interrupt requests.
0 IDLE interrupt requests disabled
1 IDLE interrupt requests enabled
3
TE
Transmitter Enable Bit — TE enables the SCI transmitter and configures the TXD pin as being controlled by
the SCI. The TE bit can be used to queue an idle preamble.
0 Transmitter disabled
1 Transmitter enabled
2
RE
Receiver Enable Bit — RE enables the SCI receiver.
0 Receiver disabled
1 Receiver enabled
1
RWU
Receiver Wakeup Bit — Standby state
0 Normal operation.
1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes
the receiver by automatically clearing RWU.
0
SBK
Send Break Bit — Toggling SBK sends one break character (10 or 11 logic 0s, respectively 13 or 14 logics 0s
if BRK13 is set). Toggling implies clearing the SBK bit before the break character has finished transmitting. As
long as SBK is set, the transmitter continues to send complete break characters (10 or 11 bits, respectively 13
or 14 bits).
0 No break characters
1 Transmit break characters
MC9S12XDP512 Data Sheet, Rev. 2.21
488
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.7
SCI Status Register 1 (SCISR1)
The SCISR1 and SCISR2 registers provides inputs to the MCU for generation of SCI interrupts. Also,
these registers can be polled by the MCU to check the status of these bits. The flag-clearing procedures
require that the status register be read followed by a read or write to the SCI data register.It is permissible
to execute other instructions between the two steps as long as it does not compromise the handling of I/O,
but the order of operations is important for flag clearing.
R
7
6
5
4
3
2
1
0
TDRE
TC
RDRF
IDLE
OR
NF
FE
PF
1
1
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 11-10. SCI Status Register 1 (SCISR1)
Read: Anytime
Write: Has no meaning or effect
Table 11-10. SCISR1 Field Descriptions
Field
Description
7
TDRE
Transmit Data Register Empty Flag — TDRE is set when the transmit shift register receives a byte from the
SCI data register. When TDRE is 1, the transmit data register (SCIDRH/L) is empty and can receive a new value
to transmit.Clear TDRE by reading SCI status register 1 (SCISR1), with TDRE set and then writing to SCI data
register low (SCIDRL).
0 No byte transferred to transmit shift register
1 Byte transferred to transmit shift register; transmit data register empty
6
TC
Transmit Complete Flag — TC is set low when there is a transmission in progress or when a preamble or break
character is loaded. TC is set high when the TDRE flag is set and no data, preamble, or break character is being
transmitted.When TC is set, the TXD pin becomes idle (logic 1). Clear TC by reading SCI status register 1
(SCISR1) with TC set and then writing to SCI data register low (SCIDRL). TC is cleared automatically when data,
preamble, or break is queued and ready to be sent. TC is cleared in the event of a simultaneous set and clear of
the TC flag (transmission not complete).
0 Transmission in progress
1 No transmission in progress
5
RDRF
Receive Data Register Full Flag — RDRF is set when the data in the receive shift register transfers to the SCI
data register. Clear RDRF by reading SCI status register 1 (SCISR1) with RDRF set and then reading SCI data
register low (SCIDRL).
0 Data not available in SCI data register
1 Received data available in SCI data register
4
IDLE
Idle Line Flag — IDLE is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if M =1) appear
on the receiver input. Once the IDLE flag is cleared, a valid frame must again set the RDRF flag before an idle
condition can set the IDLE flag.Clear IDLE by reading SCI status register 1 (SCISR1) with IDLE set and then
reading SCI data register low (SCIDRL).
0 Receiver input is either active now or has never become active since the IDLE flag was last cleared
1 Receiver input has become idle
Note: When the receiver wakeup bit (RWU) is set, an idle line condition does not set the IDLE flag.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
489
Chapter 11 Serial Communication Interface (S12SCIV5)
Table 11-10. SCISR1 Field Descriptions (continued)
Field
Description
3
OR
Overrun Flag — OR is set when software fails to read the SCI data register before the receive shift register
receives the next frame. The OR bit is set immediately after the stop bit has been completely received for the
second frame. The data in the shift register is lost, but the data already in the SCI data registers is not affected.
Clear OR by reading SCI status register 1 (SCISR1) with OR set and then reading SCI data register low
(SCIDRL).
0 No overrun
1 Overrun
Note: OR flag may read back as set when RDRF flag is clear. This may happen if the following sequence of
events occurs:
1. After the first frame is received, read status register SCISR1 (returns RDRF set and OR flag clear);
2. Receive second frame without reading the first frame in the data register (the second frame is not
received and OR flag is set);
3. Read data register SCIDRL (returns first frame and clears RDRF flag in the status register);
4. Read status register SCISR1 (returns RDRF clear and OR set).
Event 3 may be at exactly the same time as event 2 or any time after. When this happens, a dummy
SCIDRL read following event 4 will be required to clear the OR flag if further frames are to be received.
2
NF
Noise Flag — NF is set when the SCI detects noise on the receiver input. NF bit is set during the same cycle as
the RDRF flag but does not get set in the case of an overrun. Clear NF by reading SCI status register 1(SCISR1),
and then reading SCI data register low (SCIDRL).
0 No noise
1 Noise
1
FE
Framing Error Flag — FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle
as the RDRF flag but does not get set in the case of an overrun. FE inhibits further data reception until it is
cleared. Clear FE by reading SCI status register 1 (SCISR1) with FE set and then reading the SCI data register
low (SCIDRL).
0 No framing error
1 Framing error
0
PF
Parity Error Flag — PF is set when the parity enable bit (PE) is set and the parity of the received data does not
match the parity type bit (PT). PF bit is set during the same cycle as the RDRF flag but does not get set in the
case of an overrun. Clear PF by reading SCI status register 1 (SCISR1), and then reading SCI data register low
(SCIDRL).
0 No parity error
1 Parity error
MC9S12XDP512 Data Sheet, Rev. 2.21
490
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.8
SCI Status Register 2 (SCISR2)
7
R
W
Reset
AMAP
0
6
5
0
0
0
0
4
3
2
1
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
RAF
0
= Unimplemented or Reserved
Figure 11-11. SCI Status Register 2 (SCISR2)
Read: Anytime
Write: Anytime
Table 11-11. SCISR2 Field Descriptions
Field
Description
7
AMAP
Alternative Map — This bit controls which registers sharing the same address space are accessible. In the reset
condition the SCI behaves as previous versions. Setting AMAP=1 allows the access to another set of control and
status registers and hides the baud rate and SCI control Register 1.
0 The registers labelled SCIBDH (0x0000),SCIBDL (0x0001), SCICR1 (0x0002) are accessible
1 The registers labelled SCIASR1 (0x0000),SCIACR1 (0x0001), SCIACR2 (0x00002) are accessible
4
TXPOL
Transmit Polarity — This bit control the polarity of the transmitted data. In NRZ format, a one is represented by
a mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity. In IrDA
format, a zero is represented by short high pulse in the middle of a bit time remaining idle low for a one for normal
polarity, and a zero is represented by short low pulse in the middle of a bit time remaining idle high for a one for
inverted polarity.
0 Normal polarity
1 Inverted polarity
3
RXPOL
Receive Polarity — This bit control the polarity of the received data. In NRZ format, a one is represented by a
mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity. In IrDA
format, a zero is represented by short high pulse in the middle of a bit time remaining idle low for a one for normal
polarity, and a zero is represented by short low pulse in the middle of a bit time remaining idle high for a one for
inverted polarity.
0 Normal polarity
1 Inverted polarity
2
BRK13
Break Transmit Character Length — This bit determines whether the transmit break character is 10 or 11 bit
respectively 13 or 14 bits long. The detection of a framing error is not affected by this bit.
0 Break character is 10 or 11 bit long
1 Break character is 13 or 14 bit long
1
TXDIR
Transmitter Pin Data Direction in Single-Wire Mode — This bit determines whether the TXD pin is going to
be used as an input or output, in the single-wire mode of operation. This bit is only relevant in the single-wire
mode of operation.
0 TXD pin to be used as an input in single-wire mode
1 TXD pin to be used as an output in single-wire mode
0
RAF
Receiver Active Flag — RAF is set when the receiver detects a logic 0 during the RT1 time period of the start
bit search. RAF is cleared when the receiver detects an idle character.
0 No reception in progress
1 Reception in progress
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
491
Chapter 11 Serial Communication Interface (S12SCIV5)
11.3.2.9
SCI Data Registers (SCIDRH, SCIDRL)
7
R
6
R8
W
Reset
0
T8
0
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 11-12. SCI Data Registers (SCIDRH)
7
6
5
4
3
2
1
0
R
R7
R6
R5
R4
R3
R2
R1
R0
W
T7
T6
T5
T4
T3
T2
T1
T0
0
0
0
0
0
0
0
0
Reset
Figure 11-13. SCI Data Registers (SCIDRL)
Read: Anytime; reading accesses SCI receive data register
Write: Anytime; writing accesses SCI transmit data register; writing to R8 has no effect
Table 11-12. SCIDRH and SCIDRL Field Descriptions
Field
Description
SCIDRH
7
R8
Received Bit 8 — R8 is the ninth data bit received when the SCI is configured for 9-bit data format (M = 1).
SCIDRH
6
T8
Transmit Bit 8 — T8 is the ninth data bit transmitted when the SCI is configured for 9-bit data format (M = 1).
SCIDRL
7:0
R[7:0]
T[7:0]
R7:R0 — Received bits seven through zero for 9-bit or 8-bit data formats
T7:T0 — Transmit bits seven through zero for 9-bit or 8-bit formats
NOTE
If the value of T8 is the same as in the previous transmission, T8 does not
have to be rewritten.The same value is transmitted until T8 is rewritten
In 8-bit data format, only SCI data register low (SCIDRL) needs to be
accessed.
When transmitting in 9-bit data format and using 8-bit write instructions,
write first to SCI data register high (SCIDRH), then SCIDRL.
MC9S12XDP512 Data Sheet, Rev. 2.21
492
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4
Functional Description
This section provides a complete functional description of the SCI block, detailing the operation of the
design from the end user perspective in a number of subsections.
Figure 11-14 shows the structure of the SCI module. The SCI allows full duplex, asynchronous, serial
communication between the CPU and remote devices, including other CPUs. The SCI transmitter and
receiver operate independently, although they use the same baud rate generator. The CPU monitors the
status of the SCI, writes the data to be transmitted, and processes received data.
R8
IREN
SCI Data
Register
NF
FE
Ir_RXD
Bus
Clock
Receive
Shift Register
SCRXD
Receive
and Wakeup
Control
PF
RAF
RE
IDLE
RWU
RDRF
LOOPS
OR
RSRC
M
Baud Rate
Generator
IDLE
ILIE
RDRF/OR
Infrared
Receive
Decoder
R16XCLK
RXD
RIE
TIE
WAKE
Data Format
Control
ILT
PE
SBR12:SBR0
TDRE
TDRE
TC
SCI
Interrupt
Request
PT
TC
TCIE
TE
÷16
Transmit
Control
LOOPS
SBK
RSRC
T8
Transmit
Shift Register
RXEDGIE
Active Edge
Detect
RXEDGIF
BKDIF
RXD
SCI Data
Register
Break Detect
BKDFE
SCTXD
BKDIE
LIN Transmit BERRIF
Collision
Detect
BERRIE
R16XCLK
Infrared
Transmit
Encoder
BERRM[1:0]
Ir_TXD
TXD
R32XCLK
TNP[1:0]
IREN
Figure 11-14. Detailed SCI Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
493
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.1
Infrared Interface Submodule
This module provides the capability of transmitting narrow pulses to an IR LED and receiving narrow
pulses and transforming them to serial bits, which are sent to the SCI. The IrDA physical layer
specification defines a half-duplex infrared communication link for exchange data. The full standard
includes data rates up to 16 Mbits/s. This design covers only data rates between 2.4 Kbits/s and 115.2
Kbits/s.
The infrared submodule consists of two major blocks: the transmit encoder and the receive decoder. The
SCI transmits serial bits of data which are encoded by the infrared submodule to transmit a narrow pulse
for every zero bit. No pulse is transmitted for every one bit. When receiving data, the IR pulses should be
detected using an IR photo diode and transformed to CMOS levels by the IR receive decoder (external
from the MCU). The narrow pulses are then stretched by the infrared submodule to get back to a serial bit
stream to be received by the SCI.The polarity of transmitted pulses and expected receive pulses can be
inverted so that a direct connection can be made to external IrDA transceiver modules that uses active low
pulses.
The infrared submodule receives its clock sources from the SCI. One of these two clocks are selected in
the infrared submodule in order to generate either 3/16, 1/16, 1/32 or 1/4 narrow pulses during
transmission. The infrared block receives two clock sources from the SCI, R16XCLK and R32XCLK,
which are configured to generate the narrow pulse width during transmission. The R16XCLK and
R32XCLK are internal clocks with frequencies 16 and 32 times the baud rate respectively. Both
R16XCLK and R32XCLK clocks are used for transmitting data. The receive decoder uses only the
R16XCLK clock.
11.4.1.1
Infrared Transmit Encoder
The infrared transmit encoder converts serial bits of data from transmit shift register to the TXD pin. A
narrow pulse is transmitted for a zero bit and no pulse for a one bit. The narrow pulse is sent in the middle
of the bit with a duration of 1/32, 1/16, 3/16 or 1/4 of a bit time. A narrow high pulse is transmitted for a
zero bit when TXPOL is cleared, while a narrow low pulse is transmitted for a zero bit when TXPOL is set.
11.4.1.2
Infrared Receive Decoder
The infrared receive block converts data from the RXD pin to the receive shift register. A narrow pulse is
expected for each zero received and no pulse is expected for each one received. A narrow high pulse is
expected for a zero bit when RXPOL is cleared, while a narrow low pulse is expected for a zero bit when
RXPOL is set. This receive decoder meets the edge jitter requirement as defined by the IrDA serial infrared
physical layer specification.
11.4.2
LIN Support
This module provides some basic support for the LIN protocol. At first this is a break detect circuitry
making it easier for the LIN software to distinguish a break character from an incoming data stream. As a
further addition is supports a collision detection at the bit level as well as cancelling pending transmissions.
MC9S12XDP512 Data Sheet, Rev. 2.21
494
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.3
Data Format
The SCI uses the standard NRZ mark/space data format. When Infrared is enabled, the SCI uses RZI data
format where zeroes are represented by light pulses and ones remain low. See Figure 11-15 below.
8-Bit Data Format
(Bit M in SCICR1 Clear)
Start
Bit
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Possible
Parity
Bit
Bit 6
STOP
Bit
Bit 7
Next
Start
Bit
Standard
SCI Data
Infrared
SCI Data
9-Bit Data Format
(Bit M in SCICR1 Set)
Start
Bit
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
POSSIBLE
PARITY
Bit
Bit 6
Bit 7
Bit 8
STOP
Bit
NEXT
START
Bit
Standard
SCI Data
Infrared
SCI Data
Figure 11-15. SCI Data Formats
Each data character is contained in a frame that includes a start bit, eight or nine data bits, and a stop bit.
Clearing the M bit in SCI control register 1 configures the SCI for 8-bit data characters. A frame with eight
data bits has a total of 10 bits. Setting the M bit configures the SCI for nine-bit data characters. A frame
with nine data bits has a total of 11 bits.
Table 11-13. Example of 8-Bit Data Formats
Start
Bit
Data
Bits
Address
Bits
Parity
Bits
Stop
Bit
1
8
0
0
1
1
7
0
1
1
7
1
0
1
1
1
1
The address bit identifies the frame as an address
character. See Section 11.4.6.6, “Receiver Wakeup”.
When the SCI is configured for 9-bit data characters, the ninth data bit is the T8 bit in SCI data register
high (SCIDRH). It remains unchanged after transmission and can be used repeatedly without rewriting it.
A frame with nine data bits has a total of 11 bits.
Table 11-14. Example of 9-Bit Data Formats
Start
Bit
Data
Bits
Address
Bits
Parity
Bits
Stop
Bit
1
9
0
0
1
1
8
0
1
1
8
1
0
1
1
1
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
495
Chapter 11 Serial Communication Interface (S12SCIV5)
1
11.4.4
The address bit identifies the frame as an address
character. See Section 11.4.6.6, “Receiver Wakeup”.
Baud Rate Generation
A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the
transmitter. The value from 0 to 8191 written to the SBR12:SBR0 bits determines the bus clock divisor.
The SBR bits are in the SCI baud rate registers (SCIBDH and SCIBDL). The baud rate clock is
synchronized with the bus clock and drives the receiver. The baud rate clock divided by 16 drives the
transmitter. The receiver has an acquisition rate of 16 samples per bit time.
Baud rate generation is subject to one source of error:
• Integer division of the bus clock may not give the exact target frequency.
Table 11-15 lists some examples of achieving target baud rates with a bus clock frequency of 25 MHz.
When IREN = 0 then,
SCI baud rate = SCI bus clock / (16 * SCIBR[12:0])
Table 11-15. Baud Rates (Example: Bus Clock = 25 MHz)
Bits
SBR[12:0]
Receiver
Clock (Hz)
Transmitter
Clock (Hz)
Target
Baud Rate
Error
(%)
41
609,756.1
38,109.8
38,400
.76
81
308,642.0
19,290.1
19,200
.47
163
153,374.2
9585.9
9,600
.16
326
76,687.1
4792.9
4,800
.15
651
38,402.5
2400.2
2,400
.01
1302
19,201.2
1200.1
1,200
.01
2604
9600.6
600.0
600
.00
5208
4800.0
300.0
300
.00
MC9S12XDP512 Data Sheet, Rev. 2.21
496
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.5
Transmitter
Internal Bus
Bus
Clock
÷ 16
Baud Divider
SCI Data Registers
11-Bit Transmit Register
H
8
7
6
5
4
3
2
1
0
TXPOL
SCTXD
L
MSB
M
Start
Stop
SBR12:SBR0
LOOP
CONTROL
TIE
TDRE IRQ
Break (All 0s)
Parity
Generation
Preamble (All 1s)
PT
Shift Enable
PE
Load from SCIDR
T8
To Receiver
LOOPS
RSRC
TDRE
Transmitter Control
TC
TC IRQ
TCIE
TE
BERRIF
BER IRQ
TCIE
SBK
BERRM[1:0]
Transmit
Collision Detect
SCTXD
SCRXD
(From Receiver)
Figure 11-16. Transmitter Block Diagram
11.4.5.1
Transmitter Character Length
The SCI transmitter can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI
control register 1 (SCICR1) determines the length of data characters. When transmitting 9-bit data, bit T8
in SCI data register high (SCIDRH) is the ninth bit (bit 8).
11.4.5.2
Character Transmission
To transmit data, the MCU writes the data bits to the SCI data registers (SCIDRH/SCIDRL), which in turn
are transferred to the transmitter shift register. The transmit shift register then shifts a frame out through
the TXD pin, after it has prefaced them with a start bit and appended them with a stop bit. The SCI data
registers (SCIDRH and SCIDRL) are the write-only buffers between the internal data bus and the transmit
shift register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
497
Chapter 11 Serial Communication Interface (S12SCIV5)
The SCI also sets a flag, the transmit data register empty flag (TDRE), every time it transfers data from the
buffer (SCIDRH/L) to the transmitter shift register.The transmit driver routine may respond to this flag by
writing another byte to the Transmitter buffer (SCIDRH/SCIDRL), while the shift register is still shifting
out the first byte.
To initiate an SCI transmission:
1. Configure the SCI:
a) Select a baud rate. Write this value to the SCI baud registers (SCIBDH/L) to begin the baud
rate generator. Remember that the baud rate generator is disabled when the baud rate is zero.
Writing to the SCIBDH has no effect without also writing to SCIBDL.
b) Write to SCICR1 to configure word length, parity, and other configuration bits
(LOOPS,RSRC,M,WAKE,ILT,PE,PT).
c) Enable the transmitter, interrupts, receive, and wake up as required, by writing to the SCICR2
register bits (TIE,TCIE,RIE,ILIE,TE,RE,RWU,SBK). A preamble or idle character will now
be shifted out of the transmitter shift register.
2. Transmit Procedure for each byte:
a) Poll the TDRE flag by reading the SCISR1 or responding to the TDRE interrupt. Keep in mind
that the TDRE bit resets to one.
b) If the TDRE flag is set, write the data to be transmitted to SCIDRH/L, where the ninth bit is
written to the T8 bit in SCIDRH if the SCI is in 9-bit data format. A new transmission will not
result until the TDRE flag has been cleared.
3. Repeat step 2 for each subsequent transmission.
NOTE
The TDRE flag is set when the shift register is loaded with the next data to
be transmitted from SCIDRH/L, which happens, generally speaking, a little
over half-way through the stop bit of the previous frame. Specifically, this
transfer occurs 9/16ths of a bit time AFTER the start of the stop bit of the
previous frame.
Writing the TE bit from 0 to a 1 automatically loads the transmit shift register with a preamble of 10 logic
1s (if M = 0) or 11 logic 1s (if M = 1). After the preamble shifts out, control logic transfers the data from
the SCI data register into the transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit
position.
Hardware supports odd or even parity. When parity is enabled, the most significant bit (MSB) of the data
character is the parity bit.
The transmit data register empty flag, TDRE, in SCI status register 1 (SCISR1) becomes set when the SCI
data register transfers a byte to the transmit shift register. The TDRE flag indicates that the SCI data
register can accept new data from the internal data bus. If the transmit interrupt enable bit, TIE, in SCI
control register 2 (SCICR2) is also set, the TDRE flag generates a transmitter interrupt request.
MC9S12XDP512 Data Sheet, Rev. 2.21
498
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
When the transmit shift register is not transmitting a frame, the TXD pin goes to the idle condition, logic
1. If at any time software clears the TE bit in SCI control register 2 (SCICR2), the transmitter enable signal
goes low and the transmit signal goes idle.
If software clears TE while a transmission is in progress (TC = 0), the frame in the transmit shift register
continues to shift out. To avoid accidentally cutting off the last frame in a message, always wait for TDRE
to go high after the last frame before clearing TE.
To separate messages with preambles with minimum idle line time, use this sequence between messages:
1. Write the last byte of the first message to SCIDRH/L.
2. Wait for the TDRE flag to go high, indicating the transfer of the last frame to the transmit shift
register.
3. Queue a preamble by clearing and then setting the TE bit.
4. Write the first byte of the second message to SCIDRH/L.
11.4.5.3
Break Characters
Writing a logic 1 to the send break bit, SBK, in SCI control register 2 (SCICR2) loads the transmit shift
register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit.
Break character length depends on the M bit in SCI control register 1 (SCICR1). As long as SBK is at logic
1, transmitter logic continuously loads break characters into the transmit shift register. After software
clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least
one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit
of the next frame.
The SCI recognizes a break character when there are 10 or 11(M = 0 or M = 1) consecutive zero received.
Depending if the break detect feature is enabled or not receiving a break character has these effects on SCI
registers.
If the break detect feature is disabled (BKDFE = 0):
• Sets the framing error flag, FE
• Sets the receive data register full flag, RDRF
• Clears the SCI data registers (SCIDRH/L)
• May set the overrun flag, OR, noise flag, NF, parity error flag, PE, or the receiver active flag, RAF
(see 3.4.4 and 3.4.5 SCI Status Register 1 and 2)
If the break detect feature is enabled (BKDFE = 1) there are two scenarios1
The break is detected right from a start bit or is detected during a byte reception.
• Sets the break detect interrupt flag, BLDIF
• Does not change the data register full flag, RDRF or overrun flag OR
• Does not change the framing error flag FE, parity error flag PE.
• Does not clear the SCI data registers (SCIDRH/L)
• May set noise flag NF, or receiver active flag RAF.
1. A Break character in this context are either 10 or 11 consecutive zero received bits
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
499
Chapter 11 Serial Communication Interface (S12SCIV5)
Figure 11-17 shows two cases of break detect. In trace RXD_1 the break symbol starts with the start bit,
while in RXD_2 the break starts in the middle of a transmission. If BRKDFE = 1, in RXD_1 case there
will be no byte transferred to the receive buffer and the RDRF flag will not be modified. Also no framing
error or parity error will be flagged from this transfer. In RXD_2 case, however the break signal starts later
during the transmission. At the expected stop bit position the byte received so far will be transferred to the
receive buffer, the receive data register full flag will be set, a framing error and if enabled and appropriate
a parity error will be set. Once the break is detected the BRKDIF flag will be set.
Start Bit Position
Stop Bit Position
BRKDIF = 1
RXD_1
Zero Bit Counter
1
2
3
4
5
6
7
8
9
10 . . .
BRKDIF = 1
FE = 1
RXD_2
Zero Bit Counter
1
2
3
4
5
6
7
8
9
10
...
Figure 11-17. Break Detection if BRKDFE = 1 (M = 0)
11.4.5.4
Idle Characters
An idle character (or preamble) contains all logic 1s and has no start, stop, or parity bit. Idle character
length depends on the M bit in SCI control register 1 (SCICR1). The preamble is a synchronizing idle
character that begins the first transmission initiated after writing the TE bit from 0 to 1.
If the TE bit is cleared during a transmission, the TXD pin becomes idle after completion of the
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the frame currently being transmitted.
NOTE
When queueing an idle character, return the TE bit to logic 1 before the stop
bit of the current frame shifts out through the TXD pin. Setting TE after the
stop bit appears on TXD causes data previously written to the SCI data
register to be lost. Toggle the TE bit for a queued idle character while the
TDRE flag is set and immediately before writing the next byte to the SCI
data register.
If the TE bit is clear and the transmission is complete, the SCI is not the
master of the TXD pin
MC9S12XDP512 Data Sheet, Rev. 2.21
500
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.5.5
LIN Transmit Collision Detection
This module allows to check for collisions on the LIN bus.
LIN Physical Interface
Synchronizer Stage
Receive Shift
Register
Compare
RXD Pin
Bit Error
LIN Bus
Bus Clock
Sample
Point
Transmit Shift
Register
TXD Pin
Figure 11-18. Collision Detect Principle
If the bit error circuit is enabled (BERRM[1:0] = 0:1 or = 1:0]), the error detect circuit will compare the
transmitted and the received data stream at a point in time and flag any mismatch. The timing checks run
when transmitter is active (not idle). As soon as a mismatch between the transmitted data and the received
data is detected the following happens:
• The next bit transmitted will have a high level (TXPOL = 0) or low level (TXPOL = 1)
• The transmission is aborted and the byte in transmit buffer is discarded.
• the transmit data register empty and the transmission complete flag will be set
• The bit error interrupt flag, BERRIF, will be set.
• No further transmissions will take place until the BERRIF is cleared.
4
5
6
7
8
BERRM[1:0] = 0:1
9
10
11
12
13
14
15
0
Sampling End
3
Sampling Begin
Input Receive
Shift Register
2
Sampling End
Output Transmit
Shift Register
1
Sampling Begin
0
BERRM[1:0] = 1:1
Compare Sample Points
Figure 11-19. Timing Diagram Bit Error Detection
If the bit error detect feature is disabled, the bit error interrupt flag is cleared.
NOTE
The RXPOL and TXPOL bit should be set the same when transmission
collision detect feature is enabled, otherwise the bit error interrupt flag may
be set incorrectly.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
501
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.6
Receiver
Internal Bus
SBR12:SBR0
RXPOL
Data
Recovery
Loop
Control
H
Start
11-Bit Receive Shift Register
8
7
6
5
4
3
2
1
0
L
All 1s
SCRXD
From TXD Pin
or Transmitter
Stop
Baud Divider
MSB
Bus
Clock
SCI Data Register
RE
RAF
LOOPS
RSRC
FE
M
RWU
NF
WAKE
ILT
PE
PT
Wakeup
Logic
PE
R8
Parity
Checking
Idle IRQ
IDLE
ILIE
BRKDFE
OR
Break
Detect Logic
RIE
BRKDIF
BRKDIE
Active Edge
Detect Logic
RDRF/OR
IRQ
RDRF
Break IRQ
RXEDGIF
RXEDGIE
RX Active Edge IRQ
Figure 11-20. SCI Receiver Block Diagram
11.4.6.1
Receiver Character Length
The SCI receiver can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI
control register 1 (SCICR1) determines the length of data characters. When receiving 9-bit data, bit R8 in
SCI data register high (SCIDRH) is the ninth bit (bit 8).
11.4.6.2
Character Reception
During an SCI reception, the receive shift register shifts a frame in from the RXD pin. The SCI data register
is the read-only buffer between the internal data bus and the receive shift register.
After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the
SCI data register. The receive data register full flag, RDRF, in SCI status register 1 (SCISR1) becomes set,
MC9S12XDP512 Data Sheet, Rev. 2.21
502
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in SCI control
register 2 (SCICR2) is also set, the RDRF flag generates an RDRF interrupt request.
11.4.6.3
Data Sampling
The RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust
for baud rate mismatch, the RT clock (see Figure 11-21) is re-synchronized:
• After every start bit
• After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and
RT10 samples returns a valid logic 0)
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic
1s.When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.
Start Bit
LSB
RXD
Samples
1
1
1
1
1
1
1
1
0
0
Start Bit
Qualification
0
0
Start Bit
Verification
0
0
0
Data
Sampling
RT4
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT CLock Count
RT1
RT Clock
Reset RT Clock
Figure 11-21. Receiver Data Sampling
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.
Figure 11-16 summarizes the results of the start bit verification samples.
Table 11-16. Start Bit Verification
RT3, RT5, and RT7 Samples
Start Bit Verification
Noise Flag
000
Yes
0
001
Yes
1
010
Yes
1
011
No
0
100
Yes
1
101
No
0
110
No
0
111
No
0
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
503
Chapter 11 Serial Communication Interface (S12SCIV5)
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and
RT10. Table 11-17 summarizes the results of the data bit samples.
Table 11-17. Data Bit Recovery
RT8, RT9, and RT10 Samples
Data Bit Determination
Noise Flag
000
0
0
001
0
1
010
0
1
011
1
1
100
0
1
101
1
1
110
1
1
111
1
0
NOTE
The RT8, RT9, and RT10 samples do not affect start bit verification. If any
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a
successful start bit verification, the noise flag (NF) is set and the receiver
assumes that the bit is a start bit (logic 0).
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 11-18
summarizes the results of the stop bit samples.
Table 11-18. Stop Bit Recovery
RT8, RT9, and RT10 Samples
Framing Error Flag
Noise Flag
000
1
0
001
1
1
010
1
1
011
0
1
100
1
1
101
0
1
110
0
1
111
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
504
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
In Figure 11-22 the verification samples RT3 and RT5 determine that the first low detected was noise and
not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag
is not set because the noise occurred before the start bit was found.
LSB
Start Bit
0
0
0
0
0
0
RT9
1
RT10
RT1
1
RT8
RT1
1
RT7
0
RT1
1
RT1
1
RT5
1
RT1
Samples
RT1
RXD
0
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT6
RT5
RT4
RT3
RT2
RT4
RT3
RT Clock Count
RT2
RT Clock
Reset RT Clock
Figure 11-22. Start Bit Search Example 1
In Figure 11-23, verification sample at RT3 is high. The RT3 sample sets the noise flag. Although the
perceived bit time is misaligned, the data samples RT8, RT9, and RT10 are within the bit time and data
recovery is successful.
Perceived Start Bit
LSB
Actual Start Bit
1
0
RT1
RT1
RT1
RT1
RT1
1
0
0
0
0
0
RT10
1
RT9
1
RT8
1
RT7
1
RT1
RXD
Samples
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT6
RT5
RT4
RT3
RT Clock Count
RT2
RT Clock
Reset RT Clock
Figure 11-23. Start Bit Search Example 2
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
505
Chapter 11 Serial Communication Interface (S12SCIV5)
In Figure 11-24, a large burst of noise is perceived as the beginning of a start bit, although the test sample
at RT5 is high. The RT5 sample sets the noise flag. Although this is a worst-case misalignment of perceived
bit time, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.
Perceived Start Bit
LSB
Actual Start Bit
RT1
RT1
0
1
0
0
0
0
RT10
0
RT9
1
RT8
1
RT7
1
RT1
Samples
RT1
RXD
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT6
RT5
RT4
RT3
RT Clock Count
RT2
RT Clock
Reset RT Clock
Figure 11-24. Start Bit Search Example 3
Figure 11-25 shows the effect of noise early in the start bit time. Although this noise does not affect proper
synchronization with the start bit time, it does set the noise flag.
LSB
Perceived and Actual Start Bit
RT1
RT1
RT1
1
1
1
1
0
RT1
1
RT1
1
RT1
1
RT1
1
RT1
1
RT1
Samples
RT1
RXD
1
0
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT9
RT10
RT8
RT7
RT6
RT5
RT4
RT3
RT Clock Count
RT2
RT Clock
Reset RT Clock
Figure 11-25. Start Bit Search Example 4
MC9S12XDP512 Data Sheet, Rev. 2.21
506
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
Figure 11-26 shows a burst of noise near the beginning of the start bit that resets the RT clock. The sample
after the reset is low but is not preceded by three high samples that would qualify as a falling edge.
Depending on the timing of the start bit search and on the data, the frame may be missed entirely or it may
set the framing error flag.
Start Bit
0
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
0
1
1
0
0
0
0
0
0
0
0
RT1
1
RT1
1
RT1
1
RT1
1
RT1
1
RT1
1
RT1
1
RT1
1
RT7
1
RT1
Samples
LSB
No Start Bit Found
RXD
RT1
RT1
RT1
RT1
RT6
RT5
RT4
RT3
RT Clock Count
RT2
RT Clock
Reset RT Clock
Figure 11-26. Start Bit Search Example 5
In Figure 11-27, a noise burst makes the majority of data samples RT8, RT9, and RT10 high. This sets the
noise flag but does not reset the RT clock. In start bits only, the RT8, RT9, and RT10 data samples are
ignored.
Start Bit
LSB
1
1
1
1
1
0
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
0
0
0
1
0
1
RT10
1
RT9
1
RT8
1
RT7
1
RT1
Samples
RT1
RXD
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT6
RT5
RT4
RT3
RT Clock Count
RT2
RT Clock
Reset RT Clock
Figure 11-27. Start Bit Search Example 6
11.4.6.4
Framing Errors
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming frame, it
sets the framing error flag, FE, in SCI status register 1 (SCISR1). A break character also sets the FE flag
because a break character has no stop bit. The FE flag is set at the same time that the RDRF flag is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
507
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.6.5
Baud Rate Tolerance
A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated
bit time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside
the actual stop bit. A noise error will occur if the RT8, RT9, and RT10 samples are not all the same logical
values. A framing error will occur if the receiver clock is misaligned in such a way that the majority of the
RT8, RT9, and RT10 stop bit samples are a logic zero.
As the receiver samples an incoming frame, it re-synchronizes the RT clock on any valid falling edge
within the frame. Re synchronization within frames will correct a misalignment between transmitter bit
times and receiver bit times.
11.4.6.5.1
Slow Data Tolerance
Figure 11-28 shows how much a slow received frame can be misaligned without causing a noise error or
a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data
samples at RT8, RT9, and RT10.
MSB
Stop
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
Receiver
RT Clock
Data
Samples
Figure 11-28. Slow Data
Let’s take RTr as receiver RT clock and RTt as transmitter RT clock.
For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles +7 RTr cycles = 151 RTr cycles
to start data sampling of the stop bit.
With the misaligned character shown in Figure 11-28, the receiver counts 151 RTr cycles at the point when
the count of the transmitting device is 9 bit times x 16 RTt cycles = 144 RTt cycles.
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data
character with no errors is:
((151 – 144) / 151) x 100 = 4.63%
For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 7 RTr cycles = 167 RTr cycles
to start data sampling of the stop bit.
With the misaligned character shown in Figure 11-28, the receiver counts 167 RTr cycles at the point when
the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit
character with no errors is:
((167 – 160) / 167) X 100 = 4.19%
MC9S12XDP512 Data Sheet, Rev. 2.21
508
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.6.5.2
Fast Data Tolerance
Figure 11-29 shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10
instead of RT16 but is still sampled at RT8, RT9, and RT10.
Stop
Idle or Next Frame
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
Receiver
RT Clock
Data
Samples
Figure 11-29. Fast Data
For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles + 10 RTr cycles = 154 RTr cycles
to finish data sampling of the stop bit.
With the misaligned character shown in Figure 11-29, the receiver counts 154 RTr cycles at the point when
the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit
character with no errors is:
((160 – 154) / 160) x 100 = 3.75%
For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 10 RTr cycles = 170 RTr cycles
to finish data sampling of the stop bit.
With the misaligned character shown in Figure 11-29, the receiver counts 170 RTr cycles at the point when
the count of the transmitting device is 11 bit times x 16 RTt cycles = 176 RTt cycles.
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit
character with no errors is:
((176 – 170) /176) x 100 = 3.40%
11.4.6.6
Receiver Wakeup
To enable the SCI to ignore transmissions intended only for other receivers in multiple-receiver systems,
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCI control register 2
(SCICR2) puts the receiver into standby state during which receiver interrupts are disabled.The SCI will
still load the receive data into the SCIDRH/L registers, but it will not set the RDRF flag.
The transmitting device can address messages to selected receivers by including addressing information in
the initial frame or frames of each message.
The WAKE bit in SCI control register 1 (SCICR1) determines how the SCI is brought out of the standby
state to process an incoming message. The WAKE bit enables either idle line wakeup or address mark
wakeup.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
509
Chapter 11 Serial Communication Interface (S12SCIV5)
11.4.6.6.1
Idle Input line Wakeup (WAKE = 0)
In this wakeup method, an idle condition on the RXD pin clears the RWU bit and wakes up the SCI. The
initial frame or frames of every message contain addressing information. All receivers evaluate the
addressing information, and receivers for which the message is addressed process the frames that follow.
Any receiver for which a message is not addressed can set its RWU bit and return to the standby state. The
RWU bit remains set and the receiver remains on standby until another idle character appears on the RXD
pin.
Idle line wakeup requires that messages be separated by at least one idle character and that no message
contains idle characters.
The idle character that wakes a receiver does not set the receiver idle bit, IDLE, or the receive data register
full flag, RDRF.
The idle line type bit, ILT, determines whether the receiver begins counting logic 1s as idle character bits
after the start bit or after the stop bit. ILT is in SCI control register 1 (SCICR1).
11.4.6.6.2
Address Mark Wakeup (WAKE = 1)
In this wakeup method, a logic 1 in the most significant bit (MSB) position of a frame clears the RWU bit
and wakes up the SCI. The logic 1 in the MSB position marks a frame as an address frame that contains
addressing information. All receivers evaluate the addressing information, and the receivers for which the
message is addressed process the frames that follow.Any receiver for which a message is not addressed can
set its RWU bit and return to the standby state. The RWU bit remains set and the receiver remains on
standby until another address frame appears on the RXD pin.
The logic 1 MSB of an address frame clears the receiver’s RWU bit before the stop bit is received and sets
the RDRF flag.
Address mark wakeup allows messages to contain idle characters but requires that the MSB be reserved
for use in address frames.
NOTE
With the WAKE bit clear, setting the RWU bit after the RXD pin has been
idle can cause the receiver to wake up immediately.
11.4.7
Single-Wire Operation
Normally, the SCI uses two pins for transmitting and receiving. In single-wire operation, the RXD pin is
disconnected from the SCI. The SCI uses the TXD pin for both receiving and transmitting.
Transmitter
Receiver
TXD
RXD
Figure 11-30. Single-Wire Operation (LOOPS = 1, RSRC = 1)
MC9S12XDP512 Data Sheet, Rev. 2.21
510
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
Enable single-wire operation by setting the LOOPS bit and the receiver source bit, RSRC, in SCI control
register 1 (SCICR1). Setting the LOOPS bit disables the path from the RXD pin to the receiver. Setting
the RSRC bit connects the TXD pin to the receiver. Both the transmitter and receiver must be enabled
(TE = 1 and RE = 1).The TXDIR bit (SCISR2[1]) determines whether the TXD pin is going to be used as
an input (TXDIR = 0) or an output (TXDIR = 1) in this mode of operation.
NOTE
In single-wire operation data from the TXD pin is inverted if RXPOL is set.
11.4.8
Loop Operation
In loop operation the transmitter output goes to the receiver input. The RXD pin is disconnected from the
SCI.
Transmitter
TXD
Receiver
RXD
Figure 11-31. Loop Operation (LOOPS = 1, RSRC = 0)
Enable loop operation by setting the LOOPS bit and clearing the RSRC bit in SCI control register 1
(SCICR1). Setting the LOOPS bit disables the path from the RXD pin to the receiver. Clearing the RSRC
bit connects the transmitter output to the receiver input. Both the transmitter and receiver must be enabled
(TE = 1 and RE = 1).
NOTE
In loop operation data from the transmitter is not recognized by the receiver
if RXPOL and TXPOL are not the same.
11.5
Initialization/Application Information
11.5.1
Reset Initialization
See Section 11.3.2, “Register Descriptions”.
11.5.2
11.5.2.1
Modes of Operation
Run Mode
Normal mode of operation.
To initialize a SCI transmission, see Section 11.4.5.2, “Character Transmission”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
511
Chapter 11 Serial Communication Interface (S12SCIV5)
11.5.2.2
Wait Mode
SCI operation in wait mode depends on the state of the SCISWAI bit in the SCI control register 1
(SCICR1).
• If SCISWAI is clear, the SCI operates normally when the CPU is in wait mode.
• If SCISWAI is set, SCI clock generation ceases and the SCI module enters a power-conservation
state when the CPU is in wait mode. Setting SCISWAI does not affect the state of the receiver
enable bit, RE, or the transmitter enable bit, TE.
If SCISWAI is set, any transmission or reception in progress stops at wait mode entry. The
transmission or reception resumes when either an internal or external interrupt brings the CPU out
of wait mode. Exiting wait mode by reset aborts any transmission or reception in progress and
resets the SCI.
11.5.2.3
Stop Mode
The SCI is inactive during stop mode for reduced power consumption. The STOP instruction does not
affect the SCI register states, but the SCI bus clock will be disabled. The SCI operation resumes from
where it left off after an external interrupt brings the CPU out of stop mode. Exiting stop mode by reset
aborts any transmission or reception in progress and resets the SCI.
The receive input active edge detect circuit is still active in stop mode. An active edge on the receive input
can be used to bring the CPU out of stop mode.
11.5.3
Interrupt Operation
This section describes the interrupt originated by the SCI block.The MCU must service the interrupt
requests. Table 11-19 lists the eight interrupt sources of the SCI.
Table 11-19. SCI Interrupt Sources
Interrupt
Source
Local Enable
TDRE
SCISR1[7]
TIE
TC
SCISR1[6]
TCIE
RDRF
SCISR1[5]
RIE
OR
SCISR1[3]
IDLE
SCISR1[4]
RXEDGIF SCIASR1[7]
Description
Active high level. Indicates that a byte was transferred from SCIDRH/L to the
transmit shift register.
Active high level. Indicates that a transmit is complete.
Active high level. The RDRF interrupt indicates that received data is available
in the SCI data register.
Active high level. This interrupt indicates that an overrun condition has occurred.
ILIE
RXEDGIE
Active high level. Indicates that receiver input has become idle.
Active high level. Indicates that an active edge (falling for RXPOL = 0, rising for
RXPOL = 1) was detected.
BERRIF
SCIASR1[1]
BERRIE
Active high level. Indicates that a mismatch between transmitted and received data
in a single wire application has happened.
BKDIF
SCIASR1[0]
BRKDIE
Active high level. Indicates that a break character has been received.
MC9S12XDP512 Data Sheet, Rev. 2.21
512
Freescale Semiconductor
Chapter 11 Serial Communication Interface (S12SCIV5)
11.5.3.1
Description of Interrupt Operation
The SCI only originates interrupt requests. The following is a description of how the SCI makes a request
and how the MCU should acknowledge that request. The interrupt vector offset and interrupt number are
chip dependent. The SCI only has a single interrupt line (SCI Interrupt Signal, active high operation) and
all the following interrupts, when generated, are ORed together and issued through that port.
11.5.3.1.1
TDRE Description
The TDRE interrupt is set high by the SCI when the transmit shift register receives a byte from the SCI
data register. A TDRE interrupt indicates that the transmit data register (SCIDRH/L) is empty and that a
new byte can be written to the SCIDRH/L for transmission.Clear TDRE by reading SCI status register 1
with TDRE set and then writing to SCI data register low (SCIDRL).
11.5.3.1.2
TC Description
The TC interrupt is set by the SCI when a transmission has been completed. Transmission is completed
when all bits including the stop bit (if transmitted) have been shifted out and no data is queued to be
transmitted. No stop bit is transmitted when sending a break character and the TC flag is set (providing
there is no more data queued for transmission) when the break character has been shifted out. A TC
interrupt indicates that there is no transmission in progress. TC is set high when the TDRE flag is set and
no data, preamble, or break character is being transmitted. When TC is set, the TXD pin becomes idle
(logic 1). Clear TC by reading SCI status register 1 (SCISR1) with TC set and then writing to SCI data
register low (SCIDRL).TC is cleared automatically when data, preamble, or break is queued and ready to
be sent.
11.5.3.1.3
RDRF Description
The RDRF interrupt is set when the data in the receive shift register transfers to the SCI data register. A
RDRF interrupt indicates that the received data has been transferred to the SCI data register and that the
byte can now be read by the MCU. The RDRF interrupt is cleared by reading the SCI status register one
(SCISR1) and then reading SCI data register low (SCIDRL).
11.5.3.1.4
OR Description
The OR interrupt is set when software fails to read the SCI data register before the receive shift register
receives the next frame. The newly acquired data in the shift register will be lost in this case, but the data
already in the SCI data registers is not affected. The OR interrupt is cleared by reading the SCI status
register one (SCISR1) and then reading SCI data register low (SCIDRL).
11.5.3.1.5
IDLE Description
The IDLE interrupt is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if M = 1)
appear on the receiver input. Once the IDLE is cleared, a valid frame must again set the RDRF flag before
an idle condition can set the IDLE flag. Clear IDLE by reading SCI status register 1 (SCISR1) with IDLE
set and then reading SCI data register low (SCIDRL).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
513
Chapter 11 Serial Communication Interface (S12SCIV5)
11.5.3.1.6
RXEDGIF Description
The RXEDGIF interrupt is set when an active edge (falling if RXPOL = 0, rising if RXPOL = 1) on the
RXD pin is detected. Clear RXEDGIF by writing a “1” to the SCIASR1 SCI alternative status register 1.
11.5.3.1.7
BERRIF Description
The BERRIF interrupt is set when a mismatch between the transmitted and the received data in a single
wire application like LIN was detected. Clear BERRIF by writing a “1” to the SCIASR1 SCI alternative
status register 1. This flag is also cleared if the bit error detect feature is disabled.
11.5.3.1.8
BKDIF Description
The BKDIF interrupt is set when a break signal was received. Clear BKDIF by writing a “1” to the
SCIASR1 SCI alternative status register 1. This flag is also cleared if break detect feature is disabled.
11.5.4
Recovery from Wait Mode
The SCI interrupt request can be used to bring the CPU out of wait mode.
11.5.5
Recovery from Stop Mode
An active edge on the receive input can be used to bring the CPU out of stop mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
514
Freescale Semiconductor
Chapter 12
Serial Peripheral Interface (S12SPIV4)
12.1
Introduction
The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral
devices. Software can poll the SPI status flags or the SPI operation can be interrupt driven.
12.1.1
Glossary of Terms
SPI
SS
SCK
MOSI
MISO
MOMI
SISO
12.1.2
Serial Peripheral Interface
Slave Select
Serial Clock
Master Output, Slave Input
Master Input, Slave Output
Master Output, Master Input
Slave Input, Slave Output
Features
The SPI includes these distinctive features:
• Master mode and slave mode
• Bidirectional mode
• Slave select output
• Mode fault error flag with CPU interrupt capability
• Double-buffered data register
• Serial clock with programmable polarity and phase
• Control of SPI operation during wait mode
12.1.3
Modes of Operation
The SPI functions in three modes: run, wait, and stop.
• Run mode
This is the basic mode of operation.
• Wait mode
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
515
Chapter 12 Serial Peripheral Interface (S12SPIV4)
•
SPI operation in wait mode is a configurable low power mode, controlled by the SPISWAI bit
located in the SPICR2 register. In wait mode, if the SPISWAI bit is clear, the SPI operates like in
run mode. If the SPISWAI bit is set, the SPI goes into a power conservative state, with the SPI clock
generation turned off. If the SPI is configured as a master, any transmission in progress stops, but
is resumed after CPU goes into run mode. If the SPI is configured as a slave, reception and
transmission of a byte continues, so that the slave stays synchronized to the master.
Stop mode
The SPI is inactive in stop mode for reduced power consumption. If the SPI is configured as a
master, any transmission in progress stops, but is resumed after CPU goes into run mode. If the SPI
is configured as a slave, reception and transmission of a byte continues, so that the slave stays
synchronized to the master.
This is a high level description only, detailed descriptions of operating modes are contained in
Section 12.4.7, “Low Power Mode Options”.
12.1.4
Block Diagram
Figure 12-1 gives an overview on the SPI architecture. The main parts of the SPI are status, control and
data registers, shifter logic, baud rate generator, master/slave control logic, and port control logic.
MC9S12XDP512 Data Sheet, Rev. 2.21
516
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
SPI
2
SPI Control Register 1
BIDIROE
2
SPI Control Register 2
SPC0
SPI Status Register
Slave
Control
SPIF MODF SPTEF
CPOL
CPHA
Phase + SCK In
Slave Baud Rate Polarity
Control
Master Baud Rate
Phase + SCK Out
Polarity
Control
Interrupt Control
SPI
Interrupt
Request
Baud Rate Generator
Master
Control
Counter
Bus Clock
3
SPR
Port
Control
Logic
SCK
SS
Prescaler Clock Select
SPPR
MOSI
Baud Rate
Shift
Clock
Sample
Clock
3
Shifter
SPI Baud Rate Register
Data In
LSBFE=1
LSBFE=0
8
SPI Data Register
8
LSBFE=1
MSB
LSBFE=0
LSBFE=0 LSB
LSBFE=1
Data Out
Figure 12-1. SPI Block Diagram
12.2
External Signal Description
This section lists the name and description of all ports including inputs and outputs that do, or may, connect
off chip. The SPI module has a total of four external pins.
12.2.1
MOSI — Master Out/Slave In Pin
This pin is used to transmit data out of the SPI module when it is configured as a master and receive data
when it is configured as slave.
12.2.2
MISO — Master In/Slave Out Pin
This pin is used to transmit data out of the SPI module when it is configured as a slave and receive data
when it is configured as master.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
517
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.2.3
SS — Slave Select Pin
This pin is used to output the select signal from the SPI module to another peripheral with which a data
transfer is to take place when it is configured as a master and it is used as an input to receive the slave select
signal when the SPI is configured as slave.
12.2.4
SCK — Serial Clock Pin
In master mode, this is the synchronous output clock. In slave mode, this is the synchronous input clock.
12.3
Memory Map and Register Definition
This section provides a detailed description of address space and registers used by the SPI.
12.3.1
Module Memory Map
The memory map for the SPI is given in Figure 12-2. The address listed for each register is the sum of a
base address and an address offset. The base address is defined at the SoC level and the address offset is
defined at the module level. Reads from the reserved bits return zeros and writes to the reserved bits have
no effect.
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
MODFEN
BIDIROE
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPICR1
R
W
SPICR2
R
W
0
SPIBR
R
W
0
SPISR
R
W
SPIF
0
SPTEF
MODF
0
0
0
0
Reserved
R
W
SPIDR
R
W
Bit 7
6
5
4
3
2
1
Bit 0
Reserved
R
W
Reserved
R
W
0
0
= Unimplemented or Reserved
Figure 12-2. SPI Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
518
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.3.2
Register Descriptions
This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Details of register bit and field function follow the register
diagrams, in bit order.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
519
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.3.2.1
R
W
Reset
SPI Control Register 1 (SPICR1)
7
6
5
4
3
2
1
0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
0
0
1
0
0
Figure 12-3. SPI Control Register 1 (SPICR1)
Read: Anytime
Write: Anytime
Table 12-1. SPICR1 Field Descriptions
Field
Description
7
SPIE
SPI Interrupt Enable Bit — This bit enables SPI interrupt requests, if SPIF or MODF status flag is set.
0 SPI interrupts disabled.
1 SPI interrupts enabled.
6
SPE
SPI System Enable Bit — This bit enables the SPI system and dedicates the SPI port pins to SPI system
functions. If SPE is cleared, SPI is disabled and forced into idle state, status bits in SPISR register are reset.
0 SPI disabled (lower power consumption).
1 SPI enabled, port pins are dedicated to SPI functions.
5
SPTIE
SPI Transmit Interrupt Enable — This bit enables SPI interrupt requests, if SPTEF flag is set.
0 SPTEF interrupt disabled.
1 SPTEF interrupt enabled.
4
MSTR
SPI Master/Slave Mode Select Bit — This bit selects whether the SPI operates in master or slave mode.
Switching the SPI from master to slave or vice versa forces the SPI system into idle state.
0 SPI is in slave mode.
1 SPI is in master mode.
3
CPOL
SPI Clock Polarity Bit — This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI
modules, the SPI modules must have identical CPOL values. In master mode, a change of this bit will abort a
transmission in progress and force the SPI system into idle state.
0 Active-high clocks selected. In idle state SCK is low.
1 Active-low clocks selected. In idle state SCK is high.
2
CPHA
SPI Clock Phase Bit — This bit is used to select the SPI clock format. In master mode, a change of this bit will
abort a transmission in progress and force the SPI system into idle state.
0 Sampling of data occurs at odd edges (1,3,5,...,15) of the SCK clock.
1 Sampling of data occurs at even edges (2,4,6,...,16) of the SCK clock.
1
SSOE
Slave Select Output Enable — The SS output feature is enabled only in master mode, if MODFEN is set, by
asserting the SSOE as shown in Table 12-2. In master mode, a change of this bit will abort a transmission in
progress and force the SPI system into idle state.
0
LSBFE
LSB-First Enable — This bit does not affect the position of the MSB and LSB in the data register. Reads and
writes of the data register always have the MSB in bit 7. In master mode, a change of this bit will abort a
transmission in progress and force the SPI system into idle state.
0 Data is transferred most significant bit first.
1 Data is transferred least significant bit first.
MC9S12XDP512 Data Sheet, Rev. 2.21
520
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
Table 12-2. SS Input / Output Selection
12.3.2.2
R
MODFEN
SSOE
Master Mode
Slave Mode
0
0
SS not used by SPI
SS input
0
1
SS not used by SPI
SS input
1
0
SS input with MODF feature
SS input
1
1
SS is slave select output
SS input
SPI Control Register 2 (SPICR2)
7
6
5
0
0
0
0
0
0
W
Reset
4
3
MODFEN
BIDIROE
0
0
2
0
0
1
0
SPISWAI
SPC0
0
0
= Unimplemented or Reserved
Figure 12-4. SPI Control Register 2 (SPICR2)
Read: Anytime
Write: Anytime; writes to the reserved bits have no effect
Table 12-3. SPICR2 Field Descriptions
Field
Description
4
MODFEN
Mode Fault Enable Bit — This bit allows the MODF failure to be detected. If the SPI is in master mode and
MODFEN is cleared, then the SS port pin is not used by the SPI. In slave mode, the SS is available only as an
input regardless of the value of MODFEN. For an overview on the impact of the MODFEN bit on the SS port pin
configuration, refer to Table 12-4. In master mode, a change of this bit will abort a transmission in progress and
force the SPI system into idle state.
0 SS port pin is not used by the SPI.
1 SS port pin with MODF feature.
3
BIDIROE
Output Enable in the Bidirectional Mode of Operation — This bit controls the MOSI and MISO output buffer
of the SPI, when in bidirectional mode of operation (SPC0 is set). In master mode, this bit controls the output
buffer of the MOSI port, in slave mode it controls the output buffer of the MISO port. In master mode, with SPC0
set, a change of this bit will abort a transmission in progress and force the SPI into idle state.
0 Output buffer disabled.
1 Output buffer enabled.
1
SPISWAI
SPI Stop in Wait Mode Bit — This bit is used for power conservation while in wait mode.
0 SPI clock operates normally in wait mode.
1 Stop SPI clock generation when in wait mode.
0
SPC0
Serial Pin Control Bit 0 — This bit enables bidirectional pin configurations as shown in Table 12-4. In master
mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
521
Chapter 12 Serial Peripheral Interface (S12SPIV4)
Table 12-4. Bidirectional Pin Configurations
Pin Mode
SPC0
BIDIROE
MISO
MOSI
Master Mode of Operation
Normal
0
Bidirectional
1
X
Master In
Master Out
0
MISO not used by SPI
Master In
1
Master I/O
Slave Mode of Operation
12.3.2.3
Normal
0
Bidirectional
1
6
0
W
Reset
Slave Out
Slave In
0
Slave In
MOSI not used by SPI
1
Slave I/O
SPI Baud Rate Register (SPIBR)
7
R
X
0
5
4
3
SPPR2
SPPR1
SPPR0
0
0
0
0
0
2
1
0
SPR2
SPR1
SPR0
0
0
0
= Unimplemented or Reserved
Figure 12-5. SPI Baud Rate Register (SPIBR)
Read: Anytime
Write: Anytime; writes to the reserved bits have no effect
Table 12-5. SPIBR Field Descriptions
Field
Description
6–4
SPPR[2:0]
SPI Baud Rate Preselection Bits — These bits specify the SPI baud rates as shown in Table 12-6. In master
mode, a change of these bits will abort a transmission in progress and force the SPI system into idle state.
2–0
SPR[2:0]
SPI Baud Rate Selection Bits — These bits specify the SPI baud rates as shown in Table 12-6. In master mode,
a change of these bits will abort a transmission in progress and force the SPI system into idle state.
The baud rate divisor equation is as follows:
BaudRateDivisor = (SPPR + 1) • 2(SPR + 1)
Eqn. 12-1
The baud rate can be calculated with the following equation:
Baud Rate = BusClock / BaudRateDivisor
Eqn. 12-2
NOTE
For maximum allowed baud rates, please refer to the SPI Electrical
Specification in the Electricals chapter of this data sheet.
MC9S12XDP512 Data Sheet, Rev. 2.21
522
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
Table 12-6. Example SPI Baud Rate Selection (25 MHz Bus Clock)
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
Baud Rate
Divisor
Baud Rate
0
0
0
0
0
0
2
12.5 MHz
0
0
0
0
0
1
4
6.25 MHz
0
0
0
0
1
0
8
3.125 MHz
0
0
0
0
1
1
16
1.5625 MHz
0
0
0
1
0
0
32
781.25 kHz
0
0
0
1
0
1
64
390.63 kHz
0
0
0
1
1
0
128
195.31 kHz
0
0
0
1
1
1
256
97.66 kHz
0
0
1
0
0
0
4
6.25 MHz
0
0
1
0
0
1
8
3.125 MHz
0
0
1
0
1
0
16
1.5625 MHz
0
0
1
0
1
1
32
781.25 kHz
0
0
1
1
0
0
64
390.63 kHz
0
0
1
1
0
1
128
195.31 kHz
0
0
1
1
1
0
256
97.66 kHz
0
0
1
1
1
1
512
48.83 kHz
0
1
0
0
0
0
6
4.16667 MHz
0
1
0
0
0
1
12
2.08333 MHz
0
1
0
0
1
0
24
1.04167 MHz
0
1
0
0
1
1
48
520.83 kHz
0
1
0
1
0
0
96
260.42 kHz
0
1
0
1
0
1
192
130.21 kHz
0
1
0
1
1
0
384
65.10 kHz
0
1
0
1
1
1
768
32.55 kHz
0
1
1
0
0
0
8
3.125 MHz
0
1
1
0
0
1
16
1.5625 MHz
0
1
1
0
1
0
32
781.25 kHz
0
1
1
0
1
1
64
390.63 kHz
0
1
1
1
0
0
128
195.31 kHz
0
1
1
1
0
1
256
97.66 kHz
0
1
1
1
1
0
512
48.83 kHz
0
1
1
1
1
1
1024
24.41 kHz
1
0
0
0
0
0
10
2.5 MHz
1
0
0
0
0
1
20
1.25 MHz
1
0
0
0
1
0
40
625 kHz
1
0
0
0
1
1
80
312.5 kHz
1
0
0
1
0
0
160
156.25 kHz
1
0
0
1
0
1
320
78.13 kHz
1
0
0
1
1
0
640
39.06 kHz
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
523
Chapter 12 Serial Peripheral Interface (S12SPIV4)
Table 12-6. Example SPI Baud Rate Selection (25 MHz Bus Clock) (continued)
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
Baud Rate
Divisor
Baud Rate
1
0
0
1
1
1
1280
19.53 kHz
1
0
1
0
0
0
12
2.08333 MHz
1
0
1
0
0
1
24
1.04167 MHz
1
0
1
0
1
0
48
520.83 kHz
1
0
1
0
1
1
96
260.42 kHz
1
0
1
1
0
0
192
130.21 kHz
1
0
1
1
0
1
384
65.10 kHz
1
0
1
1
1
0
768
32.55 kHz
1
0
1
1
1
1
1536
16.28 kHz
1
1
0
0
0
0
14
1.78571 MHz
1
1
0
0
0
1
28
892.86 kHz
1
1
0
0
1
0
56
446.43 kHz
1
1
0
0
1
1
112
223.21 kHz
1
1
0
1
0
0
224
111.61 kHz
1
1
0
1
0
1
448
55.80 kHz
1
1
0
1
1
0
896
27.90 kHz
1
1
0
1
1
1
1792
13.95 kHz
1
1
1
0
0
0
16
1.5625 MHz
1
1
1
0
0
1
32
781.25 kHz
1
1
1
0
1
0
64
390.63 kHz
1
1
1
0
1
1
128
195.31 kHz
1
1
1
1
0
0
256
97.66 kHz
1
1
1
1
0
1
512
48.83 kHz
1
1
1
1
1
0
1024
24.41 kHz
1
1
1
1
1
1
2048
12.21 kHz
MC9S12XDP512 Data Sheet, Rev. 2.21
524
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.3.2.4
R
SPI Status Register (SPISR)
7
6
5
4
3
2
1
0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
1
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 12-6. SPI Status Register (SPISR)
Read: Anytime
Write: Has no effect
Table 12-7. SPISR Field Descriptions
Field
Description
7
SPIF
SPIF Interrupt Flag — This bit is set after a received data byte has been transferred into the SPI data register.
This bit is cleared by reading the SPISR register (with SPIF set) followed by a read access to the SPI data
register.
0 Transfer not yet complete.
1 New data copied to SPIDR.
5
SPTEF
SPI Transmit Empty Interrupt Flag — If set, this bit indicates that the transmit data register is empty. To clear
this bit and place data into the transmit data register, SPISR must be read with SPTEF = 1, followed by a write
to SPIDR. Any write to the SPI data register without reading SPTEF = 1, is effectively ignored.
0 SPI data register not empty.
1 SPI data register empty.
4
MODF
Mode Fault Flag — This bit is set if the SS input becomes low while the SPI is configured as a master and mode
fault detection is enabled, MODFEN bit of SPICR2 register is set. Refer to MODFEN bit description in
Section 12.3.2.2, “SPI Control Register 2 (SPICR2)”. The flag is cleared automatically by a read of the SPI status
register (with MODF set) followed by a write to the SPI control register 1.
0 Mode fault has not occurred.
1 Mode fault has occurred.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
525
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.3.2.5
R
W
Reset
SPI Data Register (SPIDR)
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
2
Bit 0
0
0
0
0
0
0
0
0
Figure 12-7. SPI Data Register (SPIDR)
Read: Anytime; normally read only when SPIF is set
Write: Anytime
The SPI data register is both the input and output register for SPI data. A write to this register
allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data
byte is transmitted immediately after the previous transmission has completed. The SPI transmitter
empty flag SPTEF in the SPISR register indicates when the SPI data register is ready to accept new
data.
Received data in the SPIDR is valid when SPIF is set.
If SPIF is cleared and a byte has been received, the received byte is transferred from the receive
shift register to the SPIDR and SPIF is set.
If SPIF is set and not serviced, and a second byte has been received, the second received byte is
kept as valid byte in the receive shift register until the start of another transmission. The byte in the
SPIDR does not change.
If SPIF is set and a valid byte is in the receive shift register, and SPIF is serviced before the start of
a third transmission, the byte in the receive shift register is transferred into the SPIDR and SPIF
remains set (see Figure 12-8).
If SPIF is set and a valid byte is in the receive shift register, and SPIF is serviced after the start of
a third transmission, the byte in the receive shift register has become invalid and is not transferred
into the SPIDR (see Figure 12-9).
MC9S12XDP512 Data Sheet, Rev. 2.21
526
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
Data A Received
Data B Received
Data C Received
SPIF Serviced
Receive Shift Register
Data B
Data A
Data C
SPIF
SPI Data Register
Data B
Data A
= Unspecified
Data C
= Reception in progress
Figure 12-8. Reception with SPIF Serviced in Time
Data A Received
Data B Received
Data C Received
Data B Lost
SPIF Serviced
Receive Shift Register
Data B
Data A
Data C
SPIF
SPI Data Register
Data A
= Unspecified
Data C
= Reception in progress
Figure 12-9. Reception with SPIF Serviced too Late
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
527
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4
Functional Description
The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral
devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.
The SPI system is enabled by setting the SPI enable (SPE) bit in SPI control register 1. While SPE is set,
the four associated SPI port pins are dedicated to the SPI function as:
• Slave select (SS)
• Serial clock (SCK)
• Master out/slave in (MOSI)
• Master in/slave out (MISO)
The main element of the SPI system is the SPI data register. The 8-bit data register in the master and the
8-bit data register in the slave are linked by the MOSI and MISO pins to form a distributed 16-bit register.
When a data transfer operation is performed, this 16-bit register is serially shifted eight bit positions by the
S-clock from the master, so data is exchanged between the master and the slave. Data written to the master
SPI data register becomes the output data for the slave, and data read from the master SPI data register after
a transfer operation is the input data from the slave.
A read of SPISR with SPTEF = 1 followed by a write to SPIDR puts data into the transmit data register.
When a transfer is complete and SPIF is cleared, received data is moved into the receive data register. This
8-bit data register acts as the SPI receive data register for reads and as the SPI transmit data register for
writes. A single SPI register address is used for reading data from the read data buffer and for writing data
to the transmit data register.
The clock phase control bit (CPHA) and a clock polarity control bit (CPOL) in the SPI control register 1
(SPICR1) select one of four possible clock formats to be used by the SPI system. The CPOL bit simply
selects a non-inverted or inverted clock. The CPHA bit is used to accommodate two fundamentally
different protocols by sampling data on odd numbered SCK edges or on even numbered SCK edges (see
Section 12.4.3, “Transmission Formats”).
The SPI can be configured to operate as a master or as a slave. When the MSTR bit in SPI control register1
is set, master mode is selected, when the MSTR bit is clear, slave mode is selected.
NOTE
A change of CPOL or MSTR bit while there is a received byte pending in
the receive shift register will destroy the received byte and must be avoided.
MC9S12XDP512 Data Sheet, Rev. 2.21
528
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.1
Master Mode
The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initiate
transmissions. A transmission begins by writing to the master SPI data register. If the shift register is
empty, the byte immediately transfers to the shift register. The byte begins shifting out on the MOSI pin
under the control of the serial clock.
• Serial clock
The SPR2, SPR1, and SPR0 baud rate selection bits, in conjunction with the SPPR2, SPPR1, and
SPPR0 baud rate preselection bits in the SPI baud rate register, control the baud rate generator and
determine the speed of the transmission. The SCK pin is the SPI clock output. Through the SCK
pin, the baud rate generator of the master controls the shift register of the slave peripheral.
• MOSI, MISO pin
In master mode, the function of the serial data output pin (MOSI) and the serial data input pin
(MISO) is determined by the SPC0 and BIDIROE control bits.
• SS pin
If MODFEN and SSOE are set, the SS pin is configured as slave select output. The SS output
becomes low during each transmission and is high when the SPI is in idle state.
If MODFEN is set and SSOE is cleared, the SS pin is configured as input for detecting mode fault
error. If the SS input becomes low this indicates a mode fault error where another master tries to
drive the MOSI and SCK lines. In this case, the SPI immediately switches to slave mode, by
clearing the MSTR bit and also disables the slave output buffer MISO (or SISO in bidirectional
mode). So the result is that all outputs are disabled and SCK, MOSI, and MISO are inputs. If a
transmission is in progress when the mode fault occurs, the transmission is aborted and the SPI is
forced into idle state.
This mode fault error also sets the mode fault (MODF) flag in the SPI status register (SPISR). If
the SPI interrupt enable bit (SPIE) is set when the MODF flag becomes set, then an SPI interrupt
sequence is also requested.
When a write to the SPI data register in the master occurs, there is a half SCK-cycle delay. After
the delay, SCK is started within the master. The rest of the transfer operation differs slightly,
depending on the clock format specified by the SPI clock phase bit, CPHA, in SPI control register 1
(see Section 12.4.3, “Transmission Formats”).
NOTE
A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, or
BIDIROE with SPC0 set, SPPR2-SPPR0 and SPR2-SPR0 in master mode
will abort a transmission in progress and force the SPI into idle state. The
remote slave cannot detect this, therefore the master must ensure that the
remote slave is returned to idle state.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
529
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.2
Slave Mode
The SPI operates in slave mode when the MSTR bit in SPI control register 1 is clear.
• Serial clock
In slave mode, SCK is the SPI clock input from the master.
• MISO, MOSI pin
In slave mode, the function of the serial data output pin (MISO) and serial data input pin (MOSI)
is determined by the SPC0 bit and BIDIROE bit in SPI control register 2.
• SS pin
The SS pin is the slave select input. Before a data transmission occurs, the SS pin of the slave SPI
must be low. SS must remain low until the transmission is complete. If SS goes high, the SPI is
forced into idle state.
The SS input also controls the serial data output pin, if SS is high (not selected), the serial data
output pin is high impedance, and, if SS is low, the first bit in the SPI data register is driven out of
the serial data output pin. Also, if the slave is not selected (SS is high), then the SCK input is
ignored and no internal shifting of the SPI shift register occurs.
Although the SPI is capable of duplex operation, some SPI peripherals are capable of only
receiving SPI data in a slave mode. For these simpler devices, there is no serial data out pin.
NOTE
When peripherals with duplex capability are used, take care not to
simultaneously enable two receivers whose serial outputs drive the same
system slave’s serial data output line.
As long as no more than one slave device drives the system slave’s serial data output line, it is possible for
several slaves to receive the same transmission from a master, although the master would not receive return
information from all of the receiving slaves.
If the CPHA bit in SPI control register 1 is clear, odd numbered edges on the SCK input cause the data at
the serial data input pin to be latched. Even numbered edges cause the value previously latched from the
serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.
If the CPHA bit is set, even numbered edges on the SCK input cause the data at the serial data input pin to
be latched. Odd numbered edges cause the value previously latched from the serial data input pin to shift
into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.
When CPHA is set, the first edge is used to get the first data bit onto the serial data output pin. When CPHA
is clear and the SS input is low (slave selected), the first bit of the SPI data is driven out of the serial data
output pin. After the eighth shift, the transfer is considered complete and the received data is transferred
into the SPI data register. To indicate transfer is complete, the SPIF flag in the SPI status register is set.
NOTE
A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, or
BIDIROE with SPC0 set in slave mode will corrupt a transmission in
progress and must be avoided.
MC9S12XDP512 Data Sheet, Rev. 2.21
530
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.3
Transmission Formats
During an SPI transmission, data is transmitted (shifted out serially) and received (shifted in serially)
simultaneously. The serial clock (SCK) synchronizes shifting and sampling of the information on the two
serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that
are not selected do not interfere with SPI bus activities. Optionally, on a master SPI device, the slave select
line can be used to indicate multiple-master bus contention.
MASTER SPI
SHIFT REGISTER
BAUD RATE
GENERATOR
SLAVE SPI
MISO
MISO
MOSI
MOSI
SCK
SCK
SS
VDD
SHIFT REGISTER
SS
Figure 12-10. Master/Slave Transfer Block Diagram
12.4.3.1
Clock Phase and Polarity Controls
Using two bits in the SPI control register 1, software selects one of four combinations of serial clock phase
and polarity.
The CPOL clock polarity control bit specifies an active high or low clock and has no significant effect on
the transmission format.
The CPHA clock phase control bit selects one of two fundamentally different transmission formats.
Clock phase and polarity should be identical for the master SPI device and the communicating slave
device. In some cases, the phase and polarity are changed between transmissions to allow a master device
to communicate with peripheral slaves having different requirements.
12.4.3.2
CPHA = 0 Transfer Format
The first edge on the SCK line is used to clock the first data bit of the slave into the master and the first
data bit of the master into the slave. In some peripherals, the first bit of the slave’s data is available at the
slave’s data out pin as soon as the slave is selected. In this format, the first SCK edge is issued a half cycle
after SS has become low.
A half SCK cycle later, the second edge appears on the SCK line. When this second edge occurs, the value
previously latched from the serial data input pin is shifted into the LSB or MSB of the shift register,
depending on LSBFE bit.
After this second edge, the next bit of the SPI master data is transmitted out of the serial data output pin of
the master to the serial input pin on the slave. This process continues for a total of 16 edges on the SCK
line, with data being latched on odd numbered edges and shifted on even numbered edges.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
531
Chapter 12 Serial Peripheral Interface (S12SPIV4)
Data reception is double buffered. Data is shifted serially into the SPI shift register during the transfer and
is transferred to the parallel SPI data register after the last bit is shifted in.
After the 16th (last) SCK edge:
• Data that was previously in the master SPI data register should now be in the slave data register and
the data that was in the slave data register should be in the master.
• The SPIF flag in the SPI status register is set, indicating that the transfer is complete.
Figure 12-11 is a timing diagram of an SPI transfer where CPHA = 0. SCK waveforms are shown for
CPOL = 0 and CPOL = 1. The diagram may be interpreted as a master or slave timing diagram because
the SCK, MISO, and MOSI pins are connected directly between the master and the slave. The MISO signal
is the output from the slave and the MOSI signal is the output from the master. The SS pin of the master
must be either high or reconfigured as a general-purpose output not affecting the SPI.
End of Idle State
Begin
1
SCK Edge Number
2
3
4
5
6
7
8
Begin of Idle State
End
Transfer
9
10
11
12
13 14
15
16
Bit 1
Bit 6
LSB Minimum 1/2 SCK
for tT, tl, tL
MSB
SCK (CPOL = 0)
SCK (CPOL = 1)
If next transfer begins here
SAMPLE I
MOSI/MISO
CHANGE O
MOSI pin
CHANGE O
MISO pin
SEL SS (O)
Master only
SEL SS (I)
tT
tL
MSB first (LSBFE = 0): MSB
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
LSB first (LSBFE = 1): LSB
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
tL = Minimum leading time before the first SCK edge
tT = Minimum trailing time after the last SCK edge
tI = Minimum idling time between transfers (minimum SS high time)
tL, tT, and tI are guaranteed for the master mode and required for the slave mode.
tI
tL
Figure 12-11. SPI Clock Format 0 (CPHA = 0)
MC9S12XDP512 Data Sheet, Rev. 2.21
532
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
In slave mode, if the SS line is not deasserted between the successive transmissions then the content of the
SPI data register is not transmitted; instead the last received byte is transmitted. If the SS line is deasserted
for at least minimum idle time (half SCK cycle) between successive transmissions, then the content of the
SPI data register is transmitted.
In master mode, with slave select output enabled the SS line is always deasserted and reasserted between
successive transfers for at least minimum idle time.
12.4.3.3
CPHA = 1 Transfer Format
Some peripherals require the first SCK edge before the first data bit becomes available at the data out pin,
the second edge clocks data into the system. In this format, the first SCK edge is issued by setting the
CPHA bit at the beginning of the 8-cycle transfer operation.
The first edge of SCK occurs immediately after the half SCK clock cycle synchronization delay. This first
edge commands the slave to transfer its first data bit to the serial data input pin of the master.
A half SCK cycle later, the second edge appears on the SCK pin. This is the latching edge for both the
master and slave.
When the third edge occurs, the value previously latched from the serial data input pin is shifted into the
LSB or MSB of the SPI shift register, depending on LSBFE bit. After this edge, the next bit of the master
data is coupled out of the serial data output pin of the master to the serial input pin on the slave.
This process continues for a total of 16 edges on the SCK line with data being latched on even numbered
edges and shifting taking place on odd numbered edges.
Data reception is double buffered, data is serially shifted into the SPI shift register during the transfer and
is transferred to the parallel SPI data register after the last bit is shifted in.
After the 16th SCK edge:
• Data that was previously in the SPI data register of the master is now in the data register of the
slave, and data that was in the data register of the slave is in the master.
• The SPIF flag bit in SPISR is set indicating that the transfer is complete.
Figure 12-12 shows two clocking variations for CPHA = 1. The diagram may be interpreted as a master or
slave timing diagram because the SCK, MISO, and MOSI pins are connected directly between the master
and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the
master. The SS line is the slave select input to the slave. The SS pin of the master must be either high or
reconfigured as a general-purpose output not affecting the SPI.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
533
Chapter 12 Serial Peripheral Interface (S12SPIV4)
End of Idle State
Begin
SCK Edge Number
1
2
3
4
End
Transfer
5
6
7
8
9
10
11
12
13 14
Begin of Idle State
15
16
SCK (CPOL = 0)
SCK (CPOL = 1)
If next transfer begins here
SAMPLE I
MOSI/MISO
CHANGE O
MOSI pin
CHANGE O
MISO pin
SEL SS (O)
Master only
SEL SS (I)
tT
tL
tI
tL
MSB first (LSBFE = 0):
LSB first (LSBFE = 1):
MSB
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
LSB Minimum 1/2 SCK
for tT, tl, tL
LSB
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
MSB
tL = Minimum leading time before the first SCK edge, not required for back-to-back transfers
tT = Minimum trailing time after the last SCK edge
tI = Minimum idling time between transfers (minimum SS high time), not required for back-to-back transfers
Figure 12-12. SPI Clock Format 1 (CPHA = 1)
The SS line can remain active low between successive transfers (can be tied low at all times). This format
is sometimes preferred in systems having a single fixed master and a single slave that drive the MISO data
line.
• Back-to-back transfers in master mode
In master mode, if a transmission has completed and a new data byte is available in the SPI data
register, this byte is sent out immediately without a trailing and minimum idle time.
The SPI interrupt request flag (SPIF) is common to both the master and slave modes. SPIF gets set one
half SCK cycle after the last SCK edge.
MC9S12XDP512 Data Sheet, Rev. 2.21
534
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.4
SPI Baud Rate Generation
Baud rate generation consists of a series of divider stages. Six bits in the SPI baud rate register (SPPR2,
SPPR1, SPPR0, SPR2, SPR1, and SPR0) determine the divisor to the SPI module clock which results in
the SPI baud rate.
The SPI clock rate is determined by the product of the value in the baud rate preselection bits
(SPPR2–SPPR0) and the value in the baud rate selection bits (SPR2–SPR0). The module clock divisor
equation is shown in Equation 12-3.
BaudRateDivisor = (SPPR + 1) • 2(SPR + 1)
Eqn. 12-3
When all bits are clear (the default condition), the SPI module clock is divided by 2. When the selection
bits (SPR2–SPR0) are 001 and the preselection bits (SPPR2–SPPR0) are 000, the module clock divisor
becomes 4. When the selection bits are 010, the module clock divisor becomes 8, etc.
When the preselection bits are 001, the divisor determined by the selection bits is multiplied by 2. When
the preselection bits are 010, the divisor is multiplied by 3, etc. See Table 12-6 for baud rate calculations
for all bit conditions, based on a 25 MHz bus clock. The two sets of selects allows the clock to be divided
by a non-power of two to achieve other baud rates such as divide by 6, divide by 10, etc.
The baud rate generator is activated only when the SPI is in master mode and a serial transfer is taking
place. In the other cases, the divider is disabled to decrease IDD current.
NOTE
For maximum allowed baud rates, please refer to the SPI Electrical
Specification in the Electricals chapter of this data sheet.
12.4.5
12.4.5.1
Special Features
SS Output
The SS output feature automatically drives the SS pin low during transmission to select external devices
and drives it high during idle to deselect external devices. When SS output is selected, the SS output pin
is connected to the SS input pin of the external device.
The SS output is available only in master mode during normal SPI operation by asserting SSOE and
MODFEN bit as shown in Table 12-2.
The mode fault feature is disabled while SS output is enabled.
NOTE
Care must be taken when using the SS output feature in a multimaster
system because the mode fault feature is not available for detecting system
errors between masters.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
535
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.5.2
Bidirectional Mode (MOMI or SISO)
The bidirectional mode is selected when the SPC0 bit is set in SPI control register 2 (see Table 12-8). In
this mode, the SPI uses only one serial data pin for the interface with external device(s). The MSTR bit
decides which pin to use. The MOSI pin becomes the serial data I/O (MOMI) pin for the master mode, and
the MISO pin becomes serial data I/O (SISO) pin for the slave mode. The MISO pin in master mode and
MOSI pin in slave mode are not used by the SPI.
Table 12-8. Normal Mode and Bidirectional Mode
When SPE = 1
Master Mode MSTR = 1
Serial Out
Normal Mode
SPC0 = 0
MOSI
Serial In
MOSI
SPI
SPI
Serial In
MISO
Serial Out
Bidirectional Mode
SPC0 = 1
Slave Mode MSTR = 0
MOMI
Serial Out
MISO
Serial In
BIDIROE
SPI
Serial In
BIDIROE
SPI
Serial Out
SISO
The direction of each serial I/O pin depends on the BIDIROE bit. If the pin is configured as an output,
serial data from the shift register is driven out on the pin. The same pin is also the serial input to the shift
register.
• The SCK is output for the master mode and input for the slave mode.
• The SS is the input or output for the master mode, and it is always the input for the slave mode.
• The bidirectional mode does not affect SCK and SS functions.
NOTE
In bidirectional master mode, with mode fault enabled, both data pins MISO
and MOSI can be occupied by the SPI, though MOSI is normally used for
transmissions in bidirectional mode and MISO is not used by the SPI. If a
mode fault occurs, the SPI is automatically switched to slave mode. In this
case MISO becomes occupied by the SPI and MOSI is not used. This must
be considered, if the MISO pin is used for another purpose.
MC9S12XDP512 Data Sheet, Rev. 2.21
536
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.6
Error Conditions
The SPI has one error condition:
• Mode fault error
12.4.6.1
Mode Fault Error
If the SS input becomes low while the SPI is configured as a master, it indicates a system error where more
than one master may be trying to drive the MOSI and SCK lines simultaneously. This condition is not
permitted in normal operation, the MODF bit in the SPI status register is set automatically, provided the
MODFEN bit is set.
In the special case where the SPI is in master mode and MODFEN bit is cleared, the SS pin is not used by
the SPI. In this special case, the mode fault error function is inhibited and MODF remains cleared. In case
the SPI system is configured as a slave, the SS pin is a dedicated input pin. Mode fault error doesn’t occur
in slave mode.
If a mode fault error occurs, the SPI is switched to slave mode, with the exception that the slave output
buffer is disabled. So SCK, MISO, and MOSI pins are forced to be high impedance inputs to avoid any
possibility of conflict with another output driver. A transmission in progress is aborted and the SPI is
forced into idle state.
If the mode fault error occurs in the bidirectional mode for a SPI system configured in master mode, output
enable of the MOMI (MOSI in bidirectional mode) is cleared if it was set. No mode fault error occurs in
the bidirectional mode for SPI system configured in slave mode.
The mode fault flag is cleared automatically by a read of the SPI status register (with MODF set) followed
by a write to SPI control register 1. If the mode fault flag is cleared, the SPI becomes a normal master or
slave again.
NOTE
If a mode fault error occurs and a received data byte is pending in the receive
shift register, this data byte will be lost.
12.4.7
12.4.7.1
Low Power Mode Options
SPI in Run Mode
In run mode with the SPI system enable (SPE) bit in the SPI control register clear, the SPI system is in a
low-power, disabled state. SPI registers remain accessible, but clocks to the core of this module are
disabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
537
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.7.2
SPI in Wait Mode
SPI operation in wait mode depends upon the state of the SPISWAI bit in SPI control register 2.
• If SPISWAI is clear, the SPI operates normally when the CPU is in wait mode
• If SPISWAI is set, SPI clock generation ceases and the SPI module enters a power conservation
state when the CPU is in wait mode.
–
If SPISWAI is set and the SPI is configured for master, any transmission and reception in
progress stops at wait mode entry. The transmission and reception resumes when the SPI exits
wait mode.
–
If SPISWAI is set and the SPI is configured as a slave, any transmission and reception in
progress continues if the SCK continues to be driven from the master. This keeps the slave
synchronized to the master and the SCK.
If the master transmits several bytes while the slave is in wait mode, the slave will continue to
send out bytes consistent with the operation mode at the start of wait mode (i.e., if the slave is
currently sending its SPIDR to the master, it will continue to send the same byte. Else if the
slave is currently sending the last received byte from the master, it will continue to send each
previous master byte).
NOTE
Care must be taken when expecting data from a master while the slave is in
wait or stop mode. Even though the shift register will continue to operate,
the rest of the SPI is shut down (i.e., a SPIF interrupt will not be generated
until exiting stop or wait mode). Also, the byte from the shift register will
not be copied into the SPIDR register until after the slave SPI has exited wait
or stop mode. In slave mode, a received byte pending in the receive shift
register will be lost when entering wait or stop mode. An SPIF flag and
SPIDR copy is generated only if wait mode is entered or exited during a
tranmission. If the slave enters wait mode in idle mode and exits wait mode
in idle mode, neither a SPIF nor a SPIDR copy will occur.
12.4.7.3
SPI in Stop Mode
Stop mode is dependent on the system. The SPI enters stop mode when the module clock is disabled (held
high or low). If the SPI is in master mode and exchanging data when the CPU enters stop mode, the
transmission is frozen until the CPU exits stop mode. After stop, data to and from the external SPI is
exchanged correctly. In slave mode, the SPI will stay synchronized with the master.
The stop mode is not dependent on the SPISWAI bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
538
Freescale Semiconductor
Chapter 12 Serial Peripheral Interface (S12SPIV4)
12.4.7.4
Reset
The reset values of registers and signals are described in Section 12.3, “Memory Map and Register
Definition”, which details the registers and their bit fields.
• If a data transmission occurs in slave mode after reset without a write to SPIDR, it will transmit
garbage, or the byte last received from the master before the reset.
• Reading from the SPIDR after reset will always read a byte of zeros.
12.4.7.5
Interrupts
The SPI only originates interrupt requests when SPI is enabled (SPE bit in SPICR1 set). The following is
a description of how the SPI makes a request and how the MCU should acknowledge that request. The
interrupt vector offset and interrupt priority are chip dependent.
The interrupt flags MODF, SPIF, and SPTEF are logically ORed to generate an interrupt request.
12.4.7.5.1
MODF
MODF occurs when the master detects an error on the SS pin. The master SPI must be configured for the
MODF feature (see Table 12-2). After MODF is set, the current transfer is aborted and the following bit is
changed:
• MSTR = 0, The master bit in SPICR1 resets.
The MODF interrupt is reflected in the status register MODF flag. Clearing the flag will also clear the
interrupt. This interrupt will stay active while the MODF flag is set. MODF has an automatic clearing
process which is described in Section 12.3.2.4, “SPI Status Register (SPISR)”.
12.4.7.5.2
SPIF
SPIF occurs when new data has been received and copied to the SPI data register. After SPIF is set, it does
not clear until it is serviced. SPIF has an automatic clearing process, which is described in
Section 12.3.2.4, “SPI Status Register (SPISR)”.
12.4.7.5.3
SPTEF
SPTEF occurs when the SPI data register is ready to accept new data. After SPTEF is set, it does not clear
until it is serviced. SPTEF has an automatic clearing process, which is described in Section 12.3.2.4, “SPI
Status Register (SPISR)”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
539
Chapter 12 Serial Peripheral Interface (S12SPIV4)
MC9S12XDP512 Data Sheet, Rev. 2.21
540
Freescale Semiconductor
Chapter 13
Periodic Interrupt Timer (S12PIT24B4CV1)
13.1
Introduction
The period interrupt timer (PIT) is an array of 24-bit timers that can be used to trigger peripheral modules
or raise periodic interrupts. Refer to Figure 13-1 for a simplified block diagram.
13.1.1
Glossary
Acronyms and Abbreviations
PIT
ISR
CCR
SoC
micro time bases
13.1.2
Periodic Interrupt Timer
Interrupt Service Routine
Condition Code Register
System on Chip
clock periods of the 16-bit timer modulus down-counters, which are generated by the 8-bit
modulus down-counters.
Features
The PIT includes these features:
• Four timers implemented as modulus down-counters with independent time-out periods.
• Time-out periods selectable between 1 and 224 bus clock cycles. Time-out equals m*n bus clock
cycles with 1 IPL[2:0]).
3. The I bit in the condition code register (CCR) of the CPU must be cleared.
4. There is no SWI, TRAP, or XIRQ request pending.
NOTE
All non I bit maskable interrupt requests always have higher priority than
I bit maskable interrupt requests. If an I bit maskable interrupt request is
interrupted by a non I bit maskable interrupt request, the currently active
interrupt processing level (IPL) remains unaffected. It is possible to nest
non I bit maskable interrupt requests, e.g., by nesting SWI or TRAP calls.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
607
Chapter 16 Interrupt (S12XINTV1)
16.4.2.1
Interrupt Priority Stack
The current interrupt processing level (IPL) is stored in the condition code register (CCR) of the CPU. This
way the current IPL is automatically pushed to the stack by the standard interrupt stacking procedure. The
new IPL is copied to the CCR from the priority level of the highest priority active interrupt request channel
which is configured to be handled by the CPU. The copying takes place when the interrupt vector is
fetched. The previous IPL is automatically restored by executing the RTI instruction.
16.4.3
XGATE Requests
The XINT module processes all exception requests to be serviced by the XGATE module. The overall
priority level of those exceptions is discussed in the subsections below.
16.4.3.1
XGATE Request Prioritization
An interrupt request channel is configured to be handled by the XGATE module, if the RQST bit of the
associated configuration register is set to 1 (please refer to Section 16.3.1.4, “Interrupt Request
Configuration Data Registers (INT_CFDATA0–7)”). The priority level setting (PRIOLVL) for this channel
becomes the DMA priority which will be used to determine the highest priority DMA request to be
serviced next by the XGATE module. Additionally, DMA interrupts may be raised by the XGATE module
by setting one or more of the XGATE channel interrupt flags (using the SIF instruction). This will result
in an CPU interrupt with vector address vector base + (2 * channel ID number), where the channel ID
number corresponds to the highest set channel interrupt flag, if the XGIE and channel RQST bits are set.
The shared interrupt priority for the DMA interrupt requests is taken from the XGATE interrupt priority
configuration register (please refer to Section 16.3.1.2, “XGATE Interrupt Priority Configuration Register
(INT_XGPRIO)”). If more than one DMA interrupt request channel becomes active at the same time, the
channel with the highest vector address wins the prioritization.
16.4.4
Priority Decoders
The XINT module contains priority decoders to determine the priority for all interrupt requests pending
for the respective target.
There are two priority decoders, one for each interrupt request target (CPU, XGATE module). The function
of both priority decoders is basically the same with one exception: the priority decoder for the XGATE
module does not take the current interrupt processing level into account because XGATE requests cannot
be nested.
Because the vector is not supplied until the CPU requests it, it is possible that a higher priority interrupt
request could override the original exception that caused the CPU to request the vector. In this case, the
CPU will receive the highest priority vector and the system will process this exception instead of the
original request.
MC9S12XDP512 Data Sheet, Rev. 2.21
608
Freescale Semiconductor
Chapter 16 Interrupt (S12XINTV1)
If the interrupt source is unknown (for example, in the case where an interrupt request becomes inactive
after the interrupt has been recognized, but prior to the vector request), the vector address supplied to the
CPU will default to that of the spurious interrupt vector.
NOTE
Care must be taken to ensure that all exception requests remain active until
the system begins execution of the applicable service routine; otherwise, the
exception request may not get processed at all or the result may be a
spurious interrupt request (vector at address (vector base + 0x0010)).
16.4.5
Reset Exception Requests
The XINT supports three system reset exception request types (please refer to CRG for details):
1. Pin reset, power-on reset, low-voltage reset, or illegal address reset
2. Clock monitor reset request
3. COP watchdog reset request
16.4.6
Exception Priority
The priority (from highest to lowest) and address of all exception vectors issued by the XINT upon request
by the CPU is shown in Table 16-8.
Table 16-8. Exception Vector Map and Priority
Vector Address1
Source
0xFFFE
Pin reset, power-on reset, low-voltage reset, illegal address reset
0xFFFC
Clock monitor reset
0xFFFA
COP watchdog reset
(Vector base + 0x00F8)
Unimplemented opcode trap
(Vector base + 0x00F6)
Software interrupt instruction (SWI) or BDM vector request
(Vector base + 0x00F4)
XIRQ interrupt request
(Vector base + 0x00F2)
IRQ interrupt request
(Vector base + 0x00F0–0x0012) Device specific I bit maskable interrupt sources (priority determined by the associated
configuration registers, in descending order)
(Vector base + 0x0010)
1
Spurious interrupt
16 bits vector address based
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
609
Chapter 16 Interrupt (S12XINTV1)
16.5
16.5.1
Initialization/Application Information
Initialization
After system reset, software should:
• Initialize the interrupt vector base register if the interrupt vector table is not located at the default
location (0xFF10–0xFFF9).
• Initialize the interrupt processing level configuration data registers (INT_CFADDR,
INT_CFDATA0–7) for all interrupt vector requests with the desired priority levels and the request
target (CPU or XGATE module). It might be a good idea to disable unused interrupt requests.
• If the XGATE module is used, setup the XGATE interrupt priority register (INT_XGPRIO) and
configure the XGATE module (please refer the XGATE Block Guide for details).
• Enable I maskable interrupts by clearing the I bit in the CCR.
• Enable the X maskable interrupt by clearing the X bit in the CCR (if required).
16.5.2
Interrupt Nesting
The interrupt request priority level scheme makes it possible to implement priority based interrupt request
nesting for the I bit maskable interrupt requests handled by the CPU.
• I bit maskable interrupt requests can be interrupted by an interrupt request with a higher priority,
so that there can be up to seven nested I bit maskable interrupt requests at a time (refer to
Figure 16-14 for an example using up to three nested interrupt requests).
I bit maskable interrupt requests cannot be interrupted by other I bit maskable interrupt requests per
default. In order to make an interrupt service routine (ISR) interruptible, the ISR must explicitly clear the
I bit in the CCR (CLI). After clearing the I bit, I bit maskable interrupt requests with higher priority can
interrupt the current ISR.
An ISR of an interruptible I bit maskable interrupt request could basically look like this:
• Service interrupt, e.g., clear interrupt flags, copy data, etc.
• Clear I bit in the CCR by executing the instruction CLI (thus allowing interrupt requests with
higher priority)
• Process data
• Return from interrupt by executing the instruction RTI
MC9S12XDP512 Data Sheet, Rev. 2.21
610
Freescale Semiconductor
Chapter 16 Interrupt (S12XINTV1)
0
Stacked IPL
IPL in CCR
0
0
4
0
0
0
4
7
4
3
1
0
7
6
RTI
L7
5
4
RTI
Processing Levels
3
L3 (Pending)
2
L4
RTI
1
L1 (Pending)
0
RTI
Reset
Figure 16-14. Interrupt Processing Example
16.5.3
16.5.3.1
Wake Up from Stop or Wait Mode
CPU Wake Up from Stop or Wait Mode
Every I bit maskable interrupt request which is configured to be handled by the CPU is capable of waking
the MCU from stop or wait mode. To determine whether an I bit maskable interrupts is qualified to wake
up the CPU or not, the same settings as in normal run mode are applied during stop or wait mode:
• If the I bit in the CCR is set, all I bit maskable interrupts are masked from waking up the MCU.
• An I bit maskable interrupt is ignored if it is configured to a priority level below or equal to the
current IPL in CCR.
• I bit maskable interrupt requests which are configured to be handled by the XGATE are not capable
of waking up the CPU.
An XIRQ request can wake up the MCU from stop or wait mode at anytime, even if the X bit in CCR is set.
16.5.3.2
XGATE Wake Up from Stop or Wait Mode
Interrupt request channels which are configured to be handled by the XGATE are capable of waking up the
XGATE. Interrupt request channels handled by the XGATE do not affect the state of the CPU.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
611
Chapter 16 Interrupt (S12XINTV1)
MC9S12XDP512 Data Sheet, Rev. 2.21
612
Freescale Semiconductor
Chapter 17
Memory Mapping Control (S12XMMCV2)
17.1
Introduction
This section describes the functionality of the module mapping control (MMC) sub-block of the S12X
platform. The block diagram of the MMC is shown in Figure 1-1.
The MMC module controls the multi-master priority accesses, the selection of internal resources and
external space. Internal buses including internal memories and peripherals are controlled in this module.
The local address space for each master is translated to a global memory space.
17.1.1
Features
The main features of this block are:
• Paging capability to support a global 8 Mbytes memory address space
• Bus arbitration between the masters CPU, BDM, and XGATE
• Simultaneous accesses to different resources1 (internal, external, and peripherals) (see Figure 1-1)
• Resolution of target bus access collision
• Access restriction control from masters to some targets (e.g., RAM write access protection for user
specified areas)
• MCU operation mode control
• MCU security control
• Separate memory map schemes for each master CPU, BDM, and XGATE
• ROM control bits to enable the on-chip FLASH or ROM selection
• Port replacement registers access control
• Generation of system reset when CPU accesses an unimplemented address (i.e., an address which
does not belong to any of the on-chip modules) in single-chip modes
17.1.2
Modes of Operation
This subsection lists and briefly describes all operating modes supported by the MMC.
17.1.2.1
•
Power Saving Modes
Run mode
MMC is functional during normal run mode.
1. Resources are also called targets.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
613
Chapter 17 Memory Mapping Control (S12XMMCV2)
•
Wait mode
MMC is functional during wait mode.
Stop mode
MMC is inactive during stop mode.
•
17.1.2.2
•
Functional Modes
Single chip modes
In normal and special single chip mode the internal memory is used. External bus is not active.
Expanded modes
Address, data, and control signals are activated in normal expanded and special test modes when
accessing the external bus.
Emulation modes
External bus is active to emulate via an external tool the normal expanded or the normal single chip
mode.
•
•
17.1.3
Block Diagram
Figure 1-1 shows a block diagram of the MMC.
BDM
EBI
CPU
XGATE
MMC
Address Decoder & Priority
DBG
EEPROM
Target Bus Controller
FLASH
RAM
Peripherals
Figure 17-1. MMC Block Diagram
17.2
External Signal Description
The user is advised to refer to the SoC Guide for port configuration and location of external bus signals.
Some pins may not be bonded out in all implementations.
MC9S12XDP512 Data Sheet, Rev. 2.21
614
Freescale Semiconductor
Chapter 17 Memory Mapping Control (S12XMMCV2)
Table 1-2 and Table 1-3 outline the pin names and functions. It also provides a brief description of their
operation.
Table 17-1. External Input Signals Associated with the MMC
Signal
I/O
Description
Availability
MODC
I
Mode input
MODB
I
Mode input
Latched after
RESET (active low)
MODA
I
Mode input
EROMCTL
I
EROM control input
ROMCTL
I
ROM control input
Table 17-2. External Output Signals Associated with the MMC
Available in Modes
Signal
I/O
Description
NS
CS0
O
Chip select line 0
CS1
O
Chip select line 1
CS2
O
Chip select line 2
CS3
O
Chip select line 3
SS
NX
ES
EX
ST
(see Table 1-4)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
615
Chapter 17 Memory Mapping Control (S12XMMCV2)
17.3
17.3.1
Memory Map and Registers
Module Memory Map
A summary of the registers associated with the MMC block is shown in Figure 1-2. Detailed descriptions
of the registers and bits are given in the subsections that follow.
Address
Register
Name
0x000A
MMCCTL0
R
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
CS3E
CS2E
CS1E
CS0E
MODC
MODB
MODA
0
0
0
0
0
GP6
GP5
GP4
GP3
GP2
GP1
GP0
DP15
DP14
DP13
DP12
DP11
DP10
DP9
DP8
0
0
0
0
0
0
0
0
0
0
0
0
0
EROMON
ROMHM
ROMON
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RP7
RP6
RP5
RP4
RP3
RP2
RP1
RP0
EP7
EP6
EP5
EP4
EP3
EP2
EP1
EP0
PIX7
PIX6
PIX5
PIX4
PIX3
PIX2
PIX1
PIX0
0
0
0
0
0
0
0
0
W
0x000B
MODE
R
W
0x0010
GPAGE
R
0
W
0x0011
DIRECT
R
W
0x0012
Reserved
R
W
0x0013
MMCCTL1
R
W
0x0014
Reserved
R
W
0x0015
Reserved
R
W
0x0016
RPAGE
R
W
0x0017
EPAGE
R
W
0x0030
PPAGE
R
W
0x0031
Reserved
R
W
= Unimplemented or Reserved
Figure 17-2. MMC Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
616
Freescale Semiconductor
Chapter 17 Memory Mapping Control (S12XMMCV2)
Address
Register
Name
0x011C
RAMWPC
Bit 7
R
RAMXGU
R
1
W
0x011E
RAMSHL
R
1
W
0x011F
RAMSHU
5
4
3
2
0
0
0
0
0
XGU6
XGU5
XGU4
XGU3
SHL6
SHL5
SHL4
SHU6
SHU5
SHU4
RPWE
W
0x011D
6
R
1
W
1
Bit 0
AVIE
AVIF
XGU2
XGU1
XGU0
SHL3
SHL2
SHL1
SHL0
SHU3
SHU2
SHU1
SHU0
= Unimplemented or Reserved
Figure 17-2. MMC Register Summary
17.3.2
17.3.2.1
Register Descriptions
MMC Control Register (MMCCTL0)
Address: 0x000A PRR
R
7
6
5
4
0
0
0
0
0
0
0
0
W
Reset
3
2
1
0
CS3E
CS2E
CS1E
CS0E
0
0
0
ROMON1
1. ROMON is bit[0] of the register MMCTL1 (see Figure 1-10)
= Unimplemented or Reserved
Figure 17-3. MMC Control Register (MMCCTL0)
Read: Anytime. In emulation modes read operations will return the data from the external bus. In all other
modes the data is read from this register.
Write: Anytime. In emulation modes write operations will also be directed to the external bus.
Table 17-3. Chip Selects Function Activity
Chip Modes
Register Bit
NS
CS3E, CS2E, CS1E, CS0E
1
2
Disabled1
SS
Disabled
NX
Enabled
2
ES
EX
ST
Disabled
Enabled
Enabled
Disabled: feature always inactive.
Enabled: activity is controlled by the appropriate register bit value.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
617
Chapter 17 Memory Mapping Control (S12XMMCV2)
The MMCCTL0 register is used to control external bus functions, i.e., availability of chip selects.
CAUTION
XGATE write access to this register during an CPU access which makes use
of this register could lead to unexpected results.
Table 17-4. MMCCTL0 Field Descriptions
Field
Description
3–0
CS[3:0]E
Chip Select Enables — Each of these bits enables one of the external chip selects CS3, CS2, CS1, and CS0
outputs which are asserted during accesses to specific external addresses. The associated global address
ranges are shown in Table 1-6 and Table 1-21 and Figure 1-23.
Chip selects are only active if enabled in normal expanded mode, Emulation expanded mode and special test
mode. The function disabled in all other operating modes.
0 Chip select is disabled
1 Chip select is enabled
Table 17-5. Chip Select Signals
1
Global Address Range
Asserted Signal
0x00_0800–0x0F_FFFF
CS3
0x10_0000–0x1F_FFFF
CS2
0x20_0000–0x3F_FFFF
CS1
0x40_0000–0x7F_FFFF
CS01
When the internal NVM is enabled (see ROMON in Section 1.3.2.5, “MMC Control
Register (MMCCTL1)”) the CS0 is not asserted in the space occupied by this on-chip
memory block.
MC9S12XDP512 Data Sheet, Rev. 2.21
618
Freescale Semiconductor
Chapter 17 Memory Mapping Control (S12XMMCV2)
17.3.2.2
Mode Register (MODE)
Address: 0x000B PRR
7
R
W
Reset
6
5
MODC
MODB
MODA
MODC1
MODB1
MODA1
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
1. External signal (see Table 1-2).
= Unimplemented or Reserved
Figure 17-4. Mode Register (MODE)
Read: Anytime. In emulation modes read operations will return the data read from the external bus. In all
other modes the data are read from this register.
Write: Only if a transition is allowed (see Figure 1-5). In emulation modes write operations will be also
directed to the external bus.
The MODE bits of the MODE register are used to establish the MCU operating mode.
CAUTION
XGATE write access to this register during an CPU access which makes use
of this register could lead to unexpected results.
Table 17-6. MODE Field Descriptions
Field
Description
7–5
MODC,
MODB,
MODA
Mode Select Bits — These bits control the current operating mode during RESET high (inactive). The external
mode pins MODC, MODB, and MODA determine the operating mode during RESET low (active). The state of
the pins is latched into the respective register bits after the RESET signal goes inactive (see Figure 1-5).
Write restrictions exist to disallow transitions between certain modes. Figure 1-5 illustrates all allowed mode
changes. Attempting non authorized transitions will not change the MODE bits, but it will block further writes to
these register bits except in special modes.
Both transitions from normal single-chip mode to normal expanded mode and from emulation single-chip to
emulation expanded mode are only executed by writing a value of 0b101 (write once). Writing any other value
will not change the MODE bits, but will block further writes to these register bits.
Changes of operating modes are not allowed when the device is secured, but it will block further writes to these
register bits except in special modes.
In emulation modes reading this address returns data from the external bus which has to be driven by the
emulator. It is therefore responsibility of the emulator hardware to provide the expected value (i.e. a value
corresponding to normal single chip mode while the device is in emulation single-chip mode or a value
corresponding to normal expanded mode while the device is in emulation expanded mode).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
619
Chapter 17 Memory Mapping Control (S12XMMCV2)
RESET
010
Special
Test
(ST)
010
1
1
10
0
10
Normal
Expanded
(NX)
101
Emulation
Single-Chip
(ES)
001
Emulation
Expanded
(EX)
011
101
10
1
011
RESET
0
10
RESET
RESET
000
001
101
101
010
110
111
Normal
Single-Chip
(NS)
100
1
00
01
RESET
100
1
01
1
00
Special
Single-Chip
(SS)
000
000
RESET
Transition done by external pins (MODC, MODB, MODA)
RESET
Transition done by write access to the MODE register
110
111
Illegal (MODC, MODB, MODA) pin values.
Do not use. (Reserved for future use).
Figure 17-5. Mode Transition Diagram when MCU is Unsecured
MC9S12XDP512 Data Sheet, Rev. 2.21
620
Freescale Semiconductor
Chapter 17 Memory Mapping Control (S12XMMCV2)
17.3.2.3
Global Page Index Register (GPAGE)
Address: 0x0010
7
R
0
W
Reset
0
6
5
4
3
2
1
0
GP6
GP5
GP4
GP3
GP2
GP1
GP0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 17-6. Global Page Index Register (GPAGE)
Read: Anytime
Write: Anytime
The global page index register is used only when the CPU is executing a global instruction (GLDAA,
GLDAB, GLDD, GLDS, GLDX, GLDY,GSTAA, GSTAB, GSTD, GSTS, GSTX, GSTY) (see CPU Block
Guide). The generated global address is the result of concatenation of the CPU local address [15:0] with
the GPAGE register [22:16] (see Figure 1-7).
CAUTION
XGATE write access to this register during an CPU access which makes use
of this register could lead to unexpected results.
Global Address [22:0]
Bit22
Bit16 Bit15
GPAGE Register [6:0]
Bit 0
CPU Address [15:0]
Figure 17-7. GPAGE Address Mapping
Table 17-7. GPAGE Field Descriptions
Field
Description
6–0
GP[6:0]
Global Page Index Bits 6–0 — These page index bits are used to select which of the 128 64-kilobyte pages is
to be accessed.
Example 17-1. This example demonstrates usage of the GPAGE register
LDAADR
MOVB
GLDAA
EQU $5000
#$14, GPAGE
>LDAADR
;Initialize LDADDR to the value of $5000
;Initialize GPAGE register with the value of $14
;Load Accu A from the global address $14_5000
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
621
Chapter 17 Memory Mapping Control (S12XMMCV2)
17.3.2.4
Direct Page Register (DIRECT)
Address: 0x0011
R
W
Reset
7
6
5
4
3
2
1
0
DP15
DP14
DP13
DP12
DP11
DP10
DP9
DP8
0
0
0
0
0
0
0
0
Figure 17-8. Direct Register (DIRECT)
Read: Anytime
Write: anytime in special modes, one time only in other modes.
This register determines the position of the direct page within the memory map.
Table 17-8. DIRECT Field Descriptions
Field
Description
7–0
DP[15:8]
Direct Page Index Bits 15–8 — These bits are used by the CPU when performing accesses using the direct
addressing mode. The bits from this register form bits [15:8] of the address (see Figure 1-9).
CAUTION
XGATE write access to this register during an CPU access which makes use
of this register could lead to unexpected results.
Global Address [22:0]
Bit22
Bit16 Bit15
Bit8
Bit7
Bit0
DP [15:8]
CPU Address [15:0]
Figure 17-9. DIRECT Address Mapping
Bits [22:16] of the global address will be formed by the GPAGE[6:0] bits in case the CPU executes a global
instruction in direct addressing mode or by the appropriate local address to the global address expansion
(refer to Expansion of the CPU Local Address Map).
Example 17-2. This example demonstrates usage of the Direct Addressing Mode by a global instruction
LDAADR
MOVB
MOVB
GLDAA
EQU $0000
#$80,DIRECT
#$14,GPAGE
CompBD_Addr)
In the outside range comparator mode, either comparator pair A and B or comparator pair C and D can be
configured for range comparisons. A single match condition on either of the comparators is recognized as
valid. An aligned word access which straddles the range boundary will cause a trigger only if the aligned
address is outside the range.
Outside range mode in combination with tagged triggers can be used to detect if the opcode fetches are
from an unexpected range. In forced trigger modes the outside range trigger would typically be activated
at any interrupt vector fetch or register access. This can be avoided by setting the upper range limit to
0x7FFFFF or lower range limit to 0x000000 respectively.
When comparing the XGATE address bus in outside range mode, the initial vector fetch as determined by
the vector contained in the XGATE XGVBR register should be taken into consideration. The XGVBR
register and hence vector address can be modified.
19.4.3
Trigger Modes
Trigger modes are used as qualifiers for a state sequencer change of state. The control logic determines the
trigger mode and provides a trigger to the state sequencer. The individual trigger modes are described in
the following sections.
19.4.3.1
Trigger On Comparator Match
If a comparator match occurs, a trigger occurs to initiate a transition to another state sequencer state and
the corresponding flags in DBGSR are set. For a comparator match to trigger firstly the comparator must
be enabled by setting the COMPE bit in the corresponding comparator control register. Secondly the state
control register for the current state must enable the match for that state. The state control registers allow
for different matches to be enabled in each of the states 1 to 3.
19.4.3.2
Trigger On Comparator Related Taghit
If either a CPU or XGATE taghit occurs a transition to another state sequencer state is initiated and the
corresponding DBGSR flags are set. For a comparator related taghit to occur, the DBG must first generate
tags based on comparator matches. When the tagged instruction reaches the execution stage of the
instruction queue a taghit is generated by the CPU/XGATE.
19.4.3.3
External Tag Trigger
In external tagging trigger mode, the TAGLO and TAGHI pins (mapped to device pins) are used to tag an
instruction. This function can be used as another breakpoint source. When the tagged opcode reaches the
execution stage of the instruction queue a transition to the disarmed state0 occurs, ending the debug session
and generating a breakpoint, if breakpoints are enabled. External tagging is only possible in device
emulation modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
718
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.3.4
Trigger On XGATE S/W Breakpoint Request
The XGATE S/W breakpoint request issues a forced breakpoint request to the CPU immediately
independent of DBG settings. If the debug module is armed triggers the state sequencer into the disarmed
state. Active tracing sessions are terminated immediately, thus if tracing has not yet begun using begintrigger, no trace information is stored. XGATE generated breakpoints are independent of the DBGBRK
bits. The XGSBPE bit in DBGC1 determines if the XGATE S/W breakpoint function is enabled. The BDM
bit in DBGC1 determines if the XGATE requested breakpoint causes the system to enter BDM mode or
initiate a software interrupt (SWI).
19.4.3.5
Immediate Trigger
At any time independent of comparator matches or external tag signals it is possible to initiate a tracing
session and/or breakpoint by writing to the TRIG bit in DBGC1. This triggers the state sequencer into the
final state and issues a forced breakpoint request to both CPU and XGATE.
19.4.3.6
Trigger Priorities
In case of simultaneous triggers, the priority is resolved according to Table 19-38. The lower priority
trigger is suppressed. It is thus possible to miss a lower priority trigger if it occurs simultaneously with a
trigger of a higher priority. The trigger priorities described in Table 19-38 dictate that in the case of
simultaneous matches, the match on the lower channel number ([0,1,2,3) has priority. The SC[3:0]
encoding ensures that a match leading to final state has priority over all other matches independent of
current state sequencer state. When configured for range modes a simultaneous match of comparators A
and C generates an active match0 while match2 is suppressed.
Table 19-38. Trigger Priorities
Priority
Source
Action
Highest
XGATE
Immediate forced breakpoint......(Tracing terminated immediately).
TRIG
Enter final state
Lowest
External TAGHI/TAGLO
Enter State0
Match0 (force or tag hit)
Trigger to next state as defined by state control registers
Match1 (force or tag hit)
Trigger to next state as defined by state control registers
Match2 (force or tag hit)
Trigger to next state as defined by state control registers
Match3 (force or tag hit)
Trigger to next state as defined by state control registers
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
719
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.4
State Sequence Control
ARM = 0
State 0
(Disarmed)
ARM = 1
State1
State2
ARM = 0
Session complete
(disarm)
Final State
State3
ARM=0
Figure 19-23. State Sequencer Diagram
The state sequence control allows a defined sequence of events to provide a trigger point for tracing of data
in the trace buffer. Once the DBG module has been armed by setting the ARM bit in the DBGC1 register,
then State1 of the state sequencer is entered. Further transitions between the states are then controlled by
the state control registers and depend upon a selected trigger mode condition being met. From final state
the only permitted transition is back to the disarmed state0. Transition between any of the states 1 to 3 is
not restricted. Each transition updates the SSF[2:0] flags in DBGSR accordingly to indicate the current
state.
Alternatively writing to the TRIG bit in DBGSC1, the final state is entered and tracing starts immediately
if the TSOURCE bits are configured for tracing.
A tag hit through TAGHI/TAGLO causes a breakpoint, if breakpoints are enabled, and ends tracing
immediately independent of the trigger alignment bits TALIGN[1:0].
Furthermore, each comparator channel can be individually configured to generate an immediate
breakpoint when a match occurs through the use of the BRK bits in the DBGxCTL registers independent
of the state sequencer state. Thus it is possible to generate an immediate breakpoint on selected channels,
while a state sequencer transition can be initiated by a match on other channels.
An XGATE S/W breakpoint request, if enabled causes a transition to the final state and generates a
breakpoint request to the CPU immediately.
If neither tracing nor breakpoints are enabled then, when a forced match triggers to final state, it can only
be returned to the disarmed state0 by clearing the ARM bit by software. This also applies to the case that
BDM breakpoints are enabled, but the BDM is disabled. Furthermore if neither tracing nor breakpoints are
enabled, forced triggers on channels with BRK set cause a transition to the state determined by the state
sequencer as if the BRK bit were not being used.
If neither tracing nor breakpoints are enabled then when a tagged match triggers to final state, the state
sequencer returns to the disarmed state0.
MC9S12XDP512 Data Sheet, Rev. 2.21
720
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.4.1
Final State
On entering final state a trigger may be issued to the trace buffer according to the trace position control as
defined by the TALIGN field (see Section 19.3.1.3, “Debug Trace Control Register (DBGTCR)”). If the
TSOURCE bits in the trace control register DBGTCR are cleared then the trace buffer is disabled and the
transition to final state can only generate a breakpoint request. In this case or upon completion of a tracing
session when tracing is enabled, the ARM bit in the DBGC1 register is cleared, returning the module to
the disarmed state0. If tracing is enabled a breakpoint request can occur at the end of the tracing session.
19.4.5
Trace Buffer Operation
The trace buffer is a 64 lines deep by 64-bits wide RAM array. The DBG module stores trace information
in the RAM array in a circular buffer format. The CPU accesses the RAM array through a register window
(DBGTBH:DBGTBL) using 16-bit wide word accesses. After each complete 64-bit trace buffer line is
read via the CPU, an internal pointer into the RAM is incremented so that the next read will receive fresh
information. Data is stored in the format shown in Table 19-39. After each store the counter register bits
DBGCNT[6:0] are incremented. Tracing of CPU activity is disabled when the BDM is active but tracing
of XGATE activity is still possible. Reading the trace buffer while the BDM is active returns invalid data
and the trace buffer pointer is not incremented.
19.4.5.1
Trace Trigger Alignment
Using the TALIGN bits (see Section 19.3.1.3, “Debug Trace Control Register (DBGTCR)”) it is possible
to align the trigger with the end, the middle or the beginning of a tracing session.
If end or mid tracing is selected, tracing begins when the ARM bit in DBGC1 is set and State1 is entered.
The transition to final state if end is selected signals the end of the tracing session. The transition to final
state if mid is selected signals that another 32 lines will be traced before ending the tracing session. Tracing
with begin-trigger starts at the opcode of the trigger.
19.4.5.1.1
Storing with Begin-Trigger
Storing with begin-trigger, data is not stored in the trace buffer until the final state is entered. Once the
trigger condition is met the DBG module will remain armed until 64 lines are stored in the trace buffer. If
the trigger is at the address of the change-of-flow instruction the change of flow associated with the trigger
will be stored in the trace buffer. Using begin-trigger together with tagging, if the tagged instruction is
about to be executed then the trace is started. Upon completion of the tracing session the breakpoint is
generated, thus the breakpoint does not occur at the tagged instruction boundary.
19.4.5.1.2
Storing with Mid-Trigger
Storing with mid-trigger, data is stored in the trace buffer as soon as the DBG module is armed. When the
trigger condition is met, another 32 lines will be traced before ending the tracing session, irrespective of
the number of lines stored before the trigger occurred, then the DBG module is disarmed and no more data
is stored. If the trigger is at the address of a change of flow instruction the trigger event is not stored in the
trace buffer. Using mid-trigger with tagging, if the tagged instruction is about to be executed then the trace
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
721
Chapter 19 S12X Debug (S12XDBGV2) Module
is continued for another 32 lines. Upon tracing completion the breakpoint is generated, thus the breakpoint
does not occur at the tagged instruction boundary.
19.4.5.1.3
Storing with End-Trigger
Storing with end-trigger, data is stored in the trace buffer until the final state is entered, at which point the
DBG module will become disarmed and no more data will be stored. If the trigger is at the address of a
change of flow instruction the trigger event will not be stored in the trace buffer.
19.4.5.2
Trace Modes
The DBG module can operate in three trace modes. The mode is selected using the TRCMOD bits in the
DBGTCR register. In each mode tracing of XGATE or CPU information is possible. The source for the
trace is selected using the TSOURCE bits in the DBGTCR register. The modes are described in the
following subsections. The trace buffer organization is shown in Table 19-39.
19.4.5.2.1
Normal Mode
In normal mode, change of flow (COF) addresses will be stored.
COF addresses are defined as follows for the CPU:
• Source address of taken conditional branches (long, short, bit-conditional, and loop primitives)
• Destination address of indexed JMP, JSR and CALL instruction.
• Destination address of RTI, RTS and RTC instructions
• Vector address of interrupts, except for SWI and BDM vectors
LBRA, BRA, BSR, BGND as well as non-indexed JMP, JSR, and CALL instructions are not classified as
change of flow and are not stored in the trace buffer.
COF addresses are defined as follows for the XGATE:
• Source address of taken conditional branches
• Destination address of indexed JAL instructions.
• First XGATE code address, determined by the vector contained in the XGATE XGVBR register
Change-of-flow addresses stored include the full 23-bit address bus in the case of CPU, the 16-bit address
bus for the XGATE module and an information byte, which contains a source/destination bit to indicate
whether the stored address was a source address or destination address.
19.4.5.2.2
Loop1 Mode
Loop1 mode, similarly to normal mode also stores only COF address information to the trace buffer, it
however allows the filtering out of redundant information.
The intent of loop1 mode is to prevent the trace buffer from being filled entirely with duplicate information
from a looping construct such as delays using the DBNE instruction or polling loops using
BRSET/BRCLR instructions. Immediately after address information is placed in the trace buffer, the DBG
module writes this value into a background register. This prevents consecutive duplicate address entries in
the trace buffer resulting from repeated branches.
MC9S12XDP512 Data Sheet, Rev. 2.21
722
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
Loop1 mode only inhibits consecutive duplicate source address entries that would typically be stored in
most tight looping constructs. It does not inhibit repeated entries of destination addresses or vector
addresses, since repeated entries of these would most likely indicate a bug in the user’s code that the DBG
module is designed to help find.
NOTE
In certain very tight loops, the source address will have already been fetched
again before the background comparator is updated. This results in the
source address being stored twice before further duplicate entries are
suppressed. This condition occurs with branch-on-bit instructions when the
branch is fetched by the first P-cycle of the branch or with loop-construct
instructions in which the branch is fetched with the first or second P cycle.
See examples below:
LOOP
LOOP2
INX
BRCLR
BRN*
NOP
DBNE
19.4.5.2.3
CMPTMP,#$0c,LOOP
A,LOOP2
;1-byte instruction fetched by 1st P-cycle of BRCLR
;the BRCLR instruction also will be fetched by 1st P-cycle
;of BRCLR
; 2-byte instruction fetched by 1st P-cycle of DBNE
; 1-byte instruction fetched by 2nd P-cycle of DBNE
; this instruction also fetched by 2nd P-cycle of DBNE
Detail Mode
In detail mode, address and data for all memory and register accesses is stored in the trace buffer. In the
case of XGATE tracing this means that initialization of the R1 register during a vector fetch is not traced.
This mode is intended to supply additional information on indexed, indirect addressing modes where
storing only the destination address would not provide all information required for a user to determine
where the code is in error. This mode also features information byte storage to the trace buffer, for each
address byte storage. The information byte indicates the size of access (word or byte), the type of access
(read or write).
When tracing CPU activity in detail mode, all cycles are traced except those when the CPU is either in a
free or opcode fetch cycle. In this mode the XGATE program counter is also traced to provide a snapshot
of the XGATE activity. CXINF information byte bits indicate the type of XGATE activity occurring at the
time of the trace buffer entry. When tracing CPU activity alone in detail mode, the address range can be
limited to a range specified by the TRANGE bits in DBGTCR. This function uses comparators C and D
to define an address range inside which CPU activity should be traced (see Table 19-10). Thus, the traced
CPU activity can be restricted to register range accesses.
When tracing XGATE activity in detail mode, all cycles apart from opcode fetch and free cycles are stored
to the trace buffer. Additionally the CPU program counter is stored at the time of the XGATE trace buffer
entry to provide a snapshot of CPU activity.
19.4.5.3
Trace Buffer Organization
The buffer can be used to trace either from CPU, from XGATE or from both sources. An “X” prefix
denotes information from the XGATE module, a “C” prefix denotes information from the CPU.
ADRH,ADRM,ADRL denote address high, middle and low byte respectively. INF bytes contain control
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
723
Chapter 19 S12X Debug (S12XDBGV2) Module
information (R/W, S/D etc.). The numerical suffix indicates which tracing step. The information format
for loop1 mode is the same as that of normal mode. Whilst tracing from XGATE or CPU only, in normal
or loop1 modes each array line contains data from entries made at 2 separate times, thus in this case the
DBGCNT[0] is incremented after each separate entry. In all other modes, DBGCNT[0] remains cleared
while the other DBGCNT bits are incremented on each trace buffer entry.
XGATE and S12X_CPU COFs occur independently of each other and the profile of COFs for the 2 sources
is totally different. When both sources are being traced in Normal or Loop1 mode, for each single entry
from one source, there may be many entries from the other source and vice versa, depending on user code.
COF events could occur far from each other in the time domain, on consecutive cycles or simultaneously.
If a COF occurs in one source only in a particular cycle, then the trace buffer bytes that are mapped to the
other source are redundant. Info byte bit CDV/XDV indicates that no useful information is stored in these
bytes. This is the typical case. Only in the rare event that both XGATE and S12X_CPU COF cycles
coincide is a valid trace buffer entry for both made, corresponding to the first line for mode "Both
Normal/Loop1" in Table 19-39.
Single byte data accesses in detail mode are always stored to the low byte of the trace buffer (CDATAL or
XDATAL) and the high byte is cleared. When tracing word accesses, the byte at the lower address is always
stored to trace buffer byte3 and the byte at the higher address is stored to byte2
Table 19-39. Trace Buffer Organization
8-Byte Wide Word Buffer
Mode
XGATE DETAIL
CPU
DETAIL
Both
NORMAL
/ LOOP1
1
2
7
6
5
4
3
2
1
0
CXINF1
CADRH1
CADRM1
CADRL1
XDATAH1
XDATAL1
XADRM1
XADRL1
CXINF2
CADRH2
CADRM2
CADRL2
XDATAH2
XDATAL2
XADRM2
XADRL2
CXINF1
CADRH1
CADRM1
CADRL1
CDATAH1
CDATAL1
XADRM1
XADRL1
CXINF2
CADRH2
CADRM2
CADRL2
CDATAH2
CDATAL2
XADRM2
XADRL2
XADRM0
XADRL0
CINF0
CADRH0
CADRM0
CADRL0
CINF1
CADRH1
CADRM1
CADRL1
XINF0
1
XINF1
2
XINF2
XADRM2
XADRL2
CINF2
XGATE
NORMAL
/ LOOP1
XINF1
XADRM1
XADRL1
XINF0
XADRM0
XADRL0
XINF3
XADRM3
XADRL3
XINF2
XADRM2
XADRL2
CPU
NORMAL
/ LOOP1
CINF1
CADRH1
CADRM1
CADRL1
CINF0
CADRH0
CADRM0
CADRL0
CINF3
CADRH3
CADRM3
CADRL3
CINF2
CADRH2
CADRM2
CADRL2
COF in CPU only. XGATE trace buffer entries in this tracing step are invalid
COF in XGATE only. CPU trace buffer entries in this tracing step are invalid
MC9S12XDP512 Data Sheet, Rev. 2.21
724
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.5.3.1
Information Byte Organization
The format of the control information byte for both CPU and XGATE modules is dependent upon the
active trace mode and tracing source as described below. In normal mode or loop1 mode, tracing of
XGATE activity XINF is used to store control information. In normal mode or loop1 mode, tracing of CPU
activity CINF is used to store control information. In detail mode, CXINF contains the control information.
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
XSD
0
0
XDV
0
0
0
0
Figure 19-24. XGATE Information Byte XINF
Table 19-40. XINF Field Descriptions
Field
Description
7
XSD
Source Destination Indicator — This bit indicates if the corresponding stored address is a source or
destination address. This is only used in normal and loop1 mode tracing.
0 Source Address
1 Destination Address
4
XDV
Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from
both sources in normal and loop1 mode, to indicate that the XGATE trace buffer entry is valid.
0 Trace buffer entry is invalid
1 Trace buffer entry is valid
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CSD
0
0
CDV
0
0
0
0
Figure 19-25. CPU Information Byte CINF
Table 19-41. CINF Field Descriptions
Field
Description
7
CSD
Source Destination Indicator — This bit indicates if the corresponding stored address is a source or
destination address. This is only used in normal and loop1 mode tracing.
0 Source Address
1 Destination Address
4
CDV
Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from
both sources in normal and loop1 mode, to indicate that the CPU trace buffer entry is valid.
0 Trace buffer entry is invalid
1 Trace buffer entry is valid
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
725
Chapter 19 S12X Debug (S12XDBGV2) Module
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CFREE
CSZ
CRW
COCF
XACK
XSZ
XRW
XOCF
Figure 19-26. Information Byte CXINF
This describes the format of the information byte used only when tracing from CPU or XGATE in detail
mode. When tracing from the CPU in detail mode, information is stored to the trace buffer on all cycles
except opcode fetch and free cycles. The XGATE entry stored on the same line is a snapshot of the
XGATE program counter. In this case the CSZ and CRW bits indicate the type of access being made by
the CPU, while the XACK and XOCF bits indicate if the simultaneous XGATE cycle is a free cycle (no
bus acknowledge) or opcode fetch cycle. Similarly when tracing from the XGATE in detail mode,
information is stored to the trace buffer on all cycles except opcode fetch and free cycles. The CPU entry
stored on the same line is a snapshot of the CPU program counter. In this case the XSZ and XRW bits
indicate the type of access being made by the XGATE, while the CFREE and COCF bits indicate if the
simultaneous CPU cycle is a free cycle or opcode fetch cycle.
Table 19-42. CXINF Field Descriptions
Field
Description
7
CREE
CPU Free Cycle Indicator — This bit indicates if the stored CPU address corresponds to a free cycle. This bit
only contains valid information when tracing the XGATE accesses in detail mode.
0 Stored information corresponds to free cycle
1 Stored information does not correspond to free cycle
6
CSZ
Access Type Indicator — This bit indicates if the access was a byte or word size access.This bit only contains
valid information when tracing CPU activity in detail mode.
0 Word Access
1 Byte Access
5
CRW
Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write
access. This bit only contains valid information when tracing CPU activity in detail mode.
0 Write Access
1 Read Access
4
COCF
CPU Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch cycle.
This bit only contains valid information when tracing the XGATE accesses in detail mode.
0 Stored information does not correspond to opcode fetch cycle
1 Stored information corresponds to opcode fetch cycle
3
XACK
XGATE Access Indicator — This bit indicates if the stored XGATE address corresponds to a free cycle. This
bit only contains valid information when tracing the CPU accesses in detail mode.
0 Stored information corresponds to free cycle
1 Stored information does not correspond to free cycle
2
XSZ
Access Type Indicator — This bit indicates if the access was a byte or word size access. This bit only contains
valid information when tracing XGATE activity in detail mode.
0 Word Access
1 Byte Access
MC9S12XDP512 Data Sheet, Rev. 2.21
726
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
Table 19-42. CXINF Field Descriptions (continued)
Field
Description
1
XRW
Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write
access. This bit only contains valid information when tracing XGATE activity in detail mode.
0 Read/Write Access
1 Access
0
XOCF
XGATE Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch
cycle.This bit only contains valid information when tracing the CPU accesses in detail mode.
0 Stored information does not correspond to opcode fetch cycle
1 Stored information corresponds to opcode fetch cycle
19.4.5.3.2
Reading Data from Trace Buffer
The data stored in the trace buffer can be read using either the background debug module (BDM) module
or the CPU provided the DBG module is not armed, is configured for tracing (at least one TSOURCE bit
is set) and the system not secured. When the ARM bit is written to 1 the trace buffer is locked to prevent
reading. The trace buffer can only be unlocked for reading by a single aligned word write to DBGTB when
the module is disarmed. Multiple writes to the DBGTB are not allowed since they increment the pointer.
The trace buffer can only be read through the DBGTB register using aligned word reads, any byte or
misaligned reads return 0 and do not cause the trace buffer pointer to increment to the next trace buffer
address. The trace buffer data is read out first-in first-out. By reading CNT in DBGCNT the number of
valid 64-bit lines can be determined. DBGCNT will not decrement as data is read.
Whilst reading an internal pointer is used to determine the next line to be read. After a tracing session, the
pointer points to the oldest data entry, thus if no overflow has occurred, the pointer points to line0,
otherwise it points to the line with the oldest entry. The pointer is initialized by each aligned write to
DBGTBH to point to the oldest data again. This enables an interrupted trace buffer read sequence to be
easily restarted from the oldest data entry.
The least significant word of each 64-bit wide array line is read out first. This corresponds to the bytes 1
and 0 of Table 19-39. The bytes containing invalid information (shaded in Table 19-39) are also read out.
Reading the trace buffer while the DBG module is armed will return invalid data and no shifting of the
RAM pointer will occur. Reading the trace buffer is not possible if both TSOURCE bits are cleared.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
727
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.5.3.3
Trace Buffer Reset State
The trace buffer contents are not initialized by a system reset. Thus should a system reset occur, the trace
session information from immediately before the reset occurred can be read out. The DBGCNT bits are
not cleared by a system reset. Thus should a reset occur, the number of valid lines in the trace buffer is
indicated by DBGCNT. The internal pointer to the current trace buffer address is initialized by unlocking
the trace buffer thus points to the oldest valid data even if a reset occurred during the tracing session.
Generally debugging occurrences of system resets is best handled using mid or end-trigger alignment since
the reset may occur before the trace trigger, which in the begin-trigger alignment case means no
information would be stored in the trace buffer.
19.4.6
Tagging
A tag follows program information as it advances through the instruction queue. When a tagged instruction
reaches the head of the queue a tag hit occurs and triggers the state sequencer.
Each comparator control register features a TAG bit, which controls whether the comparator match will
cause a trigger immediately or tag the opcode at the matched address. If a comparator is enabled for tagged
comparisons, the address stored in the comparator match address registers must be an opcode address for
the trigger to occur.
Both CPU and XGATE opcodes can be tagged with the comparator register TAG bits.
Using a begin-aligned trigger together with tagging, if the tagged instruction is about to be executed then
the transition to the next state sequencer state occurs. If the transition is to the final state, tracing is started.
Only upon completion of the tracing session can a breakpoint be generated. Similarly using a mid-aligned
trigger with tagging, if the tagged instruction is about to be executed then the trace is continued for another
32 lines. Upon tracing completion the breakpoint is generated. Using an end-aligned trigger, when the
tagged instruction is about to be executed and the next transition is to final state then a breakpoint is
generated immediately, before the tagged instruction is carried out.
R/W monitoring is not useful for tagged operations since the trigger occurs based on the tagged opcode
reaching the execution stage of the instruction queue. Similarly access size (SZ) monitoring and data bus
monitoring is not useful if tagged triggering is selected, since the tag is attached to the opcode at the
matched address and is not dependent on the data bus nor on the size of access. Thus these bits are ignored
if tagged triggering is selected.
When configured for range comparisons and tagging, the ranges are accurate only to word boundaries.
CPU tagging is disabled when the BDM becomes active. Conversely, BDM firmware commands are not
processed while tagging is active. XGATE tagging is possible when the BDM is active.
MC9S12XDP512 Data Sheet, Rev. 2.21
728
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.6.1
External Tagging using TAGHI and TAGLO
External tagging using the external TAGHI and TAGLO pins can only be used to tag CPU opcodes; tagging
of XGATE code using these pins is not possible. An external tag triggers the state sequencer into State0
when the tagged opcode reaches the execution stage of the instruction queue.
The pins operate independently, thus the state of one pin does not affect the function of the other. External
tagging is possible in emulation modes only. The presence of logic level 0 on either pin at the rising edge
of the external clock (ECLK) performs the function indicated in the Table 19-43. It is possible to tag both
bytes of an instruction word. If a taghit comes from the low or high byte, a breakpoint generated according
to the DBGBRK and BDM bits in DBGC1. Each time TAGHI or TAGLO are low on the rising edge of
ECLK, the old tag is replaced by a new one
Table 19-43. Tag Pin Function
19.4.7
TAGHI
TAGLO
Tag
1
1
No tag
1
0
Low byte
0
1
High byte
0
0
Both bytes
Breakpoints
It is possible to select breakpoints to the XGATE and let the CPU continue operation, setting DBGBRK[0],
or breakpoints to the CPU and let the XGATE continue operation setting, DBGBRK[1], or a breakpoint to
both CPU and XGATE, setting both bits DBGBRK[1:0].
There are several ways to generate breakpoints to the XGATE and CPU modules.
• Through XGATE software breakpoint requests.
• From comparator channel triggers to final state.
• Using software to write to the TRIG bit in the DBGC1 register.
• From taghits generated using the external TAGHI and TAGLO pins.
19.4.7.1
XGATE Software Breakpoints
The XGATE software breakpoint instruction BRK can request an CPU breakpoint, via the DBG module.
In this case, if the XGSBPE bit is set, the DBG module immediately generates a forced breakpoint request
to the CPU, the state sequencer is returned to state0 and tracing, if active, is terminated. If configured for
begin-trigger and tracing has not yet been triggered from another source, the trace buffer contains no new
information. Breakpoint requests from the XGATE module do not depend upon the state of the DBGBRK
or ARM bits in DBGC1. They depend solely on the state of the XGSBPE and BDM bits. Thus it is not
necessary to ARM the DBG module to use XGATE software breakpoints to generate breakpoints in the
CPU program flow, but it is necessary to set XGSBPE. Furthermore if a breakpoint to BDM is required,
the BDM bit must also be set. When the XGATE requests an CPU breakpoint, the XGATE program flow
stops by default, independent of the DBG module. The user can thus determine if an XGATE breakpoint
has occurred by reading out the XGATE program counter over the BDM interface.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
729
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.7.2
Breakpoints From Internal Comparator Channel Final State Triggers
Breakpoints can be generated when internal comparator channels trigger the state sequencer to the final
state. If configured for tagging, then the breakpoint is generated when the tagged opcode reaches the
execution stage of the instruction queue. If an end aligned trigger is selected or no tracing is enabled,
breakpoints can be generated immediately, depending on the state of the DBGBRK[n] bits.
If a begin or mid aligned tracing session is selected by the TSOURCE bits, breakpoints are requested when
the tracing session has completed, thus the breakpoint is requested only on completion of the subsequent
trace (see Table 19-44). If the BRK bit is set on the triggering channel, then the breakpoint is generated
immediately independent of tracing trigger alignment.
Table 19-44. Setup for Both XGATE and CPU Breakpoints
BRK
TALIGN
DBGBRK[n]
Type of Debug Session
0
00
0
Fill trace buffer until trigger
(no breakpoints — keep running)
0
00
1
Fill trace buffer until trigger, then a breakpoint request occurs
0
01
0
Start trace buffer at trigger
(no breakpoints — keep running)
0
01
1
Start trace buffer at trigger
A breakpoint request occurs when trace buffer is full
0
10
0
Start trace buffer at trigger
End tracing 32 line entries after trigger
(no breakpoints — keep running)
0
10
1
Start trace buffer at trigger
End tracing 32 line entries after trigger
Request breakpoint after the 32 further trace buffer entries
1
00,01,10
0
Terminate tracing immediately on trigger without breakpoint
1
00,01,10
1
Terminate tracing and generate breakpoint immediately on trigger
x
11
x
Reserved
19.4.7.3
Breakpoints Generated Via The TRIG Bit
If a TRIG triggers occur, the final state is entered. Tracing trigger alignment is defined by the TALIGN
bits. If a tracing session is selected by the TSOURCE bits, breakpoints are requested when the tracing
session has completed, thus if begin or mid aligned triggering is selected, the breakpoint is requested only
on completion of the subsequent trace. If no tracing session is selected, breakpoints are requested
immediately. TRIG breakpoints are possible even if the DBG module is disarmed. TRIG bit breakpoints
are enabled by setting DBGBRK[n].
19.4.7.4
Breakpoints via TAGHI Or TAGLO Pin Taghits
Tagging using the external TAGHI/TAGLO pins always ends the session immediately at the tag hit. It is
always end aligned, independent of internal channel trigger alignment configuration. External tag
breakpoints are always mapped to the CPU, are only possible in emulation modes and can be enabled by
setting DBGBRK[1].
MC9S12XDP512 Data Sheet, Rev. 2.21
730
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
19.4.7.5
DBG Breakpoint Priorities
XGATE software breakpoints have the highest priority. Active tracing sessions are terminated
immediately.
If a TRIG triggers occur after begin or mid aligned tracing has already been triggered by a comparator
instigated transition to final state, then TRIG no longer has an effect. When the associated tracing session
is complete, the breakpoint occurs. Similarly if a TRIG is followed by a subsequent trigger from a
comparator channel whose BRK=0, it has no effect, since tracing has already started.
If a comparator tag hit occurs simultaneously with an external TAGHI/TAGLO hit, the state sequencer
enters State0. TAGHI/TAGLO triggers are always end aligned, to end tracing immediately, independent of
the tracing trigger alignment bits TALIGN[1:0].
19.4.7.5.1
DBG Breakpoint priorities, mapping and BDM interfacing
Breakpoint operation is dependent on the state of the BDM module. If the BDM module is active, the CPU
is executing out of BDM firmware and S12X breakpoints are disabled. In addition, while executing a BDM
TRACE command, tagging into BDM is disabled.
Table 19-45. Breakpoint Mapping Summary
DBGBRK[1]
BDM bit
(DBGC1[3])1 (DBGC1[4])
BDM
enabled
BDM active
Type of Debug Session
0
X
X
X
No Breakpoint
1
0
0
0
Breakpoint to SWI
1
0
1
X
Illegal Configuration. Do Not Use.2
1
1
0
0
Illegal Configuration. Do Not Use. 3
1
1
1
0
Breakpoint to BDM
1
1
1
1
No Breakpoint
1
2
All sources except XGATE software BKP, which are independent of this bit.
The DBGC1[4] bit (BDM) must be set if using the BDM interface together with the DBG module. Failure to set this bit could
result in XGATE generated breakpoints to SWI during BDM firmware execution corrupting the S12X PC return address,
should the user have entered BDM via the BACKGROUND command or BGND instruction.
3
End aligned tagged Breakpoint to SWI. Begin, Mid aligned and Forced Breakpoints disabled
If BDM is not active, the breakpoint will give priority to BDM requests over SWI requests if the breakpoint
happens to coincide with a SWI instruction in the user’s code. On returning from BDM, the SWI from user
code gets executed.
BDM cannot be entered from a breakpoint unless the ENABLE bit is set in the BDM. If entry to BDM via
a BGND instruction is attempted and the ENABLE bit in the BDM is cleared, the CPU actually executes
the BDM firmware code. It checks the ENABLE and returns if ENABLE is not set. If not serviced by the
monitor then the breakpoint is re-asserted when the BDM returns to normal CPU flow.
If the comparator register contents coincide with the SWI/BDM vector address then an SWI in user code
and DBG breakpoint could occur simultaneously. The CPU ensures that BDM requests have a higher
priority than SWI requests. Returning from the BDM/SWI service routine care must be taken to avoid
re-triggering a breakpoint.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
731
Chapter 19 S12X Debug (S12XDBGV2) Module
When program control returns from a tagged breakpoint using an RTI or BDM GO command without
program counter modification it will return to the instruction whose tag generated the breakpoint. Thus
care must be taken to avoid re triggering a breakpoint at the same location. This can be done by
reconfiguring the DBG module in the SWI routine, (SWI configuration), or by executing a TRACE
command before the GO (BDM configuration) to increment the program flow past the tagged instruction.
Comparators should not be configured for the vector address range while tagging, since these addresses
are not opcode addresses
MC9S12XDP512 Data Sheet, Rev. 2.21
732
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
733
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
734
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
735
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
736
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
737
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
738
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
739
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
740
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
741
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
742
Freescale Semiconductor
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
743
Chapter 19 S12X Debug (S12XDBGV2) Module
MC9S12XDP512 Data Sheet, Rev. 2.21
744
Freescale Semiconductor
Chapter 20
S12X Debug (S12XDBGV3) Module
20.1
Introduction
The S12XDBG module provides an on-chip trace buffer with flexible triggering capability to allow
non-intrusive debug of application software. The S12XDBG module is optimized for the HCS12X 16-bit
architecture and allows debugging of both S12XCPU and XGATE module operations.
Typically the S12XDBG module is used in conjunction with the S12XBDM module, whereby the user
configures the S12XDBG module for a debugging session over the BDM interface. Once configured the
S12XDBG module is armed and the device leaves BDM Mode returning control to the user program,
which is then monitored by the S12XDBG module. Alternatively the S12XDBG module can be configured
over a serial interface using SWI routines.
20.1.1
Glossary Of Terms
COF: Change Of Flow. Change in the program flow due to a conditional branch, indexed jump or interrupt.
BDM : Background Debug Mode
DUG: Device User Guide, describing the features of the device into which the DBG is integrated.
WORD: 16 bit data entity
Data Line : 64 bit data entity
XGATE : S12X family programmable Direct Memory Access Module
CPU : S12X_CPU module
Tag : Tags can be attached to XGATE or CPU opcodes as they enter the instruction pipe. If the tagged
opcode reaches the execution stage a tag hit occurs.
20.1.2
Overview
The comparators monitor the bus activity of the S12XCPU and XGATE modules. When a match occurs
the control logic can trigger the state sequencer to a new state. On a transition to the Final State, bus tracing
is triggered and/or a breakpoint can be generated.
Independent of comparator matches a transition to Final State with associated tracing and breakpoint can
be triggered by the external TAGHI and TAGLO signals, by an XGATE module S/W breakpoint request
or an immediate trigger, instigated by writing to the TRIG control bit.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
745
Chapter 20 S12X Debug (S12XDBGV3) Module
The trace buffer is visible through a 2-byte window in the register address map and can be read out using
standard 16-bit word reads. Tracing is disabled when the MCU system is secured.
20.1.3
•
•
•
•
•
•
•
Features
Four comparators (A, B, C, and D)
— Comparators A and C compare the full address bus and full 16-bit data bus
— Comparators A and C feature a data bus mask register
— Comparators B and D compare the full address bus only
— Each comparator can be configured to monitor either S12XCPU or XGATE buses
— Each comparator features control of R/W and byte/word access cycles
— Comparisons can be used as triggers for the state sequencer
Three comparator modes
— Simple address/data comparator match mode
— Inside address range mode, Addmin ≤ Address ≤ Addmax
— Outside address range match mode, Address < Addmin or Address > Addmax
Two types of triggers
— Tagged — This triggers just before a specific instruction begins execution
— Force — This triggers on the first instruction boundary after a match occurs.
Three types of breakpoints
— S12XCPU breakpoint entering BDM on breakpoint (BDM)
— S12XCPU breakpoint executing SWI on breakpoint (SWI)
— XGATE breakpoint
Three trigger modes independent of comparators
— External instruction tagging (associated with S12XCPU instructions only)
— XGATE S/W breakpoint request
— TRIG Immediate software trigger
Four trace modes
— Normal: change of flow (COF) PC information is stored (see Section 20.4.5.2.1) for change of
flow definition.
— Loop1: same as Normal but inhibits consecutive duplicate source address entries
— Detail: address and data for all cycles except free cycles and opcode fetches are stored
— Pure PC: All program counter addresses are stored.
4-stage state sequencer for trace buffer control
— Tracing session trigger linked to Final State of state sequencer
— Begin, End, and Mid alignment of tracing to trigger
20.1.4
Modes of Operation
The S12XDBG module can be used in all MCU functional modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
746
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
During BDM hardware accesses and whilst the BDM module is active, S12XCPU monitoring is disabled.
Thus breakpoints, comparators, and bus tracing mapped to the S12XCPU are disabled but XGATE bus
monitoring accessing the S12XDBG registers, including comparator registers, is still possible. While in
active BDM or during hardware BDM accesses, XGATE activity can still be compared, traced and can be
used to generate a breakpoint to the XGATE module. When the S12XCPU enters active BDM Mode
through a BACKGROUND command, with the S12XDBG module armed, the S12XDBG remains armed.
The S12XDBG module tracing is disabled if the MCU is secure. However, breakpoints can still be
generated if the MCU is secure.
Table 20-1. Mode Dependent Restriction Summary
BDM
Enable
BDM
Active
MCU
Secure
Comparator
Matches Enabled
Breakpoints
Possible
Tagging
Possible
Tracing
Possible
x
x
1
Yes
Yes
Yes
No
0
0
0
Yes
Only SWI
Yes
Yes
0
1
0
1
0
0
Yes
Yes
Yes
Yes
1
1
0
XGATE only
XGATE only
XGATE only
XGATE only
20.1.5
Active BDM not possible when not enabled
Block Diagram
TAGS
TAGHITS
EXTERNAL TAGHI / TAGLO
BREAKPOINT REQUESTS
XGATE S/W BREAKPOINT REQUEST
S12XCPU & XGATE
XGATE BUS
COMPARATOR A
COMPARATOR B
COMPARATOR C
COMPARATOR D
MATCH0
COMPARATOR
MATCH CONTROL
S12XCPU BUS
BUS INTERFACE
SECURE
MATCH1
TAG &
TRIGGER
CONTROL
LOGIC
TRIGGER
MATCH2
STATE
STATE SEQUENCER
STATE
MATCH3
TRACE
CONTROL
TRIGGER
TRACE BUFFER
READ TRACE DATA (DBG READ DATA BUS)
Figure 20-1. Debug Module Block Diagram
20.2
External Signal Description
The S12XDBG sub-module features two external tag input signals. See Device User Guide (DUG) for the
mapping of these signals to device pins. These tag pins may be used for the external tagging in emulation
modes only.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
747
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-2. External System Pins Associated With S12XDBG
Pin Name
Pin Functions
TAGHI
(See DUG)
TAGHI
When instruction tagging is on, tags the high half of the instruction word being
read into the instruction queue.
TAGLO
(See DUG)
TAGLO
When instruction tagging is on, tags the low half of the instruction word being
read into the instruction queue.
TAGLO
(See DUG)
Unconditional
Tagging Enable
In emulation modes, a low assertion on this pin in the 7th or 8th cycle after the
end of reset enables the Unconditional Tagging function.
20.3
20.3.1
Description
Memory Map and Registers
Module Memory Map
A summary of the registers associated with the S12XDBG sub-block is shown in Table 20-2. Detailed
descriptions of the registers and bits are given in the subsections that follow.
Address
Name
Bit 7
6
0
TRIG
5
4
XGSBPE
BDM
0
0
3
2
1
Bit 0
0x0020
DBGC1
R
W
0x0021
DBGSR
R
W
0x0022
DBGTCR
R
W
0x0023
DBGC2
R
W
0
0
0
0
0x0024
DBGTBH
R
W
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0x0025
DBGTBL
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0x0026
DBGCNT
R
W
0
0x0027
DBGSCRX
0
0
0
0
SC3
SC2
SC1
SC0
0x0027
DBGMFR
R
W
R
W
0
0
0
0
MC3
MC2
MC1
MC0
NDB
TAG
BRK
RW
RWE
SRC
COMPE
SZ
TAG
BRK
RW
RWE
SRC
COMPE
Bit 22
21
20
19
18
17
Bit 16
0x00281
0x00282
0x0029
DBGXCTL R
(COMPA/C) W
DBGXCTL R
(COMPB/D) W
DBGXAH
R
W
ARM
TBF
EXTF
TSOURCE
0
SZE
0
DBGBRK
0
TRANGE
COMRV
SSF2
SSF1
SSF0
TRCMOD
TALIGN
CDCM
ABCM
CNT
Figure 20-2. Quick Reference to S12XDBG Registers
MC9S12XDP512 Data Sheet, Rev. 2.21
748
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
Address
Name
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0x002A
DBGXAM
R
W
0x002B
DBGXAL
R
W
Bit 7
6
5
4
3
2
1
Bit 0
0x002C
DBGXDH
R
W
Bit 15
14
13
12
11
10
9
Bit 8
0x002D
DBGXDL
R
W
Bit 7
6
5
4
3
2
1
Bit 0
0x002E
DBGXDHM
R
W
Bit 15
14
13
12
11
10
9
Bit 8
1
Bit 0
R
Bit 7
6
5
4
3
2
W
1
This represents the contents if the Comparator A or C control register is blended into this address.
2
This represents the contents if the Comparator B or D control register is blended into this address
0x002F
DBGXDLM
Figure 20-2. Quick Reference to S12XDBG Registers
20.3.2
Register Descriptions
This section consists of the S12XDBG control and trace buffer register descriptions in address order. Each
comparator has a bank of registers that are visible through an 8-byte window between 0x0028 and 0x002F
in the S12XDBG module register address map. When ARM is set in DBGC1, the only bits in the
S12XDBG module registers that can be written are ARM, TRIG, and COMRV[1:0]
20.3.2.1
Debug Control Register 1 (DBGC1)
Address: 0x0020
7
R
W
Reset
6
ARM
0
0
TRIG
0
5
4
XGSBPE
BDM
0
0
3
2
1
DBGBRK
0
0
COMRV
0
0
0
Figure 20-3. Debug Control Register (DBGC1)
Read: Anytime
Write: Bits 7, 1, 0 anytime, bit 6 can be written anytime but always reads back as 0.
Bits 5:2 anytime S12XDBG is not armed.
NOTE
When disarming the S12XDBG by clearing ARM with software, the
contents of bits[5:2] are not affected by the write, since up until the write
operation, ARM = 1 preventing these bits from being written. These bits
must be cleared using a second write if required.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
749
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-3. DBGC1 Field Descriptions
Field
Description
7
ARM
Arm Bit — The ARM bit controls whether the S12XDBG module is armed. This bit can be set and cleared by
user software and is automatically cleared on completion of a tracing session, or if a breakpoint is generated with
tracing not enabled. On setting this bit the state sequencer enters State1. When ARM is set, the only bits in the
S12XDBG module registers that can be written are ARM and TRIG.
0 Debugger disarmed
1 Debugger armed
6
TRIG
Immediate Trigger Request Bit — This bit when written to 1 requests an immediate trigger independent of
comparator or external tag signal status. When tracing is complete a forced breakpoint may be generated
depending upon DBGBRK and BDM bit settings. This bit always reads back a 0. Writing a 0 to this bit has no
effect. If both TSOURCE bits are clear no tracing is carried out. If tracing has already commenced using BEGINor MID trigger alignment, it continues until the end of the tracing session as defined by the TALIGN bit settings,
thus TRIG has no affect. In secure mode tracing is disabled and writing to this bit has no effect.
0 Do not trigger until the state sequencer enters the Final State.
1 Enter Final State immediately and issue forced breakpoint request when trace buffer is full.
5
XGSBPE
XGATE S/W Breakpoint Enable — The XGSBPE bit controls whether an XGATE S/W breakpoint request is
passed to the S12XCPU. The XGATE S/W breakpoint request is handled by the S12XDBG module, which can
request an S12XCPU breakpoint depending on the state of this bit.
0 XGATE S/W breakpoint request is disabled
1 XGATE S/W breakpoint request is enabled
4
BDM
Background Debug Mode Enable — This bit determines if a S12X breakpoint causes the system to enter
Background Debug Mode (BDM) or initiate a Software Interrupt (SWI). It has no affect on S12XDBG functionality.
If this bit is set but the BDM is not enabled by the ENBDM bit in the BDM module, then breakpoints default to SWI.
0 Breakpoint to Software Interrupt if BDM inactive. Otherwise no breakpoint.
1 Breakpoint to BDM, if BDM enabled. Otherwise breakpoint to SWI
3–2
DBGBRK
S12XDBG Breakpoint Enable Bits — The DBGBRK bits control whether the debugger will request a breakpoint
to either S12XCPU or XGATE or both upon reaching the state sequencer Final State. If tracing is enabled, the
breakpoint is generated on completion of the tracing session. If tracing is not enabled, the breakpoint is
generated immediately. Please refer to Section 20.4.7 for further details. XGATE software breakpoints are
independent of the DBGBRK bits. XGATE software breakpoints force a breakpoint to the S12XCPU independent
of the DBGBRK bit field configuration. See Table 20-4.
1–0
COMRV
Comparator Register Visibility Bits — These bits determine which bank of comparator register is visible in the
8-byte window of the S12XDBG module address map, located between 0x0028 to 0x002F. Furthermore these
bits determine which register is visible at the address 0x0027. See Table 20-5.
Table 20-4. DBGBRK Encoding
DBGBRK
Resource Halted by Breakpoint
00
No breakpoint generated
01
XGATE breakpoint generated
10
S12XCPU breakpoint generated
11
Breakpoints generated for S12XCPU and XGATE
Table 20-5. COMRV Encoding
COMRV
Visible Comparator
Visible Register at 0x0027
00
Comparator A
DBGSCR1
01
Comparator B
DBGSCR2
MC9S12XDP512 Data Sheet, Rev. 2.21
750
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-5. COMRV Encoding
COMRV
Visible Comparator
Visible Register at 0x0027
10
Comparator C
DBGSCR3
11
Comparator D
DBGMFR
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
751
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.2
Debug Status Register (DBGSR)
Address: 0x0021
R
7
6
5
4
3
2
1
0
TBF
EXTF
0
0
0
SSF2
SSF1
SSF0
—
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
POR
= Unimplemented or Reserved
Figure 20-4. Debug Status Register (DBGSR)
Read: Anytime
Write: Never
Table 20-6. DBGSR Field Descriptions
Field
Description
7
TBF
Trace Buffer Full — The TBF bit indicates that the trace buffer has stored 64 or more lines of data since it was
last armed. If this bit is set, then all 64 lines will be valid data, regardless of the value of DBGCNT bits CNT[6:0].
The TBF bit is cleared when ARM in DBGC1 is written to a one. The TBF is cleared by the power on reset
initialization. Other system generated resets have no affect on this bit
6
EXTF
External Tag Hit Flag — The EXTF bit indicates if a tag hit condition from an external TAGHI/TAGLO tag was
met since arming. This bit is cleared when ARM in DBGC1 is written to a one.
0 External tag hit has not occurred
1 External tag hit has occurred
2–0
SSF[2:0]
State Sequencer Flag Bits — The SSF bits indicate in which state the State Sequencer is currently in. During
a debug session on each transition to a new state these bits are updated. If the debug session is ended by
software clearing the ARM bit, then these bits retain their value to reflect the last state of the state sequencer
before disarming. If a debug session is ended by an internal trigger, then the state sequencer returns to state0
and these bits are cleared to indicate that state0 was entered during the session. On arming the module the state
sequencer enters state1 and these bits are forced to SSF[2:0] = 001. See Table 20-7.
Table 20-7. SSF[2:0] — State Sequence Flag Bit Encoding
SSF[2:0]
Current State
000
State0 (disarmed)
001
State1
010
State2
011
State3
100
Final State
101,110,111
Reserved
MC9S12XDP512 Data Sheet, Rev. 2.21
752
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.3
Debug Trace Control Register (DBGTCR)
Address: 0x0022
7
6
R
TSOURCE
W
Reset
5
0
4
3
TRANGE
0
0
2
1
TRCMOD
0
0
0
TALIGN
0
0
0
Figure 20-5. Debug Trace Control Register (DBGTCR)
Read: Anytime
Write: Bits 7:6 only when S12XDBG is neither secure nor armed.
Bits 5:0 anytime the module is disarmed.
Table 20-8. DBGTCR Field Descriptions
Field
7–6
TSOURCE
Description
Trace Source Control Bits — The TSOURCE bits select the data source for the tracing session. If the MCU
system is secured, these bits cannot be set and tracing is inhibited. See Table 20-9.
5–4
TRANGE
Trace Range Bits — The TRANGE bits allow filtering of trace information from a selected address range when
tracing from the S12XCPU in Detail Mode. The XGATE tracing range cannot be narrowed using these bits. To
use a comparator for range filtering, the corresponding COMPE and SRC bits must remain cleared. If the
COMPE bit is not clear then the comparator will also be used to generate state sequence triggers. If the
corresponding SRC bit is set the comparator is mapped to the XGATE buses, the TRANGE bits have no effect
on the valid address range, memory accesses within the whole memory map are traced. See Table 20-10.
3–2
TRCMOD
Trace Mode Bits — See Section 20.4.5.2 for detailed Trace Mode descriptions. In Normal Mode, change of flow
information is stored. In Loop1 Mode, change of flow information is stored but redundant entries into trace
memory are inhibited. In Detail Mode, address and data for all memory and register accesses is stored. See
Table 20-11.
1–0
TALIGN
Trigger Align Bits — These bits control whether the trigger is aligned to the beginning, end or the middle of a
tracing session. See Table 20-12.
Table 20-9. TSOURCE — Trace Source Bit Encoding
TSOURCE
Tracing Source
00
No tracing requested
01
S12XCPU
101
XGATE
11
1
2
1,2
Both S12XCPU and XGATE
No range limitations are allowed. Thus tracing operates as if TRANGE = 00.
No Detail Mode tracing supported. If TRCMOD = 10, no information is stored.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
753
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-10. TRANGE Trace Range Encoding
TRANGE
Tracing Range
00
Trace from all addresses (No filter)
01
Trace only in address range from $00000 to Comparator D
10
Trace only in address range from Comparator C to $7FFFFF
11
Trace only in range from Comparator C to Comparator D
Table 20-11. TRCMOD Trace Mode Bit Encoding
TRCMOD
Description
00
Normal
01
Loop1
10
Detail
11
Pure PC
Table 20-12. TALIGN Trace Alignment Encoding
TALIGN
Description
00
Trigger at end of stored data
01
Trigger before storing data
10
Trace buffer entries before and after trigger
11
Reserved
MC9S12XDP512 Data Sheet, Rev. 2.21
754
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.4
Debug Control Register2 (DBGC2)
Address: 0x0023
R
7
6
5
4
0
0
0
0
0
0
0
0
3
1
CDCM
W
Reset
2
0
0
ABCM
0
0
0
= Unimplemented or Reserved
Figure 20-6. Debug Control Register2 (DBGC2)
Read: Anytime
Write: Anytime the module is disarmed.
This register configures the comparators for range matching.
Table 20-13. DBGC2 Field Descriptions
Field
Description
3–2
CDCM[1:0]
C and D Comparator Match Control — These bits determine the C and D comparator match mapping as
described in Table 20-14.
1–0
ABCM[1:0]
A and B Comparator Match Control — These bits determine the A and B comparator match mapping as
described in Table 20-15.
Table 20-14. CDCM Encoding
CDCM
Description
00
Match2 mapped to comparator C match....... Match3 mapped to comparator D match.
01
Match2 mapped to comparator C/D inside range....... Match3 disabled.
10
Match2 mapped to comparator C/D outside range....... Match3 disabled.
11
Reserved
Table 20-15. ABCM Encoding
ABCM
Description
00
Match0 mapped to comparator A match....... Match1 mapped to comparator B match.
01
Match 0 mapped to comparator A/B inside range....... Match1 disabled.
10
Match 0 mapped to comparator A/B outside range....... Match1 disabled.
11
Reserved
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
755
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.5
Debug Trace Buffer Register (DBGTBH:DBGTBL)
Address: 0x0024, 0x0025
15
R
W
14
13
12
11
10
9
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9
Reset
X
X
X
X
X
X
X
8
7
6
5
4
3
2
1
0
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
X
X
X
X
X
X
X
X
X
Figure 20-7. Debug Trace Buffer Register (DBGTB)
Read: Anytime when unlocked and not secured and not armed.
Write: Aligned word writes when disarmed unlock the trace buffer for reading but do not affect trace buffer
contents.
Table 20-16. DBGTB Field Descriptions
Field
Description
15–0
Bit[15:0]
Trace Buffer Data Bits — The Trace Buffer Register is a window through which the 64-bit wide data lines of the
Trace Buffer may be read 16 bits at a time. Each valid read of DBGTB increments an internal trace buffer pointer
which points to the next address to be read. When the ARM bit is written to 1 the trace buffer is locked to prevent
reading. The trace buffer can only be unlocked for reading by writing to DBGTB with an aligned word write when
the module is disarmed. The DBGTB register can be read only as an aligned word, any byte reads or misaligned
access of these registers will return 0 and will not cause the trace buffer pointer to increment to the next trace
buffer address. The same is true for word reads while the debugger is armed. System resets do not affect the
trace buffer contents. The POR state is undefined.
MC9S12XDP512 Data Sheet, Rev. 2.21
756
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.6
Debug Count Register (DBGCNT)
Address: 0x0026
7
R
6
5
4
0
3
2
1
0
—
0
—
0
—
0
CNT
W
Reset
POR
0
0
—
0
—
0
—
0
—
0
= Unimplemented or Reserved
Figure 20-8. Debug Count Register (DBGCNT)
Read: Anytime
Write: Never
Table 20-17. DBGCNT Field Descriptions
Field
Description
6–0
CNT[6:0]
Count Value — The CNT bits [6:0] indicate the number of valid data 64-bit data lines stored in the Trace Buffer.
Table 20-18 shows the correlation between the CNT bits and the number of valid data lines in the Trace Buffer.
When the CNT rolls over to zero, the TBF bit in DBGSR is set and incrementing of CNT will continue in
end-trigger or mid-trigger mode. The DBGCNT register is cleared when ARM in DBGC1 is written to a one. The
DBGCNT register is cleared by power-on-reset initialization but is not cleared by other system resets. Thus
should a reset occur during a debug session, the DBGCNT register still indicates after the reset, the number of
valid trace buffer entries stored before the reset occurred. The DBGCNT register is not decremented when
reading from the trace buffer.
Table 20-18. CNT Decoding Table
1
TBF (DBGSR)
CNT[6:0]
Description
0
0000000
No data valid
0
0000001
32 bits of one line valid1
0
0000010
0000100
0000110
..
1111100
1 line valid
2 lines valid
3 lines valid
..
62 lines valid
0
1111110
63 lines valid
1
0000000
64 lines valid; if using Begin trigger alignment,
ARM bit will be cleared and the tracing session ends.
1
0000010
..
..
1111110
64 lines valid,
oldest data has been overwritten by most recent data
This applies to Normal/Loop1 Modes when tracing from either S12XCPU or XGATE only.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
757
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.7
Debug State Control Registers
There is a dedicated control register for each of the state sequencer states 1 to 3 that determines if
transitions from that state are allowed, depending upon comparator matches or tag hits, and defines the
next state for the state sequencer following a match. The three debug state control registers are located at
the same address in the register address map (0x0027). Each register can be accessed using the COMRV
bits in DBGC1 to blend in the required register. The COMRV = 11 value blends in the match flag register
(DBGMFR).
Table 20-19. State Control Register Access Encoding
COMRV
Visible State Control Register
00
DBGSCR1
01
DBGSCR2
10
DBGSCR3
11
DBGMFR
MC9S12XDP512 Data Sheet, Rev. 2.21
758
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.7.1
Debug State Control Register 1 (DBGSCR1)
Address: 0x0027
R
7
6
5
4
0
0
0
0
0
0
0
W
Reset
0
3
2
1
0
SC3
SC2
SC1
SC0
0
0
0
0
= Unimplemented or Reserved
Figure 20-9. Debug State Control Register 1 (DBGSCR1)
Read: Anytime
Write: Anytime when S12XDBG not armed.
This register is visible at 0x0027 only with COMRV[1:0] = 00. The state control register 1 selects the
targeted next state whilst in State1. The matches refer to the match channels of the comparator match
control logic as depicted in Figure 20-1 and described in Section 20.3.2.8.1”. Comparators must be
enabled by setting the comparator enable bit in the associated DBGXCTL control register.
Table 20-20. DBGSCR1 Field Descriptions
Field
3–0
SC[3:0]
Description
These bits select the targeted next state whilst in State1, based upon the match event.
Table 20-21. State1 Sequencer Next State Selection
SC[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Description
Any match triggers to state2
Any match triggers to state3
Any match triggers to Final State
Match2 triggers to State2....... Other matches have no effect
Match2 triggers to State3....... Other matches have no effect
Match2 triggers to Final State....... Other matches have no effect
Match0 triggers to State2....... Match1 triggers to State3....... Other matches have no effect
Match1 triggers to State3....... Match0 triggers Final State....... Other matches have no effect
Match0 triggers to State2....... Match2 triggers to State3....... Other matches have no effect
Match2 triggers to State3....... Match0 triggers Final State....... Other matches have no effect
Match1 triggers to State2....... Match3 triggers to State3....... Other matches have no effect
Match3 triggers to State3....... Match1 triggers to Final State....... Other matches have no effect
Match3 has no effect....... All other matches (M0,M1,M2) trigger to State2
Reserved
Reserved
Reserved
The trigger priorities described in Table 20-38 dictate that in the case of simultaneous matches, the match
on the lower channel number (0,1,2,3) has priority. The SC[3:0] encoding ensures that a match leading to
final state has priority over all other matches.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
759
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.7.2
Debug State Control Register 2 (DBGSCR2)
Address: 0x0027
R
7
6
5
4
0
0
0
0
0
0
0
W
Reset
0
3
2
1
0
SC3
SC2
SC1
SC0
0
0
0
0
= Unimplemented or Reserved
Figure 20-10. Debug State Control Register 2 (DBGSCR2)
Read: Anytime
Write: Anytime when S12XDBG not armed.
This register is visible at 0x0027 only with COMRV[1:0] = 01. The state control register 2 selects the
targeted next state whilst in State2. The matches refer to the match channels of the comparator match
control logic as depicted in Figure 20-1 and described in Section 20.3.2.8.1”. Comparators must be
enabled by setting the comparator enable bit in the associated DBGXCTL control register.
Table 20-22. DBGSCR2 Field Descriptions
Field
3–0
SC[3:0]
Description
These bits select the targeted next state whilst in State2, based upon the match event.
Table 20-23. State2 —Sequencer Next State Selection
SC[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Description
Any match triggers to state1
Any match triggers to state3
Any match triggers to Final State
Match3 triggers to State1....... Other matches have no effect
Match3 triggers to State3....... Other matches have no effect
Match3 triggers to Final State....... Other matches have no effect
Match0 triggers to State1....... Match1 triggers to State3....... Other matches have no effect
Match1 triggers to State3....... Match0 triggers Final State....... Other matches have no effect
Match0 triggers to State1....... Match2 triggers to State3....... Other matches have no effect
Match2 triggers to State3....... Match0 triggers Final State....... Other matches have no effect
Match1 triggers to State1....... Match3 triggers to State3....... Other matches have no effect
Match3 triggers to State3....... Match1 triggers Final State....... Other matches have no effect
Match2 triggers to State1..... Match3 trigger to Final State
Match2 has no affect, all other matches (M0,M1,M3) trigger to Final State
Reserved
Reserved
The trigger priorities described in Table 20-38 dictate that in the case of simultaneous matches, the match
on the lower channel number (0,1,2,3) has priority. The SC[3:0] encoding ensures that a match leading to
final state has priority over all other matches.
MC9S12XDP512 Data Sheet, Rev. 2.21
760
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.7.3
Debug State Control Register 3 (DBGSCR3)
Address: 0x0027
R
7
6
5
4
0
0
0
0
0
0
0
W
Reset
0
3
2
1
0
SC3
SC2
SC1
SC0
0
0
0
0
= Unimplemented or Reserved
Figure 20-11. Debug State Control Register 3 (DBGSCR3)
Read: Anytime
Write: Anytime when S12XDBG not armed.
This register is visible at 0x0027 only with COMRV[1:0] = 10. The state control register three selects the
targeted next state whilst in State3. The matches refer to the match channels of the comparator match
control logic as depicted in Figure 20-1 and described in Section 20.3.2.8.1”. Comparators must be
enabled by setting the comparator enable bit in the associated DBGXCTL control register.
Table 20-24. DBGSCR3 Field Descriptions
Field
3–0
SC[3:0]
Description
These bits select the targeted next state whilst in State3, based upon the match event.
Table 20-25. State3 — Sequencer Next State Selection
SC[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Description
Any match triggers to state1
Any match triggers to state2
Any match triggers to Final State
Match0 triggers to State1....... Other matches have no effect
Match0 triggers to State2....... Other matches have no effect
Match0 triggers to Final State.......Match1 triggers to State1
Match1 triggers to State1....... Other matches have no effect
Match1 triggers to State2....... Other matches have no effect
Match1 triggers to Final State....... Other matches have no effect
Match2 triggers to State2....... Match0 triggers to Final State....... Other matches have no effect
Match1 triggers to State1....... Match3 triggers to State2....... Other matches have no effect
Match3 triggers to State2....... Match1 triggers to Final State....... Other matches have no effect
Match2 triggers to Final State....... Other matches have no effect
Match3 triggers to Final State....... Other matches have no effect
Reserved
Reserved
The trigger priorities described in Table 20-38 dictate that in the case of simultaneous matches, the match
on the lower channel number (0,1,2,3) has priority. The SC[3:0] encoding ensures that a match leading to
final state has priority over all other matches.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
761
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.7.4
Debug Match Flag Register (DBGMFR)
Address: 0x0027
R
7
6
5
4
3
2
1
0
0
0
0
0
MC3
MC2
MC1
MC0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 20-12. Debug Match Flag Register (DBGMFR)
Read: Anytime
Write: Never
DBGMFR is visible at 0x0027 only with COMRV[1:0] = 11. It features four flag bits each mapped directly
to a channel. Should a match occur on the channel during the debug session, then the corresponding flag
is set and remains set until the next time the module is armed by writing to the ARM bit. Thus the contents
are retained after a debug session for evaluation purposes. These flags cannot be cleared by software, they
are cleared only when arming the module. A set flag does not inhibit the setting of other flags. Once a flag
is set, further triggers on the same channel have no affect.
20.3.2.8
Comparator Register Descriptions
Each comparator has a bank of registers that are visible through an 8-byte window in the S12XDBG
module register address map. Comparators A and C consist of 8 register bytes (3 address bus compare
registers, two data bus compare registers, two data bus mask registers and a control register).
Comparators B and D consist of four register bytes (three address bus compare registers and a control
register).
Each set of comparator registers is accessible in the same 8-byte window of the register address map and
can be accessed using the COMRV bits in the DBGC1 register. If the Comparators B or D are accessed
through the 8-byte window, then only the address and control bytes are visible, the 4 bytes associated with
data bus and data bus masking read as zero and cannot be written. Furthermore the control registers for
comparators B and D differ from those of comparators A and C.
Table 20-26. Comparator Register Layout
0x0028
CONTROL
Read/Write
—
0x0029
ADDRESS HIGH
Read/Write
—
0x002A
ADDRESS MEDIUM
Read/Write
—
0x002B
ADDRESS LOW
Read/Write
—
0x002C
DATA HIGH COMPARATOR
Read/Write
Comparator A and C only
0x002D
DATA LOW COMPARATOR
Read/Write
Comparator A and C only
0x002E
DATA HIGH MASK
Read/Write
Comparator A and C only
0x002F
DATA LOW MASK
Read/Write
Comparator A and C only
MC9S12XDP512 Data Sheet, Rev. 2.21
762
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.8.1
Debug Comparator Control Register (DBGXCTL)
The contents of this register bits 7 and 6 differ depending upon which comparator registers are visible in
the 8-byte window of the DBG module register address map.
Address: 0x0028
7
R
0
W
Reset
0
6
5
4
3
2
1
0
NDB
TAG
BRK
RW
RWE
SRC
COMPE
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 20-13. Debug Comparator Control Register (Comparators A and C)
Address: 0x0028
R
W
7
6
5
4
3
2
1
0
SZE
SZ
TAG
BRK
RW
RWE
SRC
COMPE
0
0
0
0
0
0
0
0
Reset
Figure 20-14. Debug Comparator Control Register (Comparators B and D)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-27. DBGXCTL Field Descriptions
Field
Description
7
SZE
(Comparators
B nd D)
Size Comparator Enable Bit — The SZE bit controls whether access size comparison is enabled for the
associated comparator. This bit is ignored if the TAG bit in the same register is set.
0 Word/Byte access size is not used in comparison
1 Word/Byte access size is used in comparison
6
NDB
(Comparators
A and C
Not Data Bus Compare — The NDB bit controls whether the match occurs when the data bus matches the
comparator register value or when the data bus differs from the register value. Furthermore data bus bits can
be individually masked using the comparator data mask registers. This bit is only available for comparators
A and C. This bit is ignored if the TAG bit in the same register is set. This bit position has an SZ functionality
for comparators B and D.
0 Match on data bus equivalence to comparator register contents
1 Match on data bus difference to comparator register contents
6
SZ
(Comparators
B and D)
Size Comparator Value Bit — The SZ bit selects either word or byte access size in comparison for the
associated comparator. This bit is ignored if the SZE bit is cleared or if the TAG bit in the same register is set.
This bit position has NDB functionality for comparators A and C
0 Word access size will be compared
1 Byte access size will be compared
5
TAG
Tag Select — This bit controls whether the comparator match will cause a trigger or tag the opcode at the
matched address. Tagged opcodes trigger only if they reach the execution stage of the instruction queue.
0 Trigger immediately on match
1 On match, tag the opcode. If the opcode is about to be executed a trigger is generated
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
763
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-27. DBGXCTL Field Descriptions (continued)
Field
Description
4
BRK
Break — This bit controls whether a comparator match terminates a debug session immediately,
independent of state sequencer state. To generate an immediate breakpoint the module breakpoints must be
enabled using the DBGC1 bits DBGBRK[1:0].
0 The debug session termination is dependent upon the state sequencer and trigger conditions.
1 A match on this channel terminates the debug session immediately; breakpoints if active are generated,
tracing, if active, is terminated and the module disarmed.
3
RW
Read/Write Comparator Value Bit — The RW bit controls whether read or write is used in compare for the
associated comparator. The RW bit is not used if RWE = 0.
0 Write cycle will be matched
1 Read cycle will be matched
2
RWE
Read/Write Enable Bit — The RWE bit controls whether read or write comparison is enabled for the
associated comparator. This bit is not useful for tagged operations.
0 Read/Write is not used in comparison
1 Read/Write is used in comparison
1
SRC
Determines mapping of comparator to S12XCPU or XGATE
0 The comparator is mapped to S12XCPU buses
1 The comparator is mapped to XGATE address and data buses
0
COMPE
Determines if comparator is enabled
0 The comparator is not enabled
1 The comparator is enabled for state sequence triggers or tag generation
Table 20-28 shows the effect for RWE and RW on the comparison conditions. These bits are not useful for
tagged operations since the trigger occurs based on the tagged opcode reaching the execution stage of the
instruction queue. Thus these bits are ignored if tagged triggering is selected.
Table 20-28. Read or Write Comparison Logic Table
RWE Bit
RW Bit
RW Signal
Comment
0
x
0
RW not used in comparison
0
x
1
RW not used in comparison
1
0
0
Write data bus
1
0
1
No match
1
1
0
No match
1
1
1
Read data bus
MC9S12XDP512 Data Sheet, Rev. 2.21
764
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.8.2
Debug Comparator Address High Register (DBGXAH)
Address: 0x0029
7
R
0
W
Reset
0
6
5
4
3
2
1
0
Bit 22
Bit 21
Bit 20
Bit 19
Bit 18
Bit 17
Bit 16
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 20-15. Debug Comparator Address High Register (DBGXAH)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-29. DBGXAH Field Descriptions
Field
Description
6–0
Bit[22:16]
Comparator Address High Compare Bits — The Comparator address high compare bits control whether the
selected comparator will compare the address bus bits [22:16] to a logic one or logic zero. This register byte is
ignored for XGATE compares.
0 Compare corresponding address bit to a logic zero
1 Compare corresponding address bit to a logic one
20.3.2.8.3
Debug Comparator Address Mid Register (DBGXAM)
Address: 0x002A
R
W
Reset
7
6
5
4
3
2
1
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 20-16. Debug Comparator Address Mid Register (DBGXAM)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-30. DBGXAM Field Descriptions
Field
7–0
Bit[15:8]
Description
Comparator Address Mid Compare Bits — The Comparator address mid compare bits control whether the
selected comparator will compare the address bus bits [15:8] to a logic one or logic zero.
0 Compare corresponding address bit to a logic zero
1 Compare corresponding address bit to a logic one
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
765
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.8.4
Debug Comparator Address Low Register (DBGXAL)
Address: 0x002B
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 20-17. Debug Comparator Address Low Register (DBGXAL)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-31. DBGXAL Field Descriptions
Field
7–0
Bits[7:0]
Description
Comparator Address Low Compare Bits — The Comparator address low compare bits control whether the
selected comparator will compare the address bus bits [7:0] to a logic one or logic zero.
0 Compare corresponding address bit to a logic zero
1 Compare corresponding address bit to a logic one
20.3.2.8.5
Debug Comparator Data High Register (DBGXDH)
Address: 0x002C
R
W
Reset
7
6
5
4
3
2
1
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 20-18. Debug Comparator Data High Register (DBGXDH)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-32. DBGXAH Field Descriptions
Field
Description
7–0
Bits[15:8]
Comparator Data High Compare Bits — The Comparator data high compare bits control whether the selected
comparator compares the data bus bits [15:8] to a logic one or logic zero. The comparator data compare bits are
only used in comparison if the corresponding data mask bit is logic 1. This register is available only for
comparators A and C.
0 Compare corresponding data bit to a logic zero
1 Compare corresponding data bit to a logic one
MC9S12XDP512 Data Sheet, Rev. 2.21
766
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.8.6
Debug Comparator Data Low Register (DBGXDL)
Address: 0x002D
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 20-19. Debug Comparator Data Low Register (DBGXDL)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-33. DBGXDL Field Descriptions
Field
Description
7–0
Bits[7:0]
Comparator Data Low Compare Bits — The Comparator data low compare bits control whether the selected
comparator compares the data bus bits [7:0] to a logic one or logic zero. The comparator data compare bits are
only used in comparison if the corresponding data mask bit is logic 1. This register is available only for
comparators A and C.
0 Compare corresponding data bit to a logic zero
1 Compare corresponding data bit to a logic one
20.3.2.8.7
Debug Comparator Data High Mask Register (DBGXDHM)
Address: 0x002E
R
W
Reset
7
6
5
4
3
2
1
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Figure 20-20. Debug Comparator Data High Mask Register (DBGXDHM)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-34. DBGXDHM Field Descriptions
Field
Description
7–0
Bits[15:8]
Comparator Data High Mask Bits — The Comparator data high mask bits control whether the selected
comparator compares the data bus bits [15:8] to the corresponding comparator data compare bits. This register
is available only for comparators A and C.
0 Do not compare corresponding data bit
1 Compare corresponding data bit
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
767
Chapter 20 S12X Debug (S12XDBGV3) Module
20.3.2.8.8
Debug Comparator Data Low Mask Register (DBGXDLM)
Address: 0x002F
R
W
Reset
7
6
5
4
3
2
1
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Figure 20-21. Debug Comparator Data Low Mask Register (DBGXDLM)
Read: Anytime
Write: Anytime when S12XDBG not armed.
Table 20-35. DBGXDLM Field Descriptions
Field
Description
7–0
Bits[7:0]
Comparator Data Low Mask Bits — The Comparator data low mask bits control whether the selected
comparator compares the data bus bits [7:0] to the corresponding comparator data compare bits. This register
is available only for comparators A and C.
0 Do not compare corresponding data bit
1 Compare corresponding data bit
20.4
Functional Description
This section provides a complete functional description of the S12XDBG module. If the part is in secure
mode, the S12XDBG module can generate breakpoints but tracing is not possible.
20.4.1
S12XDBG Operation
Arming the S12XDBG module by setting ARM in DBGC1 allows triggering, and storing of data in the
trace buffer and can be used to cause breakpoints to the S12XCPU or the XGATE module. The DBG
module is made up of four main blocks, the comparators, control logic, the state sequencer, and the trace
buffer.
The comparators monitor the bus activity of the S12XCPU and XGATE modules. Comparators can be
configured to monitor address and databus. Comparators can also be configured to mask out individual
data bus bits during a compare and to use R/W and word/byte access qualification in the comparison. When
a match with a comparator register value occurs the associated control logic can trigger the state sequencer
to another state (see Figure 20-23). Either forced or tagged triggers are possible. Using a forced trigger,
the trigger is generated immediately on a comparator match. Using a tagged trigger, at a comparator match,
the instruction opcode is tagged and only if the instruction reaches the execution stage of the instruction
queue is a trigger generated. In the case of a transition to Final State, bus tracing is triggered and/or a
breakpoint can be generated. Tracing of both S12XCPU and/or XGATE bus activity is possible.
Independent of the state sequencer, a breakpoint can be triggered by the external TAGHI / TAGLO signals,
by an XGATE S/W breakpoint request or by writing to the TRIG bit in the DBGC1 control register.
MC9S12XDP512 Data Sheet, Rev. 2.21
768
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
The trace buffer is visible through a 2-byte window in the register address map and can be read out using
standard 16-bit word reads.
TAGS
TAGHITS
EXTERNAL TAGHI / TAGLO
BREAKPOINT REQUESTS
XGATE S/W BREAKPOINT REQUEST
S12XCPU & XGATE
XGATE BUS
COMPARATOR A
COMPARATOR B
COMPARATOR C
COMPARATOR D
MATCH0
COMPARATOR
MATCH CONTROL
S12XCPU BUS
BUS INTERFACE
SECURE
MATCH1
TAG &
TRIGGER
CONTROL
LOGIC
MATCH2
TRIGGER
STATE
STATE SEQUENCER
STATE
MATCH3
TRACE
CONTROL
TRIGGER
TRACE BUFFER
READ TRACE DATA (DBG READ DATA BUS)
Figure 20-22. S12XDBG Overview
20.4.2
Comparator Modes
The S12XDBG contains four comparators, A, B, C, and D. Each comparator can be configured to monitor
either S12XCPU or XGATE buses using the SRC bit in the corresponding comparator control register.
Each comparator compares the selected address bus with the address stored in DBGXAH, DBGXAM, and
DBGXAL. Furthermore, comparators A and C also compare the data buses to the data stored in DBGXDH,
DBGXDL and allow masking of individual data bus bits.
All comparators are disabled in BDM and during BDM accesses.
The comparator match control logic (see Figure 20-22) configures comparators to monitor the buses for
an exact address or an address range, whereby either an access inside or outside the specified range
generates a match condition. The comparator configuration is controlled by the control register contents
and the range control by the DBGC2 contents.
On a match a trigger can initiate a transition to another state sequencer state (see Section 20.4.3”). The
comparator control register also allows the type of access to be included in the comparison through the use
of the RWE, RW, SZE, and SZ bits. The RWE bit controls whether read or write comparison is enabled
for the associated comparator and the RW bit selects either a read or write access for a valid match.
Similarly the SZE and SZ bits allows the size of access (word or byte) to be considered in the compare.
Only comparators B and D feature SZE and SZ.
The TAG bit in each comparator control register is used to determine the triggering condition. By setting
TAG, the comparator will qualify a match with the output of opcode tracking logic and a trigger occurs
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
769
Chapter 20 S12X Debug (S12XDBGV3) Module
before the tagged instruction executes (tagged-type trigger). Whilst tagging the RW, RWE, SZE, and SZ
bits are ignored and the comparator register must be loaded with the exact opcode address.
If the TAG bit is clear (forced type trigger) a comparator match is generated when the selected address
appears on the system address bus. If the selected address is an opcode address, the match is generated
when the opcode is fetched from the memory. This precedes the instruction execution by an indefinite
number of cycles due to instruction pipe lining. For a comparator match of an opcode at an odd address
when TAG = 0, the corresponding even address must be contained in the comparator register. Thus for an
opcode at odd address (n), the comparator register must contain address (n–1).
Once a successful comparator match has occurred, the condition that caused the original match is not
verified again on subsequent matches. Thus if a particular data value is verified at a given address, this
address may not still contain that data value when a subsequent match occurs.
Comparators C and D can also be used to select an address range to trace from. This is determined by the
TRANGE bits in the DBGTCR register. The TRANGE encoding is shown in Table 20-10. If the TRANGE
bits select a range definition using comparator D, then comparator D is configured for trace range
definition and cannot be used for address bus comparisons. Similarly if the TRANGE bits select a range
definition using comparator C, then comparator C is configured for trace range definition and cannot be
used for address bus comparisons.
Match[0, 1, 2, 3] map directly to Comparators[A, B, C, D] respectively, except in range modes (see
Section 20.3.2.4”). Comparator priority rules are described in the trigger priority section
(Section 20.4.3.6”).
20.4.2.1
Exact Address Comparator Match (Comparators A and C)
With range comparisons disabled, the match condition is an exact equivalence of address/data bus with the
value stored in the comparator address/data registers. Further qualification of the type of access (R/W,
word/byte) is possible.
Comparators A and C do not feature SZE or SZ control bits, thus the access size is not compared. The exact
address is compared, thus with the comparator address register loaded with address (n) a misaligned word
access of address (n–1) also accesses (n) but does not cause a match. Table 20-37 lists access
considerations without data bus compare. Table 20-36 lists access considerations with data bus
comparison. To compare byte accesses DBGXDH must be loaded with the data byte. The low byte must
be masked out using the DBGXDLM mask register. On word accesses the data byte of the lower address
is mapped to DBGXDH.
Table 20-36. Comparator A and C Data Bus Considerations
Access
Address
DBGxDH
DBGxDL
DBGxDHM
DBGxDLM
Example Valid Match
Word
ADDR[n]
Data[n]
Byte
ADDR[n]
Data[n]
Data[n+1]
$FF
$FF
MOVW #$WORD ADDR[n]
x
$FF
$00
MOVB #$BYTE ADDR[n]
Word
ADDR[n]
Data[n]
x
$FF
$00
MOVW #$WORD ADDR[n]
Word
ADDR[n]
x
Data[n+1]
$00
$FF
MOVW #$WORD ADDR[n]
MC9S12XDP512 Data Sheet, Rev. 2.21
770
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
Comparators A and C feature an NDB control bit to determine if a match occurs when the data bus differs
to comparator register contents or when the data bus is equivalent to the comparator register contents.
20.4.2.2
Exact Address Comparator Match (Comparators B and D)
Comparators B and D feature SZ and SZE control bits. If SZE is clear, then the comparator address match
qualification functions the same as for comparators A and C.
If the SZE bit is set the access size (word or byte) is compared with the SZ bit value such that only the
specified type of access causes a match. Thus if configured for a byte access of a particular address, a word
access covering the same address does not lead to match.
Table 20-37. Comparator Access Size Considerations
1
Comparator
Address
SZE
SZ8
Condition For Valid Match
Comparators
A and C
ADDR[n]
—
—
Word and byte accesses of ADDR[n]1
MOVB #$BYTE ADDR[n]
MOVW #$WORD ADDR[n]
Comparators
B and D
ADDR[n]
0
X
Word and byte accesses of ADDR[n]1
MOVB #$BYTE ADDR[n]
MOVW #$WORD ADDR[n]
Comparators
B and D
ADDR[n]
1
0
Word accesses of ADDR[n]1
MOVW #$WORD ADDR[n]
Comparators
B and D
ADDR[n]
1
1
Byte accesses of ADDR[n]
MOVB #$BYTE ADDR[n]
A word access of ADDR[n-1] also accesses ADDR[n] but does not generate a match.
The comparator address register must contain the exact address used in the code.
20.4.2.3
Range Comparisons
When using the AB comparator pair for a range comparison, the data bus can also be used for qualification
by using the comparator A data and data mask registers. Furthermore the DBGACTL RW and RWE bits
can be used to qualify the range comparison on either a read or a write access. The corresponding
DBGBCTL bits are ignored. Similarly when using the CD comparator pair for a range comparison, the
data bus can also be used for qualification by using the comparator C data and data mask registers.
Furthermore the DBGCCTL RW and RWE bits can be used to qualify the range comparison on either a
read or a write access if tagging is not selected. The corresponding DBGDCTL bits are ignored. The SZE
and SZ control bits are ignored in range mode. The comparator A and C TAG bits are used to tag range
comparisons for the AB and CD ranges respectively. The comparator B and D TAG bits are ignored in
range modes. In order for a range comparison using comparators A and B, both COMPEA and COMPEB
must be set; to disable range comparisons both must be cleared. Similarly for a range CD comparison, both
COMPEC and COMPED must be set. If a range mode is selected SRCA and SRCC select the source
(S12X or XGATE), SRCB and SRCD are ignored. When configured for range comparisons and tagging,
the ranges are accurate only to word boundaries.
20.4.2.3.1
Inside Range (CompAC_Addr ≤ address ≤ CompBD_Addr)
In the Inside Range comparator mode, either comparator pair A and B or comparator pair C and D can be
configured for range comparisons. This configuration depends upon the control register (DBGC2). The
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
771
Chapter 20 S12X Debug (S12XDBGV3) Module
match condition requires that a valid match for both comparators happens on the same bus cycle. A match
condition on only one comparator is not valid. An aligned word access which straddles the range boundary
will cause a trigger only if the aligned address is inside the range.
20.4.2.3.2
Outside Range (address < CompAC_Addr or address > CompBD_Addr)
In the Outside Range comparator mode, either comparator pair A and B or comparator pair C and D can
be configured for range comparisons. A single match condition on either of the comparators is recognized
as valid. An aligned word access which straddles the range boundary will cause a trigger only if the aligned
address is outside the range.
Outside range mode in combination with tagged triggers can be used to detect if the opcode fetches are
from an unexpected range. In forced trigger modes the outside range trigger would typically be activated
at any interrupt vector fetch or register access. This can be avoided by setting the upper range limit to
$7FFFFF or lower range limit to $000000 respectively.
When comparing the XGATE address bus in outside range mode, the initial vector fetch as determined by
the vector contained in the XGATE XGVBR register should be taken into consideration. The XGVBR
register and hence vector address can be modified.
20.4.3
Trigger Modes
Trigger modes are used as qualifiers for a state sequencer change of state. The control logic determines the
trigger mode and provides a trigger to the state sequencer. The individual trigger modes are described in
the following sections.
20.4.3.1
Forced Trigger On Comparator Match
If a forced trigger comparator match occurs, the trigger immediately initiates a transition to the next state
sequencer state whereby the corresponding flags in DBGSR are set. The state control register for the
current state determines the next state for each trigger. Forced triggers are generated as soon as the
matching address appears on the address bus, which in the case of opcode fetches occurs several cycles
before the opcode execution. For this reason a forced trigger of an opcode address precedes a tagged trigger
at the same address by several cycles.
20.4.3.2
Trigger On Comparator Related Taghit
If either a S12XCPU or XGATE taghit occurs a transition to another state sequencer state is initiated and
the corresponding DBGSR flags are set. For a comparator related taghit to occur, the S12XDBG must first
generate tags based on comparator matches. When the tagged instruction reaches the execution stage of
the instruction queue a taghit is generated by the S12XCPU/XGATE. The state control register for the
current state determines the next state for each trigger.
20.4.3.3
External Tagging Trigger
In external tagging trigger mode, the TAGLO and TAGHI pins (mapped to device pins) are used to tag an
instruction. This function can be used as another breakpoint source. When the tagged opcode reaches the
MC9S12XDP512 Data Sheet, Rev. 2.21
772
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
execution stage of the instruction queue a transition to the disarmed state0 occurs, ending the debug session
and generating a breakpoint, if breakpoints are enabled. External tagging is only possible in device
emulation modes.
20.4.3.4
Trigger On XGATE S/W Breakpoint Request
The XGATE S/W breakpoint request issues a forced breakpoint request to the S12XCPU immediately
independent of S12XDBG settings and triggers the state sequencer into the disarmed state. Active tracing
sessions are terminated immediately, thus if tracing has not yet begun, no trace information is stored.
XGATE generated breakpoints are independent of the DBGBRK bits. The XGSBPE bit in DBGC1
determines if the XGATE S/W breakpoint function is enabled. The BDM bit in DBGC1 determines if the
XGATE requested breakpoint causes the system to enter BDM Mode or initiate a software interrupt (SWI).
20.4.3.5
Immediate Trigger
Independent of comparator matches or external tag signals it is possible to initiate a tracing session and/or
breakpoint by writing to the TRIG bit in DBGC1. This triggers the state sequencer into the Final State and
issues a forced breakpoint request to both S12XCPU and XGATE.
20.4.3.6
Trigger Priorities
In case of simultaneous triggers, the priority is resolved according to Table 20-38. The lower priority
trigger is suppressed. It is thus possible to miss a lower priority trigger if it occurs simultaneously with a
trigger of a higher priority. The trigger priorities described in Table 20-38 dictate that in the case of
simultaneous matches, the match on the lower channel number (0,1,2,3) has priority. The SC[3:0]
encoding ensures that a match leading to final state has priority over all other matches independent of
current state sequencer state. When configured for range modes a simultaneous match of comparators A
and C generates an active match0 whilst match2 is suppressed.
Table 20-38. Trigger Priorities
Priority
Source
Action
Highest
XGATE
Immediate forced breakpoint......(Tracing terminated immediately).
TRIG
Enter Final State
External TAGHI/TAGLO
Enter State0
Match0 (force or tag hit)
Trigger to next state as defined by state control registers
Match1 (force or tag hit)
Trigger to next state as defined by state control registers
Match2 (force or tag hit)
Trigger to next state as defined by state control registers
Match3 (force or tag hit)
Trigger to next state as defined by state control registers
Lowest
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
773
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.4
State Sequence Control
ARM = 0
State 0
(Disarmed)
ARM = 1
State1
State2
ARM = 0
Session Complete
(Disarm)
Final State
State3
ARM = 0
Figure 20-23. State Sequencer Diagram
The state sequencer allows a defined sequence of events to provide a trigger point for tracing of data in the
trace buffer. Once the S12XDBG module has been armed by setting the ARM bit in the DBGC1 register,
then state1 of the state sequencer is entered. Further transitions between the states are then controlled by
the state control registers and depend upon a selected trigger mode condition being met. From Final State
the only permitted transition is back to the disarmed state0. Transition between any of the states 1 to 3 is
not restricted. Each transition updates the SSF[2:0] flags in DBGSR accordingly to indicate the current
state.
Alternatively writing to the TRIG bit in DBGSC1, the Final State is entered and tracing starts immediately
if the TSOURCE bits are configured for tracing.
A tag hit through TAGHI/TAGLO brings the state sequencer immediately into state0, causes a breakpoint,
if breakpoints are enabled, and ends tracing immediately independent of the trigger alignment bits
TALIGN[1:0].
Independent of the state sequencer, each comparator channel can be individually configured to generate an
immediate breakpoint when a match occurs through the use of the BRK bits in the DBGxCTL registers.
Thus it is possible to generate an immediate breakpoint on selected channels, whilst a state sequencer
transition can be initiated by a match on other channels. If a debug session is ended by a trigger on a
channel with BRK = 1, the state sequencer transitions through Final State for a clock cycle to state0. This
is independent of tracing and breakpoint activity, thus with tracing and breakpoints disabled, the state
sequencer enters state0 and the debug module is disarmed.
An XGATE S/W breakpoint request, if enabled causes a transition to the State0 and generates a breakpoint
request to the S12XCPU immediately.
20.4.4.1
Final State
On entering Final State a trigger may be issued to the trace buffer according to the trace position control
as defined by the TALIGN field (see Section 20.3.2.3”). If the TSOURCE bits in the trace control register
DBGTCR are cleared then the trace buffer is disabled and the transition to Final State can only generate a
breakpoint request. In this case or upon completion of a tracing session when tracing is enabled, the ARM
MC9S12XDP512 Data Sheet, Rev. 2.21
774
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
bit in the DBGC1 register is cleared, returning the module to the disarmed state0. If tracing is enabled a
breakpoint request can occur at the end of the tracing session. If neither tracing nor breakpoints are enabled
then when the final state is reached it returns automatically to state0 and the debug module is disarmed.
20.4.5
Trace Buffer Operation
The trace buffer is a 64 lines deep by 64-bits wide RAM array. The S12XDBG module stores trace
information in the RAM array in a circular buffer format. The S12XCPU accesses the RAM array through
a register window (DBGTBH:DBGTBL) using 16-bit wide word accesses. After each complete 64-bit
trace buffer line is read via the S12XCPU, an internal pointer into the RAM is incremented so that the next
read will receive fresh information. Data is stored in the format shown in Table 20-39. After each store the
counter register bits DBGCNT[6:0] are incremented. Tracing of S12XCPU activity is disabled when the
BDM is active but tracing of XGATE activity is still possible. Reading the trace buffer whilst the BDM is
active returns invalid data and the trace buffer pointer is not incremented.
20.4.5.1
Trace Trigger Alignment
Using the TALIGN bits (see Section 20.3.2.3”) it is possible to align the trigger with the end, the middle,
or the beginning of a tracing session.
If End or Mid tracing is selected, tracing begins when the ARM bit in DBGC1 is set and State1 is entered.
The transition to Final State if End is selected signals the end of the tracing session. The transition to Final
State if Mid is selected signals that another 32 lines will be traced before ending the tracing session.
Tracing with Begin-Trigger starts at the opcode of the trigger. Using End or Mid-Trigger or when the
tracing is initiated by writing to the TRIG bit whilst configured for Begin-Trigger, tracing starts at the
second opcode after writing to DBGC1 if written in the CPU thread, .
20.4.5.1.1
Storing with Begin-Trigger
Storing with Begin-Trigger, data is not stored in the Trace Buffer until the Final State is entered. Once the
trigger condition is met the S12XDBG module will remain armed until 64 lines are stored in the Trace
Buffer. If the trigger is at the address of the change-of-flow instruction the change of flow associated with
the trigger will be stored in the Trace Buffer. Using Begin-trigger together with tagging, if the tagged
instruction is about to be executed then the trace is started. Upon completion of the tracing session the
breakpoint is generated, thus the breakpoint does not occur at the tagged instruction boundary.
20.4.5.1.2
Storing with Mid-Trigger
Storing with Mid-Trigger, data is stored in the Trace Buffer as soon as the S12XDBG module is armed.
When the trigger condition is met, another 32 lines will be traced before ending the tracing session,
irrespective of the number of lines stored before the trigger occurred, then the S12XDBG module is
disarmed and no more data is stored. If the trigger is at the address of a change of flow instruction the
trigger event is not stored in the Trace Buffer. Using Mid-trigger with tagging, if the tagged instruction is
about to be executed then the trace is continued for another 32 lines. Upon tracing completion the
breakpoint is generated, thus the breakpoint does not occur at the tagged instruction boundary.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
775
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.5.1.3
Storing with End-Trigger
Storing with End-Trigger, data is stored in the Trace Buffer until the Final State is entered, at which point
the S12XDBG module will become disarmed and no more data will be stored. If the trigger is at the
address of a change of flow instruction the trigger event will not be stored in the Trace Buffer.
20.4.5.2
Trace Modes
The S12XDBG module can operate in four trace modes. The mode is selected using the TRCMOD bits in
the DBGTCR register. In each mode tracing of XGATE or S12XCPU information is possible. The source
for the trace is selected using the TSOURCE bits in the DBGTCR register. The modes are described in the
following subsections. The trace buffer organization is shown in Table 20-39.
20.4.5.2.1
Normal Mode
In Normal Mode, change of flow (COF) program counter (PC) addresses will be stored.
COF addresses are defined as follows for the S12XCPU:
• Source address of taken conditional branches (long, short, bit-conditional, and loop primitives)
• Destination address of indexed JMP, JSR, and CALL instruction.
• Destination address of RTI, RTS, and RTC instructions
• Vector address of interrupts, except for SWI and BDM vectors
LBRA, BRA, BSR, BGND as well as non-indexed JMP, JSR, and CALL instructions are not classified as
change of flow and are not stored in the trace buffer.
COF addresses are defined as follows for the XGATE:
• Source address of taken conditional branches
• Destination address of indexed JAL instructions.
• First XGATE code address in a thread
Change-of-flow addresses stored include the full 23-bit address bus in the case of S12XCPU, the 16-bit
address bus for the XGATE module and an information byte, which contains a source/destination bit to
indicate whether the stored address was a source address or destination address.
20.4.5.2.2
Loop1 Mode
Loop1 Mode, similarly to Normal Mode also stores only COF address information to the trace buffer, it
however allows the filtering out of redundant information.
The intent of Loop1 Mode is to prevent the Trace Buffer from being filled entirely with duplicate
information from a looping construct such as delays using the DBNE instruction or polling loops using
BRSET/BRCLR instructions. Immediately after address information is placed in the Trace Buffer, the
S12XDBG module writes this value into a background register. This prevents consecutive duplicate
address entries in the Trace Buffer resulting from repeated branches.
MC9S12XDP512 Data Sheet, Rev. 2.21
776
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
Loop1 Mode only inhibits consecutive duplicate source address entries that would typically be stored in
most tight looping constructs. It does not inhibit repeated entries of destination addresses or vector
addresses, since repeated entries of these would most likely indicate a bug in the user’s code that the
S12XDBG module is designed to help find.
NOTE
In certain very tight loops, the source address will have already been fetched
again before the background comparator is updated. This results in the
source address being stored twice before further duplicate entries are
suppressed. This condition occurs with branch-on-bit instructions when the
branch is fetched by the first P-cycle of the branch or with loop-construct
instructions in which the branch is fetched with the first or second P cycle.
See examples below:
LOOP
LOOP2
INX
BRCLR
BRN
NOP
DBNE
20.4.5.2.3
CMPTMP,#$0c, LOOP
*
A,LOOP2
; 1-byte instruction fetched by 1st P-cycle of BRCLR
; the BRCLR instruction also will be fetched by 1st
; P-cycle of BRCLR
; 2-byte instruction fetched by 1st P-cycle of DBNE
; 1-byte instruction fetched by 2nd P-cycle of DBNE
; this instruction also fetched by 2nd P-cycle of DBNE
Detail Mode
In Detail Mode, address and data for all memory and register accesses is stored in the trace buffer. In the
case of XGATE tracing this means that initialization of the R1 register during a vector fetch is not traced.
This mode is intended to supply additional information on indexed, indirect addressing modes where
storing only the destination address would not provide all information required for a user to determine
where the code is in error. This mode also features information byte storage to the trace buffer, for each
address byte storage. The information byte indicates the size of access (word or byte), the type of access
(read or write).
When tracing S12XCPU activity in Detail Mode, all cycles are traced except those when the S12XCPU is
either in a free or opcode fetch cycle. In this mode the XGATE program counter is also traced to provide
a snapshot of the XGATE activity. CXINF information byte bits indicate the type of XGATE activity
occurring at the time of the trace buffer entry. When tracing S12XCPU activity alone in Detail Mode, the
address range can be limited to a range specified by the TRANGE bits in DBGTCR. This function uses
comparators C and D to define an address range inside which S12XCPU activity should be traced (see
Table 20-39). Thus the traced S12XCPU activity can be restricted to register range accesses.
When tracing XGATE activity in Detail Mode, all load and store cycles are traced. Additionally the
S12XCPU program counter is stored at the time of the XGATE trace buffer entry to provide a snapshot of
S12XCPU activity.
20.4.5.2.4
Pure PC Mode
In Pure PC Mode, tracing from the CPU the PC addresses of all executed opcodes are stored with the
exception of WAI and STOP instructions.
In Pure PC Mode, tracing from the XGATE the PC addresses of all executed opcodes are stored.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
777
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.5.3
Trace Buffer Organization
The buffer can be used to trace either from S12XCPU, from XGATE or from both sources. An X prefix
denotes information from the XGATE module, a C prefix denotes information from the S12XCPU.
ADRH, ADRM, ADRL denote address high, middle and low byte respectively. INF bytes contain control
information (R/W, S/D etc.). The numerical suffix indicates which tracing step. The information format
for Loop1 Mode is the same as that of Normal Mode. Whilst tracing from XGATE or S12XCPU only, in
Normal or Loop1 modes each array line contains data from entries made at two separate times, thus in this
case the DBGCNT[0] is incremented after each separate entry. In all other modes DBGCNT[0] remains
cleared whilst the other DBGCNT bits are incremented on each trace buffer entry.
XGATE and S12XCPU COFs occur independently of each other and the profile of COFs for the two
sources is totally different. When both sources are being traced in Normal or Loop1 mode, for each COF
from one source, there may be many COFs from the other source, depending on user code. COF events
could occur far from each other in the time domain, on consecutive cycles or simultaneously. When a COF
occurs in either source (S12X or XGATE) a trace buffer entry is made and the corresponding CDV or XDV
bit is set. The current PC of the other source is simultaneously stored to the trace buffer even if no COF
has occurred, in which case CDV/XDV remains cleared indicating the address is not associated with a
COF, but is simply a snapshot of the PC contents at the time of the COF from the other source.
Single byte data accesses in Detail Mode are always stored to the low byte of the trace buffer (CDATAL
or XDATAL) and the high byte is cleared. When tracing word accesses, the byte at the lower address is
always stored to trace buffer byte3 and the byte at the higher address is stored to byte2
Table 20-39. Trace Buffer Organization
Mode
8-Byte Wide Word Buffer
7
6
5
4
3
2
1
0
XGATE
Detail
CXINF1
CADRH1
CADRM1
CADRL1
XDATAH1
XDATAL1
XADRM1
XADRL1
CXINF2
CADRH2
CADRM2
CADRL2
XDATAH2
XDATAL2
XADRM2
XADRL2
S12XCPU
Detail
CXINF1
CADRH1
CADRM1
CADRL1
CDATAH1
CDATAL1
XADRM1
XADRL1
CXINF2
CADRH2
CADRM2
CADRL2
CDATAH2
CDATAL2
XADRM2
XADRL2
Both
Other Modes
XINF0
XPCM0
XPCL0
CINF0
CPCH0
CPCM0
CPCL0
XINF1
XPCM1
XPCL1
CINF1
CPCH1
CPCM1
CPCL1
XINF1
XPCM1
XPCL1
XINF0
XPCM0
XPCL0
XINF3
XPCM3
XPCL3
XINF2
XPCM2
XPCL2
XGATE
Other Modes
S12XCPU
Other Modes
CINF1
CPCH1
CPCM1
CPCL1
CINF0
CPCH0
CPCM0
CPCL0
CINF3
CPCH3
CPCM3
CPCL3
CINF2
CPCH2
CPCM2
CPCL2
MC9S12XDP512 Data Sheet, Rev. 2.21
778
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.5.3.1
Information Byte Organization
The format of the control information byte for both S12XCPU and XGATE modules is dependent upon
the active trace mode and tracing source as described below. In Normal, Loop1, or Pure PC modes tracing
of XGATE activity, XINF is used to store control information. In Normal, Loop1, or Pure PC modes
tracing of S12XCPU activity, CINF is used to store control information. In Detail Mode, CXINF contains
the control information
XGATE Information Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
XSD
XSOT
XCOT
XDV
0
0
0
0
Figure 20-24. XGATE Information Byte XINF
Table 20-40. XINF Field Descriptions
Field
Description
7
XSD
Source Destination Indicator — This bit indicates if the corresponding stored address is a source or destination
address. This is only used in Normal and Loop1 mode tracing.
0 Source Address
1 Destination Address or Start of Thread or Continuation of Thread
6
XSOT
Source Of Thread Indicator — This bit indicates that the corresponding stored address is a start of thread
address. This is only used in Normal and Loop1 mode tracing.
NOTE. This bit only has effect on devices where the XGATE module supports multiple interrupt levels.
0 Stored address not from a start of thread
1 Stored address from a start of thread
5
XCOT
Continuation Of Thread Indicator — This bit indicates that the corresponding stored address is the first
address following a return from a higher priority thread. This is only used in Normal and Loop1 mode tracing.
NOTE. This bit only has effect on devices where the XGATE module supports multiple interrupt levels.
0 Stored address not from a continuation of thread
1 Stored address from a continuation of thread
4
XDV
Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from
both sources in Normal, Loop1 and Pure PC modes, to indicate that the XGATE trace buffer entry is valid.
0 Trace buffer entry is invalid
1 Trace buffer entry is valid
X12X_CPU Information Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CSD
CVA
0
CDV
0
0
0
0
Figure 20-25. S12XCPU Information Byte CINF
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
779
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-41. CINF Field Descriptions
Field
Description
7
CSD
Source Destination Indicator — This bit indicates if the corresponding stored address is a source or destination
address. This is only used in Normal and Loop1 mode tracing.
0 Source Address
1 Destination Address
6
CVA
Vector Indicator — This bit indicates if the corresponding stored address is a vector address.. This is only used
in Normal and Loop1 mode tracing.
0 Source Address
1 Destination Address
4
CDV
Data Invalid Indicator — This bit indicates if the trace buffer entry is invalid. It is only used when tracing from
both sources in Normal, Loop1 and Pure PC modes, to indicate that the S12XCPU trace buffer entry is valid.
0 Trace buffer entry is invalid
1 Trace buffer entry is valid
CXINF Information Byte
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CFREE
CSZ
CRW
COCF
XACK
XSZ
XRW
XOCF
Figure 20-26. Information Byte CXINF
This describes the format of the information byte used only when tracing from S12XCPU or XGATE in
Detail Mode. When tracing from the S12XCPU in Detail Mode, information is stored to the trace buffer
on all cycles except opcode fetch and free cycles. The XGATE entry stored on the same line is a snapshot
of the XGATE program counter. In this case the CSZ and CRW bits indicate the type of access being made
by the S12XCPU, whilst the XACK and XOCF bits indicate if the simultaneous XGATE cycle is a free
cycle (no bus acknowledge) or opcode fetch cycle. Similarly when tracing from the XGATE in Detail
Mode, information is stored to the trace buffer on all cycles except opcode fetch and free cycles. The
S12XCPU entry stored on the same line is a snapshot of the S12XCPU program counter. In this case the
XSZ and XRW bits indicate the type of access being made by the XGATE, whilst the CFREE and COCF
bits indicate if the simultaneous S12XCPU cycle is a free cycle or opcode fetch cycle.
Table 20-42. CXINF Field Descriptions
Field
Description
7
CFREE
S12XCPU Free Cycle Indicator — This bit indicates if the stored S12XCPU address corresponds to a free cycle.
This bit only contains valid information when tracing the XGATE accesses in Detail Mode.
0 Stored information corresponds to free cycle
1 Stored information does not correspond to free cycle
6
CSZ
Access Type Indicator — This bit indicates if the access was a byte or word size access.This bit only contains
valid information when tracing S12XCPU activity in Detail Mode.
0 Word Access
1 Byte Access
MC9S12XDP512 Data Sheet, Rev. 2.21
780
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-42. CXINF Field Descriptions (continued)
Field
Description
5
CRW
Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write
access. This bit only contains valid information when tracing S12XCPU activity in Detail Mode.
0 Write Access
1 Read Access
4
COCF
S12XCPU Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch
cycle. This bit only contains valid information when tracing the XGATE accesses in Detail Mode.
0 Stored information does not correspond to opcode fetch cycle
1 Stored information corresponds to opcode fetch cycle
3
XACK
XGATE Access Indicator — This bit indicates if the stored XGATE address corresponds to a free cycle. This bit
only contains valid information when tracing the S12XCPU accesses in Detail Mode.
0 Stored information corresponds to free cycle
1 Stored information does not correspond to free cycle
2
XSZ
Access Type Indicator — This bit indicates if the access was a byte or word size access. This bit only contains
valid information when tracing XGATE activity in Detail Mode.
0 Word Access
1 Byte Access
1
XRW
Read Write Indicator — This bit indicates if the corresponding stored address corresponds to a read or write
access. This bit only contains valid information when tracing XGATE activity in Detail Mode.
0 Write Access
1 Read Access
0
XOCF
XGATE Opcode Fetch Indicator — This bit indicates if the stored address corresponds to an opcode fetch
cycle.This bit only contains valid information when tracing the S12XCPU accesses in Detail Mode.
0 Stored information does not correspond to opcode fetch cycle
1 Stored information corresponds to opcode fetch cycle
20.4.5.4
Reading Data from Trace Buffer
The data stored in the Trace Buffer can be read using either the background debug module (BDM) module
or the S12XCPU provided the S12XDBG module is not armed, is configured for tracing (at least one
TSOURCE bit is set) and the system not secured. When the ARM bit is written to 1 the trace buffer is
locked to prevent reading. The trace buffer can only be unlocked for reading by a single aligned word write
to DBGTB when the module is disarmed. Multiple writes to the DBGTB are not allowed since they
increment the pointer.
The Trace Buffer can only be read through the DBGTB register using aligned word reads, any byte or
misaligned reads return 0 and do not cause the trace buffer pointer to increment to the next trace buffer
address. The Trace Buffer data is read out first-in first-out. By reading CNT in DBGCNT the number of
valid 64-bit lines can be determined. DBGCNT will not decrement as data is read.
Whilst reading an internal pointer is used to determine the next line to be read. After a tracing session, the
pointer points to the oldest data entry, thus if no overflow has occurred, the pointer points to line0,
otherwise it points to the line with the oldest entry. The pointer is initialized by each aligned write to
DBGTBH to point to the oldest data again. This enables an interrupted trace buffer read sequence to be
easily restarted from the oldest data entry.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
781
Chapter 20 S12X Debug (S12XDBGV3) Module
The least significant word of each 64-bit wide array line is read out first. This corresponds to the bytes 1
and 0 of Table 20-39. The bytes containing invalid information (shaded in Table 20-39) are also read out.
Reading the Trace Buffer while the S12XDBG module is armed will return invalid data and no shifting of
the RAM pointer will occur. Reading the trace buffer is not possible if both TSOURCE bits are cleared.
20.4.5.5
Trace Buffer Reset State
The Trace Buffer contents are not initialized by a system reset. Thus should a system reset occur, the trace
session information from immediately before the reset occurred can be read out. The DBGCNT bits are
not cleared by a system reset. Thus should a reset occur, the number of valid lines in the trace buffer is
indicated by DBGCNT. The internal pointer to the current trace buffer address is initialized by unlocking
the trace buffer thus points to the oldest valid data even if a reset occurred during the tracing session.
Generally debugging occurrences of system resets is best handled using mid or end trigger alignment since
the reset may occur before the trace trigger, which in the begin trigger alignment case means no
information would be stored in the trace buffer.
20.4.6
Tagging
A tag follows program information as it advances through the instruction queue. When a tagged instruction
reaches the head of the queue a tag hit occurs and triggers the state sequencer.
Each comparator control register features a TAG bit, which controls whether the comparator match will
cause a trigger immediately or tag the opcode at the matched address. If a comparator is enabled for tagged
comparisons, the address stored in the comparator match address registers must be an opcode address for
the trigger to occur.
Both S12XCPU and XGATE opcodes can be tagged with the comparator register TAG bits.
Using Begin trigger together with tagging, if the tagged instruction is about to be executed then the
transition to the next state sequencer state occurs. If the transition is to the Final State, tracing is started.
Only upon completion of the tracing session can a breakpoint be generated. Similarly using Mid trigger
with tagging, if the tagged instruction is about to be executed then the trace is continued for another 32
lines. Upon tracing completion the breakpoint is generated. Using End trigger, when the tagged instruction
is about to be executed and the next transition is to Final State then a breakpoint is generated immediately,
before the tagged instruction is carried out.
R/W monitoring is not useful for tagged operations since the trigger occurs based on the tagged opcode
reaching the execution stage of the instruction queue. Similarly access size (SZ) monitoring and data bus
monitoring is not useful if tagged triggering is selected, since the tag is attached to the opcode at the
matched address and is not dependent on the data bus nor on the size of access. Thus these bits are ignored
if tagged triggering is selected.
When configured for range comparisons and tagging, the ranges are accurate only to word boundaries.
S12X tagging is disabled when the BDM becomes active. Conversely BDM firmware commands are not
processed while tagging is active. XGATE tagging is possible when the BDM is active.
MC9S12XDP512 Data Sheet, Rev. 2.21
782
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.6.1
External Tagging using TAGHI and TAGLO
External tagging using the external TAGHI and TAGLO pins can only be used to tag S12XCPU opcodes;
tagging of XGATE code using these pins is not possible. An external tag triggers the state sequencer into
state0 when the tagged opcode reaches the execution stage of the instruction queue.
The pins operate independently, thus the state of one pin does not affect the function of the other. External
tagging is possible in emulation modes only. The presence of logic level 0 on either pin at the rising edge
of the external clock (ECLK) performs the function indicated in the Table 20-43. It is possible to tag both
bytes of an instruction word. If a taghit occurs, a breakpoint can be generated as defined by the DBGBRK
and BDM bits in DBGC1. Each time TAGHI or TAGLO are low on the rising edge of ECLK, the old tag
is replaced by a new one.
Table 20-43. Tag Pin Function
TAGHI
1
1
0
0
20.4.6.2
TAGLO
1
0
1
0
Tag
No tag
Low byte
High byte
Both bytes
Unconditional Tagging Function
In emulation modes a low assertion of PE5/TAGLO/MODA in the 7th or 8th bus cycle after reset enables
the unconditional tagging function, allowing immediate tagging via TAGHI/TAGLO with breakpoint to
BDM independent of the ARM, BDM and DBGBRK bits. Conversely these bits are not affected by
unconditional tagging. The unconditional tagging function remains enabled until the next reset. This
function allows an immediate entry to BDM in emulation modes before user code execution. The TAGLO
assertion must be in the 7th or 8th bus cycle following the end of reset, whereby the prior RESET pin
assertion lasts the full 192 bus cycles.
20.4.7
Breakpoints
There are several ways to generate breakpoints to the XGATE and S12XCPU modules
• Through XGATE software breakpoint requests.
• From comparator channel triggers to final state.
• Using software to write to the TRIG bit in the DBGC1 register.
• From taghits generated using the external TAGHI and TAGLO pins.
• Through the auxilliary forced breakpoint input.
20.4.7.1
XGATE Software Breakpoints
The XGATE software breakpoint instruction BRK can request an S12XCPU breakpoint, via the
S12XDBG module. In this case, if the XGSBPE bit is set, the S12XDBG module immediately generates
a forced breakpoint request to the S12XCPU, the state sequencer is returned to state0 and tracing, if active,
is terminated. If configured for BEGIN trigger and tracing has not yet been triggered from another source,
the trace buffer contains no information. Breakpoint requests from the XGATE module do not depend
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
783
Chapter 20 S12X Debug (S12XDBGV3) Module
upon the state of the DBGBRK or ARM bits in DBGC1. They depend solely on the state of the XGSBPE
and BDM bits. Thus it is not necessary to ARM the DBG module to use XGATE software breakpoints to
generate breakpoints in the S12XCPU program flow, but it is necessary to set XGSBPE. Furthermore, if a
breakpoint to BDM is required, the BDM bit must also be set. When the XGATE requests an S12XCPU
breakpoint, the XGATE program flow stops by default, independent of the S12XDBG module.
20.4.7.2
Breakpoints From Internal Comparator Channel Final State Triggers
Breakpoints can be generated when internal comparator channels trigger the state sequencer to the Final
State. If configured for tagging, then the breakpoint is generated when the tagged opcode reaches the
execution stage of the instruction queue.
If a tracing session is selected by the TSOURCE bits, breakpoints are requested when the tracing session
has completed, thus if Begin or Mid aligned triggering is selected, the breakpoint is requested only on
completion of the subsequent trace (see Table 20-44). If no tracing session is selected, breakpoints are
requested immediately.
If the BRK bit is set on the triggering channel, then the breakpoint is generated immediately independent
of tracing trigger alignment.
Table 20-44. Breakpoint Setup For Both XGATE and S12XCPU Breakpoints
BRK
TALIGN
DBGBRK[n]
Breakpoint Alignment
0
00
0
Fill Trace Buffer until trigger
(no breakpoints — keep running)
0
00
1
Fill Trace Buffer until trigger, then breakpoint request occurs
0
01
0
Start Trace Buffer at trigger
(no breakpoints — keep running)
0
01
1
Start Trace Buffer at trigger
A breakpoint request occurs when Trace Buffer is full
0
10
0
Store a further 32 Trace Buffer line entries after trigger
(no breakpoints — keep running)
0
10
1
Store a further 32 Trace Buffer line entries after trigger
Request breakpoint after the 32 further Trace Buffer entries
1
00,01,10
1
Terminate tracing and generate breakpoint immediately on trigger
1
00,01,10
0
Terminate tracing immediately on trigger
x
11
x
Reserved
20.4.7.3
Breakpoints Generated Via The TRIG Bit
If a TRIG triggers occur, the Final State is entered. Tracing trigger alignment is defined by the TALIGN
bits. If a tracing session is selected by the TSOURCE bits, breakpoints are requested when the tracing
session has completed, thus if Begin or Mid aligned triggering is selected, the breakpoint is requested only
on completion of the subsequent trace (see Table 20-44). If no tracing session is selected, breakpoints are
requested immediately. TRIG breakpoints are possible even if the S12XDBG module is disarmed.
MC9S12XDP512 Data Sheet, Rev. 2.21
784
Freescale Semiconductor
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.7.4
Breakpoints Via TAGHI Or TAGLO Pin Taghits
Tagging using the external TAGHI/TAGLO pins always ends the session immediately at the tag hit. It is
always end aligned, independent of internal channel trigger alignment configuration.
20.4.7.5
Auxilliary Breakpoint Input
When this signal asserts tracing is terminated and an immediate forced breakpoints are generated,
depending on the configuration of DBGBRK bits.
20.4.7.6
S12XDBG Breakpoint Priorities
XGATE software breakpoints have the highest priority. Active tracing sessions are terminated
immediately.
If a TRIG trigger occurs after Begin or Mid aligned tracing has already been triggered by a comparator
instigated transition to Final State, then TRIG no longer has an effect. When the associated tracing session
is complete, the breakpoint occurs. Similarly if a TRIG is followed by a subsequent trigger from a
comparator channel whose BRK = 0, it has no effect, since tracing has already started.
If a comparator tag hit occurs simultaneously with an external TAGHI/TAGLO hit, the state sequencer
enters state0. TAGHI/TAGLO triggers are always end aligned, to end tracing immediately, independent of
the tracing trigger alignment bits TALIGN[1:0].
If a forced and tagged breakpoint coincide, the forced breakpoint occurs too late to prevent the tagged
instruction being loaded into the execution unit. Conversely the taghit is too late to prevent the breakpoint
request in the DBG module. Thus the S12XCPU suppresses the taghit although the tagged instruction is
executed.
Considering the code example below the forced breakpoint is requested when the location COUNTER is
accessed. This is signalled to the S12XCPU when the next (tagged) instruction (NOP) is already in the
execution stage, thus the tagged instruction is carried out but the tagged breakpoint is suppressed. Reading
the PC with BDM READ_PC returns $C008
c000
c003
c004
c007
00
[BDM
c008
cf ff 00
a7
72 70 08
a7
START
MARK
firmware commands]
20 01
20.4.7.6.1
LDS
NOP
INC
NOP
BGND
BRA
#$FF00
COUNTER ; Forced breakpoint location = COUNTER
; Tagged opcode location = MARK
END ; 1st instruction on return from BDM
S12XDBG Breakpoint Priorities And BDM Interfacing
Breakpoint operation is dependent on the state of the S12XBDM module. If the S12XBDM module is
active, the S12XCPU is executing out of BDM firmware and S12X breakpoints are disabled. In addition,
while executing a BDM TRACE command, tagging into BDM is disabled. If BDM is not active, the
breakpoint will give priority to BDM requests over SWI requests if the breakpoint happens to coincide
with a SWI instruction in the user’s code. On returning from BDM, the SWI from user code gets executed.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
785
Chapter 20 S12X Debug (S12XDBGV3) Module
Table 20-45. Breakpoint Mapping Summary
DBGBRK[1]
(DBGC1[3])
BDM Bit
(DBGC1[4])
BDM
Enabled
BDM
Active
S12X Breakpoint
Mapping
0
X
X
X
No Breakpoint
1
0
X
0
Breakpoint to SWI
1
0
X
1
No Breakpoint
1
1
0
X
Breakpoint to SWI
1
1
1
0
Breakpoint to BDM
1
1
1
1
No Breakpoint
BDM cannot be entered from a breakpoint unless the ENABLE bit is set in the BDM. If entry to BDM via
a BGND instruction is attempted and the ENABLE bit in the BDM is cleared, the S12XCPU actually
executes the BDM firmware code. It checks the ENABLE and returns if ENABLE is not set. If not serviced
by the monitor then the breakpoint is re-asserted when the BDM returns to normal S12XCPU flow.
If the comparator register contents coincide with the SWI/BDM vector address then an SWI in user code
and DBG breakpoint could occur simultaneously. The S12XCPU ensures that BDM requests have a higher
priority than SWI requests. Returning from the BDM/SWI service routine care must be taken to avoid re
triggering a breakpoint.
NOTE
When program control returns from a tagged breakpoint using an RTI or
BDM GO command without program counter modification it will return to
the instruction whose tag generated the breakpoint. To avoid re triggering a
breakpoint at the same location reconfigure the S12XDBG module in the
SWI routine, if configured for an SWI breakpoint, or over the BDM
interface by executing a TRACE command before the GO to increment the
program flow past the tagged instruction.
An XGATE software breakpoint is forced immediately, the tracing session
terminated and the XGATE module execution stops. The user can thus
determine if an XGATE breakpoint has occurred by reading out the XGATE
program counter over the BDM interface.
MC9S12XDP512 Data Sheet, Rev. 2.21
786
Freescale Semiconductor
Chapter 21
External Bus Interface (S12XEBIV2)
21.1
Introduction
This document describes the functionality of the XEBI block controlling the external bus interface.
The XEBI controls the functionality of a non-multiplexed external bus (a.k.a. ‘expansion bus’) in
relationship with the chip operation modes. Dependent on the mode, the external bus can be used for data
exchange with external memory, peripherals or PRU, and provide visibility to the internal bus externally
in combination with an emulator.
21.1.1
Features
The XEBI includes the following features:
• Output of up to 23-bit address bus and control signals to be used with a non-muxed external bus
• Bidirectional 16-bit external data bus with option to disable upper half
• Visibility of internal bus activity
21.1.2
•
•
•
Modes of Operation
Single-chip modes
The external bus interface is not available in these modes.
Expanded modes
Address, data, and control signals are activated on the external bus in normal expanded mode and
special test mode.
Emulation modes
The external bus is activated to interface to an external tool for emulation of normal expanded mode
or normal single-chip mode applications.
Refer to the S12X_MMC section for a detailed description of the MCU operating modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
787
Chapter 21 External Bus Interface (S12XEBIV2)
21.1.3
Block Diagram
Figure 21-1 is a block diagram of the XEBI with all related I/O signals.
ADDR[22:0]
DATA[15:0]
IVD[15:0]
LSTRB
R/W
EWAIT
XEBI
UDS
LDS
RE
WE
ACC[2:0]
IQSTAT[3:0]
Figure 21-1. XEBI Block Diagram
21.2
External Signal Description
The user is advised to refer to the SoC section for port configuration and location of external bus signals.
NOTE
The following external bus related signals are described in other sections:
CS2, CS1, CS0 (chip selects) — S12X_MMC section
ECLK, ECLKX2 (free-running clocks) — PIM section
TAGHI, TAGLO (tag inputs) — PIM section, S12X_DBG section
Table 21-1 outlines the pin names and gives a brief description of their function. Refer to the SoC section
and PIM section for reset states of these pins and associated pull-ups or pull-downs.
MC9S12XDP512 Data Sheet, Rev. 2.21
788
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
Table 21-1. External System Signals Associated with XEBI
Signal
1
I /O
EBI Signal
Multiplex
(T)ime2
(F)unction3
Available in Modes
Description
NS
SS
NX
ES
EX
ST
RE
O
—
—
Read Enable, indicates external read access
No
No
Yes
No
No
No
ADDR[22:20]
O
T
—
External address
No
No
Yes
Yes
Yes
Yes
ACC[2:0]
O
—
Access source
No
No
No
Yes
Yes
Yes
ADDR[19:16]
O
—
External address
No
No
Yes
Yes
Yes
Yes
IQSTAT[3:0]
O
—
Instruction Queue Status
No
No
No
Yes
Yes
Yes
ADDR[15:1]
O
—
External address
No
No
Yes
Yes
Yes
Yes
IVD[15:1]
O
—
Internal visibility read data (IVIS = 1)
No
No
No
Yes
Yes
Yes
ADDR0
O
F
External address
No
No
No
Yes
Yes
Yes
IVD0
O
Internal visibility read data (IVIS = 1)
No
No
No
Yes
Yes
Yes
UDS
O
—
Upper Data Select, indicates external access
to the high byte DATA[15:8]
No
No
Yes
No
No
No
LSTRB
O
—
Low Strobe, indicates valid data on DATA[7:0]
No
No
No
Yes
Yes
Yes
LDS
O
—
Lower Data Select, indicates external access
to the low byte DATA[7:0]
No
No
Yes
No
No
No
R/W
O
—
Read/Write, indicates the direction of internal
data transfers
No
No
No
Yes
Yes
Yes
WE
O
—
Write Enable, indicates external write access
No
No
Yes
No
No
No
DATA[15:8]
I/O
—
—
Bidirectional data (even address)
No
No
Yes
Yes
Yes
Yes
DATA[7:0]
I/O
—
—
Bidirectional data (odd address)
No
No
Yes
Yes
Yes
Yes
I
—
—
External control for external bus access
stretches (adding wait states)
No
No
Yes
No
Yes
No
EWAIT
T
T
T
F
F
1
All inputs are capable of reducing input threshold level
Time-multiplex means that the respective signals share the same pin on chip level and are active alternating in a dedicated
time slot (in modes where applicable).
3
Function-multiplex means that one of the respective signals sharing the same pin on chip level continuously uses the pin
depending on configuration and reset state.
2
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
789
Chapter 21 External Bus Interface (S12XEBIV2)
21.3
Memory Map and Register Definition
This section provides a detailed description of all registers accessible in the XEBI.
21.3.1
Module Memory Map
The registers associated with the XEBI block are shown in Figure 21-2.
Register
Name
EBICTL0
Bit 7
R
W
EBICTL1
R
W
ITHRS
EWAITE
6
0
5
4
3
2
1
Bit 0
HDBE
ASIZ4
ASIZ3
ASIZ2
ASIZ1
ASIZ0
0
0
0
EXSTR2
EXSTR1
EXSTR0
0
= Unimplemented or Reserved
Figure 21-2. XEBI Register Summary
21.3.2
Register Descriptions
The following sub-sections provide a detailed description of each register and the individual register bits.
All control bits can be written anytime, but this may have no effect on the related function in certain
operating modes. This allows specific configurations to be set up before changing into the target operating
mode.
NOTE
Depending on the operating mode an available function may be enabled,
disabled or depend on the control register bit. Reading the register bits will
reflect the status of related function only if the current operating mode
allows user control. Please refer the individual bit descriptions.
MC9S12XDP512 Data Sheet, Rev. 2.21
790
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.3.2.1
External Bus Interface Control Register 0 (EBICTL0)
7
R
W
Reset
6
0
ITHRS
0
0
5
4
3
2
1
0
HDBE
ASIZ4
ASIZ3
ASIZ2
ASIZ1
ASIZ0
1
1
1
1
1
1
= Unimplemented or Reserved
Figure 21-3. External Bus Interface Control Register 0 (EBICTL0)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes, the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
This register controls input pin threshold level and determines the external address and data bus sizes in
normal expanded mode. If not in use with the external bus interface, the related pins can be used for
alternative functions.
External bus is available as programmed in normal expanded mode and always full-sized in emulation
modes and special test mode; function not available in single-chip modes.
Table 21-2. EBICTL0 Field Descriptions
Field
Description
7
ITHRS
Reduced Input Threshold — This bit selects reduced input threshold on external data bus pins and specific
control input signals which are in use with the external bus interface in order to adapt to external devices with a
3.3 V, 5 V tolerant I/O.
The reduced input threshold level takes effect depending on ITHRS, the operating mode and the related enable
signals of the EBI pin function as summarized in Table 21-3.
0 Input threshold is at standard level on all pins
1 Reduced input threshold level enabled on pins in use with the external bus interface
5
HDBE
High Data Byte Enable — This bit enables the higher half of the 16-bit data bus. If disabled, only the lower 8-bit
data bus can be used with the external bus interface. In this case the unused data pins and the data select
signals (UDS and LDS) are free to be used for alternative functions.
0 DATA[15:8], UDS, and LDS disabled
1 DATA[15:8], UDS, and LDS enabled
4–0
ASIZ[4:0]
External Address Bus Size — These bits allow scalability of the external address bus. The programmed value
corresponds to the number of available low-aligned address lines (refer to Table 21-4). All address lines
ADDR[22:0] start up as outputs after reset in expanded modes. This needs to be taken into consideration when
using alternative functions on relevant pins in applications which utilize a reduced external address bus.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
791
Chapter 21 External Bus Interface (S12XEBIV2)
Table 21-3. Input Threshold Levels on External Signals
ITHRS
External Signal
NS
SS
NX
Standard
Standard
Standard
DATA[15:8]
TAGHI, TAGLO
0
DATA[7:0]
EWAIT
DATA[15:8]
TAGHI, TAGLO
1
Reduced
if HDBE = 1
DATA[7:0]
Standard
Standard
EX
ST
Reduced
Reduced
Standard
Standard
Reduced
Reduced
Reduced
Standard
Reduced
if EWAITE = 1
Standard
Standard
Reduced
Reduced
if EWAITE = 1
EWAIT
ES
Table 21-4. External Address Bus Size
ASIZ[4:0]
Available External Address Lines
00000
None
00001
UDS
00010
ADDR1, UDS
00011
ADDR[2:1], UDS
:
:
10110
ADDR[21:1], UDS
10111
:
11111
ADDR[22:1], UDS
MC9S12XDP512 Data Sheet, Rev. 2.21
792
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.3.2.2
External Bus Interface Control Register 1 (EBICTL1)
7
R
W
EWAITE
Reset
0
6
5
4
3
0
0
0
0
0
0
0
0
2
1
0
EXSTR2
EXSTR1
EXSTR0
1
1
1
= Unimplemented or Reserved
Figure 21-4. External Bus Interface Control Register 1 (EBICTL1)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
This register is used to configure the external access stretch (wait) function.
Table 21-5. EBICTL1 Field Descriptions
Field
Description
7
EWAITE
External Wait Enable — This bit enables the external access stretch function using the external EWAIT input
pin. Enabling this feature may have effect on the minimum number of additional stretch cycles (refer to
Table 21-6).
External wait feature is only active if enabled in normal expanded mode and emulation expanded mode; function
not available in all other operating modes.
0 External wait is disabled
1 External wait is enabled
2–0
EXSTR[2:0]
External Access Stretch Bits 2, 1, 0 — This three bit field determines the amount of additional clock stretch
cycles on every access to the external address space as shown in Table 21-6. The minimum number of stretch
cycles depends on the EWAITE setting.
Stretch cycles are added as programmed in normal expanded mode and emulation expanded mode; function
not available in all other operating modes.
Table 21-6. External Access Stretch Bit Definition
Number of Stretch Cycles
EXSTR[2:0]
EWAITE = 0
EWAITE = 1
000
1 cycle
>= 2 cycles
001
2 cycles
>= 2 cycles
010
3 cycles
>= 3 cycles
011
4 cycles
>= 4 cycles
100
5 cycles
>= 5 cycles
101
6 cycles
>= 6 cycles
110
7 cycles
>= 7 cycles
111
8 cycles
>= 8 cycles
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
793
Chapter 21 External Bus Interface (S12XEBIV2)
21.4
Functional Description
This section describes the functions of the external bus interface. The availability of external signals and
functions in relation to the operating mode is initially summarized and described in more detail in separate
sub-sections.
21.4.1
Operating Modes and External Bus Properties
A summary of the external bus interface functions for each operating mode is shown in Table 21-7.
Table 21-7. Summary of Functions
Single-Chip Modes
Properties
(if Enabled)
Normal
Single-Chip
Expanded Modes
Special
Single-Chip
Normal
Expanded
Emulation
Single-Chip
Emulation
Expanded
Special
Test
2 cycles
read external
write int & ext
2 cycles
read external
write int & ext
2 cycles
read internal
write internal
1 cycle
1 cycle
1 cycle
Timing Properties
PRR access
1
2 cycles
read internal
write internal
2 cycles
read internal
write internal
2 cycles
read internal
write internal
Internal access
visible externally
—
—
External
address access
and
unimplemented area
access2
—
—
Max. of 2 to 9
programmed
cycles
or n cycles of
ext. wait3
1 cycle
Max. of 2 to 9
programmed
cycles
or n cycles of
ext. wait3
1 cycle
Flash area
address access4
—
—
—
1 cycle
1 cycle
1 cycle
—
Signal Properties
ADDR[22:20]/A ADDR[22:20]/A
CC[2:0]
CC[2:0]
ADDR[19:16]/ ADDR[19:16]/
IQSTAT[3:0]
IQSTAT[3:0]
ADDR[15:0]/
ADDR[15:0]/
IVD[15:0]
IVD[15:0]
DATA[15:0]
DATA[15:0]
ADDR[22:0]
DATA[15:0]
Bus signals
—
—
ADDR[22:1]
DATA[15:0]
Data select signals
(if 16-bit data bus)
—
—
UDS
LDS
ADDR0
LSTRB
ADDR0
LSTRB
ADDR0
LSTRB
Data direction signals
—
—
RE
WE
R/W
R/W
R/W
External wait
feature
—
—
EWAIT
—
EWAIT
—
Reduced input
threshold enabled on
—
—
Refer to
Table 21-3
DATA[15:0]
EWAIT
DATA[15:0]
EWAIT
Refer to
Table 21-3
1
Incl. S12X_EBI registers
Refer to S12X_MMC section.
3 If EWAITE = 1, the minimum number of external bus cycles is 3.
4 Available only if configured appropriately by ROMON and EROMON (refer to S12X_MMC section).
2
MC9S12XDP512 Data Sheet, Rev. 2.21
794
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.4.2
Internal Visibility
Internal visibility allows the observation of the internal MCU address and data bus as well as the
determination of the access source and the CPU pipe (queue) status through the external bus interface.
Internal visibility is always enabled in emulation single chip mode and emulation expanded mode. Internal
CPU and BDM accesses are made visible on the external bus interface, except those to BDM firmware and
BDM registers.
Internal reads are made visible on ADDRx/IVDx (address and read data multiplexed, see Table 21-9 to
Table 21-11), internal writes on ADDRx and DATAx (see Table 21-12 to Table 21-14). R/W and LSTRB
show the type of access. External read data are also visible on IVDx.
21.4.2.1
Access Source and Instruction Queue Status Signals
The access source (bus master) can be determined from the external bus control signals ACC[2:0] as
shown in Table 21-8.
Table 21-8. Determining Access Source from Control Signals
ACC[2:0]
Access Description
000
Repetition of previous access cycle
001
CPU access
010
BDM access
011
XGATE PRR access1
100
No access2
101, 110, 111
1
2
Reserved
Invalid IVD brought out in read cycles
Denotes also accesses to BDM firmware and BDM registers (IQSTATx are
‘XXXX’ and R/W = 1 in these cases)
The CPU instruction queue status (execution-start and data-movement information) is brought out as
IQSTAT[3:0] signals. For decoding of the IQSTAT values, refer to the S12X_CPU section.
21.4.2.2
Emulation Modes Timing
A bus access lasts 1 ECLK cycle. In case of a stretched external access (emulation expanded mode), up to
an infinite amount of ECLK cycles may be added. ADDRx values will only be shown in ECLK high
phases, while ACCx, IQSTATx, and IVDx values will only be presented in ECLK low phases.
Based on this multiplex timing, ACCx are only shown in the current (first) access cycle. IQSTATx and
(for read accesses) IVDx follow in the next cycle. If the access takes more than one bus cycle, ACCx
display NULL (0x000) in the second and all following cycles of the access. IQSTATx display NULL
(0x0000) from the third until one cycle after the access to indicate continuation.
The resulting timing pattern of the external bus signals is outlined in the following tables for read, write
and interleaved read/write accesses. Three examples represent different access lengths of 1, 2, and n–1 bus
cycles. Non-shaded bold entries denote all values related to Access #0.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
795
Chapter 21 External Bus Interface (S12XEBIV2)
The following terminology is used:
‘addr’ — value(ADDRx); small letters denote the logic values at the respective pins
‘x’ — Undefined output pin values
‘z’ — Tristate pins
‘?’ — Dependent on previous access (read or write); IVDx: ‘ivd’ or ‘x’; DATAx: ‘data’ or ‘z’
21.4.2.2.1
Read Access Timing
Table 21-9. Read Access (1 Cycle)
Access #0
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
1
Access #1
2
high
low
addr 0
iqstat -1
high
low
addr 1
iqstat 0
acc 0
...
DATA[15:0] (internal read)
...
?
DATA[15:0] (external read)
...
R/W
...
low
...
acc 2
...
addr 2
iqstat 1
...
ivd 1
...
z
...
ivd 0
z
z
?
z
1
1
...
high
acc 1
?
ADDR[15:0] / IVD[15:0]
3
z
z
data 0
z
data 1
z
...
1
1
1
1
...
Table 21-10. Read Access (2 Cycles)
Access #0
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
1
high
2
low
high
acc 0
addr 0
Access #1
3
low
high
000
iqstat-1
addr 0
iqstat 0
?
addr 1
x
...
low
...
acc 1
...
0000
...
ADDR[15:0] / IVD[15:0]
...
ivd 0
...
DATA[15:0] (internal read)
...
?
z
z
z
z
z
...
DATA[15:0] (external read)
...
?
z
z
z
data 0
z
...
R/W
...
1
1
1
1
1
1
...
Table 21-11. Read Access (n–1 Cycles)
Access #0
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
1
Access #1
2
high
low
addr 0
iqstat-1
3
high
low
addr 0
iqstat 0
acc 0
high
low
...
000
...
addr 0
0000
...
x
...
z
...
z
000
?
n
...
x
high
addr 1
...
low
...
acc 1
...
0000
...
ivd 0
...
z
...
ADDR[15:0] / IVD[15:0]
...
DATA[15:0] (internal read)
...
?
DATA[15:0] (external read)
...
?
z
z
z
z
z
...
data 0
z
...
R/W
...
1
1
1
1
1
1
...
1
1
...
z
z
z
z
MC9S12XDP512 Data Sheet, Rev. 2.21
796
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.4.2.2.2
Write Access Timing
Table 21-12. Write Access (1 Cycle)
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
Access #0
Access #1
Access #2
1
2
3
high
low
addr 0
iqstat -1
high
low
addr 1
iqstat 0
?
ADDR[15:0] / IVD[15:0]
...
DATA[15:0] (write)
...
?
R/W
...
0
high
low
...
acc 2
...
addr 2
iqstat 1
...
x
...
data 2
...
1
...
acc 1
acc 0
x
data 0
data 1
0
1
...
1
1
Table 21-13. Write Access (2 Cycles)
Access #0
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
ADDR[15:0] / IVD[15:0]
Access #1
1
high
2
low
3
high
low
acc 0
addr 0
iqstat-1
addr 0
iqstat 0
?
...
DATA[15:0] (write)
...
?
R/W
...
0
high
000
addr 1
x
data 0
0
0
0
1
...
low
...
acc 1
...
0000
...
x
...
x
...
1
...
Table 21-14. Write Access (n–1 Cycles)
Access #0
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
1
high
2
low
high
acc 0
addr 0
iqstat-1
...
DATA[15:0] (write)
...
?
R/W
...
0
3
low
high
000
addr 0
?
ADDR[15:0] / IVD[15:0]
Access #1
iqstat 0
addr 0
x
n
...
low
...
000
...
0000
...
x
...
high
addr 1
data 0
0
0
0
0
0
...
1
...
low
...
acc 1
...
0000
...
x
...
x
...
1
...
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
797
Chapter 21 External Bus Interface (S12XEBIV2)
21.4.2.2.3
Read-Write-Read Access Timing
Table 21-15. Interleaved Read-Write-Read Accesses (1 Cycle)
Bus cycle ->
...
ECLK phase
...
ADDR[22:20] / ACC[2:0]
...
ADDR[19:16] / IQSTAT[3:0] ...
Access #0
Access #1
Access #2
1
2
3
high
low
addr 0
iqstat -1
low
addr 1
iqstat 0
acc 0
...
DATA[15:0] (internal read)
...
?
DATA[15:0] (external read)
...
R/W
...
high
low
...
acc 2
...
addr 2
iqstat 1
...
x
...
z
...
(write) data 1
z
...
0
1
...
acc 1
?
ADDR[15:0] / IVD[15:0]
21.4.2.3
high
ivd 0
z
z
?
z
data 0
1
1
0
...
(write) data 1
1
Internal Visibility Data
Depending on the access size and alignment, either a word of read data is made visible on the address lines
or only the related data byte will be presented in the ECLK low phase. For details refer to Table 21-16.
Table 21-16. IVD Read Data Output
Access
Word read of data at an even and even+1 address
Word read of data at an odd and odd+1 internal RAM address (misaligned)
IVD[15:8]
IVD[7:0]
ivd(even)
ivd(even+1)
ivd(odd+1)
ivd(odd)
Byte read of data at an even address
ivd(even)
addr[7:0] (rep.)
Byte read of data at an odd address
addr[15:8] (rep.)
ivd(odd)
21.4.3
Accesses to Port Replacement Registers
All read and write accesses to PRR addresses take two bus clock cycles independent of the operating mode.
If writing to these addresses in emulation modes, the access is directed to both, the internal register and
the external resource while reads will be treated external.
The XEBI control registers also belong to this category.
21.4.4
Stretched External Bus Accesses
In order to allow fast internal bus cycles to coexist in a system with slower external resources, the XEBI
supports stretched external bus accesses (wait states).
This feature is available in normal expanded mode and emulation expanded mode for accesses to all
external addresses except emulation memory and PRR. In these cases the fixed access times are 1 or 2
cycles, respectively.
MC9S12XDP512 Data Sheet, Rev. 2.21
798
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
Stretched accesses are controlled by:
1. EXSTR[2:0] bits in the EBICTL1 register configuring fixed amount of stretch cycles
2. Activation of the external wait feature by EWAITE in EBICTL1 register
3. Assertion of the external EWAIT signal when EWAITE = 1
The EXSTR[2:0] control bits can be programmed for generation of a fixed number of 1 to 8 stretch cycles.
If the external wait feature is enabled, the minimum number of additional stretch cycles is 2. An arbitrary
amount of stretch cycles can be added using the EWAIT input.
EWAIT needs to be asserted at least for a minimal specified time window within an external access cycle
for the internal logic to detect it and add a cycle (refer to electrical characteristics). Holding it for additional
cycles will cause the external bus access to be stretched accordingly.
Write accesses are stretched by holding the initiator in its current state for additional cycles as programmed
and controlled by external wait after the data have been driven out on the external bus. This results in an
extension of time the bus signals and the related control signals are valid externally.
Read data are not captured by the system in normal expanded mode until the specified setup time before
the RE rising edge.
Read data are not captured in emulation expanded mode until the specified setup time before the falling
edge of ECLK.
In emulation expanded mode, accesses to the internal flash or the emulation memory (determined by
EROMON and ROMON bits; see S12X_MMC section for details) always take 1 cycle and stretching is
not supported. In case the internal flash is taken out of the map in user applications, accesses are stretched
as programmed and controlled by external wait.
21.4.5
Data Select and Data Direction Signals
The S12X_EBI supports byte and word accesses at any valid external address. The big endian system of
the MCU is extended to the external bus; however, word accesses are restricted to even aligned addresses.
The only exception is the visibility of misaligned word accesses to addresses in the internal RAM as this
module exclusively supports these kind of accesses in a single cycle.
With the above restriction, a fixed relationship is implied between the address parity and the dedicated bus
halves where the data are accessed: DATA[15:8] is related to even addresses and DATA[7:0] is related to
odd addresses.
In expanded modes the data access type is externally determined by a set of control signals, i.e., data select
and data direction signals, as described below. The data select signals are not available if using the external
bus interface with an 8-bit data bus.
21.4.5.1
Normal Expanded Mode
In normal expanded mode, the external signals RE, WE, UDS, LDS indicate the access type (read/write),
data size and alignment of an external bus access (Table 21-17).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
799
Chapter 21 External Bus Interface (S12XEBIV2)
Table 21-17. Access in Normal Expanded Mode
DATA[15:8]
Access
DATA[7:0]
RE WE UDS LDS
I/O data(addr) I/O data(addr)
Word write of data on DATA[15:0] at an even and even+1 address
1
0
0
0
Out data(even) Out
Byte write of data on DATA[7:0] at an odd address
1
0
1
0
Byte write of data on DATA[15:8] at an even address
1
0
0
1
Word read of data on DATA[15:0] at an even and even+1 address
0
1
0
0
In
Byte read of data on DATA[7:0] at an odd address
0
1
1
0
In
x
data(odd)
Out
data(odd)
In
x
data(even)
In
data(odd)
In
x
In
data(odd)
Out data(even)
Byte read of data on DATA[15:8] at an even address
0
1
0
1
In
data(even)
In
x
Indicates No Access
1
1
1
1
In
x
In
x
Unimplemented
1
1
1
0
In
x
In
x
1
1
0
1
In
x
In
x
21.4.5.2
Emulation Modes and Special Test Mode
In emulation modes and special test mode, the external signals LSTRB, R/W, and ADDR0 indicate the
access type (read/write), data size and alignment of an external bus access. Misaligned accesses to the
internal RAM and misaligned XGATE PRR accesses in emulation modes are the only type of access that
are able to produce LSTRB = ADDR0 = 1. This is summarized in Table 21-18.
Table 21-18. Access in Emulation Modes and Special Test Mode
DATA[15:8]
Access
DATA[7:0]
R/W LSTRB ADDR0
I/O
data(addr)
I/O
data(addr)
Word write of data on DATA[15:0] at an even and even+1
address
0
0
0
Out
data(even)
Out
data(odd)
Byte write of data on DATA[7:0] at an odd address
0
0
1
In
x
Out
data(odd)
data(odd)
In
Byte write of data on DATA[15:8] at an even address
0
1
0
Out
Word write at an odd and odd+1 internal RAM address
(misaligned — only in emulation modes)
0
1
1
Out data(odd+1) Out
x
Word read of data on DATA[15:0] at an even and even+1
address
1
0
0
In
data(even)
In
data(even+1)
Byte read of data on DATA[7:0] at an odd address
1
0
1
In
x
In
data(odd)
Byte read of data on DATA[15:8] at an even address
1
1
0
In
data(even)
In
x
Word read at an odd and odd+1 internal RAM address
(misaligned - only in emulation modes)
1
1
1
In
data(odd+1)
In
data(odd)
data(odd)
MC9S12XDP512 Data Sheet, Rev. 2.21
800
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.4.6
Low-Power Options
The XEBI does not support any user-controlled options for reducing power consumption.
21.4.6.1
Run Mode
The XEBI does not support any options for reducing power in run mode.
Power consumption is reduced in single-chip modes due to the absence of the external bus interface.
Operation in expanded modes results in a higher power consumption, however any unnecessary toggling
of external bus signals is reduced to the lowest indispensable activity by holding the previous states
between external accesses.
21.4.6.2
Wait Mode
The XEBI does not support any options for reducing power in wait mode.
21.4.6.3
Stop Mode
The XEBI will cease to function in stop mode.
21.5
Initialization/Application Information
This section describes the external bus interface usage and timing. Typical customer operating modes are
normal expanded mode and emulation modes, specifically to be used in emulator applications. Taking the
availability of the external wait feature into account the use cases are divided into four scenarios:
• Normal expanded mode
— External wait feature disabled
– External wait feature enabled
• Emulation modes
– Emulation single-chip mode (without wait states)
– Emulation expanded mode (with optional access stretching)
Normal single-chip mode and special single-chip mode do not have an external bus. Special test mode is
used for factory test only. Therefore, these modes are omitted here.
All timing diagrams referred to throughout this section are available in the Electrical Characteristics
appendix of the SoC section.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
801
Chapter 21 External Bus Interface (S12XEBIV2)
21.5.1
Normal Expanded Mode
This mode allows interfacing to external memories or peripherals which are available in the commercial
market. In these applications the normal bus operation requires a minimum of 1 cycle stretch for each
external access.
21.5.1.1
Example 1a: External Wait Feature Disabled
The first example of bus timing of an external read and write access with the external wait feature disabled
is shown in
• Figure ‘Example 1a: Normal Expanded Mode — Read Followed by Write’
The associated supply voltage dependent timing are numbers given in
•
•
Table ‘Example 1a: Normal Expanded Mode Timing VDD5 = 5.0 V (EWAITE = 0)’
Table ‘Example 1a: Normal Expanded Mode Timing VDD5 = 3.0 V (EWAITE = 0)’
Systems designed this way rely on the internal programmable access stretching. These systems have
predictable external memory access times. The additional stretch time can be programmed up to 8 cycles
to provide longer access times.
21.5.1.2
Example 1b: External Wait Feature Enabled
The external wait operation is shown in this example. It can be used to exceed the amount of stretch cycles
over the programmed number in EXSTR[2:0]. The feature must be enabled by writing EWAITE = 1.
If the EWAIT signal is not asserted, the number of stretch cycles is forced to a minimum of 2 cycles. If
EWAIT is asserted within the predefined time window during the access it will be strobed active and
another stretch cycle is added. If strobed inactive, the next cycle will be the last cycle before the access is
finished. EWAIT can be held asserted as long as desired to stretch the access.
An access with 1 cycle stretch by EWAIT assertion is shown in
• Figure ‘Example 1b: Normal Expanded Mode — Stretched Read Access’
• Figure ‘Example 1b: Normal Expanded Mode — Stretched Write Access’
The associated timing numbers for both operations are given in
• Table ‘Example 1b: Normal Expanded Mode Timing VDD5 = 5.0 V (EWAITE = 1)’
• Table ‘Example 1b: Normal Expanded Mode Timing VDD5 = 3.0 V (EWAITE = 1)’
It is recommended to use the free-running clock (ECLK) at the fastest rate (bus clock rate) to synchronize
the EWAIT input signal.
MC9S12XDP512 Data Sheet, Rev. 2.21
802
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.5.2
Emulation Modes
In emulation mode applications, the development systems use a custom PRU device to rebuild the
single-chip or expanded bus functions which are lost due to the use of the external bus with an emulator.
Accesses to a set of registers controlling the related ports in normal modes (refer to SoC section) are
directed to the external bus in emulation modes which are substituted by PRR as part of the PRU. Accesses
to these registers take a constant time of 2 cycles.
Depending on the setting of ROMON and EROMON (refer to S12X_MMC section), the program code
can be executed from internal memory or an optional external emulation memory (EMULMEM). No wait
state operation (stretching) of the external bus access is done in emulation modes when accessing internal
memory or emulation memory addresses.
In both modes observation of the internal operation is supported through the external bus (internal
visibility).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
803
Chapter 21 External Bus Interface (S12XEBIV2)
21.5.2.1
Example 2a: Emulation Single-Chip Mode
This mode is used for emulation systems in which the target application is operating in normal single-chip
mode.
Figure 21-5 shows the PRU connection with the available external bus signals in an emulator application.
S12X_EBI
Emulator
ADDR[22:0]/IVD[15:0]
DATA[15:0]
EMULMEM
PRU
PRR
Ports
LSTRB
R/W
ADDR[22:20]/ACC[2:0]
ADDR[19:16]/
IQSTAT[3:0]
ECLK
ECLKX2
Figure 21-5. Application in Emulation Single-Chip Mode
The timing diagram for this operation is shown in:
• Figure ‘Example 2a: Emulation Single-Chip Mode — Read Followed by Write’
The associated timing numbers are given in:
• Table ‘Example 2a: Emulation Single-Chip Mode Timing (EWAITE = 0)’
Timing considerations:
• Signals muxed with address lines ADDRx, i.e., IVDx, IQSTATx and ACCx, have the same timing.
• LSTRB has the same timing as R/W.
• ECLKX2 rising edges have the same timing as ECLK edges.
• The timing for accesses to PRU registers, which take 2 cycles to complete, is the same as the timing
for an external non-PRR access with 1 cycle of stretch as shown in example 2b.
MC9S12XDP512 Data Sheet, Rev. 2.21
804
Freescale Semiconductor
Chapter 21 External Bus Interface (S12XEBIV2)
21.5.2.2
Example 2b: Emulation Expanded Mode
This mode is used for emulation systems in which the target application is operating in normal expanded
mode.
If the external bus is used with a PRU, the external device rebuilds the data select and data direction signals
UDS, LDS, RE, and WE from the ADDR0, LSTRB, and R/W signals.
Figure 21-6 shows the PRU connection with the available external bus signals in an emulator application.
S12X_EBI
Emulator
ADDR[22:0]/IVD[15:0]
DATA[15:0]
EMULMEM
PRU
PRR
LSTRB
R/W
Ports
UDS
LDS
RE
WE
ADDR[22:20]/ACC[2:0]
ADDR[19:16]/
IQSTAT[3:0]
EWAIT
ECLK
ECLKX2
CS[2:0]
Figure 21-6. Application in Emulation Expanded Mode
The timings of accesses with 1 stretch cycle are shown in
• Figure ‘Example 2b: Emulation Expanded Mode — Read with 1 Stretch Cycle’
• Figure ‘Example 2b: Emulation Expanded Mode — Write with 1 Stretch Cycle’
The associated timing numbers are given in
• Table ‘Example 2b: Emulation Expanded Mode Timing VDD5 = 5.0 V (EWAITE = 0)’ (this also
includes examples for alternative settings of 2 and 3 additional stretch cycles)
Timing considerations:
• If no stretch cycle is added, the timing is the same as in Emulation Single-Chip Mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
805
Chapter 21 External Bus Interface (S12XEBIV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
806
Freescale Semiconductor
Chapter 22
DP512 Port Integration Module (S12XDP512PIMV2)
22.1
Introduction
The S12XD family port integration module (below referred to as PIM) establishes the interface between
the peripheral modules including the non-multiplexed external bus interface module (S12X_EBI) and the
I/O pins for all ports. It controls the electrical pin properties as well as the signal prioritization and
multiplexing on shared pins.
This document covers the description of:
• Port A, B used as address output of the S12X_EBI
• Port C, D used as data I/O of the S12X_EBI
• Port E associated with the S12X_EBI control signals and the IRQ, XIRQ interrupt inputs
• Port K associated with address output and control signals of the S12X_EBI
• Port T connected to the Enhanced Capture Timer (ECT) module
• Port S associated with 2 SCI and 1 SPI modules
• Port M associated with 4 MSCAN modules and 1 SCI module
• Port P connected to the PWM and 2 SPI modules — inputs can be used as an external interrupt
source
• Port H associated with 2 SCI modules — inputs can be used as an external interrupt source
• Port J associated with 1 MSCAN, 1 SCI, and 2 IIC modules — inputs can be used as an external
interrupt source
• Port AD0 and AD1 associated with one 8-channel and one 16-channel ATD module
Most I/O pins can be configured by register bits to select data direction and drive strength, to enable and
select pull-up or pull-down devices. Interrupts can be enabled on specific pins resulting in status flags.
The I/O’s of 2 MSCAN and all 3 SPI modules can be routed from their default location to alternative port
pins.
NOTE
The implementation of the PIM is device dependent. Therefore some
functions are not available on certain derivatives or 112-pin and 80-pin
package options.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
807
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.1.1
Features
A full-featured PIM module includes these distinctive registers:
• Data and data direction registers for Ports A, B, C, D, E, K, T, S, M, P, H, J, AD0, and AD1 when
used as general-purpose I/O
• Control registers to enable/disable pull-device and select pull-ups/pull-downs on Ports T, S, M, P,
H, and J on per-pin basis
• Control registers to enable/disable pull-up devices on Ports AD0, and AD1 on per-pin basis
• Single control register to enable/disable pull-ups on Ports A, B, C, D, E, and K on per-port basis
and on BKGD pin
• Control registers to enable/disable reduced output drive on Ports T, S, M, P, H, J, AD0, and AD1
on per-pin basis
• Single control register to enable/disable reduced output drive on Ports A, B, C, D, E, and K on
per-port basis
• Control registers to enable/disable open-drain (wired-OR) mode on Ports S and M
• Control registers to enable/disable pin interrupts on Ports P, H, and J
• Interrupt flag register for pin interrupts on Ports P, H, and J
• Control register to configure IRQ pin operation
• Free-running clock outputs
A standard port pin has the following minimum features:
• Input/output selection
• 5V output drive with two selectable drive strengths
• 5V digital and analog input
• Input with selectable pull-up or pull-down device
Optional features:
• Open drain for wired-OR connections
• Interrupt inputs with glitch filtering
• Reduced input threshold to support low voltage applications
22.1.2
Block Diagram
Figure 22-1 is a block diagram of the PIM.
• Signals shown in Bold are not available in 80-pin packages.
• Signals shown in Bold-Italics are neither available in 112-pin nor in 80-pin packages.
• Shaded labels denote alternative module routing ports.
MC9S12XDP512 Data Sheet, Rev. 2.21
808
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8
Port D
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Port AD1
Port AD0
Port T
Port P
SCK
SS
MOSI
MISO
SS
SPI1 SCK
MOSI
MISO
SPI2
PP7
PP6
PP5
PP4
PP3
PP2
PP1
PP0
PS7
PS6
PS5
PS4
PS3
PS2
PS1
PS0
SS
SPI0 SCK
MOSI
MISO
TXD
SCI1 RXD
TXD
SCI0 RXD
BKGD/MODC
ECLKX2/XCLKS
TAGHI/MODB
TAGLO/RE/MODA
ECLK
S12X_EBI
LDS/LSTRB
S12X_BDM
WE/R/W
S12X_DBG
IRQ
XIRQ
S12X_INT
EWAIT/ROMCTL
NOACC/ADDR22
ADDR21
ADRR20
ADDR19
ADDR18
ADDR17
ADDR16
Port E
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0/UDS
PWM7
PWM6
PWM5
PWM4
PWM3
PWM2
PWM1
PWM0
PT7
PT6
PT5
PT4
PT3
PT2
PT1
PT0
Port K
ADDR15
ADDR14
ADDR13
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
TXD
SCI3
RXD
PAD22
PAD20
PAD18
PAD16
PAD14
PAD12
PAD10
PAD08
PAD07
PAD06
PAD05
PAD04
PAD03
PAD02
PAD01
PAD00
Port S
IOC7
IOC6
IOC5
IOC4
IOC3
IOC2
IOC1
IOC0
ATD1
TXCAN
CAN3
RXCAN
TXCAN
CAN2
RXCAN
TXCAN
CAN1
RXCAN
TXCAN
CAN0
RXCAN
Interrupt Logic
SPI0
CAN0
CAN0
CAN4
CAN4
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
SCI2
PWM
Interrupt Logic
TXCAN
CAN4
RXCAN
SCL
IIC0
SDA
SCL
IIC1
SDA
TXD
RXD
AN15,14
AN13,12
AN11,10
AN9,8
AN7,6
AN5,4
AN3,2
AN1,0
ATD0
TXD
SCI5
RXD
TXD
SCI4
RXD
Port C
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Port B
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Port A
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
Port M
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
Port J
PM7
PM6
PM5
PM4
PM3
PM2
PM1
PM0
Interrupt Logic
CAN0
PJ6
PJ5
PJ4
PJ2
PJ1
PJ0
SPI1
PJ7
SPI2
Port H
PH7
PH6
PH5
PH4
PH3
PH2
PH1
PH0
ECT
Port Integration Module
PAD23
PAD21
PAD19
PAD17
PAD15
PAD13
PAD11
PAD09
BKGD
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
PK7
PK6
PK5
PK4
PK3
PK2
PK1
PK0
Figure 22-1. PIM Block Diagram
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
809
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.2
External Signal Description
This section lists and describes the signals that do connect off-chip.
22.2.1
Signal Properties
Table 22-1 shows all the pins and their functions that are controlled by the PIM. Refer to Section 22.4,
“Functional Description” for the availability of the individual pins in the different package options.
NOTE
If there is more than one function associated with a pin, the priority is
indicated by the position in the table from top (highest priority) to bottom
(lowest priority).
Table 22-1. Pin Functions and Priorities (Sheet 1 of 7)
Port
Pin Name
Pin Function
and Priority
I/O
—
BKGD
MODC1
I
BKGD
I/O
S12X_BDM communication pin
ADDR[15:8]
mux
IVD[15:8]2
O
High-order external bus address output
(multiplexed with IVIS data)
GPIO
I/O
General-purpose I/O
ADDR[7:1]
mux
IVD[7:1]2
O
Low-order external bus address output
(multiplexed with IVIS data)
GPIO
I/O
General-purpose I/O
ADDR[0]
mux
IVD02
O
Low-order external bus address output
(multiplexed with IVIS data)
UDS
O
Upper data strobe
GPIO
I/O
General-purpose I/O
DATA[15:8]
I/O
High-order bidirectional data input/output
Configurable for reduced input threshold
GPIO
I/O
General-purpose I/O
DATA[7:0]
I/O
Low-order bidirectional data input/output
Configurable for reduced input threshold
GPIO
I/O
General-purpose I/O
A
B
PA[7:0]
PB[7:1]
PB[0]
C
D
PC[7:0]
PD[7:0]
Description
MODC input during RESET
Pin Function
after Reset
BKGD
Mode
dependent3
Mode
dependent3
Mode
dependent3
Mode
dependent3
MC9S12XDP512 Data Sheet, Rev. 2.21
810
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-1. Pin Functions and Priorities (Sheet 2 of 7)
Port
Pin Name
PE[7]
PE[6]
Pin Function
and Priority
I/O
XCLKS1
I
External clock selection input during RESET
ECLKX2
I
Free-running clock output at Core Clock rate (ECLK x 2)
GPIO
I/O
MODB1
I
MODB input during RESET
TAGHI
I
Instruction tagging low pin
Configurable for reduced input threshold
GPIO
I/O
MODA1
I
MODA input during RESET
RE
O
Read enable signal
TAGLO
I
Instruction tagging low pin
Configurable for reduced input threshold
GPIO
I/O
General-purpose I/O
ECLK
O
Free-running clock output at the Bus Clock rate or
programmable divided in normal modes
GPIO
I/O
General-purpose I/O
EROMCTL1
I
EROMON bit control input during RESET
LSTRB
O
Low strobe bar output
LDS
O
Lower data strobe
GPIO
I/O
General-purpose I/O
R/W
O
Read/write output for external bus
WE
O
Write enable signal
GPIO
I/O
General-purpose I/O
IRQ
I
GPIO
I/O
XIRQ
I
GPIO
I/O
PE[5]
E
PE[4]
PE[3]
PE[2]
Description
Pin Function
after Reset
General-purpose I/O
General-purpose I/O
Mode
dependent3
Maskable level- or falling edge-sensitive interrupt input
PE[1]
General-purpose I/O
Non-maskable level-sensitive interrupt input
PE[0]
General-purpose I/O
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
811
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-1. Pin Functions and Priorities (Sheet 3 of 7)
Port
Pin Name
PK[7]
K
PK[6:4]
PK[3:0]
T
Pin Function
and Priority
I/O
Pin Function
after Reset
ROMCTL1
I
ROMON bit control input during RESET
EWAIT
I
External Wait signal
Configurable for reduced input threshold
GPIO
I/O
General-purpose I/O
ADDR[22:20]
mux
ACC[2:0]2
O
Extended external bus address output
(multiplexed with access master output)
GPIO
I/O
General-purpose I/O
ADDR[19:16]
mux
IQSTAT[3:0]2
O
Extended external bus address output
(multiplexed with instruction pipe status bits)
GPIO
I/O
General-purpose I/O
IOC[7:0]
I/O
Enhanced Capture Timer Channels 7–0 input/output
GPIO
I/O
General-purpose I/O
SS0
I/O
Serial Peripheral Interface 0 slave select output in master
mode, input in slave mode or master mode.
GPIO
I/O
General-purpose I/O
SCK0
I/O
Serial Peripheral Interface 0 serial clock pin
GPIO
I/O
General-purpose I/O
MOSI0
I/O
Serial Peripheral Interface 0 master out/slave in pin
GPIO
I/O
General-purpose I/O
MISO0
I/O
Serial Peripheral Interface 0 master in/slave out pin
GPIO
I/O
General-purpose I/O
TXD1
O
Serial Communication Interface 1 transmit pin
GPIO
I/O
General-purpose I/O
RXD1
I
GPIO
I/O
General-purpose I/O
TXD0
O
Serial Communication Interface 0 transmit pin
GPIO
I/O
General-purpose I/O
RXD0
I
GPIO
I/O
Description
Mode
dependent3
PT[7:0]
GPIO
PS7
PS6
PS5
PS4
S
GPIO
PS3
Serial Communication Interface 1 receive pin
PS2
PS1
Serial Communication Interface 0 receive pin
PS0
General-purpose I/O
MC9S12XDP512 Data Sheet, Rev. 2.21
812
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-1. Pin Functions and Priorities (Sheet 4 of 7)
Port
Pin Name
Pin Function
and Priority
I/O
TXCAN3
O
MSCAN3 transmit pin
TXCAN4
O
MSCAN4 transmit pin
TXD3
O
Serial Communication Interface 3 transmit pin
GPIO
I/O
General-purpose I/O
RXCAN3
I
MSCAN3 receive pin
RXCAN4
I
MSCAN4 receive pin
RXD3
I
Serial Communication Interface 3 receive pin
GPIO
I/O
General-purpose I/O
TXCAN2
O
MSCAN2 transmit pin
TXCAN0
O
MSCAN0 transmit pin
TXCAN4
O
MSCAN4 transmit pin
SCK0
I/O
Serial Peripheral Interface 0 serial clock pin
If CAN0 is routed to PM[3:2] the SPI0 can still be used in
bidirectional master mode.
GPIO
I/O
General-purpose I/O
RXCAN2
I
MSCAN2 receive pin
RXCAN0
I
MSCAN0 receive pin
RXCAN4
I
MSCAN4 receive pin
MOSI0
I/O
Serial Peripheral Interface 0 master out/slave in pin
If CAN0 is routed to PM[3:2] the SPI0 can still be used in
bidirectional master mode.
GPIO
I/O
General-purpose I/O
TXCAN1
O
MSCAN1 transmit pin
TXCAN0
O
MSCAN0 transmit pin
SS0
I/O
Serial Peripheral Interface 0 slave select output in master
mode, input for slave mode or master mode.
GPIO
I/O
General-purpose I/O
RXCAN1
I
MSCAN1 receive pin
RXCAN0
I
MSCAN0 receive pin
MISO0
I/O
Serial Peripheral Interface 0 master in/slave out pin
GPIO
I/O
General-purpose I/O
TXCAN0
O
MSCAN0 transmit pin
GPIO
I/O
General-purpose I/O
RXCAN0
I
MSCAN0 receive pin
GPIO
I/O
General-purpose I/O
Description
Pin Function
after Reset
PM7
PM6
PM5
M
PM4
PM3
GPIO
PM2
PM1
PM0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
813
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-1. Pin Functions and Priorities (Sheet 5 of 7)
Port
Pin Name
PP7
PP6
PP5
PP4
Pin Function
and Priority
I/O
Pin Function
after Reset
PWM7
I/O
Pulse Width Modulator input/output channel 7
SCK2
I/O
Serial Peripheral Interface 2 serial clock pin
GPIO/KWP7
I/O
General-purpose I/O with interrupt
PWM6
O
Pulse Width Modulator output channel 6
SS2
I/O
Serial Peripheral Interface 2 slave select output in master
mode, input for slave mode or master mode.
GPIO/KWP6
I/O
General-purpose I/O with interrupt
PWM5
O
Pulse Width Modulator output channel 5
MOSI2
I/O
Serial Peripheral Interface 2 master out/slave in pin
GPIO/KWP5
I/O
General-purpose I/O with interrupt
PWM4
O
Pulse Width Modulator output channel 4
MISO2
I/O
Serial Peripheral Interface 2 master in/slave out pin
GPIO/KWP4
I/O
General-purpose I/O with interrupt
PWM3
O
Pulse Width Modulator output channel 3
SS1
I/O
Serial Peripheral Interface 1 slave select output in master
mode, input for slave mode or master mode.
GPIO/KWP3
I/O
General-purpose I/O with interrupt
PWM2
O
Pulse Width Modulator output channel 2
SCK1
I/O
Serial Peripheral Interface 1 serial clock pin
GPIO/KWP2
I/O
General-purpose I/O with interrupt
PWM1
O
Pulse Width Modulator output channel 1
MOSI1
I/O
Serial Peripheral Interface 1 master out/slave in pin
GPIO/KWP1
I/O
General-purpose I/O with interrupt
PWM0
O
Pulse Width Modulator output channel 0
MISO1
I/O
Serial Peripheral Interface 1 master in/slave out pin
GPIO/KWP0
I/O
General-purpose I/O with interrupt
Description
P
GPIO
PP3
PP2
PP1
PP0
MC9S12XDP512 Data Sheet, Rev. 2.21
814
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-1. Pin Functions and Priorities (Sheet 6 of 7)
Port
Pin Name
PH7
PH6
PH5
Pin Function
and Priority
I/O
SS2
I/O
Serial Peripheral Interface 2 slave select output in master
mode, input for slave mode or master mode
TXD5
O
Serial Communication Interface 5 transmit pin
GPIO/KWH7
I/O
General-purpose I/O with interrupt
SCK2
I/O
Serial Peripheral Interface 2 serial clock pin
RXD5
I
GPIO/KWH6
I/O
General-purpose I/O with interrupt
MOSI2
I/O
Serial Peripheral Interface 2 master out/slave in pin
TXD4
O
Serial Communication Interface 4 transmit pin
GPIO/KWH5
I/O
General-purpose I/O with interrupt
MISO2
I/O
Serial Peripheral Interface 2 master in/slave out pin
RXD4
I
GPIO/KWH4
I/O
General-purpose I/O with interrupt
SS1
I/O
Serial Peripheral Interface 1 slave select output in master
mode, input for slave mode or master mode.
GPIO/KWH3
I/O
General-purpose I/O with interrupt
SCK1
I/O
Serial Peripheral Interface 1 serial clock pin
GPIO/KWH2
I/O
General-purpose I/O with interrupt
MOSI1
I/O
Serial Peripheral Interface 1 master out/slave in pin
GPIO/KWH1
I/O
General-purpose I/O with interrupt
MISO1
I/O
Serial Peripheral Interface 1 master in/slave out pin
GPIO/KWH0
I/O
General-purpose I/O with interrupt
Description
Pin Function
after Reset
Serial Communication Interface 5 receive pin
H
GPIO
PH4
PH3
Serial Communication Interface 4 receive pin
PH2
PH1
PH0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
815
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-1. Pin Functions and Priorities (Sheet 7 of 7)
Port
Pin Name
Pin Function
and Priority
I/O
TXCAN4
O
MSCAN4 transmit pin
SCL0
O
Inter Integrated Circuit 0 serial clock line
TXCAN0
O
MSCAN0 transmit pin
GPIO/KWJ7
I/O
General-purpose I/O with interrupt
RXCAN4
I
SDA0
I/O
RXCAN0
I
GPIO/KWJ6
I/O
General-purpose I/O with interrupt
SCL1
O
Inter Integrated Circuit 1 serial clock line
CS2
O
Chip select 2
GPIO/KWJ7
I/O
General-purpose I/O with interrupt
SDA1
I/O
Inter Integrated Circuit 1 serial data line
CS0
O
Chip select 0
GPIO/KWJ6
I/O
General-purpose I/O with interrupt
CS1
O
Chip select 1
GPIO/KWJ2
I/O
General-purpose I/O with interrupt
TXD2
O
Serial Communication Interface 2 transmit pin
GPIO/KWJ1
I/O
General-purpose I/O with interrupt
RXD2
I
Serial Communication Interface 2 receive pin
CS3
O
Chip select 3
GPIO/KWJ0
I/O
General-purpose I/O with interrupt
GPIO
I/O
General-purpose I/O
AN[7:0]
I
ATD0 analog inputs
GPIO
I/O
General-purpose I/O
AN[15:0]
I
ATD1 analog inputs
Description
Pin Function
after Reset
PJ7
MSCAN4 receive pin
Inter Integrated Circuit 0 serial data line
PJ6
PJ5
J
PJ4
MSCAN0 receive pin
GPIO
PJ2
PJ1
PJ0
AD0
AD1
PAD[07:00]
GPIO
PAD[23:08]
GPIO
1
Function active when RESET asserted.
Only available in emulation modes or in Special Test Mode with IVIS on.
3 Refer also to Table 22-70 and S12X_EBI section.
2
MC9S12XDP512 Data Sheet, Rev. 2.21
816
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3
Memory Map and Register Definition
This section provides a detailed description of all PIM registers.
22.3.1
Module Memory Map
Table 22-2 shows the register map of the port integration module.
Table 22-2. PIM Memory Map (Sheet 1 of 3)
Address
Use
Access
0x0000
Port A Data Register (PORTA)
Read / Write
0x0001
Port B Data Register (PORTB)
Read / Write
0x0002
Port A Data Direction Register (DDRA)
Read / Write
0x0003
Port B Data Direction Register (DDRB)
Read / Write
0x0004
Port C Data Register (PORTC)
Read / Write
0x0005
Port D Data Register (PORTD)
Read / Write
0x0006
Port C Data Direction Register (DDRC)
Read / Write
0x0007
Port D Data Direction Register (DDRD)
Read / Write
0x0008
Port E Data Register (PORTE)
Read / Write1
0x0009
Port E Data Direction Register (DDRE)
Read / Write1
0x000A
:
0x000B
Non-PIM Address Range
0x000C
Pull-up Up Control Register (PUCR)
Read / Write1
0x000D
Reduced Drive Register (RDRIV)
Read / Write1
0x000E
:
0x001B
Non-PIM Address Range
0x001C
ECLK Control Register (ECLKCTL)
0x001D
PIM Reserved
0x001E
IRQ Control Register (IRQCR)
0x001F
PIM Reserved
—
0x0020
:
0x0031
Non-PIM Address Range
—
0x0032
Port K Data Register (PORTK)
Read / Write
0x0033
Port K Data Direction Register (DDRK)
Read / Write
0x0034
:
0x023F
Non-PIM Address Range
0x0240
Port T Data Register (PTT)
—
—
Read / Write1
—
Read / Write1
—
Read / Write
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
817
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-2. PIM Memory Map (Sheet 2 of 3)
Address
Use
Access
0x0241
Port T Input Register (PTIT)
Read
0x0242
Port T Data Direction Register (DDRT)
Read / Write
0x0243
Port T Reduced Drive Register (RDRT)
Read / Write
0x0244
Port T Pull Device Enable Register (PERT)
Read / Write
0x0245
Port T Polarity Select Register (PPST)
Read / Write
0x0246
Reserved
—
0x0247
Reserved
—
0x0248
Port S Data Register (PTS)
Read / Write
0x0249
Port S Input Register (PTIS)
Read
0x024A
Port S Data Direction Register (DDRS)
Read / Write
0x024B
Port S Reduced Drive Register (RDRS)
Read / Write
0x024C
Port S Pull Device Enable Register (PERS)
Read / Write
0x024D
Port S Polarity Select Register (PPSS)
Read / Write
0x024E
Port S Wired-OR Mode Register (WOMS)
Read / Write
0x024F
Reserved
0x0250
Port M Data Register (PTM)
Read / Write
0x0251
Port M Input Register (PTIM)
Read
0x0252
Port M Data Direction Register (DDRM)
Read / Write
0x0253
Port M Reduced Drive Register (RDRM)
Read / Write
0x0254
Port M Pull Device Enable Register (PERM)
Read / Write
0x0255
Port M Polarity Select Register (PPSM)
Read / Write
0x0256
Port M Wired-OR Mode Register (WOMM)
Read / Write
0x0257
Module Routing Register (MODRR)
Read / Write
0x0258
Port P Data Register (PTP)
Read / Write
0x0259
Port P Input Register (PTIP)
Read
0x025A
Port P Data Direction Register (DDRP)
Read / Write
0x025B
Port P Reduced Drive Register (RDRP)
Read / Write
0x025C
Port P Pull Device Enable Register (PERP)
Read / Write
0x025D
Port P Polarity Select Register (PPSP)
Read / Write
0x025E
Port P Interrupt Enable Register (PIEP)
Read / Write
0x025F
Port P Interrupt Flag Register (PIFP)
Read / Write
0x0260
Port H Data Register (PTH)
Read / Write
0x0261
Port H Input Register (PTIH)
Read
0x0262
Port H Data Direction Register (DDRH)
Read / Write
0x0263
Port H Reduced Drive Register (RDRH)
Read / Write
—
MC9S12XDP512 Data Sheet, Rev. 2.21
818
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-2. PIM Memory Map (Sheet 3 of 3)
Address
1
Use
Access
0x0264
Port H Pull Device Enable Register (PERH)
Read / Write
0x0265
Port H Polarity Select Register (PPSH)
Read / Write
0x0266
Port H Interrupt Enable Register (PIEH)
Read / Write
0x0267
Port H Interrupt Flag Register (PIFH)
Read / Write
0x0268
Port J Data Register (PTJ)
Read / Write1
0x0269
Port J Input Register (PTIJ)
Read
0x026A
Port J Data Direction Register (DDRJ)
Read / Write1
0x026B
Port J Reduced Drive Register (RDRJ)
Read / Write1
0x026C
Port J Pull Device Enable Register (PERJ)
Read / Write1
0x026D
Port J Polarity Select Register (PPSJ)
Read / Write1
0x026E
Port J Interrupt Enable Register (PIEJ)
Read / Write1
0x026F
Port J Interrupt Flag Register (PIFJ)
Read / Write1
0x0270
Reserved
0x0271
Port AD0 Data Register 1 (PT1AD0)
0x0272
Reserved
0x0273
Port AD0 Data Direction Register 1 (DDR1AD0)
0x0274
Reserved
0x0275
Port AD0 Reduced Drive Register 1 (RDR1AD0)
0x0276
Reserved
0x0277
Port AD0 Pull Up Enable Register 1 (PER1AD0)
Read / Write
0x0278
Port AD1 Data Register 0 (PT0AD1)
Read / Write
0x0279
Port AD1 Data Register 1 (PT1AD1)
Read / Write
0x027A
Port AD1 Data Direction Register 0 (DDR0AD1)
Read / Write
0x027B
Port AD1 Data Direction Register 1 (DDR1AD1)
Read / Write
0x027C
Port AD1 Reduced Drive Register 0 (RDR0AD1)
Read / Write
0x027D
Port AD1 Reduced Drive Register 1 (RDR1AD1)
Read / Write
0x027E
Port AD1 Pull Up Enable Register 0 (PER0AD1)
Read / Write
0x027F
Port AD1 Pull Up Enable Register 1 (PER1AD1)
Read / Write
—
Read / Write
—
Read / Write
—
Read / Write
—
Write access not applicable for one or more register bits. Refer to Section 22.3.2, “Register
Descriptions”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
819
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2
Register Descriptions
Table 22-3 summarizes the effect on the various configuration bits, data direction (DDR), output level
(IO), reduced drive (RDR), pull enable (PE), pull select (PS), and interrupt enable (IE) for the ports.
The configuration bit PS is used for two purposes:
1. Configure the sensitive interrupt edge (rising or falling), if interrupt is enabled.
2. Select either a pull-up or pull-down device if PE is active.
Table 22-3. Pin Configuration Summary
1
2
DDR
IO
RDR
PE
PS1
IE2
0
x
x
0
x
0
Input
Disabled
Disabled
0
x
x
1
0
0
Input
Pull Up
Disabled
0
x
x
1
1
0
Input
Pull Down
Disabled
0
x
x
0
0
1
Input
Disabled
Falling edge
0
x
x
0
1
1
Input
Disabled
Rising edge
0
x
x
1
0
1
Input
Pull Up
Falling edge
0
x
x
1
1
1
Input
Pull Down
Rising edge
1
0
0
x
x
0
Output, full drive to 0
Disabled
Disabled
1
1
0
x
x
0
Output, full drive to 1
Disabled
Disabled
1
0
1
x
x
0
Output, reduced drive to 0
Disabled
Disabled
1
1
1
x
x
0
Output, reduced drive to 1
Disabled
Disabled
1
0
0
x
0
1
Output, full drive to 0
Disabled
Falling edge
1
1
0
x
1
1
Output, full drive to 1
Disabled
Rising edge
1
0
1
x
0
1
Output, reduced drive to 0
Disabled
Falling edge
1
1
1
x
1
1
Output, reduced drive to 1
Disabled
Rising edge
Function
Pull Device
Interrupt
Always “0” on Port A, B, C, D, E, K, AD0, and AD1.
Applicable only on Port P, H, and J.
NOTE
All register bits in this module are completely synchronous to internal
clocks during a register read.
MC9S12XDP512 Data Sheet, Rev. 2.21
820
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Register
Name
PORTA
R
W
PORTB
R
W
DDRA
R
W
DDRB
R
W
PORTC
R
W
PORTD
R
W
DDRC
R
W
DDRD
R
W
PORTE
R
W
DDRE
R
W
Bit 7
6
5
4
3
2
1
Bit 0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
DDRC7
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
DDRD7
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
DDRE7
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
0
0
R
Non-PIM W
Address
Range
PUCR
R
W
RDRIV
R
W
Non-PIM Address Range
PUPKE
RDPK
R
Non-PIM W
Address
Range
BKPUE
0
0
PUPEE
PUPDE
PUPCE
PUPBE
PUPAE
RDPE
RDPD
RDPC
RDPB
RDPA
0
Non-PIM Address Range
= Unimplemented or Reserved
Figure 22-2. PIM Register Summary (Sheet 1 of 6)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
821
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Register
Name
ECLKCTL R
W
Reserved
R
Bit 7
6
NECLK
NCLKX2
0
0
IRQE
IRQEN
0
0
5
4
3
2
1
Bit 0
0
0
0
0
EDIV1
EDIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
IRQCR
R
W
Reserved
R
W
Non-PIM R
Address W
Range
PORTK
R
W
DDRK
R
W
Non-PIM Address Range
PK7
PK6
PK5
PK4
PK3
PK2
PK1
PK0
DDRK7
DDRK6
DDRK5
DDRK4
DDRK3
DDRK2
DDRK1
DDRK0
Non-PIM R
Address W
Range
PTT
R
W
PTIT
R
Non-PIM Address Range
PTT7
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
PTIT7
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
DDRT7
DDRT6
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
RDRT7
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
PERT7
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
PPST7
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
W
DDRT
R
W
RDRT
R
W
PERT
R
W
PPST
R
W
= Unimplemented or Reserved
Figure 22-2. PIM Register Summary (Sheet 2 of 6)
MC9S12XDP512 Data Sheet, Rev. 2.21
822
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Register
Name
Reserved
R
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTS7
PTS6
PTS5
PTS4
PTS3
PTS2
PTS1
PTS0
PTIS7
PTIS6
PTIS5
PTIS4
PTIS3
PTIS2
PTIS1
PTIS0
DDRS7
DDRS6
DDRS5
DDRS4
DDRS3
DDRS2
DDRS1
DDRS0
RDRS7
RDRS6
RDRS5
RDRS4
RDRS3
RDRS2
RDRS1
RDRS0
PERS7
PERS6
PERS5
PERS4
PERS3
PERS2
PERS1
PERS0
PPSS7
PPSS6
PPSS5
PPSS4
PPSS3
PPSS2
PPSS1
PPSS0
WOMS7
WOMS6
WOMS5
WOMS4
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
0
PTM7
PTM6
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
PTIM7
PTIM6
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
DDRM7
DDRM6
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
RDRM7
RDRM6
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
PERM7
PERM6
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
W
Reserved
R
W
PTS
R
W
PTIS
R
W
DDRS
R
W
RDRS
R
W
PERS
R
W
PPSS
R
W
WOMS
R
W
Reserved
R
W
PTM
R
W
PTIM
R
W
DDRM
R
W
RDRM
R
W
PERM
R
W
= Unimplemented or Reserved
Figure 22-2. PIM Register Summary (Sheet 3 of 6)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
823
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Register
Name
PPSM
R
W
WOMM
R
W
MODRR
R
Bit 7
6
5
4
3
2
1
Bit 0
PPSM7
PPSM6
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
WOMM7
WOMM6
WOMM5
WOMM4
WOMM3
WOMM2
WOMM1
WOMM0
MODRR6
MODRR5
MODRR4
MODRR3
MODRR2
MODRR1
MODRR0
PTP7
PTP6
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
PTIP7
PTIP6
PTIP5
PTIP4
PTIP3
PTIP2
PTIP1
PTIP0
DDRP7
DDRP6
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
RDRP7
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
PERP7
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
PPSP7
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSP0
PIEP7
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
PIFP7
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
PTH7
PTH6
PTH5
PTH4
PTH3
PTH2
PTH1
PTH0
PTIH7
PTIH6
PTIH5
PTIH4
PTIH3
PTIH2
PTIH1
PTIH0
DDRH7
DDRH6
DDRH5
DDRH4
DDRH3
DDRH2
DDRH1
DDRH0
RDRH7
RDRH6
RDRH5
RDRH4
RDRH3
RDRH2
RDRH1
RDRH0
0
W
PTP
R
W
PTIP
R
W
DDRP
R
W
RDRP
R
W
PERP
R
W
PPSP
R
W
PIEP
R
W
PIFP
R
W
PTH
R
W
PTIH
R
W
DDRH
R
W
RDRH
R
W
= Unimplemented or Reserved
Figure 22-2. PIM Register Summary (Sheet 4 of 6)
MC9S12XDP512 Data Sheet, Rev. 2.21
824
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Register
Name
PERH
R
W
PPSH
R
W
PIEH
R
W
PIFH
R
W
PTJ
R
W
PTIJ
R
Bit 7
6
5
4
3
2
1
Bit 0
PERH7
PERH6
PERH5
PERH4
PERH3
PERH2
PERH1
PERH0
PPSH7
PPSH6
PPSH5
PPSH4
PPSH3
PPSH2
PPSH1
PPSH0
PIEH7
PIEH6
PIEH5
PIEH4
PIEH3
PIEH2
PIEH1
PIEH0
PIFH7
PIFH6
PIFH5
PIFH4
PIFH3
PIFH2
PIFH1
PIFH0
PTJ7
PTJ6
PTJ5
PTJ4
PTJ2
PTJ1
PTJ0
PTIJ7
PTIJ6
PTIJ5
PTIJ4
PTIJ2
PTIJ1
PTIJ0
DDRJ7
DDRJ6
DDRJ5
DDRJ4
DDRJ2
DDRJ1
DDRJ0
RDRJ7
RDRJ6
RDRJ5
RDRJ4
RDRJ2
RDRJ1
RDRJ0
PERJ7
PERJ6
PERJ5
PERJ4
PERJ2
PERJ1
PERJ0
PPSJ7
PPSJ6
PPSJ5
PPSJ4
PPSJ2
PPSJ1
PPSJ0
PIEJ7
PIEJ6
PIEJ5
PIEJ4
PIEJ2
PIEJ1
PIEJ0
PPSJ7
PPSJ6
PPSJ5
PPSJ4
PPSJ2
PPSJ1
PPSJ0
0
0
0
0
0
0
0
0
PT1AD07
PT1AD06
PT1AD05
PT1AD04
PT1AD03
PT1AD02
PT1AD01
PT1AD00
0
0
0
0
0
0
0
0
0
0
W
DDRJ
R
W
RDRJ
R
W
PERJ
R
W
PPSJ
R
W
PIEJ
R
W
PIFJ
R
W
Reserved
R
0
0
0
0
0
0
W
PT1AD0
R
W
Reserved
R
W
= Unimplemented or Reserved
Figure 22-2. PIM Register Summary (Sheet 5 of 6)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
825
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Register
Name
Name
Bit 7
R
W
Reserved
R
6
5
4
3
2
1
Bit 0
DDR1AD07 DDR1AD06 DDR1AD05 DDR1AD04 DDR1AD03 DDR1AD02 DDR1AD01 DDR1AD00
0
0
0
0
0
0
0
0
W
RDR1AD0 R
W
Reserved
R
RDR1AD07 RDR1AD06 RDR1AD05 RDR1AD04 RDR1AD03 RDR1AD02 RDR1AD01 RDR1AD00
0
0
0
0
0
0
0
0
PER1AD07
PER1AD06
PER1AD05
PER1AD04
PER1AD03
PER1AD02
PER1AD01
PER1AD00
PT0AD123
PT0AD122
PT0AD121
PT0AD120
PT0AD119
PT0AD118
PT0AD117
PT0AD116
PT1AD115
PT1AD114
PT1AD113
PT1AD112
PT1AD111
PT1AD110
PT1AD19
PT1AD18
W
PER1AD0 R
W
PT0AD1
R
W
PT1AD1
R
W
DDR0AD1 R
W
DDR1AD1 R
W
RDR0AD1 R
W
RDR1AD1 R
W
PER0AD1 R
W
PER1AD1 R
W
DDR0AD123 DDR0AD122 DDR0AD121 DDR0AD120 DDR0AD119 DDR0AD118 DDR0AD117 DDR0AD116
DDR1AD115 DDR1AD114 DDR1AD113 DDR1AD112 DDR1AD111 DDR1AD110 DDR1AD19 DDR1AD18
RDR0AD123 RDR0AD122 RDR0AD121 RDR0AD120 RDR0AD119 RDR0AD118 RDR0AD117 RDR0AD116
RDR1AD115 RDR1AD114 RDR1AD113 RDR1AD112 RDR1AD111 RDR1AD110 RDR1AD19 RDR1AD18
PER0AD123 PER0AD122 PER0AD121 PER0AD120 PER0AD119 PER0AD118 PER0AD117 PER0AD116
PER1AD115 PER1AD114 PER1AD113 PER1AD112 PER1AD111 PER1AD110 PER1AD19
PER1AD18
= Unimplemented or Reserved
Figure 22-2. PIM Register Summary (Sheet 6 of 6)
MC9S12XDP512 Data Sheet, Rev. 2.21
826
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.1
Port A Data Register (PORTA)
7
6
5
4
3
2
1
0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
ADDR15
mux
IVD15
ADDR14
mux
IVD14
ADDR13
mux
IVD13
ADDR12
mux
IVD12
ADDR11
mux
IVD11
ADDR10
mux
IVD10
ADDR9
mux
IVD9
ADDR8
mux
IVD8
0
0
0
0
0
0
0
0
R
W
Alt.
Function
Reset
Figure 22-3. Port A Data Register (PORTA)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data source is depending on the data direction value.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-4. PORTA Field Descriptions
Field
Description
7–0
PA[7:0]
Port A — Port A pins 7–0 are associated with address outputs ADDR15 through ADDR8 respectively in
expanded modes. When this port is not used for external addresses, these pins can be used as general purpose
I/O. If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the
port register, otherwise the buffered pin input state is read.
22.3.2.2
Port B Data Register (PORTB)
7
6
5
4
3
2
1
0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
ADDR7
mux
IVD7
ADDR6
mux
IVD6
ADDR5
mux
IVD5
ADDR4
mux
IVD4
ADDR3
mux
IVD3
ADDR2
mux
IVD2
ADDR1
mux
IVD1
ADDR0
mux
IVD0
or
UDS
0
0
0
0
0
0
0
0
R
W
Alt.
Function
Reset
Figure 22-4. Port B Data Register (PORTB)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data source is depending on the data direction value.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
827
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-5. PORTB Field Descriptions
Field
Description
7–0
PB[7:0]
Port B — Port B pins 7–0 are associated with address outputs ADDR7 through ADDR1 respectively in expanded
modes. Pin 0 is associated with output ADDR0 in emulation modes and special test mode and with Upper Data
Select (UDS) in normal expanded mode. When this port is not used for external addresses, these pins can be
used as general purpose I/O. If the data direction bits of the associated I/O pins are set to logic level “1”, a read
returns the value of the port register, otherwise the buffered pin input state is read.
MC9S12XDP512 Data Sheet, Rev. 2.21
828
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.3
Port A Data Direction Register (DDRA)
7
6
5
4
3
2
1
0
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-5. Port A Data Direction Register (DDRA)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-6. DDRA Field Descriptions
Field
Description
7–0
DDRA[7:0]
Data Direction Port A — This register controls the data direction for port A. When Port A is operating as a general
purpose I/O port, DDRA determines whether each pin is an input or output. A logic level “1” causes the
associated port pin to be an output and a logic level “0” causes the associated pin to be a high-impedance input.
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PORTA after changing the DDRA register.
22.3.2.4
Port B Data Direction Register (DDRB)
7
6
5
4
3
2
1
0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-6. Port B Data Direction Register (DDRB)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-7. DDRB Field Descriptions
Field
Description
7–0
DDRB[7:0]
Data Direction Port B — This register controls the data direction for port B. When Port B is operating as a general
purpose I/O port, DDRB determines whether each pin is an input or output. A logic level “1” causes the
associated port pin to be an output and a logic level “0” causes the associated pin to be a high-impedance input.
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PORTB after changing the DDRB register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
829
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.5
Port C Data Register (PORTC)
7
6
5
4
3
2
1
0
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Exp.:
DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8
Reset
0
0
0
0
0
0
0
0
R
W
Figure 22-7. Port C Data Register (PORTC)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data source is depending on the data direction value.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-8. PORTC Field Descriptions
Field
Description
7–0
PC[7:0]
Port C — Port C pins 7–0 are associated with data I/O lines DATA15 through DATA8 respectively in expanded
modes. When this port is not used for external data, these pins can be used as general purpose I/O. If the data
direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the port register,
otherwise the buffered pin input state is read.
22.3.2.6
Port D Data Register (PORTD)
7
6
5
4
3
2
1
0
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
Exp.:
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Reset
0
0
0
0
0
0
0
0
R
W
Figure 22-8. Port D Data Register (PORTD)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data source is depending on the data direction value.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-9. PORTD Field Descriptions
Field
Description
7–0
PD[7:0]
Port D — Port D pins 7–0 are associated with data I/O lines DATA7 through DATA0 respectively in expanded
modes. When this port is not used for external data, these pins can be used as general purpose I/O. — If the
data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the port register,
otherwise the buffered pin input state is read.
MC9S12XDP512 Data Sheet, Rev. 2.21
830
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.7
Port C Data Direction Register (DDRC)
7
6
5
4
3
2
1
0
DDRC7
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-9. Port C Data Direction Register (DDRC)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-10. DDRC Field Descriptions
Field
Description
7–0
DDRC[7:0]
Data Direction Port C — This register controls the data direction for port C. When Port C is operating as a general
purpose I/O port, DDRC determines whether each pin is an input or output. A logic level “1” causes the
associated port pin to be an output and a logic level “0” causes the associated pin to be a high-impedance input.
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PORTC after changing the DDRC register.
22.3.2.8
Port D Data Direction Register (DDRD)
7
6
5
4
3
2
1
0
DDRD7
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-10. Port D Data Direction Register (DDRD)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-11. DDRD Field Descriptions
Field
Description
7–0
DDRD[7:0]
Data Direction Port D — This register controls the data direction for port D. When Port D is operating as a general
purpose I/O port, DDRD determines whether each pin is an input or output. A logic level “1” causes the
associated port pin to be an output and a logic level “0” causes the associated pin to be a high-impedance input.
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PORTD after changing the DDRD register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
831
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.9
Port E Data Register (PORTE)
7
6
5
4
3
2
1
0
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
Alt.
Func.
XCLKS
or
ECLKX2
MODB
or
TAGHI
MODA
or
RE
or
TAGLO
ECLK
EROMCTL
or
LSTRB
or
LDS
R/W
or
WE
IRQ
XIRQ
Reset
0
0
0
0
0
0
—1
—1
R
W
= Unimplemented or Reserved
Figure 22-11. Port E Data Register (PORTE)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data source is depending on the data direction value.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-12. PORTE Field Descriptions
Field
Description
7–0
PE[7:0]
Port E — Port E bits 7–0 are associated with external bus control signals and interrupt inputs. These include
mode select (MODB, MODA), E clock, double frequency E clock, Instruction Tagging High and Low (TAGHI,
TAGLO), Read/Write (R/W), Read Enable and Write Enable (RE, WE), Lower Data Select (LDS), IRQ, and XIRQ.
When not used for any of these specific functions, Port E pins 7–2 can be used as general purpose I/O and
pins 1–0 can be used as general purpose inputs.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the port
register, otherwise the buffered pin input state is read.
Pins 6 and 5 are inputs with enabled pull-down devices while RESET pin is low.
Pins 7 and 3 are inputs with enabled pull-up devices while RESET pin is low.
MC9S12XDP512 Data Sheet, Rev. 2.21
832
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.10 Port E Data Direction Register (DDRE)
7
6
5
4
3
2
DDRE7
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
0
0
0
0
0
0
R
1
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 22-12. Port E Data Direction Register (DDRE)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-13. DDRE Field Descriptions
Field
Description
7–0
DDRE[7:2]
Data Direction Port E — his register controls the data direction for port E. When Port E is operating as a general
purpose I/O port, DDRE determines whether each pin is an input or output. A logic level “1” causes the
associated port pin to be an output and a logic level “0” causes the associated pin to be a high-impedance input.
Port E bit 1 (associated with IRQ) and bit 0 (associated with XIRQ) cannot be configured as outputs. Port E, bits
1 and 0, can be read regardless of whether the alternate interrupt function is enabled.
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PORTE after changing the DDRE register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
833
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.11 S12X_EBI Ports, BKGD, VREGEN Pin Pull-up Control Register (PUCR)
7
6
PUPKE
BKPUE
1
1
5
R
4
3
2
1
0
PUPEE
PUPDE
PUPCE
PUPBE
PUPAE
1
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-13. S12X_EBI Ports, BKGD, VREGEN Pin Pull-up Control Register (PUCR)
Read: Anytime in single-chip modes.
Write: Anytime, except BKPUE which is writable in special test mode only.
This register is used to enable pull-up devices for the associated ports A, B, C, D, E, and K. Pull-up devices
are assigned on a per-port basis and apply to any pin in the corresponding port that is currently configured
as an input.
Table 22-14. PUCR Field Descriptions
Field
Description
7
PUPKE
Pull-up Port K Enable
0 Port K pull-up devices are disabled.
1 Enable pull-up devices for Port K input pins.
6
BKPUE
BKGD and VREGEN Pin Pull-up Enable
0 BKGD and VREGEN pull-up devices are disabled.
1 Enable pull-up devices on BKGD and VREGEN pins.
4
PUPEE
Pull-up Port E Enable
0 Port E pull-up devices on bit 7, 4–0 are disabled.
1 Enable pull-up devices for Port E input pins bits 7, 4–0.
Note: Bits 5 and 6 of Port E have pull-down devices which are only enabled during reset. This bit has no effect
on these pins.
3
PUPDE
Pull-up Port D Enable
0 Port D pull-up devices are disabled.
1 Enable pull-up devices for all Port D input pins.
2
PUPCE
Pull-up Port C Enable
0 Port C pull-up devices are disabled.
1 Enable pull-up devices for all Port C input pins.
1
PUPBE
Pull-up Port B Enable
0 Port B pull-up devices are disabled.
1 Enable pull-up devices for all Port B input pins.
0
PUPAE
Pull-up Port A Enable
0 Port A pull-up devices are disabled.
1 Enable pull-up devices for all Port A input pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
834
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.12 S12X_EBI Ports Reduced Drive Register (RDRIV)
7
R
6
5
0
0
RDPK
4
3
2
1
0
RDPE
RDPD
RDPC
RDPB
RDPA
0
0
0
0
0
W
Reset
0
0
0
= Unimplemented or Reserved
Figure 22-14. S12X_EBI Ports Reduced Drive Register (RDRIV)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
This register is used to select reduced drive for the pins associated with the S12X_EBI ports A, B, C, D,
E, and K. If enabled, the pins drive at about 1/6 of the full drive strength. The reduced drive function is
independent of which function is being used on a particular pin.
The reduced drive functionality does not take effect on the pins in emulation modes.
Table 22-15. RDRIV Field Descriptions
Field
Description
7
RDPK
Reduced Drive of Port K
0 All port K output pins have full drive enabled.
1 All port K output pins have reduced drive enabled.
4
RDPE
Reduced Drive of Port E
0 All port E output pins have full drive enabled.
1 All port E output pins have reduced drive enabled.
3
RDPD
Reduced Drive of Port D
0 All port D output pins have full drive enabled.
1 All port D output pins have reduced drive enabled.
2
RDPC
Reduced Drive of Port C
0 All port C output pins have full drive enabled.
1 All port C output pins have reduced drive enabled.
1
RDPB
Reduced Drive of Port B
0 All port B output pins have full drive enabled.
1 All port B output pins have reduced drive enabled.
0
RDPA
Reduced Drive of Ports A
0 All Port A output pins have full drive enabled.
1 All port A output pins have reduced drive enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
835
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.13 ECLK Control Register (ECLKCTL)
7
6
1
0
NECLK
NCLKX2
EDIV1
EDIV0
Mode
Dependent
1
0
0
0
0
0
0
Mode
0
1
0
0
0
0
0
0
Special
Single-Chip
1
1
0
0
0
0
0
0
Emulation
Single-Chip
0
1
0
0
0
0
0
0
Special
Test
0
1
0
0
0
0
0
0
Emulation
Expanded
1
1
0
0
0
0
0
0
Normal
Single-Chip
0
1
0
0
0
0
0
0
Normal
Expanded
R
5
4
3
2
0
0
0
0
W
Reset1
SS
ES
ST
EX
NS
NX
= Unimplemented or Reserved
Figure 22-15. ECLK Control Register (ECLKCTL)
1
Reset values in emulation modes are identical to those of the target mode.
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
The ECLKCTL register is used to control the availability of the free-running clocks and the free-running
clock divider.
Table 22-16. ECLKCTL Field Descriptions
Field
7
NECLK
Description
No ECLK — This bit controls the availability of a free-running clock on the ECLK pin. Clock output is always
active in emulation modes and if enabled in all other operating modes.
0 ECLK enabled
1 ECLK disabled
MC9S12XDP512 Data Sheet, Rev. 2.21
836
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-16. ECLKCTL Field Descriptions (continued)
Field
Description
6
NCLKX2
No ECLKX2 — This bit controls the availability of a free-running clock on the ECLKX2 pin. This clock has a fixed
rate of twice the internal bus clock. Clock output is always active in emulation modes and if enabled in all other
operating modes.
0 ECLKX2 is enabled
1 ECLKX2 is disabled
1–0
EDIV[1:0]
Free-Running ECLK Divider — These bits determine the rate of the free-running clock on the ECLK pin. The
usage of the bits is shown in Table 22-17. Divider is always disabled in emulation modes and active as
programmed in all other operating modes.
Table 22-17. Free-Running ECLK Clock Rate
EDIV[1:0]
Rate of Free-Running ECLK
00
ECLK = Bus clock rate
01
ECLK = Bus clock rate divided by 2
10
ECLK = Bus clock rate divided by 3
11
ECLK = Bus clock rate divided by 4
22.3.2.14 IRQ Control Register (IRQCR)
7
6
IRQE
IRQEN
0
1
R
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 22-16. IRQ Control Register (IRQCR)
Read: See individual bit descriptions below.
Write: See individual bit descriptions below.
Table 22-18. IRQCR Field Descriptions
Field
7
IRQE
6
IRQEN
Description
IRQ Select Edge Sensitive Only
Special modes: Read or write anytime.
Normal and emulation modes: Read anytime, write once.
0 IRQ configured for low level recognition.
1 IRQ configured to respond only to falling edges. Falling edges on the IRQ pin will be detected anytime
IRQE = 1 and will be cleared only upon a reset or the servicing of the IRQ interrupt.
External IRQ Enable
Read or write anytime.
0 External IRQ pin is disconnected from interrupt logic.
1 External IRQ pin is connected to interrupt logic.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
837
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.15 Port K Data Register (PORTK)
7
6
5
4
3
2
1
0
PK7
PK6
PK5
PK4
PK3
PK2
PK1
PK0
Alt.
Func.
ROMCTL
or
EWAIT
ADDR22
mux
NOACC
ADDR21
ADDR20
ADDR19
mux
IQSTAT3
ADDR18
mux
IQSTAT2
ADDR17
mux
IQSTAT1
ADDR16
mux
IQSTAT0
Reset
0
0
0
0
0
0
0
0
R
W
Figure 22-17. Port K Data Register (PORTK)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data source is depending on the data direction value.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
Table 22-19. PORTK Field Descriptions
Field
Description
7–0
PK[7:0]
Port K — Port K pins 7–0 are associated with external bus control signals and internal memory expansion
emulation pins. These include ADDR22-ADDR16, No-Access (NOACC), External Wait (EWAIT) and instruction
pipe signals IQSTAT3-IQSTAT0. Bits 6-0 carry the external addresses in all expanded modes. In emulation or
special test mode with internal visibility enabled the address is multiplexed with the alternate functions NOACC
and IQSTAT on the respective pins. In single-chip modes the port pins can be used as general-purpose I/O. If
the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the port
register, otherwise the buffered pin input state is read.
22.3.2.16 Port K Data Direction Register (DDRK)
7
6
5
4
3
2
1
0
DDRK7
DDRK6
DDRK5
DDRK4
DDRK3
DDRK2
DDRK1
DDRK0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-18. Port K Data Direction Register (DDRK)
Read: Anytime. In emulation modes, read operations will return the data from the external bus, in all other
modes the data are read from this register.
Write: Anytime. In emulation modes, write operations will also be directed to the external bus.
This register controls the data direction for port K. When Port K is operating as a general purpose I/O port,
DDRK determines whether each pin is an input or output. A logic level “1” causes the associated port pin
to be an output and a logic level “0” causes the associated pin to be a high-impedance input.
MC9S12XDP512 Data Sheet, Rev. 2.21
838
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-20. DDRK Field Descriptions
Field
Description
7–0
DDRK[7:0]
Data Direction Port K
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PORTK after changing the DDRK register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
839
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.17 Port T Data Register (PTT)
7
6
5
4
3
2
1
0
PTT7
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
IOC7
IOC6
IOC5
IOC4
IOC3
IOC2
IOC1
IOC0
0
0
0
0
0
0
0
0
R
W
ECT
Reset
Figure 22-19. Port T Data Register (PTT)
Read: Anytime.
Write: Anytime.
Table 22-21. PTT Field Descriptions
Field
Description
7–0
PTT[7:0]
Port T — Port T bits 7–0 are associated with ECT channels IOC7–IOC0 (refer to ECT section). When not used
with the ECT, these pins can be used as general purpose I/O.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the port
register, otherwise the buffered pin input state is read.
22.3.2.18 Port T Input Register (PTIT)
R
7
6
5
4
3
2
1
0
PTIT7
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
—
—
—
—
—
—
—
—
W
Reset1
= Unimplemented or Reserved
Figure 22-20. Port T Input Register (PTIT)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime.
Write: Never, writes to this register have no effect.
Table 22-22. PTIT Field Descriptions
Field
Description
7–0
PTIT[7:0]
Port T Input — This register always reads back the buffered state of the associated pins. This can also be used
to detect overload or short circuit conditions on output pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
840
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.19 Port T Data Direction Register (DDRT)
7
6
5
4
3
2
1
0
DDRT7
DDRT6
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-21. Port T Data Direction Register (DDRT)
Read: Anytime.
Write: Anytime.
This register configures each port T pin as either input or output.
The ECT forces the I/O state to be an output for each timer port associated with an enabled output compare.
In this case the data direction bits will not change.
The DDRT bits revert to controlling the I/O direction of a pin when the associated timer output compare
is disabled.
The timer input capture always monitors the state of the pin.
Table 22-23. DDRT Field Descriptions
Field
Description
7–0
DDRT[7:0]
Data Direction Port T
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PTT or PTIT registers, when changing the DDRT register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
841
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.20 Port T Reduced Drive Register (RDRT)
7
6
5
4
3
2
1
0
RDRT7
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-22. Port T Reduced Drive Register (RDRT)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each port T output pin as either full or reduced. If the port is
used as input this bit is ignored.
Table 22-24. RDRT Field Descriptions
Field
7–0
RDRT[7:0]
Description
Reduced Drive Port T
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.21 Port T Pull Device Enable Register (PERT)
7
6
5
4
3
2
1
0
PERT7
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-23. Port T Pull Device Enable Register (PERT)
Read: Anytime.
Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated, if the port is used as input.
This bit has no effect if the port is used as output. Out of reset no pull device is enabled.
Table 22-25. PERT Field Descriptions
Field
7–0
PERT[7:0]
Description
Pull Device Enable Port T
0 Pull-up or pull-down device is disabled.
1 Either a pull-up or pull-down device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
842
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.22 Port T Polarity Select Register (PPST)
7
6
5
4
3
2
1
0
PPST7
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-24. Port T Polarity Select Register (PPST)
Read: Anytime.
Write: Anytime.
This register selects whether a pull-down or a pull-up device is connected to the pin.
Table 22-26. PPST Field Descriptions
Field
Description
7–0
PPST[7:0]
Pull Select Port T
0 A pull-up device is connected to the associated port T pin, if enabled by the associated bit in register PERT
and if the port is used as input.
1 A pull-down device is connected to the associated port T pin, if enabled by the associated bit in register PERT
and if the port is used as input.
22.3.2.23 Port S Data Register (PTS)
7
6
5
4
3
2
1
0
PTS7
PTS6
PTS5
PTS4
PTS3
PTS2
PTS1
PTS0
SS0
SCK0
MOSI0
MISO0
TXD1
RXD1
TXD0
RXD0
0
0
0
0
0
0
0
0
R
W
SCI/SPI
Reset
Figure 22-25. Port S Data Register (PTS)
Read: Anytime.
Write: Anytime.
Port S pins 7–4 are associated with the SPI0. The SPI0 pin configuration is determined by several status
bits in the SPI0 module. Refer to SPI section for details. When not used with the SPI0, these pins can be
used as general purpose I/O.
Port S bits 3–0 are associated with the SCI1 and SCI0. The SCI ports associated with transmit pins 3 and
1 are configured as outputs if the transmitter is enabled. The SCI ports associated with receive pins 2 and
0 are configured as inputs if the receiver is enabled. Refer to SCI section for details. When not used with
the SCI, these pins can be used as general purpose I/O.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the
port register, otherwise the buffered pin input state is read.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
843
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.24 Port S Input Register (PTIS)
R
7
6
5
4
3
2
1
0
PTIS7
PTIS6
PTIS5
PTIS4
PTIS3
PTIS2
PTIS1
PTIS0
—
—
—
—
—
—
—
—
W
Reset1
= Unimplemented or Reserved
Figure 22-26. Port S Input Register (PTIS)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime.
Write: Never, writes to this register have no effect.
This register always reads back the buffered state of the associated pins. This also can be used to detect
overload or short circuit conditions on output pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
844
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.25 Port S Data Direction Register (DDRS)
7
6
5
4
3
2
1
0
DDRS7
DDRS6
DDRS5
DDRS4
DDRS3
DDRS2
DDRS1
DDRS0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-27. Port S Data Direction Register (DDRS)
Read: Anytime.
Write: Anytime.
This register configures each port S pin as either input or output.
If SPI0 is enabled, the SPI0 determines the pin direction. Refer to SPI section for details.
If the associated SCI transmit or receive channel is enabled this register has no effect on the pins. The pin
is forced to be an output if a SCI transmit channel is enabled, it is forced to be an input if the SCI receive
channel is enabled.
The DDRS bits revert to controlling the I/O direction of a pin when the associated channel is disabled.
Table 22-27. DDRS Field Descriptions
Field
Description
7–0
DDRS[7:0]
Data Direction Port S
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PTS or PTIS registers, when changing the DDRS register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
845
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.26 Port S Reduced Drive Register (RDRS)
7
6
5
4
3
2
1
0
RDRS7
RDRS6
RDRS5
RDRS4
RDRS3
RDRS2
RDRS1
RDRS0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-28. Port S Reduced Drive Register (RDRS)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each port S output pin as either full or reduced. If the port is
used as input this bit is ignored.
Table 22-28. RDRS Field Descriptions
Field
7–0
RDRS[7:0]
Description
Reduced Drive Port S
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.27 Port S Pull Device Enable Register (PERS)
7
6
5
4
3
2
1
0
PERS7
PERS6
PERS5
PERS4
PERS3
PERS2
PERS1
PERS0
1
1
1
1
1
1
1
1
R
W
Reset
Figure 22-29. Port S Pull Device Enable Register (PERS)
Read: Anytime.
Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or
as output in wired-OR (open drain) mode. This bit has no effect if the port is used as push-pull output. Out
of reset a pull-up device is enabled.
Table 22-29. PERS Field Descriptions
Field
7–0
PERS[7:0]
Description
Pull Device Enable Port S
0 Pull-up or pull-down device is disabled.
1 Either a pull-up or pull-down device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
846
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.28 Port S Polarity Select Register (PPSS)
7
6
5
4
3
2
1
0
PPSS7
PPSS6
PPSS5
PPSS4
PPSS3
PPSS2
PPSS1
PPSS0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-30. Port S Polarity Select Register (PPSS)
Read: Anytime.
Write: Anytime.
This register selects whether a pull-down or a pull-up device is connected to the pin.
Table 22-30. PPSS Field Descriptions
Field
Description
7–0
PPSS[7:0]
Pull Select Port S
0 A pull-up device is connected to the associated port S pin, if enabled by the associated bit in register PERS
and if the port is used as input or as wired-OR output.
1 A pull-down device is connected to the associated port S pin, if enabled by the associated bit in register PERS
and if the port is used as input.
22.3.2.29 Port S Wired-OR Mode Register (WOMS)
7
6
5
4
3
2
1
0
WOMS7
WOMS6
WOMS5
WOMS4
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-31. Port S Wired-OR Mode Register (WOMS)
Read: Anytime.
Write: Anytime.
This register configures the output pins as wired-OR. If enabled the output is driven active low only
(open-drain). A logic level of “1” is not driven. It applies also to the SPI and SCI outputs and allows a
multipoint connection of several serial modules. These bits have no influence on pins used as inputs.
Table 22-31. WOMS Field Descriptions
Field
Description
7–0
Wired-OR Mode Port S
WOMS[7:0] 0 Output buffers operate as push-pull outputs.
1 Output buffers operate as open-drain outputs.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
847
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.30 Port M Data Register (PTM)
7
6
5
4
3
2
1
0
PTM7
PTM6
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
TXCAN3
RXCAN3
TXCAN2
RXCAN2
TXCAN1
RXCAN1
TXCAN0
RXCAN0
TXCAN0
RXCAN0
TXCAN0
RXCAN0
TXCAN4
RXCAN4
SCK0
MOSI0
SS0
MISO0
0
0
0
0
0
0
R
W
CAN
Routed
CAN0
Routed
CAN4
TXCAN4
RXCAN4
Routed
SPIO
Reset
0
0
Figure 22-32. Port M Data Register (PTM)
Read: Anytime.
Write: Anytime.
Port M pins 75–0 are associated with the CAN0, CAN1, CAN2, CAN3, SCI3, as well as the routed CAN0,
CAN4, and SPI0 modules. When not used with any of the peripherals, these pins can be used as general
purpose I/O.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the
port register, otherwise the buffered pin input state is read.
Table 22-32. PTM Field Descriptions
Field
Description
7–6
PTM[7:6]
The CAN3 function (TXCAN3 and RXCAN3) takes precedence over the CAN4, SCI3 and the general purpose
I/O function if the CAN3 module is enabled. Refer to MSCAN section for details.
The CAN4 function (TXCAN4 and RXCAN4) takes precedence over the SCI3 and the general purpose I/O
function if the CAN4 module is enabled. Refer to MSCAN section for details.
The SCI3 function (TXD3 and RXD3) takes precedence over the general purpose I/O function if the SCI3 module
is enabled. Refer to SCI section for details.
5–4
PTM[5:4]
The CAN2 function (TXCAN2 and RXCAN2) takes precedence over the routed CAN0, routed CAN4, the routed
SPI0 and the general purpose I/O function if the CAN2 module is enabled{pim_9xd_prio.m}.
The routed CAN0 function (TXCAN0 and RXCAN0) takes precedence over the routed CAN4, the routed SPI0
and the general purpose I/O function if the routed CAN0 module is enabled.
The routed CAN4 function (TXCAN4 and RXCAN4) takes precedence over the routed SPI0 and general purpose
I/O function if the routed CAN4 module is enabled. Refer to MSCAN section for details.
The routed SPI0 function (SCK0 and MOSI0) takes precedence of the general purpose I/O function if the routed
SPI0 is enabled. Refer to SPI section for details.
MC9S12XDP512 Data Sheet, Rev. 2.21
848
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-32. PTM Field Descriptions (continued)
Field
Description
3–2
PTM[3:2]
The CAN1 function (TXCAN1 and RXCAN1) takes precedence over the routed CAN0, the routed SPI0 and the
general purpose I/O function if the CAN1 module is enabled.
The routed CAN0 function (TXCAN0 and RXCAN0) takes precedence over the routed SPI0 and the general
purpose I/O function if the routed CAN0 module is enabled. Refer to MSCAN section for details.
The routed SPI0 function (SS0 and MISO0) takes precedence of the general purpose I/O function if the routed
SPI0 is enabled and not in bidirectional mode. Refer to SPI section for details.
1–0
PTM[1:0]
The CAN0 function (TXCAN0 and RXCAN0) takes precedence over the general purpose I/O function if the CAN0
module is enabled. Refer to MSCAN section for details.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
849
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.31 Port M Input Register (PTIM)
R
7
6
5
4
3
2
1
0
PTIM7
PTIM6
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
—
—
—
—
—
—
—
—
W
Reset1
= Unimplemented or Reserved
Figure 22-33. Port M Input Register (PTIM)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime.
Write: Never, writes to this register have no effect.
This register always reads back the buffered state of the associated pins. This can also be used to detect
overload or short circuit conditions on output pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
850
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.32 Port M Data Direction Register (DDRM)
7
6
5
4
3
2
1
0
DDRM7
DDRM6
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-34. Port M Data Direction Register (DDRM)
Read: Anytime.
Write: Anytime.
This register configures each port M pin as either input or output.
The CAN/SCI3 forces the I/O state to be an output for each port line associated with an enabled output
(TXCAN[3:0], TXD3). TheyAlso forces the I/O state to be an input for each port line associated with an
enabled input (RXCAN[3:0], RXD3). In those cases the data direction bits will not change.
The DDRM bits revert to controlling the I/O direction of a pin when the associated peripheral module is
disabled.
Table 22-33. DDRM Field Descriptions
Field
Description
7–0
DDRM[7:0]
Data Direction Port M
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PTM or PTIM registers, when changing the DDRM register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
851
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.33 Port M Reduced Drive Register (RDRM)
7
6
5
4
3
2
1
0
RDRM7
RDRM6
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-35. Port M Reduced Drive Register (RDRM)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each Port M output pin as either full or reduced. If the port
is used as input this bit is ignored.
Table 22-34. RDRM Field Descriptions
Field
7–0
RDRM[7:0]
Description
Reduced Drive Port M
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.34 Port M Pull Device Enable Register (PERM)
7
6
5
4
3
2
1
0
PERM7
PERM6
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-36. Port M Pull Device Enable Register (PERM)
Read: Anytime.
Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or
wired-OR output. This bit has no effect if the port is used as push-pull output. Out of reset no pull device
is enabled.
Table 22-35. PERM Field Descriptions
Field
7–0
PERM[7:0]
Description
Pull Device Enable Port M
0 Pull-up or pull-down device is disabled.
1 Either a pull-up or pull-down device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
852
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.35 Port M Polarity Select Register (PPSM)
7
6
5
4
3
2
1
0
PPSM7
PPSM6
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-37. Port M Polarity Select Register (PPSM)
Read: Anytime.
Write: Anytime.
This register selects whether a pull-down or a pull-up device is connected to the pin. If CAN is active a
pull-up device can be activated on the RXCAN[3:0] inputs, but not a pull-down.
Table 22-36. PPSM Field Descriptions
Field
Description
7–0
PPSM[7:0]
Pull Select Port M
0 A pull-up device is connected to the associated port M pin, if enabled by the associated bit in register PERM
and if the port is used as general purpose or RXCAN input.
1 A pull-down device is connected to the associated port M pin, if enabled by the associated bit in register PERM
and if the port is used as a general purpose but not as RXCAN.
22.3.2.36 Port M Wired-OR Mode Register (WOMM)
7
6
5
4
3
2
1
0
WOMM7
WOMM6
WOMM5
WOMM4
WOMM3
WOMM2
WOMM1
WOMM0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-38. Port M Wired-OR Mode Register (WOMM)
Read: Anytime.
Write: Anytime.
This register configures the output pins as wired-OR. If enabled the output is driven active low only
(open-drain). A logic level of “1” is not driven. It applies also to the CAN outputs and allows a multipoint
connection of several serial modules. This bit has no influence on pins used as inputs.
Table 22-37. WOMM Field Descriptions
Field
Description
7–0
Wired-OR Mode Port M
WOMM[7:0] 0 Output buffers operate as push-pull outputs.
1 Output buffers operate as open-drain outputs.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
853
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.37 Module Routing Register (MODRR)
7
R
6
5
4
3
2
1
0
MODRR6
MODRR5
MODRR4
MODRR3
MODRR2
MODRR1
MODRR0
0
0
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-39. Module Routing Register (MODRR)
Read: Anytime.
Write: Anytime.
This register configures the re-routing of CAN0, CAN4, SPI0, SPI1, and SPI2 on alternative ports.
Table 22-38. Module Routing Summary
MODRR
Related Pins
Module
CAN0
CAN4
6
5
4
3
2
1
0
RXCAN
TXCAN
x
x
x
x
x
0
0
PM0
PM1
x
x
x
x
x
0
1
PM2
PM3
x
x
x
x
x
1
0
PM4
PM5
x
x
x
x
x
1
1
PJ6
PJ7
x
x
x
0
0
x
x
PJ6
PJ7
x
x
x
0
1
x
x
PM4
PM5
x
x
x
1
0
x
x
PM6
PM7
x
x
x
1
1
x
x
Reserved
MISO
SPI0
SPI1
SPI2
MOSI
SCK
SS
x
x
0
x
x
x
x
PS4
PS5
PS6
PS7
x
x
1
x
x
x
x
PM2
PM4
PM5
PM3
x
0
x
x
x
x
x
PP0
PP1
PP2
PP3
x
1
x
x
x
x
x
PH0
PH1
PH2
PH3
0
x
x
x
x
x
x
PP4
PP5
PP7
PP6
1
x
x
x
x
x
x
PH4
PH5
PH6
PH7
MC9S12XDP512 Data Sheet, Rev. 2.21
854
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.38 Port P Data Register (PTP)
7
6
5
4
3
2
1
0
PTP7
PTP6
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
PWM
PWM7
PWM6
PWM5
PWM4
PWM3
PWM2
PWM1
PWM0
SPI
SCK2
SS2
MOSI2
MISO2
SS1
SCK1
MOSI1
MISO1
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-40. Port P Data Register (PTP)
Read: Anytime.
Write: Anytime.
Port P pins 7, and 5–0 are associated with the PWM as well as the SPI1 and SPI2 modules. These pins can
be used as general purpose I/O when not used with any of the peripherals.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the
port register, otherwise the buffered pin input state is read.
The PWM function takes precedence over the general purpose I/O and the SPI2 or SPI1 function if the
associated PWM channel is enabled. While channels 6 and 5-0 are output only if the respective channel is
enabled, channel 7 can be PWM output or input if the shutdown feature is enabled. Refer to PWM section
for details.
The SPI2 function takes precedence over the general purpose I/O function if enabled. Refer to SPI section
for details.
The SPI1 function takes precedence over the general purpose I/O function if enabled. Refer to SPI section
for details.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
855
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.39 Port P Input Register (PTIP)
R
7
6
5
4
3
2
1
0
PTIP7
PTIP6
PTIP5
PTIP4
PTIP3
PTIP2
PTIP1
PTIP0
—
—
—
—
—
—
—
—
W
Reset1
= Unimplemented or Reserved
Figure 22-41. Port P Input Register (PTIP)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime.
Write: Never, writes to this register have no effect.
This register always reads back the buffered state of the associated pins. This can also be used to detect
overload or short circuit conditions on output pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
856
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.40 Port P Data Direction Register (DDRP)
7
6
5
4
3
2
1
0
DDRP7
DDRP6
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-42. Port P Data Direction Register (DDRP)
Read: Anytime.
Write: Anytime.
This register configures each port P pin as either input or output.
If the associated PWM channel or SPI module is enabled this register has no effect on the pins.
The PWM forces the I/O state to be an output for each port line associated with an enabled PWM7–0
channel. Channel 7 can force the pin to input if the shutdown feature is enabled. Refer to PWM section for
details.
If a SPI module is enabled, the SPI determines the pin direction. Refer to SPI section for details.
The DDRP bits revert to controlling the I/O direction of a pin when the associated peripherals are disabled.
Table 22-39. DDRP Field Descriptions
Field
Description
7–0
DDRP[7:0]
Data Direction Port P
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PTP or PTIP registers, when changing the DDRP register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
857
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.41 Port P Reduced Drive Register (RDRP)
7
6
5
4
3
2
1
0
RDRP7
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-43. Port P Reduced Drive Register (RDRP)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each port P output pin as either full or reduced. If the port is
used as input this bit is ignored.
Table 22-40. RDRP Field Descriptions
Field
7–0
RDRP[7:0]
Description
Reduced Drive Port P
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.42 Port P Pull Device Enable Register (PERP)
7
6
5
4
3
2
1
0
PERP7
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-44. Port P Pull Device Enable Register (PERP)
Read: Anytime.
Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated, if the port is used as input.
This bit has no effect if the port is used as output. Out of reset no pull device is enabled.
Table 22-41. PERP Field Descriptions
Field
7–0
PERP[7:0]
Description
Pull Device Enable Port P
0 Pull-up or pull-down device is disabled.
1 Either a pull-up or pull-down device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
858
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.43 Port P Polarity Select Register (PPSP)
7
6
5
4
3
2
1
0
PPSP7
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSP0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-45. Port P Polarity Select Register (PPSP)
Read: Anytime.
Write: Anytime.
This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting
a pull-up or pull-down device if enabled.
Table 22-42. PPSP Field Descriptions
Field
Description
7–0
PPSP[7:0]
Polarity Select Port P
0 Falling edge on the associated port P pin sets the associated flag bit in the PIFP register.A pull-up device is
connected to the associated port P pin, if enabled by the associated bit in register PERP and if the port is used
as input.
1 Rising edge on the associated port P pin sets the associated flag bit in the PIFP register.A pull-down device
is connected to the associated port P pin, if enabled by the associated bit in register PERP and if the port is
used as input.
22.3.2.44 Port P Interrupt Enable Register (PIEP)
7
6
5
4
3
2
1
0
PIEP7
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-46. Port P Interrupt Enable Register (PIEP)
Read: Anytime.
Write: Anytime.
This register disables or enables on a per-pin basis the edge sensitive external interrupt associated with
Port P.
Table 22-43. PIEP Field Descriptions
Field
7–0
PIEP[7:0]
Description
Interrupt Enable Port P
0 Interrupt is disabled (interrupt flag masked).
1 Interrupt is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
859
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.45 Port P Interrupt Flag Register (PIFP)
7
6
5
4
3
2
1
0
PIFP7
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-47. Port P Interrupt Flag Register (PIFP)
Read: Anytime.
Write: Anytime.
Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based
on the state of the PPSP register. To clear this flag, write logic level “1” to the corresponding bit in the
PIFP register. Writing a “0” has no effect.
Table 22-44. PIFP Field Descriptions
Field
7–0
PIFP[7:0]
Description
Interrupt Flags Port P
0 No active edge pending. Writing a “0” has no effect.
1 Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set).
Writing a logic level “1” clears the associated flag.
MC9S12XDP512 Data Sheet, Rev. 2.21
860
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.46 Port H Data Register (PTH)
7
6
5
4
3
2
1
0
PTH7
PTH6
PTH5
PTH4
PTH3
PTH2
PTH1
PTH0
SS2
SCK2
MOSI2
MISO2
SS1
SCK1
MOSI1
MISO1
0
0
0
0
0
0
0
0
R
W
Routed
SPI
Reset
Figure 22-48. Port H Data Register (PTH)
Read: Anytime.
Write: Anytime.
Port H pins 7–0 are associated with the SCI4 and SCI5 as well as the routed SPI1 and SPI2 modules.
These pins can be used as general purpose I/O when not used with any of the peripherals.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the
port register, otherwise the buffered pin input state is read.
The routed SPI2 function takes precedence over the SCI4 and SCI5 and the general purpose I/O function
if the routed SPI2 module is enabled. Refer to SPI section for details.
The routed SPI1 function takes precedence over the general purpose I/O function if the routed SPI1 is
enabled. Refer to SPI section for details.
The SCI4 and SCI5 function takes precedence over the general purpose I/O function if the SCI4 or SCI5
is enabled. Refer to SCI section for details.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
861
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.47 Port H Input Register (PTIH)
R
7
6
5
4
3
2
1
0
PTIH7
PTIH6
PTIH5
PTIH4
PTIH3
PTIH2
PTIH1
PTIH0
—
—
—
—
—
—
—
—
W
Reset1
= Unimplemented or Reserved
Figure 22-49. Port H Input Register (PTIH)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime.
Write: Never, writes to this register have no effect.
This register always reads back the buffered state of the associated pins. This can also be used to detect
overload or short circuit conditions on output pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
862
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.48 Port H Data Direction Register (DDRH)
7
6
5
4
3
2
1
0
DDRH7
DDRH6
DDRH5
DDRH4
DDRH3
DDRH2
DDRH1
DDRH0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-50. Port H Data Direction Register (DDRH)
Read: Anytime.
Write: Anytime.
This register configures each port H pin as either input or output.
If the associated SCI channel or routed SPI module is enabled this register has no effect on the pins.
The SCI forces the I/O state to be an output for each port line associated with an enabled output (TXD5,
TXD4). It also forces the I/O state to be an input for each port line associated with an enabled input (RXD5,
RXD4). In those cases the data direction bits will not change.
If a SPI module is enabled, the SPI determines the pin direction. Refer to SPI section for details.
The DDRH bits revert to controlling the I/O direction of a pin when the associated peripheral modules are
disabled.
Table 22-45. DDRH Field Descriptions
Field
Description
7–0
DDRH[7:0]
Data Direction Port H
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PTH or PTIH registers, when changing the DDRH register.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
863
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.49 Port H Reduced Drive Register (RDRH)
7
6
5
4
3
2
1
0
RDRH7
RDRH6
RDRH5
RDRH4
RDRH3
RDRH2
RDRH1
RDRH0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-51. Port H Reduced Drive Register (RDRH)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each Port H output pin as either full or reduced. If the port is
used as input this bit is ignored.
Table 22-46. RDRH Field Descriptions
Field
7–0
RDRH[7:0]
Description
Reduced Drive Port H
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.50 Port H Pull Device Enable Register (PERH)
7
6
5
4
3
2
1
0
PERH7
PERH6
PERH5
PERH4
PERH3
PERH2
PERH1
PERH0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-52. Port H Pull Device Enable Register (PERH)
Read: Anytime.
Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated, if the port is used as input.
This bit has no effect if the port is used as output. Out of reset no pull device is enabled.
Table 22-47. PERH Field Descriptions
Field
7–0
PERH[7:0]
Description
Pull Device Enable Port H
0 Pull-up or pull-down device is disabled.
1 Either a pull-up or pull-down device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
864
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.51 Port H Polarity Select Register (PPSH)
7
6
5
4
3
2
1
0
PPSH7
PPSH6
PPSH5
PPSH4
PPSH3
PPSH2
PPSH1
PPSH0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-53. Port H Polarity Select Register (PPSH)
Read: Anytime.
Write: Anytime.
This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting
a pull-up or pull-down device if enabled.
Table 22-48. PPSH Field Descriptions
Field
Description
7–0
PPSH[7:0]
Polarity Select Port H
0 Falling edge on the associated port H pin sets the associated flag bit in the PIFH register.
A pull-up device is connected to the associated port H pin, if enabled by the associated bit in register PERH
and if the port is used as input.
1 Rising edge on the associated port H pin sets the associated flag bit in the PIFH register.
A pull-down device is connected to the associated port H pin, if enabled by the associated bit in register PERH
and if the port is used as input.
22.3.2.52 Port H Interrupt Enable Register (PIEH)
7
6
5
4
3
2
1
0
PIEH7
PIEH6
PIEH5
PIEH4
PIEH3
PIEH2
PIEH1
PIEH0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-54. Port H Interrupt Enable Register (PIEH)
Read: Anytime.
Write: Anytime.
This register disables or enables on a per-pin basis the edge sensitive external interrupt associated with
Port H.
Table 22-49. PIEH Field Descriptions
Field
7–0
PIEH[7:0]
Description
Interrupt Enable Port H
0 Interrupt is disabled (interrupt flag masked).
1 Interrupt is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
865
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.53 Port H Interrupt Flag Register (PIFH)
7
6
5
4
3
2
1
0
PIFH7
PIFH6
PIFH5
PIFH4
PIFH3
PIFH2
PIFH1
PIFH0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-55. Port H Interrupt Flag Register (PIFH)
Read: Anytime.
Write: Anytime.
Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based
on the state of the PPSH register. To clear this flag, write logic level “1” to the corresponding bit in the
PIFH register. Writing a “0” has no effect.
Table 22-50. PIFH Field Descriptions
Field
7–0
PIFH[7:0]
Description
Interrupt Flags Port H
0 No active edge pending. Writing a “0” has no effect.
1 Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set).
Writing a logic level “1” clears the associated flag.
MC9S12XDP512 Data Sheet, Rev. 2.21
866
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.54 Port J Data Register (PTJ)
7
6
5
4
PTJ7
PTJ6
PTJ5
PTJ4
TXCAN4
RXCAN4
SCL0
SDA0
R
3
2
1
0
PTJ2
PTJ1
PTJ0
TXD2
RXD2
0
W
CAN4/
SCI2
IICO
IIC1
Routed
CAN0
TXCAN0
SDA1
CS2
CS0
0
0
RXCAN0
Alt.
Function
Reset
SCL1
0
0
CS1
0
0
CS3
0
0
= Unimplemented or Reserved
Figure 22-56. Port J Data Register (PTJ)
Read: Anytime.
Write: Anytime.
Port J pins 7–4 and 2–0 are associated with the CAN4, SCI2, IIC0 and IIC1, the routed CAN0 modules
and chip select signals (CS0, CS1, CS2, CS3). These pins can be used as general purpose I/O when not
used with any of the peripherals.
If the data direction bits of the associated I/O pins are set to logic level “1”, a read returns the value of the
port register, otherwise the buffered pin input state is read.
Table 22-51. PTJ Field Descriptions
Field
Description
7–6
PJ[7:0]
The CAN4 function (TXCAN4 and RXCAN4) takes precedence over the IIC0, the routed CAN0 and the general
purpose I/O function if the CAN4 module is enabled.
The IIC0 function (SCL0 and SDA0) takes precedence over the routed CAN0 and the general purpose I/O
function if the IIC0 is enabled. If the IIC0 module takes precedence the SDA0 and SCL0 outputs are configured
as open drain outputs. Refer to IIC section for details.
The routed CAN0 function (TXCAN0 and RXCAN0) takes precedence over the general purpose I/O function if
the routed CAN0 module is enabled. Refer to MSCAN section for details.
5-4
PJ[5:4]
2
PJ2
The IIC1 function (SCL1 and SDA1) takes precedence over the chip select (CS0, CS2) and general purpose I/O
function if the IIC1 is enabled. The chip selects (CS0, CS2) take precedence over the general purpose I/O. If the
IIC1 module takes precedence the SDA1 and SCL1 outputs are configured as open drain outputs. Refer to IIC
section for details.
The chip select function (CS1) takes precedence over the general purpose I/O.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
867
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
Table 22-51. PTJ Field Descriptions (continued)
Field
Description
1
PJ1
The SCI2 function takes precedence over the general purpose I/O function if the SCI2 module is enabled. Refer
to SCI section for details.
0
PJ0
The SCI2 function takes precedence over the chip select (CS3) and the general purpose I/O function if the SCI2
module is enabled. The chip select (CS3) takes precedence over the general purpose I/O function. Refer to SCI
section for details.
MC9S12XDP512 Data Sheet, Rev. 2.21
868
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.55 Port J Input Register (PTIJ)
R
7
6
5
4
3
2
1
0
PTIJ7
PTIJ6
PTIJ5
PTIJ4
0
PTIJ2
PTIJ1
PTIJ0
0
0
0
0
0
0
0
0
W
Reset1
= Unimplemented or Reserved
Figure 22-57. Port J Input Register (PTIJ)
1
These registers are reset to zero. Two bus clock cycles after reset release the register values are updated with the associated
pin values.
Read: Anytime.
Write: Never, writes to this register have no effect.
This register always reads back the buffered state of the associated pins. This can be used to detect
overload or short circuit conditions on output pins.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
869
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.56 Port J Data Direction Register (DDRJ)
7
6
5
4
3
DDRJ7
DDRJ6
DDRJ5
DDRJ4
0
0
0
0
R
2
1
0
DDRJ2
DDRJ1
DDRJ0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-58. Port J Data Direction Register (DDRJ)
Read: Anytime.
Write: Anytime.
This register configures each port J pin as either input or output.
The CAN forces the I/O state to be an output on PJ7 (TXCAN4) and an input on pin PJ6 (RXCAN4). The
IIC takes control of the I/O if enabled. In these cases the data direction bits will not change.
The SCI2 forces the I/O state to be an output for each port line associated with an enabled output (TXD2).
It also forces the I/O state to be an input for each port line associated with an enabled input (RXD2). In
these cases the data direction bits will not change.
The DDRJ bits revert to controlling the I/O direction of a pin when the associated peripheral module is
disabled.
Table 22-52. DDRJ Field Descriptions
Field
Description
7–0
DDRJ[7:4]
DDRJ[2:0]
Data Direction Port J
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read
on PTJ or PTIJ registers, when changing the DDRJ register.
MC9S12XDP512 Data Sheet, Rev. 2.21
870
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.57 Port J Reduced Drive Register (RDRJ)
7
6
5
4
3
RDRJ7
RDRJ6
RDRJ5
RDRJ4
0
0
0
0
R
2
1
0
RDRJ2
RDRJ1
RDRJ0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-59. Port J Reduced Drive Register (RDRJ)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each port J output pin as either full or reduced. If the port is
used as input this bit is ignored.
Table 22-53. RDRJ Field Descriptions
Field
7–0
RDRJ[7:4]
RDRJ[2:0]
Description
Reduced Drive Port J
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.58 Port J Pull Device Enable Register (PERJ)
7
6
5
4
3
PERJ7
PERJ6
PERJ5
PERJ4
1
1
1
1
R
2
1
0
PERJ2
PERJ1
PERJ0
1
1
1
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-60. Port J Pull Device Enable Register (PERJ)
Read: Anytime.
Write: Anytime.
This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or
as wired-OR output. This bit has no effect if the port is used as push-pull output. Out of reset a pull-up
device is enabled.
Table 22-54. PERJ Field Descriptions
Field
7–0
PERJ[7:4]
PERJ[2:0]
Description
Pull Device Enable Port J
0 Pull-up or pull-down device is disabled.
1 Either a pull-up or pull-down device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
871
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.59 Port J Polarity Select Register (PPSJ)
7
6
5
4
3
PPSJ7
PPSJ6
PPSJ5
PPSJ4
0
0
0
0
R
2
1
0
PPSJ2
PPSJ1
PPSJ0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-61. Port J Polarity Select Register (PPSJ)
Read: Anytime.
Write: Anytime.
This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting
a pull-up or pull-down device if enabled.
Table 22-55. PPSJ Field Descriptions
Field
Description
7–0
PPSJ[7:4]
PPSJ[2:0]
Polarity Select Port J
0 Falling edge on the associated port J pin sets the associated flag bit in the PIFJ register.
A pull-up device is connected to the associated port J pin, if enabled by the associated bit in register PERJ
and if the port is used as general purpose input or as IIC port.
1 Rising edge on the associated port J pin sets the associated flag bit in the PIFJ register.
A pull-down device is connected to the associated port J pin, if enabled by the associated bit in register PERJ
and if the port is used as input.
22.3.2.60 Port J Interrupt Enable Register (PIEJ)
7
6
5
4
PIEJ7
PIEJ6
PIEJ5
PIEJ4
0
0
0
0
R
3
2
1
0
PIEJ2
PIEJ1
PIEJ0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-62. Port J Interrupt Enable Register (PIEJ)
This register disables or enables on a per-pin basis the edge sensitive external interrupt associated with
Port J.
Table 22-56. PIEJ Field Descriptions
Field
7–0
PIEJ[7:4]
PIEJ[2:0]
Description
Interrupt Enable Port J
0 Interrupt is disabled (interrupt flag masked).
1 Interrupt is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
872
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.61 Port J Interrupt Flag Register (PIFJ)
7
6
5
4
PIFJ7
PIFJ6
PIFJ5
PIFJ4
0
0
0
0
3
R
2
1
0
PIFJ2
PIFJ1
PIFJ0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 22-63. Port J Interrupt Flag Register (PIFJ)
Read: Anytime.
Write: Anytime.
Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based
on the state of the PPSJ register. To clear this flag, write logic level “1” to the corresponding bit in the PIFJ
register. Writing a “0” has no effect.
Table 22-57. PIEJ Field Descriptions
Field
7–0
PIFJ[7:4]
PIFJ[2:0]
Description
Interrupt Flags Port J
0 No active edge pending. Writing a “0” has no effect.
1 Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set).
Writing a logic level “1” clears the associated flag.
22.3.2.62 Port AD0 Data Register 1 (PT1AD0)
7
6
5
4
3
2
1
0
PT1AD07
PT1AD06
PT1AD05
PT1AD04
PT1AD03
PT1AD02
PT1AD01
PT1AD00
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-64. Port AD0 Data Register 1 (PT1AD0)
Read: Anytime.
Write: Anytime.
This register is associated with AD0 pins PAD[7:0]. These pins can also be used as general purpose I/O.
If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register,
otherwise the value at the pins is read.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
873
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.63 Port AD0 Data Direction Register 1 (DDR1AD0)
7
6
5
4
3
2
1
0
DDR1AD07
DDR1AD06
DDR1AD05
DDR1AD04
DDR1AD03
DDR1AD02
DDR1AD01
DDR1AD00
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-65. Port AD0 Data Direction Register 1 (DDR1AD0)
Read: Anytime.
Write: Anytime.
This register configures pins PAD[07:00] as either input or output.
Table 22-58. DDR1AD0 Field Descriptions
Field
Description
7–0
DDR1AD0[7:0]
Data Direction Port AD0 Register 1
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is
read on PTAD01 register, when changing the DDR1AD0 register.
Note: To use the digital input function on port AD0 the ATD0 digital input enable register (ATD0DIEN) has to
be set to logic level “1”.
MC9S12XDP512 Data Sheet, Rev. 2.21
874
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.64 Port AD0 Reduced Drive Register 1 (RDR1AD0)
7
6
5
4
3
2
1
0
RDR1AD07
RDR1AD06
RDR1AD05
RDR1AD04
RDR1AD03
RDR1AD02
RDR1AD01
RDR1AD00
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-66. Port AD0 Reduced Drive Register 1 (RDR1AD0)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each output pin PAD[07:00] as either full or reduced. If the
port is used as input this bit is ignored.
Table 22-59. RDR1AD0 Field Descriptions
Field
Description
7–0
RDR1AD0[7:0]
Reduced Drive Port AD0 Register 1
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.65 Port AD0 Pull Up Enable Register 1 (PER1AD0)
7
6
5
4
3
2
1
0
PER1AD07
PER1AD06
PER1AD05
PER1AD04
PER1AD03
PER1AD02
PER1AD01
PER1AD00
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-67. Port AD0 Pull Up Enable Register 1 (PER1AD0)
Read: Anytime.
Write: Anytime.
This register activates a pull-up device on the respective pin PAD[07:00] if the port is used as input. This
bit has no effect if the port is used as output. Out of reset no pull device is enabled.
Table 22-60. PER1AD0 Field Descriptions
Field
7–0
PER1AD0[7:0]
Description
Pull Device Enable Port AD0 Register 1
0 Pull-up device is disabled.
1 Pull-up device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
875
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.66 Port AD1 Data Register 0 (PT0AD1)
7
6
5
4
3
2
1
0
PT0AD123
PT0AD122
PT0AD121
PT0AD120
PT0AD119
PT0AD118
PT0AD117
PT0AD116
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-68. Port AD1 Data Register 0 (PT0AD1)
Read: Anytime.
Write: Anytime.
This register is associated with AD1 pins PAD[23:16]. These pins can also be used as general purpose I/O.
If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register,
otherwise the value at the pins is read.
22.3.2.67 Port AD1 Data Register 1 (PT1AD1)
7
6
5
4
3
2
1
0
PT1AD115
PT1AD114
PT1AD113
PT1AD112
PT1AD111
PT1AD110
PT1AD19
PT1AD18
0
0
0
0
0
0
0
0
R
W
Reset
Figure 22-69. Port AD1 Data Register 1 (PT1AD1)
Read: Anytime.
Write: Anytime.
This register is associated with AD1 pins PAD[15:08]. These pins can also be used as general purpose I/O.
If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register,
otherwise the value at the pins is read.
MC9S12XDP512 Data Sheet, Rev. 2.21
876
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.68 Port AD1 Data Direction Register 0 (DDR0AD1)
7
6
5
4
3
2
1
0
R
DDR0AD123 DDR0AD122 DDR0AD121 DDR0AD120 DDR0AD119 DDR0AD118 DDR0AD117 DDR0AD116
W
Reset
0
0
0
0
0
0
0
0
Figure 22-70. Port AD1 Data Direction Register 0 (DDR0AD1)
Read: Anytime.
Write: Anytime.
This register configures pin PAD[23:16] as either input or output.
Table 22-61. DDR0AD1 Field Descriptions
Field
Description
7–0
Data Direction Port AD1 Register 0
DDR0AD1[23:16] 0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is
read on PTAD10 register, when changing the DDR0AD1 register.
Note: To use the digital input function on Port AD1 the ATD1 digital input enable register (ATD1DIEN0) has
to be set to logic level “1”.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
877
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.69 Port AD1 Data Direction Register 1 (DDR1AD1)
7
6
5
4
3
2
1
0
R
DDR1AD115 DDR1AD114 DDR1AD113 DDR1AD112 DDR1AD111 DDR1AD110 DDR1AD19
DDR1AD18
W
Reset
0
0
0
0
0
0
0
0
Figure 22-71. Port AD1 Data Direction Register 1 (DDR1AD1)
Read: Anytime.
Write: Anytime.
This register configures pins PAD[15:08] as either input or output.
Table 22-62. DDR1AD1 Field Descriptions
Field
Description
7–0
DDR1AD1[15:8]
Data Direction Port AD1 Register 1
0 Associated pin is configured as input.
1 Associated pin is configured as output.
Note: Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is
read on PTAD11 register, when changing the DDR1AD1 register.
Note: To use the digital input function on port AD1 the ATD1 digital input enable register (ATD1DIEN1) has
to be set to logic level “1”.
MC9S12XDP512 Data Sheet, Rev. 2.21
878
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.70 Port AD1 Reduced Drive Register 0 (RDR0AD1)
7
6
5
4
3
2
1
0
R
RDR0AD123 RDR0AD122 RDR0AD121 RDR0AD120 RDR0AD119 RDR0AD118 RDR0AD117 RDR0AD116
W
Reset
0
0
0
0
0
0
0
0
Figure 22-72. Port AD1 Reduced Drive Register 0 (RDR0AD1)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each PAD[23:16] output pin as either full or reduced. If the
port is used as input this bit is ignored.
Table 22-63. RDR0AD1 Field Descriptions
Field
Description
7–0
Reduced Drive Port AD1 Register 0
RDR0AD1[23:16] 0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
22.3.2.71 Port AD1 Reduced Drive Register 1 (RDR1AD1)
7
6
5
4
3
2
1
0
R
RDR1AD115 RDR1AD114 RDR1AD113 RDR1AD112 RDR1AD111 RDR1AD110 RDR1AD19
RDR1AD18
W
Reset
0
0
0
0
0
0
0
0
Figure 22-73. Port AD1 Reduced Drive Register 1 (RDR1AD1)
Read: Anytime.
Write: Anytime.
This register configures the drive strength of each PAD[15:08] output pin as either full or reduced. If the
port is used as input this bit is ignored.
Table 22-64. RDR1AD1 Field Descriptions
Field
7–0
RDR1AD1[15:8]
Description
Reduced Drive Port AD1 Register 1
0 Full drive strength at output.
1 Associated pin drives at about 1/6 of the full drive strength.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
879
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.3.2.72 Port AD1 Pull Up Enable Register 0 (PER0AD1)
7
6
5
4
3
2
1
0
R
PER0AD123 PER0AD122 PER0AD121 PER0AD120 PER0AD119 PER0AD118 PER0AD117 PER0AD116
W
Reset
0
0
0
0
0
0
0
0
Figure 22-74. Port AD1 Pull Up Enable Register 0 (PER0AD1)
Read: Anytime.
Write: Anytime.
This register activates a pull-up device on the respective PAD[23:16] pin if the port is used as input. This
bit has no effect if the port is used as output. Out of reset no pull-up device is enabled.
Table 22-65. PER0AD1 Field Descriptions
Field
Description
7–0
Pull Device Enable Port AD1 Register 0
PER0AD1[23:16] 0 Pull-up device is disabled.
1 Pull-up device is enabled.
22.3.2.73 Port AD1 Pull Up Enable Register 1 (PER1AD1)
7
6
5
4
3
2
1
0
PER1AD19
PER1AD18
0
0
R
PER1AD115 PER1AD114 PER1AD113 PER1AD112 PER1AD111 PER1AD110
W
Reset
0
0
0
0
0
0
Figure 22-75. Port AD1 Pull Up Enable Register 1 (PER1AD1)
Read: Anytime.
Write: Anytime.
This register activates a pull-up device on the respective PAD[15:08] pin if the port is used as input. This
bit has no effect if the port is used as output. Out of reset no pull-up device is enabled.
Table 22-66. PER1AD1 Field Descriptions
Field
7–0
PER1AD1[15:8]
Description
Pull Device Enable Port AD1 Register 1
0 Pull-up device is disabled.
1 Pull-up device is enabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
880
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4
Functional Description
Each pin except PE0, PE1, and BKGD can act as general purpose I/O. In addition each pin can act as an
output from the external bus interface module or a peripheral module or an input to the external bus
interface module or a peripheral module.
A set of configuration registers is common to all ports with exceptions in the expanded bus interface and
ATD ports (Table 22-67). All registers can be written at any time; however a specific configuration might
not become active.
Example: Selecting a pull-up device
This device does not become active while the port is used as a push-pull output.
Table 22-67. Register Availability per Port1
1
Port
Data
Data
Direction
Input
Reduced
Drive
Pull
Enable
Polarity
Select
Wired-OR
Mode
Interrupt
Enable
Interrupt
Flag
A
yes
yes
—
yes
yes
—
—
—
—
B
yes
yes
—
—
—
—
—
C
yes
yes
—
—
—
—
—
D
yes
yes
—
—
—
—
—
E
yes
yes
—
—
—
—
—
K
yes
yes
—
—
—
—
—
T
yes
yes
yes
yes
yes
—
—
—
—
S
yes
yes
yes
yes
yes
yes
yes
—
—
M
yes
yes
yes
yes
yes
yes
yes
—
—
P
yes
yes
yes
yes
yes
yes
—
yes
yes
H
yes
yes
yes
yes
yes
yes
—
yes
yes
J
yes
yes
yes
yes
yes
yes
—
yes
yes
AD0
yes
yes
—
yes
yes
—
—
—
—
AD1
yes
yes
—
yes
yes
—
—
—
—
Each cell represents one register with individual configuration bits
22.4.1
22.4.1.1
Registers
Data Register
This register holds the value driven out to the pin if the pin is used as a general purpose I/O.
Writing to this register has only an effect on the pin if the pin is used as general purpose output. When
reading this address, the buffered state of the pin is returned if the associated data direction register bit is
set to “0”.
If the data direction register bits are set to logic level “1”, the contents of the data register is returned. This
is independent of any other configuration (Figure 22-76).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
881
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4.1.2
Input Register
This is a read-only register and always returns the buffered state of the pin (Figure 22-76).
22.4.1.3
Data Direction Register
This register defines whether the pin is used as an input or an output.
If a peripheral module controls the pin the contents of the data direction register is ignored (Figure 22-76).
PTI
0
1
PT
0
PIN
1
DDR
0
1
data out
Module
output enable
module enable
Figure 22-76. Illustration of I/O Pin Functionality
22.4.1.4
Reduced Drive Register
If the pin is used as an output this register allows the configuration of the drive strength.
22.4.1.5
Pull Device Enable Register
This register turns on a pull-up or pull-down device. It becomes active only if the pin is used as an input
or as a wired-OR output.
22.4.1.6
Polarity Select Register
This register selects either a pull-up or pull-down device if enabled. It becomes active only if the pin is
used as an input. A pull-up device can be activated if the pin is used as a wired-OR output. If the pin is
used as an interrupt input this register selects the active interrupt edge.
22.4.1.7
Wired-OR Mode Register
If the pin is used as an output this register turns off the active high drive. This allows wired-OR type
connections of outputs.
MC9S12XDP512 Data Sheet, Rev. 2.21
882
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4.1.8
Interrupt Enable Register
If the pin is used as an interrupt input this register serves as a mask to the interrupt flag to enable/disable
the interrupt.
22.4.1.9
Interrupt Flag Register
If the pin is used as an interrupt input this register holds the interrupt flag after a valid pin event.
22.4.1.10 Module Routing Register
This register supports the re-routing of the CAN0, CAN4, SPI0, SPI1, and SPI2 pins to alternative ports.
This allows a software re-configuration of the pinouts of the different package options with respect to
above peripherals.
NOTE
The purpose of the module routing register is to provide maximum
flexibility for derivatives with a lower number of MSCAN and SPI modules.
Table 22-68. Module Implementations on Derivatives
22.4.2
22.4.2.1
MSCAN Modules
SPI Modules
Number
of Modules
CAN0
CAN1
CAN2
CAN3
CAN4
SPI0
SPI1
SPI2
5
yes
yes
yes
yes
yes
—
—
—
4
yes
yes
yes
—
yes
—
—
—
3
yes
yes
—
—
yes
yes
yes
yes
2
yes
—
—
—
yes
yes
yes
—
1
yes
—
—
—
—
yes
—
—
Ports
BKGD Pin
The BKGD pin is associated with the S12X_BDM and S12X_EBI modules. During reset, the BKGD pin
is used as MODC input.
22.4.2.2
Port A and B
Port A pins PA[7:0] and Port B pins PB[7:0] can be used for either general-purpose I/O, or, in 144-pin
packages, also with the external bus interface. In this case port A and port B are associated with the
external address bus outputs ADDR15–ADDR8 and ADDR7–ADDR0, respectively. PB0 is the ADDR0
or UDS output.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
883
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4.2.3
Port C and D
Port C pins PC[7:0] and port D pins PD[7:0] can be used for either general-purpose I/O, or, in 144-pin
packages, also with the external bus interface. In this case port C and port D are associated with the
external data bus inputs/outputs DATA15–DATA8 and DATA7–DATA0, respectively.
These pins are configured for reduced input threshold in certain operating modes (refer to S12X_EBI
section).
NOTE
Port C and D are neither available in 112-pin nor in 80-pin packages.
22.4.2.4
Port E
Port E is associated with the external bus control outputs R/W, LSTRB, LDS and RE, the free-running
clock outputs ECLK and ECLK2X, as well as with the TAGHI, TAGLO, MODA and MODB and
interrupt inputs IRQ and XIRQ.
Port E pins PE[7:2] can be used for either general-purpose I/O or with the alternative functions.
Port E pin PE[7] an be used for either general-purpose I/O or as the free-running clock ECLKX2 output
running at the core clock rate. The clock output is always enabled in emulation modes.
Port E pin PE[4] an be used for either general-purpose I/O or as the free-running clock ECLK output
running at the bus clock rate or at the programmed divided clock rate. The clock output is always enabled
in emulation modes.
Port E pin PE[1] can be used for either general-purpose input or as the level- or falling edge-sensitive IRQ
interrupt input. IRQ will be enabled by setting the IRQEN configuration bit (Section 22.3.2.14, “IRQ
Control Register (IRQCR)”) and clearing the I-bit in the CPU’s condition code register. It is inhibited at
reset so this pin is initially configured as a simple input with a pull-up.
Port E pin PE[0] can be used for either general-purpose input or as the level-sensitive XIRQ interrupt
input. XIRQ can be enabled by clearing the X-bit in the CPU’s condition code register. It is inhibited at
reset so this pin is initially configured as a high-impedance input with a pull-up.
Port E pins PE[5] and PE[6] are configured for reduced input threshold in certain modes (refer to
S12X_EBI section).
22.4.2.5
Port K
Port K pins PK[7:0] can be used for either general-purpose I/O, or, in 144-pin packages, also with the
external bus interface. In this case port K pins PK[6:0] are associated with the external address bus outputs
ADDR22–ADDR16 and PK7 is associated to the EWAIT input.
Port K pin PE[7] is configured for reduced input threshold in certain modes (refer to S12X_EBI section).
NOTE
Port K is not available in 80-pin packages. PK[6] is not available in 112-pin
packages.
MC9S12XDP512 Data Sheet, Rev. 2.21
884
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4.2.6
Port T
This port is associated with the ECT module. Port T pins PT[7:0] can be used for either general-purpose
I/O, or with the channels of the enhanced capture timer.
22.4.2.7
Port S
This port is associated with SCI0, SCI1 and SPI0. Port S pins PS[7:0] can be used either for generalpurpose I/O, or with the SCI and SPI subsystems.
The SPI0 pins can be re-routed. Refer to Section 22.3.2.37, “Module Routing Register (MODRR)”.
NOTE
PS[7:4] are not available in 80-pin packages.
22.4.2.8
Port M
This port is associated with the SCI3, CAN4–0 and SPI0. Port M pins PM[7:0] can be used for either
general purpose I/O, or with the CAN, SCI and SPI subsystems.
The CAN0, CAN4 and SPI0 pins can be re-routed. Refer to Section 22.3.2.37, “Module Routing Register
(MODRR)”.
NOTE
PM[7:6] are not available in 80-pin packages.
22.4.2.9
Port P
This port is associated with the PWM, SPI1 and SPI2. Port P pins PP[7:0] can be used for either general
purpose I/O, or with the PWM and SPI subsystems.
The pins are shared between the PWM channels and the SPI1 and SPI2 modules. If the PWM is enabled
the pins become PWM output channels with the exception of pin 7 which can be PWM input or output. If
SPI1 or SPI2 are enabled and PWM is disabled, the respective pin configuration is determined by status
bits in the SPI modules.
The SPI1 and SPI2 pins can be re-routed. Refer to Section 22.3.2.37, “Module Routing Register
(MODRR)”.
Port P offers 8 I/O pins with edge triggered interrupt capability in wired-OR fashion (Section 22.4.3, “Pin
Interrupts”).
NOTE
PP[6] is not available in 80-pin packages.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
885
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4.2.10 Port H
This port is associated with the SPI1, SPI2, SCI4, and SCI5. Port H pins PH[7:0] can be used for either
general purpose I/O, or with the SPI and SCI subsystems. Port H pins can be used with the routed SPI1
and SPI2 modules. Refer to Section 22.3.2.37, “Module Routing Register (MODRR)”.
Port H offers 8 I/O pins with edge triggered interrupt capability (Section 22.4.3, “Pin Interrupts”).
NOTE
Port H is not available in 80-pin packages.
22.4.2.11 Port J
This port is associated with the chip selects CS0, CS1, CS2 and CS3 as well as with CAN4, CAN0, IIC1,
IIC0, and SCI2. Port J pins PJ[7:4] and PJ[2:0] can be used for either general purpose I/O, or with the
CAN, IIC, or SCI subsystems. If IIC takes precedence the associated pins become IIC open-drain output
pins. The CAN4 pins can be re-routed. Refer to Section 22.3.2.37, “Module Routing Register (MODRR)”.
Port J pins can be used with the routed CAN0 modules. Refer to Section 22.3.2.37, “Module Routing
Register (MODRR)”.
Port J offers 7 I/O pins with edge triggered interrupt capability (Section 22.4.3, “Pin Interrupts”).
NOTE
PJ[5,4,2] are not available in 112-pin packages. PJ[5,4,2,1,0] are not
available in 80-pin packages.
22.4.2.12 Port AD0
This port is associated with the ATD0. Port AD0 pins PAD07–PAD00 can be used for either general
purpose I/O, or with the ATD0 subsystem.
22.4.2.13 Port AD1
This port is associated with the ATD1. Port AD1 pins PAD23–PAD08 can be used for either general
purpose I/O, or with the ATD1 subsystem.
NOTE
PAD[23:16] are not available in 112-pin packages. PAD[23:08] are not
available in 80-pin packages.
MC9S12XDP512 Data Sheet, Rev. 2.21
886
Freescale Semiconductor
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
22.4.3
Pin Interrupts
Ports P, H and J offer pin interrupt capability. The interrupt enable as well as the sensitivity to rising or
falling edges can be individually configured on per-pin basis. All bits/pins in a port share the same
interrupt vector. Interrupts can be used with the pins configured as inputs or outputs.
An interrupt is generated when a bit in the port interrupt flag register and its corresponding port interrupt
enable bit are both set. The pin interrupt feature is also capable to wake up the CPU when it is in STOP or
WAIT mode.
A digital filter on each pin prevents pulses (Figure 22-78) shorter than a specified time from generating an
interrupt. The minimum time varies over process conditions, temperature and voltage (Figure 22-77 and
Table 22-69).
Glitch, filtered out, no interrupt flag set
Valid pulse, interrupt flag set
uncertain
tpign
tpval
Figure 22-77. Interrupt Glitch Filter on Port P, H, and J (PPS = 0)
Table 22-69. Pulse Detection Criteria
Mode
Pulse
1
STOP
Unit
STOP1
Ignored
tpulse ≤ 3
Bus clocks
tpulse ≤ tpign
Uncertain
3 < tpulse < 4
Bus clocks
tpign < tpulse < tpval
Valid
tpulse ≥ 4
Bus clocks
tpulse ≥ tpval
These values include the spread of the oscillator frequency over temperature,
voltage and process.
tpulse
Figure 22-78. Pulse Illustration
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
887
Chapter 22 DP512 Port Integration Module (S12XDP512PIMV2)
A valid edge on an input is detected if 4 consecutive samples of a passive level are followed by
4 consecutive samples of an active level directly or indirectly.
The filters are continuously clocked by the bus clock in run and wait mode. In stop mode, the clock is
generated by an RC-oscillator in the port integration module. To maximize current saving the RC
oscillator runs only if the following condition is true on any pin individually:
Sample count 0.15 MHz
?
yes
END
no
yes
EDIV[5:0] > 4?
no
ALL COMMANDS IMPOSSIBLE
Figure 25-17. Determination Procedure for PRDIV8 and EDIV Bits
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1053
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.1.2
Command Write Sequence
The EEPROM command controller is used to supervise the command write sequence to execute program,
erase, erase verify, sector erase abort, and sector modify algorithms.
Before starting a command write sequence, the ACCERR and PVIOL flags in the ESTAT register must be
clear (see Section 25.3.2.6, “EEPROM Status Register (ESTAT)”) and the CBEIF flag should be tested to
determine the state of the address, data and command buffers. If the CBEIF flag is set, indicating the
buffers are empty, a new command write sequence can be started. If the CBEIF flag is clear, indicating the
buffers are not available, a new command write sequence will overwrite the contents of the address, data
and command buffers.
A command write sequence consists of three steps which must be strictly adhered to with writes to the
EEPROM module not permitted between the steps. However, EEPROM register and array reads are
allowed during a command write sequence. The basic command write sequence is as follows:
1. Write to one address in the EEPROM memory.
2. Write a valid command to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the command.
The address written in step 1 will be stored in the EADDR registers and the data will be stored in the
EDATA registers. If the CBEIF flag in the ESTAT register is clear when the first EEPROM array write
occurs, the contents of the address and data buffers will be overwritten and the CBEIF flag will be set.
When the CBEIF flag is cleared, the CCIF flag is cleared on the same bus cycle by the EEPROM command
controller indicating that the command was successfully launched. For all command write sequences
except sector erase abort, the CBEIF flag will set four bus cycles after the CCIF flag is cleared indicating
that the address, data, and command buffers are ready for a new command write sequence to begin. For
sector erase abort operations, the CBEIF flag will remain clear until the operation completes. Except for
the sector erase abort command, a buffered command will wait for the active operation to be completed
before being launched. The sector erase abort command is launched when the CBEIF flag is cleared as part
of a sector erase abort command write sequence. Once a command is launched, the completion of the
command operation is indicated by the setting of the CCIF flag in the ESTAT register. The CCIF flag will
set upon completion of all active and buffered commands.
25.4.2
EEPROM Commands
Table 25-9 summarizes the valid EEPROM commands along with the effects of the commands on the
EEPROM block.
Table 25-9. EEPROM Command Description
ECMDB
Command
Function on EEPROM Memory
0x05
Erase
Verify
Verify all memory bytes in the EEPROM block are erased. If the EEPROM block is erased, the
BLANK flag in the ESTAT register will set upon command completion.
0x20
Program
0x40
Sector
Erase
Program a word (two bytes) in the EEPROM block.
Erase all four memory bytes in a sector of the EEPROM block.
MC9S12XDP512 Data Sheet, Rev. 2.21
1054
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
Table 25-9. EEPROM Command Description
ECMDB
Command
Function on EEPROM Memory
0x41
Mass
Erase
Erase all memory bytes in the EEPROM block. A mass erase of the full EEPROM block is only
possible when EPOPEN and EPDIS bits in the EPROT register are set prior to launching the
command.
0x47
Sector Erase
Abort
Abort the sector erase operation. The sector erase operation will terminate according to a set
procedure. The EEPROM sector should not be considered erased if the ACCERR flag is set
upon command completion.
0x60
Sector
Modify
Erase all four memory bytes in a sector of the EEPROM block and reprogram the addressed
word.
CAUTION
An EEPROM word (2 bytes) must be in the erased state before being
programmed. Cumulative programming of bits within a word is not allowed.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1055
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.2.1
Erase Verify Command
The erase verify operation will verify that the EEPROM memory is erased.
An example flow to execute the erase verify operation is shown in Figure 25-18. The erase verify command
write sequence is as follows:
1. Write to an EEPROM address to start the command write sequence for the erase verify command.
The address and data written will be ignored.
2. Write the erase verify command, 0x05, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the erase verify
command.
After launching the erase verify command, the CCIF flag in the ESTAT register will set after the operation
has completed unless a new command write sequence has been buffered. The number of bus cycles
required to execute the erase verify operation is equal to the number of words in the EEPROM memory
plus 14 bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon
completion of the erase verify operation, the BLANK flag in the ESTAT register will be set if all addresses
in the EEPROM memory are verified to be erased. If any address in the EEPROM memory is not erased,
the erase verify operation will terminate and the BLANK flag in the ESTAT register will remain clear.
MC9S12XDP512 Data Sheet, Rev. 2.21
1056
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Address
and Dummy Data
2.
Write: ECMD register
Erase Verify Command 0x05
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Erase Verify
Status
BLANK
Set?
no
yes
EXIT EEPROM Memory
Erased
EXIT
EEPROM Memory
Not Erased
Figure 25-18. Example Erase Verify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1057
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.2.2
Program Command
The program operation will program a previously erased word in the EEPROM memory using an
embedded algorithm.
An example flow to execute the program operation is shown in Figure 25-19. The program command write
sequence is as follows:
1. Write to an EEPROM block address to start the command write sequence for the program
command. The data written will be programmed to the address written.
2. Write the program command, 0x20, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the program
command.
If a word to be programmed is in a protected area of the EEPROM memory, the PVIOL flag in the ESTAT
register will set and the program command will not launch. Once the program command has successfully
launched, the CCIF flag in the ESTAT register will set after the program operation has completed unless a
new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1058
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
1.
Write: EEPROM Address
and program Data
2.
Write: ECMD register
Program Command 0x20
3.
Write: ESTAT register
Clear CBEIF 0x80
yes
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Buffer Empty
Check
no
CBEIF
Set?
yes
Sequential
Programming
Decision
Next
Word?
yes
no
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 25-19. Example Program Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1059
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.2.3
Sector Erase Command
The sector erase operation will erase both words in a sector of EEPROM memory using an embedded
algorithm.
An example flow to execute the sector erase operation is shown in Figure 25-20. The sector erase
command write sequence is as follows:
1. Write to an EEPROM memory address to start the command write sequence for the sector erase
command. The EEPROM address written determines the sector to be erased while global address
bits [1:0] and the data written are ignored.
2. Write the sector erase command, 0x40, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If an EEPROM sector to be erased is in a protected area of the EEPROM memory, the PVIOL flag in the
ESTAT register will set and the sector erase command will not launch. Once the sector erase command has
successfully launched, the CCIF flag in the ESTAT register will set after the sector erase operation has
completed unless a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1060
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Sector Address
and Dummy Data
2.
Write: ECMD register
Sector Erase Command 0x40
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 25-20. Example Sector Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1061
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.2.4
Mass Erase Command
The mass erase operation will erase all addresses in an EEPROM block using an embedded algorithm.
An example flow to execute the mass erase operation is shown in Figure 25-21. The mass erase command
write sequence is as follows:
1. Write to an EEPROM memory address to start the command write sequence for the mass erase
command. The address and data written will be ignored.
2. Write the mass erase command, 0x41, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the mass erase
command.
If the EEPROM memory to be erased contains any protected area, the PVIOL flag in the ESTAT register
will set and the mass erase command will not launch. Once the mass erase command has successfully
launched, the CCIF flag in the ESTAT register will set after the mass erase operation has completed unless
a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1062
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Address
and Dummy Data
2.
Write: ECMD register
Mass Erase Command 0x41
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 25-21. Example Mass Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1063
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.2.5
Sector Erase Abort Command
The sector erase abort operation will terminate the active sector erase or sector modify operation so that
other sectors in an EEPROM block are available for read and program operations without waiting for the
sector erase or sector modify operation to complete.
An example flow to execute the sector erase abort operation is shown in Figure 25-22. The sector erase
abort command write sequence is as follows:
1. Write to any EEPROM memory address to start the command write sequence for the sector erase
abort command. The address and data written are ignored.
2. Write the sector erase abort command, 0x47, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.
If the sector erase abort command is launched resulting in the early termination of an active sector erase
or sector modify operation, the ACCERR flag will set once the operation completes as indicated by the
CCIF flag being set. The ACCERR flag sets to inform the user that the EEPROM sector may not be fully
erased and a new sector erase or sector modify command must be launched before programming any
location in that specific sector. If the sector erase abort command is launched but the active sector erase or
sector modify operation completes normally, the ACCERR flag will not set upon completion of the
operation as indicated by the CCIF flag being set. If the sector erase abort command is launched after the
sector modify operation has completed the sector erase step, the program step will be allowed to complete.
The maximum number of cycles required to abort a sector erase or sector modify operation is equal to four
EECLK periods (see Section 25.4.1.1, “Writing the ECLKDIV Register”) plus five bus cycles as measured
from the time the CBEIF flag is cleared until the CCIF flag is set.
NOTE
Since the ACCERR bit in the ESTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the ESTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.
NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.
MC9S12XDP512 Data Sheet, Rev. 2.21
1064
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
Execute Sector Erase/Modify Command Flow
Read: ESTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
Erase
Abort
Needed?
no
yes
Sector Erase
Completed
no
yes
EXIT
1.
Write: Dummy EEPROM Address
and Dummy Data
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
2.
Write: ECMD register
Sector Erase Abort Cmd 0x47
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
3.
Write: ESTAT register
Clear CBEIF 0x80
Read: ESTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
no
yes
Access
Error Check
ACCERR
Set?
yes
Write: ESTAT register
Clear ACCERR 0x10
no
Sector Erase
or Modify
Completed
EXIT
Sector Erase
or Modify
Aborted
EXIT
Figure 25-22. Example Sector Erase Abort Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1065
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.2.6
Sector Modify Command
The sector modify operation will erase both words in a sector of EEPROM memory followed by a
reprogram of the addressed word using an embedded algorithm.
An example flow to execute the sector modify operation is shown in Figure 25-23. The sector modify
command write sequence is as follows:
1. Write to an EEPROM memory address to start the command write sequence for the sector modify
command. The EEPROM address written determines the sector to be erased and word to be
reprogrammed while byte address bit 0 is ignored.
2. Write the sector modify command, 0x60, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If an EEPROM sector to be modified is in a protected area of the EEPROM memory, the PVIOL flag in
the ESTAT register will set and the sector modify command will not launch. Once the sector modify
command has successfully launched, the CCIF flag in the ESTAT register will set after the sector modify
operation has completed unless a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1066
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Word Address
and program Data
2.
Write: ECMD register
Sector Modify Command 0x60
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 25-23. Example Sector Modify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1067
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.4.3
Illegal EEPROM Operations
The ACCERR flag will be set during the command write sequence if any of the following illegal steps are
performed, causing the command write sequence to immediately abort:
1. Writing to an EEPROM address before initializing the ECLKDIV register.
2. Writing a byte or misaligned word to a valid EEPROM address.
3. Starting a command write sequence while a sector erase abort operation is active.
4. Writing to any EEPROM register other than ECMD after writing to an EEPROM address.
5. Writing a second command to the ECMD register in the same command write sequence.
6. Writing an invalid command to the ECMD register.
7. Writing to an EEPROM address after writing to the ECMD register.
8. Writing to any EEPROM register other than ESTAT (to clear CBEIF) after writing to the ECMD
register.
9. Writing a 0 to the CBEIF flag in the ESTAT register to abort a command write sequence.
The ACCERR flag will not be set if any EEPROM register is read during a valid command write sequence.
The ACCERR flag will also be set if any of the following events occur:
1. Launching the sector erase abort command while a sector erase or sector modify operation is active
which results in the early termination of the sector erase or sector modify operation (see
Section 25.4.2.5, “Sector Erase Abort Command”).
2. The MCU enters stop mode and a command operation is in progress. The operation is aborted
immediately and any pending command is purged (see Section 25.5.2, “Stop Mode”).
If the EEPROM memory is read during execution of an algorithm (CCIF = 0), the read operation will
return invalid data and the ACCERR flag will not be set.
If the ACCERR flag is set in the ESTAT register, the user must clear the ACCERR flag before starting
another command write sequence (see Section 25.3.2.6, “EEPROM Status Register (ESTAT)”).
The PVIOL flag will be set after the command is written to the ECMD register during a command write
sequence if any of the following illegal operations are attempted, causing the command write sequence to
immediately abort:
1. Writing the program command if the address written in the command write sequence was in a
protected area of the EEPROM memory.
2. Writing the sector erase command if the address written in the command write sequence was in a
protected area of the EEPROM memory.
3. Writing the mass erase command to the EEPROM memory while any EEPROM protection is
enabled.
4. Writing the sector modify command if the address written in the command write sequence was in
a protected area of the EEPROM memory.
If the PVIOL flag is set in the ESTAT register, the user must clear the PVIOL flag before starting another
command write sequence (see Section 25.3.2.6, “EEPROM Status Register (ESTAT)”).
MC9S12XDP512 Data Sheet, Rev. 2.21
1068
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.5
25.5.1
Operating Modes
Wait Mode
If a command is active (CCIF = 0) when the MCU enters the wait mode, the active command and any
buffered command will be completed.
The EEPROM module can recover the MCU from wait mode if the CBEIF and CCIF interrupts are enabled
(see Section 25.8, “Interrupts”).
25.5.2
Stop Mode
If a command is active (CCIF = 0) when the MCU enters the stop mode, the operation will be aborted and,
if the operation is program, sector erase, mass erase, or sector modify, the EEPROM array data being
programmed or erased may be corrupted and the CCIF and ACCERR flags will be set. If active, the high
voltage circuitry to the EEPROM memory will immediately be switched off when entering stop mode.
Upon exit from stop mode, the CBEIF flag is set and any buffered command will not be launched. The
ACCERR flag must be cleared before starting a command write sequence (see Section 25.4.1.2,
“Command Write Sequence”).
NOTE
As active commands are immediately aborted when the MCU enters stop
mode, it is strongly recommended that the user does not use the STOP
instruction during program, sector erase, mass erase, or sector modify
operations.
25.5.3
Background Debug Mode
In background debug mode (BDM), the EPROT register is writable. If the MCU is unsecured, then all
EEPROM commands listed in Table 25-9 can be executed. If the MCU is secured and is in special single
chip mode, the only command available to execute is mass erase.
25.6
EEPROM Module Security
The EEPROM module does not provide any security information to the MCU. After each reset, the
security state of the MCU is a function of information provided by the Flash module (see the specific FTX
Block Guide).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1069
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.6.1
Unsecuring the MCU in Special Single Chip Mode using BDM
Before the MCU can be unsecured in special single chip mode, the EEPROM memory must be erased
using the following method :
• Reset the MCU into special single chip mode, delay while the erase test is performed by the BDM
secure ROM, send BDM commands to disable protection in the EEPROM module, and execute a
mass erase command write sequence to erase the EEPROM memory.
After the CCIF flag sets to indicate that the EEPROM mass operation has completed and assuming that the
Flash memory has also been erased, reset the MCU into special single chip mode. The BDM secure ROM
will verify that the Flash and EEPROM memory are erased and will assert the UNSEC bit in the BDM
status register. This BDM action will cause the MCU to override the Flash security state and the MCU will
be unsecured. Once the MCU is unsecured, BDM commands will be enabled and the Flash security byte
may be programmed to the unsecure state.
25.7
25.7.1
Resets
EEPROM Reset Sequence
On each reset, the EEPROM module executes a reset sequence to hold CPU activity while loading the
EPROT register from the EEPROM memory according to Table 25-1.
25.7.2
Reset While EEPROM Command Active
If a reset occurs while any EEPROM command is in progress, that command will be immediately aborted.
The state of a word being programmed or the sector / block being erased is not guaranteed.
25.8
Interrupts
The EEPROM module can generate an interrupt when all EEPROM command operations have completed,
when the EEPROM address, data, and command buffers are empty.
Table 25-10. EEPROM Interrupt Sources
Interrupt Source
Interrupt Flag
Local Enable
Global (CCR) Mask
EEPROM address, data, and command buffers empty
CBEIF
(ESTAT register)
CBEIE
(ECNFG register)
I Bit
All EEPROM commands completed
CCIF
(ESTAT register)
CCIE
(ECNFG register)
I Bit
NOTE
Vector addresses and their relative interrupt priority are determined at the
MCU level.
MC9S12XDP512 Data Sheet, Rev. 2.21
1070
Freescale Semiconductor
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
25.8.1
Description of EEPROM Interrupt Operation
The logic used for generating interrupts is shown in Figure 25-24.
The EEPROM module uses the CBEIF and CCIF flags in combination with the CBIE and CCIE enable
bits to generate the EEPROM command interrupt request.
CBEIF
CBEIE
EEPROM Command Interrupt Request
CCIF
CCIE
Figure 25-24. EEPROM Interrupt Implementation
For a detailed description of the register bits, refer to Section 25.3.2.4, “EEPROM Configuration Register
(ECNFG)” and Section 25.3.2.6, “EEPROM Status Register (ESTAT)” .
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1071
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
MC9S12XDP512 Data Sheet, Rev. 2.21
1072
Freescale Semiconductor
Chapter 26
4 Kbyte EEPROM Module (S12XEETX4KV2)
26.1
Introduction
This document describes the EETX4K module which includes a 4 Kbyte EEPROM (nonvolatile) memory.
The EEPROM memory may be read as either bytes, aligned words, or misaligned words. Read access time
is one bus cycle for bytes and aligned words, and two bus cycles for misaligned words.
The EEPROM memory is ideal for data storage for single-supply applications allowing for field
reprogramming without requiring external voltage sources for program or erase. Program and erase
functions are controlled by a command driven interface. The EEPROM module supports both block erase
(all memory bytes) and sector erase (4 memory bytes). An erased bit reads 1 and a programmed bit reads
0. The high voltage required to program and erase the EEPROM memory is generated internally. It is not
possible to read from the EEPROM block while it is being erased or programmed.
CAUTION
An EEPROM word (2 bytes) must be in the erased state before being
programmed. Cumulative programming of bits within a word is not allowed.
26.1.1
Glossary
Command Write Sequence — A three-step MCU instruction sequence to execute built-in algorithms
(including program and erase) on the EEPROM memory.
26.1.2
•
•
•
•
•
•
•
•
Features
4 Kbytes of EEPROM memory divided into 1024 sectors of 4 bytes
Automated program and erase algorithm
Interrupts on EEPROM command completion and command buffer empty
Fast sector erase and word program operation
2-stage command pipeline
Sector erase abort feature for critical interrupt response
Flexible protection scheme to prevent accidental program or erase
Single power supply for all EEPROM operations including program and erase
26.1.3
Modes of Operation
Program, erase and erase verify operations (please refer to Section 26.4.1, “EEPROM Command
Operations” for details).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1073
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.1.4
Block Diagram
A block diagram of the EEPROM module is shown in Figure 26-1.
EETX4K
Command
Interrupt
Request
EEPROM
Interface
Command Pipeline
EEPROM
cmd2
addr2
data2
cmd1
addr1
data1
Registers
2K * 16 Bits
sector 0
sector 1
Protection
sector 1023
Oscillator
Clock
Clock
Divider EECLK
Figure 26-1. EETX4K Block Diagram
26.2
External Signal Description
The EEPROM module contains no signals that connect off-chip.
26.3
Memory Map and Register Definition
This section describes the memory map and registers for the EEPROM module.
26.3.1
Module Memory Map
The EEPROM memory map is shown in Figure 26-2. The HCS12X architecture places the EEPROM
memory addresses between global addresses 0x13_F000 and 0x13_FFFF. The EPROT register, described
in Section 26.3.2.5, “EEPROM Protection Register (EPROT)”, can be set to protect the upper region in the
EEPROM memory from accidental program or erase. The EEPROM addresses covered by this protectable
MC9S12XDP512 Data Sheet, Rev. 2.21
1074
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
region are shown in the EEPROM memory map. The default protection setting is stored in the EEPROM
configuration field as described in Table 26-1.
Table 26-1. EEPROM Configuration Field
Global Address
Size
(bytes)
Description
0x13_FFFC
1
Reserved
0x13_FFFD
1
EEPROM Protection byte
Refer to Section 26.3.2.5, “EEPROM Protection Register (EPROT)”
0x13_FFFE – 0x13_FFFF
2
Reserved
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1075
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
MODULE BASE+ 0x0000
EEPROM Registers
12 bytes
MODULE BASE + 0x000B
EEPROM START = 0x13_F000
EEPROM Memory
3584 bytes (up to 4032 bytes)
0x13_FE00
0x13_FE40
0x13_FE80
0x13_FEC0
0x13_FF00
EEPROM Memory Protected Region
64, 128, 192, 256, 320, 384, 448, 512 bytes
0x13_FF40
0x13_FF80
0x13_FFC0
EEPROM END = 0x13_FFFF
EEPROM Configuration Field
4 bytes (0x13_FFFC – 0x13_FFFF)
Figure 26-2. EEPROM Memory Map
MC9S12XDP512 Data Sheet, Rev. 2.21
1076
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
The EEPROM module also contains a set of 12 control and status registers located between EEPROM
module base + 0x0000 and 0x000B. A summary of the EEPROM module registers is given in Table 26-2
while their accessibility is detailed in Section 26.3.2, “Register Descriptions”.
Table 26-2. EEPROM Register Map
Module
Base +
Register Name
Normal Mode
Access
0x0000
EEPROM Clock Divider Register (ECLKDIV)
R/W
RESERVED1
1
R
0x0002
RESERVED2
1
R
0x0003
EEPROM Configuration Register (ECNFG)
R/W
0x0004
EEPROM Protection Register (EPROT)
R/W
0x0005
EEPROM Status Register (ESTAT)
R/W
0x0006
EEPROM Command Register (ECMD)
R/W
0x0001
0x0007
RESERVED3
0x0008
EEPROM High Address Register (EADDRHI)1
R
0x0009
1
R
0x000A
0x000B
1
1
R
EEPROM Low Address Register (EADDRLO)
1
R
1
R
EEPROM High Data Register (EDATAHI)
EEPROM Low Data Register (EDATALO)
Intended for factory test purposes only.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1077
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.3.2
Register Descriptions
Register
Name
ECLKDIV
Bit 7
R
6
5
4
3
2
1
Bit 0
PRDIV8
EDIV5
EDIV4
EDIV3
EDIV2
EDIV1
EDIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CBEIE
CCIE
0
0
0
0
0
0
RNV5
RNV4
EPDIS
EPS2
EPS1
EPS0
PVIOL
ACCERR
0
BLANK
0
0
0
0
0
EDIVLD
W
RESERVED1
R
W
RESERVED2
R
W
ECNFG
R
W
EPROT
R
W
ESTAT
R
W
ECMD
R
EPOPEN
CBEIF
RNV6
CCIF
0
CMDB
W
RESERVED3
R
0
0
0
0
0
0
0
0
0
0
W
EADDRHI
R
EABHI
W
EADDRLO
R
EABLO
W
EDATAHI
R
EDHI
W
EDATALO
R
EDLO
W
= Unimplemented or Reserved
Figure 26-3. EETX4K Register Summary
26.3.2.1
EEPROM Clock Divider Register (ECLKDIV)
The ECLKDIV register is used to control timed events in program and erase algorithms.
MC9S12XDP512 Data Sheet, Rev. 2.21
1078
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
7
R
6
5
4
3
2
1
0
PRDIV8
EDIV5
EDIV4
EDIV3
EDIV2
EDIV1
EDIV0
0
0
0
0
0
0
0
EDIVLD
W
Reset
0
= Unimplemented or Reserved
Figure 26-4. EEPROM Clock Divider Register (ECLKDIV)
All bits in the ECLKDIV register are readable, bits 6–0 are write once and bit 7 is not writable.
Table 26-3. ECLKDIV Field Descriptions
Field
Description
7
EDIVLD
Clock Divider Loaded
0 Register has not been written.
1 Register has been written to since the last reset.
6
PRDIV8
Enable Prescalar by 8
0 The oscillator clock is directly fed into the ECLKDIV divider.
1 Enables a Prescalar by 8, to divide the oscillator clock before feeding into the clock divider.
5–0
EDIV[5:0]
26.3.2.2
Clock Divider Bits — The combination of PRDIV8 and EDIV[5:0] effectively divides the EEPROM module input
oscillator clock down to a frequency of 150 kHz – 200 kHz. The maximum divide ratio is 512. Please refer to
Section 26.4.1.1, “Writing the ECLKDIV Register” for more information.
RESERVED1
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 26-5. RESERVED1
All bits read 0 and are not writable.
26.3.2.3
RESERVED2
This register is reserved for factory testing and is not accessible.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1079
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 26-6. RESERVED2
All bits read 0 and are not writable.
26.3.2.4
EEPROM Configuration Register (ECNFG)
The ECNFG register enables the EEPROM interrupts.
7
6
CBEIE
CCIE
0
0
R
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 26-7. EEPROM Configuration Register (ECNFG)
CBEIE and CCIE bits are readable and writable while all remaining bits read 0 and are not writable.
Table 26-4. ECNFG Field Descriptions
Field
Description
7
CBEIE
Command Buffer Empty Interrupt Enable — The CBEIE bit enables an interrupt in case of an empty command
buffer in the EEPROM module.
0 Command Buffer Empty interrupt disabled.
1 An interrupt will be requested whenever the CBEIF flag (see Section 26.3.2.6, “EEPROM Status Register
(ESTAT)”) is set.
6
CCIE
Command Complete Interrupt Enable — The CCIE bit enables an interrupt in case all commands have been
completed in the EEPROM module.
0 Command Complete interrupt disabled.
1 An interrupt will be requested whenever the CCIF flag (see Section 26.3.2.6, “EEPROM Status Register
(ESTAT)”) is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
1080
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.3.2.5
EEPROM Protection Register (EPROT)
The EPROT register defines which EEPROM sectors are protected against program or erase operations.
7
R
6
5
4
RNV6
RNV5
RNV4
EPOPEN
3
2
1
0
EPDIS
EPS2
EPS1
EPS0
F
F
F
F
W
Reset
F
F
F
F
= Unimplemented or Reserved
Figure 26-8. EEPROM Protection Register (EPROT)
During the reset sequence, the EPROT register is loaded from the EEPROM Protection byte at address
offset 0x0FFD (see Table 26-1).All bits in the EPROT register are readable and writable except for
RNV[6:4] which are only readable. The EPOPEN and EPDIS bits can only be written to the protected
state. The EPS bits can be written anytime until bit EPDIS is cleared. If the EPOPEN bit is cleared, the
state of the EPDIS and EPS bits is irrelevant.
To change the EEPROM protection that will be loaded during the reset sequence, the EEPROM memory
must be unprotected, then the EEPROM Protection byte must be reprogrammed. Trying to alter data in any
protected area in the EEPROM memory will result in a protection violation error and the PVIOL flag will
be set in the ESTAT register. The mass erase of an EEPROM block is possible only when protection is
fully disabled by setting the EPOPEN and EPDIS bits.
Table 26-5. EPROT Field Descriptions
Field
Description
7
EPOPEN
Opens the EEPROM for Program or Erase
0 The entire EEPROM memory is protected from program and erase.
1 The EEPROM sectors not protected are enabled for program or erase.
6–4
RNV[6:4]
Reserved Nonvolatile Bits — The RNV[6:4] bits should remain in the erased state “1” for future enhancements.
3
EPDIS
EEPROM Protection Address Range Disable — The EPDIS bit determines whether there is a protected area
in a specific region of the EEPROM memory ending with address offset 0x0FFF.
0 Protection enabled.
1 Protection disabled.
2–0
EPS[2:0]
EEPROM Protection Address Size — The EPS[2:0] bits determine the size of the protected area as shown
inTable 26-6. The EPS bits can only be written to while the EPDIS bit is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1081
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
Table 26-6. EEPROM Protection Address Range
26.3.2.6
EPS[2:0]
Address Offset Range
Protected Size
000
0x0FC0 – 0x0FFF
64 bytes
001
0x0F80 – 0x0FFF
128 bytes
010
0x0F40 – 0x0FFF
192 bytes
011
0x0F00 – 0x0FFF
256 bytes
100
0x0EC0 – 0x0FFF
320 bytes
101
0x0E80 – 0x0FFF
384 bytes
110
0x0E40 – 0x0FFF
448 bytes
111
0x0E00 – 0x0FFF
512 bytes
EEPROM Status Register (ESTAT)
The ESTAT register defines the operational status of the module.
7
R
6
5
4
CCIF
CBEIF
PVIOL
ACCERR
0
0
3
2
1
0
0
BLANK
0
0
0
0
0
0
W
Reset
1
1
= Unimplemented or Reserved
Figure 26-9. EEPROM Status Register (ESTAT — Normal Mode)
7
R
6
5
4
CCIF
CBEIF
PVIOL
ACCERR
0
0
3
2
0
BLANK
1
0
0
FAIL
W
Reset
1
1
0
0
0
0
= Unimplemented or Reserved
Figure 26-10. EEPROM Status Register (ESTAT — Special Mode)
CBEIF, PVIOL, and ACCERR are readable and writable, CCIF and BLANK are readable and not writable,
remaining bits read 0 and are not writable in normal mode. FAIL is readable and writable in special mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
1082
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
Table 26-7. ESTAT Field Descriptions
Field
Description
7
CBEIF
Command Buffer Empty Interrupt Flag — The CBEIF flag indicates that the address, data, and command
buffers are empty so that a new command write sequence can be started. The CBEIF flag is cleared by writing
a 1 to CBEIF. Writing a 0 to the CBEIF flag has no effect on CBEIF. Writing a 0 to CBEIF after writing an aligned
word to the EEPROM address space but before CBEIF is cleared will abort a command write sequence and
cause the ACCERR flag to be set. Writing a 0 to CBEIF outside of a command write sequence will not set the
ACCERR flag. The CBEIF flag is used together with the CBEIE bit in the ECNFG register to generate an interrupt
request (see Figure 26-24).
0 Buffers are full.
1 Buffers are ready to accept a new command.
6
CCIF
Command Complete Interrupt Flag — The CCIF flag indicates that there are no more commands pending. The
CCIF flag is cleared when CBEIF is clear and sets automatically upon completion of all active and pending
commands. The CCIF flag does not set when an active commands completes and a pending command is
fetched from the command buffer. Writing to the CCIF flag has no effect on CCIF. The CCIF flag is used together
with the CCIE bit in the ECNFG register to generate an interrupt request (see Figure 26-24).
0 Command in progress.
1 All commands are completed.
5
PVIOL
Protection Violation Flag — The PVIOL flag indicates an attempt was made to program or erase an address
in a protected area of the EEPROM memory during a command write sequence. The PVIOL flag is cleared by
writing a 1 to PVIOL. Writing a 0 to the PVIOL flag has no effect on PVIOL. While PVIOL is set, it is not possible
to launch a command or start a command write sequence.
0 No failure.
1 A protection violation has occurred.
4
ACCERR
Access Error Flag — The ACCERR flag indicates an illegal access has occurred to the EEPROM memory
caused by either a violation of the command write sequence (see Section 26.4.1.2, “Command Write
Sequence”), issuing an illegal EEPROM command (see Table 26-9), launching the sector erase abort command
terminating a sector erase operation early (see Section 26.4.2.5, “Sector Erase Abort Command”) or the
execution of a CPU STOP instruction while a command is executing (CCIF = 0). The ACCERR flag is cleared by
writing a 1 to ACCERR. Writing a 0 to the ACCERR flag has no effect on ACCERR. While ACCERR is set, it is
not possible to launch a command or start a command write sequence. If ACCERR is set by an erase verify
operation, any buffered command will not launch.
0 No access error detected.
1 Access error has occurred.
2
BLANK
Flag Indicating the Erase Verify Operation Status — When the CCIF flag is set after completion of an erase
verify command, the BLANK flag indicates the result of the erase verify operation. The BLANK flag is cleared by
the EEPROM module when CBEIF is cleared as part of a new valid command write sequence. Writing to the
BLANK flag has no effect on BLANK.
0 EEPROM block verified as not erased.
1 EEPROM block verified as erased.
1
FAIL
Flag Indicating a Failed EEPROM Operation — The FAIL flag will set if the erase verify operation fails
(EEPROM block verified as not erased). The FAIL flag is cleared by writing a 1 to FAIL. Writing a 0 to the FAIL
flag has no effect on FAIL.
0 EEPROM operation completed without error.
1 EEPROM operation failed.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1083
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.3.2.7
EEPROM Command Register (ECMD)
The ECMD register is the EEPROM command register.
7
R
6
5
4
3
2
1
0
0
0
0
0
CMDB
W
Reset
0
0
0
0
0
= Unimplemented or Reserved
Figure 26-11. EEPROM Command Register (ECMD)
All CMDB bits are readable and writable during a command write sequence while bit 7 reads 0 and is not
writable.
Table 26-8. ECMD Field Descriptions
Field
Description
6–0
CMDB[6:0]
EEPROM Command Bits — Valid EEPROM commands are shown in Table 26-9. Writing any command other
than those listed in Table 26-9 sets the ACCERR flag in the ESTAT register.
Table 26-9. Valid EEPROM Command List
26.3.2.8
CMDB[6:0]
Command
0x05
Erase Verify
0x20
Word Program
0x40
Sector Erase
0x41
Mass Erase
0x47
Sector Erase Abort
0x60
Sector Modify
RESERVED3
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 26-12. RESERVED3
All bits read 0 and are not writable.
EEPROM Address Registers (EADDR)
MC9S12XDP512 Data Sheet, Rev. 2.21
1084
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
The EADDRHI and EADDRLO registers are the EEPROM address registers.
R
7
6
5
4
3
0
0
0
0
0
0
0
0
0
0
2
1
0
EABHI
W
Reset
0
0
0
= Unimplemented or Reserved
Figure 26-13. EEPROM Address High Register (EADDRHI)
7
6
5
4
R
3
2
1
0
0
0
0
0
EABLO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 26-14. EEPROM Address Low Register (EADDRLO)
All EABHI and EABLO bits read 0 and are not writable in normal modes.
All EABHI and EABLO bits are readable and writable in special modes.
The MCU address bit AB0 is not stored in the EADDR registers since the EEPROM block is not byte
addressable.
26.3.2.9
EEPROM Data Registers (EDATA)
The EDATAHI and EDATALO registers are the EEPROM data registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
EDHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 26-15. EEPROM Data High Register (EDATAHI)
7
6
5
4
R
3
2
1
0
0
0
0
0
EDLO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 26-16. EEPROM Data Low Register (EDATALO)
All EDHI and EDLO bits read 0 and are not writable in normal modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1085
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
All EDHI and EDLO bits are readable and writable in special modes.
26.4
Functional Description
26.4.1
EEPROM Command Operations
Write operations are used to execute program, erase, erase verify, sector erase abort, and sector modify
algorithms described in this section. The program, erase, and sector modify algorithms are controlled by
a state machine whose timebase, EECLK, is derived from the oscillator clock via a programmable divider.
The command register as well as the associated address and data registers operate as a buffer and a register
(2-stage FIFO) so that a second command along with the necessary data and address can be stored to the
buffer while the first command is still in progress. Buffer empty as well as command completion are
signalled by flags in the EEPROM status register with interrupts generated, if enabled.
The next sections describe:
1. How to write the ECLKDIV register
2. Command write sequences to program, erase, erase verify, sector erase abort, and sector modify
operations on the EEPROM memory
3. Valid EEPROM commands
4. Effects resulting from illegal EEPROM command write sequences or aborting EEPROM
operations
26.4.1.1
Writing the ECLKDIV Register
Prior to issuing any EEPROM command after a reset, the user is required to write the ECLKDIV register
to divide the oscillator clock down to within the 150 kHz to 200 kHz range. Since the program and erase
timings are also a function of the bus clock, the ECLKDIV determination must take this information into
account.
If we define:
• ECLK as the clock of the EEPROM timing control block
• Tbus as the period of the bus clock
• INT(x) as taking the integer part of x (e.g., INT(4.323)=4)
then ECLKDIV register bits PRDIV8 and EDIV[5:0] are to be set as described in Figure 26-17.
For example, if the oscillator clock frequency is 950 kHz and the bus clock frequency is 10 MHz,
ECLKDIV bits EDIV[5:0] should be set to 0x04 (000100) and bit PRDIV8 set to 0. The resulting EECLK
frequency is then 190 kHz. As a result, the EEPROM program and erase algorithm timings are increased
over the optimum target by:
( 200 – 190 ) ⁄ 200 × 100 = 5%
If the oscillator clock frequency is 16 MHz and the bus clock frequency is 40 MHz, ECLKDIV bits
EDIV[5:0] should be set to 0x0A (001010) and bit PRDIV8 set to 1. The resulting EECLK frequency is
MC9S12XDP512 Data Sheet, Rev. 2.21
1086
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
then 182 kHz. In this case, the EEPROM program and erase algorithm timings are increased over the
optimum target by:
( 200 – 182 ) ⁄ 200 × 100 = 9%
CAUTION
Program and erase command execution time will increase proportionally
with the period of EECLK. Because of the impact of clock synchronization
on the accuracy of the functional timings, programming or erasing the
EEPROM memory cannot be performed if the bus clock runs at less than 1
MHz. Programming or erasing the EEPROM memory with EECLK < 150
kHz should be avoided. Setting ECLKDIV to a value such that EECLK <
150 kHz can destroy the EEPROM memory due to overstress. Setting
ECLKDIV to a value such that (1/EECLK+Tbus) < 5 µs can result in
incomplete programming or erasure of the EEPROM memory cells.
If the ECLKDIV register is written, the EDIVLD bit is set automatically. If the EDIVLD bit is 0, the
ECLKDIV register has not been written since the last reset. If the ECLKDIV register has not been written
to, the EEPROM command loaded during a command write sequence will not execute and the ACCERR
flag in the ESTAT register will set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1087
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
START
Tbus < 1µs?
no
ALL COMMANDS IMPOSSIBLE
yes
PRDIV8 = 0 (reset)
oscillator_clock
>12.8 MHz?
no
yes
PRDIV8 = 1
PRDCLK = oscillator_clock/8 PRDCLK = oscillator_clock
PRDCLK[MHz]*(5+Tbus[µs])
an integer?
yes
no
EDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))
EDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])–1
TRY TO DECREASE Tbus EECLK = (PRDCLK)/(1+EDIV[5:0])
1/EECLK[MHz] + Tbus[ms] > 5
AND
EECLK > 0.15 MHz
?
yes
END
no
yes
EDIV[5:0] > 4?
no
ALL COMMANDS IMPOSSIBLE
Figure 26-17. Determination Procedure for PRDIV8 and EDIV Bits
MC9S12XDP512 Data Sheet, Rev. 2.21
1088
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.1.2
Command Write Sequence
The EEPROM command controller is used to supervise the command write sequence to execute program,
erase, erase verify, sector erase abort, and sector modify algorithms.
Before starting a command write sequence, the ACCERR and PVIOL flags in the ESTAT register must be
clear (see Section 26.3.2.6, “EEPROM Status Register (ESTAT)”) and the CBEIF flag should be tested to
determine the state of the address, data and command buffers. If the CBEIF flag is set, indicating the
buffers are empty, a new command write sequence can be started. If the CBEIF flag is clear, indicating the
buffers are not available, a new command write sequence will overwrite the contents of the address, data
and command buffers.
A command write sequence consists of three steps which must be strictly adhered to with writes to the
EEPROM module not permitted between the steps. However, EEPROM register and array reads are
allowed during a command write sequence. The basic command write sequence is as follows:
1. Write to one address in the EEPROM memory.
2. Write a valid command to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the command.
The address written in step 1 will be stored in the EADDR registers and the data will be stored in the
EDATA registers. If the CBEIF flag in the ESTAT register is clear when the first EEPROM array write
occurs, the contents of the address and data buffers will be overwritten and the CBEIF flag will be set.
When the CBEIF flag is cleared, the CCIF flag is cleared on the same bus cycle by the EEPROM command
controller indicating that the command was successfully launched. For all command write sequences
except sector erase abort, the CBEIF flag will set four bus cycles after the CCIF flag is cleared indicating
that the address, data, and command buffers are ready for a new command write sequence to begin. For
sector erase abort operations, the CBEIF flag will remain clear until the operation completes. Except for
the sector erase abort command, a buffered command will wait for the active operation to be completed
before being launched. The sector erase abort command is launched when the CBEIF flag is cleared as part
of a sector erase abort command write sequence. Once a command is launched, the completion of the
command operation is indicated by the setting of the CCIF flag in the ESTAT register. The CCIF flag will
set upon completion of all active and buffered commands.
26.4.2
EEPROM Commands
Table 26-10 summarizes the valid EEPROM commands along with the effects of the commands on the
EEPROM block.
Table 26-10. EEPROM Command Description
ECMDB
Command
Function on EEPROM Memory
0x05
Erase
Verify
Verify all memory bytes in the EEPROM block are erased. If the EEPROM block is erased, the
BLANK flag in the ESTAT register will set upon command completion.
0x20
Program
0x40
Sector
Erase
Program a word (two bytes) in the EEPROM block.
Erase all four memory bytes in a sector of the EEPROM block.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1089
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
Table 26-10. EEPROM Command Description
ECMDB
Command
Function on EEPROM Memory
0x41
Mass
Erase
Erase all memory bytes in the EEPROM block. A mass erase of the full EEPROM block is only
possible when EPOPEN and EPDIS bits in the EPROT register are set prior to launching the
command.
0x47
Sector Erase
Abort
Abort the sector erase operation. The sector erase operation will terminate according to a set
procedure. The EEPROM sector should not be considered erased if the ACCERR flag is set
upon command completion.
0x60
Sector
Modify
Erase all four memory bytes in a sector of the EEPROM block and reprogram the addressed
word.
CAUTION
An EEPROM word (2 bytes) must be in the erased state before being
programmed. Cumulative programming of bits within a word is not allowed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1090
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.2.1
Erase Verify Command
The erase verify operation will verify that the EEPROM memory is erased.
An example flow to execute the erase verify operation is shown in Figure 26-18. The erase verify command
write sequence is as follows:
1. Write to an EEPROM address to start the command write sequence for the erase verify command.
The address and data written will be ignored.
2. Write the erase verify command, 0x05, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the erase verify
command.
After launching the erase verify command, the CCIF flag in the ESTAT register will set after the operation
has completed unless a new command write sequence has been buffered. The number of bus cycles
required to execute the erase verify operation is equal to the number of words in the EEPROM memory
plus 14 bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon
completion of the erase verify operation, the BLANK flag in the ESTAT register will be set if all addresses
in the EEPROM memory are verified to be erased. If any address in the EEPROM memory is not erased,
the erase verify operation will terminate and the BLANK flag in the ESTAT register will remain clear.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1091
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Address
and Dummy Data
2.
Write: ECMD register
Erase Verify Command 0x05
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Erase Verify
Status
BLANK
Set?
no
yes
EXIT EEPROM Memory
Erased
EXIT
EEPROM Memory
Not Erased
Figure 26-18. Example Erase Verify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1092
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.2.2
Program Command
The program operation will program a previously erased word in the EEPROM memory using an
embedded algorithm.
An example flow to execute the program operation is shown in Figure 26-19. The program command write
sequence is as follows:
1. Write to an EEPROM block address to start the command write sequence for the program
command. The data written will be programmed to the address written.
2. Write the program command, 0x20, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the program
command.
If a word to be programmed is in a protected area of the EEPROM memory, the PVIOL flag in the ESTAT
register will set and the program command will not launch. Once the program command has successfully
launched, the CCIF flag in the ESTAT register will set after the program operation has completed unless a
new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1093
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
1.
Write: EEPROM Address
and program Data
2.
Write: ECMD register
Program Command 0x20
3.
Write: ESTAT register
Clear CBEIF 0x80
yes
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Buffer Empty
Check
no
CBEIF
Set?
yes
Sequential
Programming
Decision
Next
Word?
yes
no
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 26-19. Example Program Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1094
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.2.3
Sector Erase Command
The sector erase operation will erase both words in a sector of EEPROM memory using an embedded
algorithm.
An example flow to execute the sector erase operation is shown in Figure 26-20. The sector erase
command write sequence is as follows:
1. Write to an EEPROM memory address to start the command write sequence for the sector erase
command. The EEPROM address written determines the sector to be erased while global address
bits [1:0] and the data written are ignored.
2. Write the sector erase command, 0x40, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If an EEPROM sector to be erased is in a protected area of the EEPROM memory, the PVIOL flag in the
ESTAT register will set and the sector erase command will not launch. Once the sector erase command has
successfully launched, the CCIF flag in the ESTAT register will set after the sector erase operation has
completed unless a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1095
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Sector Address
and Dummy Data
2.
Write: ECMD register
Sector Erase Command 0x40
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 26-20. Example Sector Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1096
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.2.4
Mass Erase Command
The mass erase operation will erase all addresses in an EEPROM block using an embedded algorithm.
An example flow to execute the mass erase operation is shown in Figure 26-21. The mass erase command
write sequence is as follows:
1. Write to an EEPROM memory address to start the command write sequence for the mass erase
command. The address and data written will be ignored.
2. Write the mass erase command, 0x41, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the mass erase
command.
If the EEPROM memory to be erased contains any protected area, the PVIOL flag in the ESTAT register
will set and the mass erase command will not launch. Once the mass erase command has successfully
launched, the CCIF flag in the ESTAT register will set after the mass erase operation has completed unless
a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1097
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Address
and Dummy Data
2.
Write: ECMD register
Mass Erase Command 0x41
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 26-21. Example Mass Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1098
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.2.5
Sector Erase Abort Command
The sector erase abort operation will terminate the active sector erase or sector modify operation so that
other sectors in an EEPROM block are available for read and program operations without waiting for the
sector erase or sector modify operation to complete.
An example flow to execute the sector erase abort operation is shown in Figure 26-22. The sector erase
abort command write sequence is as follows:
1. Write to any EEPROM memory address to start the command write sequence for the sector erase
abort command. The address and data written are ignored.
2. Write the sector erase abort command, 0x47, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.
If the sector erase abort command is launched resulting in the early termination of an active sector erase
or sector modify operation, the ACCERR flag will set once the operation completes as indicated by the
CCIF flag being set. The ACCERR flag sets to inform the user that the EEPROM sector may not be fully
erased and a new sector erase or sector modify command must be launched before programming any
location in that specific sector. If the sector erase abort command is launched but the active sector erase or
sector modify operation completes normally, the ACCERR flag will not set upon completion of the
operation as indicated by the CCIF flag being set. If the sector erase abort command is launched after the
sector modify operation has completed the sector erase step, the program step will be allowed to complete.
The maximum number of cycles required to abort a sector erase or sector modify operation is equal to four
EECLK periods (see Section 26.4.1.1, “Writing the ECLKDIV Register”) plus five bus cycles as measured
from the time the CBEIF flag is cleared until the CCIF flag is set.
NOTE
Since the ACCERR bit in the ESTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the ESTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.
NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1099
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
Execute Sector Erase/Modify Command Flow
Read: ESTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
Erase
Abort
Needed?
no
yes
Sector Erase
Completed
no
yes
EXIT
1.
Write: Dummy EEPROM Address
and Dummy Data
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
2.
Write: ECMD register
Sector Erase Abort Cmd 0x47
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
3.
Write: ESTAT register
Clear CBEIF 0x80
Read: ESTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
no
yes
Access
Error Check
ACCERR
Set?
yes
Write: ESTAT register
Clear ACCERR 0x10
no
Sector Erase
or Modify
Completed
EXIT
Sector Erase
or Modify
Aborted
EXIT
Figure 26-22. Example Sector Erase Abort Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1100
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.2.6
Sector Modify Command
The sector modify operation will erase both words in a sector of EEPROM memory followed by a
reprogram of the addressed word using an embedded algorithm.
An example flow to execute the sector modify operation is shown in Figure 26-23. The sector modify
command write sequence is as follows:
1. Write to an EEPROM memory address to start the command write sequence for the sector modify
command. The EEPROM address written determines the sector to be erased and word to be
reprogrammed while byte address bit 0 is ignored.
2. Write the sector modify command, 0x60, to the ECMD register.
3. Clear the CBEIF flag in the ESTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If an EEPROM sector to be modified is in a protected area of the EEPROM memory, the PVIOL flag in
the ESTAT register will set and the sector modify command will not launch. Once the sector modify
command has successfully launched, the CCIF flag in the ESTAT register will set after the sector modify
operation has completed unless a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1101
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
START
Read: ECLKDIV register
Clock Register
Written
Check
EDIVLD
Set?
yes
NOTE: ECLKDIV needs to
be set once after each reset.
no
Write: ECLKDIV register
Read: ESTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
ACCERR/
PVIOL
Set?
no
yes
1.
Write: EEPROM Word Address
and program Data
2.
Write: ECMD register
Sector Modify Command 0x60
3.
Write: ESTAT register
Clear CBEIF 0x80
Write: ESTAT register
Clear ACCERR/PVIOL 0x30
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
NOTE: command write sequence
aborted by writing 0x00 to
ESTAT register.
Read: ESTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 26-23. Example Sector Modify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1102
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.4.3
Illegal EEPROM Operations
The ACCERR flag will be set during the command write sequence if any of the following illegal steps are
performed, causing the command write sequence to immediately abort:
1. Writing to an EEPROM address before initializing the ECLKDIV register.
2. Writing a byte or misaligned word to a valid EEPROM address.
3. Starting a command write sequence while a sector erase abort operation is active.
4. Writing to any EEPROM register other than ECMD after writing to an EEPROM address.
5. Writing a second command to the ECMD register in the same command write sequence.
6. Writing an invalid command to the ECMD register.
7. Writing to an EEPROM address after writing to the ECMD register.
8. Writing to any EEPROM register other than ESTAT (to clear CBEIF) after writing to the ECMD
register.
9. Writing a 0 to the CBEIF flag in the ESTAT register to abort a command write sequence.
The ACCERR flag will not be set if any EEPROM register is read during a valid command write sequence.
The ACCERR flag will also be set if any of the following events occur:
1. Launching the sector erase abort command while a sector erase or sector modify operation is active
which results in the early termination of the sector erase or sector modify operation (see
Section 26.4.2.5, “Sector Erase Abort Command”).
2. The MCU enters stop mode and a command operation is in progress. The operation is aborted
immediately and any pending command is purged (see Section 26.5.2, “Stop Mode”).
If the EEPROM memory is read during execution of an algorithm (CCIF = 0), the read operation will
return invalid data and the ACCERR flag will not be set.
If the ACCERR flag is set in the ESTAT register, the user must clear the ACCERR flag before starting
another command write sequence (see Section 26.3.2.6, “EEPROM Status Register (ESTAT)”).
The PVIOL flag will be set after the command is written to the ECMD register during a command write
sequence if any of the following illegal operations are attempted, causing the command write sequence to
immediately abort:
1. Writing the program command if the address written in the command write sequence was in a
protected area of the EEPROM memory.
2. Writing the sector erase command if the address written in the command write sequence was in a
protected area of the EEPROM memory.
3. Writing the mass erase command to the EEPROM memory while any EEPROM protection is
enabled.
4. Writing the sector modify command if the address written in the command write sequence was in
a protected area of the EEPROM memory.
If the PVIOL flag is set in the ESTAT register, the user must clear the PVIOL flag before starting another
command write sequence (see Section 26.3.2.6, “EEPROM Status Register (ESTAT)”).
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1103
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.5
26.5.1
Operating Modes
Wait Mode
If a command is active (CCIF = 0) when the MCU enters the wait mode, the active command and any
buffered command will be completed.
The EEPROM module can recover the MCU from wait mode if the CBEIF and CCIF interrupts are enabled
(see Section 26.8, “Interrupts”).
26.5.2
Stop Mode
If a command is active (CCIF = 0) when the MCU enters the stop mode, the operation will be aborted and,
if the operation is program, sector erase, mass erase, or sector modify, the EEPROM array data being
programmed or erased may be corrupted and the CCIF and ACCERR flags will be set. If active, the high
voltage circuitry to the EEPROM memory will immediately be switched off when entering stop mode.
Upon exit from stop mode, the CBEIF flag is set and any buffered command will not be launched. The
ACCERR flag must be cleared before starting a command write sequence (see Section 26.4.1.2,
“Command Write Sequence”).
NOTE
As active commands are immediately aborted when the MCU enters stop
mode, it is strongly recommended that the user does not use the STOP
instruction during program, sector erase, mass erase, or sector modify
operations.
26.5.3
Background Debug Mode
In background debug mode (BDM), the EPROT register is writable. If the MCU is unsecured, then all
EEPROM commands listed in Table 26-10 can be executed. If the MCU is secured and is in special single
chip mode, the only command available to execute is mass erase.
26.6
EEPROM Module Security
The EEPROM module does not provide any security information to the MCU. After each reset, the
security state of the MCU is a function of information provided by the Flash module (see the specific FTX
Block Guide).
MC9S12XDP512 Data Sheet, Rev. 2.21
1104
Freescale Semiconductor
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.6.1
Unsecuring the MCU in Special Single Chip Mode using BDM
Before the MCU can be unsecured in special single chip mode, the EEPROM memory must be erased
using the following method :
• Reset the MCU into special single chip mode, delay while the erase test is performed by the BDM
secure ROM, send BDM commands to disable protection in the EEPROM module, and execute a
mass erase command write sequence to erase the EEPROM memory.
After the CCIF flag sets to indicate that the EEPROM mass operation has completed and assuming that the
Flash memory has also been erased, reset the MCU into special single chip mode. The BDM secure ROM
will verify that the Flash and EEPROM memory are erased and will assert the UNSEC bit in the BDM
status register. This BDM action will cause the MCU to override the Flash security state and the MCU will
be unsecured. Once the MCU is unsecured, BDM commands will be enabled and the Flash security byte
may be programmed to the unsecure state.
26.7
26.7.1
Resets
EEPROM Reset Sequence
On each reset, the EEPROM module executes a reset sequence to hold CPU activity while loading the
EPROT register from the EEPROM memory according to Table 26-1.
26.7.2
Reset While EEPROM Command Active
If a reset occurs while any EEPROM command is in progress, that command will be immediately aborted.
The state of a word being programmed or the sector / block being erased is not guaranteed.
26.8
Interrupts
The EEPROM module can generate an interrupt when all EEPROM command operations have completed,
when the EEPROM address, data, and command buffers are empty.
Table 26-11. EEPROM Interrupt Sources
Interrupt Source
Interrupt Flag
Local Enable
Global (CCR) Mask
EEPROM address, data, and command buffers empty
CBEIF
(ESTAT register)
CBEIE
(ECNFG register)
I Bit
All EEPROM commands completed
CCIF
(ESTAT register)
CCIE
(ECNFG register)
I Bit
NOTE
Vector addresses and their relative interrupt priority are determined at the
MCU level.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1105
Chapter 26 4 Kbyte EEPROM Module (S12XEETX4KV2)
26.8.1
Description of EEPROM Interrupt Operation
The logic used for generating interrupts is shown in Figure 26-24.
The EEPROM module uses the CBEIF and CCIF flags in combination with the CBIE and CCIE enable
bits to generate the EEPROM command interrupt request.
CBEIF
CBEIE
EEPROM Command Interrupt Request
CCIF
CCIE
Figure 26-24. EEPROM Interrupt Implementation
For a detailed description of the register bits, refer to Section 26.3.2.4, “EEPROM Configuration Register
(ECNFG)” and Section 26.3.2.6, “EEPROM Status Register (ESTAT)” .
MC9S12XDP512 Data Sheet, Rev. 2.21
1106
Freescale Semiconductor
Chapter 27
512 Kbyte Flash Module (S12XFTX512K4V2)
27.1
Introduction
This document describes the FTX512K4 module that includes a 512K Kbyte Flash (nonvolatile) memory.
The Flash memory may be read as either bytes, aligned words or misaligned words. Read access time is
one bus cycle for bytes and aligned words, and two bus cycles for misaligned words.
The Flash memory is ideal for program and data storage for single-supply applications allowing for field
reprogramming without requiring external voltage sources for program or erase. Program and erase
functions are controlled by a command driven interface. The Flash module supports both block erase and
sector erase. An erased bit reads 1 and a programmed bit reads 0. The high voltage required to program
and erase the Flash memory is generated internally. It is not possible to read from a Flash block while it is
being erased or programmed.
CAUTION
A Flash word must be in the erased state before being programmed.
Cumulative programming of bits within a Flash word is not allowed.
27.1.1
Glossary
Command Write Sequence — A three-step MCU instruction sequence to execute built-in algorithms
(including program and erase) on the Flash memory.
Multiple-Input Signature Register (MISR) — A Multiple-Input Signature Register is an output
response analyzer implemented using a linear feedback shift-register (LFSR). A 16-bit MISR is used to
compress data and generate a signature that is particular to the data read from a Flash block.
27.1.2
•
•
•
•
•
•
•
•
Features
512 Kbytes of Flash memory comprised of four 128 Kbyte blocks with each block divided into
128 sectors of 1024 bytes
Automated program and erase algorithm
Interrupts on Flash command completion, command buffer empty
Fast sector erase and word program operation
2-stage command pipeline for faster multi-word program times
Sector erase abort feature for critical interrupt response
Flexible protection scheme to prevent accidental program or erase
Single power supply for all Flash operations including program and erase
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1107
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
•
•
Security feature to prevent unauthorized access to the Flash memory
Code integrity check using built-in data compression
27.1.3
Modes of Operation
Program, erase, erase verify, and data compress operations (please refer to Section 27.4.1, “Flash
Command Operations” for details).
27.1.4
Block Diagram
A block diagram of the Flash module is shown in Figure 27-1.
MC9S12XDP512 Data Sheet, Rev. 2.21
1108
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
FTX512K4
Flash Block 0
64K * 16 Bits
sector 0
sector 1
Flash
Interface
Command
Interrupt
Request
sector 127
Command Pipeline
cmd2
addr2
data2_0
data2_1
data2_2
data2_3
cmd1
addr1
data1_0
data1_1
data1_2
data1_3
Flash Block 1
64K * 16 Bits
sector 0
sector 1
Registers
Protection
sector 127
Flash Block 2
64K * 16 Bits
sector 0
sector 1
Security
sector 127
Oscillator
Clock
Clock
Divider FCLK
Flash Block 3
64K * 16 Bits
sector 0
sector 1
sector 127
Figure 27-1. FTX512K4 Block Diagram
27.2
External Signal Description
The Flash module contains no signals that connect off-chip.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1109
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.3
Memory Map and Register Definition
This section describes the memory map and registers for the Flash module.
27.3.1
Module Memory Map
The Flash memory map is shown in Figure 27-2. The HCS12X architecture places the Flash memory
addresses between global addresses 0x78_0000 and 0x7F_FFFF. The FPROT register, described in
Section 27.3.2.5, “Flash Protection Register (FPROT)”, can be set to protect regions in the Flash memory
from accidental program or erase. Three separate memory regions, one growing upward from global
address 0x7F_8000 in the Flash memory (called the lower region), one growing downward from global
address 0x7F_FFFF in the Flash memory (called the higher region), and the remaining addresses in the
Flash memory, can be activated for protection. The Flash memory addresses covered by these protectable
regions are shown in the Flash memory map. The higher address region is mainly targeted to hold the boot
loader code since it covers the vector space. The lower address region can be used for EEPROM emulation
in an MCU without an EEPROM module since it can be left unprotected while the remaining addresses
are protected from program or erase. Default protection settings as well as security information that allows
the MCU to restrict access to the Flash module are stored in the Flash configuration field as described in
Table 27-1.
Table 27-1. Flash Configuration Field
Global Address
Size
(Bytes)
0x7F_FF00 – 0x7F_FF07
8
Backdoor Comparison Key
Refer to Section 27.6.1, “Unsecuring the MCU using Backdoor Key Access”
0x7F_FF08 – 0x7F_FF0C
5
Reserved
0x7F_FF0D
1
Flash Protection byte
Refer to Section 27.3.2.5, “Flash Protection Register (FPROT)”
0x7F_FF0E
1
Flash Nonvolatile byte
Refer to Section 27.3.2.8, “Flash Control Register (FCTL)”
0x7F_FF0F
1
Flash Security byte
Refer to Section 27.3.2.2, “Flash Security Register (FSEC)”
Description
MC9S12XDP512 Data Sheet, Rev. 2.21
1110
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
MODULE BASE + 0x0000
Flash Registers
16 bytes
MODULE BASE + 0x000F
FLASH START = 0x78_0000
Flash Protected/Unprotected Region
480 Kbytes
0x7F_8000
0x7F_8400
0x7F_8800
0x7F_9000
Flash Protected/Unprotected Lower Region
1, 2, 4, 8 Kbytes
0x7F_A000
Flash Protected/Unprotected Region
8 Kbytes (up to 29 Kbytes)
0x7F_C000
0x7F_E000
Flash Protected/Unprotected Higher Region
2, 4, 8, 16 Kbytes
0x7F_F000
0x7F_F800
FLASH END = 0x7F_FFFF
Flash Configuration Field
16 bytes (0x7F_FF00 - 0x7F_FF0F)
Figure 27-2. Flash Memory Map
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1111
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
The Flash module also contains a set of 16 control and status registers located between module base +
0x0000 and 0x000F. A summary of the Flash module registers is given in Table 27-2 while their
accessibility is detailed in Section 27.3.2, “Register Descriptions”.
Table 27-2. Flash Register Map
Module
Base +
Register Name
Normal Mode
Access
0x0000
Flash Clock Divider Register (FCLKDIV)
R/W
0x0001
Flash Security Register (FSEC)
R
0x0002
Flash Test Mode Register (FTSTMOD)
R/W
0x0003
Flash Configuration Register (FCNFG)
R/W
0x0004
Flash Protection Register (FPROT)
R/W
0x0005
Flash Status Register (FSTAT)
R/W
0x0006
Flash Command Register (FCMD)
R/W
0x0007
Flash Control Register (FCTL)
0x0008
R
1
R
1
Flash High Address Register (FADDRHI)
0x0009
Flash Low Address Register (FADDRLO)
R
0x000A
Flash High Data Register (FDATAHI)
R
0x000B
Flash Low Data Register (FDATALO)
R
0x000C
RESERVED11
R
0x000D
RESERVED21
R
0x000E
RESERVED31
R
0x000F
RESERVED41
R
1 Intended for factory test purposes only.
MC9S12XDP512 Data Sheet, Rev. 2.21
1112
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.3.2
Register Descriptions
Register
Name
FCLKDIV
Bit 7
R
6
5
4
3
2
1
Bit 0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
RNV5
RNV4
RNV3
RNV2
0
0
0
0
0
0
0
0
0
0
FDIVLD
W
FSEC
R
KEYEN
SEC
W
FTSTMOD
R
0
MRDS
W
FCNFG
R
CBEIE
CCIE
KEYACC
W
FPROT
R
RNV6
FPOPEN
FPHDIS
FPHS
FPLDIS
FPLS
W
FSTAT
R
CCIF
CBEIF
0
PVIOL
BLANK
0
0
NV2
NV1
NV0
0
0
0
ACCERR
W
FCMD
R
0
CMDB
W
FCTL
R
NV7
NV6
NV5
NV4
NV3
W
FADDRHI
R
FADDRHI
W
FADDRLO
R
FADDRLO
W
FDATAHI
R
FDATAHI
W
FDATALO
R
FDATALO
W
RESERVED1
R
0
0
0
0
0
W
Figure 27-3. FTX512K4 Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1113
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
Register
Name
RESERVED2
R
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
RESERVED3
R
W
RESERVED4
R
W
Figure 27-3. FTX512K4 Register Summary (continued)
27.3.2.1
Flash Clock Divider Register (FCLKDIV)
The FCLKDIV register is used to control timed events in program and erase algorithms.
7
R
6
5
4
3
2
1
0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
0
0
0
0
0
0
0
FDIVLD
W
Reset
0
= Unimplemented or Reserved
Figure 27-4. Flash Clock Divider Register (FCLKDIV)
All bits in the FCLKDIV register are readable, bits 6-0 are write once and bit 7 is not writable.
Table 27-3. FCLKDIV Field Descriptions
Field
Description
7
FDIVLD
Clock Divider Loaded.
0 Register has not been written.
1 Register has been written to since the last reset.
6
PRDIV8
Enable Prescalar by 8.
0 The oscillator clock is directly fed into the clock divider.
1 The oscillator clock is divided by 8 before feeding into the clock divider.
5-0
FDIV[5:0]
27.3.2.2
Clock Divider Bits — The combination of PRDIV8 and FDIV[5:0] must divide the oscillator clock down to a
frequency of 150 kHz–200 kHz. The maximum divide ratio is 512. Please refer to Section 27.4.1.1, “Writing the
FCLKDIV Register” for more information.
Flash Security Register (FSEC)
The FSEC register holds all bits associated with the security of the MCU and Flash module.
MC9S12XDP512 Data Sheet, Rev. 2.21
1114
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
7
R
6
KEYEN
5
4
3
2
RNV5
RNV4
RNV3
RNV2
F
F
F
F
1
0
SEC
W
Reset
F
F
F
F
= Unimplemented or Reserved
Figure 27-5. Flash Security Register (FSEC)
All bits in the FSEC register are readable but are not writable.
The FSEC register is loaded from the Flash Configuration Field at address 0x7F_FF0F during the reset
sequence, indicated by F in Figure 27-5.
Table 27-4. FSEC Field Descriptions
Field
Description
7-6
Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of backdoor key access to the
KEYEN[1:0] Flash module as shown in Table 27-5.
5-2
RNV[5:2]
Reserved Nonvolatile Bits — The RNV[5:2] bits should remain in the erased state for future enhancements.
1-0
SEC[1:0]
Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 27-6. If the
Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.
Table 27-5. Flash KEYEN States
KEYEN[1:0]
Status of Backdoor Key Access
00
DISABLED
1
DISABLED
01
10
ENABLED
11
DISABLED
1 Preferred KEYEN state to disable Backdoor Key Access.
Table 27-6. Flash Security States
SEC[1:0]
Status of Security
00
SECURED
011
SECURED
10
UNSECURED
11
SECURED
1 Preferred SEC state to set MCU to secured state.
The security function in the Flash module is described in Section 27.6, “Flash Module Security”.
27.3.2.3
Flash Test Mode Register (FTSTMOD)
The FTSTMOD register is used to control Flash test features.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1115
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
7
R
6
5
0
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
MRDS
W
Reset
0
0
0
= Unimplemented or Reserved
Figure 27-6. Flash Test Mode Register (FTSTMOD —Normal Mode)
7
R
6
5
4
0
MRDS
3
2
1
0
0
0
0
0
0
0
0
0
WRALL
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 27-7. Flash Test Mode Register (FTSTMOD — Special Mode)
MRDS bits are readable and writable while all remaining bits read 0 and are not writable in normal mode.
The WRALL bit is writable only in special mode to simplify mass erase and erase verify operations. When
writing to the FTSTMOD register in special mode, all unimplemented/reserved bits must be written to 0.
Table 27-7. FTSTMOD Field Descriptions
Field
Description
6–5
MRDS[1:0]
Margin Read Setting — The MRDS[1:0] bits are used to set the sense-amp margin level for reads of the Flash
array as shown in Table 27-8.
4
WRALL
Write to all Register Banks — If the WRALL bit is set, all banked FDATA registers sharing the same register
address will be written simultaneously during a register write.
0 Write only to the FDATA register bank selected using BKSEL.
1 Write to all FDATA register banks.
Table 27-8. FTSTMOD Margin Read Settings
MRDS[1:0]
Margin Read Setting
00
Normal
01
Program Margin1
10
Erase Margin2
11
Normal
1 Flash array reads will be sensitive to program margin.
2 Flash array reads will be sensitive to erase margin.
27.3.2.4
Flash Configuration Register (FCNFG)
The FCNFG register enables the Flash interrupts and gates the security backdoor writes.
MC9S12XDP512 Data Sheet, Rev. 2.21
1116
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
7
6
5
CBEIE
CCIE
KEYACC
0
0
0
R
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
1
0
W
Reset
= Unimplemented or Reserved
Figure 27-8. Flash Configuration Register (FCNFG — Normal Mode)
7
6
5
R
CBEIE
CCIE
KEYACC
0
0
0
4
3
2
Undefined
0
0
BKSEL
W
Reset
Undefined
0
0
0
0
= Unimplemented or Reserved
Figure 27-9. Flash Configuration Register (FCNFG — Special Mode)
CBEIE, CCIE and KEYACC bits are readable and writable while all remaining bits read 0 and are not
writable in normal mode. KEYACC is only writable if KEYEN (see Section 27.3.2.2, “Flash Security
Register (FSEC)” is set to the enabled state. BKSEL is readable and writable in special mode to simplify
mass erase and erase verify operations. When writing to the FCNFG register in special mode, all
unimplemented/ reserved bits must be written to 0.
Table 27-9. FCNFG Field Descriptions
Field
Description
7
CBEIE
Command Buffer Empty Interrupt Enable — The CBEIE bit enables an interrupt in case of an empty command
buffer in the Flash module.
0 Command buffer empty interrupt disabled.
1 An interrupt will be requested whenever the CBEIF flag (see Section 27.3.2.6, “Flash Status Register
(FSTAT)”) is set.
6
CCIE
Command Complete Interrupt Enable — The CCIE bit enables an interrupt in case all commands have been
completed in the Flash module.
0 Command complete interrupt disabled.
1 An interrupt will be requested whenever the CCIF flag (see Section 27.3.2.6, “Flash Status Register (FSTAT)”)
is set.
5
KEYACC
Enable Security Key Writing
0 Flash writes are interpreted as the start of a command write sequence.
1 Writes to Flash array are interpreted as keys to open the backdoor. Reads of the Flash array return invalid
data.
1–0
Block Select — The BKSEL[1:0] bits indicates which register bank is active according to Table 27-10.
BKSEL[1:0]
Table 27-10. Flash Register Bank Selects
BKSEL[1:0]
Selected Block
00
Flash Block 0
01
Flash Block 1
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1117
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
Table 27-10. Flash Register Bank Selects
27.3.2.5
BKSEL[1:0]
Selected Block
10
Flash Block 2
11
Flash Block 3
Flash Protection Register (FPROT)
The FPROT register defines which Flash sectors are protected against program or erase operations.
7
R
6
5
4
3
2
1
0
RNV6
FPOPEN
FPHDIS
FPHS
FPLDIS
FPLS
W
Reset
F
F
F
F
F
F
F
F
= Unimplemented or Reserved
Figure 27-10. Flash Protection Register (FPROT)
All bits in the FPROT register are readable and writable with restrictions (see Section 27.3.2.5.1, “Flash
Protection Restrictions”) except for RNV[6] which is only readable.
During the reset sequence, the FPROT register is loaded from the Flash Configuration Field at global
address 0x7F_FF0D. To change the Flash protection that will be loaded during the reset sequence, the
upper sector of the Flash memory must be unprotected, then the Flash Protect/Security byte located as
described in Table 27-1 must be reprogrammed.
Trying to alter data in any protected area in the Flash memory will result in a protection violation error and
the PVIOL flag will be set in the FSTAT register. The mass erase of a Flash block is not possible if any of
the Flash sectors contained in the Flash block are protected.
Table 27-11. FPROT Field Descriptions
Field
Description
7
FPOPEN
Flash Protection Open — The FPOPEN bit determines the protection function for program or erase as shown
in Table 27-12.
0 The FPHDIS and FPLDIS bits define unprotected address ranges as specified by the corresponding
FPHS[1:0] and FPLS[1:0] bits. For an MCU without an EEPROM module, the FPOPEN clear state allows the
main part of the Flash block to be protected while a small address range can remain unprotected for EEPROM
emulation.
1 The FPHDIS and FPLDIS bits enable protection for the address range specified by the corresponding
FPHS[1:0] and FPLS[1:0] bits.
6
RNV6
5
FPHDIS
4–3
FPHS[1:0]
Reserved Nonvolatile Bit — The RNV[6] bit should remain in the erased state for future enhancements.
Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a
protected/unprotected area in a specific region of the Flash memory ending with global address 0x7F_FFFF.
0 Protection/Unprotection enabled.
1 Protection/Unprotection disabled.
Flash Protection Higher Address Size — The FPHS[1:0] bits determine the size of the protected/unprotected
area as shown inTable 27-13. The FPHS[1:0] bits can only be written to while the FPHDIS bit is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
1118
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
Table 27-11. FPROT Field Descriptions (continued)
Field
Description
2
FPLDIS
Flash Protection Lower Address Range Disable — The FPLDIS bit determines whether there is a
protected/unprotected area in a specific region of the Flash memory beginning with global address 0x7F_8000.
0 Protection/Unprotection enabled.
1 Protection/Unprotection disabled.
1–0
FPLS[1:0]
Flash Protection Lower Address Size — The FPLS[1:0] bits determine the size of the protected/unprotected
area as shown in Table 27-14. The FPLS[1:0] bits can only be written to while the FPLDIS bit is set.
Table 27-12. Flash Protection Function
Function1
FPOPEN
FPHDIS
FPLDIS
1
1
1
No Protection
1
1
0
Protected Low Range
1
0
1
Protected High Range
1
0
0
Protected High and Low Ranges
0
1
1
Full Flash memory Protected
0
1
0
Unprotected Low Range
0
0
1
Unprotected High Range
0
0
0
Unprotected High and Low Ranges
1 For range sizes, refer to Table 27-13 and Table 27-14.
Table 27-13. Flash Protection Higher Address Range
FPHS[1:0]
Global
Address Range
Protected Size
00
0x7F_F800–0x7F_FFFF
2 Kbytes
01
0x7F_F000–0x7F_FFFF
4 Kbytes
10
0x7F_E000–0x7F_FFFF
8 Kbytes
11
0x7F_C000–0x7F_FFFF
16 Kbytes
Table 27-14. Flash Protection Lower Address Range
FPLS[1:0]
Global
Address Range
Protected Size
00
0x7F_8000–0x7F_83FF
1 Kbytes
01
0x7F_8000–0x7F_87FF
2 Kbytes
10
0x7F_8000–0x7F_8FFF
4 Kbytes
11
0x7F_8000–0x7F_9FFF
8 Kbytes
All possible Flash protection scenarios are shown in Figure 27-11. Although the protection scheme is
loaded from the Flash array at global address 0x7F_FF0D during the reset sequence, it can be changed by
the user. This protection scheme can be used by applications requiring re-programming in single chip
mode while providing as much protection as possible if re-programming is not required.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1119
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
FPHDIS=1
FPLDIS=1
FPHDIS=1
FPLDIS=0
FPHDIS=0
FPLDIS=1
FPHDIS=0
FPLDIS=0
7
6
5
4
0x78_0000
Scenario
0x7F_8000
FPLS[1:0]
FPOPEN=1
FPHS[1:0]
0x7F_FFFF
3
2
Scenario
1
0
0x78_0000
0x7F_8000
FPLS[1:0]
FPOPEN=0
FPHS[1:0]
0x7F_FFFF
Unprotected region
Protected region with size
defined by FPLS
Protected region
not defined by FPLS, FPHS
Protected region with size
defined by FPHS
Figure 27-11. Flash Protection Scenarios
MC9S12XDP512 Data Sheet, Rev. 2.21
1120
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.3.2.5.1
Flash Protection Restrictions
The general guideline is that Flash protection can only be added and not removed. Table 27-15 specifies
all valid transitions between Flash protection scenarios. Any attempt to write an invalid scenario to the
FPROT register will be ignored and the FPROT register will remain unchanged. The contents of the
FPROT register reflect the active protection scenario. See the FPHS and FPLS descriptions for additional
restrictions.
Table 27-15. Flash Protection Scenario Transitions
To Protection Scenario1
From
Protection Scenario
0
1
2
3
0
X
X
X
X
1
X
2
4
X
4
X
X
X
X
X
X
X
X
X
X
7
X
X
7
X
3
6
6
X
X
5
5
X
X
X
X
X
X
1 Allowed transitions marked with X.
27.3.2.6
Flash Status Register (FSTAT)
The FSTAT register defines the operational status of the module.
7
6
R
5
4
PVIOL
ACCERR
0
0
CCIF
CBEIF
3
2
1
0
0
BLANK
0
0
0
0
0
0
W
Reset
1
1
= Unimplemented or Reserved
Figure 27-12. Flash Status Register (FSTAT — Normal Mode)
7
6
R
5
4
CCIF
CBEIF
PVIOL
ACCERR
0
0
3
2
0
BLANK
1
0
0
FAIL
W
Reset
1
1
0
0
0
0
= Unimplemented or Reserved
Figure 27-13. Flash Status Register (FSTAT — Special Mode)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1121
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
CBEIF, PVIOL, and ACCERR are readable and writable, CCIF and BLANK are readable and not writable,
remaining bits read 0 and are not writable in normal mode. FAIL is readable and writable in special mode.
FAIL must be clear in special mode when starting a command write sequence.
Table 27-16. FSTAT Field Descriptions
Field
Description
7
CBEIF
Command Buffer Empty Interrupt Flag — The CBEIF flag indicates that the address, data and command
buffers are empty so that a new command write sequence can be started. Writing a 0 to the CBEIF flag has no
effect on CBEIF. Writing a 0 to CBEIF after writing an aligned word to the Flash address space, but before CBEIF
is cleared, will abort a command write sequence and cause the ACCERR flag to be set. Writing a 0 to CBEIF
outside of a command write sequence will not set the ACCERR flag. The CBEIF flag is cleared by writing a 1 to
CBEIF. The CBEIF flag is used together with the CBEIE bit in the FCNFG register to generate an interrupt
request (see Figure 27-32).
0 Command buffers are full.
1 Command buffers are ready to accept a new command.
6
CCIF
Command Complete Interrupt Flag — The CCIF flag indicates that there are no more commands pending. The
CCIF flag is cleared when CBEIF is cleared and sets automatically upon completion of all active and pending
commands. The CCIF flag does not set when an active commands completes and a pending command is
fetched from the command buffer. Writing to the CCIF flag has no effect on CCIF. The CCIF flag is used together
with the CCIE bit in the FCNFG register to generate an interrupt request (see Figure 27-32).
0 Command in progress.
1 All commands are completed.
5
PVIOL
Protection Violation Flag —The PVIOL flag indicates an attempt was made to program or erase an address in
a protected area of the Flash memory during a command write sequence. Writing a 0 to the PVIOL flag has no
effect on PVIOL. The PVIOL flag is cleared by writing a 1 to PVIOL. While PVIOL is set, it is not possible to launch
a command or start a command write sequence.
0 No protection violation detected.
1 Protection violation has occurred.
4
ACCERR
Access Error Flag — The ACCERR flag indicates an illegal access has occurred to the Flash memory caused
by either a violation of the command write sequence (see Section 27.4.1.2, “Command Write Sequence”),
issuing an illegal Flash command (see Table 27-18), launching the sector erase abort command terminating a
sector erase operation early (see Section 27.4.2.6, “Sector Erase Abort Command”) or the execution of a CPU
STOP instruction while a command is executing (CCIF = 0). Writing a 0 to the ACCERR flag has no effect on
ACCERR. The ACCERR flag is cleared by writing a 1 to ACCERR.While ACCERR is set, it is not possible to
launch a command or start a command write sequence. If ACCERR is set by an erase verify operation or a data
compress operation, any buffered command will not launch.
0 No access error detected.
1 Access error has occurred.
2
BLANK
Flag Indicating the Erase Verify Operation Status — When the CCIF flag is set after completion of an erase
verify command, the BLANK flag indicates the result of the erase verify operation. The BLANK flag is cleared by
the Flash module when CBEIF is cleared as part of a new valid command write sequence. Writing to the BLANK
flag has no effect on BLANK.
0 Flash block verified as not erased.
1 Flash block verified as erased.
1
FAIL
Flag Indicating a Failed Flash Operation — The FAIL flag will set if the erase verify operation fails (selected
Flash block verified as not erased). Writing a 0 to the FAIL flag has no effect on FAIL. The FAIL flag is cleared by
writing a 1 to FAIL.
0 Flash operation completed without error.
1 Flash operation failed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1122
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.3.2.7
Flash Command Register (FCMD)
The FCMD register is the Flash command register.
7
R
6
5
4
3
2
1
0
0
0
0
0
CMDB
W
Reset
1
1
0
0
0
= Unimplemented or Reserved
Figure 27-14. Flash Command Register (FCMD)
All CMDB bits are readable and writable during a command write sequence while bit 7 reads 0 and is not
writable.
Table 27-17. FCMD Field Descriptions
Field
Description
6-0
CMDB[6:0]
Flash Command — Valid Flash commands are shown in Table 27-18. Writing any command other than those
listed in Table 27-18 sets the ACCERR flag in the FSTAT register.
Table 27-18. Valid Flash Command List
27.3.2.8
CMDB[6:0]
NVM Command
0x05
Erase Verify
0x06
Data Compress
0x20
Word Program
0x40
Sector Erase
0x41
Mass Erase
0x47
Sector Erase Abort
Flash Control Register (FCTL)
The FCTL register is the Flash control register.
R
7
6
5
4
3
2
1
0
NV7
NV6
NV5
NV4
NV3
NV2
NV1
NV0
F
F
F
F
F
F
F
F
W
Reset
= Unimplemented or Reserved
Figure 27-15. Flash Control Register (FCTL)
All bits in the FCTL register are readable but are not writable.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1123
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
The FCTL register is loaded from the Flash Configuration Field byte at global address 0x7F_FF0E during
the reset sequence, indicated by F in Figure 27-15.
Table 27-19. FCTL Field Descriptions
Field
Description
7-0
NV[7:0]
Non volatile Bits — The NV[7:0] bits are available as nonvolatile bits. Refer to the Device User Guide for proper
use of the NV bits.
27.3.2.9
Flash Address Registers (FADDR)
The FADDRHI and FADDRLO registers are the Flash address registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
FADDRHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 27-16. Flash Address High Register (FADDRHI)
7
6
5
4
R
3
2
1
0
0
0
0
0
FADDRLO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 27-17. Flash Address Low Register (FADDRLO)
All FADDRHI and FADDRLO bits are readable but are not writable. After an array write as part of a
command write sequence, the FADDR registers will contain the mapped MCU address written.
27.3.2.10 Flash Data Registers (FDATA)
The FDATAHI and FDATALO registers are the Flash data registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
FDATAHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 27-18. Flash Data High Register (FDATAHI)
MC9S12XDP512 Data Sheet, Rev. 2.21
1124
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
7
6
5
4
R
3
2
1
0
0
0
0
0
FDATALO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 27-19. Flash Data Low Register (FDATALO)
All FDATAHI and FDATALO bits are readable but are not writable. At the completion of a data compress
operation, the resulting 16-bit signature is stored in the FDATA registers. The data compression signature
is readable in the FDATA registers until a new command write sequence is started.
27.3.2.11 RESERVED1
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 27-20. RESERVED1
All bits read 0 and are not writable.
27.3.2.12 RESERVED2
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 27-21. RESERVED2
All bits read 0 and are not writable.
27.3.2.13 RESERVED3
This register is reserved for factory testing and is not accessible.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1125
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 27-22. RESERVED3
All bits read 0 and are not writable.
27.3.2.14 RESERVED4
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 27-23. RESERVED4
All bits read 0 and are not writable.
27.4
27.4.1
Functional Description
Flash Command Operations
Write operations are used to execute program, erase, erase verify, erase abort, and data compress
algorithms described in this section. The program and erase algorithms are controlled by a state machine
whose timebase, FCLK, is derived from the oscillator clock via a programmable divider. The command
register, as well as the associated address and data registers, operate as a buffer and a register (2-stage
FIFO) so that a second command along with the necessary data and address can be stored to the buffer
while the first command is still in progress. This pipelined operation allows a time optimization when
programming more than one word on a specific row in the Flash block as the high voltage generation can
be kept active in between two programming commands. The pipelined operation also allows a
simplification of command launching. Buffer empty as well as command completion are signalled by flags
in the Flash status register with corresponding interrupts generated, if enabled.
The next sections describe:
1. How to write the FCLKDIV register
2. Command write sequences to program, erase, erase verify, erase abort, and data compress
operations on the Flash memory
3. Valid Flash commands
4. Effects resulting from illegal Flash command write sequences or aborting Flash operations
MC9S12XDP512 Data Sheet, Rev. 2.21
1126
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.1.1
Writing the FCLKDIV Register
Prior to issuing any Flash command after a reset, the user is required to write the FCLKDIV register to
divide the oscillator clock down to within the 150 kHz to 200 kHz range. Since the program and erase
timings are also a function of the bus clock, the FCLKDIV determination must take this information into
account.
If we define:
• FCLK as the clock of the Flash timing control block
• Tbus as the period of the bus clock
• INT(x) as taking the integer part of x (e.g. INT(4.323) = 4)
then FCLKDIV register bits PRDIV8 and FDIV[5:0] are to be set as described in Figure 27-24.
For example, if the oscillator clock frequency is 950kHz and the bus clock frequency is 10MHz,
FCLKDIV bits FDIV[5:0] should be set to 0x04 (000100) and bit PRDIV8 set to 0. The resulting FCLK
frequency is then 190kHz. As a result, the Flash program and erase algorithm timings are increased over
the optimum target by:
( 200 – 190 ) ⁄ 200 × 100 = 5%
If the oscillator clock frequency is 16MHz and the bus clock frequency is 40MHz, FCLKDIV bits
FDIV[5:0] should be set to 0x0A (001010) and bit PRDIV8 set to 1. The resulting FCLK frequency is then
182kHz. In this case, the Flash program and erase algorithm timings are increased over the optimum target
by:
( 200 – 182 ) ⁄ 200 × 100 = 9%
CAUTION
Program and erase command execution time will increase proportionally
with the period of FCLK. Because of the impact of clock synchronization
on the accuracy of the functional timings, programming or erasing the Flash
memory cannot be performed if the bus clock runs at less than 1 MHz.
Programming or erasing the Flash memory with FCLK < 150 kHz should
be avoided. Setting FCLKDIV to a value such that FCLK < 150 kHz can
destroy the Flash memory due to overstress. Setting FCLKDIV to a value
such that (1/FCLK+Tbus) < 5µs can result in incomplete programming or
erasure of the Flash memory cells.
If the FCLKDIV register is written, the FDIVLD bit is set automatically. If the FDIVLD bit is 0, the
FCLKDIV register has not been written since the last reset. If the FCLKDIV register has not been written
to, the Flash command loaded during a command write sequence will not execute and the ACCERR flag
in the FSTAT register will set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1127
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
START
Tbus < 1µs?
no
ALL COMMANDS IMPOSSIBLE
yes
PRDIV8=0 (reset)
oscillator_clock
12.8MHz?
no
yes
PRDIV8=1
PRDCLK=oscillator_clock/8
PRDCLK[MHz]*(5+Tbus[µs])
an integer?
yes
PRDCLK=oscillator_clock
no
FDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))
FDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])-1
TRY TO DECREASE Tbus
FCLK=(PRDCLK)/(1+FDIV[5:0])
1/FCLK[MHz] + Tbus[µs] > 5
AND
FCLK > 0.15MHz
?
yes
END
no
yes
FDIV[5:0] > 4?
no
ALL COMMANDS IMPOSSIBLE
Figure 27-24. Determination Procedure for PRDIV8 and FDIV Bits
MC9S12XDP512 Data Sheet, Rev. 2.21
1128
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.1.2
Command Write Sequence
The Flash command controller is used to supervise the command write sequence to execute program,
erase, erase verify, erase abort, and data compress algorithms.
Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear (see Section 27.3.2.6, “Flash Status Register (FSTAT)”) and the CBEIF flag should be tested to
determine the state of the address, data and command buffers. If the CBEIF flag is set, indicating the
buffers are empty, a new command write sequence can be started. If the CBEIF flag is clear, indicating the
buffers are not available, a new command write sequence will overwrite the contents of the address, data
and command buffers.
A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:
1. Write to a valid address in the Flash memory. Addresses in multiple Flash blocks can be written to
as long as the location is at the same relative address in each available Flash block. Multiple
addresses must be written in Flash block order starting with the lower Flash block.
2. Write a valid command to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.
The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. If the CBEIF flag in the FSTAT register is clear when the first Flash array write occurs,
the contents of the address and data buffers will be overwritten and the CBEIF flag will be set. When the
CBEIF flag is cleared, the CCIF flag is cleared on the same bus cycle by the Flash command controller
indicating that the command was successfully launched. For all command write sequences except data
compress and sector erase abort, the CBEIF flag will set four bus cycles after the CCIF flag is cleared
indicating that the address, data, and command buffers are ready for a new command write sequence to
begin. For data compress and sector erase abort operations, the CBEIF flag will remain clear until the
operation completes. Except for the sector erase abort command, a buffered command will wait for the
active operation to be completed before being launched. The sector erase abort command is launched when
the CBEIF flag is cleared as part of a sector erase abort command write sequence. Once a command is
launched, the completion of the command operation is indicated by the setting of the CCIF flag in the
FSTAT register. The CCIF flag will set upon completion of all active and buffered commands.
27.4.2
Flash Commands
Table 27-20 summarizes the valid Flash commands along with the effects of the commands on the Flash
block.
Table 27-20. Flash Command Description
FCMDB
0x05
NVM
Command
Erase
Verify
Function on Flash Memory
Verify all memory bytes in the Flash block are erased.
If the Flash block is erased, the BLANK flag in the FSTAT register will set upon command
completion.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1129
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
Table 27-20. Flash Command Description
NVM
Command
Function on Flash Memory
0x06
Data
Compress
Compress data from a selected portion of the Flash block.
The resulting signature is stored in the FDATA register.
0x20
Program
0x40
Sector
Erase
Erase all memory bytes in a sector of the Flash block.
0x41
Mass
Erase
Erase all memory bytes in the Flash block.
A mass erase of the full Flash block is only possible when FPLDIS, FPHDIS and
FPOPEN bits in the FPROT register are set prior to launching the command.
0x47
Sector
Erase
Abort
Abort the sector erase operation.
The sector erase operation will terminate according to a set procedure. The Flash sector
should not be considered erased if the ACCERR flag is set upon command completion.
FCMDB
Program a word (two bytes) in the Flash block.
CAUTION
A Flash word must be in the erased state before being programmed.
Cumulative programming of bits within a Flash word is not allowed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1130
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.1
Erase Verify Command
The erase verify operation will verify that a Flash block is erased.
An example flow to execute the erase verify operation is shown in Figure 27-25. The erase verify command
write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the erase verify command.
The address and data written will be ignored. Multiple Flash blocks can be simultaneously erase
verified by writing to the same relative address in each Flash block.
2. Write the erase verify command, 0x05, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the erase verify
command.
After launching the erase verify command, the CCIF flag in the FSTAT register will set after the operation
has completed unless a new command write sequence has been buffered. The number of bus cycles
required to execute the erase verify operation is equal to the number of addresses in a Flash block plus 14
bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon completion
of the erase verify operation, the BLANK flag in the FSTAT register will be set if all addresses in the
selected Flash blocks are verified to be erased. If any address in a selected Flash block is not erased, the
erase verify operation will terminate and the BLANK flag in the FSTAT register will remain clear. The
MRDS bits in the FTSTMOD register will determine the sense-amp margin setting during the erase verify
operation.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1131
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
1.
Simultaneous
Multiple Flash Block
Decision
ACCERR/
PVIOL
Set?
no
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Block Address
and Dummy Data
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Erase Verify Command 0x05
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Erase Verify
Status
BLANK
Set?
no
yes
EXIT Flash Block
Erased
EXIT
Flash Block
Not Erased
Figure 27-25. Example Erase Verify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1132
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.2
Data Compress Command
The data compress operation will check Flash code integrity by compressing data from a selected portion
of the Flash memory into a signature analyzer.
An example flow to execute the data compress operation is shown in Figure 27-26. The data compress
command write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the data compress
command. The address written determines the starting address for the data compress operation and
the data written determines the number of consecutive words to compress. If the data value written
is 0x0000, 64K addresses or 128 Kbytes will be compressed. Multiple Flash blocks can be
simultaneously compressed by writing to the same relative address in each Flash block. If more
than one Flash block is written to in this step, the first data written will determine the number of
consecutive words to compress in each selected Flash block.
2. Write the data compress command, 0x06, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the data compress
command.
After launching the data compress command, the CCIF flag in the FSTAT register will set after the data
compress operation has completed. The number of bus cycles required to execute the data compress
operation is equal to two times the number of consecutive words to compress plus the number of Flash
blocks simultaneously compressed plus 18 bus cycles as measured from the time the CBEIF flag is cleared
until the CCIF flag is set. Once the CCIF flag is set, the signature generated by the data compress operation
is available in the FDATA registers. The signature in the FDATA registers can be compared to the expected
signature to determine the integrity of the selected data stored in the selected Flash memory. If the last
address of a Flash block is reached during the data compress operation, data compression will continue
with the starting address of the same Flash block. The MRDS bits in the FTSTMOD register will determine
the sense-amp margin setting during the data compress operation.
NOTE
Since the FDATA registers (or data buffer) are written to as part of the data
compress operation, a command write sequence is not allowed to be
buffered behind a data compress command write sequence. The CBEIF flag
will not set after launching the data compress command to indicate that a
command should not be buffered behind it. If an attempt is made to start a
new command write sequence with a data compress operation active, the
ACCERR flag in the FSTAT register will be set. A new command write
sequence should only be started after reading the signature stored in the
FDATA registers.
In order to take corrective action, it is recommended that the data compress command be executed on a
Flash sector or subset of a Flash sector. If the data compress operation on a Flash sector returns an invalid
signature, the Flash sector should be erased using the sector erase command and then reprogrammed using
the program command.
The data compress command can be used to verify that a sector or sequential set of sectors are erased.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1133
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Address to start
compression and number of word
addresses to compress
1.
NOTE: address used to select
Flash block; data ignored.
Simultaneous
Multiple Flash Block
Decision
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Data Compress Command 0x06
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Read: FDATA registers
Data Compress Signature
Signature
Valid?
no
Erase and Reprogram
Flash Sector(s) Compressed
yes
EXIT
Figure 27-26. Example Data Compress Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1134
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.2.1
Data Compress Operation
The Flash module contains a 16-bit multiple-input signature register (MISR) for each Flash block to
generate a 16-bit signature based on selected Flash array data. If multiple Flash blocks are selected for
simultaneous compression, then the signature from each Flash block is further compressed to generate a
single 16-bit signature. The final 16-bit signature, found in the FDATA registers after the data compress
operation has completed, is based on the following logic equation which is executed on every data
compression cycle during the operation:
MISR[15:0] = {MISR[14:0], ^MISR[15,4,2,1]} ^ DATA[15:0]
Eqn. 27-1
where MISR is the content of the internal signature register associated with each Flash block and DATA
is the data to be compressed as shown in Figure 27-27.
DATA[0]
+
DATA[1]
DQ
DATA[2]
+
M0
>
+
DQ
M1
>
DATA[3]
+
DQ
M2
>
+
DATA[4]
DQ
M3
>
+
+
DATA[5]
+
DQ
M4
>
DATA[15]
DQ
M5
>
...
+
DQ
M15
>
+
+ = Exclusive-OR
MISR[15:0] = Q[15:0]
Figure 27-27. 16-Bit MISR Diagram
During the data compress operation, the following steps are executed:
1. MISR for each Flash block is reset to 0xFFFF.
2. Initialized DATA equal to 0xFFFF is compressed into the MISR for each selected Flash block
which results in the MISR containing 0x0001.
3. DATA equal to the selected Flash array data range is read and compressed into the MISR for each
selected Flash block with addresses incrementing.
4. DATA equal to the selected Flash array data range is read and compressed into the MISR for each
selected Flash block with addresses decrementing.
5. If Flash block 0 is selected for compression, DATA equal to the contents of the MISR for Flash
block 0 is compressed into the MISR for Flash block 0. If data in Flash block 0 was not selected
for compression, the MISR for Flash block 0 contains 0xFFFF.
6. If Flash block 1 is selected for compression, DATA equal to the contents of the MISR for Flash
block 1 is compressed into the MISR for Flash block 0.
7. If Flash block 2 is selected for compression, DATA equal to the contents of the MISR for Flash
block 2 is compressed into the MISR for Flash block 0.
8. If Flash block 3 is selected for compression, DATA equal to the contents of the MISR for Flash
block 3 is compressed into the MISR for Flash block 0.
9. The contents of the MISR for Flash block 0 are written to the FDATA registers.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1135
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.3
Program Command
The program operation will program a previously erased word in the Flash memory using an embedded
algorithm.
An example flow to execute the program operation is shown in Figure 27-28. The program command write
sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the program command. The
data written will be programmed to the address written. Multiple Flash blocks can be
simultaneously programmed by writing to the same relative address in each Flash block.
2. Write the program command, 0x20, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the program
command.
If a word to be programmed is in a protected area of the Flash block, the PVIOL flag in the FSTAT register
will set and the program command will not launch. Once the program command has successfully launched,
the CCIF flag in the FSTAT register will set after the program operation has completed unless a new
command write sequence has been buffered. By executing a new program command write sequence on
sequential words after the CBEIF flag in the FSTAT register has been set, up to 55% faster programming
time per word can be effectively achieved than by waiting for the CCIF flag to set after each program
operation.
MC9S12XDP512 Data Sheet, Rev. 2.21
1136
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Address
and program Data
1.
Simultaneous
Multiple Flash Block
Decision
Next
Flash
Block?
2.
no
Write: FCMD register
Program Command 0x20
3.
Write: FSTAT register
Clear CBEIF 0x80
yes
Decrement Global Address
by 128K
Read: FSTAT register
Bit Polling for
Buffer Empty
Check
no
CBEIF
Set?
yes
Sequential
Programming
Decision
Next
Word?
yes
no
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 27-28. Example Program Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1137
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.4
Sector Erase Command
The sector erase operation will erase all addresses in a 1 Kbyte sector of Flash memory using an embedded
algorithm.
An example flow to execute the sector erase operation is shown in Figure 27-29. The sector erase
command write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while global address bits [9:0] and the
data written are ignored. Multiple Flash sectors can be simultaneously erased by writing to the
same relative address in each Flash block.
2. Write the sector erase command, 0x40, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If a Flash sector to be erased is in a protected area of the Flash block, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1138
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
1.
Simultaneous
Multiple Flash Block
Decision
ACCERR/
PVIOL
Set?
no
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Sector Address
and Dummy Data
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Sector Erase Command 0x40
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 27-29. Example Sector Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1139
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.5
Mass Erase Command
The mass erase operation will erase all addresses in a Flash block using an embedded algorithm.
An example flow to execute the mass erase operation is shown in Figure 27-30. The mass erase command
write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the mass erase command.
The address and data written will be ignored. Multiple Flash blocks can be simultaneously mass
erased by writing to the same relative address in each Flash block.
2. Write the mass erase command, 0x41, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the mass erase
command.
If a Flash block to be erased contains any protected area, the PVIOL flag in the FSTAT register will set and
the mass erase command will not launch. Once the mass erase command has successfully launched, the
CCIF flag in the FSTAT register will set after the mass erase operation has completed unless a new
command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1140
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
1.
Simultaneous
Multiple Flash Block
Decision
ACCERR/
PVIOL
Set?
no
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Block Address
and Dummy Data
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Mass Erase Command 0x41
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 27-30. Example Mass Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1141
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.2.6
Sector Erase Abort Command
The sector erase abort operation will terminate the active sector erase operation so that other sectors in a
Flash block are available for read and program operations without waiting for the sector erase operation to
complete.
An example flow to execute the sector erase abort operation is shown in Figure 27-31. The sector erase
abort command write sequence is as follows:
1. Write to any Flash block address to start the command write sequence for the sector erase abort
command. The address and data written are ignored.
2. Write the sector erase abort command, 0x47, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.
If the sector erase abort command is launched resulting in the early termination of an active sector erase
operation, the ACCERR flag will set once the operation completes as indicated by the CCIF flag being set.
The ACCERR flag sets to inform the user that the Flash sector may not be fully erased and a new sector
erase command must be launched before programming any location in that specific sector. If the sector
erase abort command is launched but the active sector erase operation completes normally, the ACCERR
flag will not set upon completion of the operation as indicated by the CCIF flag being set. Therefore, if the
ACCERR flag is not set after the sector erase abort command has completed, a Flash sector being erased
when the abort command was launched will be fully erased. The maximum number of cycles required to
abort a sector erase operation is equal to four FCLK periods (see Section 27.4.1.1, “Writing the FCLKDIV
Register”) plus five bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is
set. If sectors in multiple Flash blocks are being simultaneously erased, the sector erase abort operation
will be applied to all active Flash blocks without writing to each Flash block in the sector erase abort
command write sequence.
NOTE
Since the ACCERR bit in the FSTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the FSTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.
NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.
MC9S12XDP512 Data Sheet, Rev. 2.21
1142
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
Execute Sector Erase Command Flow
Read: FSTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
Erase
Abort
Needed?
no
yes
Sector Erase
Completed
no
yes
EXIT
1.
Write: Dummy Flash Address
and Dummy Data
2.
Write: FCMD register
Sector Erase Abort Cmd 0x47
3.
Write: FSTAT register
Clear CBEIF 0x80
Read: FSTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
no
yes
Access
Error Check
ACCERR
Set?
yes
Write: FSTAT register
Clear ACCERR 0x10
no
Sector Erase
Completed
EXIT
Sector Erase
Aborted
EXIT
Figure 27-31. Example Sector Erase Abort Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1143
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.4.3
Illegal Flash Operations
The ACCERR flag will be set during the command write sequence if any of the following illegal steps are
performed, causing the command write sequence to immediately abort:
1. Writing to a Flash address before initializing the FCLKDIV register.
2. Writing a byte or misaligned word to a valid Flash address.
3. Starting a command write sequence while a data compress operation is active.
4. Starting a command write sequence while a sector erase abort operation is active.
5. Writing a Flash address in step 1 of a command write sequence that is not the same relative address
as the first one written in the same command write sequence.
6. Writing to any Flash register other than FCMD after writing to a Flash address.
7. Writing a second command to the FCMD register in the same command write sequence.
8. Writing an invalid command to the FCMD register.
9. When security is enabled, writing a command other than mass erase to the FCMD register when
the write originates from a non-secure memory location or from the Background Debug Mode.
10. Writing to a Flash address after writing to the FCMD register.
11. Writing to any Flash register other than FSTAT (to clear CBEIF) after writing to the FCMD
register.
12. Writing a 0 to the CBEIF flag in the FSTAT register to abort a command write sequence.
The ACCERR flag will not be set if any Flash register is read during a valid command write sequence.
The ACCERR flag will also be set if any of the following events occur:
1. Launching the sector erase abort command while a sector erase operation is active which results in
the early termination of the sector erase operation (see Section 27.4.2.6, “Sector Erase Abort
Command”).
2. The MCU enters stop mode and a program or erase operation is in progress. The operation is
aborted immediately and any pending command is purged (see Section 27.5.2, “Stop Mode”).
If the Flash memory is read during execution of an algorithm (CCIF = 0), the read operation will return
invalid data and the ACCERR flag will not be set.
If the ACCERR flag is set in the FSTAT register, the user must clear the ACCERR flag before starting
another command write sequence (see Section 27.3.2.6, “Flash Status Register (FSTAT)”).
The PVIOL flag will be set after the command is written to the FCMD register during a command write
sequence if any of the following illegal operations are attempted, causing the command write sequence to
immediately abort:
1. Writing the program command if an address written in the command write sequence was in a
protected area of the Flash memory
2. Writing the sector erase command if an address written in the command write sequence was in a
protected area of the Flash memory
3. Writing the mass erase command to a Flash block while any Flash protection is enabled in the
block
MC9S12XDP512 Data Sheet, Rev. 2.21
1144
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
If the PVIOL flag is set in the FSTAT register, the user must clear the PVIOL flag before starting another
command write sequence (see Section 27.3.2.6, “Flash Status Register (FSTAT)”).
27.5
27.5.1
Operating Modes
Wait Mode
If a command is active (CCIF = 0) when the MCU enters wait mode, the active command and any buffered
command will be completed.
The Flash module can recover the MCU from wait mode if the CBEIF and CCIF interrupts are enabled
(see Section 27.8, “Interrupts”).
27.5.2
Stop Mode
If a command is active (CCIF = 0) when the MCU enters stop mode, the operation will be aborted and, if
the operation is program or erase, the Flash array data being programmed or erased may be corrupted and
the CCIF and ACCERR flags will be set. If active, the high voltage circuitry to the Flash memory will
immediately be switched off when entering stop mode. Upon exit from stop mode, the CBEIF flag is set
and any buffered command will not be launched. The ACCERR flag must be cleared before starting a
command write sequence (see Section 27.4.1.2, “Command Write Sequence”).
NOTE
As active commands are immediately aborted when the MCU enters stop
mode, it is strongly recommended that the user does not use the STOP
instruction during program or erase operations.
27.5.3
Background Debug Mode
In background debug mode (BDM), the FPROT register is writable. If the MCU is unsecured, then all
Flash commands listed in Table 27-20 can be executed. If the MCU is secured and is in special single chip
mode, only mass erase can be executed.
27.6
Flash Module Security
The Flash module provides the necessary security information to the MCU. After each reset, the Flash
module determines the security state of the MCU as defined in Section 27.3.2.2, “Flash Security Register
(FSEC)”.
The contents of the Flash security byte at 0x7F_FF0F in the Flash Configuration Field must be changed
directly by programming 0x7F_FF0F when the MCU is unsecured and the higher address sector is
unprotected. If the Flash security byte is left in a secured state, any reset will cause the MCU to initialize
to a secure operating mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1145
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
27.6.1
Unsecuring the MCU using Backdoor Key Access
The MCU may be unsecured by using the backdoor key access feature which requires knowledge of the
contents of the backdoor keys (four 16-bit words programmed at addresses 0x7F_FF00–0x7F_FF07). If
the KEYEN[1:0] bits are in the enabled state (see Section 27.3.2.2, “Flash Security Register (FSEC)”) and
the KEYACC bit is set, a write to a backdoor key address in the Flash memory triggers a comparison
between the written data and the backdoor key data stored in the Flash memory. If all four words of data
are written to the correct addresses in the correct order and the data matches the backdoor keys stored in
the Flash memory, the MCU will be unsecured. The data must be written to the backdoor keys sequentially
starting with 0x7F_FF00–1 and ending with 0x7F_FF06–7. 0x0000 and 0xFFFF are not permitted as
backdoor keys. While the KEYACC bit is set, reads of the Flash memory will return invalid data.
The user code stored in the Flash memory must have a method of receiving the backdoor keys from an
external stimulus. This external stimulus would typically be through one of the on-chip serial ports.
If the KEYEN[1:0] bits are in the enabled state (see Section 27.3.2.2, “Flash Security Register (FSEC)”),
the MCU can be unsecured by the backdoor key access sequence described below:
1. Set the KEYACC bit in the Flash Configuration Register (FCNFG).
2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0x7F_FF00.
3. Clear the KEYACC bit. Depending on the user code used to write the backdoor keys, a wait cycle
(NOP) may be required before clearing the KEYACC bit.
4. If all four 16-bit words match the backdoor keys stored in Flash addresses
0x7F_FF00–0x7F_FF07, the MCU is unsecured and the SEC[1:0] bits in the FSEC register are
forced to the unsecure state of 1:0.
The backdoor key access sequence is monitored by an internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following operations during the backdoor
key access sequence will lock the security state machine:
1. If any of the four 16-bit words does not match the backdoor keys programmed in the Flash array.
2. If the four 16-bit words are written in the wrong sequence.
3. If more than four 16-bit words are written.
4. If any of the four 16-bit words written are 0x0000 or 0xFFFF.
5. If the KEYACC bit does not remain set while the four 16-bit words are written.
6. If any two of the four 16-bit words are written on successive MCU clock cycles.
After the backdoor keys have been correctly matched, the MCU will be unsecured. Once the MCU is
unsecured, the Flash security byte can be programmed to the unsecure state, if desired.
In the unsecure state, the user has full control of the contents of the backdoor keys by programming
addresses 0x7F_FF00–0x7F_FF07 in the Flash Configuration Field.
The security as defined in the Flash security byte (0x7F_FF0F) is not changed by using the backdoor key
access sequence to unsecure. The backdoor keys stored in addresses 0x7F_FF00–0x7F_FF07 are
MC9S12XDP512 Data Sheet, Rev. 2.21
1146
Freescale Semiconductor
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
unaffected by the backdoor key access sequence. After the next reset of the MCU, the security state of the
Flash module is determined by the Flash security byte (0x7F_FF0F). The backdoor key access sequence
has no effect on the program and erase protections defined in the Flash protection register.
It is not possible to unsecure the MCU in special single chip mode by using the backdoor key access
sequence in background debug mode (BDM).
27.6.2
Unsecuring the MCU in Special Single Chip Mode using BDM
The MCU can be unsecured in special single chip mode by erasing the Flash module by the following
method:
• Reset the MCU into special single chip mode, delay while the erase test is performed by the BDM
secure ROM, send BDM commands to disable protection in the Flash module, and execute a mass
erase command write sequence to erase the Flash memory.
After the CCIF flag sets to indicate that the mass operation has completed, reset the MCU into special
single chip mode. The BDM secure ROM will verify that the Flash memory is erased and will assert the
UNSEC bit in the BDM status register. This BDM action will cause the MCU to override the Flash security
state and the MCU will be unsecured. All BDM commands will be enabled and the Flash security byte
may be programmed to the unsecure state by the following method:
• Send BDM commands to execute a word program sequence to program the Flash security byte to
the unsecured state and reset the MCU.
27.7
27.7.1
Resets
Flash Reset Sequence
On each reset, the Flash module executes a reset sequence to hold CPU activity while loading the following
registers from the Flash memory according to Table 27-1:
• FPROT — Flash Protection Register (see Section 27.3.2.5).
• FCTL - Flash Control Register (see Section 27.3.2.8).
• FSEC — Flash Security Register (see Section 27.3.2.2).
27.7.2
Reset While Flash Command Active
If a reset occurs while any Flash command is in progress, that command will be immediately aborted. The
state of the word being programmed or the sector/block being erased is not guaranteed.
27.8
Interrupts
The Flash module can generate an interrupt when all Flash command operations have completed, when the
Flash address, data and command buffers are empty.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1147
Chapter 27 512 Kbyte Flash Module (S12XFTX512K4V2)
Table 27-21. Flash Interrupt Sources
Interrupt Source
Interrupt Flag
Local Enable
Global (CCR) Mask
Flash Address, Data and Command Buffers empty
CBEIF
(FSTAT register)
CBEIE
(FCNFG register)
I Bit
All Flash commands completed
CCIF
(FSTAT register)
CCIE
(FCNFG register)
I Bit
NOTE
Vector addresses and their relative interrupt priority are determined at the
MCU level.
27.8.1
Description of Flash Interrupt Operation
The logic used for generating interrupts is shown in Figure 27-32.
The Flash module uses the CBEIF and CCIF flags in combination with the CBIE and CCIE enable bits to
generate the Flash command interrupt request.
CBEIF
CBEIE
Flash Command Interrupt Request
CCIF
CCIE
Figure 27-32. Flash Interrupt Implementation
For a detailed description of the register bits, refer to Section 27.3.2.4, “Flash Configuration Register
(FCNFG)” and Section 27.3.2.6, “Flash Status Register (FSTAT)” .
MC9S12XDP512 Data Sheet, Rev. 2.21
1148
Freescale Semiconductor
Chapter 28
256 Kbyte Flash Module (S12XFTX256K2V1)
28.1
Introduction
This document describes the FTX256K2 module that includes a 256 Kbyte Flash (nonvolatile) memory.
The Flash memory may be read as either bytes, aligned words or misaligned words. Read access time is
one bus cycle for bytes and aligned words, and two bus cycles for misaligned words.
The Flash memory is ideal for program and data storage for single-supply applications allowing for field
reprogramming without requiring external voltage sources for program or erase. Program and erase
functions are controlled by a command driven interface. The Flash module supports both block erase and
sector erase. An erased bit reads 1 and a programmed bit reads 0. The high voltage required to program
and erase the Flash memory is generated internally. It is not possible to read from a Flash block while it is
being erased or programmed.
CAUTION
A Flash word must be in the erased state before being programmed.
Cumulative programming of bits within a Flash word is not allowed.
28.1.1
Glossary
Command Write Sequence — A three-step MCU instruction sequence to execute built-in algorithms
(including program and erase) on the Flash memory.
Multiple-Input Signature Register (MISR) — A Multiple-Input Signature Register is an output
response analyzer implemented using a linear feedback shift-register (LFSR). A 16-bit MISR is used to
compress data and generate a signature that is particular to the data read from a Flash block.
28.1.2
•
•
•
•
•
•
•
•
Features
256 Kbytes of Flash memory comprised of two 128 Kbyte blocks with each block divided into 128
sectors of 1024 bytes
Automated program and erase algorithm
Interrupts on Flash command completion, command buffer empty
Fast sector erase and word program operation
2-stage command pipeline for faster multi-word program times
Sector erase abort feature for critical interrupt response
Flexible protection scheme to prevent accidental program or erase
Single power supply for all Flash operations including program and erase
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1149
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
•
•
Security feature to prevent unauthorized access to the Flash memory
Code integrity check using built-in data compression
28.1.3
Modes of Operation
Program, erase, erase verify, and data compress operations (please refer to Section 28.4.1, “Flash
Command Operations” for details).
28.1.4
Block Diagram
A block diagram of the Flash module is shown in Figure 28-1.
FTX256K2
Command
Interrupt
Request
Flash
Interface
Command Pipeline
cmd2
addr2
data2_0
data2_1
cmd1
addr1
data1_0
data1_1
Flash Block 0
64K * 16 Bits
sector 0
sector 1
sector 127
Registers
Protection
Security
Oscillator
Clock
Flash Block 1
64K * 16 Bits
sector 0
sector 1
sector 127
Clock
Divider FCLK
Figure 28-1. FTX256K2 Block Diagram
28.2
External Signal Description
The Flash module contains no signals that connect off-chip.
MC9S12XDP512 Data Sheet, Rev. 2.21
1150
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.3
Memory Map and Register Definition
This section describes the memory map and registers for the Flash module.
28.3.1
Module Memory Map
The Flash memory map is shown in Figure 28-2. The HCS12X architecture places the Flash memory
addresses between global addresses 0x78_0000 and 0x7F_FFFF. The FPROT register, described in
Section 28.3.2.5, “Flash Protection Register (FPROT)”, can be set to protect regions in the Flash memory
from accidental program or erase. Three separate memory regions, one growing upward from global
address 0x7F_8000 in the Flash memory (called the lower region), one growing downward from global
address 0x7F_FFFF in the Flash memory (called the higher region), and the remaining addresses in the
Flash memory, can be activated for protection. The Flash memory addresses covered by these protectable
regions are shown in the Flash memory map. The higher address region is mainly targeted to hold the boot
loader code since it covers the vector space. The lower address region can be used for EEPROM emulation
in an MCU without an EEPROM module since it can be left unprotected while the remaining addresses
are protected from program or erase. Default protection settings as well as security information that allows
the MCU to restrict access to the Flash module are stored in the Flash configuration field as described in
Table 28-1.
Table 28-1. Flash Configuration Field
Global Address
Size
(Bytes)
0x7F_FF00 – 0x7F_FF07
8
Backdoor Comparison Key
Refer to Section 28.6.1, “Unsecuring the MCU using Backdoor Key Access”
0x7F_FF08 – 0x7F_FF0C
5
Reserved
0x7F_FF0D
1
Flash Protection byte
Refer to Section 28.3.2.5, “Flash Protection Register (FPROT)”
0x7F_FF0E
1
Flash Nonvolatile byte
Refer to Section 28.3.2.8, “Flash Control Register (FCTL)”
0x7F_FF0F
1
Flash Security byte
Refer to Section 28.3.2.2, “Flash Security Register (FSEC)”
Description
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1151
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
MODULE BASE + 0x0000
MODULE BASE + 0x000F
Flash Registers
16 bytes
FLASH START = 0x78_0000
Flash Protected/Unprotected Region
128 Kbytes
0x79_FFFF
Unimplemented Flash Region
256 Kbytes
0x7E_0000
Flash Protected/Unprotected Region
96 Kbytes
0x7F_8000
0x7F_8400
0x7F_8800
0x7F_9000
Flash Protected/Unprotected Lower Region
1, 2, 4, 8 Kbytes
0x7F_A000
Flash Protected/Unprotected Region
8 Kbytes (up to 29 Kbytes)
0x7F_C000
0x7F_E000
Flash Protected/Unprotected Higher Region
2, 4, 8, 16 Kbytes
0x7F_F000
0x7F_F800
FLASH END = 0x7F_FFFF
Flash Configuration Field
16 bytes (0x7F_FF00 - 0x7F_FF0F)
Figure 28-2. Flash Memory Map
MC9S12XDP512 Data Sheet, Rev. 2.21
1152
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.3.2
Register Descriptions
The Flash module contains a set of 16 control and status registers located between module base + 0x0000
and 0x000F. A summary of the Flash module registers is given in Figure 28-3. Detailed descriptions of
each register bit are provided.
Register
Name
FCLKDIV
Bit 7
R
6
5
4
3
2
1
Bit 0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
RNV5
RNV4
RNV3
RNV2
0
0
0
0
0
0
0
0
0
0
FDIVLD
W
FSEC
R
KEYEN
SEC
W
FTSTMOD
R
0
MRDS
W
FCNFG
R
CBEIE
CCIE
KEYACC
W
FPROT
R
RNV6
FPOPEN
FPHDIS
FPHS
FPLDIS
FPLS
W
FSTAT
R
CCIF
CBEIF
0
PVIOL
BLANK
0
0
NV2
NV1
NV0
ACCERR
W
FCMD
R
0
CMDB
W
FCTL
R
0
NV6
NV5
NV4
NV3
W
FADDRHI
R
FADDRHI
W
FADDRLO
R
FADDRLO
W
FDATAHI
R
FDATAHI
W
FDATALO
R
FDATALO
W
Figure 28-3. FTX256K2 Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1153
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
Register
Name
RESERVED1
R
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
RESERVED2
R
W
RESERVED3
R
W
RESERVED4
R
W
Figure 28-3. FTX256K2 Register Summary (continued)
28.3.2.1
Flash Clock Divider Register (FCLKDIV)
The FCLKDIV register is used to control timed events in program and erase algorithms.
7
R
6
5
4
3
2
1
0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
0
0
0
0
0
0
0
FDIVLD
W
Reset
0
= Unimplemented or Reserved
Figure 28-4. Flash Clock Divider Register (FCLKDIV)
All bits in the FCLKDIV register are readable, bits 6-0 are write once and bit 7 is not writable.
Table 28-2. FCLKDIV Field Descriptions
Field
Description
7
FDIVLD
Clock Divider Loaded.
0 Register has not been written.
1 Register has been written to since the last reset.
6
PRDIV8
Enable Prescalar by 8.
0 The oscillator clock is directly fed into the clock divider.
1 The oscillator clock is divided by 8 before feeding into the clock divider.
5:0
FDIV[5:0]
28.3.2.2
Clock Divider Bits — The combination of PRDIV8 and FDIV[5:0] must divide the oscillator clock down to a
frequency of 150 kHz–200 kHz. The maximum divide ratio is 512. Please refer to Section 28.4.1.1, “Writing the
FCLKDIV Register” for more information.
Flash Security Register (FSEC)
The FSEC register holds all bits associated with the security of the MCU and Flash module.
MC9S12XDP512 Data Sheet, Rev. 2.21
1154
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
7
R
6
KEYEN
5
4
3
2
RNV5
RNV4
RNV3
RNV2
F
F
F
F
1
0
SEC
W
Reset
F
F
F
F
= Unimplemented or Reserved
Figure 28-5. Flash Security Register (FSEC)
All bits in the FSEC register are readable but are not writable.
The FSEC register is loaded from the Flash Configuration Field at address 0x7F_FF0F during the reset
sequence, indicated by F in Figure 28-5.
Table 28-3. FSEC Field Descriptions
Field
Description
7:6
Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of backdoor key access to the
KEYEN[1:0] Flash module as shown in Table 28-4.
5:2
RNV[5:2]
Reserved Nonvolatile Bits — The RNV[5:2] bits should remain in the erased state for future enhancements.
1:0
SEC[1:0]
Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 28-5. If the
Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.
Table 28-4. Flash KEYEN States
KEYEN[1:0]
Status of Backdoor Key Access
00
DISABLED
011
DISABLED
10
ENABLED
11
DISABLED
1 Preferred KEYEN state to disable Backdoor Key Access.
Table 28-5. Flash Security States
SEC[1:0]
Status of Security
00
SECURED
1
SECURED
01
10
UNSECURED
11
SECURED
1 Preferred SEC state to set MCU to secured state.
The security function in the Flash module is described in Section 28.6, “Flash Module Security”.
28.3.2.3
Flash Test Mode Register (FTSTMOD)
The FTSTMOD register is used to control Flash test features.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1155
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
7
R
6
5
0
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
MRDS
W
Reset
0
0
0
= Unimplemented or Reserved
Figure 28-6. Flash Test Mode Register (FTSTMOD —Normal Mode)
7
R
6
5
4
0
MRDS
3
2
1
0
0
0
0
0
0
0
0
0
WRALL
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 28-7. Flash Test Mode Register (FTSTMOD — Special Mode)
MRDS bits are readable and writable while all remaining bits read 0 and are not writable in normal mode.
The WRALL bit is writable only in special mode to simplify mass erase and erase verify operations. When
writing to the FTSTMOD register in special mode, all unimplemented/reserved bits must be written to 0.
Table 28-6. FTSTMOD Field Descriptions
Field
Description
6:5
MRDS[1:0]
Margin Read Setting — The MRDS[1:0] bits are used to set the sense-amp margin level for reads of the Flash
array as shown in Table 28-7.
4
WRALL
Write to all Register Banks — If the WRALL bit is set, all banked FDATA registers sharing the same register
address will be written simultaneously during a register write.
0 Write only to the FDATA register bank selected using BKSEL.
1 Write to all FDATA register banks.
Table 28-7. FTSTMOD Margin Read Settings
MRDS[1:0]
Margin Read Setting
00
Normal
01
Program Margin1
10
Erase Margin2
11
Normal
1 Flash array reads will be sensitive to program margin.
2 Flash array reads will be sensitive to erase margin.
28.3.2.4
Flash Configuration Register (FCNFG)
The FCNFG register enables the Flash interrupts and gates the security backdoor writes.
MC9S12XDP512 Data Sheet, Rev. 2.21
1156
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
7
6
5
CBEIE
CCIE
KEYACC
0
0
0
R
4
3
2
1
0
Undefined
0
0
0
0
Undefined
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 28-8. Flash Configuration Register (FCNFG — Normal Mode)
7
6
5
R
CBEIE
CCIE
KEYACC
0
0
0
4
3
2
1
0
0
0
0
BKSEL
W
Reset
0
0
0
0
0
= Unimplemented or Reserved
Figure 28-9. Flash Configuration Register (FCNFG — Special Mode)
CBEIE, CCIE and KEYACC bits are readable and writable while all remaining bits read 0 and are not
writable in normal mode. KEYACC is only writable if KEYEN (see Section 28.3.2.2, “Flash Security
Register (FSEC)” is set to the enabled state. BKSEL is readable and writable in special mode to simplify
mass erase and erase verify operations. When writing to the FCNFG register in special mode, all
unimplemented/ reserved bits must be written to 0.
Table 28-8. FCNFG Field Descriptions
Field
Description
7
CBEIE
Command Buffer Empty Interrupt Enable — The CBEIE bit enables an interrupt in case of an empty command
buffer in the Flash module.
0 Command buffer empty interrupt disabled.
1 An interrupt will be requested whenever the CBEIF flag (see Section 28.3.2.6, “Flash Status Register
(FSTAT)”) is set.
6
CCIE
Command Complete Interrupt Enable — The CCIE bit enables an interrupt in case all commands have been
completed in the Flash module.
0 Command complete interrupt disabled.
1 An interrupt will be requested whenever the CCIF flag (see Section 28.3.2.6, “Flash Status Register (FSTAT)”)
is set.
5
KEYACC
0
BKSEL
28.3.2.5
Enable Security Key Writing
0 Flash writes are interpreted as the start of a command write sequence.
1 Writes to Flash array are interpreted as keys to open the backdoor. Reads of the Flash array return invalid
data.
Block Select — The BKSEL bit indicates which register bank is active.
0 Select register bank associated with Flash block 0.
1 Select register bank associated with Flash block 1.
Flash Protection Register (FPROT)
The FPROT register defines which Flash sectors are protected against program or erase operations.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1157
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
7
R
6
5
4
3
2
1
0
RNV6
FPOPEN
FPHDIS
FPHS
FPLDIS
FPLS
W
Reset
F
F
F
F
F
F
F
F
= Unimplemented or Reserved
Figure 28-10. Flash Protection Register (FPROT)
All bits in the FPROT register are readable and writable with restrictions (see Section 28.3.2.5.1, “Flash
Protection Restrictions”) except for RNV[6] which is only readable.
During the reset sequence, the FPROT register is loaded from the Flash Configuration Field at global
address 0x7F_FF0D. To change the Flash protection that will be loaded during the reset sequence, the
upper sector of the Flash memory must be unprotected, then the Flash Protect/Security byte located as
described in Table 28-1 must be reprogrammed.
Trying to alter data in any protected area in the Flash memory will result in a protection violation error and
the PVIOL flag will be set in the FSTAT register. The mass erase of a Flash block is not possible if any of
the Flash sectors contained in the Flash block are protected.
Table 28-9. FPROT Field Descriptions
Field
Description
7
FPOPEN
Flash Protection Open — The FPOPEN bit determines the protection function for program or erase as shown
in Table 28-10.
0 The FPHDIS and FPLDIS bits define unprotected address ranges as specified by the corresponding
FPHS[1:0] and FPLS[1:0] bits. For an MCU without an EEPROM module, the FPOPEN clear state allows the
main part of the Flash block to be protected while a small address range can remain unprotected for EEPROM
emulation.
1 The FPHDIS and FPLDIS bits enable protection for the address range specified by the corresponding
FPHS[1:0] and FPLS[1:0] bits.
6
RNV6
5
FPHDIS
Reserved Nonvolatile Bit — The RNV[6] bit should remain in the erased state for future enhancements.
Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a
protected/unprotected area in a specific region of the Flash memory ending with global address 0x7F_FFFF.
0 Protection/Unprotection enabled.
1 Protection/Unprotection disabled.
4:3
FPHS[1:0]
Flash Protection Higher Address Size — The FPHS[1:0] bits determine the size of the protected/unprotected
area as shown inTable 28-11. The FPHS[1:0] bits can only be written to while the FPHDIS bit is set.
2
FPLDIS
Flash Protection Lower Address Range Disable — The FPLDIS bit determines whether there is a
protected/unprotected area in a specific region of the Flash memory beginning with global address 0x7F_8000.
0 Protection/Unprotection enabled.
1 Protection/Unprotection disabled.
1:0
FPLS[1:0]
Flash Protection Lower Address Size — The FPLS[1:0] bits determine the size of the protected/unprotected
area as shown in Table 28-12. The FPLS[1:0] bits can only be written to while the FPLDIS bit is set.
MC9S12XDP512 Data Sheet, Rev. 2.21
1158
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
Table 28-10. Flash Protection Function
Function1
FPOPEN
FPHDIS
FPLDIS
1
1
1
No Protection
1
1
0
Protected Low Range
1
0
1
Protected High Range
1
0
0
Protected High and Low Ranges
0
1
1
Full Flash memory Protected
0
1
0
Unprotected Low Range
0
0
1
Unprotected High Range
0
0
0
Unprotected High and Low Ranges
1 For range sizes, refer to Table 28-11 and Table 28-12.
Table 28-11. Flash Protection Higher Address Range
FPHS[1:0]
Global
Address Range
Protected Size
00
0x7F_F800–0x7F_FFFF
2 Kbytes
01
0x7F_F000–0x7F_FFFF
4 Kbytes
10
0x7F_E000–0x7F_FFFF
8 Kbytes
11
0x7F_C000–0x7F_FFFF
16 Kbytes
Table 28-12. Flash Protection Lower Address Range
FPLS[1:0]
Global
Address Range
Protected Size
00
0x7F_8000–0x7F_83FF
1 Kbytes
01
0x7F_8000–0x7F_87FF
2 Kbytes
10
0x7F_8000–0x7F_8FFF
4 Kbytes
11
0x7F_8000–0x7F_9FFF
8 Kbytes
All possible Flash protection scenarios are shown in Figure 28-11. Although the protection scheme is
loaded from the Flash array at global address 0x7F_FF0D during the reset sequence, it can be changed by
the user. This protection scheme can be used by applications requiring re-programming in single chip
mode while providing as much protection as possible if re-programming is not required.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1159
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
0x78_0000
FPHDIS=1
FPLDIS=1
FPHDIS=1
FPLDIS=0
FPHDIS=0
FPLDIS=1
FPHDIS=0
FPLDIS=0
7
6
5
4
Scenario
0x7F_8000
FPLS[1:0]
FPOPEN=1
FPHS[1:0]
0x7F_FFFF
3
2
Scenario
1
0
0x78_0000
0x7F_8000
FPLS[1:0]
FPOPEN=0
FPHS[1:0]
0x7F_FFFF
Unprotected region
Protected region with size
defined by FPLS
Protected region
not defined by FPLS, FPHS
Protected region with size
defined by FPHS
Figure 28-11. Flash Protection Scenarios
MC9S12XDP512 Data Sheet, Rev. 2.21
1160
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.3.2.5.1
Flash Protection Restrictions
The general guideline is that Flash protection can only be added and not removed. Table 28-13 specifies
all valid transitions between Flash protection scenarios. Any attempt to write an invalid scenario to the
FPROT register will be ignored and the FPROT register will remain unchanged. The contents of the
FPROT register reflect the active protection scenario. See the FPHS and FPLS descriptions for additional
restrictions.
Table 28-13. Flash Protection Scenario Transitions
To Protection Scenario1
From
Protection Scenario
0
1
2
3
0
X
X
X
X
1
X
2
4
X
4
X
X
X
X
X
X
X
X
X
X
7
X
X
7
X
3
6
6
X
X
5
5
X
X
X
X
X
X
1 Allowed transitions marked with X.
28.3.2.6
Flash Status Register (FSTAT)
The FSTAT register defines the operational status of the module.
7
6
R
5
4
PVIOL
ACCERR
0
0
CCIF
CBEIF
3
2
1
0
0
BLANK
0
0
0
0
0
0
W
Reset
1
1
= Unimplemented or Reserved
Figure 28-12. Flash Status Register (FSTAT — Normal Mode)
7
6
R
5
4
CCIF
CBEIF
PVIOL
ACCERR
0
0
3
2
0
BLANK
1
0
0
FAIL
W
Reset
1
1
0
0
0
0
= Unimplemented or Reserved
Figure 28-13. Flash Status Register (FSTAT — Special Mode)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1161
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
CBEIF, PVIOL, and ACCERR are readable and writable, CCIF and BLANK are readable and not writable,
remaining bits read 0 and are not writable in normal mode. FAIL is readable and writable in special mode.
FAIL must be clear in special mode when starting a command write sequence.
Table 28-14. FSTAT Field Descriptions
Field
Description
7
CBEIF
Command Buffer Empty Interrupt Flag — The CBEIF flag indicates that the address, data and command
buffers are empty so that a new command write sequence can be started. Writing a 0 to the CBEIF flag has no
effect on CBEIF. Writing a 0 to CBEIF after writing an aligned word to the Flash address space, but before CBEIF
is cleared, will abort a command write sequence and cause the ACCERR flag to be set. Writing a 0 to CBEIF
outside of a command write sequence will not set the ACCERR flag. The CBEIF flag is cleared by writing a 1 to
CBEIF. The CBEIF flag is used together with the CBEIE bit in the FCNFG register to generate an interrupt
request (see Figure 28-32).
0 Command buffers are full.
1 Command buffers are ready to accept a new command.
6
CCIF
Command Complete Interrupt Flag — The CCIF flag indicates that there are no more commands pending. The
CCIF flag is cleared when CBEIF is cleared and sets automatically upon completion of all active and pending
commands. The CCIF flag does not set when an active commands completes and a pending command is
fetched from the command buffer. Writing to the CCIF flag has no effect on CCIF. The CCIF flag is used together
with the CCIE bit in the FCNFG register to generate an interrupt request (see Figure 28-32).
0 Command in progress.
1 All commands are completed.
5
PVIOL
Protection Violation Flag —The PVIOL flag indicates an attempt was made to program or erase an address in
a protected area of the Flash memory during a command write sequence. Writing a 0 to the PVIOL flag has no
effect on PVIOL. The PVIOL flag is cleared by writing a 1 to PVIOL. While PVIOL is set, it is not possible to launch
a command or start a command write sequence.
0 No protection violation detected.
1 Protection violation has occurred.
4
ACCERR
Access Error Flag — The ACCERR flag indicates an illegal access has occurred to the Flash memory caused
by either a violation of the command write sequence (see Section 28.4.1.2, “Command Write Sequence”),
issuing an illegal Flash command (see Table 28-16), launching the sector erase abort command terminating a
sector erase operation early (see Section 28.4.2.6, “Sector Erase Abort Command”) or the execution of a CPU
STOP instruction while a command is executing (CCIF = 0). Writing a 0 to the ACCERR flag has no effect on
ACCERR. The ACCERR flag is cleared by writing a 1 to ACCERR.While ACCERR is set, it is not possible to
launch a command or start a command write sequence. If ACCERR is set by an erase verify operation or a data
compress operation, any buffered command will not launch.
0 No access error detected.
1 Access error has occurred.
2
BLANK
Flag Indicating the Erase Verify Operation Status — When the CCIF flag is set after completion of an erase
verify command, the BLANK flag indicates the result of the erase verify operation. The BLANK flag is cleared by
the Flash module when CBEIF is cleared as part of a new valid command write sequence. Writing to the BLANK
flag has no effect on BLANK.
0 Flash block verified as not erased.
1 Flash block verified as erased.
1
FAIL
Flag Indicating a Failed Flash Operation — The FAIL flag will set if the erase verify operation fails (selected
Flash block verified as not erased). Writing a 0 to the FAIL flag has no effect on FAIL. The FAIL flag is cleared by
writing a 1 to FAIL.
0 Flash operation completed without error.
1 Flash operation failed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1162
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.3.2.7
Flash Command Register (FCMD)
The FCMD register is the Flash command register.
7
R
6
5
4
3
2
1
0
0
0
0
0
CMDB
W
Reset
1
1
0
0
0
= Unimplemented or Reserved
Figure 28-14. Flash Command Register (FCMD)
All CMDB bits are readable and writable during a command write sequence while bit 7 reads 0 and is not
writable.
Table 28-15. FCMD Field Descriptions
Field
Description
6:0
CMDB[6:0]
Flash Command — Valid Flash commands are shown in Table 28-16. Writing any command other than those
listed in Table 28-16 sets the ACCERR flag in the FSTAT register.
Table 28-16. Valid Flash Command List
28.3.2.8
CMDB[6:0]
NVM Command
0x05
Erase Verify
0x06
Data Compress
0x20
Word Program
0x40
Sector Erase
0x41
Mass Erase
0x47
Sector Erase Abort
Flash Control Register (FCTL)
The FCTL register is the Flash control register.
R
7
6
5
4
3
2
1
0
0
NV6
NV5
NV4
NV3
NV2
NV1
NV0
0
F
F
F
F
F
F
F
W
Reset
= Unimplemented or Reserved
Figure 28-15. Flash Control Register (FCTL)
All bits in the FCTL register are readable but are not writable.
The FCTL NV bits are loaded from the Flash nonvolatile byte located at global address 0x7F_FF0E during
the reset sequence, indicated by F in Figure 28-15.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1163
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
Table 28-17. FCTL Field Descriptions
Field
Description
6:0
NV[6:0]
Nonvolatile Bits — The NV[6:0] bits are available as nonvolatile bits. Refer to the Device User Guide for proper
use of the NV bits.
28.3.2.9
Flash Address Registers (FADDR)
The FADDRHI and FADDRLO registers are the Flash address registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
FADDRHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 28-16. Flash Address High Register (FADDRHI)
7
6
5
4
R
3
2
1
0
0
0
0
0
FADDRLO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 28-17. Flash Address Low Register (FADDRLO)
All FADDRHI and FADDRLO bits are readable but are not writable. After an array write as part of a
command write sequence, the FADDR registers will contain the mapped MCU address written.
28.3.2.10 Flash Data Registers (FDATA)
The FDATAHI and FDATALO registers are the Flash data registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
FDATAHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 28-18. Flash Data High Register (FDATAHI)
MC9S12XDP512 Data Sheet, Rev. 2.21
1164
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
7
6
5
4
R
3
2
1
0
0
0
0
0
FDATALO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 28-19. Flash Data Low Register (FDATALO)
All FDATAHI and FDATALO bits are readable but are not writable. At the completion of a data compress
operation, the resulting 16-bit signature is stored in the FDATA registers. The data compression signature
is readable in the FDATA registers until a new command write sequence is started.
28.3.2.11 RESERVED1
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 28-20. RESERVED1
All bits read 0 and are not writable.
28.3.2.12 RESERVED2
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 28-21. RESERVED2
All bits read 0 and are not writable.
28.3.2.13 RESERVED3
This register is reserved for factory testing and is not accessible.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1165
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 28-22. RESERVED3
All bits read 0 and are not writable.
28.3.2.14 RESERVED4
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 28-23. RESERVED4
All bits read 0 and are not writable.
28.4
28.4.1
Functional Description
Flash Command Operations
Write operations are used to execute program, erase, erase verify, erase abort, and data compress
algorithms described in this section. The program and erase algorithms are controlled by a state machine
whose timebase, FCLK, is derived from the oscillator clock via a programmable divider. The command
register, as well as the associated address and data registers, operate as a buffer and a register (2-stage
FIFO) so that a second command along with the necessary data and address can be stored to the buffer
while the first command is still in progress. This pipelined operation allows a time optimization when
programming more than one word on a specific row in the Flash block as the high voltage generation can
be kept active in between two programming commands. The pipelined operation also allows a
simplification of command launching. Buffer empty as well as command completion are signalled by flags
in the Flash status register with corresponding interrupts generated, if enabled.
The next sections describe:
1. How to write the FCLKDIV register
2. Command write sequences to program, erase, erase verify, erase abort, and data compress
operations on the Flash memory
3. Valid Flash commands
4. Effects resulting from illegal Flash command write sequences or aborting Flash operations
MC9S12XDP512 Data Sheet, Rev. 2.21
1166
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.1.1
Writing the FCLKDIV Register
Prior to issuing any Flash command after a reset, the user is required to write the FCLKDIV register to
divide the oscillator clock down to within the 150 kHz to 200 kHz range. Since the program and erase
timings are also a function of the bus clock, the FCLKDIV determination must take this information into
account.
If we define:
• FCLK as the clock of the Flash timing control block
• Tbus as the period of the bus clock
• INT(x) as taking the integer part of x (e.g. INT(4.323) = 4)
then FCLKDIV register bits PRDIV8 and FDIV[5:0] are to be set as described in Figure 28-24.
For example, if the oscillator clock frequency is 950kHz and the bus clock frequency is 10MHz,
FCLKDIV bits FDIV[5:0] should be set to 0x04 (000100) and bit PRDIV8 set to 0. The resulting FCLK
frequency is then 190kHz. As a result, the Flash program and erase algorithm timings are increased over
the optimum target by:
( 200 – 190 ) ⁄ 200 × 100 = 5%
If the oscillator clock frequency is 16MHz and the bus clock frequency is 40MHz, FCLKDIV bits
FDIV[5:0] should be set to 0x0A (001010) and bit PRDIV8 set to 1. The resulting FCLK frequency is then
182kHz. In this case, the Flash program and erase algorithm timings are increased over the optimum target
by:
( 200 – 182 ) ⁄ 200 × 100 = 9%
CAUTION
Program and erase command execution time will increase proportionally
with the period of FCLK. Because of the impact of clock synchronization
on the accuracy of the functional timings, programming or erasing the Flash
memory cannot be performed if the bus clock runs at less than 1 MHz.
Programming or erasing the Flash memory with FCLK < 150 kHz should
be avoided. Setting FCLKDIV to a value such that FCLK < 150 kHz can
destroy the Flash memory due to overstress. Setting FCLKDIV to a value
such that (1/FCLK+Tbus) < 5µs can result in incomplete programming or
erasure of the Flash memory cells.
If the FCLKDIV register is written, the FDIVLD bit is set automatically. If the FDIVLD bit is 0, the
FCLKDIV register has not been written since the last reset. If the FCLKDIV register has not been written
to, the Flash command loaded during a command write sequence will not execute and the ACCERR flag
in the FSTAT register will set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1167
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
START
Tbus < 1µs?
no
ALL COMMANDS IMPOSSIBLE
yes
PRDIV8=0 (reset)
oscillator_clock
12.8MHz?
no
yes
PRDIV8=1
PRDCLK=oscillator_clock/8
PRDCLK[MHz]*(5+Tbus[µs])
an integer?
yes
PRDCLK=oscillator_clock
no
FDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))
FDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])-1
TRY TO DECREASE Tbus
FCLK=(PRDCLK)/(1+FDIV[5:0])
1/FCLK[MHz] + Tbus[µs] > 5
AND
FCLK > 0.15MHz
?
yes
END
no
yes
FDIV[5:0] > 4?
no
ALL COMMANDS IMPOSSIBLE
Figure 28-24. Determination Procedure for PRDIV8 and FDIV Bits
MC9S12XDP512 Data Sheet, Rev. 2.21
1168
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.1.2
Command Write Sequence
The Flash command controller is used to supervise the command write sequence to execute program,
erase, erase verify, erase abort, and data compress algorithms.
Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear (see Section 28.3.2.6, “Flash Status Register (FSTAT)”) and the CBEIF flag should be tested to
determine the state of the address, data and command buffers. If the CBEIF flag is set, indicating the
buffers are empty, a new command write sequence can be started. If the CBEIF flag is clear, indicating the
buffers are not available, a new command write sequence will overwrite the contents of the address, data
and command buffers.
A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:
1. Write to a valid address in the Flash memory. Addresses in multiple Flash blocks can be written to
as long as the location is at the same relative address in each available Flash block. Multiple
addresses must be written in Flash block order starting with the lower Flash block.
2. Write a valid command to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.
The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. If the CBEIF flag in the FSTAT register is clear when the first Flash array write occurs,
the contents of the address and data buffers will be overwritten and the CBEIF flag will be set. When the
CBEIF flag is cleared, the CCIF flag is cleared on the same bus cycle by the Flash command controller
indicating that the command was successfully launched. For all command write sequences except data
compress and sector erase abort, the CBEIF flag will set four bus cycles after the CCIF flag is cleared
indicating that the address, data, and command buffers are ready for a new command write sequence to
begin. For data compress and sector erase abort operations, the CBEIF flag will remain clear until the
operation completes. Except for the sector erase abort command, a buffered command will wait for the
active operation to be completed before being launched. The sector erase abort command is launched when
the CBEIF flag is cleared as part of a sector erase abort command write sequence. Once a command is
launched, the completion of the command operation is indicated by the setting of the CCIF flag in the
FSTAT register. The CCIF flag will set upon completion of all active and buffered commands.
28.4.2
Flash Commands
Table 28-18 summarizes the valid Flash commands along with the effects of the commands on the Flash
block.
Table 28-18. Flash Command Description
FCMDB
0x05
NVM
Command
Erase
Verify
Function on Flash Memory
Verify all memory bytes in the Flash block are erased.
If the Flash block is erased, the BLANK flag in the FSTAT register will set upon command
completion.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1169
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
Table 28-18. Flash Command Description
NVM
Command
Function on Flash Memory
0x06
Data
Compress
Compress data from a selected portion of the Flash block.
The resulting signature is stored in the FDATA register.
0x20
Program
0x40
Sector
Erase
Erase all memory bytes in a sector of the Flash block.
0x41
Mass
Erase
Erase all memory bytes in the Flash block.
A mass erase of the full Flash block is only possible when FPLDIS, FPHDIS and
FPOPEN bits in the FPROT register are set prior to launching the command.
0x47
Sector
Erase
Abort
Abort the sector erase operation.
The sector erase operation will terminate according to a set procedure. The Flash sector
should not be considered erased if the ACCERR flag is set upon command completion.
FCMDB
Program a word (two bytes) in the Flash block.
CAUTION
A Flash word must be in the erased state before being programmed.
Cumulative programming of bits within a Flash word is not allowed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1170
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.1
Erase Verify Command
The erase verify operation will verify that a Flash block is erased.
An example flow to execute the erase verify operation is shown in Figure 28-25. The erase verify command
write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the erase verify command.
The address and data written will be ignored. Multiple Flash blocks can be simultaneously erase
verified by writing to the same relative address in each Flash block.
2. Write the erase verify command, 0x05, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the erase verify
command.
After launching the erase verify command, the CCIF flag in the FSTAT register will set after the operation
has completed unless a new command write sequence has been buffered. The number of bus cycles
required to execute the erase verify operation is equal to the number of addresses in a Flash block plus 14
bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon completion
of the erase verify operation, the BLANK flag in the FSTAT register will be set if all addresses in the
selected Flash blocks are verified to be erased. If any address in a selected Flash block is not erased, the
erase verify operation will terminate and the BLANK flag in the FSTAT register will remain clear. The
MRDS bits in the FTSTMOD register will determine the sense-amp margin setting during the erase verify
operation.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1171
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
1.
Simultaneous
Multiple Flash Block
Decision
ACCERR/
PVIOL
Set?
no
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Block Address
and Dummy Data
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Erase Verify Command 0x05
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K (skip unimplemented Flash)
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Erase Verify
Status
BLANK
Set?
no
yes
EXIT Flash Block
Erased
EXIT
Flash Block
Not Erased
Figure 28-25. Example Erase Verify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1172
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.2
Data Compress Command
The data compress operation will check Flash code integrity by compressing data from a selected portion
of the Flash memory into a signature analyzer.
An example flow to execute the data compress operation is shown in Figure 28-26. The data compress
command write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the data compress
command. The address written determines the starting address for the data compress operation and
the data written determines the number of consecutive words to compress. If the data value written
is 0x0000, 64K addresses or 128 Kbytes will be compressed. Multiple Flash blocks can be
simultaneously compressed by writing to the same relative address in each Flash block. If more
than one Flash block is written to in this step, the first data written will determine the number of
consecutive words to compress in each selected Flash block.
2. Write the data compress command, 0x06, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the data compress
command.
After launching the data compress command, the CCIF flag in the FSTAT register will set after the data
compress operation has completed. The number of bus cycles required to execute the data compress
operation is equal to two times the number of consecutive words to compress plus the number of Flash
blocks simultaneously compressed plus 18 bus cycles as measured from the time the CBEIF flag is cleared
until the CCIF flag is set. Once the CCIF flag is set, the signature generated by the data compress operation
is available in the FDATA registers. The signature in the FDATA registers can be compared to the expected
signature to determine the integrity of the selected data stored in the selected Flash memory. If the last
address of a Flash block is reached during the data compress operation, data compression will continue
with the starting address of the same Flash block. The MRDS bits in the FTSTMOD register will determine
the sense-amp margin setting during the data compress operation.
NOTE
Since the FDATA registers (or data buffer) are written to as part of the data
compress operation, a command write sequence is not allowed to be
buffered behind a data compress command write sequence. The CBEIF flag
will not set after launching the data compress command to indicate that a
command should not be buffered behind it. If an attempt is made to start a
new command write sequence with a data compress operation active, the
ACCERR flag in the FSTAT register will be set. A new command write
sequence should only be started after reading the signature stored in the
FDATA registers.
In order to take corrective action, it is recommended that the data compress command be executed on a
Flash sector or subset of a Flash sector. If the data compress operation on a Flash sector returns an invalid
signature, the Flash sector should be erased using the sector erase command and then reprogrammed using
the program command.
The data compress command can be used to verify that a sector or sequential set of sectors are erased.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1173
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Address to start
compression and number of word
addresses to compress
1.
NOTE: address used to select
Flash block; data ignored.
Simultaneous
Multiple Flash Block
Decision
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Data Compress Command 0x06
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K (skip unimplemented Flash)
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Read: FDATA registers
Data Compress Signature
Signature
Valid?
no
Erase and Reprogram
Flash Sector(s) Compressed
yes
EXIT
Figure 28-26. Example Data Compress Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1174
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.2.1
Data Compress Operation
The Flash module contains a 16-bit multiple-input signature register (MISR) for each Flash block to
generate a 16-bit signature based on selected Flash array data. If multiple Flash blocks are selected for
simultaneous compression, then the signature from each Flash block is further compressed to generate a
single 16-bit signature. The final 16-bit signature, found in the FDATA registers after the data compress
operation has completed, is based on the following logic equation which is executed on every data
compression cycle during the operation:
MISR[15:0] = {MISR[14:0], ^MISR[15,4,2,1]} ^ DATA[15:0]
Eqn. 28-1
where MISR is the content of the internal signature register associated with each Flash block and DATA
is the data to be compressed as shown in Figure 28-27.
DATA[0]
+
DATA[1]
DQ
DATA[2]
+
M0
>
+
DQ
M1
>
DATA[3]
+
DQ
M2
>
+
DATA[4]
DQ
M3
>
+
+
DATA[5]
+
DQ
M4
>
DATA[15]
DQ
M5
>
...
+
DQ
M15
>
+
+ = Exclusive-OR
MISR[15:0] = Q[15:0]
Figure 28-27. 16-Bit MISR Diagram
During the data compress operation, the following steps are executed:
1. MISR for each Flash block is reset to 0xFFFF.
2. Initialized DATA equal to 0xFFFF is compressed into the MISR for each selected Flash block
which results in the MISR containing 0x0001.
3. DATA equal to the selected Flash array data range is read and compressed into the MISR for each
selected Flash block with addresses incrementing.
4. DATA equal to the selected Flash array data range is read and compressed into the MISR for each
selected Flash block with addresses decrementing.
5. If Flash block 0 is selected for compression, DATA equal to the contents of the MISR for Flash
block 0 is compressed into the MISR for Flash block 0. If data in Flash block 0 was not selected
for compression, the MISR for Flash block 0 contains 0xFFFF.
6. If Flash block 1 is selected for compression, DATA equal to the contents of the MISR for Flash
block 1 is compressed into the MISR for Flash block 0.
7. If Flash block 2 is selected for compression, DATA equal to the contents of the MISR for Flash
block 2 is compressed into the MISR for Flash block 0.
8. If Flash block 3 is selected for compression, DATA equal to the contents of the MISR for Flash
block 3 is compressed into the MISR for Flash block 0.
9. If Flash block 4 is selected for compression, DATA equal to the contents of the MISR for Flash
block 4 is compressed into the MISR for Flash block 0.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1175
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
10. If Flash block 5 is selected for compression, DATA equal to the contents of the MISR for Flash
block 5 is compressed into the MISR for Flash block 0.
11. If Flash block 6 is selected for compression, DATA equal to the contents of the MISR for Flash
block 6 is compressed into the MISR for Flash block 0.
12. If Flash block 7 is selected for compression, DATA equal to the contents of the MISR for Flash
block 7 is compressed into the MISR for Flash block 0.
13. The contents of the MISR for Flash block 0 are written to the FDATA registers.
MC9S12XDP512 Data Sheet, Rev. 2.21
1176
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.3
Program Command
The program operation will program a previously erased word in the Flash memory using an embedded
algorithm.
An example flow to execute the program operation is shown in Figure 28-28. The program command write
sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the program command. The
data written will be programmed to the address written. Multiple Flash blocks can be
simultaneously programmed by writing to the same relative address in each Flash block.
2. Write the program command, 0x20, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the program
command.
If a word to be programmed is in a protected area of the Flash block, the PVIOL flag in the FSTAT register
will set and the program command will not launch. Once the program command has successfully launched,
the CCIF flag in the FSTAT register will set after the program operation has completed unless a new
command write sequence has been buffered. By executing a new program command write sequence on
sequential words after the CBEIF flag in the FSTAT register has been set, up to 55% faster programming
time per word can be effectively achieved than by waiting for the CCIF flag to set after each program
operation.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1177
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Address
and program Data
1.
Simultaneous
Multiple Flash Block
Decision
Next
Flash
Block?
2.
no
Write: FCMD register
Program Command 0x20
3.
Write: FSTAT register
Clear CBEIF 0x80
yes
Decrement Global Address
by 128K (skip unimplemented Flash)
Read: FSTAT register
Bit Polling for
Buffer Empty
Check
no
CBEIF
Set?
yes
Sequential
Programming
Decision
Next
Word?
yes
no
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 28-28. Example Program Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1178
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.4
Sector Erase Command
The sector erase operation will erase all addresses in a 1 Kbyte sector of Flash memory using an embedded
algorithm.
An example flow to execute the sector erase operation is shown in Figure 28-29. The sector erase
command write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while global address bits [9:0] and the
data written are ignored. Multiple Flash sectors can be simultaneously erased by writing to the
same relative address in each Flash block.
2. Write the sector erase command, 0x40, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If a Flash sector to be erased is in a protected area of the Flash block, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1179
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
1.
Simultaneous
Multiple Flash Block
Decision
ACCERR/
PVIOL
Set?
no
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Sector Address
and Dummy Data
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Sector Erase Command 0x40
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K (skip unimplemented Flash)
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 28-29. Example Sector Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1180
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.5
Mass Erase Command
The mass erase operation will erase all addresses in a Flash block using an embedded algorithm.
An example flow to execute the mass erase operation is shown in Figure 28-30. The mass erase command
write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the mass erase command.
The address and data written will be ignored. Multiple Flash blocks can be simultaneously mass
erased by writing to the same relative address in each Flash block.
2. Write the mass erase command, 0x41, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the mass erase
command.
If a Flash block to be erased contains any protected area, the PVIOL flag in the FSTAT register will set and
the mass erase command will not launch. Once the mass erase command has successfully launched, the
CCIF flag in the FSTAT register will set after the mass erase operation has completed unless a new
command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1181
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
Access Error and
Protection Violation
Check
1.
Simultaneous
Multiple Flash Block
Decision
ACCERR/
PVIOL
Set?
no
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Write: Flash Block Address
and Dummy Data
Next
Flash
Block?
yes
2.
no
Write: FCMD register
Mass Erase Command 0x41
3.
Write: FSTAT register
Clear CBEIF 0x80
Decrement Global Address
by 128K (skip unimplemented Flash)
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 28-30. Example Mass Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1182
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.2.6
Sector Erase Abort Command
The sector erase abort operation will terminate the active sector erase operation so that other sectors in a
Flash block are available for read and program operations without waiting for the sector erase operation to
complete.
An example flow to execute the sector erase abort operation is shown in Figure 28-31. The sector erase
abort command write sequence is as follows:
1. Write to any Flash block address to start the command write sequence for the sector erase abort
command. The address and data written are ignored.
2. Write the sector erase abort command, 0x47, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.
If the sector erase abort command is launched resulting in the early termination of an active sector erase
operation, the ACCERR flag will set once the operation completes as indicated by the CCIF flag being set.
The ACCERR flag sets to inform the user that the Flash sector may not be fully erased and a new sector
erase command must be launched before programming any location in that specific sector. If the sector
erase abort command is launched but the active sector erase operation completes normally, the ACCERR
flag will not set upon completion of the operation as indicated by the CCIF flag being set. Therefore, if the
ACCERR flag is not set after the sector erase abort command has completed, a Flash sector being erased
when the abort command was launched will be fully erased. The maximum number of cycles required to
abort a sector erase operation is equal to four FCLK periods (see Section 28.4.1.1, “Writing the FCLKDIV
Register”) plus five bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is
set. If sectors in multiple Flash blocks are being simultaneously erased, the sector erase abort operation
will be applied to all active Flash blocks without writing to each Flash block in the sector erase abort
command write sequence.
NOTE
Since the ACCERR bit in the FSTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the FSTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.
NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1183
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
Execute Sector Erase Command Flow
Read: FSTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
Erase
Abort
Needed?
no
yes
Sector Erase
Completed
no
yes
EXIT
1.
Write: Dummy Flash Address
and Dummy Data
2.
Write: FCMD register
Sector Erase Abort Cmd 0x47
3.
Write: FSTAT register
Clear CBEIF 0x80
Read: FSTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
no
yes
Access
Error Check
ACCERR
Set?
yes
Write: FSTAT register
Clear ACCERR 0x10
no
Sector Erase
Completed
EXIT
Sector Erase
Aborted
EXIT
Figure 28-31. Example Sector Erase Abort Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1184
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.4.3
Illegal Flash Operations
The ACCERR flag will be set during the command write sequence if any of the following illegal steps are
performed, causing the command write sequence to immediately abort:
1. Writing to a Flash address before initializing the FCLKDIV register.
2. Writing a byte or misaligned word to a valid Flash address.
3. Starting a command write sequence while a data compress operation is active.
4. Starting a command write sequence while a sector erase abort operation is active.
5. Writing a Flash address in step 1 of a command write sequence that is not the same relative address
as the first one written in the same command write sequence.
6. Writing to any Flash register other than FCMD after writing to a Flash address.
7. Writing a second command to the FCMD register in the same command write sequence.
8. Writing an invalid command to the FCMD register.
9. When security is enabled, writing a command other than mass erase to the FCMD register when
the write originates from a non-secure memory location or from the Background Debug Mode.
10. Writing to a Flash address after writing to the FCMD register.
11. Writing to any Flash register other than FSTAT (to clear CBEIF) after writing to the FCMD
register.
12. Writing a 0 to the CBEIF flag in the FSTAT register to abort a command write sequence.
The ACCERR flag will not be set if any Flash register is read during a valid command write sequence.
The ACCERR flag will also be set if any of the following events occur:
1. Launching the sector erase abort command while a sector erase operation is active which results in
the early termination of the sector erase operation (see Section 28.4.2.6, “Sector Erase Abort
Command”).
2. The MCU enters stop mode and a program or erase operation is in progress. The operation is
aborted immediately and any pending command is purged (see Section 28.5.2, “Stop Mode”).
If the Flash memory is read during execution of an algorithm (CCIF = 0), the read operation will return
invalid data and the ACCERR flag will not be set.
If the ACCERR flag is set in the FSTAT register, the user must clear the ACCERR flag before starting
another command write sequence (see Section 28.3.2.6, “Flash Status Register (FSTAT)”).
The PVIOL flag will be set after the command is written to the FCMD register during a command write
sequence if any of the following illegal operations are attempted, causing the command write sequence to
immediately abort:
1. Writing the program command if an address written in the command write sequence was in a
protected area of the Flash memory
2. Writing the sector erase command if an address written in the command write sequence was in a
protected area of the Flash memory
3. Writing the mass erase command to a Flash block while any Flash protection is enabled in the
block
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1185
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
If the PVIOL flag is set in the FSTAT register, the user must clear the PVIOL flag before starting another
command write sequence (see Section 28.3.2.6, “Flash Status Register (FSTAT)”).
28.5
28.5.1
Operating Modes
Wait Mode
If a command is active (CCIF = 0) when the MCU enters wait mode, the active command and any buffered
command will be completed.
The Flash module can recover the MCU from wait mode if the CBEIF and CCIF interrupts are enabled
(see Section 28.8, “Interrupts”).
28.5.2
Stop Mode
If a command is active (CCIF = 0) when the MCU enters stop mode, the operation will be aborted and, if
the operation is program or erase, the Flash array data being programmed or erased may be corrupted and
the CCIF and ACCERR flags will be set. If active, the high voltage circuitry to the Flash memory will
immediately be switched off when entering stop mode. Upon exit from stop mode, the CBEIF flag is set
and any buffered command will not be launched. The ACCERR flag must be cleared before starting a
command write sequence (see Section 28.4.1.2, “Command Write Sequence”).
NOTE
As active commands are immediately aborted when the MCU enters stop
mode, it is strongly recommended that the user does not use the STOP
instruction during program or erase operations.
28.5.3
Background Debug Mode
In background debug mode (BDM), the FPROT register is writable. If the MCU is unsecured, then all
Flash commands listed in Table 28-18 can be executed. If the MCU is secured and is in special single chip
mode, only mass erase can be executed.
28.6
Flash Module Security
The Flash module provides the necessary security information to the MCU. After each reset, the Flash
module determines the security state of the MCU as defined in Section 28.3.2.2, “Flash Security Register
(FSEC)”.
The contents of the Flash security byte at 0x7F_FF0F in the Flash Configuration Field must be changed
directly by programming 0x7F_FF0F when the MCU is unsecured and the higher address sector is
unprotected. If the Flash security byte is left in a secured state, any reset will cause the MCU to initialize
to a secure operating mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
1186
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
28.6.1
Unsecuring the MCU using Backdoor Key Access
The MCU may be unsecured by using the backdoor key access feature which requires knowledge of the
contents of the backdoor keys (four 16-bit words programmed at addresses 0x7F_FF00–0x7F_FF07). If
the KEYEN[1:0] bits are in the enabled state (see Section 28.3.2.2, “Flash Security Register (FSEC)”) and
the KEYACC bit is set, a write to a backdoor key address in the Flash memory triggers a comparison
between the written data and the backdoor key data stored in the Flash memory. If all four words of data
are written to the correct addresses in the correct order and the data matches the backdoor keys stored in
the Flash memory, the MCU will be unsecured. The data must be written to the backdoor keys sequentially
starting with 0x7F_FF00–1 and ending with 0x7F_FF06–7. 0x0000 and 0xFFFF are not permitted as
backdoor keys. While the KEYACC bit is set, reads of the Flash memory will return invalid data.
The user code stored in the Flash memory must have a method of receiving the backdoor keys from an
external stimulus. This external stimulus would typically be through one of the on-chip serial ports.
If the KEYEN[1:0] bits are in the enabled state (see Section 28.3.2.2, “Flash Security Register (FSEC)”),
the MCU can be unsecured by the backdoor key access sequence described below:
1. Set the KEYACC bit in the Flash Configuration Register (FCNFG).
2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0x7F_FF00.
3. Clear the KEYACC bit. Depending on the user code used to write the backdoor keys, a wait cycle
(NOP) may be required before clearing the KEYACC bit.
4. If all four 16-bit words match the backdoor keys stored in Flash addresses
0x7F_FF00–0x7F_FF07, the MCU is unsecured and the SEC[1:0] bits in the FSEC register are
forced to the unsecure state of 1:0.
The backdoor key access sequence is monitored by an internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following operations during the backdoor
key access sequence will lock the security state machine:
1. If any of the four 16-bit words does not match the backdoor keys programmed in the Flash array.
2. If the four 16-bit words are written in the wrong sequence.
3. If more than four 16-bit words are written.
4. If any of the four 16-bit words written are 0x0000 or 0xFFFF.
5. If the KEYACC bit does not remain set while the four 16-bit words are written.
6. If any two of the four 16-bit words are written on successive MCU clock cycles.
After the backdoor keys have been correctly matched, the MCU will be unsecured. Once the MCU is
unsecured, the Flash security byte can be programmed to the unsecure state, if desired.
In the unsecure state, the user has full control of the contents of the backdoor keys by programming
addresses 0x7F_FF00–0x7F_FF07 in the Flash Configuration Field.
The security as defined in the Flash security byte (0x7F_FF0F) is not changed by using the backdoor key
access sequence to unsecure. The backdoor keys stored in addresses 0x7F_FF00–0x7F_FF07 are
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1187
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
unaffected by the backdoor key access sequence. After the next reset of the MCU, the security state of the
Flash module is determined by the Flash security byte (0x7F_FF0F). The backdoor key access sequence
has no effect on the program and erase protections defined in the Flash protection register.
It is not possible to unsecure the MCU in special single chip mode by using the backdoor key access
sequence in background debug mode (BDM).
28.6.2
Unsecuring the MCU in Special Single Chip Mode using BDM
The MCU can be unsecured in special single chip mode by erasing the Flash module by the following
method:
• Reset the MCU into special single chip mode, delay while the erase test is performed by the BDM
secure ROM, send BDM commands to disable protection in the Flash module, and execute a mass
erase command write sequence to erase the Flash memory.
After the CCIF flag sets to indicate that the mass operation has completed, reset the MCU into special
single chip mode. The BDM secure ROM will verify that the Flash memory is erased and will assert the
UNSEC bit in the BDM status register. This BDM action will cause the MCU to override the Flash security
state and the MCU will be unsecured. All BDM commands will be enabled and the Flash security byte
may be programmed to the unsecure state by the following method:
• Send BDM commands to execute a word program sequence to program the Flash security byte to
the unsecured state and reset the MCU.
28.7
28.7.1
Resets
Flash Reset Sequence
On each reset, the Flash module executes a reset sequence to hold CPU activity while loading the following
registers from the Flash memory according to Table 28-1:
• FPROT — Flash Protection Register (see Section 28.3.2.5).
• FCTL - Flash Control Register (see Section 28.3.2.8).
• FSEC — Flash Security Register (see Section 28.3.2.2).
28.7.2
Reset While Flash Command Active
If a reset occurs while any Flash command is in progress, that command will be immediately aborted. The
state of the word being programmed or the sector/block being erased is not guaranteed.
28.8
Interrupts
The Flash module can generate an interrupt when all Flash command operations have completed, when the
Flash address, data and command buffers are empty.
MC9S12XDP512 Data Sheet, Rev. 2.21
1188
Freescale Semiconductor
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
Table 28-19. Flash Interrupt Sources
Interrupt Source
Interrupt Flag
Local Enable
Global (CCR) Mask
Flash Address, Data and Command Buffers empty
CBEIF
(FSTAT register)
CBEIE
(FCNFG register)
I Bit
All Flash commands completed
CCIF
(FSTAT register)
CCIE
(FCNFG register)
I Bit
NOTE
Vector addresses and their relative interrupt priority are determined at the
MCU level.
28.8.1
Description of Flash Interrupt Operation
The logic used for generating interrupts is shown in Figure 28-32.
The Flash module uses the CBEIF and CCIF flags in combination with the CBIE and CCIE enable bits to
generate the Flash command interrupt request.
CBEIF
CBEIE
Flash Command Interrupt Request
CCIF
CCIE
Figure 28-32. Flash Interrupt Implementation
For a detailed description of the register bits, refer to Section 28.3.2.4, “Flash Configuration Register
(FCNFG)” and Section 28.3.2.6, “Flash Status Register (FSTAT)” .
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1189
Chapter 28 256 Kbyte Flash Module (S12XFTX256K2V1)
MC9S12XDP512 Data Sheet, Rev. 2.21
1190
Freescale Semiconductor
Chapter 29
128 Kbyte Flash Module (S12XFTX128K1V1)
29.1
Introduction
This document describes the FTX128K1 module that includes a 128 Kbyte Flash (nonvolatile) memory.
The Flash memory may be read as either bytes, aligned words or misaligned words. Read access time is
one bus cycle for bytes and aligned words, and two bus cycles for misaligned words.
The Flash memory is ideal for program and data storage for single-supply applications allowing for field
reprogramming without requiring external voltage sources for program or erase. Program and erase
functions are controlled by a command driven interface. The Flash module supports both block erase and
sector erase. An erased bit reads 1 and a programmed bit reads 0. The high voltage required to program
and erase the Flash memory is generated internally. It is not possible to read from a Flash block while it is
being erased or programmed.
CAUTION
A Flash word must be in the erased state before being programmed.
Cumulative programming of bits within a Flash word is not allowed.
29.1.1
Glossary
Command Write Sequence — A three-step MCU instruction sequence to execute built-in algorithms
(including program and erase) on the Flash memory.
Multiple-Input Signature Register (MISR) — A Multiple-Input Signature Register is an output
response analyzer implemented using a linear feedback shift-register (LFSR). A 16-bit MISR is used to
compress data and generate a signature that is particular to the data read from a Flash block.
29.1.2
•
•
•
•
•
•
•
•
Features
128 Kbytes of Flash memory comprised of one 128 Kbyte block divided into 128 sectors of 1024
bytes
Automated program and erase algorithm
Interrupts on Flash command completion, command buffer empty
Fast sector erase and word program operation
2-stage command pipeline for faster multi-word program times
Sector erase abort feature for critical interrupt response
Flexible protection scheme to prevent accidental program or erase
Single power supply for all Flash operations including program and erase
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1191
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
•
•
Security feature to prevent unauthorized access to the Flash memory
Code integrity check using built-in data compression
29.1.3
Modes of Operation
Program, erase, erase verify, and data compress operations (please refer to Section 29.4.1, “Flash
Command Operations” for details).
29.1.4
Block Diagram
A block diagram of the Flash module is shown in Figure 29-1.
FTX128K1
Command
Interrupt
Request
Flash
Interface
Command Pipeline
Flash Block
cmd2
addr2
data2
cmd1
addr1
data1
Registers
64K * 16 Bits
sector 0
sector 1
Protection
sector 127
Security
Oscillator
Clock
Clock
Divider FCLK
Figure 29-1. FTX128K1 Block Diagram
29.2
External Signal Description
The Flash module contains no signals that connect off-chip.
MC9S12XDP512 Data Sheet, Rev. 2.21
1192
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.3
Memory Map and Register Definition
This section describes the memory map and registers for the Flash module.
29.3.1
Module Memory Map
The Flash memory map is shown in Figure 29-2. The HCS12X architecture places the Flash memory
addresses between global addresses 0x7E_0000 and 0x7F_FFFF. The FPROT register, described in
Section 29.3.2.5, “Flash Protection Register (FPROT)”, can be set to protect regions in the Flash memory
from accidental program or erase. Three separate memory regions, one growing upward from global
address 0x7F_8000 in the Flash memory (called the lower region), one growing downward from global
address 0x7F_FFFF in the Flash memory (called the higher region), and the remaining addresses in the
Flash memory, can be activated for protection. The Flash memory addresses covered by these protectable
regions are shown in the Flash memory map. The higher address region is mainly targeted to hold the boot
loader code since it covers the vector space. The lower address region can be used for EEPROM emulation
in an MCU without an EEPROM module since it can be left unprotected while the remaining addresses
are protected from program or erase. Default protection settings as well as security information that allows
the MCU to restrict access to the Flash module are stored in the Flash configuration field as described in
Table 29-1.
Table 29-1. Flash Configuration Field
Global Address
Size
(Bytes)
0x7F_FF00 – 0x7F_FF07
8
Backdoor Comparison Key
Refer to Section 29.6.1, “Unsecuring the MCU using Backdoor Key Access”
0x7F_FF08 – 0x7F_FF0C
5
Reserved
0x7F_FF0D
1
Flash Protection byte
Refer to Section 29.3.2.5, “Flash Protection Register (FPROT)”
0x7F_FF0E
1
Flash Nonvolatile byte
Refer to Section 29.3.2.8, “Flash Control Register (FCTL)”
0x7F_FF0F
1
Flash Security byte
Refer to Section 29.3.2.2, “Flash Security Register (FSEC)”
Description
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1193
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
MODULE BASE + 0x0000
MODULE BASE + 0x000F
Flash Registers
16 bytes
FLASH START = 0x7E_0000
Flash Protected/Unprotected Region
96 Kbytes
0x7F_8000
0x7F_8400
0x7F_8800
0x7F_9000
Flash Protected/Unprotected Lower Region
1, 2, 4, 8 Kbytes
0x7F_A000
Flash Protected/Unprotected Region
8 Kbytes (up to 29 Kbytes)
0x7F_C000
0x7F_E000
Flash Protected/Unprotected Higher Region
2, 4, 8, 16 Kbytes
0x7F_F000
0x7F_F800
FLASH END = 0x7F_FFFF
Flash Configuration Field
16 bytes (0x7F_FF00 - 0x7F_FF0F)
Figure 29-2. Flash Memory Map
MC9S12XDP512 Data Sheet, Rev. 2.21
1194
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.3.2
Register Descriptions
The Flash module contains a set of 16 control and status registers located between module base + 0x0000
and 0x000F. A summary of the Flash module registers is given in Figure 29-3. Detailed descriptions of
each register bit are provided.
Register
Name
FCLKDIV
Bit 7
R
6
5
4
3
2
1
Bit 0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
RNV5
RNV4
RNV3
RNV2
0
0
0
0
0
0
0
0
0
0
FDIVLD
W
FSEC
R
KEYEN
SEC
W
FTSTMOD
R
0
MRDS
W
FCNFG
R
CBEIE
CCIE
KEYACC
W
FPROT
R
RNV6
FPOPEN
FPHDIS
FPHS
FPLDIS
FPLS
W
FSTAT
R
CCIF
CBEIF
0
PVIOL
BLANK
0
0
NV2
NV1
NV0
ACCERR
W
FCMD
R
0
CMDB
W
FCTL
R
0
NV6
NV5
NV4
NV3
W
FADDRHI
R
FADDRHI
W
FADDRLO
R
FADDRLO
W
FDATAHI
R
FDATAHI
W
FDATALO
R
FDATALO
W
Figure 29-3. FTX128K1 Register Summary
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1195
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Register
Name
RESERVED1
R
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
RESERVED2
R
W
RESERVED3
R
W
RESERVED4
R
W
Figure 29-3. FTX128K1 Register Summary (continued)
29.3.2.1
Flash Clock Divider Register (FCLKDIV)
The FCLKDIV register is used to control timed events in program and erase algorithms.
7
R
6
5
4
3
2
1
0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
0
0
0
0
0
0
0
FDIVLD
W
Reset
0
= Unimplemented or Reserved
Figure 29-4. Flash Clock Divider Register (FCLKDIV)
All bits in the FCLKDIV register are readable, bits 6-0 are write once and bit 7 is not writable.
Table 29-2. FCLKDIV Field Descriptions
Field
Description
7
FDIVLD
Clock Divider Loaded.
0 Register has not been written.
1 Register has been written to since the last reset.
6
PRDIV8
Enable Prescalar by 8.
0 The oscillator clock is directly fed into the clock divider.
1 The oscillator clock is divided by 8 before feeding into the clock divider.
5:0
FDIV[5:0]
29.3.2.2
Clock Divider Bits — The combination of PRDIV8 and FDIV[5:0] must divide the oscillator clock down to a
frequency of 150 kHz–200 kHz. The maximum divide ratio is 512. Please refer to Section 29.4.1.1, “Writing the
FCLKDIV Register” for more information.
Flash Security Register (FSEC)
The FSEC register holds all bits associated with the security of the MCU and Flash module.
MC9S12XDP512 Data Sheet, Rev. 2.21
1196
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
7
R
6
KEYEN
5
4
3
2
RNV5
RNV4
RNV3
RNV2
F
F
F
F
1
0
SEC
W
Reset
F
F
F
F
= Unimplemented or Reserved
Figure 29-5. Flash Security Register (FSEC)
All bits in the FSEC register are readable but are not writable.
The FSEC register is loaded from the Flash Configuration Field at address 0x7F_FF0F during the reset
sequence, indicated by F in Figure 29-5.
Table 29-3. FSEC Field Descriptions
Field
Description
7:6
Backdoor Key Security Enable Bits — The KEYEN[1:0] bits define the enabling of backdoor key access to the
KEYEN[1:0] Flash module as shown in Table 29-4.
5:2
RNV[5:2]
Reserved Nonvolatile Bits — The RNV[5:2] bits should remain in the erased state for future enhancements.
1:0
SEC[1:0]
Flash Security Bits — The SEC[1:0] bits define the security state of the MCU as shown in Table 29-5. If the
Flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to 1:0.
Table 29-4. Flash KEYEN States
KEYEN[1:0]
Status of Backdoor Key Access
00
DISABLED
011
DISABLED
10
ENABLED
11
DISABLED
1 Preferred KEYEN state to disable Backdoor Key Access.
Table 29-5. Flash Security States
SEC[1:0]
Status of Security
00
SECURED
1
SECURED
01
10
UNSECURED
11
SECURED
1 Preferred SEC state to set MCU to secured state.
The security function in the Flash module is described in Section 29.6, “Flash Module Security”.
29.3.2.3
Flash Test Mode Register (FTSTMOD)
The FTSTMOD register is used to control Flash test features.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1197
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
7
R
6
5
0
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
MRDS
W
Reset
0
0
0
= Unimplemented or Reserved
Figure 29-6. Flash Test Mode Register (FTSTMOD)
MRDS bits are readable and writable while all remaining bits read 0 and are not writable in normal mode.
Table 29-6. FTSTMOD Field Descriptions
Field
Description
6:5
MRDS[1:0]
Margin Read Setting — The MRDS[1:0] bits are used to set the sense-amp margin level for reads of the Flash
array as shown in Table 29-7.
Table 29-7. FTSTMOD Margin Read Settings
MRDS[1:0]
Margin Read Setting
00
Normal
01
Program Margin1
10
Erase Margin2
11
Normal
1 Flash array reads will be sensitive to program margin.
2 Flash array reads will be sensitive to erase margin.
29.3.2.4
Flash Configuration Register (FCNFG)
The FCNFG register enables the Flash interrupts and gates the security backdoor writes.
7
6
5
CBEIE
CCIE
KEYACC
0
0
0
R
4
3
2
1
0
Undefined
0
0
0
0
Undefined
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 29-7. Flash Configuration Register (FCNFG)
CBEIE, CCIE and KEYACC bits are readable and writable while all remaining bits read 0 and are not
writable in normal mode. KEYACC is only writable if KEYEN (see Section 29.3.2.2, “Flash Security
Register (FSEC)” is set to the enabled state.
MC9S12XDP512 Data Sheet, Rev. 2.21
1198
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Table 29-8. FCNFG Field Descriptions
Field
Description
7
CBEIE
Command Buffer Empty Interrupt Enable — The CBEIE bit enables an interrupt in case of an empty command
buffer in the Flash module.
0 Command buffer empty interrupt disabled.
1 An interrupt will be requested whenever the CBEIF flag (see Section 29.3.2.6, “Flash Status Register
(FSTAT)”) is set.
6
CCIE
Command Complete Interrupt Enable — The CCIE bit enables an interrupt in case all commands have been
completed in the Flash module.
0 Command complete interrupt disabled.
1 An interrupt will be requested whenever the CCIF flag (see Section 29.3.2.6, “Flash Status Register (FSTAT)”)
is set.
5
KEYACC
29.3.2.5
Enable Security Key Writing
0 Flash writes are interpreted as the start of a command write sequence.
1 Writes to Flash array are interpreted as keys to open the backdoor. Reads of the Flash array return invalid
data.
Flash Protection Register (FPROT)
The FPROT register defines which Flash sectors are protected against program or erase operations.
7
6
R
5
4
3
2
1
0
RNV6
FPOPEN
FPHDIS
FPHS
FPLDIS
FPLS
W
Reset
F
F
F
F
F
F
F
F
= Unimplemented or Reserved
Figure 29-8. Flash Protection Register (FPROT)
All bits in the FPROT register are readable and writable with restrictions (see Section 29.3.2.5.1, “Flash
Protection Restrictions”) except for RNV[6] which is only readable.
During the reset sequence, the FPROT register is loaded from the Flash Configuration Field at global
address 0x7F_FF0D. To change the Flash protection that will be loaded during the reset sequence, the
upper sector of the Flash memory must be unprotected, then the Flash Protect/Security byte located as
described in Table 29-1 must be reprogrammed.
Trying to alter data in any protected area in the Flash memory will result in a protection violation error and
the PVIOL flag will be set in the FSTAT register. The mass erase of a Flash block is not possible if any of
the Flash sectors contained in the Flash block are protected.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1199
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Table 29-9. FPROT Field Descriptions
Field
Description
7
FPOPEN
Flash Protection Open — The FPOPEN bit determines the protection function for program or erase as shown
in Table 29-10.
0 The FPHDIS and FPLDIS bits define unprotected address ranges as specified by the corresponding
FPHS[1:0] and FPLS[1:0] bits. For an MCU without an EEPROM module, the FPOPEN clear state allows the
main part of the Flash block to be protected while a small address range can remain unprotected for EEPROM
emulation.
1 The FPHDIS and FPLDIS bits enable protection for the address range specified by the corresponding
FPHS[1:0] and FPLS[1:0] bits.
6
RNV6
5
FPHDIS
Reserved Nonvolatile Bit — The RNV[6] bit should remain in the erased state for future enhancements.
Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a
protected/unprotected area in a specific region of the Flash memory ending with global address 0x7F_FFFF.
0 Protection/Unprotection enabled.
1 Protection/Unprotection disabled.
4:3
FPHS[1:0]
Flash Protection Higher Address Size — The FPHS[1:0] bits determine the size of the protected/unprotected
area as shown inTable 29-11. The FPHS[1:0] bits can only be written to while the FPHDIS bit is set.
2
FPLDIS
Flash Protection Lower Address Range Disable — The FPLDIS bit determines whether there is a
protected/unprotected area in a specific region of the Flash memory beginning with global address 0x7F_8000.
0 Protection/Unprotection enabled.
1 Protection/Unprotection disabled.
1:0
FPLS[1:0]
Flash Protection Lower Address Size — The FPLS[1:0] bits determine the size of the protected/unprotected
area as shown in Table 29-12. The FPLS[1:0] bits can only be written to while the FPLDIS bit is set.
Table 29-10. Flash Protection Function
Function1
FPOPEN
FPHDIS
FPLDIS
1
1
1
No Protection
1
1
0
Protected Low Range
1
0
1
Protected High Range
1
0
0
Protected High and Low Ranges
0
1
1
Full Flash memory Protected
0
1
0
Unprotected Low Range
0
0
1
Unprotected High Range
0
0
0
Unprotected High and Low Ranges
1 For range sizes, refer to Table 29-11 and Table 29-12.
Table 29-11. Flash Protection Higher Address Range
FPHS[1:0]
Global
Address Range
Protected Size
00
0x7F_F800–0x7F_FFFF
2 Kbytes
01
0x7F_F000–0x7F_FFFF
4 Kbytes
10
0x7F_E000–0x7F_FFFF
8 Kbytes
11
0x7F_C000–0x7F_FFFF
16 Kbytes
MC9S12XDP512 Data Sheet, Rev. 2.21
1200
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Table 29-12. Flash Protection Lower Address Range
FPLS[1:0]
Global
Address Range
Protected Size
00
0x7F_8000–0x7F_83FF
1 Kbytes
01
0x7F_8000–0x7F_87FF
2 Kbytes
10
0x7F_8000–0x7F_8FFF
4 Kbytes
11
0x7F_8000–0x7F_9FFF
8 Kbytes
All possible Flash protection scenarios are shown in Figure 29-9. Although the protection scheme is
loaded from the Flash array at global address 0x7F_FF0D during the reset sequence, it can be changed by
the user. This protection scheme can be used by applications requiring re-programming in single chip
mode while providing as much protection as possible if re-programming is not required.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1201
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
FPHDIS=1
FPLDIS=1
FPHDIS=1
FPLDIS=0
7
6
0x7E_0000
FPHDIS=0
FPLDIS=1
Scenario
FPHDIS=0
FPLDIS=0
5
4
0x7F_8000
FPLS[1:0]
FPOPEN=1
FPHS[1:0]
0x7F_FFFF
3
2
Scenario
1
0
0x7E_0000
0x7F_8000
FPLS[1:0]
FPOPEN=0
FPHS[1:0]
0x7F_FFFF
Unprotected region
Protected region with size
defined by FPLS
Protected region
not defined by FPLS, FPHS
Protected region with size
defined by FPHS
Figure 29-9. Flash Protection Scenarios
MC9S12XDP512 Data Sheet, Rev. 2.21
1202
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.3.2.5.1
Flash Protection Restrictions
The general guideline is that Flash protection can only be added and not removed. Table 29-13 specifies
all valid transitions between Flash protection scenarios. Any attempt to write an invalid scenario to the
FPROT register will be ignored and the FPROT register will remain unchanged. The contents of the
FPROT register reflect the active protection scenario. See the FPHS and FPLS descriptions for additional
restrictions.
Table 29-13. Flash Protection Scenario Transitions
To Protection Scenario1
From
Protection Scenario
0
1
2
3
0
X
X
X
X
1
X
2
4
X
4
X
X
X
X
X
X
X
X
X
X
7
X
X
7
X
3
6
6
X
X
5
5
X
X
X
X
X
X
1 Allowed transitions marked with X.
29.3.2.6
Flash Status Register (FSTAT)
The FSTAT register defines the operational status of the module.
7
6
R
5
4
PVIOL
ACCERR
0
0
CCIF
CBEIF
3
2
1
0
0
BLANK
0
0
0
0
0
0
W
Reset
1
1
= Unimplemented or Reserved
Figure 29-10. Flash Status Register (FSTAT — Normal Mode)
7
6
R
5
4
CCIF
CBEIF
PVIOL
ACCERR
0
0
3
2
0
BLANK
1
0
0
FAIL
W
Reset
1
1
0
0
0
0
= Unimplemented or Reserved
Figure 29-11. Flash Status Register (FSTAT — Special Mode)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1203
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
CBEIF, PVIOL, and ACCERR are readable and writable, CCIF and BLANK are readable and not writable,
remaining bits read 0 and are not writable in normal mode. FAIL is readable and writable in special mode.
FAIL must be clear in special mode when starting a command write sequence.
Table 29-14. FSTAT Field Descriptions
Field
Description
7
CBEIF
Command Buffer Empty Interrupt Flag — The CBEIF flag indicates that the address, data and command
buffers are empty so that a new command write sequence can be started. Writing a 0 to the CBEIF flag has no
effect on CBEIF. Writing a 0 to CBEIF after writing an aligned word to the Flash address space, but before CBEIF
is cleared, will abort a command write sequence and cause the ACCERR flag to be set. Writing a 0 to CBEIF
outside of a command write sequence will not set the ACCERR flag. The CBEIF flag is cleared by writing a 1 to
CBEIF. The CBEIF flag is used together with the CBEIE bit in the FCNFG register to generate an interrupt
request (see Figure 29-30).
0 Command buffers are full.
1 Command buffers are ready to accept a new command.
6
CCIF
Command Complete Interrupt Flag — The CCIF flag indicates that there are no more commands pending. The
CCIF flag is cleared when CBEIF is cleared and sets automatically upon completion of all active and pending
commands. The CCIF flag does not set when an active commands completes and a pending command is
fetched from the command buffer. Writing to the CCIF flag has no effect on CCIF. The CCIF flag is used together
with the CCIE bit in the FCNFG register to generate an interrupt request (see Figure 29-30).
0 Command in progress.
1 All commands are completed.
5
PVIOL
Protection Violation Flag —The PVIOL flag indicates an attempt was made to program or erase an address in
a protected area of the Flash memory during a command write sequence. Writing a 0 to the PVIOL flag has no
effect on PVIOL. The PVIOL flag is cleared by writing a 1 to PVIOL. While PVIOL is set, it is not possible to launch
a command or start a command write sequence.
0 No protection violation detected.
1 Protection violation has occurred.
4
ACCERR
Access Error Flag — The ACCERR flag indicates an illegal access has occurred to the Flash memory caused
by either a violation of the command write sequence (see Section 29.4.1.2, “Command Write Sequence”),
issuing an illegal Flash command (see Table 29-16), launching the sector erase abort command terminating a
sector erase operation early (see Section 29.4.2.6, “Sector Erase Abort Command”) or the execution of a CPU
STOP instruction while a command is executing (CCIF = 0). Writing a 0 to the ACCERR flag has no effect on
ACCERR. The ACCERR flag is cleared by writing a 1 to ACCERR.While ACCERR is set, it is not possible to
launch a command or start a command write sequence. If ACCERR is set by an erase verify operation or a data
compress operation, any buffered command will not launch.
0 No access error detected.
1 Access error has occurred.
2
BLANK
Flag Indicating the Erase Verify Operation Status — When the CCIF flag is set after completion of an erase
verify command, the BLANK flag indicates the result of the erase verify operation. The BLANK flag is cleared by
the Flash module when CBEIF is cleared as part of a new valid command write sequence. Writing to the BLANK
flag has no effect on BLANK.
0 Flash block verified as not erased.
1 Flash block verified as erased.
1
FAIL
Flag Indicating a Failed Flash Operation — The FAIL flag will set if the erase verify operation fails (Flash block
verified as not erased). Writing a 0 to the FAIL flag has no effect on FAIL. The FAIL flag is cleared by writing a 1
to FAIL.
0 Flash operation completed without error.
1 Flash operation failed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1204
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.3.2.7
Flash Command Register (FCMD)
The FCMD register is the Flash command register.
7
R
6
5
4
3
2
1
0
0
0
0
0
CMDB
W
Reset
1
1
0
0
0
= Unimplemented or Reserved
Figure 29-12. Flash Command Register (FCMD)
All CMDB bits are readable and writable during a command write sequence while bit 7 reads 0 and is not
writable.
Table 29-15. FCMD Field Descriptions
Field
Description
6:0
CMDB[6:0]
Flash Command — Valid Flash commands are shown in Table 29-16. Writing any command other than those
listed in Table 29-16 sets the ACCERR flag in the FSTAT register.
Table 29-16. Valid Flash Command List
29.3.2.8
CMDB[6:0]
NVM Command
0x05
Erase Verify
0x06
Data Compress
0x20
Word Program
0x40
Sector Erase
0x41
Mass Erase
0x47
Sector Erase Abort
Flash Control Register (FCTL)
The FCTL register is the Flash control register.
R
7
6
5
4
3
2
1
0
0
NV6
NV5
NV4
NV3
NV2
NV1
NV0
0
F
F
F
F
F
F
F
W
Reset
= Unimplemented or Reserved
Figure 29-13. Flash Control Register (FCTL)
All bits in the FCTL register are readable but are not writable.
The FCTL NV bits are loaded from the Flash nonvolatile byte located at global address 0x7F_FF0E during
the reset sequence, indicated by F in Figure 29-13.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1205
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Table 29-17. FCTL Field Descriptions
Field
Description
6:0
NV[6:0]
Nonvolatile Bits — The NV[6:0] bits are available as nonvolatile bits. Refer to the Device User Guide for proper
use of the NV bits.
29.3.2.9
Flash Address Registers (FADDR)
The FADDRHI and FADDRLO registers are the Flash address registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
FADDRHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 29-14. Flash Address High Register (FADDRHI)
7
6
5
4
R
3
2
1
0
0
0
0
0
FADDRLO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 29-15. Flash Address Low Register (FADDRLO)
All FADDRHI and FADDRLO bits are readable but are not writable. After an array write as part of a
command write sequence, the FADDR registers will contain the mapped MCU address written.
29.3.2.10 Flash Data Registers (FDATA)
The FDATAHI and FDATALO registers are the Flash data registers.
7
6
5
4
R
3
2
1
0
0
0
0
0
FDATAHI
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 29-16. Flash Data High Register (FDATAHI)
MC9S12XDP512 Data Sheet, Rev. 2.21
1206
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
7
6
5
4
R
3
2
1
0
0
0
0
0
FDATALO
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 29-17. Flash Data Low Register (FDATALO)
All FDATAHI and FDATALO bits are readable but are not writable. At the completion of a data compress
operation, the resulting 16-bit signature is stored in the FDATA registers. The data compression signature
is readable in the FDATA registers until a new command write sequence is started.
29.3.2.11 RESERVED1
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 29-18. RESERVED1
All bits read 0 and are not writable.
29.3.2.12 RESERVED2
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 29-19. RESERVED2
All bits read 0 and are not writable.
29.3.2.13 RESERVED3
This register is reserved for factory testing and is not accessible.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1207
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 29-20. RESERVED3
All bits read 0 and are not writable.
29.3.2.14 RESERVED4
This register is reserved for factory testing and is not accessible.
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 29-21. RESERVED4
All bits read 0 and are not writable.
29.4
29.4.1
Functional Description
Flash Command Operations
Write operations are used to execute program, erase, erase verify, erase abort, and data compress
algorithms described in this section. The program and erase algorithms are controlled by a state machine
whose timebase, FCLK, is derived from the oscillator clock via a programmable divider. The command
register, as well as the associated address and data registers, operate as a buffer and a register (2-stage
FIFO) so that a second command along with the necessary data and address can be stored to the buffer
while the first command is still in progress. This pipelined operation allows a time optimization when
programming more than one word on a specific row in the Flash block as the high voltage generation can
be kept active in between two programming commands. The pipelined operation also allows a
simplification of command launching. Buffer empty as well as command completion are signalled by flags
in the Flash status register with corresponding interrupts generated, if enabled.
The next sections describe:
1. How to write the FCLKDIV register
2. Command write sequences to program, erase, erase verify, erase abort, and data compress
operations on the Flash memory
3. Valid Flash commands
4. Effects resulting from illegal Flash command write sequences or aborting Flash operations
MC9S12XDP512 Data Sheet, Rev. 2.21
1208
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.1.1
Writing the FCLKDIV Register
Prior to issuing any Flash command after a reset, the user is required to write the FCLKDIV register to
divide the oscillator clock down to within the 150 kHz to 200 kHz range. Since the program and erase
timings are also a function of the bus clock, the FCLKDIV determination must take this information into
account.
If we define:
• FCLK as the clock of the Flash timing control block
• Tbus as the period of the bus clock
• INT(x) as taking the integer part of x (e.g. INT(4.323) = 4)
then FCLKDIV register bits PRDIV8 and FDIV[5:0] are to be set as described in Figure 29-22.
For example, if the oscillator clock frequency is 950kHz and the bus clock frequency is 10MHz,
FCLKDIV bits FDIV[5:0] should be set to 0x04 (000100) and bit PRDIV8 set to 0. The resulting FCLK
frequency is then 190kHz. As a result, the Flash program and erase algorithm timings are increased over
the optimum target by:
( 200 – 190 ) ⁄ 200 × 100 = 5%
If the oscillator clock frequency is 16MHz and the bus clock frequency is 40MHz, FCLKDIV bits
FDIV[5:0] should be set to 0x0A (001010) and bit PRDIV8 set to 1. The resulting FCLK frequency is then
182kHz. In this case, the Flash program and erase algorithm timings are increased over the optimum target
by:
( 200 – 182 ) ⁄ 200 × 100 = 9%
CAUTION
Program and erase command execution time will increase proportionally
with the period of FCLK. Because of the impact of clock synchronization
on the accuracy of the functional timings, programming or erasing the Flash
memory cannot be performed if the bus clock runs at less than 1 MHz.
Programming or erasing the Flash memory with FCLK < 150 kHz should
be avoided. Setting FCLKDIV to a value such that FCLK < 150 kHz can
destroy the Flash memory due to overstress. Setting FCLKDIV to a value
such that (1/FCLK+Tbus) < 5µs can result in incomplete programming or
erasure of the Flash memory cells.
If the FCLKDIV register is written, the FDIVLD bit is set automatically. If the FDIVLD bit is 0, the
FCLKDIV register has not been written since the last reset. If the FCLKDIV register has not been written
to, the Flash command loaded during a command write sequence will not execute and the ACCERR flag
in the FSTAT register will set.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1209
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
START
Tbus < 1µs?
no
ALL COMMANDS IMPOSSIBLE
yes
PRDIV8=0 (reset)
oscillator_clock
12.8MHz?
no
yes
PRDIV8=1
PRDCLK=oscillator_clock/8
PRDCLK[MHz]*(5+Tbus[µs])
an integer?
yes
PRDCLK=oscillator_clock
no
FDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))
FDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])-1
TRY TO DECREASE Tbus
FCLK=(PRDCLK)/(1+FDIV[5:0])
1/FCLK[MHz] + Tbus[µs] > 5
AND
FCLK > 0.15MHz
?
yes
END
no
yes
FDIV[5:0] > 4?
no
ALL COMMANDS IMPOSSIBLE
Figure 29-22. Determination Procedure for PRDIV8 and FDIV Bits
MC9S12XDP512 Data Sheet, Rev. 2.21
1210
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.1.2
Command Write Sequence
The Flash command controller is used to supervise the command write sequence to execute program,
erase, erase verify, erase abort, and data compress algorithms.
Before starting a command write sequence, the ACCERR and PVIOL flags in the FSTAT register must be
clear (see Section 29.3.2.6, “Flash Status Register (FSTAT)”) and the CBEIF flag should be tested to
determine the state of the address, data and command buffers. If the CBEIF flag is set, indicating the
buffers are empty, a new command write sequence can be started. If the CBEIF flag is clear, indicating the
buffers are not available, a new command write sequence will overwrite the contents of the address, data
and command buffers.
A command write sequence consists of three steps which must be strictly adhered to with writes to the
Flash module not permitted between the steps. However, Flash register and array reads are allowed during
a command write sequence. The basic command write sequence is as follows:
1. Write to a valid address in the Flash memory.
2. Write a valid command to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the command.
The address written in step 1 will be stored in the FADDR registers and the data will be stored in the
FDATA registers. If the CBEIF flag in the FSTAT register is clear when the first Flash array write occurs,
the contents of the address and data buffers will be overwritten and the CBEIF flag will be set. When the
CBEIF flag is cleared, the CCIF flag is cleared on the same bus cycle by the Flash command controller
indicating that the command was successfully launched. For all command write sequences except data
compress and sector erase abort, the CBEIF flag will set four bus cycles after the CCIF flag is cleared
indicating that the address, data, and command buffers are ready for a new command write sequence to
begin. For data compress and sector erase abort operations, the CBEIF flag will remain clear until the
operation completes. Except for the sector erase abort command, a buffered command will wait for the
active operation to be completed before being launched. The sector erase abort command is launched when
the CBEIF flag is cleared as part of a sector erase abort command write sequence. Once a command is
launched, the completion of the command operation is indicated by the setting of the CCIF flag in the
FSTAT register. The CCIF flag will set upon completion of all active and buffered commands.
29.4.2
Flash Commands
Table 29-18 summarizes the valid Flash commands along with the effects of the commands on the Flash
block.
Table 29-18. Flash Command Description
FCMDB
NVM
Command
0x05
Erase
Verify
0x06
Data
Compress
0x20
Program
Function on Flash Memory
Verify all memory bytes in the Flash block are erased.
If the Flash block is erased, the BLANK flag in the FSTAT register will set upon command
completion.
Compress data from a selected portion of the Flash block.
The resulting signature is stored in the FDATA register.
Program a word (two bytes) in the Flash block.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1211
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Table 29-18. Flash Command Description
FCMDB
NVM
Command
Function on Flash Memory
0x40
Sector
Erase
Erase all memory bytes in a sector of the Flash block.
0x41
Mass
Erase
Erase all memory bytes in the Flash block.
A mass erase of the full Flash block is only possible when FPLDIS, FPHDIS and
FPOPEN bits in the FPROT register are set prior to launching the command.
0x47
Sector
Erase
Abort
Abort the sector erase operation.
The sector erase operation will terminate according to a set procedure. The Flash sector
should not be considered erased if the ACCERR flag is set upon command completion.
CAUTION
A Flash word must be in the erased state before being programmed.
Cumulative programming of bits within a Flash word is not allowed.
MC9S12XDP512 Data Sheet, Rev. 2.21
1212
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.1
Erase Verify Command
The erase verify operation will verify that a Flash block is erased.
An example flow to execute the erase verify operation is shown in Figure 29-23. The erase verify command
write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the erase verify command.
The address and data written will be ignored.
2. Write the erase verify command, 0x05, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the erase verify
command.
After launching the erase verify command, the CCIF flag in the FSTAT register will set after the operation
has completed unless a new command write sequence has been buffered. The number of bus cycles
required to execute the erase verify operation is equal to the number of addresses in a Flash block plus 14
bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is set. Upon completion
of the erase verify operation, the BLANK flag in the FSTAT register will be set if all addresses in the
selected Flash block are verified to be erased. If any address in a selected Flash block is not erased, the
erase verify operation will terminate and the BLANK flag in the FSTAT register will remain clear. The
MRDS bits in the FTSTMOD register will determine the sense-amp margin setting during the erase verify
operation.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1213
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
1.
Write: Flash Block Address
and Dummy Data
2.
Write: FCMD register
Erase Verify Command 0x05
3.
Write: FSTAT register
Clear CBEIF 0x80
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Erase Verify
Status
BLANK
Set?
no
yes
EXIT
Flash Block
Erased
EXIT
Flash Block
Not Erased
Figure 29-23. Example Erase Verify Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1214
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.2
Data Compress Command
The data compress operation will check Flash code integrity by compressing data from a selected portion
of the Flash memory into a signature analyzer.
An example flow to execute the data compress operation is shown in Figure 29-24. The data compress
command write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the data compress
command. The address written determines the starting address for the data compress operation and
the data written determines the number of consecutive words to compress. If the data value written
is 0x0000, 64K addresses or 128 Kbytes will be compressed.
2. Write the data compress command, 0x06, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the data compress
command.
After launching the data compress command, the CCIF flag in the FSTAT register will set after the data
compress operation has completed. The number of bus cycles required to execute the data compress
operation is equal to two times the number of consecutive words to compress plus 18 bus cycles as
measured from the time the CBEIF flag is cleared until the CCIF flag is set. Once the CCIF flag is set, the
signature generated by the data compress operation is available in the FDATA registers. The signature in
the FDATA registers can be compared to the expected signature to determine the integrity of the selected
data stored in the selected Flash memory. If the last address of a Flash block is reached during the data
compress operation, data compression will continue with the starting address of the Flash block. The
MRDS bits in the FTSTMOD register will determine the sense-amp margin setting during the data
compress operation.
NOTE
Since the FDATA registers (or data buffer) are written to as part of the data
compress operation, a command write sequence is not allowed to be
buffered behind a data compress command write sequence. The CBEIF flag
will not set after launching the data compress command to indicate that a
command should not be buffered behind it. If an attempt is made to start a
new command write sequence with a data compress operation active, the
ACCERR flag in the FSTAT register will be set. A new command write
sequence should only be started after reading the signature stored in the
FDATA registers.
In order to take corrective action, it is recommended that the data compress command be executed on a
Flash sector or subset of a Flash sector. If the data compress operation on a Flash sector returns an invalid
signature, the Flash sector should be erased using the sector erase command and then reprogrammed using
the program command.
The data compress command can be used to verify that a sector or sequential set of sectors are erased.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1215
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
1.
Write: Flash Address to start
compression and number of word
addresses to compress
2.
Write: FCMD register
Data Compress Command 0x06
3.
Write: FSTAT register
Clear CBEIF 0x80
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
Read: FDATA registers
Data Compress Signature
Signature
Valid?
no
Erase and Reprogram
Flash Sector(s) Compressed
yes
EXIT
Figure 29-24. Example Data Compress Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
1216
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.2.1
Data Compress Operation
The Flash module contains a 16-bit multiple-input signature register (MISR) to generate a 16-bit signature
based on selected Flash array data. The final 16-bit signature, found in the FDATA registers after the data
compress operation has completed, is based on the following logic equation which is executed on every
data compression cycle during the operation:
MISR[15:0] = {MISR[14:0], ^MISR[15,4,2,1]} ^ DATA[15:0]
Eqn. 29-1
where MISR is the content of the internal signature register and DATA is the data to be compressed as
shown in Figure 29-25.
DATA[0]
+
DATA[1]
DQ
DATA[2]
+
M0
>
+
DQ
M1
>
DATA[3]
+
DQ
M2
>
+
DATA[4]
DQ
M3
>
+
+
DATA[5]
+
DQ
M4
>
DATA[15]
DQ
M5
>
...
+
DQ
M15
>
+
+ = Exclusive-OR
MISR[15:0] = Q[15:0]
Figure 29-25. 16-Bit MISR Diagram
During the data compress operation, the following steps are executed:
1. MISR is reset to 0xFFFF.
2. Initialized DATA equal to 0xFFFF is compressed into the MISR which results in the MISR
containing 0x0001.
3. DATA equal to the selected Flash array data range is read and compressed into the MISR with
addresses incrementing.
4. DATA equal to the selected Flash array data range is read and compressed into the MISR with
addresses decrementing.
5. DATA equal to the contents of the MISR is compressed into the same MISR.
6. The contents of the MISR are written to the FDATA registers.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1217
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.3
Program Command
The program operation will program a previously erased word in the Flash memory using an embedded
algorithm.
An example flow to execute the program operation is shown in Figure 29-26. The program command write
sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the program command. The
data written will be programmed to the address written.
2. Write the program command, 0x20, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the program
command.
If a word to be programmed is in a protected area of the Flash block, the PVIOL flag in the FSTAT register
will set and the program command will not launch. Once the program command has successfully launched,
the CCIF flag in the FSTAT register will set after the program operation has completed unless a new
command write sequence has been buffered. By executing a new program command write sequence on
sequential words after the CBEIF flag in the FSTAT register has been set, up to 55% faster programming
time per word can be effectively achieved than by waiting for the CCIF flag to set after each program
operation.
MC9S12XDP512 Data Sheet, Rev. 2.21
1218
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
1.
Write: Flash Address
and program Data
2.
Write: FCMD register
Program Command 0x20
3.
Write: FSTAT register
Clear CBEIF 0x80
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Read: FSTAT register
Bit Polling for
Buffer Empty
Check
CBEIF
Set?
no
yes
Sequential
Programming
Decision
Next
Word?
yes
no
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 29-26. Example Program Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1219
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.4
Sector Erase Command
The sector erase operation will erase all addresses in a 1 Kbyte sector of Flash memory using an embedded
algorithm.
An example flow to execute the sector erase operation is shown in Figure 29-27. The sector erase
command write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the sector erase command.
The Flash address written determines the sector to be erased while global address bits [9:0] and the
data written are ignored.
2. Write the sector erase command, 0x40, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase
command.
If a Flash sector to be erased is in a protected area of the Flash block, the PVIOL flag in the FSTAT register
will set and the sector erase command will not launch. Once the sector erase command has successfully
launched, the CCIF flag in the FSTAT register will set after the sector erase operation has completed unless
a new command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1220
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
1.
Write: Flash Sector Address
and Dummy Data
2.
Write: FCMD register
Sector Erase Command 0x40
3.
Write: FSTAT register
Clear CBEIF 0x80
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 29-27. Example Sector Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1221
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.5
Mass Erase Command
The mass erase operation will erase all addresses in a Flash block using an embedded algorithm.
An example flow to execute the mass erase operation is shown in Figure 29-28. The mass erase command
write sequence is as follows:
1. Write to a Flash block address to start the command write sequence for the mass erase command.
The address and data written will be ignored.
2. Write the mass erase command, 0x41, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the mass erase
command.
If a Flash block to be erased contains any protected area, the PVIOL flag in the FSTAT register will set and
the mass erase command will not launch. Once the mass erase command has successfully launched, the
CCIF flag in the FSTAT register will set after the mass erase operation has completed unless a new
command write sequence has been buffered.
MC9S12XDP512 Data Sheet, Rev. 2.21
1222
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
START
Read: FCLKDIV register
Clock Register
Written
Check
FDIVLD
Set?
yes
NOTE: FCLKDIV needs to
be set once after each reset.
no
Write: FCLKDIV register
Read: FSTAT register
Address, Data,
Command
Buffer Empty Check
CBEIF
Set?
no
yes
ACCERR/
PVIOL
Set?
no
Access Error and
Protection Violation
Check
yes
1.
Write: Flash Block Address
and Dummy Data
2.
Write: FCMD register
Mass Erase Command 0x41
3.
Write: FSTAT register
Clear CBEIF 0x80
Write: FSTAT register
Clear ACCERR/PVIOL 0x30
Read: FSTAT register
Bit Polling for
Command Completion
Check
CCIF
Set?
no
yes
EXIT
Figure 29-28. Example Mass Erase Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1223
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.2.6
Sector Erase Abort Command
The sector erase abort operation will terminate the active sector erase operation so that other sectors in a
Flash block are available for read and program operations without waiting for the sector erase operation to
complete.
An example flow to execute the sector erase abort operation is shown in Figure 29-29. The sector erase
abort command write sequence is as follows:
1. Write to any Flash block address to start the command write sequence for the sector erase abort
command. The address and data written are ignored.
2. Write the sector erase abort command, 0x47, to the FCMD register.
3. Clear the CBEIF flag in the FSTAT register by writing a 1 to CBEIF to launch the sector erase abort
command.
If the sector erase abort command is launched resulting in the early termination of an active sector erase
operation, the ACCERR flag will set once the operation completes as indicated by the CCIF flag being set.
The ACCERR flag sets to inform the user that the Flash sector may not be fully erased and a new sector
erase command must be launched before programming any location in that specific sector. If the sector
erase abort command is launched but the active sector erase operation completes normally, the ACCERR
flag will not set upon completion of the operation as indicated by the CCIF flag being set. Therefore, if the
ACCERR flag is not set after the sector erase abort command has completed, a Flash sector being erased
when the abort command was launched will be fully erased. The maximum number of cycles required to
abort a sector erase operation is equal to four FCLK periods (see Section 29.4.1.1, “Writing the FCLKDIV
Register”) plus five bus cycles as measured from the time the CBEIF flag is cleared until the CCIF flag is
set.
NOTE
Since the ACCERR bit in the FSTAT register may be set at the completion
of the sector erase abort operation, a command write sequence is not
allowed to be buffered behind a sector erase abort command write sequence.
The CBEIF flag will not set after launching the sector erase abort command
to indicate that a command should not be buffered behind it. If an attempt is
made to start a new command write sequence with a sector erase abort
operation active, the ACCERR flag in the FSTAT register will be set. A new
command write sequence may be started after clearing the ACCERR flag, if
set.
NOTE
The sector erase abort command should be used sparingly since a sector
erase operation that is aborted counts as a complete program/erase cycle.
MC9S12XDP512 Data Sheet, Rev. 2.21
1224
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
Execute Sector Erase Command Flow
Read: FSTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
Erase
Abort
Needed?
no
yes
Sector Erase
Completed
no
yes
EXIT
1.
Write: Dummy Flash Address
and Dummy Data
2.
Write: FCMD register
Sector Erase Abort Cmd 0x47
3.
Write: FSTAT register
Clear CBEIF 0x80
Read: FSTAT register
Bit Polling for
Command
Completion Check
CCIF
Set?
no
yes
Access
Error Check
ACCERR
Set?
yes
Write: FSTAT register
Clear ACCERR 0x10
no
Sector Erase
Completed
EXIT
Sector Erase
Aborted
EXIT
Figure 29-29. Example Sector Erase Abort Command Flow
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1225
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.4.3
Illegal Flash Operations
The ACCERR flag will be set during the command write sequence if any of the following illegal steps are
performed, causing the command write sequence to immediately abort:
1. Writing to a Flash address before initializing the FCLKDIV register.
2. Writing a byte or misaligned word to a valid Flash address.
3. Starting a command write sequence while a data compress operation is active.
4. Starting a command write sequence while a sector erase abort operation is active.
5. Writing to any Flash register other than FCMD after writing to a Flash address.
6. Writing a second command to the FCMD register in the same command write sequence.
7. Writing an invalid command to the FCMD register.
8. When security is enabled, writing a command other than mass erase to the FCMD register when
the write originates from a non-secure memory location or from the Background Debug Mode.
9. Writing to a Flash address after writing to the FCMD register.
10. Writing to any Flash register other than FSTAT (to clear CBEIF) after writing to the FCMD
register.
11. Writing a 0 to the CBEIF flag in the FSTAT register to abort a command write sequence.
The ACCERR flag will not be set if any Flash register is read during a valid command write sequence.
The ACCERR flag will also be set if any of the following events occur:
1. Launching the sector erase abort command while a sector erase operation is active which results in
the early termination of the sector erase operation (see Section 29.4.2.6, “Sector Erase Abort
Command”).
2. The MCU enters stop mode and a program or erase operation is in progress. The operation is
aborted immediately and any pending command is purged (see Section 29.5.2, “Stop Mode”).
If the Flash memory is read during execution of an algorithm (CCIF = 0), the read operation will return
invalid data and the ACCERR flag will not be set.
If the ACCERR flag is set in the FSTAT register, the user must clear the ACCERR flag before starting
another command write sequence (see Section 29.3.2.6, “Flash Status Register (FSTAT)”).
The PVIOL flag will be set after the command is written to the FCMD register during a command write
sequence if any of the following illegal operations are attempted, causing the command write sequence to
immediately abort:
1. Writing the program command if an address written in the command write sequence was in a
protected area of the Flash memory
2. Writing the sector erase command if an address written in the command write sequence was in a
protected area of the Flash memory
3. Writing the mass erase command to a Flash block while any Flash protection is enabled in the
block
If the PVIOL flag is set in the FSTAT register, the user must clear the PVIOL flag before starting another
command write sequence (see Section 29.3.2.6, “Flash Status Register (FSTAT)”).
MC9S12XDP512 Data Sheet, Rev. 2.21
1226
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.5
29.5.1
Operating Modes
Wait Mode
If a command is active (CCIF = 0) when the MCU enters wait mode, the active command and any buffered
command will be completed.
The Flash module can recover the MCU from wait mode if the CBEIF and CCIF interrupts are enabled
(see Section 29.8, “Interrupts”).
29.5.2
Stop Mode
If a command is active (CCIF = 0) when the MCU enters stop mode, the operation will be aborted and, if
the operation is program or erase, the Flash array data being programmed or erased may be corrupted and
the CCIF and ACCERR flags will be set. If active, the high voltage circuitry to the Flash memory will
immediately be switched off when entering stop mode. Upon exit from stop mode, the CBEIF flag is set
and any buffered command will not be launched. The ACCERR flag must be cleared before starting a
command write sequence (see Section 29.4.1.2, “Command Write Sequence”).
NOTE
As active commands are immediately aborted when the MCU enters stop
mode, it is strongly recommended that the user does not use the STOP
instruction during program or erase operations.
29.5.3
Background Debug Mode
In background debug mode (BDM), the FPROT register is writable. If the MCU is unsecured, then all
Flash commands listed in Table 29-18 can be executed. If the MCU is secured and is in special single chip
mode, only mass erase can be executed.
29.6
Flash Module Security
The Flash module provides the necessary security information to the MCU. After each reset, the Flash
module determines the security state of the MCU as defined in Section 29.3.2.2, “Flash Security Register
(FSEC)”.
The contents of the Flash security byte at 0x7F_FF0F in the Flash Configuration Field must be changed
directly by programming 0x7F_FF0F when the MCU is unsecured and the higher address sector is
unprotected. If the Flash security byte is left in a secured state, any reset will cause the MCU to initialize
to a secure operating mode.
29.6.1
Unsecuring the MCU using Backdoor Key Access
The MCU may be unsecured by using the backdoor key access feature which requires knowledge of the
contents of the backdoor keys (four 16-bit words programmed at addresses 0x7F_FF00–0x7F_FF07). If
the KEYEN[1:0] bits are in the enabled state (see Section 29.3.2.2, “Flash Security Register (FSEC)”) and
the KEYACC bit is set, a write to a backdoor key address in the Flash memory triggers a comparison
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1227
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
between the written data and the backdoor key data stored in the Flash memory. If all four words of data
are written to the correct addresses in the correct order and the data matches the backdoor keys stored in
the Flash memory, the MCU will be unsecured. The data must be written to the backdoor keys sequentially
starting with 0x7F_FF00–1 and ending with 0x7F_FF06–7. 0x0000 and 0xFFFF are not permitted as
backdoor keys. While the KEYACC bit is set, reads of the Flash memory will return invalid data.
The user code stored in the Flash memory must have a method of receiving the backdoor keys from an
external stimulus. This external stimulus would typically be through one of the on-chip serial ports.
If the KEYEN[1:0] bits are in the enabled state (see Section 29.3.2.2, “Flash Security Register (FSEC)”),
the MCU can be unsecured by the backdoor key access sequence described below:
1. Set the KEYACC bit in the Flash Configuration Register (FCNFG).
2. Write the correct four 16-bit words to Flash addresses 0xFF00–0xFF07 sequentially starting with
0x7F_FF00.
3. Clear the KEYACC bit. Depending on the user code used to write the backdoor keys, a wait cycle
(NOP) may be required before clearing the KEYACC bit.
4. If all four 16-bit words match the backdoor keys stored in Flash addresses
0x7F_FF00–0x7F_FF07, the MCU is unsecured and the SEC[1:0] bits in the FSEC register are
forced to the unsecure state of 1:0.
The backdoor key access sequence is monitored by an internal security state machine. An illegal operation
during the backdoor key access sequence will cause the security state machine to lock, leaving the MCU
in the secured state. A reset of the MCU will cause the security state machine to exit the lock state and
allow a new backdoor key access sequence to be attempted. The following operations during the backdoor
key access sequence will lock the security state machine:
1. If any of the four 16-bit words does not match the backdoor keys programmed in the Flash array.
2. If the four 16-bit words are written in the wrong sequence.
3. If more than four 16-bit words are written.
4. If any of the four 16-bit words written are 0x0000 or 0xFFFF.
5. If the KEYACC bit does not remain set while the four 16-bit words are written.
6. If any two of the four 16-bit words are written on successive MCU clock cycles.
After the backdoor keys have been correctly matched, the MCU will be unsecured. Once the MCU is
unsecured, the Flash security byte can be programmed to the unsecure state, if desired.
In the unsecure state, the user has full control of the contents of the backdoor keys by programming
addresses 0x7F_FF00–0x7F_FF07 in the Flash Configuration Field.
The security as defined in the Flash security byte (0x7F_FF0F) is not changed by using the backdoor key
access sequence to unsecure. The backdoor keys stored in addresses 0x7F_FF00–0x7F_FF07 are
unaffected by the backdoor key access sequence. After the next reset of the MCU, the security state of the
Flash module is determined by the Flash security byte (0x7F_FF0F). The backdoor key access sequence
has no effect on the program and erase protections defined in the Flash protection register.
It is not possible to unsecure the MCU in special single chip mode by using the backdoor key access
sequence in background debug mode (BDM).
MC9S12XDP512 Data Sheet, Rev. 2.21
1228
Freescale Semiconductor
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
29.6.2
Unsecuring the MCU in Special Single Chip Mode using BDM
The MCU can be unsecured in special single chip mode by erasing the Flash module by the following
method:
• Reset the MCU into special single chip mode, delay while the erase test is performed by the BDM
secure ROM, send BDM commands to disable protection in the Flash module, and execute a mass
erase command write sequence to erase the Flash memory.
After the CCIF flag sets to indicate that the mass operation has completed, reset the MCU into special
single chip mode. The BDM secure ROM will verify that the Flash memory is erased and will assert the
UNSEC bit in the BDM status register. This BDM action will cause the MCU to override the Flash security
state and the MCU will be unsecured. All BDM commands will be enabled and the Flash security byte
may be programmed to the unsecure state by the following method:
• Send BDM commands to execute a word program sequence to program the Flash security byte to
the unsecured state and reset the MCU.
29.7
29.7.1
Resets
Flash Reset Sequence
On each reset, the Flash module executes a reset sequence to hold CPU activity while loading the following
registers from the Flash memory according to Table 29-1:
• FPROT — Flash Protection Register (see Section 29.3.2.5).
• FCTL - Flash Control Register (see Section 29.3.2.8).
• FSEC — Flash Security Register (see Section 29.3.2.2).
29.7.2
Reset While Flash Command Active
If a reset occurs while any Flash command is in progress, that command will be immediately aborted. The
state of the word being programmed or the sector/block being erased is not guaranteed.
29.8
Interrupts
The Flash module can generate an interrupt when all Flash command operations have completed, when the
Flash address, data and command buffers are empty.
Table 29-19. Flash Interrupt Sources
Interrupt Source
Interrupt Flag
Local Enable
Global (CCR) Mask
Flash Address, Data and Command Buffers empty
CBEIF
(FSTAT register)
CBEIE
(FCNFG register)
I Bit
All Flash commands completed
CCIF
(FSTAT register)
CCIE
(FCNFG register)
I Bit
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1229
Chapter 29 128 Kbyte Flash Module (S12XFTX128K1V1)
NOTE
Vector addresses and their relative interrupt priority are determined at the
MCU level.
29.8.1
Description of Flash Interrupt Operation
The logic used for generating interrupts is shown in Figure 29-30.
The Flash module uses the CBEIF and CCIF flags in combination with the CBIE and CCIE enable bits to
generate the Flash command interrupt request.
CBEIF
CBEIE
Flash Command Interrupt Request
CCIF
CCIE
Figure 29-30. Flash Interrupt Implementation
For a detailed description of the register bits, refer to Section 29.3.2.4, “Flash Configuration Register
(FCNFG)” and Section 29.3.2.6, “Flash Status Register (FSTAT)” .
MC9S12XDP512 Data Sheet, Rev. 2.21
1230
Freescale Semiconductor
Chapter 30
Security (S12X9SECV2)
30.1
Introduction
This specification describes the function of the security mechanism in the S12X chip family
(S12X9SECV2).
30.1.1
Features
The user must be reminded that part of the security must lie with the application code. An extreme example
would be application code that dumps the contents of the internal memory. This would defeat the purpose
of security. At the same time, the user may also wish to put a backdoor in the application program. An
example of this is the user downloads a security key through the SCI, which allows access to a
programming routine that updates parameters stored in another section of the Flash memory.
The security features of the S12X chip family (in secure mode) are:
• Protect the contents of non-volatile memories (Flash, EEPROM)
• Execution of NVM commands is restricted
• Disable access to internal memory via background debug module (BDM)
• Disable access to internal Flash/EEPROM in expanded modes
• Disable debugging features for CPU and XGATE
Table 30-1 gives an overview over availability of security relevant features in unsecure and secure modes.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1231
Chapter 30 Security (S12X9SECV2)
Table 30-1. Features Availability in Unsecure and Secure Modes
Unsecure Mode
Secure Mode
NS
SS
NX
ES
EX
ST
NS
SS
NX
ES
EX
ST
Flash Array Access
✔
✔
✔1
✔1
✔1
✔1
✔
✔
—
—
—
—
EEPROM Array Access
✔
✔
✔
✔
✔
✔
✔
✔
—
—
—
—
NVM Commands
✔2
✔
✔2
✔2
✔2
✔
✔2
✔2
✔2
✔2
✔2
✔2
BDM
✔
✔
✔
✔
✔
✔
—
✔3
—
—
—
—
DBG Module Trace
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
XGATE Debugging
✔
✔
✔
✔
✔
✔
—
—
—
—
—
—
External Bus Interface
—
—
✔
✔
✔
✔
—
—
✔
✔
✔
✔
Internal status visible
multiplexed on
external bus
—
—
—
✔
✔
—
—
—
—
✔
✔
—
Internal accesses visible
on external bus
—
—
—
—
—
✔
—
—
—
—
—
✔
1
Availability of Flash arrays in the memory map depends on ROMCTL/EROMCTL pins and/or the state of
the ROMON/EROMON bits in the MMCCTL1 register. Please refer to the S12X_MMC block guide for
detailed information.
2 Restricted NVM command set only. Please refer to the FTX/EETX block guides for detailed information.
3
BDM hardware commands restricted to peripheral registers only.
30.1.2
Modes of Operation
30.1.3
Securing the Microcontroller
Once the user has programmed the Flash and EEPROM, the chip can be secured by programming the
security bits located in the options/security byte in the Flash memory array. These non-volatile bits will
keep the device secured through reset and power-down.
The options/security byte is located at address 0xFF0F (= global address 0x7F_FF0F) in the Flash memory
array. This byte can be erased and programmed like any other Flash location. Two bits of this byte are used
for security (SEC[1:0]). On devices which have a memory page window, the Flash options/security byte
is also available at address 0xBF0F by selecting page 0x3F with the PPAGE register. The contents of this
byte are copied into the Flash security register (FSEC) during a reset sequence.
0xFF0F
7
6
5
4
3
2
1
0
KEYEN1
KEYEN0
NV5
NV4
NV3
NV2
SEC1
SEC0
Figure 30-1. Flash Options/Security Byte
MC9S12XDP512 Data Sheet, Rev. 2.21
1232
Freescale Semiconductor
Chapter 30 Security (S12X9SECV2)
The meaning of the bits KEYEN[1:0] is shown in Table 30-2. Please refer to Section 30.1.5.1,
“Unsecuring the MCU Using the Backdoor Key Access” for more information.
Table 30-2. Backdoor Key Access Enable Bits
KEYEN[1:0]
Backdoor Key
Access Enabled
00
0 (disabled)
01
0 (disabled)
10
1 (enabled)
11
0 (disabled)
The meaning of the security bits SEC[1:0] is shown in Table 30-3. For security reasons, the state of device
security is controlled by two bits. To put the device in unsecured mode, these bits must be programmed to
SEC[1:0] = ‘10’. All other combinations put the device in a secured mode. The recommended value to put
the device in secured state is the inverse of the unsecured state, i.e. SEC[1:0] = ‘01’.
Table 30-3. Security Bits
SEC[1:0]
Security State
00
1 (secured)
01
1 (secured)
10
0 (unsecured)
11
1 (secured)
NOTE
Please refer to the Flash block guide (FTX) for actual security configuration
(in section “Flash Module Security”).
30.1.4
Operation of the Secured Microcontroller
By securing the device, unauthorized access to the EEPROM and Flash memory contents can be prevented.
However, it must be understood that the security of the EEPROM and Flash memory contents also depends
on the design of the application program. For example, if the application has the capability of downloading
code through a serial port and then executing that code (e.g. an application containing bootloader code),
then this capability could potentially be used to read the EEPROM and Flash memory contents even when
the microcontroller is in the secure state. In this example, the security of the application could be enhanced
by requiring a challenge/response authentication before any code can be downloaded.
Secured operation has the following effects on the microcontroller:
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1233
Chapter 30 Security (S12X9SECV2)
30.1.4.1
•
•
•
•
Background debug module (BDM) operation is completely disabled.
Execution of Flash and EEPROM commands is restricted. Please refer to the NVM block guide
(FTX) for details.
Tracing code execution using the DBG module is disabled.
Debugging XGATE code (breakpoints, single-stepping) is disabled.
30.1.4.2
•
•
•
•
•
Normal Single Chip Mode (NS)
Special Single Chip Mode (SS)
BDM firmware commands are disabled.
BDM hardware commands are restricted to the register space.
Execution of Flash and EEPROM commands is restricted. Please refer to the NVM block guide
(FTX) for details.
Tracing code execution using the DBG module is disabled.
Debugging XGATE code (breakpoints, single-stepping) is disabled.
Special single chip mode means BDM is active after reset. The availability of BDM firmware commands
depends on the security state of the device. The BDM secure firmware first performs a blank check of both
the Flash memory and the EEPROM. If the blank check succeeds, security will be temporarily turned off
and the state of the security bits in the appropriate Flash memory location can be changed If the blank
check fails, security will remain active, only the BDM hardware commands will be enabled, and the
accessible memory space is restricted to the peripheral register area. This will allow the BDM to be used
to erase the EEPROM and Flash memory without giving access to their contents. After erasing both Flash
memory and EEPROM, another reset into special single chip mode will cause the blank check to succeed
and the options/security byte can be programmed to “unsecured” state via BDM.
While the BDM is executing the blank check, the BDM interface is completely blocked, which means that
all BDM commands are temporarily blocked.
30.1.4.3
•
•
•
•
•
•
Expanded Modes (NX, ES, EX, and ST)
BDM operation is completely disabled.
Internal Flash memory and EEPROM are disabled.
Execution of Flash and EEPROM commands is restricted. Please refer to the NVM block guide
(FTX) for details.
Tracing code execution using the DBG module is disabled.
Debugging XGATE code (breakpoints, single-stepping) is disabled.
MC9S12XDP512 Data Sheet, Rev. 2.21
1234
Freescale Semiconductor
Chapter 30 Security (S12X9SECV2)
30.1.5
Unsecuring the Microcontroller
Unsecuring the microcontroller can be done by three different methods:
1. Backdoor key access
2. Reprogramming the security bits
3. Complete memory erase (special modes)
30.1.5.1
Unsecuring the MCU Using the Backdoor Key Access
In normal modes (single chip and expanded), security can be temporarily disabled using the backdoor key
access method. This method requires that:
•
•
•
The backdoor key at 0xFF00–0xFF07 (= global addresses 0x7F_FF00–0x7F_FF07) has been
programmed to a valid value.
The KEYEN[1:0] bits within the Flash options/security byte select ‘enabled’.
In single chip mode, the application program programmed into the microcontroller must be
designed to have the capability to write to the backdoor key locations.
The backdoor key values themselves would not normally be stored within the application data, which
means the application program would have to be designed to receive the backdoor key values from an
external source (e.g. through a serial port). It is not possible to download the backdoor keys using
background debug mode.
The backdoor key access method allows debugging of a secured microcontroller without having to erase
the Flash. This is particularly useful for failure analysis.
NOTE
No word of the backdoor key is allowed to have the value 0x0000 or
0xFFFF.
30.1.5.2
Backdoor Key Access Sequence
These are the necessary steps for a successful backdoor key access sequence:
1. Set the KEYACC bit in the Flash configuration register FCNFG.
2. Write the first 16-bit word of the backdoor key to 0xFF00 (0x7F_FF00).
3. Write the second 16-bit word of the backdoor key to 0xFF02 (0x7F_FF02).
4. Write the third 16-bit word of the backdoor key to 0xFF04 (0x7F_FF04).
5. Write the fourth 16-bit word of the backdoor key to 0xFF06 (0x7F_FF06).
6. Clear the KEYACC bit in the Flash Configuration register FCNFG.
NOTE
Flash cannot be read while KEYACC is set. Therefore the code for the
backdoor key access sequence must execute from RAM.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1235
Chapter 30 Security (S12X9SECV2)
If all four 16-bit words match the Flash contents at 0xFF00–0xFF07 (0x7F_FF00–0x7F_FF07), the
microcontroller will be unsecured and the security bits SEC[1:0] in the Flash Security register FSEC will
be forced to the unsecured state (‘10’). The contents of the Flash options/security byte are not changed by
this procedure, and so the microcontroller will revert to the secure state after the next reset unless further
action is taken as detailed below.
If any of the four 16-bit words does not match the Flash contents at 0xFF00–0xFF07
(0x7F_FF00–0x7F_FF07), the microcontroller will remain secured.
30.1.6
Reprogramming the Security Bits
In normal single chip mode (NS), security can also be disabled by erasing and reprogramming the security
bits within Flash options/security byte to the unsecured value. Because the erase operation will erase the
entire sector from 0xFE00–0xFFFF (0x7F_FE00–0x7F_FFFF), the backdoor key and the interrupt vectors
will also be erased; this method is not recommended for normal single chip mode. The application
software can only erase and program the Flash options/security byte if the Flash sector containing the Flash
options/security byte is not protected (see Flash protection). Thus Flash protection is a useful means of
preventing this method. The microcontroller will enter the unsecured state after the next reset following
the programming of the security bits to the unsecured value.
This method requires that:
• The application software previously programmed into the microcontroller has been designed to
have the capability to erase and program the Flash options/security byte, or security is first disabled
using the backdoor key method, allowing BDM to be used to issue commands to erase and program
the Flash options/security byte.
• The Flash sector containing the Flash options/security byte is not protected.
30.1.7
Complete Memory Erase (Special Modes)
The microcontroller can be unsecured in special modes by erasing the entire EEPROM and Flash memory
contents.
When a secure microcontroller is reset into special single chip mode (SS), the BDM firmware verifies
whether the EEPROM and Flash memory are erased. If any EEPROM or Flash memory address is not
erased, only BDM hardware commands are enabled. BDM hardware commands can then be used to write
to the EEPROM and Flash registers to mass erase the EEPROM and all Flash memory blocks.
When next reset into special single chip mode, the BDM firmware will again verify whether all EEPROM
and Flash memory are erased, and this being the case, will enable all BDM commands, allowing the Flash
options/security byte to be programmed to the unsecured value. The security bits SEC[1:0] in the Flash
security register will indicate the unsecure state following the next reset.
MC9S12XDP512 Data Sheet, Rev. 2.21
1236
Freescale Semiconductor
Chapter 30 Security (S12X9SECV2)
Special single chip erase and unsecure sequence:
1. Reset into special single chip mode.
2. Write an appropriate value to the ECLKDIV register for correct timing.
3. Write 0xFF to the EPROT register to disable protection.
4. Write 0x30 to the ESTAT register to clear the PVIOL and ACCERR bits.
5. Write 0x0000 to the EDATA register (0x011A–0x011B).
6. Write 0x0000 to the EADDR register (0x0118–0x0119).
7. Write 0x41 (mass erase) to the ECMD register.
8. Write 0x80 to the ESTAT register to clear CBEIF.
9. Write an appropriate value to the FCLKDIV register for correct timing.
10. Write 0x00 to the FCNFG register to select Flash block 0.
11. Write 0x10 to the FTSTMOD register (0x0102) to set the WRALL bit, so the following writes
affect all Flash blocks.
12. Write 0xFF to the FPROT register to disable protection.
13. Write 0x30 to the FSTAT register to clear the PVIOL and ACCERR bits.
14. Write 0x0000 to the FDATA register (0x010A–0x010B).
15. Write 0x0000 to the FADDR register (0x0108–0x0109).
16. Write 0x41 (mass erase) to the FCMD register.
17. Write 0x80 to the FSTAT register to clear CBEIF.
18. Wait until all CCIF flags are set.
19. Reset back into special single chip mode.
20. Write an appropriate value to the FCLKDIV register for correct timing.
21. Write 0x00 to the FCNFG register to select Flash block 0.
22. Write 0xFF to the FPROT register to disable protection.
23. Write 0xFFBE to Flash address 0xFF0E.
24. Write 0x20 (program) to the FCMD register.
25. Write 0x80 to the FSTAT register to clear CBEIF.
26. Wait until the CCIF flag in FSTAT is are set.
27. Reset into any mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1237
Chapter 30 Security (S12X9SECV2)
MC9S12XDP512 Data Sheet, Rev. 2.21
1238
Freescale Semiconductor
Appendix A Electrical Characteristics
Appendix A
Electrical Characteristics
A.1
General
This supplement contains the most accurate electrical information for the S12XD, S12XB & S12XA
families microcontroller available at the time of publication.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1
Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE
This classification is shown in the column labeled “C” in the parameter
tables where appropriate.
P:
C:
T:
D:
A.1.2
Those parameters are guaranteed during production testing on each individual device.
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations.
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
Those parameters are derived mainly from simulations.
Power Supply
The MC9S12XDP512RMV2 utilizes several pins to supply power to the I/O ports, A/D converter,
oscillator, and PLL as well as the digital core.
The VDDA, VSSA pair supplies the A/D converter and parts of the internal voltage regulator.
The VDDX, VSSX, VDDR, and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage
regulator.
VDD1, VSS1, VDD2, and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1239
Appendix A Electrical Characteristics
NOTE
In the following context VDD35 is used for either VDDA, VDDR, and VDDX;
VSS35 is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD35 denotes the sum of the currents flowing into the VDDA, VDDX and
VDDR pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3
Pins
There are four groups of functional pins.
A.1.3.1
I/O Pins
Those I/O pins have a nominal level in the range of 3.15 V to 5.5 V. This class of pins is comprised of all
port I/O pins, the analog inputs, BKGD and the RESET pins.The internal structure of all those pins is
identical; however, some of the functionality may be disabled. For example, for the analog inputs the
output drivers, pull-up and pull-down resistors are disabled permanently.
A.1.3.2
Analog Reference
This group is made up by the VRH and VRL pins.
A.1.3.3
Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5 V level. They are supplied
by VDDPLL.
A.1.3.4
TEST
This pin is used for production testing only.
A.1.3.5
VREGEN
This pin is used to enable the on-chip voltage regulator.
A.1.4
Current Injection
Power supply must maintain regulation within operating VDD35 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD35) is greater than IDD35,
the injection current may flow out of VDD35 and could result in external power supply going out of
regulation. Ensure external VDD35 load will shunt current greater than maximum injection current. This
will be the greatest risk when the MCU is not consuming power; e.g., if no system clock is present, or if
clock rate is very low which would reduce overall power consumption.
MC9S12XDP512 Data Sheet, Rev. 2.21
1240
Freescale Semiconductor
Appendix A Electrical Characteristics
A.1.5
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS35 or VDD35).
Table A-1. Absolute Maximum Ratings1
Num
Rating
1
I/O, regulator and analog supply voltage
2
Digital logic supply voltage2
Symbol
Min
Max
Unit
VDD35
–0.3
6.0
V
VDD
–0.3
3.0
V
2
3
PLL supply voltage
VDDPLL
–0.3
3.0
V
4
Voltage difference VDDX to VDDR and VDDA
∆VDDX
–0.3
0.3
V
5
Voltage difference VSSX to VSSR and VSSA
∆VSSX
–0.3
0.3
V
6
Digital I/O input voltage
VIN
–0.3
6.0
V
7
Analog reference
VRH, VRL
–0.3
6.0
V
8
XFC, EXTAL, XTAL inputs
VILV
–0.3
3.0
V
9
TEST input
VTEST
–0.3
10.0
V
10
Instantaneous maximum current
Single pin limit for all digital I/O pins3
I
–25
+25
mA
11
Instantaneous maximum current
Single pin limit for XFC, EXTAL, XTAL4
IDL
–25
+25
mA
12
Instantaneous maximum current
Single pin limit for TEST 5
IDT
–0.25
0
mA
13
Storage temperature range
Tstg
–65
155
°C
D
1
Beyond absolute maximum ratings device might be damaged.
The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute
maximum ratings apply when the device is powered from an external source.
3 All digital I/O pins are internally clamped to V
SSX and VDDX, VSSR and VDDR or VSSA and VDDA.
4
Those pins are internally clamped to VSSPLL and VDDPLL.
5 This pin is clamped low to V
SSPLL, but not clamped high. This pin must be tied low in applications.
2
A.1.6
ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 stress test qualification for automotive grade
integrated circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1241
Appendix A Electrical Characteristics
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2. ESD and Latch-up Test Conditions
Model
Description
Human Body
Latch-up
Symbol
Value
Unit
Series resistance
R1
1500
Ohm
Storage capacitance
C
100
pF
Number of pulse per pin
Positive
Negative
—
—
3
3
Minimum input voltage limit
–2.5
V
Maximum input voltage limit
7.5
V
Table A-3. ESD and Latch-Up Protection Characteristics
Num
C
1
C
2
3
4
Symbol
Min
Max
Unit
Human Body Model (HBM)
VHBM
2000
—
V
C
Charge Device Model (CDM)
VCDM
500
—
V
C
Latch-up current at TA = 125°C
Positive
Negative
ILAT
+100
–100
—
—
Latch-up current at TA = 27°C
Positive
Negative
ILAT
+200
–200
—
—
C
Rating
mA
mA
MC9S12XDP512 Data Sheet, Rev. 2.21
1242
Freescale Semiconductor
Appendix A Electrical Characteristics
A.1.7
Operating Conditions
This section describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
NOTE
Please refer to the temperature rating of the device (C, V, M) with regards to
the ambient temperature TA and the junction temperature TJ. For power
dissipation calculations refer to Section A.1.8, “Power Dissipation and
Thermal Characteristics”.
Table A-4. Operating Conditions
Rating
Symbol
Min
Typ
Max
Unit
VDD35
3.15
5
5.5
V
VDD
2.35
2.5
2.75
V
PLL supply voltage
VDDPLL
2.35
2.5
2.75
V
Voltage difference VDDX to VDDR and VDDA
∆VDDX
–0.1
0
0.1
V
Voltage difference VSSX to VSSR and VSSA
∆VSSX
–0.1
0
0.1
V
Oscillator
fosc
0.5
—
16
MHz
Bus frequency
fbus
0.5
—
40
MHz
C parts
Operating junction temperature range
Operating ambient temperature range2
TJ
TA
–40
–40
—
27
100
85
V parts
Operating junction temperature range
Operating ambient temperature range2
TJ
TA
–40
–40
—
27
120
105
M parts
Operating junction temperature range
Operating ambient temperature range2
TJ
TA
–40
–40
—
27
140
125
I/O, regulator and analog supply voltage
Digital logic supply voltage1
2
°C
°C
°C
1
The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute
maximum ratings apply when this regulator is disabled and the device is powered from an external source.
2
Please refer to Section A.1.8, “Power Dissipation and Thermal Characteristics” for more details about the relation between
ambient temperature TA and device junction temperature TJ.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1243
Appendix A Electrical Characteristics
A.1.8
Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
T
T
T
J
= Junction Temperature, [°C ]
A
= Ambient Temperature, [°C ]
P
D
Θ
J
= T + (P • Θ )
A
D
JA
= Total Chip Power Dissipation, [W]
JA
= Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P
P
INT
D
= P
INT
+P
IO
= Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal voltage regulator disabled
P
INT
= I
DD
⋅V
DD
P
IO
+I
=
DDPLL
⋅V
DDPLL
+I
DDA
⋅V
DDA
∑i RDSON ⋅ IIOi2
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For RDSON is valid:
R
V
OL
= ------------ ;for outputs driven low
DSON
I
OL
respectively
R
V
–V
DD5
OH
= ------------------------------------ ;for outputs driven high
DSON
I
OH
2. Internal voltage regulator enabled
P
INT
= I
DDR
⋅V
DDR
+I
DDA
⋅V
DDA
IDDR is the current shown in Table A-10. and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
P
IO
=
∑i RDSON ⋅ IIOi2
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
MC9S12XDP512 Data Sheet, Rev. 2.21
1244
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-5. Thermal Package Characteristics1
Num
C
Rating
Symbol
Min
Typ
Max
Unit
LQFP144
1
T
Thermal resistance LQFP144, single sided PCB2
θJA
—
—
41
°C/W
2
T
Thermal resistance LQFP144, double sided PCB
with 2 internal planes3
θJA
—
—
32
°C/W
3
Junction to Board LQFP 144
θJB
—
—
22
°C/W
4
Junction to Case LQFP 1444
θJC
—
—
7/4
°C/W
ΨJT
—
—
3
°C/W
5
5
Junction to Package Top LQFP144
LQFP112
6
T
Thermal resistance LQFP112, single sided PCB2
θJA
—
—
433/494
°C/W
7
T
Thermal resistance LQFP112, double sided PCB
with 2 internal planes5
θJA
—
—
323/394
°C/W
8
Junction to Board LQFP112
θJB
—
—
223/274
°C/W
9
4
°C/W
Junction to Case LQFP112
5
10
Junction to Package Top LQFP112
θJC
—
—
73/114
ΨJT
—
—
3/2
°C/W
θJA
—
—
453/494
°C/W
°C/W
QFP80
11
12
T
Thermal resistance QFP 80, double sided PCB
with 2 internal planes3
θJA
—
—
13
T
Junction to Board QFP 80
θJB
—
—
193/204
°C/W
T
6
°C/W
°C/W
15
2
3
4
5
6
7
Thermal resistance QFP 80, single sided PCB2
333/364
14
1
T
T
Junction to Case QFP 80
Junction to Package Top QFP 80
7
θJC
—
—
113/144
ΨJT
—
—
3
The values for thermal resistance are achieved by package simulations
Junction to ambient thermal resistance, θJA was simulated to be equivalent to the JEDEC specification JESD51-2 in a
horizontal configuration in natural convection.
Maskset L15Y / M84E in LQFP112 or QFP80
Maskset M42E in LQFP112 or QFP80
Junction to ambient thermal resistance, θJA was simulated to be equivalent to the JEDEC specification JESD51-7 in a
horizontal configuration in natural convection.
Junction to case thermal resistance was simulated to be equivalent to the measured values using the cold plate technique with
the cold plate temperature used as the “case” temperature. This basic cold plate measurement technique is described by
MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package
is being used with a heat sink.
Thermal characterization parameter ΨJT is the “resistance” from junction to reference point thermocouple on top center of the
case as defined in JESD51-2. ΨJT is a useful value to use to estimate junction temperature in a steady state customer
enviroment.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1245
Appendix A Electrical Characteristics
A.1.9
I/O Characteristics
This section describes the characteristics of all I/O pins except EXTAL, XTAL,XFC,TEST,VREGEN and
supply pins.
CAUTION
The internal pull up/pull down device specification is different depending on
maskset.
Table A-6. 3.3-V I/O Characteristics
Conditions are 3.15 V < VDD35 < 3.6 V temperature from –40°C to +140°C, unless otherwise noted
I/O Characteristics for all I/O pins except EXTAL, XTAL,XFC,TEST, VREGEN and supply pins.
Num C
Symbol
Min
Typ
Max
Unit
P Input high voltage
VIH
0.65*VDD35
—
—
V
T Input high voltage
VIH
—
—
VDD35 + 0.3
V
P Input low voltage
VIL
—
—
0.35*VDD35
V
T Input low voltage
VIL
VSS35 – 0.3
—
—
V
3
C Input hysteresis
VHYS
4
C Input leakage current (pins in high impedance input
mode)1
Vin = VDD35 or VSS35
5
C Output high voltage (pins in output mode)
Partial drive IOH = –0.75 mA
6
1
2
Rating
250
mV
–1
—
1
µA
V
OH
VDD35 – 0.4
—
—
V
P Output high voltage (pins in output mode)
Full drive IOH = –4 mA
VOH
VDD35 – 0.4
—
—
V
7
C Output low voltage (pins in output mode)
Partial Drive IOL = +0.9 mA
VOL
—
—
0.4
V
8
P Output low voltage (pins in output mode)
Full Drive IOL = +4.75 mA
V
—
—
0.4
V
Iin
OL
Internal pull up/pull down device specification (items 9 to 12) only valid for masksets 0L15Y & 1L15Y
9
P Internal pull up device current, tested at VIL max.
IPUL
—
—
–60
µA
10
C Internal pull up device current, tested at VIH min.
IPUH
-6
—
-
µA
11
P Internal pull down device current, tested at VIH min.
IPDH
—
—
60
µA
12
C Internal pull down device current, tested at VIL max.
IPDL
6
—
—
µA
Internal pull up/pull down device specification (items 13 to 14) valid for all other masksets
13
P Internal pull up resistance
VIH min > input voltage > VIL max
RPUL
25
55
KΩ
14
P Internal pull down resistance
VIH min > input voltage > VIL max
RPDH
25
55
KΩ
15
D Input capacitance
Cin
—
—
pF
IICS
IICP
–2.5
–25
16
2
T Injection current
Single pin limit
Total device limit, sum of all injected currents
6
—
mA
2.5
25
MC9S12XDP512 Data Sheet, Rev. 2.21
1246
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-6. 3.3-V I/O Characteristics
Conditions are 3.15 V < VDD35 < 3.6 V temperature from –40°C to +140°C, unless otherwise noted
I/O Characteristics for all I/O pins except EXTAL, XTAL,XFC,TEST, VREGEN and supply pins.
17
C Port H, J, P interrupt input pulse filtered3
tPULSE
—
—
3
µs
18
3
tPULSE
10
—
—
µs
C Port H, J, P interrupt input pulse passed
1
Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each
8 C to 12 C in the temper
ature range from 50°C to 125°C.
2
Refer to Section A.1.4, “Current Injection” for more details
3
Parameter only applies in stop or pseudo stop mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1247
Appendix A Electrical Characteristics
Table A-7. 5-V I/O Characteristics
Conditions are 4.5 V < VDD35 < 5.5 V temperature from –40°C to +140°C, unless otherwise noted
I/O Characteristics for all I/O pins except EXTAL, XTAL,XFC,TEST, VREGEN and supply pins.
Num C
1
Rating
Symbol
Min
Typ
Max
Unit
0.65*VDD35
—
—
V
P Input high voltage
V
T Input high voltage
VIH
—
—
VDD35 + 0.3
V
P Input low voltage
VIL
—
—
0.35*VDD35
V
T Input low voltage
VIL
VSS35 – 0.3
—
—
V
3
C Input hysteresis
VHYS
250
—
mV
4
P Input leakage current (pins in high impedance input
mode)1
Measured at Vin = 5.5V and Vin=0V
5
2
IH
I
–1
—
1
µA
C Output high voltage (pins in output mode)
Partial drive IOH = –2 mA
V
OH
VDD35 – 0.8
—
—
V
6
P Output high voltage (pins in output mode)
Full drive IOH = –10 mA
VOH
VDD35 – 0.8
—
—
V
7
C Output low voltage (pins in output mode)
Partial drive IOL = +2 mA
VOL
—
—
0.8
V
8
P Output low voltage (pins in output mode)
Full drive IOL = +10 mA
V
—
—
0.8
V
in
OL
Internal pull up/pull down device specification (items 9 to 12) only valid for masksets 0L15Y & 1L15Y
9
P Internal pull up device current, tested at VIL max
IPUL
—
—
–130
µA
10
C Internal pull up device current, tested at VIH min
IPUH
–10
—
—
µA
11
P Internal pull down device current, tested at VIH min
IPDH
—
—
130
µA
12
C Internal pull down device current, tested at VIL max
IPDL
10
—
—
µA
Internal pull up/pull down device specification (items 13 to 14) valid for all other masksets
13
P Internal pull up resistance
VIH min > input voltage > VIL max
RPUL
25
55
KΩ
14
P Internal pull down resistance
VIH min > input voltage > VIL max
RPDH
25
55
KΩ
15
D Input capacitance
Cin
—
—
pF
IICS
IICP
–2.5
–25
16
2
T Injection current
Single pin limit
Total device Limit, sum of all injected currents
6
—
mA
2.5
25
17
P Port H, J, P interrupt input pulse filtered3
tPULSE
—
—
3
µs
18
3
tPULSE
10
—
—
µs
P Port H, J, P interrupt input pulse passed
1
Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each
8 C to 12 C in the temper
ature range from 50°C to 125°C.
2 Refer to Section A.1.4, “Current Injection” for more details
3 Parameter only applies in stop or pseudo stop mode.
MC9S12XDP512 Data Sheet, Rev. 2.21
1248
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-8. I/O Characteristics for Port C, D, PE5, PE6, and PK7
for Reduced Input Voltage Thresholds
Conditions are 4.5 V < VDD35 < 5.5 V Temperature from –40°C to +140°C, unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Input high voltage
VIH
1.75
—
—
V
2
P Input low voltage
VIL
—
—
0.75
V
3
C Input hysteresis
VHYS
—
100
—
mV
A.1.10
Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
A.1.10.1
Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode and the CPU and XGATE code is executed from RAM, VDD35=5.5V, internal voltage regulator
is enabled and the bus frequency is 40MHz using a 4-MHz external clock source (PE7=XCLKS=0).
Production testing is performed using a square wave signal at the EXTAL input.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1249
Appendix A Electrical Characteristics
Table A-9. shows the configuration of the peripherals for run current measurement.
Table A-9. Peripheral Configurations for Run Supply Current Measurements
Peripheral
Configuration
MSCAN
configured to loop-back mode using
a bit rate of 1Mbit/s
SPI
configured to master mode,
continously transmit data (0x55 or
0xAA) at 1Mbit/s
SCI
configured into loop mode,
continously transmit data (0x55) at
speed of 57600 baud
IIC
operate in master mode and
continously transmit data (0x55 or
0xAA) at the bit rate of 100Kbit/s
PWM
configured to toggle its pins at the
rate of 40kHz
ECT
the peripheral shall be configured to
output compare mode, Pulse
accumulator and modulus counter
enabled.
ATD
the peripheral is configured to
operate at its maximum specified
frequency and to continuously
convert voltages on all input
channels in sequence.
XGATE
XGATE fetches code from RAM,
XGATE runs in an infinite loop , it
reads the Status and Flag registers
of CAN’s, SPI’s, SCI’s in sequence
and does some bit manipulation on
the data
COP
COP Warchdog Rate 224
RTI
enabled, RTI Control Register
(RTICTL) set to $FF
API
the module is configured to run from
the RC oscillator clock source.
PIT
PIT is enabled, Micro-timer register 0
and 1 loaded with $0F and timer
registers 0 to 3 are loaded with
$03/07/0F/1F.
DBG
the module is enabled and the
comparators are configured to
trigger in outside range. The range
covers all the code executed by the
core.
MC9S12XDP512 Data Sheet, Rev. 2.21
1250
Freescale Semiconductor
Appendix A Electrical Characteristics
A.1.10.2
Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data,
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can
given. A very good estimate is to take the single chip currents and add the currents due to the external loads.
Table A-10. Run and Wait Current Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num
C
Rating
Symbol
Min
Typ
Max
Unit
110
mA
95
mA
Run supply current (Peripheral Configuration see Table A-9.)
1
P
1
IDD35
Peripheral Set
fosc=4MHz, fbus=40MHz
C
T
T
Peripheral Set1
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=20MHz
fosc=4MHz, fbus=8MHz
90
45
18
T
T
T
Peripheral Set2
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=20MHz
fosc=4MHz, fbus=8MHz
70
35
15
T
T
T
Peripheral Set3
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=20MHz
fosc=4MHz, fbus=8MHz
60
30
13
T
T
T
Peripheral Set4
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=20MHz
fosc=4MHz, fbus=8MHz
56
28
12
T
T
T
Peripheral Set5
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=20MHz
fosc=4MHz, fbus=8MHz
53
26
11
T
T
T
Peripheral Set6
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=20MHz
fosc=4MHz, fbus=8MHz
50
25
10
2
3
4
5
6
7
Wait supply current
8
P
10
2
3
4
5
6
Peripheral Set ,PLL on
XGATE executing code from RAM
T
T
Peripheral Set2
fosc=4MHz, fbus=40MHz
fosc=4MHz, fbus=8MHz
P
All modules disabled, RTI enabled, PLL off
9
1
1
IDDW
50
10
10
The following peripherals are on: ATD0/ATD1/ECT/IIC1/PWM/SPI0-SPI2/SCI0-SCI2/CAN0-CAN4/XGATE
The following peripherals are on: ATD0/ATD1/ECT/IIC1/PWM/SPI0-SPI2/SCI0-SCI2/CAN0-CAN4
The following peripherals are on: ATD0/ATD1/ECT/IIC1/PWM/SPI0-SPI2/SCI0-SCI2/
The following peripherals are on: ATD0/ATD1/ECT/IIC1/PWM/SPI0-SPI2
The following peripherals are on: ATD0/ATD1/ECT/IIC1/PWM/
The following peripherals are on: ATD0/ATD1/ECT/IIC1/
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1251
Appendix A Electrical Characteristics
Table A-11. Pseudo Stop and Full Stop Current
Conditions are shown in Table A-4 unless otherwise noted
Num
C
Rating
Symbol
Min
Typ
Max
Unit
200
300
400
500
600
800
1000
1200
1500
—
500
—
—
2500
—
3500
—
7000
µA
Pseudo stop current (API, RTI, and COP disabled) PLL off
10
C
P
C
C
P
C
P
C
P
–40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
11
C
C
C
C
C
C
C
–40°C
27°C
70°C
85°C
105°C
125°C
140°C
12
C
P
C
C
P
C
P
C
P
–40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
IDDPS
—
—
—
—
—
—
—
—
—
Pseudo stop current (API, RTI, and COP enabled) PLL off
IDDPS
—
—
—
—
—
—
—
500
750
850
1000
1200
1500
2000
—
—
—
—
—
—
—
µA
IDDS
—
—
—
—
—
—
—
—
—
20
30
100
200
250
400
500
600
1000
—
100
—
—
2000
—
3000
—
7000
µA
Stop Current
MC9S12XDP512 Data Sheet, Rev. 2.21
1252
Freescale Semiconductor
Appendix A Electrical Characteristics
A.2
ATD Characteristics
This section describes the characteristics of the analog-to-digital converter.
A.2.1
ATD Operating Characteristics
The Table A-12 and Table A-13 show conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA.
This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that
it ties to. If the input level goes outside of this range it will effectively be clipped.
Table A-12. ATD 5-V Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted, supply voltage 4.5 V < VDDA < 5.5 V
Num C
1
2
D Reference potential
Low
High
Symbol
Min
Typ
Max
Unit
VRL
VRH
VSSA
VDDA/2
—
—
VDDA/2
VDDA
V
V
5.00
5.5
V
2.0
MHz
2
C Differential reference voltage1
VRH-VRL
4.50
3
D ATD clock frequency
fATDCLK
0.5
4
D ATD 10-bit conversion period
Clock cycles2
Conv, time at 2.0 MHz ATD clock fATDCLK
NCONV10
TCONV10
14
7
—
—
28
14
Cycles
µs
D ATD 8-Bit conversion period
Clock cycles2
Conv, time at 2.0 MHz ATD clock fATDCLK
NCONV8
TCONV8
12
6
—
—
26
13
Cycles
µs
5
1
Rating
6
D Recovery time (VDDA = 5.0 Volts)
tREC
—
—
20
µs
7
P Reference supply current 2 ATD blocks on
IREF
—
—
0.750
mA
8
P Reference supply current 1 ATD block on
IREF
—
—
0.375
mA
Full accuracy is not guaranteed when differential voltage is less than 4.50 V
The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1253
Appendix A Electrical Characteristics
Table A-13. ATD Operating Characteristics 3.3V
Conditions are shown in Table A-4 unless otherwise noted, Supply Voltage 3.15V < VDDA < 3.6V
Num C
1
2
D Reference potential
Low
High
Symbol
Min
Typ
Max
Unit
VRL
VRH
VSSA
VDDA/2
—
—
VDDA/2
VDDA
V
V
2
C Differential reference voltage1
VRH-VRL
3.15
3.3
3.6
V
3
D ATD clock frequency
fATDCLK
0.5
—
2.0
MHz
4
D ATD 10-bit conversion period
Clock cycles2
Conv, time at 2.0 MHz ATD clock fATDCLK
NCONV10
TCONV10
14
7
—
—
28
14
Cycles
µs
D ATD 8-bit conversion period
Clock cycles2
Conv, time at 2.0 MHz ATD clock fATDCLK
NCONV8
TCONV8
12
6
—
—
26
13
Cycles
µs
5
1
Rating
6
D Recovery time (VDDA = 5.0 Volts)
tREC
—
—
20
µs
7
P Reference supply current 2 ATD blocks on
IREF
—
—
0.500
mA
8
P Reference supply current 1 ATD block on
IREF
—
—
0.250
mA
Full accuracy is not guaranteed when differential voltage is less than 3.15 V
The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
A.2.2
Factors Influencing Accuracy
Three factors — source resistance, source capacitance and current injection — have an influence on the
accuracy of the ATD.
A.2.2.1
Source Resistance
Due to the input pin leakage current as specified in Table A-7 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
specifies results in an error of less than 1/2 LSB (2.5 mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.
A.2.2.2
Source Capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS–CINN).
MC9S12XDP512 Data Sheet, Rev. 2.21
1254
Freescale Semiconductor
Appendix A Electrical Characteristics
A.2.2.3
Current Injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less
than VRL unless the current is higher than specified as disruptive condition.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as:
VERR = K * RS * IINJ
with IINJ being the sum of the currents injected into the two pins adjacent to the converted channel.
Table A-14. ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1
C Max input source resistance
2
T Total input capacitance
Non sampling
Sampling
Symbol
Min
Typ
Max
Unit
RS
—
—
1
KΩ
CINN
CINS
—
—
—
—
10
22
pF
3
C Disruptive analog input current1
INA
–2.5
—
2.5
mA
4
C Coupling ratio positive current injection
Kp
—
—
10-4
A/A
—
10-2
A/A
5
1
Rating
C Coupling ratio negative current injection
Kn
—
See also Table A-7. item 14
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1255
Appendix A Electrical Characteristics
A.2.3
A.2.3.1
ATD Accuracy
5-V Range
Table A-15 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance, and source resistance.
Table A-15. 5-V ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH–VRL = 5.12 V. Resulting to one 8-bit count = 20 mV and one 10-bit count = 5 mV
fATDCLK = 2.0 MHz
Num C
Symbol
Min
Typ
Max
Unit
1
P 10-bit resolution
LSB
—
5
—
mV
2
P 10-bit differential nonlinearity
DNL
–1
—
1
Counts
3
P 10-bit integral nonlinearity
INL
–2.5
±1.5
2.5
Counts
1
4
P 10-bit absolute error
AE
–3
±2.0
3
Counts
5
P 8-bit resolution
LSB
—
20
—
mV
6
P 8-bit differential nonlinearity
DNL
–0.5
—
0.5
Counts
7
P 8-bit integral nonlinearity
INL
–1.0
±0.5
1.0
Counts
AE
–1.5
±1.0
1.5
Counts
8
1
Rating
1
P 8-bit absolute error
These values include the quantization error which is inherently 1/2 count for any A/D converter.
A.2.3.2
3.3-V Range
Table A-16 specifies the ATD conversion performance excluding any errors due to current injection, input
capacitance, and source resistance.
Table A-16. 3.3-V ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH–VRL = 3.328 V. Resulting to one 8-bit count = 13mV and one 10-bit count = 3.25 mV
fATDCLK = 2.0 MHz
Num C
Symbol
Min
Typ
Max
Unit
1
P 10-bit resolution
LSB
—
3.25
—
mV
2
P 10-bit differential nonlinearity
DNL
–1.5
—
1.5
Counts
3
P 10-bit integral nonlinearity
INL
–3.5
±1.5
3.5
Counts
AE
–5
±2.5
5
Counts
1
4
P 10-bit absolute error
5
P 8-bit resolution
LSB
—
13
—
mV
6
P 8-bit differential nonlinearity
DNL
–0.5
—
0.5
Counts
7
P 8-bit integral nonlinearity
INL
–1.5
±1.0
1.5
Counts
AE
–2.0
±1.5
2.0
Counts
8
1
Rating
P 8-bit absolute error
1
These values include the quantization error which is inherently 1/2 count for any A/D converter.
MC9S12XDP512 Data Sheet, Rev. 2.21
1256
Freescale Semiconductor
Appendix A Electrical Characteristics
A.2.3.3
ATD Accuracy Definitions
For the following definitions see also Figure A-1.
Differential non-linearity (DNL) is defined as the difference between two adjacent switching steps.
V –V
i
i–1
DNL ( i ) = --------------------------- – 1
1LSB
The integral non-linearity (INL) is defined as the sum of all DNLs:
n
INL ( n ) =
∑
V –V
n
0
DNL ( i ) = --------------------- – n
1LSB
i=1
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1257
Appendix A Electrical Characteristics
DNL
Vi-1
10-Bit Absolute Error Boundary
LSB
Vi
$3FF
8-Bit Absolute Error Boundary
$3FE
$3FD
$FF
$3FC
$3FB
$3FA
$3F9
$FE
$3F8
$3F7
$3F6
$3F5
10-Bit Resolution
$3F3
9
Ideal Transfer Curve
2
8
8-Bit Resolution
$FD
$3F4
7
10-Bit Transfer Curve
6
5
1
4
3
8-Bit Transfer Curve
2
1
0
5
10
15
20
25
30
35
40
50
50555060506550705075508050855090509551005105511051155120
Vin
mV
Figure A-1. ATD Accuracy Definitions
NOTE
Figure A-1 shows only definitions, for specification values refer to
Table A-15.
MC9S12XDP512 Data Sheet, Rev. 2.21
1258
Freescale Semiconductor
Appendix A Electrical Characteristics
A.3
NVM, Flash, and EEPROM
NOTE
Unless otherwise noted the abbreviation NVM (nonvolatile memory) is used
for both Flash and EEPROM.
A.3.1
NVM Timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in Table A-17 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2 MHz.
A.3.1.1
Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on the
frequency fNVMOP and can be calculated according to the following formula.
t
A.3.1.2
swpgm
1
1
= 9 ⋅ ------------------------- + 25 ⋅ -----------f
f
bus
NVMOP
Burst Programming
This applies only to the Flash where up to 64 words in a row can be programmed consecutively using burst
programming by keeping the command pipeline filled. The time to program a consecutive word can be
calculated as:
t
bwpgm
1
1
= 4 ⋅ ------------------------- + 9 ⋅ -----------f
f
NVMOP
bus
The time to program a whole row is:
t
brpgm
= t
swpgm
+ 63 ⋅ t
bwpgm
Burst programming is more than 2 times faster than single word programming.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1259
Appendix A Electrical Characteristics
A.3.1.3
Sector Erase
Erasing a 1024-byte Flash sector or a 4-byte EEPROM sector takes:
t
era
1
≈ 4000 ⋅ ------------------------f
NVMOP
The setup time can be ignored for this operation.
A.3.1.4
Mass Erase
Erasing a NVM block takes:
t
mass
1
≈ 20000 ⋅ ------------------------f
NVMOP
The setup time can be ignored for this operation.
A.3.1.5
Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
t
check
≈ location ⋅ t
cyc
+ 10 ⋅ t
cyc
MC9S12XDP512 Data Sheet, Rev. 2.21
1260
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-17. NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
6
7
Unit
—
801
MHz
2
D Bus frequency for programming or erase operations
fNVMBUS
1
—
—
MHz
3
D Operating frequency
fNVMOP
150
—
200
tswpgm
2
P Single word programming time
D Flash burst programming consecutive word
6
D Flash burst programming time for 64 words
7
P Sector erase time
10
5
Max
0.5
9
4
Typ
fNVMOSC
8
3
Min
D External oscillator clock
5
2
Symbol
1
4
1
Rating
P Mass erase time
D Blank check time Flash per block
D Blank check time EEPROM per block
4
4
46
2
tbwpgm
20.4
2
kHz
3
—
74.5
—
3
31
µs
µs
3
tbrpgm
1331.2
—
2027.5
µs
tera
205
—
26.73
ms
—
3
ms
5
tmass
100
tcheck
11
6
11
6
tcheck
133
7
—
65546
—
7
2058
tcyc
tcyc
Restrictions for oscillator in crystal mode apply.
Minimum programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
Maximum erase and programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer
to formulae in Sections Section A.3.1.1, “Single Word Programming” – Section A.3.1.4, “Mass Erase” for guidance.
Burst programming operations are not applicable to EEPROM
Minimum erase times are achieved under maximum NVM operating frequency, fNVMOP.
Minimum time, if first word in the array is not blank
Maximum time to complete check on an erased block
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1261
Appendix A Electrical Characteristics
A.3.2
NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures. The program/erase cycle count on the sector is
incremented every time a sector or mass erase event is executed
Table A-18. NVM Reliability Characteristics1
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
15
1002
—
Years
20
1002
—
10,000
—
—
10,000
100,0003
—
15
1002
—
20
1002
—
10,000
—
—
100,000
300,0003
—
Flash Reliability Characteristics
1
C Data retention after 10,000 program/erase cycles at an
average junction temperature of TJavg ≤ 85°C
2
C Data retention with =100 nF
C5
VDDPLL filter capacitor
Ceramic X7R
220 nF
C6
VDDX filter capacitor
X7R/tantalum
>=100 nF
C7
OSC load capacitor
C8
OSC load capacitor
C9
PLL loop filter capacitor
C10
PLL loop filter capacitor
C11
VDDX filter capacitor
X7R/tantalum
>=100 nF
C12
VDDX filter capacitor
X7R/tantalum
>=100 nF
R1
PLL loop filter resistor
Q1
Quartz
Comes from crystal manufacturer
See PLL specification chapter
See PLL specification chapter
—
—
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1295
Appendix C Recommended PCB Layout
C6
VDDX
Figure C-1. 144-Pin LQFP Recommended PCB Layout
VSSA
VREGEN
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VDDX2
VDDR2
C11
C12
VSSX2
VSSR2
C5
Q1
C7
VSSPLL
C10
VDDPLL
C9
C8
VDDR1
C4
VSSR1
R1
MC9S12XDP512 Data Sheet, Rev. 2.21
1296
Freescale Semiconductor
Appendix C Recommended PCB Layout
C6
VDDX
Figure C-2. 112-Pin LQFP Recommended PCB Layout
VSSA
VREGEN
VSSX
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
C5
C7
C10
C9
VDDPLL
VSSPLL
Q1
C8
VDDR
C4
VSSR
R1
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1297
Appendix C Recommended PCB Layout
VREGEN
C6
VDDX
Figure C-3. 80-Pin QFP Recommended PCB Layout
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
C5
VSSPLL
Q1
C8
VDDR
C7
VSSR
C4
VDD2
C10
C9
VSSPLL
R1
VDDPLL
MC9S12XDP512 Data Sheet, Rev. 2.21
1298
Freescale Semiconductor
Appendix D Using L15Y Silicon
Appendix D
Using L15Y Silicon
The following items should be considerd when using L15Y Silicon:
• Do not write or read to registers which are marked “Reserved” in Table 1-1.
• Fill the interrupt vector locations which are marked “Reserved” in Table 1-12. according to your
coding policies for unused interrupts
• L15Y Silicon includes two analog to digital converters ATD0 and ATD1. ATD0 channels 7 to 0 are
connected to PAD07 to PAD00 and ATD1 channels 7 to 0 are connected to PAD15 to PAD08.
• L15Y Silicon integrates the S12X_DBG module Version 2. L15Y Silicon integrates the
S12X_MMC module Version 2. This Version doesn’t support the following enhancement which is
available on S12X_MMC Version 3:
— S12XCPU and S12XBDM can access MCU resources which are on different target busses at
the same time. I.E S12XCPU can access XSRAM and S12XBDM can access Register Space
at the same time.
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1299
Appendix E Derivative Differences
Appendix E
Derivative Differences
E.1
Memory Sizes and Package Options S12XD - Family
Table E-1. Memory Sizes and Package Options S12XD-Family
Device
Package
Flash
144 LQFP
RAM
EEPROM
ROM
32K
9S12XDP512
112 LQFP
144 LQFP
9S12XDT512
512K
112 LQFP
20K
80 QFP
144 LQFP
9S12XDT384
112 LQFP
384K
20K
80 QFP
144 LQFP
9S12XDQ256
4K
112 LQFP
80 QFP
16K
144 LQFP
9S12XDT256
112 LQFP
256K
80 QFP
144 LQFP
9S12XD256
112 LQFP
14K
80 QFP
144 LQFP
3S12XDT256
112 LQFP
16K
256K
80 QFP
112 LQFP
9S12XDG128
128K
2K
80 QFP
12K
112 LQFP
3S12XDG128
128K
80 QFP
MC9S12XDP512 Data Sheet, Rev. 2.21
1300
Freescale Semiconductor
Appendix E Derivative Differences
Table E-1. Memory Sizes and Package Options S12XD-Family
Device
Package
Flash
RAM
EEPROM
128K
8K
2K
64K
4K
1K
ROM
112 LQFP
9S12XD128
80 QFP
9S12XD64
80 QFP
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1301
Appendix E Derivative Differences
E.2
Memory Sizes and Package Options S12XA & S12XB Family
Table E-2. S12XA - Family Memory Sizes
Device
Package
Flash
RAM
512K
32K
EEPROM
144 LQFP
9S12XA512
112 LQFP
80 QFP
4K
144 LQFP
9S12XA256
112 LQFP
256K
16K
128K
12K
80 QFP
112 LQFP
9S12XA128
2K
80 QFP
Table E-3. S12XB - Family Memory Sizes
Device
Package
Flash
RAM
EEPROM
256K
10K
2K
128K
6K
1K
112 LQFP
9S12XB256
80 QFP
112 LQFP
9S12XB128
80 QFP
MC9S12XDP512 Data Sheet, Rev. 2.21
1302
Freescale Semiconductor
Appendix E Derivative Differences
E.3
MC9S12XD-Family Flash Configuration1 2 3 4 5
Figure E-1. MC9S12XD Family Flash Configuration
Global Address
DP512
A512
DT384
DQ256
A/B256
128k
128k
128k
DG128
A/B128
D64
$78_0000 (PPAGE $E0)
$7A_0000 (PPAGE $E8)
128k
$7C_0000 (PPAGE $F0)
128k
128k
128k
128k
$7E_0000 (PPAGE $F8)
128k
128k
64k
Shared XGATE/CPU area
Not implemented
1. XGATE read access to Flash not possible on DG128/D128/A128/B128 and D64
2. Program Pages available on DT384 are $E0 - $E7 and $F0 - $FF
3. Program Pages available on B256/A256/DQ256/DT256/D256 are $E0 - $E7 and $F8 - $FF
4. Shared XGATE/CPU area on A512/DP512/DT512/DT384 at global address $78_0800 to $78_7FFF (30Kbyte)
5. Shared XGATE/CPU area on A256/B256/DT256/DQ256/D256 at global address $78_0800 to $78_7FFF (30Kbyte)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1303
Appendix E Derivative Differences
E.4
MC9S12XD/A/B -Family SRAM & EEPROM Configuration
Figure E-2. Available RAM Pages on S12XD-Family1
RAM Page
RP[7:0]
DP512
A512
DT512
DT384
DQ256
A256
DG128
A128
D128
D64
0xF6
0xF7
0xF8
0xF9
0xFA
0xFB
32K Byte
0xFC
0xFD
20K Byte
16K Byte
0xFE
12K Byte
8K Byte
0xFF
4K Byte
1
On 9S12XD256 14K byte RAM available pages FF,FE,FD and upper half of page FC
On 9S12XB256 10K byte RAM available pages FF, FE upper half of page FD
On 9S12XB218 6K byte RAM available pages FF and upper half of page FE
Table E-4. Available EEPROM Pages on MC9S12XD-Family
EEPROM
Page
EP[7:0]
DP512
DT512
DT384
DQ256
A256
A512
DG128
D128
A128
B256
D64
B128
0xFA
0xFB
0xFC
0xFD
4K Byte
0xFE
2K Byte
0xFF
1K Byte
MC9S12XDP512 Data Sheet, Rev. 2.21
1304
Freescale Semiconductor
Appendix E Derivative Differences
E.5
Peripheral Sets S12XD - Family
Table E-5. S12XD Peripherals
Device
Package
XGATE
CAN
SCI
SPI
IIC
ECT
PIT
ATD0
ATD1
I/O
144LQFP
5
6
3
2
8
4
8ch1
16ch2
119
112LQFP
5
6
3
1
8
4
8ch1
8ch3
91
144LQFP
3
6
3
1
8
4
8ch1
16ch2
119
112LQFP
3
6
3
1
8
4
8ch1
8ch3
91
80QFP
3
2
3
1
8
4
8ch1
144LQFP
3
4
3
1
8
4
8ch1
16ch2
119
112LQFP
3
4
3
1
8
4
8ch1
8ch3
91
80QFP
3
2
3
1
8
4
8ch1
144LQFP
4
4
3
1
8
4
8ch1
16ch2
119
4
4
3
1
8
4
8ch1
8ch3
91
80QFP
4
2
3
1
8
4
8ch1
144LQFP
3
4
3
1
8
4
8ch1
16ch2
119
112LQFP
3
4
3
1
8
4
8ch1
8ch3
91
80QFP
3
2
3
1
8
4
8ch1
144LQFP
1
4
3
1
8
4
8ch1
16ch2
119
112LQFP
1
4
3
1
8
4
8ch1
8ch3
91
80QFP
1
2
3
1
8
4
8ch1
144LQFP
3
4
3
1
8
4
8ch1
16ch2
119
112LQFP
3
4
3
1
8
4
8ch1
8ch3
91
80QFP
3
2
3
1
8
4
8ch1
112LQFP
2
2
2
1
8
4
16ch4
91
80QFP
2
2
2
1
8
4
8ch5
59
2
2
2
1
8
4
16ch4
91
2
2
2
1
8
4
8ch5
59
1
2
2
1
8
4
16ch4
91
80QFP
1
2
2
1
8
4
8ch5
59
80QFP
1
2
2
1
8
2
8ch5
59
9S12XDP512
9S12XDT512
9S12XDT384
9S12XDQ256
112LQFP
yes
9S12XDT256
9S12XD256
3S12XDT256
9S12XDG128
112LQFP
3S12XDG128
80QFP
112LQFP
9S12XD128
9S12XD64
1
yes
but
XGATE
has no
Flash
Access
59
59
59
59
59
59
ATD0 routed to PAD[7:0]
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1305
Appendix E Derivative Differences
2
ATD1 routed to PAD[23:8]
ATD1 routed to PAD[15:8]
4
ATD1 routed to PAD[15:0] instead of PAD[23:8]
5
ATD1 routed to PAD[7:0] instead of PAD[15:8]
3
E.6
Peripheral Sets S12XA & S12XB - Family
Table E-6. S12XA Peripherals
Device
9S12XA512
Package
XGATE
CAN
SCI
SPI
IIC
ECT
PIT
ATD0
ATD1
I/O
144LQFP
6
3
1
8
4
8ch1
16ch2
119
112LQFP
4
3
1
8
4
8ch1
8ch3
91
80QFP
2
2
1
8
4
8ch1
4
3
1
8
4
8ch1
16ch2
119
112LQFP
4
3
1
8
4
8ch1
8ch3
91
80QFP
2
2
1
8
4
8ch1
2
2
1
8
2
16ch5
91
2
2
1
8
2
8ch6
59
yes
144LQFP
no
9S12XA256
112LQFP
9S12XA128
80QFP
1
2
3
4
5
6
yes4
59
59
ATD0 routed to PAD[7:0]
ATD1 routed to PAD[23:8]
ATD1 routed to PAD[15:8]
Can execute code only from RAM
ATD1 routed to PAD[15:0] instead of PAD[23:8]
ATD1 routed to PAD[7:0] instead of PAD[15:8]
Table E-7. S12XB Peripherals
Device
Package
XGATE
112LQFP
9S12XB256
CAN
SCI
SPI
IIC
ECT
PIT
ATD0
ATD1
1
2
1
1
8
4
8ch1
8ch2
1
2
1
1
8
4
8ch2
1
2
1
1
8
2
16ch4
2
1
1
8
2
8ch5
yes
80QFP
112LQFP
9S12XB128
80QFP
yes3
1
ATD0 routed to PAD[7:0]
ATD1 routed to PAD[15:8]
3
Can execute code only from RAM
4 ATD1 routed to PAD[15:0] instead of PAD[23:8]
5 ATD1 routed to PAD[7:0] imstead of PAD[15:8]
2
MC9S12XDP512 Data Sheet, Rev. 2.21
1306
Freescale Semiconductor
Appendix E Derivative Differences
E.7
Pinout explanations:
•
A/D is the number of modules/total number of A/D channels.
•
I/O is the sum of ports capable to act as digital input or output.
–
144 Pin Packages:
Port A = 8, B = 8, C=8, D=8, E = 6 + 2 input only,
H = 8, J = 7, K = 8, M = 8, P = 8, S = 8, T = 8, PAD = 24
25 inputs provide Interrupt capability (H =8, P= 8, J = 7, IRQ, XIRQ)
–
112 Pin Packages:
Port A = 8, B = 8, E = 6 + 2 input only, H = 8, J = 4, K = 7, M = 8, P = 8, S = 8, T = 8, PAD = 16
22 inputs provide Interrupt capability (H =8, P= 8, J = 4, IRQ, XIRQ)
–
80 Pin Packages:
Port A = 8, B = 8, E = 6 + 2 input only, J = 2, M = 6, P = 7, S = 4, T = 8, PAD = 8
11 inputs provide Interrupt capability (P= 7, J = 2, IRQ, XIRQ)
•
CAN0 can be routed under software control from PM[1:0] to pins PM[3:2] or PM[5:4] or PJ[7:6].
•
CAN4 pins are shared between IIC0 pins.
•
CAN4 can be routed under software control from PJ[7:6] to pins PM[5:4] or PM[7:6].
•
Versions with 4 CAN modules will have CAN0, CAN1, CAN2 and CAN4
•
Versions with 3 CAN modules will have CAN0, CAN1 and CAN4.
•
Versions with 2 CAN modules will have CAN0 and CAN4.
•
Versions with 1 CAN modules will have CAN0
•
Versions with 2 SPI modules will have SPI0 and SPI1.
•
Versions with 4 SCI modules will have SCI0, SCI1, SCI2 and SCI4.
•
Versions with 2 SCI modules will have SCI0 and SCI1.
•
Versions with 1 IIC module will have IIC0.
•
SPI0 can be routed to either Ports PS[7:4] or PM[5:2].
•
SPI1 pins are shared with PWM[3:0]; In 144 and 112-pin versions, SPI1 can be routed under
software control to PH[3:0].
•
SPI2 pins are shared with PWM[7:4]; In 144 and 112-pin versions, SPI2 can be routed under
software control to PH[7:4]. In 80-pin packages, SS-signal of SPI2 is not bonded out!
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1307
Appendix F Ordering Information
Appendix F
Ordering Information
The following figure provides an ordering number example for the devices covered by this data book.
There are two options when ordering a device. Customers must choose between ordering either the
mask-specific partnumber or the generic / mask-independent partnumber Ordering the mask-specific
partnumber enables the customer to specify which particular maskset they will receive whereas FSL will
ship the currently preferred maskset against any orders for the generic partnumber. In either case, the
marking on the device will always show the generic / mask-independent partnumber and the mask set
number. For specific partnumbers, please contact your local sales office. The below figure illustrates a
mask-specific ordering number.
Part numbers may be abbreviated: check with manufacturer for exact part
number
S 9 12XDP512 J1 M AL R
Tape & Reel Suffix (Optional):
No R = No Tape & Reel
R = Tape & Reel
Part name
(abbreviated)
see Table 1-6
Package Option
FU = 80QFP (non lead -free)
PV = 112LQFP (non lead -free)
FV = 144LQFP (non lead -free)
AA = 80QFP (lead free)
AL=112LQFP (lead free)
AG = 144LQFP (Lead free)
Main Memory Type
9=Flash
3=ROM
Temperature Option
C = -40 to 85 °C
V = -40 to 105 °C
M = -40 to 125 °C
Status / Partnumber type
S or SC = Maskset specific partnumber
MC = Generic/mask independent partnumber
P or PC = Prototype status
Maskset identifier suffix (two digits):
First digit references wafer fab
Second digit differentiates mask
This suffix is omitted in generic partnumbers
J1 = 1L15Y maskset in this case
F0 = 0M42E maskset in this case
MC9S12XDP512 Data Sheet, Rev. 2.21
1308
Freescale Semiconductor
Appendix G Detailed Register Map
Appendix G
Detailed Register Map
The following tables show the detailed register map of the MC9S12XD-Family.
0x0000–0x0009 Port Integration Module (PIM) Map 1 of 5
Address
Name
0x0000
PORTA
0x0001
PORTB
0x0002
DDRA
0x0003
DDRB
0x0004
PORTC
0x0005
PORTD
0x0006
DDRC
0x0007
DDRD
0x0008
PORTE
0x0009
DDRE
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA 0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
DDRC7
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
DDRD7
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
PE7
PE6
PE5
PE4
PE3
PE2
PE1
PE0
DDRE7
DDRE6
DDRE5
DDRE4
DDRE3
DDRE2
0
0
Bit 2
Bit 1
Bit 0
CS2E
CS1E
CS0E
0x000A–0x000B Module Mapping Control (S12XMMC) Map 1 of 4
Address
Name
0x000A
MMCCTL0
0x000B
MODE
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0
0
0
0
0
MODC
MODB
MODA
0
0
0
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PUPEE
PUPDE
PUPCE
PUPBE
PUPAE
RDPE
RDPD
RDPC
RDPB
RDPA
0x000C–0x000D Port Integration Module (PIM) Map 2 of 5
Address
Name
0x000C
PUCR
0x000D
RDRIV
Bit 7
R
W
R
W
PUPKE
RDPK
Bit 6
BKPUE
0
Bit 5
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1309
Appendix G Detailed Register Map
0x000E–0x000F External Bus Interface (S12XEBI) Map
Address
Name
0x000E
EBICTL0
0x000F
EBICTL1
Bit 7
R
ITHRS
W
R
EWAITE
W
Bit 6
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
HDBE
ASIZ4
ASIZ3
ASIZ2
ASIZ1
ASIZ0
0
0
0
EXSTR2
EXSTR1
EXSTR0
0x0010–0x0017 Module Mapping Control (S12XMMC) Map 2 of 4
Address
Name
0x0010
GPAGE
0x0011
DIRECT
0x0012
Reserved
0x0013
MMCCTL1
0x0014
Reserved
0x0015
Reserved
0x0016
RPAGE
0x0017
EPAGE
Bit 7
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
GP6
GP5
GP4
GP3
GP2
GP1
GP0
DP15
DP14
DP13
DP12
DP11
DP10
DP9
DP8
0
0
0
0
0
0
0
0
0
0
0
0
0
EROMON
ROMHM
ROMON
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RP7
RP6
RP5
RP4
RP3
RP2
RP1
RP0
EP7
EP6
EP5
EP4
EP3
EP2
EP1
EP0
0
0x0018–0x001B Miscellaneous Peripheral
Address
Name
0x0018
Reserved
0x0019
Reserved
0x001A
PARTIDH
0x001B
PARTIDL
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Bit 1
Bit 0
EDIV1
EDIV0
0x001C–0x001F Port Integration Module (PIM) Map 3 of 5
Address
0x001C
Name
ECLKCTL
Bit 7
R
W
NECLK
Bit 6
NCLKX2
Bit 5
Bit 4
Bit 3
Bit 2
0
0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
1310
Freescale Semiconductor
Appendix G Detailed Register Map
0x001C–0x001F Port Integration Module (PIM) Map 3 of 5
Address
Name
0x001D
Reserved
0x001E
IRQCR
0x001F
Reserved
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
IRQE
IRQEN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
XGSBPE
BDM
0
0
0x0020–0x0027 Debug Module (S12XDBG) Map
Address
Name
0x0020
DBGC1
0x0021
DBGSR
0x0022
DBGTCR
0x0023
DBGC2
0x0024
DBGTBH
0x0025
DBGTBL
0x0026
DBGCNT
0x0027
DBGSCRX
0x00281
DBGXCTL
(COMPA/C)
0x00282
DBGXCTL
(COMPB/D)
0x0029
DBGXAH
0x002A
DBGXAM
0x002B
DBGXAL
0x002C
DBGXDH
0x002D
DBGXDL
0x002E
DBGXDHM
0x002F
DBGXDLM
1
Bit 7
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
ARM
TBF
Bit 6
0
TRIG
EXTF
TSOURCE
DBGBRK
0
TRANGE
COMRV
SSF2
SSF1
SSF0
TRCMOD
TALIGN
CDCM
ABCM
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SC3
SC2
SC1
SC0
0
0
CNT
0
0
0
NDB
TAG
BRK
RW
RWE
SRC
COMPE
SZ
TAG
BRK
RW
RWE
SRC
COMPE
Bit 22
21
20
19
18
17
Bit 16
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
0
SZE
0
This represents the contents if the Comparator A or C control register is blended into this address
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1311
Appendix G Detailed Register Map
2
This represents the contents if the Comparator B or D control register is blended into this address
MC9S12XDP512 Data Sheet, Rev. 2.21
1312
Freescale Semiconductor
Appendix G Detailed Register Map
0x0030–0x0031 Module Mapping Control (S12XMMC) Map 3 of 4
Address
Name
0x0030
PPAGE
0x0031
Reserved
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIX7
PIX6
PIX5
PIX4
PIX3
PIX2
PIX1
PIX0
0
0
0
0
0
0
0
0
0x0032–0x0033 Port Integration Module (PIM) Map 4 of 5
Address
Name
0x0032
PORTK
0x0033
DDRK
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PK7
PK6
PK5
PK4
PK3
PK2
PK1
PK0
DDRK7
DDRK6
DDRK5
DDRK4
DDRK3
DDRK2
DDRK1
DDRK0
0x0034–0x003F Clock and Reset Generator (CRG) Map
Address
Name
0x0034
SYNR
0x0035
REFDV
0x0036
CTFLG
0x0037
CRGFLG
0x0038
CRGINT
0x0039
CLKSEL
0x003A
PLLCTL
0x003B
RTICTL
0x003C
COPCTL
0x003D
FORBYP
0x003E
CTCTL
0x003F
ARMCOP
Bit 7
R
0
W
0
R
W
R
0
W
R
RTIF
W
R
RTIE
W
R
PLLSEL
W
R
CME
W
R
RTDEC
W
R
WCOP
W
R
0
W
R
0
W
R
0
W
Bit 7
Bit 6
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
REFDV5
REFDV4
REFDV3
REFDV2
REFDV1
REFDV0
0
0
0
0
PORF
LVRF
ILAF
0
0
0
0
Reserved For Factory Test
LOCK
TRACK
LOCKIF
LOCKIE
0
0
0
PLLON
AUTO
ACQ
FSTWKP
RTR6
RTR5
RTR4
RTR3
0
0
0
PSTP
RSBCK
0
0
0
0
0
6
0
5
PLLWAI
0
0
Reserved For Factory Test
0
Reserved For Factory Test
0
0
4
3
0
0
SCMIF
SCMIE
SCM
0
RTIWAI
COPWAI
PRE
PCE
SCME
RTR2
RTR1
RTR0
CR2
CR1
CR0
0
0
0
0
0
0
0
2
0
1
0
Bit 0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1313
Appendix G Detailed Register Map
0x0040–0x007F Enhanced Capture Timer 16-Bit 8-Channels (ECT) Map (Sheet 1 of 3)
Address
Name
0x0040
TIOS
0x0041
CFORC
0x0042
OC7M
0x0043
OC7D
0x0044
TCNT (hi)
0x0045
TCNT (lo)
0x0046
TSCR1
0x0047
TTOV
0x0048
TCTL1
0x0049
TCTL2
0x004A
TCTL3
0x004B
TCTL4
0x004C
TIE
0x004D
TSCR2
0x004E
TFLG1
0x004F
TFLG2
0x0050
TC0 (hi)
0x0051
TC0 (lo)
0x0052
TC1 (hi)
0x0053
TC1 (lo)
0x0054
TC2 (hi)
0x0055
TC2 (lo)
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOS7
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
0
FOC7
0
FOC6
0
FOC5
0
FOC4
0
FOC3
0
FOC2
0
FOC1
0
FOC0
OC7M7
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
OC7D7
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
TEN
TSWAI
TSFRZ
TFFCA
PRNT
0
0
0
TOV7
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
OM7
OL7
OM6
OL6
OM5
OL5
OM4
OL4
OM3
OL3
OM2
OL2
OM1
OL1
OM0
OL0
EDG7B
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
EDG3B
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
C7I
C6I
C5I
C4I
C3I
C2I
C1I
C0I
0
0
0
TCRE
PR2
PR1
PR0
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
TOI
C7F
TOF
MC9S12XDP512 Data Sheet, Rev. 2.21
1314
Freescale Semiconductor
Appendix G Detailed Register Map
0x0040–0x007F Enhanced Capture Timer 16-Bit 8-Channels (ECT) Map (Sheet 2 of 3)
Address
Name
0x0056
TC3 (hi)
0x0057
TC3 (lo)
0x0058
TC4 (hi)
0x0059
TC4 (lo)
0x005A
TC5 (hi)
0x005B
TC5 (lo)
0x005C
TC6 (hi)
0x005D
TC6 (lo)
0x005E
TC7 (hi)
0x005F
TC7 (lo)
0x0060
PACTL
0x0061
PAFLG
0x0062
PACN3 (hi)
0x0063
PACN2 (lo)
0x0064
PACN1 (hi)
0x0065
PACN0 (lo)
0x0066
MCCTL
0x0067
MCFLG
0x0068
ICPAR
0x0069
DLYCT
0x006A
ICOVW
0x006B
ICSYS
0x006C
Reserved
Bit 7
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
0
W
R
0
W
R
Bit 7
W
R
Bit 7
W
R
Bit 7
W
R
Bit 7
W
R
MCZI
W
R
MCZF
W
R
0
W
R
DLY7
W
R
NOVW7
W
R
SH37
W
R
0
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PAOVI
PAI
0
0
0
0
0
PAOVF
PAIF
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
MODMC
RDMCL
MCPR1
MCPR0
0
0
FLMC
POLF3
MCEN
0
0
ICLAT
0
POLF2
POLF1
POLF0
0
0
0
PA3EN
PA2EN
PA1EN
PA0EN
DLY6
DLY5
DLY4
DLY3
DLY2
DLY1
DLY0
NOVW6
NOVW5
NOVW4
NOVW3
NOVW2
NOVW1
NOVW0
SH26
SH15
SH04
TFMOD
PACMX
BUFEN
LATQ
0
0
0
0
0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1315
Appendix G Detailed Register Map
0x0040–0x007F Enhanced Capture Timer 16-Bit 8-Channels (ECT) Map (Sheet 3 of 3)
Address
Name
0x006D
TIMTST
0x006E
PTPSR
0x006F
PTMCPSR
0x0070
PBCTL
0x0071
PBFLG
0x0072
PA3H
0x0073
PA2H
0x0074
PA1H
0x0075
PA0H
0x0076
MCCNT (hi)
0x0077
MCCNT (lo)
0x0078
TC0H (hi)
0x0079
TC0H (lo)
0x007A
TC1H (hi)
0x007B
TC1H (lo)
0x007C
TC2H (hi)
0x007D
TC2H (lo)
0x007E
TC3H (hi)
0x007F
TC3H (lo)
Bit 7
R
0
W
R
PTPS7
W
R
PTMPS7
W
R
0
W
R
0
W
R PA3H7
W
R PA2H7
W
R PA1H7
W
R PA0H7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
R
Bit 15
W
R
Bit 7
W
Bit 6
Bit 5
0
0
Bit 2
Bit 1
Bit 0
0
0
0
PTPS6
PTPS5
PTPS4
PTPS3
PTPS2
PTPS1
PTPS0
PTMPS6
PTMPS5
PTMPS4
PTMPS3
PTMPS2
PTMPS1
PTMPS0
0
0
0
0
0
0
0
0
0
PA3H6
PA3H5
PA3H4
PA3H3
PA3H2
PA3H1
PA3H0
PA2H6
PA2H5
PA2H4
PA2H3
PA2H2
PA2H1
PA2H0
PA1H6
PA1H5
PA1H4
PA1H3
PA1H2
PA1H1
PA1H 0
PA0H6
PA0H5
PA0H4
PA0H3
PA0H2
PA0H1
PA0H0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
PBEN
Bit 4
Bit 3
0
0
Reserved For Factory Test
PBOVI
PBOVF
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
1316
Freescale Semiconductor
Appendix G Detailed Register Map
0x0080–0x00AF Analog-to-Digital Converter 10-bit 16-Channels (ATD1) Map (Sheet 1 of
3)
Address
Name
0x0080
ATD1CTL0
0x0081
ATD1CTL1
0x0082
ATD1CTL2
0x0083
ATD1CTL3
0x0084
ATD1CTL4
0x0085
ATD1CTL5
0x0086
ATD1STAT0
0x0087
Reserved
0x0088
ATD1TEST0
0x0089
ATD1TEST1
0x008A
ATD1STAT2
0x008B
ATD1STAT1
0x008C
ATD1DIEN0
0x008D
ATD1DIEN
0x008E
ATD1PTAD0
0x008F
ATD1PTAD1
0x0090
ATD1DR0H
0x0091
ATD1DR0L
0x0092
ATD1DR1H
0x0093
ATD1DR1L
0x0094
ATD1DR2H
0x0095
ATD1DR2L
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
0
0
0
0
Bit 3
Bit 2
Bit 1
Bit 0
WRAP3
WRAP2
WRAP1
WRAP0
ETRIG
SEL
0
0
0
ETRIG
CH3
ETRIG
CH2
ETRIG
CH1
ETRIG
CH0
ADPU
AFFC
AWAI
ETRIGLE
ETRIGP
ETRIGE
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SRES8
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DJM
DSGN
SCAN
MULT
CD
CC
CB
CA
ETORF
FIFOR
CC3
CC2
CC1
CC0
0
0
0
0
0
U
U
U
U
U
0
SCF
0
ASCIF
0
0
0
U
U
U
U
U
U
CCF14
CCF13
CCF12
CCF11
CCF10
CCF9
CCF8
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
IEN14
IEN13
IEN12
IEN11
IEN10
IEN9
IEN8
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
PTAD14
PTAD13
PTAD12
PTAD11
PTAD10
PTAD9
PTAD8
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
R CCF15
W
R
CCF7
W
R
IEN15
W
R
IEN7
W
R PTAD15
W
R PTAD7
W
R
Bit15
W
R
Bit7
W
R
Bit15
W
R
Bit7
W
R
Bit15
W
R
Bit7
W
U
U
Reserved For Factory Test
U
U
SC
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1317
Appendix G Detailed Register Map
0x0080–0x00AF Analog-to-Digital Converter 10-bit 16-Channels (ATD1) Map (Sheet 2 of
3)
Address
Name
0x0096
ATD1DR3H
0x0097
ATD1DR3L
0x0098
ATD1DR4H
0x0099
ATD1DR4L
0x009A
ATD1DR5H
0x009B
ATD1DR5L
0x009C
ATD1DR6H
0x009D
ATD1DR6L
0x009E
ATD1DR7H
0x009F
ATD1DR7L
0x00A0
ATD1DR8H
0x00A1
ATD1DR8L
0x00A2
ATD1DR9H
0x00A3
ATD1DR9L
0x00A4
ATD1DR10H
0x00A5
ATD1DR10L
0x00A6
ATD1DR11H
0x00A7
ATD1DR11L
0x00A8
ATD1DR12H
0x00A9
ATD1DR12L
0x00AA
ATD1DR13H
0x00AB
ATD1DR13L
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
1318
Freescale Semiconductor
Appendix G Detailed Register Map
0x0080–0x00AF Analog-to-Digital Converter 10-bit 16-Channels (ATD1) Map (Sheet 3 of
3)
Address
Name
0x00AC
ATD1DR14H
0x00AD
0x00AE
0x00AF
R
W
R
ATD1DR14L
W
R
ATD1DR15H
W
R
ATD1DR15L
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit 0
0x00B0–0x00B7 Inter IC Bus (IIC1) Map
Address
Name
0x00B0
IBAD
0x00B1
IBFD
0x00B2
IBCR
0x00B3
IBSR
0x00B4
IBDR
0x00B5
Reserved
0x00B6
Reserved
0x00B7
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBEN
IBIE
MS/SL
TX/RX
TXAK
0
TCF
IAAS
IBB
0
0
RSTA
SRW
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IBAL
IBIF
0
IBC0
IBSWAI
RXAK
0x00B8–0x00BF Asynchronous Serial Interface (SCI2) Map
Address
Name
0x00B8
SCI2BDH1
0x00B9
SCI2BDL1
0x00BA
SCI2CR11
0x00B8
SCI2ASR12
0x00B9
SCI2ACR12
0x00BA
SCI2ACR22
Bit 7
R
IREN
W
R
SBR7
W
R
LOOPS
W
R
RXEDGIF
W
R
RXEDGIE
W
R
0
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
BERRM0
BKDFE
0
BERRM1
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1319
Appendix G Detailed Register Map
0x00B8–0x00BF Asynchronous Serial Interface (SCI2) Map (continued)
Address
Name
0x00BB
SCI2CR2
0x00BC
SCI2SR1
0x00BD
SCI2SR2
0x00BE
SCI2DRH
0x00BF
SCI2DRL
1
2
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TIE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TDRE
TC
RDRF
IDLE
OR
NF
FE
PF
0
0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
AMAP
R8
R7
T7
T8
R6
T6
RAF
Those registers are accessible if the AMAP bit in the SCI2SR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCI2SR2 register is set to one
0x00C0–0x00C7 Asynchronous Serial Interface (SCI3) Map
Address
1
2
Name
0x00C0
SCI3BDH1
0x00C1
SCI3BDL1
0x00C2
SCI3CR11
0x00C0
SCI3ASR12
0x00C1
SCI3ACR12
0x00C2
SCI3ACR22
0x00C3
SCI3CR2
0x00C4
SCI3SR1
0x00C5
SCI3SR2
0x00C6
SCI3DRH
0x00C7
SCI3DRL
Bit 7
R
IREN
W
R
SBR7
W
R
LOOPS
W
R
RXEDGIF
W
R
RXEDGIE
W
R
0
W
R
TIE
W
R
TDRE
W
R
AMAP
W
R
R8
W
R
R7
W
T7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
BERRM1
BERRM0
BKDFE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TC
RDRF
IDLE
OR
NF
FE
PF
0
0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
T8
R6
T6
0
RAF
Those registers are accessible if the AMAP bit in the SCI3SR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCI3SR2 register is set to one
MC9S12XDP512 Data Sheet, Rev. 2.21
1320
Freescale Semiconductor
Appendix G Detailed Register Map
0x00C8–0x00CF Asynchronous Serial Interface (SCI0) Map
Address
Name
0x00C8
SCI0BDH1
0x00C9
SCI0BDL1
0x00CA
SCI0CR11
0x00C8
SCI0ASR12
0x00C9
SCI0ACR12
0x00CA
SCI0ACR22
0x00CB
SCI0CR2
0x00CC
SCI0SR1
0x00CD
SCI0SR2
0x00CE
SCI0DRH
0x00CF
SCI0DRL
1
2
Bit 7
R
IREN
W
R
SBR7
W
R
LOOPS
W
R
RXEDGIF
W
R
RXEDGIE
W
R
0
W
R
TIE
W
R
TDRE
W
R
AMAP
W
R
R8
W
R
R7
W
T7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
BERRM1
BERRM0
BKDFE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TC
RDRF
IDLE
OR
NF
FE
PF
0
0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
T8
R6
T6
0
RAF
Those registers are accessible if the AMAP bit in the SCI0SR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCI0SR2 register is set to one
0x00D0–0x00D7 Asynchronous Serial Interface (SCI1) Map
Address
Name
0x00D0
SCI1BDH1
0x00D1
SCI1BDL1
0x00D2
SCI1CR11
0x00D0
SCI1ASR12
0x00D1
SCI1ACR12
0x00D2
SCI1ACR22
0x00D3
SCI1CR2
0x00D4
SCI1SR1
Bit 7
R
IREN
W
R
SBR7
W
R
LOOPS
W
R
RXEDGIF
W
R
RXEDGIE
W
R
0
W
R
TIE
W
R
TDRE
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
BERRM1
BERRM0
BKDFE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TC
RDRF
IDLE
OR
NF
FE
PF
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1321
Appendix G Detailed Register Map
0x00D0–0x00D7 Asynchronous Serial Interface (SCI1) Map (continued)
Address
1
2
Name
0x00D5
SCI1SR2
0x00D6
SCI1DRH
0x00D7
SCI1DRL
Bit 7
R
W
R
W
R
W
AMAP
R8
R7
T7
Bit 6
Bit 5
0
0
T8
R6
T6
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
RAF
Those registers are accessible if the AMAP bit in the SCI1SR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCI1SR2 register is set to one
0x00D8–0x00DF Serial Peripheral Interface (SPI0) Map
Address
Name
0x00D8
SPI0CR1
0x00D9
SPI0CR2
0x00DA
SPI0BR
0x00DB
SPI0SR
0x00DC
Reserved
0x00DD
SPI0DR
0x00DE
Reserved
0x00DF
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
MODFEN
BIDIROE
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 0
0
0
0
0x00E0–0x00E7 Inter IC Bus (IIC0) Map
Address
Name
0x00E0
IBAD
0x00E1
IBFD
0x00E2
IBCR
0x00E3
IBSR
0x00E4
IBDR
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBEN
IBIE
MS/SL
TX/RX
TXAK
0
TCF
IAAS
IBB
0
0
RSTA
SRW
D7
D6
D5
D3
D2
IBAL
D4
IBIF
D1
0
IBC0
IBSWAI
RXAK
D0
MC9S12XDP512 Data Sheet, Rev. 2.21
1322
Freescale Semiconductor
Appendix G Detailed Register Map
0x00E0–0x00E7 Inter IC Bus (IIC0) Map (continued)
Address
Name
0x00E5
Reserved
0x00E6
Reserved
0x00E7
Reserved
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x00E8–0x00EF Reserved
Address
Name
0x00E8
Reserved
0x00E9
Reserved
0x00EA
Reserved
0x00EB
Reserved
0x00EC
Reserved
0x00ED
Reserved
0x00EE
Reserved
0x00EF
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
0x00F0–0x00F7 Serial Peripheral Interface (SPI1) Map
Address
Name
0x00F0
SPI1CR1
0x00F1
SPI1CR2
0x00F2
SPI1BR
0x00F3
SPI1SR
0x00F4
Reserved
0x00F5
SPI1DR
0x00F6
Reserved
0x00F7
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
MODFEN
BIDIROE
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1323
Appendix G Detailed Register Map
0x00F8–0x00FF Serial Peripheral Interface (SPI2) Map
Address
Name
0x00F8
SPI2CR1
0x00F9
SPI2CR2
0x00FA
SPI2BR
0x00FB
SPI2SR
0x00FC
Reserved
0x00FD
SPI2DR
0x00FE
Reserved
0x00FF
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
MODFEN
BIDIROE
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0100–0x010F Flash Control Register (FTX512K4) Map
Address
Name
0x0100
FCLKDIV
0x0101
FSEC
0x0102
FTSTMOD
0x0103
FCNFG
0x0104
FPROT
0x0105
FSTAT
0x0106
FCMD
0x0107
FCTL
0x0108
FADDRHI
0x0109
FADDRLO
0x010A
FDATAHI
0x010B
FDATALO
Bit 7
R FDIVLD
W
R KEYEN1
W
R
0
W
R
CBEIE
W
R
FPOPEN
W
R
CBEIF
W
R
0
W
R
NV7
W
R
W
R
W
R
W
R
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PRDIV8
FDIV5
FDIV4
FDIV3
FDIV2
FDIV1
FDIV0
KEYEN0
RNV5
RNV4
RNV3
RNV2
SEC1
SEC0
0
0
0
0
0
0
0
0
0
FPHDIS
FPHS1
FPHS0
FPLDIS
FPLS1
FPLS0
PVIOL
ACCERR
0
BLANK
0
0
NV2
NV1
NV0
MRDS
CCIE
RNV6
CCIF
WRALL
KEYACC
CMDB[6:0]
NV6
NV5
NV4
NV3
FADDRHI
FADDRLO
FDATAHI
FDATALO
MC9S12XDP512 Data Sheet, Rev. 2.21
1324
Freescale Semiconductor
Appendix G Detailed Register Map
0x0100–0x010F Flash Control Register (FTX512K4) Map (continued)
Address
Name
0x010C
Reserved
0x010D
Reserved
0x010E
Reserved
0x010F
Reserved
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0110–0x011B EEPROM Control Register (EETX4K) Map
Address
Name
0x0110
ECLKDIV
0x0111
Reserved
0x0112
Reserved
0x0113
ECNFG
0x0114
EPROT
0x0115
ESTAT
0x0116
ECMD
0x0117
Reserved
0x0118
EADDRHI
0x0119
EADDRLO
0x011A
EDATAHI
0x011B
EDATALO
Bit 7
R EDIVLD
W
R
0
W
R
0
W
R
CBEIE
W
R
EPOPEN
W
R
CBEIF
W
R
0
W
R
0
W
R
0
W
R
W
R
W
R
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PRDIV8
EDIV5
EDIV4
EDIV3
EDIV2
EDIV1
EDIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RNV5
RNV4
EPDIS
EPS2
EPS1
EPS0
PVIOL
ACCERR
0
BLANK
0
0
0
0
0
CCIE
RNV6
CCIF
CMDB[6:0]
0
0
0
0
0
0
0
0
EABHI
EABLO
EDHI
EDLO
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1325
Appendix G Detailed Register Map
0x011C–0x011F Memory Map Control (S12XMMC) Map 4 of 4
Address
Name
0x011C
RAMWPC
0x011D
RAMXGU
0x011E
RAMSHL
0x011F
RAMSHU
Bit 7
R
W
R
W
R
W
R
W
RPWE
1
1
1
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
AVIE
AVIF
XGU6
XGU5
XGU4
XGU3
XGU2
XGU1
XGU0
SHL6
SHL5
SHL4
SHL3
SHL2
SHL1
SHL0
SHU6
SHU5
SHU4
SHU3
SHU2
SHU1
SHU0
0x0120–0x012F Interrupt Module (S12XINT) Map
Address
Name
0x0120
Reserved
0x0121
IVBR
0x0122
Reserved
0x0123
Reserved
0x0124
Reserved
0x0125
Reserved
0x0126
INT_XGPRIO
0x0127
INT_CFADDR
0x0128 INT_CFDATA0
0x0129 INT_CFDATA1
0x012A INT_CFDATA2
0x012B INT_CFDATA3
0x012C INT_CFDATA4
0x012D INT_CFDATA5
0x012E INT_CFDATA6
0x012F INT_CFDATA7
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
IVB_ADDR[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INT_CFADDR[7:4]
RQST
RQST
RQST
RQST
RQST
RQST
RQST
RQST
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
XILVL[2:0]
0
0
0
PRIOLVL[2:0]
PRIOLVL[2:0]
PRIOLVL[2:0]
PRIOLVL[2:0]
PRIOLVL[2:0]
PRIOLVL[2:0]
PRIOLVL[2:0]
PRIOLVL[2:0]
MC9S12XDP512 Data Sheet, Rev. 2.21
1326
Freescale Semiconductor
Appendix G Detailed Register Map
0x00130–0x0137 Asynchronous Serial Interface (SCI4) Map
Address
Name
0x0130
SCI4BDH1
0x0131
SCI4BDL1
0x0132
SCI4CR11
0x0130
SCI4ASR12
0x0131
SCI4ACR12
0x0132
SCI4ACR22
0x0133
SCI4CR2
0x0134
SCI4SR1
0x0135
SCI4SR2
0x0136
SCI4DRH
0x0137
SCI4DRL
1
2
Bit 7
R
IREN
W
R
SBR7
W
R
LOOPS
W
R
RXEDGIF
W
R
RXEDGIE
W
R
0
W
R
TIE
W
R
TDRE
W
R
AMAP
W
R
R8
W
R
R7
W
T7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
BERRM1
BERRM0
BKDFE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TC
RDRF
IDLE
OR
NF
FE
PF
0
0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
T8
R6
T6
0
RAF
Those registers are accessible if the AMAP bit in the SCI4SR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCI4SR2 register is set to one
0x0138–0x013F Asynchronous Serial Interface (SCI5) Map
Address
Name
0x0138
SCI5BDH1
0x0139
SCI5BDL1
0x013A
SCI5CR11
0x0138
SCI5ASR12
0x0139
SCI5ACR12
0x013A
SCI5ACR22
0x013B
SCI5CR2
0x013C
SCI5SR1
Bit 7
R
IREN
W
R
SBR7
W
R
LOOPS
W
R
RXEDGIF
W
R
RXEDGIE
W
R
0
W
R
TIE
W
R
TDRE
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TNP1
TNP0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
BERRV
BERRIF
BKDIF
0
0
0
0
BERRIE
BKDIE
0
0
0
0
BERRM1
BERRM0
BKDFE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
TC
RDRF
IDLE
OR
NF
FE
PF
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1327
Appendix G Detailed Register Map
0x0138–0x013F Asynchronous Serial Interface (SCI5) Map (continued)
Address
1
2
Name
0x013D
SCI5SR2
0x013E
SCI5DRH
0x013F
SCI5DRL
Bit 7
R
W
R
W
R
W
AMAP
R8
R7
T7
Bit 6
Bit 5
0
0
T8
R6
T6
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
TXPOL
RXPOL
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
RAF
Those registers are accessible if the AMAP bit in the SCI5SR2 register is set to zero
Those registers are accessible if the AMAP bit in the SCI5SR2 register is set to one
0x0140–0x017F Freescale Scalable CAN — MSCAN (CAN0) Map
Address
0x0140
0x0141
0x0142
0x0143
0x0144
0x0145
0x0146
0x0147
0x0148
0x0149
0x014A
0x014B
0x014C
0x014D
0x014E
0x014F
Name
Bit 7
R
RXFRM
W
R
CAN0CTL1
CANE
W
R
CAN0BTR0
SJW1
W
R
CAN0BTR1
SAMP
W
R
CAN0RFLG
WUPIF
W
R
CAN0RIER
WUPIE
W
R
0
CAN0TFLG
W
R
0
CAN0TIER
W
R
0
CAN0TARQ
W
R
0
CAN0TAAK
W
R
0
CAN0TBSEL
W
R
0
CAN0IDAC
W
R
0
Reserved
W
R
0
CAN0MISC
W
R RXERR7
CAN0RXERR
W
R TXERR7
CAN0TXERR
W
CAN0CTL0
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
CLKSRC
LOOPB
LISTEN
BORM
WUPM
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
TX2
TX1
TX0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
CSCIF
0
BOHOLD
MC9S12XDP512 Data Sheet, Rev. 2.21
1328
Freescale Semiconductor
Appendix G Detailed Register Map
0x0140–0x017F Freescale Scalable CAN — MSCAN (CAN0) Map (continued)
Address
Name
0x0150– CAN0IDAR0–
0x0153 CAN0IDAR3
0x0154– CAN0IDMR0–
0x0157 CAN0IDMR3
0x0158– CAN0IDAR4–
0x015B CAN0IDAR7
0x015C
CAN0IDMR4–
–
CAN0IDMR7
0x015F
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
R
0x0160–
0x016F
CAN0RXFG
0x0170–
0x017F
CAN0TXFG
FOREGROUND RECEIVE BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
W
R
W
FOREGROUND TRANSMIT BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
0xXXX0
0xXXX1
0xXXX2
0xXXX3
0xXXX4
–
0xXXXB
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Extended ID
Standard ID
CANxRIDR0
Extended ID
Standard ID
CANxRIDR1
Extended ID
Standard ID
CANxRIDR2
Extended ID
Standard ID
CANxRIDR3
ID28
ID10
ID27
ID9
ID26
ID8
ID25
ID7
ID24
ID6
ID23
ID5
ID22
ID4
ID21
ID3
ID20
ID2
ID19
ID1
ID18
ID0
SRR=1
RTR
IDE=1
IDE=0
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
R
R
W
R
R
W
R
R
W
R
R
W
R
CANxRDSR0–
CANxRDSR7 W
R
W
R
0xXXXD
Reserved
W
R
0xXXXE CANxRTSRH
W
R
0xXXXF CANxRTSRL
W
Extended ID R
CANxTIDR0 W
0xXX10
Standard ID R
W
0xXXXC
CANRxDLR
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1329
Appendix G Detailed Register Map
Detailed MSCAN Foreground Receive and Transmit Buffer Layout (continued)
Address
Name
0xXX0x
XX10
Extended ID
CANxTIDR1
Standard ID
0xXX12
0xXX13
0xXX14
–
0xXX1B
0xXX1C
0xXX1D
0xXX1E
0xXX1F
R
W
R
W
Extended ID R
CANxTIDR2 W
Standard ID R
W
Extended ID R
CANxTIDR3 W
Standard ID R
W
R
CANxTDSR0–
CANxTDSR7 W
R
W
R
CANxTTBPR
W
R
CANxTTSRH
W
R
CANxTTSRL
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
ID20
ID19
ID18
SRR=1
IDE=1
ID17
ID16
ID15
ID2
ID1
ID0
RTR
IDE=0
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
CANxTDLR
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
0x0180–0x01BF Freescale Scalable CAN — MSCAN (CAN1) Map (Sheet 1 of 3)
Address
Name
0x0180
CAN1CTL0
0x0181
CAN1CTL1
0x0182
CAN1BTR0
0x0183
CAN1BTR1
0x0184
CAN1RFLG
0x0185
CAN1RIER
0x0186
CAN1TFLG
0x0187
CAN1TIER
0x0188
CAN1TARQ
Bit 7
R
RXFRM
W
R
CANE
W
R
SJW1
W
R
SAMP
W
R
WUPIF
W
R
WUPIE
W
R
0
W
R
0
W
R
0
W
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
CLKSRC
LOOPB
LISTEN
BORM
WUPM
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
CSCIF
MC9S12XDP512 Data Sheet, Rev. 2.21
1330
Freescale Semiconductor
Appendix G Detailed Register Map
0x0180–0x01BF Freescale Scalable CAN — MSCAN (CAN1) Map (Sheet 2 of 3)
Address
Name
0x0189
CAN1TAAK
0x018A
CAN1TBSEL
0x018B
CAN1IDAC
0x018C
Reserved
0x018D
CAN1MISC
0x018E
CAN1RXERR
0x018F
CAN1TXERR
0x0190
CAN1IDAR0
0x0191
CAN1IDAR1
0x0192
CAN1IDAR2
0x0193
CAN1IDAR3
0x0194
CAN1IDMR0
0x0195
CAN1IDMR1
0x0196
CAN1IDMR2
0x0197
CAN1IDMR3
0x0198
CAN1IDAR4
0x0199
CAN1IDAR5
0x019A
CAN1IDAR6
0x019B
CAN1IDAR7
0x019C
CAN1IDMR4
0x019D
CAN1IDMR5
0x019E
CAN1IDMR6
Bit 7
R
0
W
R
0
W
R
0
W
R
0
W
R
0
W
R RXERR7
W
R TXERR7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AM7
W
R
AM7
W
R
AM7
W
R
AM7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AM7
W
R
AM7
W
R
AM7
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
TX2
TX1
TX0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
0
BOHOLD
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1331
Appendix G Detailed Register Map
0x0180–0x01BF Freescale Scalable CAN — MSCAN (CAN1) Map (Sheet 3 of 3)
Address
Name
R
0x019F CAN1IDMR7
W
R
0x01A0–
CAN1RXFG
0x01AF
W
R
0x01B0–
CAN1TXFG
0x01BF
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
FOREGROUND RECEIVE BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
FOREGROUND TRANSMIT BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
0x01C0–0x01FF Freescale Scalable CAN — MSCAN (CAN2) Map
Address
0x01C0
0x01C1
0x01C2
0x01C3
0x01C4
0x01C5
0x01C6
0x01C7
0x01C8
0x01C9
0x01CA
0x01CB
0x01CC
0x01CD
0x01CE
0x01CF
0x01D0
Name
Bit 7
R
CAN2CTL0
RXFRM
W
R
CAN2CTL1
CANE
W
R
CAN2BTR0
SJW1
W
R
CAN2BTR1
SAMP
W
R
CAN2RFLG
WUPIF
W
R
CAN2RIER
WUPIE
W
R
0
CAN2TFLG
W
R
0
CAN2TIER
W
R
0
CAN2TARQ
W
R
0
CAN2TAAK
W
R
0
CAN2TBSEL
W
R
0
CAN2IDAC
W
R
0
Reserved
W
R
0
CAN2MISC
W
R RXERR7
CAN2RXERR
W
R TXERR7
CAN2TXERR
W
R
CAN2IDAR0
AC7
W
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
CLKSRC
LOOPB
LISTEN
BORM
WUPM
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
TX2
TX1
TX0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
CSCIF
0
BOHOLD
MC9S12XDP512 Data Sheet, Rev. 2.21
1332
Freescale Semiconductor
Appendix G Detailed Register Map
0x01C0–0x01FF Freescale Scalable CAN — MSCAN (CAN2) Map (continued)
Address
Name
0x01D1
CAN2IDAR1
0x01D2
CAN2IDAR2
0x01D3
CAN2IDAR3
0x01D4
CAN2IDMR0
0x01D5
CAN2IDMR1
0x01D6
CAN2IDMR2
0x01D7
CAN2IDMR3
0x01D8
CAN2IDAR4
0x01D9
CAN2IDAR5
0x01DA
CAN2IDAR6
0x01DB
CAN2IDAR7
0x01DC
CAN2IDMR4
0x01DD
CAN2IDMR5
0x01DE
CAN2IDMR6
0x01DF
CAN2IDMR7
0x01E0–
0x01EF
CAN2RXFG
0x01F0–
0x01FF
CAN2TXFG
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
FOREGROUND RECEIVE BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
FOREGROUND TRANSMIT BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1333
Appendix G Detailed Register Map
0x0200–0x023F Freescale Scalable CAN — MSCAN (CAN3)
Address
Name
0x0200
CAN3CTL0
0x0201
CAN3CTL1
0x0202
CAN3BTR0
0x0203
CAN3BTR1
0x0204
CAN3RFLG
0x0205
CAN3RIER
0x0206
CAN3TFLG
0x0207
CAN3TIER
0x0208
CAN3TARQ
0x0209
CAN3TAAK
0x020A
CAN3TBSEL
0x020B
CAN3IDAC
0x020C
Reserved
0x020D
Reserved
0x020E
CAN3RXERR
0x020F
CAN3TXERR
0x0210
CAN3IDAR0
0x0211
CAN3IDAR1
0x0212
CAN3IDAR2
0x0213
CAN3IDAR3
0x0214
CAN3IDMR0
0x0215
CAN3IDMR1
Bit 7
R
RXFRM
W
R
CANE
W
R
SJW1
W
R
SAMP
W
R
WUPIF
W
R
WUPIE
W
R
0
W
R
0
W
R
0
W
R
0
W
R
0
W
R
0
W
R
0
W
R
0
W
R RXERR7
W
R TXERR7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AM7
W
R
AM7
W
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
CLKSRC
LOOPB
LISTEN
BORM
WUPM
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
TX2
TX1
TX0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
0
0
0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
CSCIF
0
BOHOLD
MC9S12XDP512 Data Sheet, Rev. 2.21
1334
Freescale Semiconductor
Appendix G Detailed Register Map
0x0200–0x023F Freescale Scalable CAN — MSCAN (CAN3) (continued)
Address
Name
0x0216
CAN3IDMR2
0x0217
CAN3IDMR3
0x0218
CAN3IDAR4
0x0219
CAN3IDAR5
0x021A
CAN3IDAR6
0x021B
CAN3IDAR7
0x021C
CAN3IDMR4
0x021D
CAN3IDMR5
0x021E
CAN3IDMR6
0x021F
CAN3IDMR7
0x0220–
0x022F
CAN3RXFG
0x0230–
0x023F
CAN3TXFG
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
FOREGROUND RECEIVE BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
W
R
W
FOREGROUND TRANSMIT BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
0x0240–0x027F Port Integration Module PIM_9DX (PIM) Map (Sheet 1 of 4)
Address
Name
0x0240
PTT
0x0241
PTIT
0x0242
DDRT
0x0243
RDRT
0x0244
PERT
0x0245
PPST
0x0246
Reserved
0x0247
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PTT7
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
PTIT7
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
DDRT7
DDRT7
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
RDRT7
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
PERT7
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
PPST7
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1335
Appendix G Detailed Register Map
0x0240–0x027F Port Integration Module PIM_9DX (PIM) Map (Sheet 2 of 4)
Address
Name
0x0248
PTS
0x0249
PTIS
0x024A
DDRS
0x024B
RDRS
0x024C
PERS
0x024D
PPSS
0x024E
WOMS
0x024F
Reserved
0x0250
PTM
0x0251
PTIM
0x0252
DDRM
0x0253
RDRM
0x0254
PERM
0x0255
PPSM
0x0256
WOMM
0x0257
MODRR
0x0258
PTP
0x0259
PTIP
0x025A
DDRP
0x025B
RDRP
0x025C
PERP
0x025D
PPSP
0x025E
PIEP
0x025F
PIFP
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PTS7
PTS6
PTS5
PTS4
PTS3
PTS2
PTS1
PTS0
PTIS7
PTIS6
PTIS5
PTIS4
PTIS3
PTIS2
PTIS1
PTIS0
DDRS7
DDRS7
DDRS5
DDRS4
DDRS3
DDRS2
DDRS1
DDRS0
RDRS7
RDRS6
RDRS5
RDRS4
RDRS3
RDRS2
RDRS1
RDRS0
PERS7
PERS6
PERS5
PERS4
PERS3
PERS2
PERS1
PERS0
PPSS7
PPSS6
PPSS5
PPSS4
PPSS3
PPSS2
PPSS1
PPSS0
WOMS7
WOMS6
WOMS5
WOMS4
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
0
PTM7
PTM6
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
PTIM7
PTIM6
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
DDRM7
DDRM7
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
RDRM7
RDRM6
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
PERM7
PERM6
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
PPSM7
PPSM6
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
WOMM7
WOMM6
WOMM5
WOMM4
WOMM3
WOMM2
WOMM1
WOMM0
MODRR6
MODRR5
MODRR4
MODRR3
MODRR2
MODRR1
MODRR0
PTP7
PTP6
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
PTIP7
PTIP6
PTIP5
PTIP4
PTIP3
PTIP2
PTIP1
PTIP0
DDRP7
DDRP7
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
RDRP7
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
PERP7
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
PPSP7
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSS0
PIEP7
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
PIFP7
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
1336
Freescale Semiconductor
Appendix G Detailed Register Map
0x0240–0x027F Port Integration Module PIM_9DX (PIM) Map (Sheet 3 of 4)
Address
Name
0x0260
PTH
0x0261
PTIH
0x0262
DDRH
0x0263
RDRH
0x0264
PERH
0x0265
PPSH
0x0266
PIEH
0x0267
PIFH
0x0268
PTJ
0x0269
PTIJ
0x026A
DDRJ
0x026B
RDRJ
0x026C
PERJ
0x026D
PPSJ
0x026E
PIEJ
0x026F
PIFJ
0x0270
Reserved
0x0271
PT1AD0
0x0272
Reserved
0x0273
DDR1AD0
0x0274
Reserved
0x0275
RDR1AD0
0x0276
Reserved
0x0277
PER1AD0
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PTH7
PTH6
PTH5
PTH4
PTH3
PTH2
PTH1
PTH0
PTIH7
PTIH6
PTIH5
PTIH4
PTIH3
PTIH2
PTIH1
PTIH0
DDRH7
DDRH7
DDRH5
DDRH4
DDRH3
DDRH2
DDRH1
DDRH0
RDRH7
RDRH6
RDRH5
RDRH4
RDRH3
RDRH2
RDRH1
RDRH0
PERH7
PERH6
PERH5
PERH4
PERH3
PERH2
PERH1
PERH0
PPSH7
PPSH6
PPSH5
PPSH4
PPSH3
PPSH2
PPSH1
PPSH0
PIEH7
PIEH6
PIEH5
PIEH4
PIEH3
PIEH2
PIEH1
PIEH0
PIFH7
PIFH6
PIFH5
PIFH4
PIFH3
PIFH2
PIFH1
PIFH0
PTJ7
PTJ6
PTJ5
PTJ4
PTJ2
PTJ1
PTJ0
PTIJ7
PTIJ6
PTIJ5
PTIJ4
PTIJ2
PTIJ1
PTIJ0
DDRJ7
DDRJ7
DDRJ5
DDRJ4
DDRJ2
DDRJ1
DDRJ0
RDRJ7
RDRJ6
RDRJ5
RDRJ4
RDRJ2
RDRJ1
RDRJ0
PERJ7
PERJ6
PERJ5
PERJ4
PERJ2
PERJ1
PERJ0
PPSJ7
PPSJ6
PPSJ5
PPSJ4
PPSJ2
PPSJ1
PPSJ0
PIEJ7
PIEJ6
PIEJ5
PIEJ4
PIEJ2
PIEJ1
PIEJ0
PIFJ7
PIFJ6
PIFJ5
PIFJ4
PIFJ2
PIFJ1
PIFJ0
0
0
0
0
0
0
0
0
PT1AD07
PT1AD06
PT1AD05
PT1AD04
PT1AD03
PT1AD02
PT1AD01
PT1AD00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DDR1AD0 DDR1AD0 DDR1AD0 DDR1AD0 DDR1AD0 DDR1AD0 DDR1AD0 DDR1AD0
7
6
5
4
3
2
1
1
0
0
0
0
0
0
0
0
RDR1AD0 RDR1AD0 RDR1AD0 RDR1AD0 RDR1AD0 RDR1AD0 RDR1AD0 RDR1AD0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
PER1AD0 PER1AD0 PER1AD0 PER1AD0 PER1AD0 PER1AD0 PER1AD0 PER1AD0
7
6
5
4
3
2
1
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1337
Appendix G Detailed Register Map
0x0240–0x027F Port Integration Module PIM_9DX (PIM) Map (Sheet 4 of 4)
Address
Name
0x0278
PT0AD1
0x0279
PT1AD1
0x027A
DDR0AD1
0x027B
DDR1AD1
0x027C
RDR0AD1
0x027D
RDR1AD1
0x027E
PER0AD1
0x027F
PER1AD1
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PT0AD1
23
PT0AD1
22
PT0AD1
21
PT0AD1
20
PT0AD1
19
PT0AD1
18
PT0AD1
17
PT0AD1
16
PT1AD1
15
PT1AD1
14
PT1AD1
13
PT1AD1
12
PT1AD1
11
PT1AD1
10
PT1AD1
9
PT1AD1
8
DDR0AD1 DDR0AD1 DDR0AD1 DDR0AD1 DDR0AD1 DDR0AD1 DDR0AD1 DDR0AD1
23
22
21
20
19
18
17
16
DDR1AD1 DDR1AD1 DDR1AD1 DDR1AD1 DDR1AD1 DDR1AD1 DDR1AD1 DDR1AD1
15
14
13
12
11
10
9
8
RDR0AD1 RDR0AD1 RDR0AD1 RDR0AD1 RDR0AD1 RDR0AD1 RDR0AD1 RDR0AD1
23
22
21
20
19
18
17
16
RDR1AD1 RDR1AD1 RDR1AD1 RDR1AD1 RDR1AD1 RDR1AD1 RDR1AD1 RDR1AD1
15
14
13
12
11
10
9
8
PER0AD1 PER0AD1 PER0AD1 PER0AD1 PER0AD1 PER0AD1 PER0AD1 PER0AD1
23
22
21
20
19
18
17
16
PER1AD1 PER1AD1 PER1AD1 PER1AD1 PER1AD1 PER1A1D PER1AD1 PER1AD1
15
14
13
12
11
10
9
8
0x0280–0x02BF Freescale Scalable CAN — MSCAN (CAN4) Map
Address
0x0280
0x0281
0x0282
0x0283
0x0284
0x0285
0x0286
0x0287
0x0288
0x0289
0x028A
0x028B
0x028C
Name
Bit 7
R
CAN4CTL0
RXFRM
W
R
CAN4CTL1
CANE
W
R
CAN4BTR0
SJW1
W
R
CAN4BTR1
SAMP
W
R
CAN4RFLG
WUPIF
W
R
CAN4RIER
WUPIE
W
R
0
CAN4TFLG
W
R
0
CAN4TIER
W
R
0
CAN4TARQ
W
R
0
CAN4TAAK
W
R
0
CAN4TBSEL
W
R
0
CAN4IDAC
W
R
0
Reserved
W
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
CLKSRC
LOOPB
LISTEN
BORM
WUPM
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
TSEG22
TSEG21
TSEG20
TSEG13
TSEG12
TSEG11
TSEG10
RSTAT1
RSTAT0
TSTAT1
TSTAT0
OVRIF
RXF
CSCIE
RSTATE1
RSTATE0
TSTATE1
TSTATE0
OVRIE
RXFIE
0
0
0
0
TXE2
TXE1
TXE0
0
0
0
0
TXEIE2
TXEIE1
TXEIE0
0
0
0
0
ABTRQ2
ABTRQ1
ABTRQ0
0
0
0
0
ABTAK2
ABTAK1
ABTAK0
0
0
0
0
TX2
TX1
TX0
IDAM1
IDAM0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
CSCIF
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
1338
Freescale Semiconductor
Appendix G Detailed Register Map
0x0280–0x02BF Freescale Scalable CAN — MSCAN (CAN4) Map (continued)
Address
Name
0x028D
CAN4MISC
0x028E
CAN4RXERR
0x028F
CAN4TXERR
0x0290
CAN4IDAR0
0x0291
CAN4IDAR1
0x0292
CAN4IDAR2
0x0293
CAN4IDAR3
0x0294
CAN4IDMR0
0x0295
CAN4IDMR1
0x0296
CAN4IDMR2
0x0297
CAN4IDMR3
0x0298
CAN4IDAR4
0x0299
CAN4IDAR5
0x029A
CAN4IDAR6
0x029B
CAN4IDAR7
0x029C
CAN4IDMR4
0x029D
CAN4IDMR5
0x029E
CAN4IDMR6
0x029F
CAN4IDMR7
0x02A0–
0x02AF
CAN4RXFG
0x02B0–
0x02BF
CAN4TXFG
Bit 7
R
0
W
R RXERR7
W
R TXERR7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AM7
W
R
AM7
W
R
AM7
W
R
AM7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AC7
W
R
AM7
W
R
AM7
W
R
AM7
W
R
AM7
W
R
W
R
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
0
0
0
0
0
0
Bit 0
RXERR6
RXERR5
RXERR4
RXERR3
RXERR2
RXERR1
RXERR0
TXERR6
TXERR5
TXERR4
TXERR3
TXERR2
TXERR1
TXERR0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AM6
AM5
AM4
AM3
AM2
AM1
AM0
BOHOLD
FOREGROUND RECEIVE BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
FOREGROUND TRANSMIT BUFFER
(See Detailed MSCAN Foreground Receive and Transmit Buffer Layout)
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1339
Appendix G Detailed Register Map
0x02C0–0x02DF Analog-to-Digital Converter 10-Bit 8-Channel (ATD0) Map
Address
Name
0x02C0
ATD0CTL0
0x02C1
ATD0CTL1
0x02C2
ATD0CTL2
0x02C3
ATD0CTL3
0x02C4
ATD0CTL4
0x02C5
ATD0CTL5
0x02C6
ATD0STAT0
0x02C7
Reserved
0x02C8
ATD0TEST0
0x02C9
ATD0TEST1
0x02CA
Reserved
0x02CB
ATD0STAT1
0x02CC
Reserved
0x02CD
ATD0DIEN
0x02CE
Reserved
0x02CF
ATD0PTAD0
0x02D0
ATD0DR0H
0x02D1
ATD0DR0L
0x02D2
ATD0DR1H
0x02D3
ATD0DR1L
0x02D4
ATD0DR2H
0x02D5
ATD0DR2L
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
0
0
0
0
0
ETRIG
SEL
0
0
0
ADPU
AFFC
AWAI
S8C
SRES8
DJM
0
SCF
Bit 2
Bit 1
Bit 0
WRAP2
WRAP1
WRAP0
0
ETRIG
CH2
ETRIG
CH1
ETRIG
CH0
ETRIGLE
ETRIGP
ETRIGE
ASCIE
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DSGN
SCAN
MULT
CC
CB
CA
ETORF
FIFOR
0
CC2
CC1
CC0
0
0
ASCIF
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
0
0
0
0
0
0
0
0
0
0
0
0
0
CCF7
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
0
IEN7
IEN6
IEN5
IEN4
IEN3
IEN2
IEN1
IEN0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
BIT 0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
SC
MC9S12XDP512 Data Sheet, Rev. 2.21
1340
Freescale Semiconductor
Appendix G Detailed Register Map
0x02C0–0x02DF Analog-to-Digital Converter 10-Bit 8-Channel (ATD0) Map (continued)
Address
Name
0x02D6
ATD0DR3H
0x02D7
ATD0DR3L
0x02D8
ATD0DR4H
0x02D9
ATD0DR4L
0x02DA
ATD0DR5H
0x02DB
ATD0DR5L
0x02DC
ATD0DR6H
0x02DD
ATD0DR6L
0x02DE
ATD0DR7H
0x02DF
ATD0DR7L
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Bit 3
Bit 2
Bit 1
Bit 0
LVIE
LVIF
APIE
APIF
0
0
0x02E0–0x02EF Reserved
Address
0x02E0–
0x02EF
Name
Reserved
R
W
0x02F0–0x02F7 Voltage Regulator (VREG_3V3) Map
Address
Name
0x02F0
VREGHTCL
0x02F1
VREGCTRL
0x02F2
VREGAPICL
0x02F3
VREGAPITR
0x02F4
VREGAPIRH
0x02F5
VREGAPIRL
0x02F6
Reserved
0x02F7
Reserved
Bit 7
R
W
R
0
W
R
APICLK
W
R
APITR5
W
R
0
W
R
APIR7
W
R
0
W
R
0
W
Bit 6
Bit 5
Bit 4
Reserved for Factory Test
0
0
0
0
LVDS
0
0
0
0
APITR4
APITR3
APITR2
APITR1
APITR0
0
0
0
APIR11
APIR10
APIR9
APIR8
APIR6
APIR5
APIR4
APIR3
APIR2
APIR1
APIR0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
APIFE
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1341
Appendix G Detailed Register Map
0x02F8–0x02FF Reserved
Address
0x02F8–
0x02FF
Name
Reserved
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0x0300–0x0327 Pulse Width Modulator 8-Bit 8-Channel (PWM) Map
Address
0x0300
0x0301
0x0302
0x0303
0x0304
0x0305
0x0306
0x0307
0x0308
0x0309
0x030A
0x030B
0x030C
0x030D
0x030E
0x030F
0x0310
0x0311
0x0312
0x0313
Name
Bit 7
R
PWME7
W
R
PWMPOL
PPOL7
W
R
PWMCLK
PCLK7
W
R
0
PWMPRCLK
W
R
PWMCAE
CAE7
W
R
PWMCTL
CON67
W
R
0
PWMTST
Test Only
W
R
0
PWMPRSC
W
R
PWMSCLA
Bit 7
W
R
PWMSCLB
Bit 7
W
R
0
PWMSCNTA
W
R
0
PWMSCNTB
W
R
Bit 7
PWMCNT0
W
0
R
Bit 7
PWMCNT1
W
0
R
Bit 7
PWMCNT2
W
0
R
Bit 7
PWMCNT3
W
0
R
Bit 7
PWMCNT4
W
0
R
Bit 7
PWMCNT5
W
0
R
Bit 7
PWMCNT6
W
0
R
Bit 7
PWMCNT7
W
0
PWME
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PWME6
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
PPOL6
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
PCLK6
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
PCKB2
PCKB1
PCKB0
PCKA2
PCKA1
PCKA0
CAE6
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
1342
Freescale Semiconductor
Appendix G Detailed Register Map
0x0300–0x0327 Pulse Width Modulator 8-Bit 8-Channel (PWM) Map
Address
Name
0x0314
PWMPER0
0x0315
PWMPER1
0x0316
PWMPER2
0x0317
PWMPER3
0x0318
PWMPER4
0x0319
PWMPER5
0x031A
PWMPER6
0x031B
PWMPER7
0x031C
PWMDTY0
0x031D
PWMDTY1
0x031E
PWMDTY2
0x031F
PWMDTY3
0x0320
PWMDTY4
0x0321
PWMDTY5
0x0322
PWMDTY6
0x0323
PWMDTY7
0x0324
PWMSDN
0x0325
Reserved
0x0326
Reserved
0x0327
Reserved
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
PWM7IN
PWMIE
PWM7INL
PWM7
ENA
0
0
0
PWM
RSTRT
0
0
PWMIF
0
0
0
0
PWMLVL
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1343
Appendix G Detailed Register Map
0x0328–0x033F Reserved
Address
0x0328–
0x033F
Name
Reserved
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
PFLT3
0
PFLT2
0
PFLMT1
0
PFLT1
0
PFLMT0
0
PFLT0
PCE3
PCE2
PCE1
PCE0
PMUX3
PMUX2
PMUX1
PMUX0
PINTE3
PINTE2
PINTE1
PINTE0
PTF3
PTF2
PTF1
PTF0
0x0340–0x0367 Periodic Interrupt Timer (PIT) Map
Address
Name
0x0340
PITCFLMT
0x0341
PITFLT
0x0342
PITCE
0x0343
PITMUX
0x0344
PITINTE
0x0345
PITTF
0x0346
PITMTLD0
0x0347
PITMTLD1
0x0348
PITLD0 (hi)
0x0349
PITLD0 (lo)
0x034A
PITCNT0 (hi)
0x034B
PITCNT0 (lo)
0x034C
PITLD1 (hi)
0x034D
PITLD1 (lo)
0x034E
PITCNT1 (hi)
0x034F
PITCNT1 (lo)
0x0350
PITLD2 (hi)
0x0351
PITLD2 (lo)
0x0352
PITCNT2 (hi)
0x0353
PITCNT2 (lo)
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
PITE
PITSWAI
PITFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PMTLD7
PMTLD6
PMTLD5
PMTLD4
PMTLD3
PMTLD2
PMTLD1
PMTLD0
PMTLD7
PMTLD6
PMTLD5
PMTLD4
PMTLD3
PMTLD2
PMTLD1
PMTLD0
PLD15
PLD14
PLD13
PLD12
PLD11
PLD10
PLD9
PLD8
PLD7
PLD6
PLD5
PLD4
PLD3
PLD2
PLD1
PLD0
PCNT15
PCNT14
PCNT13
PCNT12
PCNT11
PCNT10
PCNT9
PCNT8
PCNT7
PCNT6
PCNT5
PCNT4
PCNT3
PCNT2
PCNT1
PCNT0
PLD15
PLD14
PLD13
PLD12
PLD11
PLD10
PLD9
PLD8
PLD7
PLD6
PLD5
PLD4
PLD3
PLD2
PLD1
PLD0
PCNT15
PCNT14
PCNT13
PCNT12
PCNT11
PCNT10
PCNT9
PCNT8
PCNT7
PCNT6
PCNT5
PCNT4
PCNT3
PCNT2
PCNT1
PCNT0
PLD15
PLD14
PLD13
PLD12
PLD11
PLD10
PLD9
PLD8
PLD7
PLD6
PLD5
PLD4
PLD3
PLD2
PLD1
PLD0
PCNT15
PCNT14
PCNT13
PCNT12
PCNT11
PCNT10
PCNT9
PCNT8
PCNT7
PCNT6
PCNT5
PCNT4
PCNT3
PCNT2
PCNT1
PCNT0
MC9S12XDP512 Data Sheet, Rev. 2.21
1344
Freescale Semiconductor
Appendix G Detailed Register Map
0x0340–0x0367 Periodic Interrupt Timer (PIT) Map (continued)
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PLD14
PLD13
PLD12
PLD11
PLD10
PLD9
PLD8
PLD6
PLD5
PLD4
PLD3
PLD2
PLD1
PLD0
PCNT14
PCNT13
PCNT12
PCNT11
PCNT10
PCNT9
PCNT8
PCNT6
PCNT5
PCNT4
PCNT3
PCNT2
PCNT1
PCNT0
0
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
R
0x0354
PITLD3 (hi)
PLD15
W
R
0x0355
PITLD3 (lo)
PLD7
W
R
0x0356 PITCNT3 (hi)
PCNT15
W
R
0x0357 PITCNT3 (lo)
PCNT7
W
R
0
0x0358–
Reserved
0x0367
W
0x0368–0x037F Reserved
Address
Name
0x0368–
0x037F
Reserved
R
W
0x0380–0x03BF XGATE Map (Sheet 1 of 3)
Address
Name
0x0380
XGMCTL
0x0381
XGMCTL
0x0382
XGCHID
0x0383
Reserved
0x0384
XGVBR
0x0385
XGVBR
0x0386
XGVBR
0x0387
XGVBR
0x0388
XGIF
0x0389
XGIF
0x038A
XGIF
0x023B
XGIF
0x023C
XGIF
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
XGEM
XGFRZM
XGDBGM
XGSSM
XGFACTM
0
XGS
WEIFM
XGIEM
XGE
XGFRZ
XGDBG
XGSS
XGFACT
XGSWEIF
XGIE
0
0
XGCHID[6:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00
0
0
0
XGVBR[15:8]
0
XGVBR[7:1]
0
0
0
0
0
0
0
XGIF_77
XGIF_76
XGIF_75
XGIF_74
XGIF_73
XGIF_72
XGIF_71
XGIF_70
XGIF_6F
XGIF_6E
XGIF_6D
XGIF_6C
XGIF_6B
XGIF_6A
XGIF_69
XGIF_68
XGIF_67
XGIF_66
XGIF_65
XGIF_64
XGIF_63
XGIF_62
XGIF_61
XGIF_60
XGIF_5F
XGIF_5E
XGIF_5D
XGIF_5C
XGIF_5B
XGIF_5A
XGIF_59
XGIF_58
XGIF_78
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1345
Appendix G Detailed Register Map
0x0380–0x03BF XGATE Map (Sheet 2 of 3)
Address
Name
0x038D
XGIF
0x038E
XGIF
0x038F
XGIF
0x0390
XGIF
0x0391
XGIF
0x0392
XGIF
0x0393
XGIF
0x0394
XGIF
0x0395
XGIF
0x0396
XGIF
0x0397
XGIF
0x0398
XGSWT (hi)
0x0399
XGSWT (lo)
0x039A
XGSEM (hi)
0x039B
XGSEM (lo)
0x039C
Reserved
0x039D
XGCCR
0x039E
XGPC (hi)
0x039F
XGPC (lo)
0x03A0
Reserved
0x03A1
Reserved
0x03A2
XGR1 (hi)
0x03A3
XGR1 (lo)
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
XGIF_57
XGIF_56
XGIF_55
XGIF_54
XGIF_53
XGIF_52
XGIF_51
XGIF_50
XGIF_4F
XGIF_4E
XGIF_4D
XGIF_4C
XGIF_4B
XGIF_4A
XGIF_49
XGIF_48
XGIF_47
XGIF_46
XGIF_45
XGIF_44
XGIF_43
XGIF_42
XGIF_41
XGIF_40
XGIF_3F
XGIF_3E
XGIF_3D
XGIF_3C
XGIF_3B
XGIF_3A
XGIF_39
XGIF_38
XGIF_37
XGIF_36
XGIF_35
XGIF_34
XGIF_33
XGIF_32
XGIF_31
XGIF_30
XGIF_2F
XGIF_2E
XGIF_2D
XGIF_2C
XGIF_2B
XGIF_2A
XGIF_29
XGIF_28
XGIF_27
XGIF_26
XGIF_25
XGIF_24
XGIF_23
XGIF_22
XGIF_21
XGIF_20
XGIF_1F
XGIF_1E
XGIF_1D
XGIF_1C
XGIF_1B
XGIF_1A
XGIF_19
XGIF_18
XGIF_17
XGIF_16
XGIF_15
XGIF_14
XGIF_13
XGIF_12
XGIF_11
XGIF_10
XGIF_0F
XGIF_0E
XGIF_0D
XGIF_0C
XGIF_0B
XGIF_0A
XGIF_09
0
0
0
0
0
0
0
0
0
0
0
0
0
XGSWTM[7:0]
0
0
0
0
0
0
0
0
0
0
XGN
XGZ
XGV
XGC
0
XGSWT[7:0]
0
0
0
0
0
XGSEMM[7:0]
XGSEM[7:0]
0
0
0
0
0
0
0
0
XGPC[15:8]
XGPC[7:0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
XGR1[15:8]
XGR1[7:0]
MC9S12XDP512 Data Sheet, Rev. 2.21
1346
Freescale Semiconductor
Appendix G Detailed Register Map
0x0380–0x03BF XGATE Map (Sheet 3 of 3)
Address
Name
0x03A4
XGR2 (hi)
0x03A5
XGR2 (lo)
0x03A6
XGR3 (hi)
0x03A7
XGR3 (lo)
0x03A8
XGR4 (hi)
0x03A9
XGR4 (lo)
0x03AA
XGR5 (hi)
0x03AB
XGR5(lo)
0x03AC
XGR6 (hi)
0x03AD
XGR6 (lo)
0x03AE
XGR7 (hi)
0x03AF
XGR7 (lo)
0x03B0–
0x03BF
Reserved
Bit 7
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
R
W
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
XGR2[15:8]
XGR2[7:0]
XGR3[15:8]
XGR3[7:0]
XGR4[15:8]
XGR4[7:0]
XGR5[15:8]
XGR5[7:0]
XGR6[15:8]
XGR6[7:0]
XGR7[15:8]
XGR7[7:0]
0
0
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0x03C0–0x07FF Reserved
Address
Name
0x03C0
–0x07FF
Reserved
R
W
MC9S12XDP512 Data Sheet, Rev. 2.21
Freescale Semiconductor
1347
Appendix G Detailed Register Map
MC9S12XDP512 Data Sheet, Rev. 2.21
1348
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274 or 480-768-2130
Europe, Middle East, and Africa:
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-0047, Japan
0120-191014 or +81-3-3440-3569
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners. Java and all other Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.
The Bluetooth trademarks are owned by their proprietor and used by
Freescale Semiconductor, Inc. under license.
© Freescale Semiconductor, Inc. 2008. All rights reserved.
MC9S12XDP512RMV2
Rev. 2.21
October 2009