0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC9S12A128CPV

MC9S12A128CPV

  • 厂商:

    ROCHESTER(罗切斯特)

  • 封装:

    LQFP112

  • 描述:

    IC MCU 16BIT 128KB FLASH 112LQFP

  • 数据手册
  • 价格&库存
MC9S12A128CPV 数据手册
DOCUMENT NUMBER 9S12DT128DGV2/D MC9S12DT128 Device User Guide V02.11 Covers also MC9S12DT128E, MC9S12DG128E, MC9S12DJ128E, MC9S12DG128, MC9S12DJ128, MC9S12DB128, MC9S12A128, SC515846, SC515847, SC515848, SC515849 Original Release Date: 18 June 2001 Revised: 3 May 2004 Motorola, Inc Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. 1 MC9S12DT128 Device User Guide — V02.11 Revision History Version Revision Effective Number Date Date Author Description of Changes V01.00 18 Jun 2001 18 June 2001 Initial version (parent doc v2.03 dug for dp256). V01.01 23 July 2001 23 July 2001 Updated version after review V01.02 23 Sep 2001 23 Sep 2001 Changed Partname, added pierce mode, updated electrical characteristics some minor corrections V01.03 12 Oct 2001 12 Oct 2001 Replaced Star12 by HCS12 V01.04 27 Feb 2002 27 Feb 2002 Updated electrical spec after MC-Qualification (IOL/IOH), Data for Pierce, NVM reliability New document numbering. Corrected Typos V01.05 4 Mar 2002 4 Mar 2002 Increased VDD to 2.35V, removed min. oscillator startup Removed Document order number except from Cover Sheet 22 July 2002 Added: Pull-up columns to signal table, example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Modified: Reduced Wait and Run IDD values Mode of Operation chapter changed leakage current for ADC inputs down to +-1uA Corrected: Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position V01.06 8 July 2002 V02.00 11 Jan 2002 11 Jan 2002 NEW MASKSET Changed part number from DTB128 to DT128 Functional Changes: ROMCTL changes in Emulation Mode 80 Pin Byteflight package Option available Flash with 2 Bit Backdoor Key Enable Additional CAN0 routing to PJ7,6 Improved BDM with sync and acknowledge capabilities New Part ID number Improvements: Significantly improved NVM reliability data Corrections: Interrupt vector Table V02.01 01 Feb 2002 01 Feb 2002 Updated Block User Guide versions in preface Updated Appendix A Electrical Characteristics 2 MC9S12DT128 Device User Guide — V02.11 Version Revision Effective Number Date Date V02.02 V02.03 08 Mar 2002 14 Mar 2002 Author Description of Changes 08 Mar 2002 Changed XCLKS to PE7 in Table 2-2 Updated device part numbers in Figure 2-1 Updated BDM clock in Figure 3-1 Removed SIM description in overview & nUPOSC spec in Table A-15 Updated electrical spec of VDD & VDDPLL (Table A-4), IOL/IOH (Table A-6), CINS (Table A-9), CIN (Table A-6 & A-15), Updated interrupt pulse timing variables in Table A-6 Updated device part numbers in Figure 2-1 Added document numbers on cover page and Table 0-2 14 Mar 2002 Cleaned up Fig. 1-1, 2-1 Updated Section 1.5 descriptions Corrected PE assignment in Table 2-2, Fig. 2-5,6,7. Corrected NVM sizes in Sections 16, 17 Added IREF spec for 1ATD in Table A-8 Added Blank Check in A.3.1.5 and Table A-11 Updated CRG spec in Table A-15 V02.04 16 Aug 2002 16 Aug 2002 Added: Pull-up columns to signal table, Example for PLL Filter calculation, Thermal values for junction to board and package, BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Device specific info on CRG Modified: Reduced Wait and Run IDD values Mode of Operation chapter Changed leakage current for ADC inputs down to +-1uA Minor modification of PLL frequency/ voltage gain values Corrected: Pin names/functions on 80 pin packages Interrupt vector table enable register inconsistencies PCB layout for 80QFP VREGEN position V02.05 12 Sep 2002 12 Sep 2002 Corrected: Register address mismatches in 1.5.1 06 Nov 2002 Removed document order no. from Revision History pages Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN0/1/4, BDLC, IIC and/or Byteflight Added 2L40K mask set in section 1.6 Added OSC User Guide in Preface, “Document References” Added oscillator clock connection to BDM in S12_CORE in fig 3-1 Corrected several register and bit names in “Local Enable” column of Table 5.1 Interrupt Vector Locations Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock Added new section: “Oscillator (OSC) Block Description” Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz V02.06 06 Nov 2002 3 MC9S12DT128 Device User Guide — V02.11 Version Revision Effective Number Date Date Author Description of Changes V02.07 29 Jan 2003 29 Jan 2003 Added 3L40K mask set in section 1.6 Corrected register entries in section 1.5.1 “Detailed Memory Map” Updated description for ROMCTL in section 2.3.31 Updated section 4.3.3 “Unsecuring the Microcontroller” Corrected and updated device-specific information for OSC (section 8.1) & Byteflight (section 15.1) Updated footnote in Table A-4 “Operating Conditions” Changed reference of VDDM to VDDR in section A.1.8 Removed footnote on input leakage current in Table A-6 “5V I/O Characteristics” V02.08 26 Feb 2003 26 Feb 2003 Added part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E in “Preface” and related part number references Removed mask sets 0L40K and 2L40K from Table 1-3 15 Oct 2003 Replaced references to HCS12 Core Guide by the individual HCS12 Block guides in Table 0-2, section 1.5.1, and section 6; updated Fig.3-1 “Clock Connections” to show the individual HCS12 blocks Corrected PIM module name and document order number in Table 0-2 “Document References” Corrected ECT pulse accumulators description in section 1.2 “Features” Corrected KWP5 pin name in Fig 2-1 112LQFP pin assignments Corrected pull resistor CTRL/reset states for PE7 and PE4-PE0 in Table 2.1 “Signal Properties” Mentioned “S12LRAE” bootloader in Flash section 17 Corrected footnote on clamp of TEST pin under Table A-1 “Absolute Maximum Ratings” Corrected minimum bus frequency to 0.25MHz in Table A-4 “Operating Conditions” Replaced “burst programming” by “row programming” in A.3 “NVM, Flash and EEPROM” Corrected blank check time for EEPROM in Table A-11 “NVM Timing Characteristics” Corrected operating frequency in Table A-18 “SPI Master/Slave Mode Timing Characteristics 6 Feb 2004 Added A128 information in “Derivative Differences”, 2.1 “Device Pinout”, 2.2 “Signal Properties Summary”, Fig 23-2 & Fig 23-4 Added lead-free package option (PVE) in Table 0-2 “Derivative Differences for MC9S12DB128” and Fig 0-1 “Order Partnumber Example” Added an “AEC qualified” row in the “Derivative Differences” tables 0-1 & 0-2. 3 May 2004 Added part numbers SC515846, SC515847, SC515848, and SC515849 in “Derivative Differences” tables 0-1 & 0-2, section 2, and section 23. Corrected and added maskset 4L40K in tables 0-1 & 0-2 and section 1.6. Corrected BDLC module availability in DB128 80QFP part in “Derivative Differences” table 0-2. V02.09 V02.10 V02.11 4 15 Oct 2003 6 Feb 2004 3 May 2004 MC9S12DT128 Device User Guide — V02.11 5 MC9S12DT128 Device User Guide — V02.11 6 MC9S12DT128 Device User Guide — V02.11 Table of Contents Section 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.1 1.2 1.3 1.4 1.5 1.5.1 1.6 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Section 2 Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.3.3 TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.3.4 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .64 2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . . . .65 2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . . . .65 2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . . . .65 2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .65 2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .65 2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.18 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 7 MC9S12DT128 Device User Guide — V02.11 2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 2.3.27 2.3.28 2.3.29 2.3.30 2.3.31 2.3.32 2.3.33 2.3.34 2.3.35 2.3.36 2.3.37 2.3.38 2.3.39 2.3.40 2.3.41 2.3.42 2.3.43 2.3.44 2.3.45 2.3.46 2.3.47 2.3.48 2.3.49 2.3.50 2.3.51 2.3.52 2.3.53 2.3.54 2.3.55 2.3.56 8 PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7. . . . . . . . . . . . . . . . . .68 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . .69 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . .69 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . . . .70 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . .70 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . . . .70 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .71 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .71 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .71 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 MC9S12DT128 Device User Guide — V02.11 2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . .73 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins . . . . . . . . . . . . . . .73 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .74 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .74 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .74 2.4.7 VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Section 3 System Clock Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Section 4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Section 5 Resets and Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 5.3 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 5.3.1 I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 5.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Section 6 HCS12 Core Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1 CPU Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 9 MC9S12DT128 Device User Guide — V02.11 6.1.1 6.2 6.2.1 6.3 6.3.1 6.4 6.5 6.5.1 6.6 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . . . .85 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . . . .85 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 HCS12 Background Debug Module (BDM) Block Description . . . . . . . . . . . . . . . . . . . .86 Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Section 7 Clock and Reset Generator (CRG) Block Description . . . . . . . . . 86 7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Section 8 Oscillator (OSC) Block Description . . . . . . . . . . . . . . . . . . . . . . . . 86 8.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Section 9 Enhanced Capture Timer (ECT) Block Description . . . . . . . . . . . . 86 Section 10 Analog to Digital Converter (ATD) Block Description. . . . . . . . . 87 Section 11 Inter-IC Bus (IIC) Block Description . . . . . . . . . . . . . . . . . . . . . . . 87 Section 12 Serial Communications Interface (SCI) Block Description. . . . . 87 Section 13 Serial Peripheral Interface (SPI) Block Description . . . . . . . . . . 87 Section 14 J1850 (BDLC) Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . 87 Section 15 Byteflight (BF) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . 87 15.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Section 16 Pulse Width Modulator (PWM) Block Description . . . . . . . . . . . . 88 Section 17 Flash EEPROM 128K Block Description . . . . . . . . . . . . . . . . . . . 88 Section 18 EEPROM 2K Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Section 19 RAM Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10 MC9S12DT128 Device User Guide — V02.11 Section 20 MSCAN Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Section 21 Port Integration Module (PIM) Block Description . . . . . . . . . . . . 89 Section 22 Voltage Regulator (VREG) Block Description . . . . . . . . . . . . . . . 89 Section 23 Printed Circuit Board Layout Proposal . . . . . . . . . . . . . . . . . . . . 89 Appendix A Electrical Characteristics A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.1.6 ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .101 A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 A.2.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 A.2.2 Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 A.2.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 A.3.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 A.3.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 A.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 A.5.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 11 MC9S12DT128 Device User Guide — V02.11 A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 A.8.1 General Multiplexed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Appendix B Package Information B.1 B.2 B.3 12 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 MC9S12DT128 Device User Guide — V02.11 List of Figures Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 1-1 MC9S12DT128 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Figure 1-2 MC9S12DT128 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128, MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128 MC9S12A128, SC515846, SC515847, SC515848, and SC515849 . . . . . . . . . . . . . . . . . . . . .58 Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848 Bondout . . . . .59 Figure 2-3 Pin Assignments in 80 QFP for MC9S12DB128 and SC515846 Bondout . . . . .60 Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Figure 2-5 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Figure 2-6 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . . . .91 Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848) Colpitts Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .93 Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848) Pierce Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128 and SC515846) Pierce Oscillator 95 Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Figure A-2 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Figure A-3 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure A-4 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure A-5 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Figure A-6 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure A-7 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure A-8 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure A-9 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . .134 13 MC9S12DT128 Device User Guide — V02.11 14 MC9S12DT128 Device User Guide — V02.11 List of Tables Table 0-2 Derivative Differences for MC9S12DB1281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 0-1 Derivative Differences1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 0-3 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 $0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) ................32 $0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) ...............................32 $0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) ............................................................33 $0017 - $0017 MMC map 2 of 4 (HCS12 Module Mapping Control) ...............................33 $0018 - $0019 Reserved ..................................................................................................33 $001A - $001B Device ID Register (Table 1-3) ................................................................33 $001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-4) ..............33 $001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) ................33 $001F - $001F INT map 2 of 2 (HCS12 Interrupt) ............................................................33 $0020 - $0027 Reserved ..................................................................................................34 $0028 - $002F BKP (HCS12 Breakpoint) .........................................................................34 $0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) ...............................34 $0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) ................34 $0034 - $003F CRG (Clock and Reset Generator) ..........................................................35 $0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) .................................35 $0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ..............................38 $00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) .......................................39 $00C8 - $00CF SCI0 (Asynchronous Serial Interface) ......................................................41 $00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ......................................................41 $00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................42 $00E0 - $00E7 IIC (Inter IC Bus) ......................................................................................42 $00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ........................................43 $00F0 - $00F7 SPI1 (Serial Peripheral Interface) ............................................................43 $00F8 - $00FF Reserved ..................................................................................................43 $0100 - $010F Flash Control Register (fts128k2) ............................................................44 $0110 - $011B EEPROM Control Register (eets2k) ........................................................44 $011C - $011F Reserved for RAM Control Register ........................................................45 $0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ..............................45 $0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ..............................................46 15 MC9S12DT128 Device User Guide — V02.11 Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . .47 $0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) ..............................................48 $01C0 - $01FF Reserved ..................................................................................................49 $0200 - $023F Reserved ..................................................................................................49 $0240 - $027F PIM (Port Integration Module) ..................................................................50 $0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ..............................................52 $02C0 - $02FF Reserved ..................................................................................................53 $0300 - $035F Byteflight ..................................................................................................53 $0360 - $03FF Reserved ..................................................................................................55 Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Table 2-2 MC9S12DT128 Power and Ground Connection Summary . . . . . . . . . . . . . . . . . .72 Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Table 23-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .100 Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . . .115 Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 16 MC9S12DT128 Device User Guide — V02.11 Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 17 MC9S12DT128 Device User Guide — V02.11 18 MC9S12DT128 Device User Guide — V02.11 Derivative Differences and Document References Derivative Differences Table 0-1 and Table 0-2 show the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Derivative Differences1 Modules # of CANs CAN4 CAN1 MC9S12DT128E3 MC9S12DG128E3 MC9S12DT128 MC9S12DG128 SC5158494 SC5158474 3 2 ✓ ✓ ✓ ✕ CAN0 J1850/BDLC IIC Byteflight ✓ ✕ ✓ ✕ Package 112 LQFP Package Code PV Mask set Temp Options AEC qualified Notes ✓ ✕ ✓ ✕ MC9S12DJ128E3 MC9S12DJ128 SC5158484 2 ✓ ✕ MC9S12A128 0 ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ 112 LQFP/80 QFP2 112 LQFP/80 QFP2 112 LQFP/80 QFP2 PV/FU PV/FU PV/FU 1L40K3, 3L40K, 4L40K4 M, V, C Yes 1L40K3, 3L40K, 4L40K4 M, V, C Yes 1L40K3, 3L40K, 4L40K4 M, V, C Yes An errata exists contact Sales Office An errata exists contact Sales Office An errata exists contact Sales Office 3L40K C No An errata exists contact Sales Office Table 0-2 Derivative Differences for MC9S12DB1281 Modules MC9S12DB128 SC5158464 # of CANs CAN4 CAN1 CAN0 J1850/BDLC IIC Byteflight 2 ✓ ✕ ✓ ✕ ✕ ✓ MC9S12DB128 SC5158464 0 ✕ ✕ ✕ ✕ ✕ ✓ Package 112 LQFP 80 QFP2 Package Code PV/PVE FU Mask set Temp Options AEC qualified 4L40K4 3L40K, M, V, C/M, V Yes 3L40K, 4L40K4 M, V, C Yes 19 MC9S12DT128 Device User Guide — V02.11 Modules MC9S12DB128 SC5158464 MC9S12DB128 SC5158464 Notes An errata exists contact Sales Office An errata exists contact Sales Office NOTE: 1. ✓: Available for this device, ✕: Not available for this device. 2. 80 Pin bond-out for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848 is the same; MC9S12DB128 and SC515846 have a different bond-out. 3. Part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E are associated with the mask set 1L40K. 4. Part numbers SC515846, SC515847, SC515848, and SC515849 are associated with the mask set 4L40K. The following figure provides an ordering number example for the MC9S12D128 devices. MC9S12 DJ128 C FU Package Option Temperature Option Device Title Controller Family Temperature Options C = -40˚C to 85˚C V = -40˚C to 105˚C M = -40˚C to 125˚C Package Options FU = 80QFP PV = 112LQFP PVE = lead-free 112LQFP Figure 0-1 Order Partnumber Example The following items should be considered when using a derivative. • • 20 Registers – Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a derivative without CAN0 (see Table 0-1 and Table 0-2). – Do not write or read CAN1 registers (after reset: address range $0180 - $01BF), if using a derivative without CAN1 (see Table 0-1 and Table 0-2). – Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a derivative without CAN4 (see Table 0-1 and Table 0-2). – Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a derivative without BDLC (see Table 0-1 and Table 0-2). – Do not write or read IIC registers (after reset: address range $00E0 - $00E7), if using a derivative without IIC (see Table 0-1 and Table 0-2). – Do not write or read Byteflight registers (after reset: address range $0300 - $035F), if using a derivative without Byteflight registers (see Table 0-1 and Table 0-2). Interrupts – Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for unused interrupts, if using a derivative without CAN0 (see Table 0-1 and Table 0-2). – Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for unused interrupts, if using a derivative without CAN1 (see Table 0-1 and Table 0-2). MC9S12DT128 Device User Guide — V02.11 • • – Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for unused interrupts, if using a derivative without CAN4 (see Table 0-1 and Table 0-2). – Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC (see Table 0-1 and Table 0-2). – Fill the IIC interrupt vector ($FFC0, $FFC1) according to your coding policies for unused interrupts, if using a derivative without IIC (see Table 0-1 and Table 0-2). – Fill the four Byteflight interrupt vectors ($FFA0 - $FFA7) according to your coding policies for unused interrupts, if using a derivative without Byteflight (see Table 0-1 and Table 0-2). Ports – The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see Table 0-1 and Table 0-2). – The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if using a derivative without CAN1 (see Table 0-1 and Table 0-2). – The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM7, PM6, PM5 and PM4, if using a derivative without CAN4 (see Table 0-1 and Table 0-2). – The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see Table 0-1 and Table 0-2). – The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative without IIC (see Table 0-1 and Table 0-2). – The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF, RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative without Byteflight (see Table 0-1 and Table 0-2). – Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DTB128 Block User Guide), if using a derivative without CAN0 (see Table 0-1 and Table 0-2). – Do not write MODRR3 and MODRR2 Bit of Module Routing Register (PIM_9DTB128 Block User Guide), if using a derivative without CAN4 (see Table 0-1 and Table 0-2). Pins not available in 80 pin QFP package for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848 – Port H In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing a $FF to the pull enable register (PERH at Base+$0264). – Port J[1:0] Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+$026C. 21 MC9S12DT128 Device User Guide — V02.11 • – Port K Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+$000C. Therefore care must be taken not to clear this bit. – Port M[7:6] PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. – Port P6 PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input. – Port S[7:4] PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. – PAD[15:8] (ATD1 channels) Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers! Pins not available in 80 pin QFP package for MC9S12DB128 and SC515846 – Port H In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing a $FF to the pull enable register (PERH at Base+$0264). – Port J[7:6, 1:0] Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[7:6, 1:0] by clearing the bits PERJ7, PERJ6, PERJ1 and PERJ0 at Base+$026C. – Port K Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+$000C. Therefore care must be taken not to clear this bit. – Port M[1:0] PM1:0 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. – Port P6 PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input. – Port S[3:2] PS3:2 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs. – PAD[15:8] (ATD1 channels) Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers! Document References 22 MC9S12DT128 Device User Guide — V02.11 The Device User Guide provides information about the MC9S12DT128 device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document. See Table 0-3 for names and versions of the referenced documents throughout the Device User Guide. Table 0-3 Document References User Guide Version Document Order Number HCS12 CPU Reference Manual V02 S12CPUV2/D HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D HCS12 Background Debug Module (BDM) Block Guide V04 S12BDMV4/D HCS12 Breakpoint (BKP) Block Guide V01 S12BKPV1/D Clock and Reset Generator (CRG) Block User Guide V04 S12CRGV4/D Oscillator (OSC) Block User Guide V02 S12OSCV2/D Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide V01 S12ECT16B8CV1/D Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide V02 S12ATD10B8CV2/D Inter IC Bus (IIC) Block User Guide V02 S12IICV2/D Asynchronous Serial Interface (SCI) Block User Guide V02 S12SCIV2/D Serial Peripheral Interface (SPI) Block User Guide V02 S12SPIV2/D Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide V01 S12PWM8B8CV1/D 128K Byte Flash (FTS128K) Block User Guide V02 S12FTS128KV2/D 2K Byte EEPROM (EETS2K) Block User Guide V01 S12EETS2KV1/D Byte Level Data Link Controller -J1850 (BDLC) Block User Guide V01 S12BDLCV1/D Motorola Scalable CAN (MSCAN) Block User Guide V02 S12MSCANV2/D Voltage Regulator (VREG) Block User Guide V01 S12VREGV1/D Port Integration Module (PIM_9DTB128) Block User Guide V02 S12DTB128PIMV2/D Byteflight (BF) Block User Guide V01 S12BFV1/D 23 MC9S12DT128 Device User Guide — V02.11 24 MC9S12DT128 Device User Guide — V02.11 Section 1 Introduction 1.1 Overview The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. 1.2 Features • HCS12 Core – 16-bit HCS12 CPU i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii. 20-bit ALU iv. Instruction queue v. Enhanced indexed addressing • • – MEBI (Multiplexed External Bus Interface) – MMC (Module Mapping Control) – INT (Interrupt control) – BKP (Breakpoints) – BDM (Background Debug Module) CRG (Clock and Reset Generator) – Choice of low current Colpitts oscillator or standard Pierce Oscillator – PLL – COP watchdog – real time interrupt – clock monitor 8-bit and 4-bit ports with interrupt functionality 25 MC9S12DT128 Device User Guide — V02.11 • • • • • • • 26 – Digital filtering – Programmable rising or falling edge trigger Memory – 128K Flash EEPROM – 2K byte EEPROM – 8K byte RAM Two 8-channel Analog-to-Digital Converters – 10-bit resolution – External conversion trigger capability Three 1M bit per second, CAN 2.0 A, B software compatible modules – Five receive and three transmit buffers – Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit – Four separate interrupt channels for Rx, Tx, error and wake-up – Low-pass filter wake-up function – Loop-back for self test operation Enhanced Capture Timer – 16-bit main counter with 7-bit prescaler – 8 programmable input capture or output compare channels – Four 8-bit or two 16-bit pulse accumulators 8 PWM channels – Programmable period and duty cycle – 8-bit 8-channel or 16-bit 4-channel – Separate control for each pulse width and duty cycle – Center-aligned or left-aligned outputs – Programmable clock select logic with a wide range of frequencies – Fast emergency shutdown input – Usable as interrupt inputs Serial interfaces – Two asynchronous Serial Communications Interfaces (SCI) – Two Synchronous Serial Peripheral Interface (SPI) – Byteflight Byte Data Link Controller (BDLC) MC9S12DT128 Device User Guide — V02.11 • SAE J1850 Class B Data Communications Network Interface – • • Compatible and ISO Compatible for Low-Speed (= 100nF C5 VDDPLL filter cap ceramic X7R 100nF C6 VDDX filter cap X7R/tantalum >= 100nF C7 OSC load cap C8 OSC load cap C9 / CS PLL loop filter cap C10 / CP PLL loop filter cap C11 / CDC DC cutoff cap Colpitts mode only, if recommended by quartz manufacturer R1 / R PLL loop filter res See PLL Specification chapter See PLL specification chapter R2 / RB Pierce mode only R3 / RS Q1 Quartz The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed: • Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 – C6). • Central point of the ground star should be the VSSR pin. 89 MC9S12DT128 Device User Guide — V02.11 • Use low ohmic low inductance connections between VSS1, VSS2 and VSSR. • VSSPLL must be directly connected to VSSR. • Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible. • Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU. • Central power input should be fed in at the VDDA/VSSA pins. 90 MC9S12DT128 Device User Guide — V02.11 Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 C1 VSS1 VSS2 C2 VDD2 VSSR C4 C7 C8 C10 C9 R1 C11 C5 VDDR Q1 VSSPLL VDDPLL 91 MC9S12DT128 Device User Guide — V02.11 Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848) Colpitts Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSR C4 C5 VDDR C7 C8 C11 Q1 C10 C9 R1 92 VSSPLL VDDPLL MC9S12DT128 Device User Guide — V02.11 Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 C1 VSS1 VSS2 C2 VDD2 VSSR VSSPLL C4 R3 C5 VDDR R2 Q1 C7 C8 C10 C9 VDDPLL R1 93 MC9S12DT128 Device User Guide — V02.11 Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, and SC515848) Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSPLL VSSR C4 R3 C5 VDDR R2 Q1 C7 94 C8 C10 C9 R1 VSSPLL VDDPLL MC9S12DT128 Device User Guide — V02.11 Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128 and SC515846) Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSPLL VSSR C4 R3 C5 VDDR R2 Q1 C7 C8 C10 C9 R1 VSSPLL VDDPLL 95 MC9S12DT128 Device User Guide — V02.11 96 MC9S12DT128 Device User Guide — V02.11 Appendix A Electrical Characteristics A.1 General This introduction is intended to give an overview on several common topics like power supply, current injection etc. A.1.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate. P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors. T: Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations. A.1.2 Power Supply The MC9S12DT128 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL and internal logic. The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator. The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection. 97 MC9S12DT128 Device User Guide — V02.11 NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2. A.1.3 Pins There are four groups of functional pins. A.1.3.1 5V I/O pins Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. A.1.3.2 Analog Reference This class is made up by the two VRH and VRL pins. A.1.3.3 Oscillator The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. A.1.3.4 TEST This pin is used for production testing only. A.1.3.5 VREGEN This pin is used to enable the on chip voltage regulator. A.1.4 Current Injection Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Insure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption. 98 MC9S12DT128 Device User Guide — V02.11 A.1.5 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5). Table A-1 Absolute Maximum Ratings1 Num Rating Symbol Min Max Unit 1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.0 V 2 Digital Logic Supply Voltage 2 VDD -0.3 3.0 V 3 PLL Supply Voltage 2 VDDPLL -0.3 3.0 V 4 Voltage difference VDDX to VDDR and VDDA ∆VDDX -0.3 0.3 V 5 Voltage difference VSSX to VSSR and VSSA ∆VSSX -0.3 0.3 V 6 Digital I/O Input Voltage VIN -0.3 6.0 V 7 Analog Reference VRH, VRL -0.3 6.0 V 8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V 9 TEST input VTEST -0.3 10.0 V 10 Instantaneous Maximum Current Single pin limit for all digital I/O pins 3 ID -25 +25 mA 11 Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL4 I DL -25 +25 mA 12 Instantaneous Maximum Current Single pin limit for TEST 5 IDT -0.25 0 mA 13 Storage Temperature Range T – 65 155 °C stg NOTES: 1. Beyond absolute maximum ratings device might be damaged. 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. 3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA. 4. Those pins are internally clamped to VSSPLL and VDDPLL. 5. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications. A.1.6 ESD Protection and Latch-up Immunity All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model. 99 MC9S12DT128 Device User Guide — V02.11 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions Model Human Body Machine Description Symbol Value Unit Series Resistance R1 1500 Ohm Storage Capacitance C 100 pF Number of Pulse per pin positive negative – – 3 3 Series Resistance R1 0 Ohm Storage Capacitance C 200 pF Number of Pulse per pin positive negative – – 3 3 Minimum input voltage limit –2.5 V Maximum input voltage limit 7.5 V Latch-up Table A-3 ESD and Latch-Up Protection Characteristics Num C Rating Symbol Min Max Unit 1 C Human Body Model (HBM) VHBM 2000 – V 2 C Machine Model (MM) VMM 200 – V 3 C Charge Device Model (CDM) VCDM 500 – V 4 Latch-up Current at 125°C C positive negative ILAT +100 –100 – mA 5 Latch-up Current at 27°C C positive negative ILAT +200 –200 – mA A.1.7 Operating Conditions This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. NOTE: 100 Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature TA and the junction temperature TJ. For power dissipation MC9S12DT128 Device User Guide — V02.11 calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics. Table A-4 Operating Conditions Rating Symbol Min Typ Max Unit I/O, Regulator and Analog Supply Voltage VDD5 4.5 5 5.25 V Digital Logic Supply Voltage 1 VDD 2.35 2.5 2.75 V PLL Supply Voltage 1 VDDPLL 2.25 2.5 2.75 V Voltage Difference VDDX to VDDR and VDDA ∆VDDX -0.1 0 0.1 V Voltage Difference VSSX to VSSR and VSSA ∆VSSX -0.1 0 0.1 V Oscillator fosc 0.5 - 16 MHz Bus Frequency fbus 0.252 - 25 MHz Operating Junction Temperature Range T J -40 - 100 °C Operating Ambient Temperature Range 3 T A -40 27 85 °C Operating Junction Temperature Range TJ -40 - 120 °C Operating Ambient Temperature Range 3 TA -40 27 105 °C Operating Junction Temperature Range TJ -40 - 140 °C Operating Ambient Temperature Range 3 TA -40 27 125 °C MC9S12DT128C MC9S12DT128V MC9S12DT128M NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The given operating range applies when this regulator is disabled and the device is powered from an external source. 2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation. 3. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ. A.1.8 Power Dissipation and Thermal Characteristics Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D • Θ JA ) T J = Junction Temperature, [°C ] 101 MC9S12DT128 Device User Guide — V02.11 T A = Ambient Temperature, [°C ] P D = Total Chip Power Dissipation, [W] Θ JA = Package Thermal Resistance, [°C/W] The total power dissipation can be calculated from: P D = P INT + P IO P INT = Chip Internal Power Dissipation, [W] Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA 2 P IO = R DSON ⋅ I IO i i ∑ Which is the sum of all output currents on I/O ports associated with VDDX and VDDR. For RDSON is valid: V OL R DSON = ------------ ;for outputs driven low I OL respectively V DD5 – V OH R DSON = ------------------------------------ ;for outputs driven high I OH 2. Internal voltage regulator enabled P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high. P IO = ∑ RDSON ⋅ IIOi 2 i Which is the sum of all output currents on I/O ports associated with VDDX and VDDR. 102 MC9S12DT128 Device User Guide — V02.11 Table A-5 Thermal Package Characteristics1 Num C Rating Symbol Min Typ Max Unit 1 T Thermal Resistance LQFP112, single sided PCB2 θJA – – 54 o 2 T Thermal Resistance LQFP112, double sided PCB with 2 internal planes3 θJA – – 41 oC/W 3 T Junction to Board LQFP112 θJB – – 31 o C/W 4 T Junction to Case LQFP112 θJC – – 11 o C/W 5 T Junction to Package Top LQFP112 ΨJT – – 2 o C/W 6 T Thermal Resistance QFP 80, single sided PCB θJA – – 51 o C/W 7 T θJA – – 41 oC/W 8 T Junction to Board QFP80 θJB – – 27 oC/W 9 T Junction to Case QFP80 θJC – – 14 oC/W 10 T Junction to Package Top QFP80 ΨJT – – 3 oC/W Thermal Resistance QFP 80, double sided PCB with 2 internal planes C/W NOTES: 1. The values for thermal resistance are achieved by package simulations 2. PC Board according to EIA/JEDEC Standard 51-3 3. PC Board according to EIA/JEDEC Standard 51-7 A.1.9 I/O Characteristics This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances. 103 MC9S12DT128 Device User Guide — V02.11 Table A-6 5V I/O Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C 1 2 Rating Symbol Min Typ Max IH 0.65*VDD5 – IH – – VDD5 + 0.3 Unit P Input High Voltage V T Input High Voltage V P Input Low Voltage V – – 0.35*VDD5 V T Input Low Voltage V VSS5 – 0.3 – – V IL IL V 3 C Input Hysteresis 4 Input Leakage Current (pins in high ohmic input P mode) V =V or VSS5 in DD5 5 Output High Voltage (pins in output mode) C Partial Drive IOH = –2.0mA P Full Drive IOH = –10.0mA V 6 Output Low Voltage (pins in output mode) C Partial Drive IOL = +2.0mA P Full Drive IOL = +10.0mA 7 V 250 HYS mV -1.0 – 1.0 µA VDD5 – 0.8 – – V V OL – – 0.8 V Internal Pull Up Device Current, P tested at V Max. IPUL – – –130 µA Internal Pull Up Device Current, C tested at V Min. IPUH –10 – – µA Internal Pull Down Device Current, P tested at V Min. IPDH – – 130 µA Internal Pull Down Device Current, C tested at V Max. IPDL 10 – – µA 11 D Input Capacitance Cin 6 – pF 12 Injection current1 T Single Pin limit Total Device Limit. Sum of all injected currents IICS IICP – 2.5 25 mA 13 P Port H, J, P Interrupt Input Pulse filtered 2 tPULSE 3 µs 14 P Port H, J, P Interrupt Input Pulse passed 2 tPULSE IL 8 IH 9 IH 10 IL Iin OH –2.5 –25 10 µs NOTES: 1. Refer to Section A.1.4 Current Injection, for more details 2. Parameter only applies in STOP or Pseudo STOP mode. A.1.10 Supply Currents This section describes the current consumption characteristics of the device as well as the conditions for the measurements. 104 MC9S12DT128 Device User Guide — V02.11 A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input. A.1.10.2 Additional Remarks In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads. Table A-7 Supply Current Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Run supply currents Single Chip, Internal regulator enabled IDD5 55 IDDW 30 5 1 P 2 P P All modules enabled, PLL on only RTI enabled 1 C P C C P C P C P Pseudo Stop Current (RTI and COP disabled) 1, 2 -40°C 27°C 70°C 85°C “C” Temp Option 100°C 105°C “V” Temp Option 120°C 125°C “M” Temp Option 140°C Min Typ Max Unit mA Wait Supply current 3 Pseudo Stop Current (RTI and COP enabled) 4 C C C C C C C IDDPS 370 400 450 550 600 650 800 850 1200 mA 500 1600 µA 2100 5000 1, 2 -40°C 27°C 70°C 85°C 105°C 125°C 140°C IDDPS 570 600 650 750 850 1200 1500 µA Stop Current 2 5 C P C C P C P C P -40°C 27°C 70°C 85°C “C” Temp Option 100°C 105°C “V” Temp Option 120°C 125°C “M” Temp Option 140°C IDDS 12 25 100 130 160 200 350 400 600 100 1200 µA 1700 5000 105 MC9S12DT128 Device User Guide — V02.11 NOTES: 1. PLL off, Oscillator in Colpitts Mode 2. At those low power dissipation levels TJ = TA can be assumed 106 MC9S12DT128 Device User Guide — V02.11 A.2 ATD Characteristics This section describes the characteristics of the analog to digital converter. A.2.1 ATD Operating Characteristics The Table A-8 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-8 ATD Operating Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min VRL VRH VSSA VDDA/2 Typ Max Unit VDDA/2 VDDA V V 5.25 V Reference Potential 1 D Low High 2 C Differential Reference Voltage1 VRH-VRL 4.50 3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz 4 D 14 7 28 14 Cycles µs 5 D 12 6 26 13 Cycles µs 6 D Stop Recovery Time (VDDA=5.0 Volts) tSR 20 µs 7 P Reference Supply current (Both ATD modules on) IREF 0.75 mA 8 P Reference Supply current (Only one ATD module on) IREF 0.375 mA 5.00 ATD 10-Bit Conversion Period Clock Cycles2 NCONV10 Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10 ATD 8-Bit Conversion Period Clock Cycles(2) Conv, Time at 2.0MHz ATD Clock fATDCLK NCONV8 TCONV8 NOTES: 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. A.2.2 Factors influencing accuracy Three factors – source resistance, source capacitance and current injection – have an influence on the accuracy of the ATD. A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS 107 MC9S12DT128 Device User Guide — V02.11 specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed. A.2.2.2 Source capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS– CINN). A.2.2.3 Current injection There are two cases to consider. 1. A current is injected into the channel being converted. The channel being stressed has conversion values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than VRL unless the current is higher than specified as disruptive conditions. 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as VERR = K * RS * IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted channel. Table A-9 ATD Electrical Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit RS - - 1 KΩ 10 22 pF 2.5 mA 1 C Max input Source Resistance 2 Total Input Capacitance T Non Sampling Sampling 3 C Disruptive Analog Input Current INA 4 C Coupling Ratio positive current injection Kp 10-4 A/A 5 C Coupling Ratio negative current injection Kn 10-2 A/A 108 CINN CINS -2.5 MC9S12DT128 Device User Guide — V02.11 A.2.3 ATD accuracy Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. Table A-10 ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV fATDCLK = 2.0MHz Num C Rating Symbol Min 1 P 10-Bit Resolution LSB 2 P 10-Bit Differential Nonlinearity DNL –1 3 P 10-Bit Integral Nonlinearity INL –2.5 4 P 10-Bit Absolute Error1 AE -3 5 P 8-Bit Resolution LSB 6 P 8-Bit Differential Nonlinearity DNL –0.5 7 P 8-Bit Integral Nonlinearity INL –1.0 8 P 8-Bit Absolute Error(1) AE -1.5 Typ Max 5 Unit mV 1 Counts ±1.5 2.5 Counts ±2.0 3 Counts 20 mV 0.5 Counts ±0.5 1.0 Counts ±1.0 1.5 Counts NOTES: 1. These values include the quantization error which is inherently 1/2 count for any A/D converter. For the following definitions see also Figure A-1. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps. Vi – Vi – 1 DNL ( i ) = ------------------------ – 1 1LSB The Integral Non-Linearity (INL) is defined as the sum of all DNLs: n INL ( n ) = ∑ i=1 Vn – V0 DNL ( i ) = -------------------- – n 1LSB 109 MC9S12DT128 Device User Guide — V02.11 DNL 10-Bit Absolute Error Boundary LSB Vi-1 Vi $3FF 8-Bit Absolute Error Boundary $3FE $3FD $3FC $FF $3FB $3FA $3F9 $3F8 $FE $3F7 $3F6 $3F4 8-Bit Resolution 10-Bit Resolution $3F5 $FD $3F3 9 Ideal Transfer Curve 8 2 7 10-Bit Transfer Curve 6 5 4 1 3 8-Bit Transfer Curve 2 1 0 5 10 15 20 25 30 35 40 45 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 Vin mV Figure A-1 ATD Accuracy Definitions NOTE: 110 Figure A-1 shows only definitions, for specification values refer to Table A-10. MC9S12DT128 Device User Guide — V02.11 A.3 NVM, Flash and EEPROM NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM. A.3.1 NVM timing The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured. The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as fNVMOP. The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz. A.3.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency fNVMOP and can be calculated according to the following formula. 1 1 t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP f bus A.3.1.2 Row Programming This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as: 1 1 t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP f bus The time to program a whole row is: t brpgm = t swpgm + 31 ⋅ t bwpgm Row programming is more than 2 times faster than single word programming. A.3.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes: 111 MC9S12DT128 Device User Guide — V02.11 1 t era ≈ 4000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.3.1.4 Mass Erase Erasing a NVM block takes: 1 t mass ≈ 20000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.3.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command. t check ≈ location ⋅ t cyc + 10 ⋅ t cyc Table A-11 NVM Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 50 1 MHz 1 D External Oscillator Clock fNVMOSC 0.5 2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 3 D Operating Frequency fNVMOP 150 200 kHz 4 P Single Word Programming Time tswpgm 46 2 74.5 3 µs 5 D Flash Row Programming consecutive word 4 tbwpgm 20.4 2 31 3 µs 6 D Flash Row Programming Time for 32 Words 4 tbrpgm 678.4 2 1035.5 3 µs 7 P Sector Erase Time tera 20 5 26.7 3 ms 8 P Mass Erase Time tmass 100 5 133 3 ms 9 D Blank Check Time Flash per block tcheck 11 6 32778 7 tcyc 10 D Blank Check Time EEPROM per block tcheck 11 6 10347 tcyc MHz NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fbus. 3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance. 4. Row Programming operations are not applicable to EEPROM 5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP. 6. Minimum time, if first word in the array is not blank 7. Maximum time to complete check on an erased block 112 MC9S12DT128 Device User Guide — V02.11 A.3.2 NVM Reliability The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed. Table A-12 NVM Reliability Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit Data Retention at an average junction temperature of TJavg = 70°C tNVMRET 15 Years nFLPE 10,000 Cycles 1 C 2 C Flash number of Program/Erase cycles 3 C EEPROM number of Program/Erase cycles (–40°C ≤ TJ ≤ 0°C) nEEPE 10,000 Cycles 4 C EEPROM number of Program/Erase cycles (0°C < TJ ≤ 140°C) nEEPE 100,000 Cycles 113 MC9S12DT128 Device User Guide — V02.11 114 MC9S12DT128 Device User Guide — V02.11 A.4 Voltage Regulator The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed. Table A-13 Voltage Regulator Recommended Load Capacitances Rating Symbol Min Typ Max Unit Load Capacitance on VDD1, 2 CLVDD 220 nF Load Capacitance on VDDPLL CLVDDfcPLL 220 nF 115 MC9S12DT128 Device User Guide — V02.11 116 MC9S12DT128 Device User Guide — V02.11 A.5 Reset, Oscillator and PLL This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL). A.5.1 Startup Table A-14 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide. Table A-14 Startup Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 2.07 V 1 T POR release level VPORR 2 T POR assert level VPORA 0.97 V 3 D Reset input pulse width, minimum input time PWRSTL 2 tosc 4 D Startup from Reset nRST 192 5 D Interrupt pulse width, IRQ edge-sensitive mode PWIRQ 20 6 D Wait recovery startup time tWRS 196 nosc ns 14 tcyc A.5.1.1 POR The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by nuposc. A.5.1.2 SRAM Data Retention Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set. A.5.1.3 External Reset When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset. A.5.1.4 Stop Recovery Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system. 117 MC9S12DT128 Device User Guide — V02.11 A.5.1.5 Pseudo Stop and Wait Recovery The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts fetching the interrupt vector. A.5.2 Oscillator The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA. Table A-15 Oscillator Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1a C Crystal oscillator range (Colpitts) fOSC 0.5 16 MHz 1b C Crystal oscillator range (Pierce) 1 fOSC 0.5 40 MHz 2 P Startup Current iOSC 100 3 C Oscillator start-up time (Colpitts) tUPOSC 4 D Clock Quality check time-out tCQOUT 0.45 5 P Clock Monitor Failure Assert Frequency fCMFA 50 6 P External square wave input frequency 4 fEXT 0.5 7 D External square wave pulse width low tEXTL 9.5 ns 8 D External square wave pulse width high tEXTH 9.5 ns 9 D External square wave rise time tEXTR 1 ns 10 D External square wave fall time tEXTF 1 ns 11 D Input Capacitance (EXTAL, XTAL pins) 12 C DC Operating Bias in Colpitts Configuration on EXTAL Pin 82 100 1003 ms 2.5 s 200 KHz 50 MHz CIN 7 pF VDCBIAS 1.1 V NOTES: 1. Depending on the crystal a damping series resistor might be necessary 2. fosc = 4MHz, C = 22pF. 3. Maximum value is for extreme cases using high Q, low frequency crystals 4. XCLKS =0 during reset 118 µA MC9S12DT128 Device User Guide — V02.11 A.5.3 Phase Locked Loop The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode. A.5.3.1 XFC Component Selection This section describes the selection of the XFC components to achieve a good filter characteristics. Cp VDDPLL R Phase Cs fosc fref 1 refdv+1 ∆ fcmp XFC Pin VCO KΦ KV fvco Detector Loop Divider 1 synr+1 1 2 Figure A-2 Basic PLL functional diagram The following procedure can be used to calculate the resistance and capacitance values using typical values for K1, f1 and ich from Table A-16. The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used for fOSC = 4MHz and a 25MHz bus clock. The VCO Gain at the desired VCO frequency is approximated by: KV = K1 ⋅ e ( f 1 – f vco ) ----------------------K 1 ⋅ 1V = – 100 ⋅ e ( 60 – 50 ) -----------------------– 100 = -90.48MHz/V The phase detector relationship is given by: K Φ = – i ch ⋅ K V = 316.7Hz/Ω ich is the current in tracking mode. 119 MC9S12DT128 Device User Guide — V02.11 The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10, typical values are 50. ζ = 0.9 ensures a good transient response. 2 ⋅ ζ ⋅ f ref f ref 1 f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 ) 4 ⋅ 10 2 10  π⋅ ζ+ 1+ζ fC < 25kHz   And finally the frequency relationship is defined as f VCO n = ------------- = 2 ⋅ ( synr + 1 ) f ref = 50 With the above values the resistance can be calculated. The example is shown for a loop bandwidth fC=10KHz: 2 ⋅ π ⋅ n ⋅ fC R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ =~ 10kΩ KΦ The capacitance Cs can now be calculated as: 2 0.516 2⋅ζ C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF π ⋅ fC ⋅ R fC ⋅ R The capacitance Cp should be chosen in the range of: C s ⁄ 20 ≤ C p ≤ C s ⁄ 10 Cp = 470pF A.5.3.2 Jitter Information The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock fcmp, the deviation from the reference clock fref is measured and input voltage to the VCO is adjusted accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3. 120 MC9S12DT128 Device User Guide — V02.11 1 0 2 3 N-1 N tmin1 tnom tmax1 tminN tmaxN Figure A-3 Jitter Definitions The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N). Defining the jitter as: t max ( N ) t min ( N )   J ( N ) = max  1 – --------------------- , 1 – ---------------------  N ⋅ t nom N ⋅ t nom   For N < 100, the following equation is a good fit for the maximum jitter: j1 J ( N ) = -------- + j 2 N J(N) 1 5 10 20 N Figure A-4 Maximum bus clock jitter approximation 121 MC9S12DT128 Device User Guide — V02.11 This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent. Table A-16 PLL Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1 P Self Clock Mode frequency fSCM 1 5.5 MHz 2 D VCO locking range fVCO 8 50 MHz 3 D |∆trk| 3 4 %1 4 D Lock Detection |∆Lock| 0 1.5 %(1) 5 D Un-Lock Detection |∆unl| 0.5 2.5 %(1) 6 D |∆unt| 6 8 %(1) 7 C PLLON Total Stabilization delay (Auto Mode) 2 tstab 0.5 ms 8 D PLLON Acquisition mode stabilization delay (2) tacq 0.3 ms 9 D PLLON Tracking mode stabilization delay (2) tal 0.2 ms 10 D Fitting parameter VCO loop gain K1 -100 MHz/V 11 D Fitting parameter VCO loop frequency f1 60 MHz 12 D Charge pump current acquisition mode | ich | 38.5 µA 13 D Charge pump current tracking mode | ich | 3.5 µA 14 C Jitter fit parameter 1(2) j1 1.1 % 15 C Jitter fit parameter 2(2) j2 0.13 % Lock Detector transition from Acquisition to Tracking mode Lock Detector transition from Tracking to Acquisition mode NOTES: 1. % deviation from target frequency 2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ. 122 MC9S12DT128 Device User Guide — V02.11 A.6 MSCAN Table A-17 MSCAN Wake-up Pulse Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol 1 P MSCAN Wake-up dominant pulse filtered tWUP 2 P MSCAN Wake-up dominant pulse pass tWUP Min 5 Typ Max Unit 2 µs µs 123 MC9S12DT128 Device User Guide — V02.11 124 MC9S12DT128 Device User Guide — V02.11 A.7 SPI A.7.1 Master Mode Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18. SS1 (OUTPUT) 2 1 SCK (CPOL = 0) (OUTPUT) 4 4 12 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 9 MOSI (OUTPUT) 3 11 BIT 6 . . . 1 LSB IN 9 MSB OUT2 BIT 6 . . . 1 10 LSB OUT 1.if configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-5 SPI Master Timing (CPHA = 0) 125 MC9S12DT128 Device User Guide — V02.11 SS1 (OUTPUT) 1 2 12 11 11 12 3 SCK (CPOL = 0) (OUTPUT) 4 4 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 BIT 6 . . . 1 LSB IN 10 9 MOSI (OUTPUT) PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-6 SPI Master Timing (CPHA =1) Table A-18 SPI Master Mode Timing Characteristics1 Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs Num C Rating Symbol Min Typ Max Unit 1 P Operating Frequency fop DC 1/2 fbus 1 P SCK Period tsck = 1./fop tsck 4 2048 tbus 2 D Enable Lead Time tlead 1/2 — tsck 3 D Enable Lag Time tlag 1/2 4 D Clock (SCK) High or Low Time twsck tbus − 30 5 D Data Setup Time (Inputs) tsu 25 ns 6 D Data Hold Time (Inputs) thi 0 ns 9 D Data Valid (after SCK Edge) tv 10 D Data Hold Time (Outputs) tho 11 D Rise Time Inputs and Outputs tr 25 ns 12 D Fall Time Inputs and Outputs tf 25 ns tsck 1024 tbus 25 0 ns ns ns NOTES: 1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in Table A-19. 126 MC9S12DT128 Device User Guide — V02.11 A.7.2 Slave Mode Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19. SS (INPUT) 1 12 11 11 12 3 SCK (CPOL = 0) (INPUT) 4 2 4 SCK (CPOL = 1) (INPUT) 8 7 MISO (OUTPUT) 9 5 MOSI (INPUT) BIT 6 . . . 1 MSB OUT SLAVE 10 10 SLAVE LSB OUT 6 BIT 6 . . . 1 MSB IN LSB IN Figure A-7 SPI Slave Timing (CPHA = 0) SS (INPUT) 3 1 2 12 11 11 12 SCK (CPOL = 0) (INPUT) 4 4 SCK (CPOL = 1) (INPUT) SLAVE 7 MOSI (INPUT) 8 10 9 MISO (OUTPUT) MSB OUT 5 BIT 6 . . . 1 SLAVE LSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN Figure A-8 SPI Slave Timing (CPHA =1) 127 MC9S12DT128 Device User Guide — V02.11 Table A-19 SPI Slave Mode Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs Num C Rating Symbol Min Typ Max Unit 1 P Operating Frequency fop DC 1/4 fbus 1 P SCK Period tsck = 1./fop tsck 4 2048 tbus 2 D Enable Lead Time tlead 1 tcyc 3 D Enable Lag Time tlag 1 tcyc 4 D Clock (SCK) High or Low Time twsck tcyc − 30 ns 5 D Data Setup Time (Inputs) tsu 25 ns 6 D Data Hold Time (Inputs) thi 25 ns 7 D Slave Access Time ta 1 tcyc 8 D Slave MISO Disable Time tdis 1 tcyc 9 D Data Valid (after SCK Edge) tv 25 ns 10 D Data Hold Time (Outputs) tho 11 D Rise Time Inputs and Outputs tr 25 ns 12 D Fall Time Inputs and Outputs tf 25 ns 128 0 ns MC9S12DT128 Device User Guide — V02.11 A.8 External Bus Timing A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing values shown on table Table A-20. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle. A.8.1 General Multiplexed Bus Timing The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs. 129 MC9S12DT128 Device User Guide — V02.11 1, 2 3 4 ECLK PE4 5 9 Addr/Data (read) PA, PB 6 16 15 7 data 8 14 13 data addr 17 11 data addr data 12 Addr/Data (write) PA, PB 10 19 18 Non-Multiplexed Addresses PK5:0 20 21 22 23 ECS PK7 24 25 26 27 28 29 30 31 32 33 34 R/W PE2 LSTRB PE3 NOACC PE7 35 36 PIPO0 PIPO1, PE6,5 Figure A-9 General External Bus Timing 130 MC9S12DT128 Device User Guide — V02.11 Table A-20 Expanded Bus Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF Num C Rating Symbol Min Typ Max Unit fo 0 25.0 MHz tcyc 40 ns 1 P Frequency of operation (E-clock) 2 P Cycle time 3 D Pulse width, E low PWEL 19 ns 4 D Pulse width, E high1 PWEH 19 ns 5 D Address delay time tAD 6 D Address valid time to E rise (PWEL–tAD) tAV 11 ns 7 D Muxed address hold time tMAH 2 ns 8 D Address hold to data valid tAHDS 7 ns 9 D Data hold to address tDHA 2 ns 10 D Read data setup time tDSR 13 ns 11 D Read data hold time tDHR 0 ns 12 D Write data delay time tDDW 13 D Write data hold time tDHW 2 ns 14 D Write data setup time(1) (PWEH–tDDW) tDSW 12 ns 15 D Address access time(1) (tcyc–tAD–tDSR) tACCA 19 ns 16 D E high access time(1) (PWEH–tDSR) tACCE 6 ns 17 D Non-multiplexed address delay time tNAD 18 D Non-muxed address valid to E rise (PWEL–tNAD) tNAV 15 ns 19 D Non-multiplexed address hold time tNAH 2 ns 20 D Chip select delay time tCSD 21 D Chip select access time(1) (tcyc–tCSD–tDSR) tACCS 11 ns 22 D Chip select hold time tCSH 2 ns 23 D Chip select negated time tCSN 8 ns 24 D Read/write delay time tRWD 25 D Read/write valid time to E rise (PWEL–tRWD) tRWV 14 ns 26 D Read/write hold time tRWH 2 ns 27 D Low strobe delay time tLSD 28 D Low strobe valid time to E rise (PWEL–tLSD) tLSV 14 ns 29 D Low strobe hold time tLSH 2 ns 30 D NOACC strobe delay time tNOD 31 D NOACC valid time to E rise (PWEL–tNOD) tNOV 8 7 6 16 7 7 7 14 ns ns ns ns ns ns ns ns 131 MC9S12DT128 Device User Guide — V02.11 Table A-20 Expanded Bus Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF Num C Rating Symbol Min 32 D NOACC hold time tNOH 2 33 D IPIPO[1:0] delay time tP0D 2 34 D IPIPO[1:0] valid time to E rise (PWEL–tP0D) tP0V 11 35 D IPIPO[1:0] delay time(1) (PWEH-tP1V) tP1D 2 36 D IPIPO[1:0] valid time to E fall tP1V 11 Typ NOTES: 1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches. 132 Max Unit ns 7 ns ns 25 ns ns MC9S12DT128 Device User Guide — V02.11 Appendix B Package Information B.1 General This section provides the physical dimensions of the MC9S12DT128 packages. 133 MC9S12DT128 Device User Guide — V02.11 B.2 112-pin LQFP package 0.20 T L-M N 4X PIN 1 IDENT 0.20 T L-M N 4X 28 TIPS 112 J1 85 4X P J1 1 CL 84 VIEW Y 108X G X X=L, M OR N VIEW Y B L V M B1 28 57 29 F D 56 0.13 N S1 A S C2 VIEW AB θ2 0.050 0.10 T 112X SEATING PLANE θ3 T θ R R2 R 0.25 R1 GAGE PLANE (K) C1 E (Y) (Z) VIEW AB M T L-M N θ1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DATUMS L, M AND N TO BE DETERMINED AT SEATING PLANE, DATUM T. 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH. 6. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.46. DIM A A1 B B1 C C1 C2 D E F G J K P R1 R2 S S1 V V1 Y Z AA θ θ1 θ2 θ3 MILLIMETERS MIN MAX 20.000 BSC 10.000 BSC 20.000 BSC 10.000 BSC --1.600 0.050 0.150 1.350 1.450 0.270 0.370 0.450 0.750 0.270 0.330 0.650 BSC 0.090 0.170 0.500 REF 0.325 BSC 0.100 0.200 0.100 0.200 22.000 BSC 11.000 BSC 22.000 BSC 11.000 BSC 0.250 REF 1.000 REF 0.090 0.160 8 ° 0° 7 ° 3 ° 13 ° 11 ° 11 ° 13 ° Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987) 134 BASE METAL SECTION J1-J1 ROTATED 90 ° COUNTERCLOCKWISE A1 C AA J V1 MC9S12DT128 Device User Guide — V02.11 B.3 80-pin QFP package L 60 41 61 D S M V P B C A-B D 0.20 M B B -A-,-B-,-D- 0.20 L H A-B -B- 0.05 D -A- S S S 40 DETAIL A DETAIL A 21 80 1 0.20 A H A-B M S F 20 -DD S 0.05 A-B J S 0.20 C A-B M S D S D M E DETAIL C C -H- -C- DATUM PLANE 0.20 M C A-B S D S SECTION B-B VIEW ROTATED 90 ° 0.10 H SEATING PLANE N M G U T DATUM PLANE -H- R K W X DETAIL C Q NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. DIM A B C D E F G H J K L M N P Q R S T U V W X MILLIMETERS MIN MAX 13.90 14.10 13.90 14.10 2.15 2.45 0.22 0.38 2.00 2.40 0.22 0.33 0.65 BSC --0.25 0.13 0.23 0.65 0.95 12.35 REF 5° 10 ° 0.13 0.17 0.325 BSC 0° 7° 0.13 0.30 16.95 17.45 0.13 --0° --16.95 17.45 0.35 0.45 1.6 REF Figure 1 80-pin QFP Mechanical Dimensions (case no. 841B) 135 MC9S12DT128 Device User Guide — V02.11 136 MC9S12DT128 Device User Guide — V02.11 User Guide End Sheet 137 MC9S12DT128 Device User Guide — V02.11 FINAL PAGE OF 138 PAGES 138
MC9S12A128CPV 价格&库存

很抱歉,暂时无法提供与“MC9S12A128CPV”相匹配的价格&库存,您可以联系我们找货

免费人工找货