0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MINI57FDE

MINI57FDE

  • 厂商:

    NUVOTON(新唐)

  • 封装:

    TSSOP-20

  • 描述:

    IC MCU 32BIT 29.5KB FLSH 20TSSOP

  • 数据手册
  • 价格&库存
MINI57FDE 数据手册
Mini57 ARM Cortex® -M0 32-bit Microcontroller NuMicro® Family Mini57 Series Datasheet Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice. For additional information or questions, please contact: Nuvoton Technology Corporation. www.nuvoton.com Apr. 06, 2017 Page 1 of 131 Rev.1.00 MINI57 SERIES DATASHEET The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. Mini57 TABLE OF CONTENTS 1 GENERAL DESCRIPTION................................................................................. 7 2 FEATURES ........................................................................................................ 8 3 ABBREVIATIONS ............................................................................................ 12 4 PARTS INFORMATION LIST AND PIN CONFIGURATION............................ 13 4.1 NuMicro® Mini57 Naming Rule ................................................................................... 13 4.2 NuMicro® Mini57 Series Selection Guide ................................................................... 14 4.3 Pin Configuration ........................................................................................................ 15 4.3.1 4.3.2 4.3.3 4.4 TSSOP 28-Pin ................................................................................................................ 15 TSSOP 20-Pin ................................................................................................................ 16 QFN 33-Pin .................................................................................................................... 17 Pin Description ........................................................................................................... 19 4.4.1 4.4.2 Mini57 Series Pin Description ......................................................................................... 19 GPIO Multi-function Pin Summary .................................................................................. 31 5 BLOCK DIAGRAM ........................................................................................... 34 5.1 NuMicro® Mini57 Block Diagram ................................................................................ 34 6 FUNCTIONAL DESCRIPTION ......................................................................... 35 6.1 ARM® Cortex® -M0 Core ............................................................................................. 35 6.1.1 6.1.2 6.2 System Manager ........................................................................................................ 37 MINI57 SERIES DATASHEET 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.3 Apr. 06, 2017 Overview ........................................................................................................................ 87 Auto Trim ........................................................................................................................ 89 System Clock and SysTick Clock ................................................................................... 89 Peripherals Clock Source Selection ............................................................................... 90 Power-down Mode Clock ................................................................................................ 92 Frequency Divider Output ............................................................................................... 92 Flash Memory Controller (FMC) ................................................................................. 94 6.4.1 6.4.2 6.5 Overview ........................................................................................................................ 37 System Reset ................................................................................................................. 37 Power Modes and Wake-up Sources ............................................................................. 43 System Power Architecture ............................................................................................ 46 System Memory Mapping ............................................................................................... 47 Register Protection ......................................................................................................... 48 Memory Organization ..................................................................................................... 50 System Timer (SysTick) ................................................................................................. 53 Nested Vectored Interrupt Control (NVIC) ...................................................................... 58 System Control Registers ............................................................................................... 78 Clock Controller .......................................................................................................... 87 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 Overview ........................................................................................................................ 35 Features ......................................................................................................................... 36 Overview ........................................................................................................................ 94 Features ......................................................................................................................... 94 General Purpose I/O (GPIO) ...................................................................................... 95 Page 2 of 131 Rev.1.00 Mini57 6.5.1 6.5.2 6.5.3 6.6 Timer Controller (TIMER) ........................................................................................... 97 6.6.1 6.6.2 6.7 Overview ........................................................................................................................ 99 Features ......................................................................................................................... 99 Basic PWM Generator (BPWM) ............................................................................... 101 6.9.1 6.9.2 6.10 Overview ........................................................................................................................ 98 Features ......................................................................................................................... 98 Enhanced PWM Generator (EPWM) ......................................................................... 99 6.8.1 6.8.2 6.9 Overview ........................................................................................................................ 97 Features ......................................................................................................................... 97 Enhanced Input Capture Timer (ECAP) ..................................................................... 98 6.7.1 6.7.2 6.8 Overview ........................................................................................................................ 95 Features ......................................................................................................................... 95 GPIO Interrupt and Wake-up Function ........................................................................... 96 Overview ...................................................................................................................... 101 Features ....................................................................................................................... 101 Watchdog Timer (WDT) ........................................................................................... 102 6.10.1 Overview ...................................................................................................................... 102 6.10.2 Features ....................................................................................................................... 102 6.11 USCI – Universal Serial Control Interface Controller ............................................... 103 6.11.1 Overview ...................................................................................................................... 103 6.11.2 Features ....................................................................................................................... 103 6.12 USCI – UART Mode ................................................................................................. 104 6.12.1 Overview ...................................................................................................................... 104 6.12.2 Features ....................................................................................................................... 104 6.13 USCI – SPI Mode ..................................................................................................... 105 6.14 USCI – I2C Mode ...................................................................................................... 107 6.14.1 Overview ...................................................................................................................... 107 6.14.2 Features ....................................................................................................................... 107 6.15 Hardware Divider (HDIV).......................................................................................... 108 6.15.1 Overview ...................................................................................................................... 108 6.15.2 Features ....................................................................................................................... 108 6.16 Analog to Digital Converter (ADC) ........................................................................... 109 6.16.1 Overview ...................................................................................................................... 109 6.16.2 Features ....................................................................................................................... 109 6.17 Analog Comparator (ACMP) .................................................................................... 110 6.17.1 Overview ...................................................................................................................... 110 6.17.2 Features ....................................................................................................................... 110 6.18 Programmable Gain Amplifier (PGA) ....................................................................... 111 6.18.1 Overview ...................................................................................................................... 111 6.18.2 Features ....................................................................................................................... 111 7 APPLICATION CIRCUIT ................................................................................ 112 Apr. 06, 2017 Page 3 of 131 Rev.1.00 MINI57 SERIES DATASHEET 6.13.1 Overview ...................................................................................................................... 105 6.13.2 Features ....................................................................................................................... 105 Mini57 8 ELECTRICAL CHARACTERISTICS .............................................................. 113 8.1 Absolute Maximum Ratings ..................................................................................... 113 8.2 DC Electrical Characteristics .................................................................................... 114 8.3 AC Electrical Characteristics .................................................................................... 119 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.4 Analog Characteristics ............................................................................................. 121 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 8.4.6 8.4.7 8.5 External Input Clock ..................................................................................................... 119 External 4~24 MHz High Speed Crystal (HXT)............................................................. 119 External 32.768 kHz XTAL Oscillator (LXT) ................................................................. 119 Typical Crystal Application Circuits............................................................................... 119 48 MHz Internal High Speed RC Oscillator (HIRC) ...................................................... 120 10 kHz Internal Low Speed RC Oscillator (LIRC) ......................................................... 120 12-bit SAR ADC............................................................................................................ 121 LDO & Power Management .......................................................................................... 122 Low Voltage Reset ....................................................................................................... 122 Brown-out Detector....................................................................................................... 123 Power-on Reset ............................................................................................................ 123 Comparator .................................................................................................................. 124 PGA .............................................................................................................................. 124 Flash DC Electrical Characteristics .......................................................................... 126 9 PACKAGE DIMENSIONS .............................................................................. 127 9.1 28-Pin TSSOP (4.4x9.7x1.0 mm)............................................................................. 127 9.2 20-Pin TSSOP (4.4x6.5x0.9 mm)............................................................................. 128 9.3 33-pin QFN33 (4x4x0.8 mm) .................................................................................... 129 10 REVISION HISTORY................................................................................. 130 MINI57 SERIES DATASHEET Apr. 06, 2017 Page 4 of 131 Rev.1.00 Mini57 List of Figures Figure 4.1-1 NuMicro® Mini57 Series Selection Code ................................................................... 13 Figure 4.3-1 NuMicro® Mini57 Series TSSOP 28-pin Diagram ...................................................... 15 Figure 4.3-2 NuMicro® Mini57 Series TSSOP 28-pin Multi-function Diagram ............................... 15 Figure 4.3-3 NuMicro® Mini57 Series TSSOP 20-pin Diagram ...................................................... 16 Figure 4.3-4 NuMicro® Mini57 Series TSSOP 20-pin Multi-function Diagram ............................... 16 Figure 4.3-5 NuMicro® Mini57 Series QFN 33-pin Diagram .......................................................... 17 Figure 4.3-6 NuMicro® Mini57 Series QFN 33-pin Multi-function Diagram .................................... 18 Figure 5.1-1 NuMicro® Mini57 Block Diagram ............................................................................... 34 Figure 6.1-1 Functional Block Diagram .......................................................................................... 35 Figure 6.2-1 System Reset Resources .......................................................................................... 38 Figure 6.2-2 nRESET Reset Waveform ......................................................................................... 40 Figure 6.2-3 Power-on Reset (POR) Waveform ............................................................................ 40 Figure 6.2-4 Low Voltage Reset (LVR) Waveform......................................................................... 41 Figure 6.2-5 Brown-out Detector (BOD) Waveform ....................................................................... 42 Figure 6.2-6 Power Mode State Machine ...................................................................................... 43 Figure 6.2-7 NuMicro® Mini57 Series Power Architecture Diagram .............................................. 46 Figure 6.2-8 NuMicro® Mini57 Flash, Security and Configuration Map ......................................... 50 Figure 6.2-9 SRAM Block Diagram ................................................................................................ 52 Figure 6.3-1 Clock Generator Block Diagram ................................................................................ 87 Figure 6.3-2 Clock Generator Global View Diagram...................................................................... 88 Figure 6.3-4 SysTick Clock Control Block Diagram ....................................................................... 90 Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK ................................................... 91 Figure 6.3-6 Clock Source of Frequency Divider ........................................................................... 93 Figure 6.3-7 Block Diagram of Frequency Divider ......................................................................... 93 Figure 6.5-1 I/O Pin Block Diagram ............................................................................................... 95 Figure 6.13-1 SPI Master Mode Application Block Diagram (x=0, 1) .......................................... 105 Figure 6.13-2 SPI Slave Mode Application Block Diagram (x=0, 1) ............................................ 105 Figure 6.14-1 I2C Bus Timing ....................................................................................................... 107 Figure 8.3-1 Mini57 Typical Crystal Application Circuit................................................................ 120 Apr. 06, 2017 Page 5 of 131 Rev.1.00 MINI57 SERIES DATASHEET Figure 6.3-3 System Clock Block Diagram .................................................................................... 89 Mini57 List of Tables Table 3-1 List of Abbreviations....................................................................................................... 12 Table 4.2-1 NuMicro® Mini57 Series Selection Guide ................................................................... 14 Table 4.4-1 TSSOP28 Pin Description .......................................................................................... 22 Table 4.4-2 TSSOP20 Pin Description .......................................................................................... 26 Table 4.4-3 QFN33 Pin Description ............................................................................................... 30 Table 4.4-4 TSSOP20 Multi-function Pin Summary....................................................................... 33 Table 6.2-1 Reset Value of Registers ............................................................................................ 39 Table 6.2-2 Power Mode Difference Table .................................................................................... 43 Table 6.2-3 Clocks in Power Modes .............................................................................................. 44 Table 6.2-4 Condition of Entering Power-down Mode Again ......................................................... 45 Table 6.2-5 Memory Mapping Table .............................................................................................. 47 Table 6.2-6 Protected Registers .................................................................................................... 49 Table 6.2-7 Address Space Assignments for On-Chip Modules ................................................... 51 Table 6.2-8 Exception Model ......................................................................................................... 59 Table 6.2-9 System Interrupt Map Vector Table ............................................................................ 60 Table 6.2-10 Vector Table Format ................................................................................................. 60 Table 6.3-1 Peripheral Clock Source Selection Table ................................................................... 92 MINI57 SERIES DATASHEET Apr. 06, 2017 Page 6 of 131 Rev.1.00 Mini57 1 GENERAL DESCRIPTION The NuMicro® Mini57 series 32-bit microcontrollers are embedded with ARM® Cortex® -M0 core for industrial applications which need high performance, high integration, and low cost. The Cortex® M0 is the newest ARM® embedded processor with 32-bit performance at a cost equivalent to the traditional 8-bit microcontroller. The Mini57 series can run up to 48 MHz and operate at 2.1V ~ 5.5V, -40℃ ~ 105℃, and thus can support a variety of industrial control applications which need high CPU performance. The Mini57 offers 29.5 Kbytes embedded program Flash, size configurable Data Flash (shared with program Flash), 2 Kbytes Flash for the ISP, 1.5 Kbytes SPROM for security, and 4 Kbytes SRAM. Many system level peripheral functions, such as I/O Port, Timer, UART, SPI, I2C, PWM, ADC, Watchdog Timer, Analog Comparator and Brown-out Detector, have been incorporated into the Mini57 to reduce component count, board space and system cost. These useful functions make the Mini57 powerful for a wide range of applications. Additionally, the Mini57 series is equipped with ISP (In-System Programming) and ICP (In-Circuit Programming) functions, which allow the user to update program memory without removing the chip from the actual end product. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 7 of 131 Rev.1.00 Mini57 2 FEATURES  Core - ARM® Cortex® -M0 core running up to 48 MHz - One 24-bit system timer - Supports low power Idle mode - A single-cycle 32-bit hardware multiplier - NVIC for the 32 interrupt inputs, each with 4-level of priority - Supports Serial Wire Debug (SWD) interface and two watchpoints/four breakpoints  Built-in LDO for wide operating voltage ranged: 2.1V to 5.5V  Memory  - 29.5 Kbytes Flash memory for program memory (APROM) - Configurable Flash memory for data memory (Data Flash) - 2 KB Flash memory for loader (LDROM) - Three 0.5 KB Flash memory for security protection (SPROM) - 4 KB SRAM for internal scratch-pad RAM (SRAM) Clock Control - Programmable system clock source  MINI57 SERIES DATASHEET - 4 ~ 24 MHz external crystal input (HXT) - 32.768 kHz external crystal input (LXT) for idle wake-up and system operation clock - 48 MHz internal oscillator (HIRC) (±1% accuracy at 250C, 5V)   Apr. 06, 2017 Switch clock sources on-the-fly Dynamically calibrating the HIRC OSC to 48 MHz ±1% from -40℃ to 105℃ by external 32.768K crystal oscillator (LXT) 10 kHz internal low-power oscillator (LIRC) for Watchdog Timer and idle wakeup I/O Port - Up to 22 general-purpose I/O (GPIO) pins and 1 Reset pin for QFN-33 package - Four I/O modes:  Quasi-bidirectional input/output  Push-Pull output  Open-Drain output  Input only with high impendence - Optional TTL/Schmitt trigger input - I/O pin can be configured as interrupt source with edge/level setting - Supports high driver and high sink I/O mode Page 8 of 131 Rev.1.00 Mini57   - Supports software selectable slew rate control - GPIO built-in Pull-up/Pull-low resistor for selection Timer - Provides two channel 32-bit Timers; one 8-bit pre-scalar counter with 24-bit uptimer for each timer - Independent clock source for each timer - Provides One-shot, Periodic, Toggle and Continuous operation modes - 24-bit up counter value is readable through CNT (Timer Data Register) - Provides trigger counting/free counting/counter reset function triggered by external capture pin or internal comparator signal - Supports event counter function - Supports Toggle Output mode - Supports wake-up from Idle or Power-down mode - Timer0, Timer1 and Systick provided with Continuous capture function to capture at most 4 edges continuously on one signal Continuous Capture -   Apr. 06, 2017 Enhanced Input Capture - One unit of 24-bit input capture counter - Capture surce:  I/O inputs: ECAP0, ECAP1 and ECAP2  PWM Trigger  ADC Trigger WDT (Watchdog Timer) - Programmable clock source and time-out period - Supports wake-up function in Power-down mode and Idle mode - Interrupt or reset selectable on watchdog time-out PWM - Supports a built-in 16-bit PWM clock generators, providing six PWM outputs or three complementary paired PWM outputs - Shared same as clock source, clock divider, period and dead-zone generator - Supports group/synchronous/independent/ complementary modes - Supports One-shot or Auto-reload mode - Supports Edge-aligned and Center-aligned type - Supports Asymmetric mode - Programmable dead-zone insertion between complementary channels - Each output has independent polarity setting control Page 9 of 131 Rev.1.00 MINI57 SERIES DATASHEET  Timer0, Timer1 and Systick have support Continuous capture function can Continuous Capture 4 edge on one signal Mini57    MINI57 SERIES DATASHEET    Apr. 06, 2017 - Hardware fault brake and software brake protections - Supports rising, falling, central, period, and fault break interrupts - Supports duty/period trigger A/D conversion - Timer comparing matching event trigger PWM to do phase change - Supports comparator event trigger PWM to force PWM output low for current period - Provides interrupt accumulation function USCI (Universal Serial Control Interface Controller) - Two USCI devices - Supports to be configured as UART, SPI or I²C individually - Supports programmable baud-rate generator ADC (Analog-to-Digital Converter) - 12-bit ADC with 700 kSPS - Supports 2 sample/hold - Up to 8-ch single-end input from I/O and one internal input from band-gap. - Conversion started either by software trigger, PWM trigger, ACMP trigger or external pin trigger - Supports temperature sensor for measurement chip temperature - Supports Simultaneous and Sequential function to continuous conversion 4 channels maximum. Programmable Gain Amplifier (PGA) - Supports 8 level gain selects from 1, 2, 3, 5, 7, 9, 11 and 13 - Unity gain frequency up to 8 MHz Analog Comparator - Two analog comparators with programmable 16-level internal voltage reference - Built-in CRV (comparator reference voltage) - Supports Hysteresis function - Interrupt when compared results changed Hardware Divider - Signed (two’s complement) integer calculation - 32-bit dividend with 16-bit divisor calculation capacity - 32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit) - Divided by zero warning flag - 6 HCLK clocks taken for one cycle calculation - Waiting for calculation ready automatically when reading quotient and remainder ISP (In-System Programming) and ICP (In-Circuit Programming) Page 10 of 131 Rev.1.00 Mini57  BOD (Brown-out Detector) - 8 programmable threshold levels: 4.3V/4.0V/3.7V/3.0V/2.7V/2.4V/2.2V/2.0V - Supports Brown-out interrupt and reset option  96-bit unique ID  LVR (Low Voltage Reset)  Operating Temperature: -40℃~105℃  Reliability: EFT > ± 4KV, ESD HBM pass 4KV  Packages: - Green package (RoHS) - 20-pin TSSOP, 28-pin TSSOP, 33-pin QFN MINI57 SERIES DATASHEET Apr. 06, 2017 Page 11 of 131 Rev.1.00 Mini57 3 ABBREVIATIONS MINI57 SERIES DATASHEET Acronym Description ACMP Analog Comparator Controller ADC Analog-to-Digital Converter AHB Advanced High-Performance Bus APB Advanced Peripheral Bus BOD Brown-out Detection BPWM Basic Pulse Width Modulation DAP Debug Access Port EPWM Enhanced Pulse Width Modulation FIFO First In, First Out FMC Flash Memory Controller GPIO General-Purpose Input/Output HCLK The Clock of Advanced High-Performance Bus HIRC 48 MHz Internal High Speed RC Oscillator HXT 4~24 MHz External High Speed Crystal Oscillator ICP In Circuit Programming ISP In System Programming ISR Interrupt Service Routine LDO Low Dropout Regulator LIRC 10 kHz internal low speed RC oscillator (LIRC) LXT 32.768 kHz External Low Speed Crystal Oscillator NVIC Nested Vectored Interrupt Controller PCLK The Clock of Advanced Peripheral Bus PWM Pulse Width Modulation SPI Serial Peripheral Interface SPS Samples per Second TMR Timer Controller UART Universal Asynchronous Receiver/Transmitter UCID Unique Customer ID WDT Watchdog Timer Table 3-1 List of Abbreviations Apr. 06, 2017 Page 12 of 131 Rev.1.00 Mini57 4 PARTS INFORMATION LIST AND PIN CONFIGURATION 4.1 NuMicro® Mini57 Naming Rule ARM–Based 32-bit Microcontroller Mini57-X X X CPU Core Corte® -M0 Temperature E: -40oC ~ +105oC Flash ROM 57 : 29.5 KB Flash ROM Reserved Package Type F: TSSOP 20 E: TSSOP 28 T: QFN 33 4x4mm Figure 4.1-1 NuMicro® Mini57 Series Selection Code MINI57 SERIES DATASHEET Apr. 06, 2017 Page 13 of 131 Rev.1.00 Mini57 4.2 NuMicro® Mini57 Series Selection Guide * USCI can be set to UART, SPI or I2C Part Number ISP APROM RAM Data Flash Loader ROM Connectivity I/O Timer Comp. PWM ADC PGA ISP ICP IAP USCI* IRC 10 kHz Package 48 MHz Mini57TDE 29.5 KB 4 KB Configurable 2.5 KB up to 22 2x32-bit 2 2 8 8x12-bit v v v QFN33(4x4) Mini57EDE 29.5 KB 4 KB Configurable 2.5 KB up to 22 2x32-bit 2 2 8 8x12-bit v v v TSSOP28 Mini57FDE 29.5 KB 4 KB Configurable 2.5 KB up to 18 2x32-bit 2 2 8 8x12-bit v v v TSSOP20 Table 4.2-1 NuMicro® Mini57 Series Selection Guide MINI57 SERIES DATASHEET Apr. 06, 2017 Page 14 of 131 Rev.1.00 Mini57 4.3 Pin Configuration 4.3.1 TSSOP 28-Pin VDD 1 28 VSS PD.6 2 27 LDO_CAP PB.0 3 26 PC.4 PB.1 4 25 PA.0 PB.2 5 24 PA.1 PB.4 6 23 PA.2 PC.1 7 22 PA.3 nRESET 8 21 PA.4 PB.3 9 20 PA.5 PC.2 10 19 PD.5 PD.2 11 18 PC.3 PD.3 12 17 PD.1 13 16 PD.4 14 15 PC.0 NC NC Figure 4.3-1 NuMicro® Mini57 Series TSSOP 28-pin Diagram 1 28 VSS 2 27 LDO_CAP PB.0/ADC0_CH0/ACMP0_P0/ECAP_P0 3 26 PC.4/ECAP_P3 PB.1/ADC0_CH1/ACMP0_P1/ECAP_P1 4 25 PA.0/CLKO/EPWM_CH0/I2C1_SCL/SPI0_SS/SPI1_CLK/UART1_TXD PB.2/ADC0_CH2/BPWM_CH1/ACMP0_P2/ECAP_P2 5 24 PA.1/EPWM_CH1/I2C1_SDA/SPI0_MISO/SPI1_MOSI/UART1_RXD PB.4/ADC1_CH0/ACMP0_N/TM1 6 23 PA.2/EPWM_CH2/I2C0_SDA/SPI0_MOSI/SPI1_MISO/UART0_RXD PC.1/ADC0_CH4/STADC/ACMP0_P3/ACMP1_P1/SPI0_MOSI/SPI1_MISO 7 22 PA.3/EPWM_CH3/I2C0_SCL/SPI0_CLK/SPI1_SS/UART0_TXD nRESET 8 21 PA.4/XT_IN/EPWM_CH4 PB.3/ACMP1_N/PGA_I/TM0 9 20 PA.5/XT_OUT/EPWM_CH5/ACMP0_O PC.2/ADC1_CH2/BRAKE/CCAP_P1/I2C1_SDA/SPI0_MISO/SPI1_MOSI/UART1_RXD 10 19 PD.5/UART0_TXD PD.2/ICE_DAT/ADC1_CH1/CCAP_P0/I2C0_SDA/SPI0_MOSI/SPI1_MISO/UART0_RXD 11 18 PC.3/ACMP1_O/PGA_O/SPI0_CLK/SPI1_SS PD.3/BPWM_CH1/UART1_TXD 12 17 PD.1/ICE_CLK/ACMP1_P2/I2C0_SCL/SPI0_CLK/SPI1_SS/UART0_TXD NC 13 16 PD.4/BPWM_CH0/UART1_RXD NC 14 15 PC.0/ADC0_CH3/BPWM_CH0/ACMP1_P0/I2C1_SCL/SPI0_SS/SPI1_CLK/UART1_TXD Figure 4.3-2 NuMicro® Mini57 Series TSSOP 28-pin Multi-function Diagram Apr. 06, 2017 Page 15 of 131 Rev.1.00 MINI57 SERIES DATASHEET VDD PD.6/UART0_RXD Mini57 4.3.2 TSSOP 20-Pin VDD 1 20 VSS PB.0 2 19 PA.0 PB.1 3 18 PA.1 PB.2 4 17 PA.2 PB.4 5 16 PA.3 PC.1 6 15 PA.4 nRESET 7 14 PA.5 PB.3 8 13 PC.3 PC.2 9 12 PD.1 PD.2 10 11 PC.0 Figure 4.3-3 NuMicro® Mini57 Series TSSOP 20-pin Diagram VDD 1 20 VSS PB.0/ADC0_CH0/ACMP0_P0/ECAP_P0 2 19 PA.0/CLKO/EPWM_CH0/I2C1_SCL/SPI0_SS/SPI1_CLK/UART1_TXD PB.1/ADC0_CH1/ACMP0_P1/ECAP_P1 3 18 PA.1/EPWM_CH1/I2C1_SDA/SPI0_MISO/SPI1_MOSI/UART1_RXD PB.2/ADC0_CH2/BPWM_CH1/ACMP0_P2/ECAP_P2 4 17 PA.2/EPWM_CH2/I2C0_SDA/SPI0_MOSI/SPI1_MISO/UART0_RXD PB.4/ADC1_CH0/ACMP0_N/TM1 5 16 PA.3/EPWM_CH3/I2C0_SCL/SPI0_CLK/SPI1_SS/UART0_TXD PC.1/ADC0_CH4/STADC/ACMP0_P3/ACMP1_P1/SPI0_MOSI/SPI1_MISO 6 15 PA.4/XT_IN/EPWM_CH4 nRESET 7 14 PA.5/XT_OUT/EPWM_CH5/ACMP0_O PB.3/ACMP1_N/PGA_I/TM0 8 13 PC.3/ACMP1_O/PGA_O/SPI0_CLK/SPI1_SS PC.2/ADC1_CH2/BRAKE/CCAP_P1/I2C1_SDA/SPI0_MISO/SPI1_MOSI/UART1_RXD 9 12 PD.1/ICE_CLK/ACMP1_P2/I2C0_SCL/SPI0_CLK/SPI1_SS/UART0_TXD 10 11 PC.0/ADC0_CH3/BPWM_CH0/ACMP1_P0/I2C1_SCL/SPI0_SS/SPI1_CLK/UART1_TXD PD.2/ICE_DAT/ADC1_CH1/CCAP_P0/I2C0_SDA/SPI0_MOSI/SPI1_MISO/UART0_RXD MINI57 SERIES DATASHEET Figure 4.3-4 NuMicro® Mini57 Series TSSOP 20-pin Multi-function Diagram Apr. 06, 2017 Page 16 of 131 Rev.1.00 Mini57 PC.4 PA.0 PA.1 PC.0 PC.3 PD.1 PD.4 QFN 33-Pin NC 4.3.3 32 31 30 29 28 27 26 25 LDO_CAP VSS VDD PD.6 PB.0 1 24 2 23 3 22 PB.1 PB.2 PB.4 6 Mini57 QFN 33-pin 4 5 21 20 19 7 18 33 VSS 8 NC PA.4 PA.5 PD.5 NC NC NC NC PD.2 PD.3 PC.2 10 11 12 13 14 15 16 PC.1 nRESET PB.3 9 17 PA.2 PA.3 MINI57 SERIES DATASHEET Figure 4.3-5 NuMicro® Mini57 Series QFN 33-pin Diagram Apr. 06, 2017 Page 17 of 131 Rev.1.00 MINI57 SERIES DATASHEET 24 2 23 PB.1/ADC0_CH1/ACMP0_P1/ECAP_P1 PB.2/ADC0_CH2/BPWM_CH1/ACMP0_P2/ECAP_P2 PB.4/ADC1_CH0/ACMP0_N/TM1 6 Apr. 06, 2017 8 NC NC 9 PC.2/ADC1_CH2/BRAKE/CCAP_P1/I2C1_SDA/SPI0_MISO/SPI1_MOSI/UART1_RXD 1 5 PD.2/ICE_DAT/ADC1_CH1/CCAP_P0/I2C0_SDA/SPI0_MOSI/SPI1_MISO/UART0_RXD PD.3/BPWM_CH1/UART1_TXD LDO_CAP VSS VDD PD.6/UART0_RXD PB.0/ADC0_CH0/ACMP0_P0/ECAP_P0 4 PB.3/ACMP1_N/PGA_I/TM0 PC.1/ADC0_CH4/STADC/ACMP0_P3/ACMP1_P1/SPI0_MOSI/SPI1_MISO nRESET PC.4/ECAP_P3 PA.0/CLKO/EPWM_CH0/I2C1_SCL/SPI0_SS/SPI1_CLK/UART1_TXD PA.1/EPWM_CH1/I2C1_SDA/SPI0_MISO/SPI1_MOSI/UART1_RXD PC.0/ADC0_CH3/BPWM_CH0/ACMP1_P0/I2C1_SCL/SPI0_SS/SPI1_CLK/UART1_TXD PC.3/ACMP1_O/PGA_O/SPI0_CLK/SPI1_SS PD.1/ICE_CLK/ACMP1_P2/I2C0_SCL/SPI0_CLK/SPI1_SS/UART0_TXD PD.4/BPWM_CH0/UART1_RXD NC Mini57 32 31 30 29 28 27 26 25 3 Mini57 QFN 33-pin 22 21 20 7 19 33 VSS 18 17 Page 18 of 131 PA.2/EPWM_CH2/I2C0_SDA/SPI0_MOSI/SPI1_MISO/UART0_RXD PA.3/EPWM_CH3/I2C0_SCL/SPI0_CLK/SPI1_SS/UART0_TXD NC PA.4/XT_IN/EPWM_CH4 PA.5/XT_OUT/EPWM_CH5/ACMP0_O PD.5/UART0_TXD NC NC 10 11 12 13 14 15 16 Figure 4.3-6 NuMicro® Mini57 Series QFN 33-pin Multi-function Diagram Rev.1.00 Mini57 4.4 Pin Description 4.4.1 Mini57 Series Pin Description MFP* = Multi-function pin. (Refer to section SYS_GPx_MFP) PA.0 MFP0 means SYS_GPA_MFP[3:0]=0x0. PA.4 MFP5 means SYS_GPA_MFP[19:16]=0x5. MFP only configures the ouput data or input data of PAD; the direction of PAD is configured by PMD. The priority of MFP in the same multi-function was GPA > GPB > GPC > GPD. The type A of multi-function needs to be configured to be input port. 4.4.1.1 Pin No. Mini57 Series TSSOP28 Pin Description Pin Name MFP* Description A MFP0 Power supply for I/O ports and LDO source for internal PLL and digital function. I/O MFP0 General purpose digital I/O pin. I MFPB Data receiver input pin for UART0. I/O MFP0 General purpose digital I/O pin. ADC0_CH0 A MFP2 ADC0 channel0 analog input. ACMP0_P0 A MFP4 Analog comparator0 positive input pin. ECAP_P0 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH1 A MFP2 ADC0 channel1 analog input. ACMP0_P1 A MFP4 Analog comparator0 positive input pin. ECAP_P1 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH2 A MFP2 ADC0 channel2 analog input. BPWM_CH1 I/O MFP3 PWM channel1 output/capture input. ACMP0_P2 A MFP4 Analog comparator0 positive input pin. ECAP_P2 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC1_CH0 A MFP2 ADC1 channel0 analog input. ACMP0_N A MFP4 Analog comparator0 negative input pin. TM1 I/O MFP7 Timer1 event counter input / toggle output PC.1 I/O MFP0 General purpose digital I/O pin. A MFP2 ADC0 channel4 analog input. 1 VDD 2 PD.6 UART0_RXD 3 4 5 6 7 PB.0 PB.1 PB.2 PB.4 ADC0_CH4 Apr. 06, 2017 Page 19 of 131 MINI57 SERIES DATASHEET Type Rev.1.00 Mini57 Pin No. Pin Name Type MFP* Description STADC I MFP3 ADC external trigger input. ACMP0_P3 A MFP4 Analog comparator0 positive input pin. ACMP1_P1 A MFP5 Analog comparator1 positive input pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFP0 External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state. I/O MFP0 General purpose digital I/O pin. ACMP1_N A MFP5 Analog comparator1 negative input pin. PGA_I A MFP6 PGA input pin TM0 I/O MFP7 Timer0event counter input / toggle output PC.2 I/O MFP0 General purpose digital I/O pin. ADC1_CH2 A MFP2 ADC1 channel2 analog input. BRAKE I MFP3 Brake input pin of EPWM. CCAP_P1 I MFP7 Timer Continuous Capture input pin I2C1_SDA I/O MFP8 I C1 data input/output pin. SPI0_MISO I/O MFP9 SPI0 1st MISO (Master In, Slave Out) pin. SPI1_MOSI I/O MFPA SPI1 MOSI (Master Out, Slave In) pin. I MFPB Data receiver input pin for UART1. PD.2 I/O MFP0 General purpose digital I/O pin. ICE_DAT I/O MFP1 Serial wired debugger data pin ADC1_CH1 A MFP2 ADC1 channel1 analog input. CCAP_P0 I MFP7 Timer Continuous Capture input pin I2C0_SDA I/O MFP8 I C0 data input/output pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFPB Data receiver input pin for UART0. PD.3 I/O MFP0 General purpose digital I/O pin. BPWM_CH1 I/O MFP3 PWM channel1 output/capture input. UART1_TXD O MFPB Data transmitter output pin for UART1. 8 nRESET 9 PB.3 10 UART1_RXD 11 MINI57 SERIES DATASHEET UART0_RXD 12 2 2 13 NC No Connection 14 NC No Connection 15 PC.0 ADC0_CH3 Apr. 06, 2017 I/O MFP0 General purpose digital I/O pin. A MFP2 ADC0 channel3 analog input. Page 20 of 131 Rev.1.00 Mini57 Pin No. 16 17 18 20 21 Type MFP* Description BPWM_CH0 I/O MFP3 PWM channel0 output/capture input. ACMP1_P0 A MFP5 Analog comparator1 positive input pin. I2C1_SCL I/O MFP8 I C1 clock pin. SPI0_SS I/O MFP9 SPI0 slave select pin. SPI1_CLK I/O MFPA SPI1 serial clock pin UART1_TXD O MFPB Data transmitter output pin for UART1. PD.4 I/O MFP0 General purpose digital I/O pin. BPWM_CH0 I/O MFP3 PWM channel0 output/capture input. UART1_RXD I MFPB Data receiver input pin for UART1. I/O MFP0 General purpose digital I/O pin. ICE_CLK I MFP1 Serial wired debugger clock pin ACMP1_P2 A MFP5 Analog comparator1 positive input pin. I2C0_SCL I/O MFP8 I C0 clock pin. SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin UART0_TXD O MFPB Data transmitter output pin for UART0. PC.3 I/O MFP0 General purpose digital I/O pin. ACMP1_O O MFP5 Analog comparator1 output. PGA_O A MFP6 PGA output pin SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin PD.5 I/O MFP0 General purpose digital I/O pin. UART0_TXD O MFPB Data transmitter output pin for UART0. PA.5 I/O MFP0 General purpose digital I/O pin. XT_OUT O MFP1 External 4~24 MHz (high speed) crystal output pin. EPWM_CH5 I/O MFP3 PWM channel5 output/capture input. ACMP0_O O MFP4 Analog comparator0 output. PA.4 I/O MFP0 General purpose digital I/O pin. I MFP1 External 4~24 MHz (high speed) crystal input pin. EPWM_CH4 I/O MFP3 PWM channel4 output/capture input. PA.3 I/O MFP0 General purpose digital I/O pin. EPWM_CH3 I/O MFP3 PWM channel3 output/capture input. I2C0_SCL I/O MFP8 I C0 clock pin. PD.1 XT_IN 22 Apr. 06, 2017 2 2 2 Page 21 of 131 Rev.1.00 MINI57 SERIES DATASHEET 19 Pin Name Mini57 Pin No. Pin Name Type MFP* Description SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin UART0_TXD O MFPB Data transmitter output pin for UART0. PA.2 I/O MFP0 General purpose digital I/O pin. EPWM_CH2 I/O MFP3 PWM channel2 output/capture input. I2C0_SDA I/O MFP8 I C0 data input/output pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFPB Data receiver input pin for UART0. PA.1 I/O MFP0 General purpose digital I/O pin. EPWM_CH1 I/O MFP3 PWM channel1 output/capture input. I2C1_SDA I/O MFP8 I C1 data input/output pin. SPI0_MISO I/O MFP9 SPI0 1st MISO (Master In, Slave Out) pin. SPI1_MOSI I/O MFPA SPI1 MOSI (Master Out, Slave In) pin. I MFPB Data receiver input pin for UART1. PA.0 I/O MFP0 General purpose digital I/O pin. CLKO O MFP1 Clock Out EPWM_CH0 I/O MFP3 PWM channel0 output/capture input. I2C1_SCL I/O MFP8 I C1 clock pin. SPI0_SS I/O MFP9 SPI0 slave select pin. SPI1_CLK I/O MFPA SPI1 serial clock pin UART1_TXD O MFPB Data transmitter output pin for UART1. PC.4 I/O MFP0 General purpose digital I/O pin. ECAP_P3 I MFP7 Enhanced Input Capture input pin 27 LDO_CAP A MFP0 LDO output pin. 28 VSS A MFP0 Ground pin for digital circuit. 23 UART0_RXD 24 UART1_RXD 25 MINI57 SERIES DATASHEET 26 2 2 2 Table 4.4-1 TSSOP28 Pin Description Apr. 06, 2017 Page 22 of 131 Rev.1.00 Mini57 4.4.1.2 Pin No. Mini57 Series TSSOP20 Pin Description Pin Name MFP* Description A MFP0 Power supply for I/O ports and LDO source for internal PLL and digital function. I/O MFP0 General purpose digital I/O pin. ADC0_CH0 A MFP2 ADC0 channel0 analog input. ACMP0_P0 A MFP4 Analog comparator0 positive input pin. ECAP_P0 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH1 A MFP2 ADC0 channel1 analog input. ACMP0_P1 A MFP4 Analog comparator0 positive input pin. ECAP_P1 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH2 A MFP2 ADC0 channel2 analog input. BPWM_CH1 I/O MFP3 PWM channel1 output/capture input. ACMP0_P2 A MFP4 Analog comparator0 positive input pin. ECAP_P2 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC1_CH0 A MFP2 ADC1 channel0 analog input. ACMP0_N A MFP4 Analog comparator0 negative input pin. TM1 I/O MFP7 Timer1 event counter input / toggle output PC.1 I/O MFP0 General purpose digital I/O pin. ADC0_CH4 A MFP2 ADC0 channel4 analog input. STADC I MFP3 ADC external trigger input. ACMP0_P3 A MFP4 Analog comparator0 positive input pin. ACMP1_P1 A MFP5 Analog comparator1 positive input pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFP0 External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state. I/O MFP0 General purpose digital I/O pin. ACMP1_N A MFP5 Analog comparator1 negative input pin. PGA_I A MFP6 PGA input pin TM0 I/O MFP7 Timer0event counter input / toggle output PC.2 I/O MFP0 General purpose digital I/O pin. 1 VDD 2 PB.0 3 4 5 6 PB.1 PB.2 PB.4 7 nRESET 8 PB.3 9 Apr. 06, 2017 Page 23 of 131 Rev.1.00 MINI57 SERIES DATASHEET Type Mini57 Pin No. Pin Name Type MFP* Description ADC1_CH2 A MFP2 ADC1 channel2 analog input. BRAKE I MFP3 Brake input pin of EPWM. CCAP_P1 I MFP7 Timer Continuous Capture input pin I2C1_SDA I/O MFP8 I C1 data input/output pin. SPI0_MISO I/O MFP9 SPI0 1st MISO (Master In, Slave Out) pin. SPI1_MOSI I/O MFPA SPI1 MOSI (Master Out, Slave In) pin. I MFPB Data receiver input pin for UART1. PD.2 I/O MFP0 General purpose digital I/O pin. ICE_DAT I/O MFP1 Serial wired debugger data pin ADC1_CH1 A MFP2 ADC1 channel1 analog input. CCAP_P0 I MFP7 Timer Continuous Capture input pin I2C0_SDA I/O MFP8 I C0 data input/output pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFPB Data receiver input pin for UART0. I/O MFP0 General purpose digital I/O pin. ADC0_CH3 A MFP2 ADC0 channel3 analog input. BPWM_CH0 I/O MFP3 PWM channel0 output/capture input. ACMP1_P0 A MFP5 Analog comparator1 positive input pin. I2C1_SCL I/O MFP8 I C1 clock pin. SPI0_SS I/O MFP9 SPI0 slave select pin. SPI1_CLK I/O MFPA SPI1 serial clock pin UART1_TXD O MFPB Data transmitter output pin for UART1. PD.1 I/O MFP0 General purpose digital I/O pin. ICE_CLK I MFP1 Serial wired debugger clock pin ACMP1_P2 A MFP5 Analog comparator1 positive input pin. I2C0_SCL I/O MFP8 I C0 clock pin. SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin UART0_TXD O MFPB Data transmitter output pin for UART0. PC.3 I/O MFP0 General purpose digital I/O pin. ACMP1_O O MFP5 Analog comparator1 output. PGA_O A MFP6 PGA output pin UART1_RXD 10 UART0_RXD 11 MINI57 SERIES DATASHEET 12 13 PC.0 Apr. 06, 2017 2 2 2 2 Page 24 of 131 Rev.1.00 Mini57 Pin No. 14 15 Pin Name Type MFP* Description SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin PA.5 I/O MFP0 General purpose digital I/O pin. XT_OUT O MFP1 External 4~24 MHz (high speed) crystal output pin. EPWM_CH5 I/O MFP3 PWM channel5 output/capture input. ACMP0_O O MFP4 Analog comparator0 output. PA.4 I/O MFP0 General purpose digital I/O pin. I MFP1 External 4~24 MHz (high speed) crystal input pin. EPWM_CH4 I/O MFP3 PWM channel4 output/capture input. PA.3 I/O MFP0 General purpose digital I/O pin. EPWM_CH3 I/O MFP3 PWM channel3 output/capture input. I2C0_SCL I/O MFP8 I C0 clock pin. SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin UART0_TXD O MFPB Data transmitter output pin for UART0. PA.2 I/O MFP0 General purpose digital I/O pin. EPWM_CH2 I/O MFP3 PWM channel2 output/capture input. I2C0_SDA I/O MFP8 I C0 data input/output pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFPB Data receiver input pin for UART0. PA.1 I/O MFP0 General purpose digital I/O pin. EPWM_CH1 I/O MFP3 PWM channel1 output/capture input. I2C1_SDA I/O MFP8 I C1 data input/output pin. SPI0_MISO I/O MFP9 SPI0 1st MISO (Master In, Slave Out) pin. SPI1_MOSI I/O MFPA SPI1 MOSI (Master Out, Slave In) pin. I MFPB Data receiver input pin for UART1. PA.0 I/O MFP0 General purpose digital I/O pin. CLKO O MFP1 Clock Out EPWM_CH0 I/O MFP3 PWM channel0 output/capture input. I2C1_SCL I/O MFP8 I C1 clock pin. SPI0_SS I/O MFP9 SPI0 slave select pin. SPI1_CLK I/O MFPA SPI1 serial clock pin XT_IN 16 17 18 UART1_RXD 19 Apr. 06, 2017 2 MINI57 SERIES DATASHEET UART0_RXD 2 2 2 Page 25 of 131 Rev.1.00 Mini57 Pin No. 20 Pin Name Type MFP* Description UART1_TXD O MFPB Data transmitter output pin for UART1. VSS A MFP0 Ground pin for digital circuit. Table 4.4-2 TSSOP20 Pin Description MINI57 SERIES DATASHEET Apr. 06, 2017 Page 26 of 131 Rev.1.00 Mini57 4.4.1.3 Mini57 Series QFN33 Pin Description QFN33 Pin Pin Name No. 1 Type MFP* Description LDO_CAP A MFP0 LDO output pin. VSS A MFP0 Ground pin for digital circuit. VDD A MFP0 Power supply for I/O ports and LDO source for internal PLL and digital function. I/O MFP0 General purpose digital I/O pin. I MFPB Data receiver input pin for UART0. I/O MFP0 General purpose digital I/O pin. ADC0_CH0 A MFP2 ADC0 channel0 analog input. ACMP0_P0 A MFP4 Analog comparator0 positive input pin. ECAP_P0 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH1 A MFP2 ADC0 channel1 analog input. ACMP0_P1 A MFP4 Analog comparator0 positive input pin. ECAP_P1 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH2 A MFP2 ADC0 channel2 analog input. BPWM_CH1 I/O MFP3 PWM channel1 output/capture input. ACMP0_P2 A MFP4 Analog comparator0 positive input pin. ECAP_P2 I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC1_CH0 A MFP2 ADC1 channel0 analog input. ACMP0_N A MFP4 Analog comparator0 negative input pin. TM1 I/O MFP7 Timer1 event counter input / toggle output PC.1 I/O MFP0 General purpose digital I/O pin. ADC0_CH4 A MFP2 ADC0 channel4 analog input. STADC I MFP3 ADC external trigger input. ACMP0_P3 A MFP4 Analog comparator0 positive input pin. ACMP1_P1 A MFP5 Analog comparator1 positive input pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFP0 External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state. 2 33 3 PD.6 4 UART0_RXD PB.0 5 PB.1 6 PB.2 7 MINI57 SERIES DATASHEET PB.4 8 9 10 nRESET Apr. 06, 2017 Page 27 of 131 Rev.1.00 Mini57 PB.3 I/O MFP0 General purpose digital I/O pin. ACMP1_N A MFP5 Analog comparator1 negative input pin. PGA_I A MFP6 PGA input pin TM0 I/O MFP7 Timer0event counter input / toggle output PC.2 I/O MFP0 General purpose digital I/O pin. ADC1_CH2 A MFP2 ADC1 channel2 analog input. BRAKE I MFP3 Brake input pin of EPWM. CCAP_P1 I MFP7 Timer Continuous Capture input pin I2C1_SDA I/O MFP8 I C1 data input/output pin. SPI0_MISO I/O MFP9 SPI0 1st MISO (Master In, Slave Out) pin. SPI1_MOSI I/O MFPA SPI1 MOSI (Master Out, Slave In) pin. I MFPB Data receiver input pin for UART1. PD.2 I/O MFP0 General purpose digital I/O pin. ICE_DAT I/O MFP1 Serial wired debugger data pin ADC1_CH1 A MFP2 ADC1 channel1 analog input. CCAP_P0 I MFP7 Timer Continuous Capture input pin I2C0_SDA I/O MFP8 I C0 data input/output pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFPB Data receiver input pin for UART0. PD.3 I/O MFP0 General purpose digital I/O pin. BPWM_CH1 I/O MFP3 PWM channel1 output/capture input. UART1_TXD O MFPB Data transmitter output pin for UART1. 11 12 UART1_RXD 13 UART0_RXD MINI57 SERIES DATASHEET 14 2 2 15 NC No Connection 16 NC No Connection 17 NC No Connection 18 NC No Connection PD.5 I/O MFP0 General purpose digital I/O pin. UART0_TXD O MFPB Data transmitter output pin for UART0. PA.5 I/O MFP0 General purpose digital I/O pin. XT_OUT O MFP1 External 4~24 MHz (high speed) crystal output pin. EPWM_CH5 I/O MFP3 PWM channel5 output/capture input. ACMP0_O O MFP4 Analog comparator0 output. PA.4 I/O MFP0 General purpose digital I/O pin. 19 20 21 Apr. 06, 2017 Page 28 of 131 Rev.1.00 Mini57 XT_IN EPWM_CH4 22 I MFP1 External 4~24 MHz (high speed) crystal input pin. I/O MFP3 PWM channel4 output/capture input. NC No Connection PA.3 I/O MFP0 General purpose digital I/O pin. EPWM_CH3 I/O MFP3 PWM channel3 output/capture input. I2C0_SCL I/O MFP8 I C0 clock pin. SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin UART0_TXD O MFPB Data transmitter output pin for UART0. PA.2 I/O MFP0 General purpose digital I/O pin. EPWM_CH2 I/O MFP3 PWM channel2 output/capture input. I2C0_SDA I/O MFP8 I C0 data input/output pin. SPI0_MOSI I/O MFP9 SPI0 1st MOSI (Master Out, Slave In) pin. SPI1_MISO I/O MFPA SPI1 MISO (Master In, Slave Out) pin. I MFPB Data receiver input pin for UART0. PA.1 I/O MFP0 General purpose digital I/O pin. EPWM_CH1 I/O MFP3 PWM channel1 output/capture input. I2C1_SDA I/O MFP8 I C1 data input/output pin. SPI0_MISO I/O MFP9 SPI0 1st MISO (Master In, Slave Out) pin. SPI1_MOSI I/O MFPA SPI1 MOSI (Master Out, Slave In) pin. I MFPB Data receiver input pin for UART1. PA.0 I/O MFP0 General purpose digital I/O pin. CLKO O MFP1 Clock Out EPWM_CH0 I/O MFP3 PWM channel0 output/capture input. I2C1_SCL I/O MFP8 I C1 clock pin. SPI0_SS I/O MFP9 SPI0 slave select pin. SPI1_CLK I/O MFPA SPI1 serial clock pin UART1_TXD O MFPB Data transmitter output pin for UART1. PC.4 I/O MFP0 General purpose digital I/O pin. I MFP7 Enhanced Input Capture input pin I/O MFP0 General purpose digital I/O pin. ADC0_CH3 A MFP2 ADC0 channel3 analog input. BPWM_CH0 I/O MFP3 PWM channel0 output/capture input. ACMP1_P0 A MFP5 Analog comparator1 positive input pin. 2 23 2 24 UART0_RXD 2 25 UART1_RXD MINI57 SERIES DATASHEET 26 2 27 ECAP_P3 PC.0 28 Apr. 06, 2017 Page 29 of 131 Rev.1.00 Mini57 29 I/O MFP8 I C1 clock pin. SPI0_SS I/O MFP9 SPI0 slave select pin. SPI1_CLK I/O MFPA SPI1 serial clock pin UART1_TXD O MFPB Data transmitter output pin for UART1. PD.4 I/O MFP0 General purpose digital I/O pin. BPWM_CH0 I/O MFP3 PWM channel0 output/capture input. UART1_RXD I MFPB Data receiver input pin for UART1. I/O MFP0 General purpose digital I/O pin. ICE_CLK I MFP1 Serial wired debugger clock pin ACMP1_P2 A MFP5 Analog comparator1 positive input pin. I2C0_SCL I/O MFP8 I C0 clock pin. SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin UART0_TXD O MFPB Data transmitter output pin for UART0. PC.3 I/O MFP0 General purpose digital I/O pin. ACMP1_O O MFP5 Analog comparator1 output. PGA_O A MFP6 PGA output pin SPI0_CLK I/O MFP9 SPI0 serial clock pin. SPI1_SS I/O MFPA SPI1 slave select pin PD.1 30 31 32 2 I2C1_SCL NC 2 No Connection MINI57 SERIES DATASHEET Table 4.4-3 QFN33 Pin Description Apr. 06, 2017 Page 30 of 131 Rev.1.00 Mini57 4.4.2 GPIO Multi-function Pin Summary MFP* = Multi-function pin. (Refer to section SYS_GPx_MFP) PA.0 MFP0 means SYS_GPA_MFP[3:0]=0x0. PA.4 MFP5 means SYS_GPA_MFP[19:16]=0x5. Group Pin Name GPIO MFP* Type Description ACMP0_P0 PB.0 MFP4 A Comparator0 positive input pin. ACMP0_P1 PB.1 MFP4 A Comparator0 positive input pin. ACMP0_P2 PB.2 MFP4 A Comparator0 positive input pin. ACMP0_N PB.4 MFP4 A Comparator0 negative input pin. ACMP0_P3 PC.1 MFP4 A Comparator0 positive input pin. ACMP0_O PA.5 MFP4 O Comparator0 output pin. ACMP1_P1 PC.1 MFP5 A Comparator1 positive input pin. ACMP1_N PB.3 MFP5 A Comparator1 negative input pin. ACMP1_O PC.3 MPF5 O Comparator1 output pin. ACMP1_P2 PD.1 MFP5 A Comparator1 positive input pin. ACMP1_P0 PC.0 MFP5 A Comparator1 positive input pin. ADC0_CH0 PB.0 MFP2 A ADC0 analog input channel 0. ADC0_CH1 PB.1 MFP2 A ADC0 analog input channel 1. ADC0_CH2 PB.2 MFP2 A ADC0 analog input channel 2. ADC0_CH4 PC.1 MFP2 A ADC0 analog input channel 4. ADC0_CH3 PC.0 MFP2 A ADC0 analog input channel 3. ADC1_CH0 PB.4 MFP2 A ADC1 analog input channel 0. ADC1_CH2 PC.2 MFP2 A ADC1 analog input channel 2. ADC1_CH1 PD.2 MFP2 A ADC1 analog input channel 1. BPWM_CH1 PB.2 MFP3 O Basic PWM channel 1 output BPWM_CH0 PC.0 MFP3 O Basic PWM channel 0 output BPWM_CH1 PD.3 MFP3 O Basic PWM channel 1 output BPWM_CH0 PD.4 MFP3 O Basic PWM channel 0 output CCAP_P1 PC.2 MFP7 I Continuous Capture Input CCAP_P0 PD.2 MFP7 I Continuous Capture Input CLKO PA.0 MFP1 O Clock output pin. ECAP_P0 PB.0 MFP7 I Input capture channel 0 ECAP_P1 PB.1 MFP7 I Input capture channel 1 ECAP_P2 PB.2 MFP7 I Input capture channel 2 ACMP0 ACMP1 ADC0 MINI57 SERIES DATASHEET ADC1 BPWM CCAP CLKO ECAP Apr. 06, 2017 Page 31 of 131 Rev.1.00 Mini57 EPWM 2 BRAKE PC.2 MFP3 I EPWM brake pin. EPWM_CH5 PA.5 MFP3 O Enhanced PWM output pin. EPWM_CH4 PA.4 MFP3 O Enhanced PWM output pin. EPWM_CH3 PA.3 MFP3 O Enhanced PWM output pin. EPWM_CH2 PA.2 MFP3 O Enhanced PWM output pin. EPWM_CH1 PA.1 MFP3 O Enhanced PWM output pin. EPWM_CH0 PA.0 MFP3 O Enhanced PWM output pin. I2C1_SDA PC.2 MFP8 I/O I C1 data pin. I2C0_SDA PD.2 MFP8 I/O I C0 data pin. I2C0_SCL PD.1 MFP8 I/O I C0 clock pin. I2C1_SCL PC.0 MFP8 I/O I C1 clock pin. I2C0_SCL PA.3 MFP8 I/O I C0 clock pin. I2C0_SDA PA.2 MFP8 I/O I C0 data pin. I2C1_SDA PA.1 MFP8 I/O I C1 data pin. I2C1_SCL PA.0 MFP8 I/O I C1 clock pin. ICE_DAT PD.2 MFP1 I/O Serial wired debugger data pin ICE_CLK PD.1 MFP1 I Serial wired debugger clock pin I External reset pin, internal pull-high. IC 2 2 2 2 2 2 2 2 ICE nRESET nRESET PGA_I PB.3 MFP6 A PGA analog input pin. PGA_O PC.3 MFP6 A PGA analog output pin. SPI0_MOSI PC.1 MFP9 I/O SPI0 MOSI (Master Out, Slave In) pin. SPI0_MISO PC.2 MFP9 I/O SPI0 MISO (Master In, Slave Out) pin. SPI0_MOSI PD.2 MFP9 I/O SPI0 MOSI (Master Out, Slave In) pin. SPI0_CLK PC.3 MFP9 I/O SPI0 clock pin. SPI0_CLK PD.1 MFP9 I/O SPI0 clock pin. SPI0_SS PC.0 MFP9 I SPI0_CLK PA.3 MFP9 I/O SPI0 clock pin. SPI0_MOSI PA.2 MFP9 I/O SPI0 MOSI (Master Out, Slave In) pin. SPI0_MISO PA.1 MFP9 I/O SPI0 MISO (Master In, Slave Out) pin. SPI0_SS PA.0 MFP9 I SPI1_MISO PC.1 MFPA I/O SPI1 MISO (Master In, Slave Out) pin SPI1_MOSI PC.2 MFPA I/O SPI1 MOSI (Master Out, Slave In) pin. SPI1_MISO PD.2 MFPA I/O SPI1 MISO (Master In, Slave Out) pin SPI1_SS PC.3 MFPA I/O SPI1 Slave Select PGA MINI57 SERIES DATASHEET SPI0 SPI0 slave selection pin. SPI0 slave selection pin. SPI1 Apr. 06, 2017 Page 32 of 131 Rev.1.00 Mini57 SPI1_SS PD.1 MFPA I/O SPI1 Slave Select SPI1_CLK PC.0 MFPA I/O SPI1 clock pin. SPI1_SS PA.3 MFPA I SPI1_MISO PA.2 MFPA I/O SPI1 MISO (Master In, Slave Out) pin. SPI1_MOSI PA.1 MFPA I/O SPI1 MOSI (Master Out, Slave In) pin. SPI1_CLK PA.0 MFPA I/O SPI1 clock pin. STADC STADC PC.1 MFP3 I External ADC trigger input pin. TM0 TM0 PB.3 MFP7 I Timer0 event counter input / toggle output TM1 TM1 PB.4 MFP7 I Timer1 event counter input / toggle output UART0_RXD PD.2 MFPB I UART0 data receiver input pin. UART0_TXD PD.1 MFPB O UART0 data transmitter output pin. UART0_TXD PA.3 MFPB O UART0 data transmitter output pin. UART0_RXD PA.2 MFPB I UART0 data receiver input pin. UART0_TXD PD.5 MFPB O UART0 data transmitter output pin. UART0_RXD PD.6 MFPB I UART0 data receiver input pin. UART1_RXD PC.2 MFPB I UART1 data receiver input pin. UART1_TXD PC.0 MFPB O UART1 data transmitter output pin. UART1_RXD PA.1 MFPB I UART1 data receiver input pin. UART1_TXD PA.0 MFPB O UART1 data transmitter output pin. UART1_TXD PD.3 MFPB O UART1 data transmitter output pin. UART1_RXD PD.4 MFPB I UART1 data receiver input pin. XT_OUT PA.5 MPF1 A External crystal output pin. XT_IN PA.4 MFP1 A External crystal input pin. SPI1 slave selection pin. UART0 UART1 MINI57 SERIES DATASHEET XT Table 4.4-4 TSSOP20 Multi-function Pin Summary Apr. 06, 2017 Page 33 of 131 Rev.1.00 Mini57 5 BLOCK DIAGRAM 5.1 NuMicro® Mini57 Block Diagram MINI57 SERIES DATASHEET Figure 5.1-1 NuMicro® Mini57 Block Diagram Apr. 06, 2017 Page 34 of 131 Rev.1.00 Mini57 6 FUNCTIONAL DESCRIPTION 6.1 ARM® Cortex® -M0 Core 6.1.1 Overview The Cortex® -M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex® -M profile processor. The profile supports two modes – Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. Figure 6.1-1 shows the functional controller of processor. Cortex-M0 Components Cortex-M0 Processor Nested Vectored Interrupt Controller (NVIC) Interrupts Wakeup Interrupt Controller (WIC) Debug Cortex-M0 Processor Core Breakpoint and Watchpoint Unit Bus matrix Debugger interface AHB-Lite interface Debug Access Port (DAP) Serial Wire or JTAG debug port MINI57 SERIES DATASHEET Figure 6.1-1 Functional Block Diagram Apr. 06, 2017 Page 35 of 131 Rev.1.00 Mini57 6.1.2 Features The implemented device provides:    MINI57 SERIES DATASHEET  Apr. 06, 2017 A low gate count processor: - ARMv6-M Thumb® instruction set - Thumb-2 technology - ARMv6-M compliant 24-bit SysTick timer - A 32-bit hardware multiplier - System interface supported with little-endian data accesses - Ability to have deterministic, fixed-latency, interrupt handling - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers - Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or return from interrupt sleep-on-exit feature NVIC: - 32 external interrupt inputs, each with four levels of priority - Dedicated Non-maskable Interrupt (NMI) input - Supports for both level-sensitive and pulse-sensitive interrupt lines - Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode Debug support: - Four hardware breakpoints - Two watchpoints - Program Counter Sampling Register (PCSR) for non-intrusive code profiling - Single step and vector catch capabilities Bus interfaces: - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory - Single 32-bit slave port that supports the DAP (Debug Access Port) Page 36 of 131 Rev.1.00 Mini57 6.2 System Manager 6.2.1 Overview System management includes the following sections: 6.2.2  System Reset  System Power Architecture  System Memory Map  System management registers for Part Number ID, chip reset and on-chip controllers reset, and multi-functional pin control  System Timer (SysTick)  Nested Vectored Interrupt Controller (NVIC)  System Control registers System Reset The system reset can be issued by one of the events listed below. These reset event flags can be read from SYS_RSTSTS register to determine the reset source. Hardware reset can reset chip through peripheral reset signals. Software reset can trigger reset through control registers.  Apr. 06, 2017 - Power-on Reset (POR) - Low level on the nRESET pin - Watchdog Timer Time-out Reset (WDT) - Low Voltage Reset (LVR) - Brown-out Detector Reset (BOD Reset) Software Reset Sources - CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0]) - MCU Reset to reboot but keeping the booting setting from APROM or LDROM by writing 1 to SYSRESETREQ (SCS_AIRCR[2]) - CPU Reset for Cortex® -M0 core Only by writing 1 to CPURST (SYS_IPRST0[1]) Page 37 of 131 Rev.1.00 MINI57 SERIES DATASHEET  Hardware Reset Sources Mini57 Glitch Filter 16.8 us nRESET ~50k ohm @5v VDD Power-on Reset VDD Low Voltage Reset Reset Pulse Width 3.2ms BODRSTEN(SYS_BODCTL[3]) Brown-out Reset System Reset WDT Reset Reset Pulse Width 64 WDT clocks CHIP Reset CHIPRST(SYS_IPRST0[0]) MCU Reset SYSRSTREQ(SCS_AIRCR[2]) Software Reset Reset Pulse Width 2 system clocks CPU Reset CPURST(SYS_IPRST0[1]) Figure 6.2-1 System Reset Resources There are a total of 9 reset sources in the NuMicro® family. In general, CPU reset is used to reset Cortex® -M0 only; the other reset sources will reset Cortex® -M0 and all peripherals. However, there are small differences between each reset source and they are listed in Table 6.2-5. MINI57 SERIES DATASHEET Reset Sources POR nRESET WDT LVR BOD CHIP MCU CPU SYS_RSTSTS 0x001 Bit 1 = 1 Bit 2 = 1 0x001 Bit 4 = 1 Bit 0 = 1 Bit 5 = 1 Bit 7 = 1 CHIPRST 0x0 - - - - - - - Reload from CONFIG0 Reload from CONFIG0 Reload from CONFIG0 Reload from CONFIG 0 - Reload from CONFIG0 Reload from CONFIG0 - 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x1 - 0x1 - - 0x1 - Register (SYS_IPRST0[0]) BODEN (SYS_BODCTL[0]) BODVL (SYS_BODCTL[2:1]) BODRSTEN (SYS_BODCTL[3]) XTLEN (CLK_PWRCTL[1:0]) WDTCKEN - (CLK_APBCLK0[0]) Apr. 06, 2017 Page 38 of 131 Rev.1.00 Mini57 HCLKSEL 0x8 0x8 0x8 0x8 0x8 0x8 0x8 - 0x3 0x3 - - - - - - 0x0 - - - - - - - 0x0 - - - - - - - 0x0 0x0 - - - - - - WDT_CTL 0x0700 0x0700 0x0700 0x0700 0x0700 0x0700 - - WDT_ALTCTL 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 - - WWDT_RLDCNT 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 - - WWDT_CTL 0x3F0800 0x3F0800 0x3F0800 0x3F080 0 0x3F0800 0x3F0800 - - WWDT_STATUS 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 - - WWDT_CNT 0x3F 0x3F 0x3F 0x3F 0x3F 0x3F - - BS Reload from CONFIG0 Reload from CONFIG0 Reload from CONFIG0 Reload from CONFIG 0 Reload from CONFIG0 Reload from CONFIG0 - - FMC_DFBA Reload from CONFIG1 Reload from CONFIG1 Reload from CONFIG1 Reload from CONFIG 1 Reload from CONFIG1 Reload from CONFIG1 - - CBS Reload from CONFIG0 Reload from CONFIG0 Reload from CONFIG0 Reload from CONFIG 0 Reload from CONFIG0 Reload from CONFIG0 - - Reload base on CONFIG0 Reload base on CONFIG0 Reload base on CONFIG0 Reload base on CONFIG 0 Reload base on CONFIG0 Reload base on CONFIG0 - - (CLK_CLKSEL0[1:0]) WDTSEL (CLK_CLKSEL1[1:0]) XLTSTB (CLK_STATUS[0]) LIRCSTB 0x0 (CLK_STATUS[3]) HIRCSTB (CLK_STATUS[4]) CLKSFAIL (CLK_STATUS[7]) (FMC_ISPCTL[1]) ISPEN (FMC_ISPCTL[16]) VECMAP (FMC_ISPSTS[20:9]) Other Registers Peripheral FMC Registers Reset Value Reset Value Note: ‘-‘ means that the value of register keeps original setting. Table 6.2-1 Reset Value of Registers 6.2.2.1 nRESET Reset The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an asynchronous reset input pin and can be used to reset system at any time. When the nRESET Apr. 06, 2017 Page 39 of 131 Rev.1.00 MINI57 SERIES DATASHEET (FMC_ISPSTS[2:1)) Mini57 voltage is lower than 0.2 VDD and the state keeps longer than 16.8 us (glitch filter), chip will be reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above 0.7 VDD and the state keeps longer than 36 us (glitch filter). The PINRF (SYS_RSTSTS[1]) will be set to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset waveform. nRESET 0.7 VDD 16.8 us 0.2 VDD 16.8 us nRESET Reset Figure 6.2-2 nRESET Reset Waveform 6.2.2.2 Power-On Reset (POR) The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to be reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the POR module will detect the rising voltage and generate reset signal to system until the voltage is ready for MCU operation. At POR reset, the PORF (SYS_RSTSTS[0]) will be set to 1 to indicate there is a POR reset event. The PORF (SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.2-3 shows the waveform of Power-On reset. MINI57 SERIES DATASHEET VPOR 0.1V VDD Power On Reset Figure 6.2-3 Power-on Reset (POR) Waveform 6.2.2.3 Low Voltage Reset (LVR) Low Voltage Reset detects AVDD during system operation. When the AVDD voltage is lower than Apr. 06, 2017 Page 40 of 131 Rev.1.00 Mini57 VLVR and the state keeps longer than De-glitch time (16*HCLK cycles), chip will be reset. The LVR reset will control the chip in reset state until the AVDD voltage rises above VLVR and the state keeps longer than De-glitch time. The PINRF (SYS_RSTSTS[1]) will be set to 1 if the previous reset source is nRESET reset. Figure 6.2-4 shows the Low Voltage Reset waveform. AVDD VLVR T1 T2 ( < de-glitch time) ( = de-glitch time) Low Voltage Reset T3 ( = de-glitch time) Figure 6.2-4 Low Voltage Reset (LVR) Waveform Brown-out Detector Reset (BOD Reset) If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit BODEN (SYS_BODCTL[0]), Brown-Out Detector function will detect AVDD during system operation. When the AVDD voltage is lower than VBOD which is decided by BODEN (SYS_BODCTL[0]) and BODVL (SYS_BODCTL[2:1]) and the state keeps longer than De-glitch time (Max(20*HCLK cycles, 1*LIRC cycle)), chip will be reset. The BOD reset will control the chip in reset state until the AVDD voltage rises above VBOD and the state keeps longer than De-glitch time. The default value of BODEN, BODVL and BODRSTEN is set by Flash controller user configuration register CBODEN (CONFIG0[12]), CBOV (CONFIG0[15:13]) and CBORST (CONFIG0[12]) respectively. User can determine the initial BOD setting by setting the CONFIG0 register. Figure 6.2-5 shows the Brown-Out Detector waveform. Apr. 06, 2017 Page 41 of 131 Rev.1.00 MINI57 SERIES DATASHEET 6.2.2.4 Mini57 AVDD VBODH VBODL Hysteresis T1 T2 (< de-glitch time) (= de-glitch time) BODOUT T3 (= de-glitch time) BODRSTEN Brown-out Reset Figure 6.2-5 Brown-out Detector (BOD) Waveform MINI57 SERIES DATASHEET 6.2.2.5 Watchdog Timer Reset In most industrial applications, system reliability is very important. To automatically recover the MCU from failure status is one way to improve system reliability. The watchdog timer (WDT) is widely used to check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog time-out. User may decide to enable system reset during watchdog time-out to recover the system and take action for the system crash/out-of-control after reset. Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a watchdog reset and handle the failure of MCU after watchdog time-out reset by checking WDTRF (SYS_RSTSTS[2]). 6.2.2.6 CPU Reset, CHIP Reset and SYSTEM Reset The CPU Reset means only Cortex® -M0 core is reset and all other peripherals remain the same status after CPU reset. User can set the CPURST (SYS_IPRST0[1]) to 1 to assert the CPU Reset signal. The CHIP Reset is same with Power-On Reset. The CPU and all peripherals are reset and BS (FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG setting. User can set the CHIPRST (SYS_IPRST0[0]) to 1 to assert the CHIP Reset signal. The MCU Reset is similar with CHIP Reset. The difference is that BS (FMC_ISPCTL[1]) will not be reloaded from CONFIG setting and keep its original software setting for booting from APROM or LDROM. User can set the SYSRESETREQ (SCS_AIRCR[2]) to 1 to assert the MCU Reset. Apr. 06, 2017 Page 42 of 131 Rev.1.00 Mini57 6.2.3 Power Modes and Wake-up Sources There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-2 lists the available clocks for each power mode. Power Mode Normal Mode Idle Mode Power-Down Mode Definition CPU is in active state CPU is in sleep state CPU is in sleep state and all clocks stop except LXT and LIRC. SRAM content retended. Entry Condition Chip is in normal mode after system reset released CPU executes WFI instruction. CPU sets sleep mode enable and power down enable and executes WFI instruction. Wake-up Sources N/A All interrupts WDT, I²C, Timer, UART, SPI, ACMP, BOD and GPIO Available Clocks All All except CPU clock LXT and LIRC After Wake-up N/A CPU back to normal mode CPU back to normal mode Table 6.2-2 Power Mode Difference Table System reset released Normal Mode CPU Clock ON HXT, HIRC, LXT, LIRC, HCLK, PCLK ON Flash ON CPU executes WFI Interrupts occur Idle Mode Wake-up events occur Power-down Mode CPU Clock OFF HXT, HIRC, LXT, LIRC, HCLK, PCLK ON Flash Halt CPU Clock OFF HXT, HIRC, HCLK, PCLK OFF LXT, LIRC ON Flash Halt Figure 6.2-6 Power Mode State Machine 1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in run mode. 2. LIRC (10 kHz OSC) ON or OFF depends on S/W setting in run mode. 3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on. 4. If WDT clock source is selected as LIRC and LIRC is on. Normal Mode Idle Mode Power-Down Mode HXT (4~20 MHz XTL) ON ON Halt HIRC (12/16 MHz OSC) ON ON Halt Apr. 06, 2017 Page 43 of 131 Rev.1.00 MINI57 SERIES DATASHEET 1. SLEEPDEEP (SCS_SCR[2]) = 1 2. PDEN (CLK_PWRCTL[7]) = 1 and PDWKIF (CLK_PWRCTL[8]) = 1 3. CPU executes WFI Mini57 1 LXT (32768 Hz XTL) ON ON ON/OFF LIRC (10 kHz OSC) ON ON ON/OFF LDO ON ON ON CPU ON Halt Halt HCLK/PCLK ON ON Halt SRAM retention ON ON ON FLASH ON ON Halt GPIO ON ON Halt TIMER ON ON ON/OFF BPWM ON ON Halt EPWM ON ON Halt WDT ON ON ON/OFF USCI ON ON Halt ADC ON ON Halt ACMP ON ON Halt ECAP ON ON Halt HDIV ON ON Halt PGA ON ON Halt 2 3 4 Table 6.2-3 Clocks in Power Modes MINI57 SERIES DATASHEET Wake-up sources in Power-down mode: WDT, I²C, Timer, UART, SPI, BOD, ACMP and GPIO After chip enters power down, the following wake-up sources can wake chip up to normal mode. Table 6.2-4 lists the condition about how to enter Power-down mode again for each peripheral. *User needs to wait this condition before setting PDEN (CLK_PWRCTL[7]) and execute WFI to enter Power-down mode. Wake-Up Wake-Up Condition Source BOD System Can Enter Power-Down Mode Again Condition* Brown-Out Detector Interrupt After software writes 1 to clear SYS_BODCTL[BODIF]. GPIO GPIO Interrupt After software write 1 to clear the Px_INTSRC[n] bit. Timer Interrupt After software writes 1 to clear TWKF (TIMERx_INTSTS[1]) and TIF (TIMERx_INTSTS[0]). WDT WDT Interrupt After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect). USCI UART Incoming data wake-up TIMER Apr. 06, 2017 After software writes 1 to clear WKF (UUART_WKSTS[0]). Page 44 of 131 Rev.1.00 Mini57 USCI SPI 2 USCI I C ACMP SS transaction wake-up After software writes 1 to clear WKF (USPI_WKSTS[0]). Data toggle After software writes 1 to clear WKF (UI2C_WKSTS[0]). Address match After software writes 1 to clear WKAKDONE (UI2C_PROTSTS[16], then writes 1 to clear WKF (UI2C_WKSTS[0]). Comparator Power-down Wake-Up Interrupt After software writes 1 to clear ACMPF0 (ACMP_STATUS[0]) and ACMPF1 (ACMP_STATUS[1]). Table 6.2-4 Condition of Entering Power-down Mode Again MINI57 SERIES DATASHEET Apr. 06, 2017 Page 45 of 131 Rev.1.00 Mini57 6.2.4 System Power Architecture In this chip, the power distribution is divided into three segments.  Analog power from AVDD and AVSS provides the power for analog components operation. AVDD must be equal to VDD to avoid leakage current.  Digital power from VDD and VSS supplies power to the I/O pins and internal regulator which provides a fixed 1.5V power for digital operation.  A built-in capacitor for internal voltage regulator The output of internal voltage regulator, LDO, does not require an external capacitor and doesn’t bond out to external pin. Analog power (AVDD) should be the same voltage level of the digital power (VDD). Temperature Sensor SRAM Flash Digital Logic 1.5V 48 MHz HIRC Oscillator POR15 XT_OUT XT_IN 4~24 MHz or 32.768 kHz crystal oscillator MINI57 SERIES DATASHEET 12-bit ADC POR50 2.1~5.5V to 1.5V LDO Brown-out Detector Low Voltage Reset Power On Control 10 kHz LIRC Oscillator IO Cell GPIO Analog Comparator VSS VDD Mini57 power distribution Figure 6.2-7 NuMicro® Mini57 Series Power Architecture Diagram Apr. 06, 2017 Page 46 of 131 Rev.1.00 Mini57 6.2.5 System Memory Mapping Mini57 4 GB System Control 0xFFFF_FFFF Reserved | 0xE000_F000 System C ontrol System C ontrol 0xE000_ED00 SC S_BA External Interrupt C ontrol 0xE000_E100 SC S_BA System Timer C ontrol 0xE000_E010 SC S_BA 0xE000_EFFF 0xE000_E000 0xE000_E00F Reserved | 0x6002_0000 Reserved 0x6001_FFFF 0x6000_0000 0x5FFF_FFFF Reserved | 0x5020_0000 AHB Reserved AHB peripherals 0x501F_FFFF FMC 0x5000_C 000 FMC _BA 0x5000_0000 GPIO C ontrol 0x5000_4000 GP_BA 0x4FFF_FFFF Interrupt Multiplexer C ontrol 0x5000_0300 INT_BA C lock C ontrol 0x5000_0200 C LK_BA System Global C ontrol 0x5000_0000 SYS_BA EC AP C ontrol 0x401B_0000 EC AP_BA USC I1 C ontrol 0x4017_0000 USC I1_BA BPWM C ontrol 0x4014_0000 BPWM_BA PGA C ontrol 0x400F_0000 PGA_BA ADC C ontrol 0x400E_0000 ADC _BA 0x2000_1000 AC MP 0/1 C ontrol 0x400D_0000 AC MP_BA 0x2000_0FFF USC I0 C ontrol 0x4007_0000 USC I0_BA 0x2000_0000 EPWM C ontrol 0x4004_0000 EPWM_BA 0x1FFF_FFFF Timer0/Timer1 C ontrol 0x4001_0000 TMR01_BA WDT C ontrol 0x4000_4000 WDT_BA | 0x4020_0000 0x401F_FFFF APB 1 GB | 0x4000_0000 0x3FFF_FFFF Reserved 4 KB SRAM Reserved | MINI57 SERIES DATASHEET 0.5 GB | APB peripherals 0x0000_7600 0x0000_75FF 29.5 KB on-chip Flash (Mini57) 0 GB | 0x0000_0000 Table 6.2-5 Memory Mapping Table Apr. 06, 2017 Page 47 of 131 Rev.1.00 Mini57 6.2.6 Register Protection Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data “59h”, “16h” “88h” to the register SYS_REGLCTL continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence. After the protection is disabled, user can check REGLCTL (SYS_REGLCTL [0]), “1” is protection disable, “0” is protection enable. Then user can update the target protected register value and then write any data to SYS_REGLCTL to enable register protection. The protected registers are listed in Table 6.2-6. Register Bit Description [1] CPURST Processor Core One-shot Reset (Write Protect) [0] CHIPRST Chip One-shot Reset (Write Protect) [15] LVREN Low Voltage Reset Enable Control (Write Protect) [6] BODLPM Brown-out Detector Low Power Mode (Write Protect) [4] BODRSTEN Brown-out Reset Enable Control (Write Protect) [3:1] BODVL Brown-out Detector Threshold Voltage Selection (Write Protect) [0] BODEN Brown-out Detector Enable Control (Write Protect) SYS_PORCTL [15:0] POROFF Power-on Reset Enable Control (Write Protect) INT_NMICTL [8] NMISELEN NMI Interrupt Enable Control (Write Protected) [11:10] HXTGAIN HXT Gain Control (Write Protect) [7] PDEN System Power-down Enable Control (Write Protect) [5] PDWKIEN Power-down Mode Wake-up Interrupt Enable Control (Write Protect) [4] PDWKDLY Wake-up Delay Counter Enable Control (Write Protect) [3] LIRCEN LIRC Enable Control (Write Protect) [2] HIRCEN HIRC Enable Control (Write Protect) [1:0] XTLEN XTL Enable Control (Write Protect) [0] WDTCKEN Watchdog Timer Clock Enable Control (Write Protect) [4:3] STCLKSEL Cortex® -M0 SysTick Clock Source Selection (Write Protect) [1:0] HCLKSEL HCLK Clock Source Selection (Write Protect) [1:0] WDTSEL Watchdog Timer Clock Source Selection (Write Protect) [6] ISPFF ISP Fail Flag (Write Protect) [5] LDUEN LDROM Update Enable Control (Write Protect) [4] CFGUEN CONFIG Update Enable Control (Write Protect) SYS_IPRST0 SYS_BODCTL MINI57 SERIES DATASHEET CLK_PWRCTL CLK_APBCLK CLK_CLKSEL0 CLK_CLKSEL1 FMC_ISPCTL Apr. 06, 2017 Page 48 of 131 Rev.1.00 Mini57 [3] APUEN APROM Update Enable Control (Write Protect) [2] SPUEN SPROM Update Enable Control (Write Protect) [1] BS Boot Select (Write Protect) [0] ISPEN ISP Enable Control (Write Protect) FMC_ISPTRG [0] ISPGO ISP Start Trigger (Write Protect) FMC_ISPSTS [6] ISPFF ISP Fail Flag (Write Protect) TIMER0_CTL [31] ICEDEBUG ICE Debug Mode Acknowledge Disable Control (Write Protect) TIMER1_CTL [31] ICEDEBUG ICE Debug Mode Acknowledge Disable Control (Write Protect) [31] ICEDEBUG ICE Debug Mode Acknowledge Disable Control (Write Protect) [7] WDTEN Watchdog Timer Enable Control (Write Protect) [6] INTEN Watchdog Timer Time-out Interrupt Enable Control (Write Protect) [4] WKEN Watchdog Timer Time-out Wake-up Function Control (Write Protect) [1] RSTEN Watchdog Timer Time-out Reset Enable Control (Write Protect) [0] RSTCNT Reset Watchdog Timer Up Counter (Write Protect) WDT_CTL Table 6.2-6 Protected Registers MINI57 SERIES DATASHEET Apr. 06, 2017 Page 49 of 131 Rev.1.00 Mini57 6.2.7 6.2.7.1 Memory Organization Overview The NuMicro® Mini57 series provides 4G-byte addressing space. The addressing space assigned to each on-chip controllers is shown in Figure 6.2-8. The detailed register definition, addressing space, and programming details will be described in the following sections for each on-chip peripheral. The Mini57 series only supports little-endian data format. Reserved Reserved 0x0030_0004 0x0030_0000 User User Configuration Configuration (8B) (8B) Reserved Reserved 0x0028_01FF 0x0028_0000 Security Security Protection Protection ROM2 ROM2 (SPROM1 (SPROM1 512B) 512B) Reserved Reserved 0x0024_01FF 0x0024_0000 Security Security Protection Protection ROM1 ROM1 (SPROM1 (SPROM1 512B) 512B) Reserved Reserved 0x0020_01FF 0x0020_0000 Security Security Protection Protection ROM0 ROM0 (SPROM0 (SPROM0 512B) 512B) Reserved Reserved 0x0010_07FF 0x0010_0000 Loader Loader ROM ROM (LDROM (LDROM 2KB) 2KB) Reserved Reserved MINI57 SERIES DATASHEET 0x0000_75FF ApplicationROM ApplicationROM (APROM (APROM 29.5KB) 29.5KB) 0x0000_0000 Figure 6.2-8 NuMicro® Mini57 Flash, Security and Configuration Map 6.2.7.2 System Memory Map The Mini57 series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in Table 6.2-7. The detailed register definition, memory space, and programming will be described in the following sections for each on-chip peripheral. The Mini57 series only supports little-endian data format. The memory locations assigned to each on-chip controllers are shown in Table 6.2-7. Apr. 06, 2017 Page 50 of 131 Rev.1.00 Mini57 Address Space Token Controllers Flash and SRAM Memory Space 0x0000_0000 – 0x0000_75FF FLASH_BA FLASH Memory Space (29.5KB) 0x0010_0000 – 0x0010_07FF LD_BA Loader Memory Space (2 KB) 0x0020_0000 – 0x0020_01FF SP0_BA Security Program Memory 0 Space (0.5 KB) 0x0024_0000 – 0x0024_01FF SP1_BA Security Program Memory 1 Space (0.5 KB) 0x0028_0000 – 0x0028_01FF SP2_BA Security Program Memory 2 Space (0.5 KB) 0x2000_0000 – 0x2000_0FFF SRAM_BA SRAM Memory Space (4 KB) AHB Modules Space (0x5000_0000 – 0x501F_FFFF) 0x5000_0000 – 0x5000_01FF SYS_BA System Control Registers 0x5000_0200 – 0x5000_02FF CLK_BA Clock Control Registers 0x5000_0300 – 0x5000_03FF INT_BA Interrupt Multiplexer Control Registers 0x5000_4000 – 0x5000_7FFF GPIO_BA GPIO Control Registers 0x5000_C000 – 0x5000_FFFF FMC_BA Flash Memory Control Registers 0x5001_4000 – 0x5001_7FFF HDIV_BA Hardware Divider Control Register APB Controllers Space (0x4000_0000 ~ 0x401F_FFFF) WDT_BA Watchdog Timer Control Registers 0x4001_0000 – 0x4001_3FFF TMR01_BA Timer0/Timer1 Control Registers 0x4004_0000 – 0x4004_3FFF EPWM_BA Enhance PWM Control Registers 0x4007_0000 – 0x4007_3FFF USCI0_BA USCI0 Control Registers 0x400D_0000 – 0x400D_3FFF ACMP_BA Analog Comparator 0/1 Control Registers 0x400E_0000 – 0x400E_3FFF ADC_BA ADC Control Registers 0x400F_0000 – 0x400F_3FFF PGA_BA Programmable Gain Amplifier Control Register 0x4014_0000 – 0x4014_3FFF BPWM_BA Basic PWM Control Registers 0x4017_0000 – 0x4017_3FFF USCI1_BA USCI1 Control Registers 0x401B_0000 – 0x401B_3FFF ECAP_BA Enhanced Input Capture Timer Register MINI57 SERIES DATASHEET 0x4000_4000 – 0x4000_7FFF System Controllers Space (0xE000_E000 ~ 0xE000_EFFF) 0xE000_E010 – 0xE000_E0FF SCS_BA System Timer Control Registers 0xE000_E100 – 0xE000_ECFF SCS_BA External Interrupt Controller Control Registers 0xE000_ED00 – 0xE000_ED8F SCS_BA System Control Registers Table 6.2-7 Address Space Assignments for On-Chip Modules Apr. 06, 2017 Page 51 of 131 Rev.1.00 Mini57 6.2.7.3 SRAM Memory Organization The Mini57 supports embedded SRAM with total 4 Kbytes size.    AHB Bus Supports total 4 Kbytes SRAM Supports byte / half word / word write Supports oversize response error AHB interface controller SRAM decoder SRAM 4KB Figure 6.2-9 SRAM Block Diagram MINI57 SERIES DATASHEET Apr. 06, 2017 Page 52 of 131 Rev.1.00 Mini57 6.2.8 System Timer (SysTick) The Cortex® -M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit cleared-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example: An RTOS tick timer fires at a programmable rate (for example 100Hz) and invokes a SysTick routine. A high-speed alarm timer uses Core clock. A variable rate alarm or signal timer – the duration range is dependent on the reference clock used and the dynamic range of the counter. A simple counter can be used by software to measure task completion time. An internal Clock Source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop. When enabled, the timer will count down from the value in the SysTick Current Value Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock edge, and then decrement on subsequent clocks. When the counter transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on read. The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0 before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled. If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit. For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference Manual” and “ARM® v6-M Architecture Reference Manual”. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 53 of 131 Rev.1.00 Mini57 6.2.8.1 System Timer Control Register Map R: read only, W: write only, R/W: both read and write, W&C: write 1 to clear Register Offset R/W Description Reset Value SCS Base Address: SCS_BA = 0xE000_E000 SYST_CTL SCS_BA+0x10 R/W SysTick Control and Status 0x0000_0004 SYST_RVR SCS_BA+0x14 R/W SysTick Reload Value Register 0xXXXX_XXXX SYST_CVR SCS_BA+0x18 R/W SysTick Current Value Register 0xXXXX_XXXX MINI57 SERIES DATASHEET Apr. 06, 2017 Page 54 of 131 Rev.1.00 Mini57 6.2.8.2 System Timer Control Register Description SysTick Control and Status (SYST_CTL) Register Offset R/W Description Reset Value SYST_CTL SCS_BA+0x10 R/W SysTick Control and Status 0x0000_0004 31 30 29 28 27 26 25 24 19 18 17 16 Reserved 23 22 21 20 Reserved 15 14 13 12 COUNTFLAG 11 10 9 8 3 2 1 0 CLKSRC TICKINT ENABLE Reserved 7 6 5 4 Reserved Bits Description [31:17] Reserved Reserved. System Tick Counter Flag [16] COUNTFLAG Return 1 If Timer Counted to 0 Since Last Time this Register Was Read 0 = COUNTFLAG is cleared on read or by a write to the Current Value register. 1 = COUNTFLAG is set by a count transition from 1 to 0. Reserved [2] CLKSRC Reserved. System Tick Clock Source Select Bit 0 = Clock source is optional, refer to STCLKSEL. 1 = Core clock used for SysTick timer. System Tick Interrupt Enable Bit [1] TICKINT 0 = Counting down to 0 will not cause the SysTick exception to be pended. User can use COUNTFLAG to determine if a count to zero has occurred. 1 = Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick Current Value register by a register write in software will not cause SysTick to be pended. System Tick Counter Enable Bit [0] ENABLE 0 = System Tick counter Disabled. 1 = System Tick counter will operate in a multi-shot manner. Apr. 06, 2017 Page 55 of 131 Rev.1.00 MINI57 SERIES DATASHEET [15:3] Mini57 SysTick Reload Value Register (SYST_RVR) Register Offset R/W Description Reset Value SYST_RVR SCS_BA+0x14 R/W SysTick Reload Value Register 0xXXXX_XXXX 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 Reserved 23 22 21 20 RELOAD 15 14 13 12 RELOAD 7 6 5 4 RELOAD Bits Description [31:24] Reserved [23:0] RELOAD Reserved. System Tick Reload Value Value to load into the Current Value register when the counter reaches 0. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 56 of 131 Rev.1.00 Mini57 SysTick Current Value Register (SYST_CVR) Register Offset R/W Description Reset Value SYST_CVR SCS_BA+0x18 R/W SysTick Current Value Register 0xXXXX_XXXX 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 Reserved 23 22 21 20 CURRENT 15 14 13 12 CURRENT 7 6 5 4 CURRENT Bits Description [31:24] Reserved Reserved. System Tick Current Value [23:0] CURRENT Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 57 of 131 Rev.1.00 Mini57 6.2.9 6.2.9.1 Nested Vectored Interrupt Control (NVIC) Overview The Cortex® -M0 CPU provides an interrupt controller as an integral part of the exception mode, named as “Nested Vectored Interrupt Controller (NVIC)”, which is closely coupled to the processor core and provides following features. 6.2.9.2 Features  Nested and Vectored interrupt support  Automatic processor state saving and restoration  Dynamic priority change  Reduced and deterministic interrupt latency The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in “Handler Mode”. This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one’s priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler. When an interrupt is accepted, the starting address of the Interrupt Service Routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers “PC, PSR, LR, R0~R3, R12” to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request. MINI57 SERIES DATASHEET The NVIC supports “Tail Chaining” which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports “Late Arrival” which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability. For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference Manual” and “ARM® v6-M Architecture Reference Manual”. The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead. This provides low latency exception handling. 6.2.9.3 Exception Model and System Interrupt Map Table 6.2-8 lists the exception model supported by the Mini57 series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as 0 and the lowest priority is denoted as 3. The default priority of all the userconfigurable interrupts is 0. Note that the priority 0 is treated as the fourth priority on the system, after three system exceptions “Reset”, “NMI” and “Hard Fault”. Apr. 06, 2017 Page 58 of 131 Rev.1.00 Mini57 Exception Name Vector Number Priority Reset 1 -3 NMI 2 -2 Hard Fault 3 -1 Reserved 4 ~ 10 Reserved SVCall 11 Configurable Reserved 12 ~ 13 Reserved PendSV 14 Configurable SysTick 15 Configurable Interrupt (IRQ0 ~ IRQ31) 16 ~ 47 Configurable Table 6.2-8 Exception Model Vector Number Interrupt Number (Bit In Registers) Interrupt Interrupt Name Interrupt Description - - System exceptions 16 0 BOD_OUT Brown-Out low voltage detected interrupt 17 1 WDTPINT Watchdog Timer interrupt 18 2 USCI0 USCI0 interrupt 19 3 USCI1 USCI1 interrupt 20 4 GP_INT External interrupt from GPA ~ GPD pins 21 5 EPWM_INT EPWM interrupt 22 6 BRAKE0_INT EPWM brake interrupt from PWM0 or PWM_BRAKE pin 23 7 BRAKE1_INT EPWM brake interrupt from PWM1 24 8 BPWM0_INT BPWM0 interrupt 25 9 BPWM1_INT BPWM1 interrupt 26 10 Reserved Reserved 27 11 Reserved Reserved 28 12 Reserved Reserved 29 13 Reserved Reserved 30 14 Reserved Reserved 31 15 ECAP_INT Enhanced Input Capture interrupt 32 16 CCAP_INT Continues Input Capture interrupt 33 17 Reserved Reserved Apr. 06, 2017 Page 59 of 131 MINI57 SERIES DATASHEET 0 ~ 15 Rev.1.00 Mini57 34 18 Reserved Reserved 35 19 Reserved Reserved 36 20 Reserved Reserved 37 21 HIRCTRIM_INT HIRC TRIM interrupt 38 22 TMR0_INT Timer 0 interrupt 39 23 TMR1_INT Timer 1 interrupt 40 24 Reserved Reserved 41 25 Reserved Reserved 42 26 ACMP_INT Analog Comparator 0 or Comparator 1 interrupt 43 27 Reserved Reserved 44 28 PWRWU_INT Chip wake-up from Power-down state interrupt 45 29 ADC0_INT ADC0 interrupt 46 30 ADC1_INT ADC1 interrupt 47 31 ADCWCMP_INT ADC Window Compare interrupt Table 6.2-9 System Interrupt Map Vector Table 6.2.9.4 Vector Table MINI57 SERIES DATASHEET When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table based address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with the exception handler entry as illustrated in previous section. Vector Table Word Offset (Bytes) 0x00 Exception Number * 0x04 Description Initial Stack Pointer Value Exception Entry Pointer using that Exception Number Table 6.2-10 Vector Table Format 6.2.9.5 Operation Description The NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt SetEnable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt. NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used Apr. 06, 2017 Page 60 of 131 Rev.1.00 Mini57 to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt. NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts). The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 61 of 131 Rev.1.00 Mini57 6.2.9.6 NVIC Control Registers Map R: read only, W: write only, R/W: both read and write Register Offset R/W Description Reset Value SCS Base Address: SCS_BA = 0xE000_E000 NVIC_ISER SCS_BA+0x100 R/W IRQ0 ~ IRQ31 Set-Enable Control Register 0x0000_0000 NVIC_ICER SCS_BA+0x180 R/W IRQ0 ~ IRQ31 Clear-Enable Control Register 0x0000_0000 NVIC_ISPR SCS_BA+0x200 R/W IRQ0 ~ IRQ31 Set-Pending Control Register 0x0000_0000 NVIC_ICPR SCS_BA+0x280 R/W IRQ0 ~ IRQ31 Clear-Pending Control Register 0x0000_0000 NVIC_IPR0 SCS_BA+0x400 R/W IRQ0 ~ IRQ3 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR1 SCS_BA+0x404 R/W IRQ4 ~ IRQ7 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR2 SCS_BA+0x408 R/W IRQ8 ~ IRQ11 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR3 SCS_BA+0x40C R/W IRQ12 ~ IRQ15 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR4 SCS_BA+0x410 R/W IRQ16 ~ IRQ19 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR5 SCS_BA+0x414 R/W IRQ20 ~ IRQ23 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR6 SCS_BA+0x418 R/W IRQ24 ~ IRQ27 Interrupt Priority Control Register 0x0000_0000 NVIC_IPR7 SCS_BA+0x41C R/W IRQ28 ~ IRQ31 Interrupt Priority Control Register 0x0000_0000 MINI57 SERIES DATASHEET Apr. 06, 2017 Page 62 of 131 Rev.1.00 Mini57 IRQ0 ~ IRQ31 Set-enable Control Register (NVIC_ISER) Register Offset R/W Description Reset Value NVIC_ISER SCS_BA+0x100 R/W IRQ0 ~ IRQ31 Set-Enable Control Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 SETENA 23 22 21 20 SETENA 15 14 13 12 SETENA 7 6 5 4 SETENA Bits Description Interrupt Enable Register Enable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write operation: 0 = No effect. [31:0] SETENA 1 = Write 1 to enable associated interrupt. Read operation: 0 = Associated interrupt status Disabled. MINI57 SERIES DATASHEET 1 = Associated interrupt status Enabled. Read value indicates the current enable status. Apr. 06, 2017 Page 63 of 131 Rev.1.00 Mini57 IRQ0 ~ IRQ31 Clear-enable Control Register (NVIC_ICER) Register Offset R/W Description Reset Value NVIC_ICER SCS_BA+0x180 R/W IRQ0 ~ IRQ31 Clear-Enable Control Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 CLRENA 23 22 21 20 CLRENA 15 14 13 12 CLRENA 7 6 5 4 CLRENA Bits Description Interrupt Disable Register Disable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write operation: 0 = No effect. [31:0] CLRENA 1 = Write 1 to disable associated interrupt. Read operation: 0 = Associated interrupt status Disabled. MINI57 SERIES DATASHEET 1 = Associated interrupt status Enabled. Note: Read value indicates the current enable status. Apr. 06, 2017 Page 64 of 131 Rev.1.00 Mini57 IRQ0 ~ IRQ31 Set-pending Control Register (NVIC_ISPR) Register Offset R/W Description Reset Value NVIC_ISPR SCS_BA+0x200 R/W IRQ0 ~ IRQ31 Set-Pending Control Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 SETPEND 23 22 21 20 SETPEND 15 14 13 12 SETPEND 7 6 5 4 SETPEND Bits Description Set Interrupt Pending Register Write operation: 0 = No effect. [31:0] SETPEND 1 = Write 1 to set pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Apr. 06, 2017 Page 65 of 131 MINI57 SERIES DATASHEET Note: Read value indicates the current pending status. Rev.1.00 Mini57 IRQ0 ~ IRQ31 Clear-pending Control Register (NVIC_ICPR) Register Offset R/W Description Reset Value NVIC_ICPR SCS_BA+0x280 R/W IRQ0 ~ IRQ31 Clear-Pending Control Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 CLRPEND 23 22 21 20 CLRPEND 15 14 13 12 CLRPEND 7 6 5 4 CLRPEND Bits Description Clear Interrupt Pending Register Write operation: 0 = No effect. [31:0] CLRPEND 1 = Write 1 to clear pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. MINI57 SERIES DATASHEET Note: Read value indicates the current pending status. Apr. 06, 2017 Page 66 of 131 Rev.1.00 Mini57 IRQ0 ~ IRQ3 Interrupt Priority Register (NVIC_IPR0) Register Offset R/W Description Reset Value NVIC_IPR0 SCS_BA+0x400 R/W IRQ0 ~ IRQ3 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_3 23 21 20 19 PRI_2 24 18 17 16 10 9 8 2 1 0 Reserved 14 13 12 11 PRI_1 7 Reserved 6 5 4 3 PRI_0 Description [31:30] PRI_3 [29:24] Reserved [23:22] PRI_2 [21:16] Reserved [15:14] PRI_1 [13:8] Reserved [7:6] PRI_0 [5:0] Reserved Reserved Priority of IRQ3 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ2 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ1 MINI57 SERIES DATASHEET Bits Apr. 06, 2017 25 Reserved 22 15 26 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ0 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 67 of 131 Rev.1.00 Mini57 IRQ4 ~ IRQ7 Interrupt Priority Register (NVIC_IPR1) Register Offset R/W Description Reset Value NVIC_IPR1 SCS_BA+0x404 R/W IRQ4 ~ IRQ7 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_7 23 21 20 19 PRI_6 24 18 17 16 10 9 8 2 1 0 Reserved 14 13 12 11 PRI_5 7 Reserved 6 5 4 3 PRI_4 MINI57 SERIES DATASHEET Bits Description [31:30] PRI_7 [29:24] Reserved [23:22] PRI_6 [21:16] Reserved [15:14] PRI_5 [13:8] Reserved [7:6] PRI_4 [5:0] Reserved Apr. 06, 2017 25 Reserved 22 15 26 Reserved Priority of IRQ7 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ6 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ5 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ4 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 68 of 131 Rev.1.00 Mini57 IRQ8 ~ IRQ11 Interrupt Priority Register (NVIC_IPR2) Register Offset R/W Description Reset Value NVIC_IPR2 SCS_BA+0x408 R/W IRQ8 ~ IRQ11 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_11 23 21 20 19 PRI_10 24 18 17 16 10 9 8 2 1 0 Reserved 14 13 12 11 PRI_9 7 Reserved 6 5 4 3 PRI_8 Description [31:30] PRI_11 [29:24] Reserved [23:22] PRI_10 [21:16] Reserved [15:14] PRI_9 [13:8] Reserved [7:6] PRI_8 [5:0] Reserved Reserved Priority of IRQ11 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ10 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ9 MINI57 SERIES DATASHEET Bits Apr. 06, 2017 25 Reserved 22 15 26 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ8 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 69 of 131 Rev.1.00 Mini57 IRQ12 ~ IRQ15 Interrupt Priority Register (NVIC_IPR3) Register Offset R/W Description Reset Value NVIC_IPR3 SCS_BA+0x40C R/W IRQ12 ~ IRQ15 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_15 23 21 20 19 PRI_14 13 12 11 PRI_13 18 17 16 10 9 8 2 1 0 Reserved 6 5 4 3 PRI_12 MINI57 SERIES DATASHEET Bits Description [31:30] PRI_15 [29:24] Reserved [23:22] PRI_14 [21:16] Reserved [15:14] PRI_13 [13:8] Reserved [7:6] PRI_12 [5:0] Reserved Apr. 06, 2017 24 Reserved 14 7 25 Reserved 22 15 26 Reserved Priority of IRQ15 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ14 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ13 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ12 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 70 of 131 Rev.1.00 Mini57 IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4) Register Offset R/W Description Reset Value NVIC_IPR4 SCS_BA+0x410 R/W IRQ16 ~ IRQ19 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_19 23 21 20 19 PRI_18 13 12 11 PRI_17 18 17 16 10 9 8 2 1 0 Reserved 6 5 4 3 PRI_16 Description [31:30] PRI_19 [29:24] Reserved [23:22] PRI_18 [21:16] Reserved [15:14] PRI_17 [13:8] Reserved [7:6] PRI_16 [5:0] Reserved Reserved Priority of IRQ19 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ18 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ17 MINI57 SERIES DATASHEET Bits Apr. 06, 2017 24 Reserved 14 7 25 Reserved 22 15 26 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ16 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 71 of 131 Rev.1.00 Mini57 IRQ20 ~ IRQ23 Interrupt Priority Register (NVIC_IPR5) Register Offset R/W Description Reset Value NVIC_IPR5 SCS_BA+0x414 R/W IRQ20 ~ IRQ23 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_23 23 21 20 19 PRI_22 13 12 11 PRI_21 18 17 16 10 9 8 2 1 0 Reserved 6 5 4 3 PRI_20 MINI57 SERIES DATASHEET Bits Description [31:30] PRI_23 [29:24] Reserved [23:22] PRI_22 [21:16] Reserved [15:14] PRI_21 [13:8] Reserved [7:6] PRI_20 [5:0] Reserved Apr. 06, 2017 24 Reserved 14 7 25 Reserved 22 15 26 Reserved Priority of IRQ23 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ22 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ21 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ20 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 72 of 131 Rev.1.00 Mini57 IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6) Register Offset R/W Description Reset Value NVIC_IPR6 SCS_BA+0x418 R/W IRQ24 ~ IRQ27 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_27 23 21 20 19 PRI_26 13 12 11 PRI_25 18 17 16 10 9 8 2 1 0 Reserved 6 5 4 3 PRI_24 Description [31:30] PRI_27 [29:24] Reserved [23:22] PRI_26 [21:16] Reserved [15:14] PRI_25 [13:8] Reserved [7:6] PRI_24 [5:0] Reserved Reserved Priority of IRQ27 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ26 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ25 MINI57 SERIES DATASHEET Bits Apr. 06, 2017 24 Reserved 14 7 25 Reserved 22 15 26 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ24 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 73 of 131 Rev.1.00 Mini57 IRQ28 ~ IRQ31 Interrupt Priority Register (NVIC_IPR7) Register Offset R/W Description Reset Value NVIC_IPR7 SCS_BA+0x41C R/W IRQ28 ~ IRQ31 Interrupt Priority Control Register 0x0000_0000 31 30 29 28 27 PRI_31 23 21 20 19 PRI_30 13 12 11 PRI_29 18 17 16 10 9 8 2 1 0 Reserved 6 5 4 3 PRI_28 MINI57 SERIES DATASHEET Bits Description [31:30] PRI_31 [29:24] Reserved [23:22] PRI_30 [21:16] Reserved [15:14] PRI_29 [13:8] Reserved [7:6] PRI_28 [5:0] Reserved Apr. 06, 2017 24 Reserved 14 7 25 Reserved 22 15 26 Reserved Priority of IRQ31 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ30 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ29 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Priority of IRQ28 0 denotes the highest priority and 3 denotes the lowest priority. Reserved. Page 74 of 131 Rev.1.00 Mini57 6.2.9.7 Interrupt Source Control Registers Besides the interrupt control registers associated with the NVIC, the Mini57 series also implements some specific control registers to facilitate the interrupt functions, including ”NMI source selection” and “IRQ number identity”, which are described below. R: read only, W: write only, R/W: both read and write Register Offset R/W Description Reset Value INT Base Address: INT_BA = 0x5000_0300 INT_NMICTL INT_BA+0x80 R/W NMI Source Interrupt Select Control Register 0x0000_0000 INT_IRQSTS INT_BA+0x84 R/W MCU IRQ Number Identity Register 0x0000_0000 MINI57 SERIES DATASHEET Apr. 06, 2017 Page 75 of 131 Rev.1.00 Mini57 NMI Interrupt Source Select Control Register (INT_NMICTL) Register Offset R/W Description Reset Value INT_NMICTL INT_BA+0x80 R/W NMI Source Interrupt Select Control Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 Reserved 23 22 21 20 Reserved 15 14 13 12 Reserved 7 6 5 NMISELEN 4 3 Reserved Bits Description [31:9] Reserved 2 1 0 NMISEL Reserved. NMI Interrupt Enable Bit (Write Protected) 0 = NMI interrupt Disabled. [8] NMISELEN 1 = NMI interrupt Enabled. Note: This bit is the protected bit, and programming it needs to write 0x59, 0x16, and 0x88 to address 0x5000_0100 to disable register protection. Refer to the register SYS_REGLCTL at address SYS_BA+0x100. MINI57 SERIES DATASHEET [7:5] Reserved [4:0] NMISEL Reserved. NMI Interrupt Source Selection Apr. 06, 2017 ® The NMI interrupt to Cortex -M0 can be selected from one of the peripheral interrupt by setting NMTSEL. Page 76 of 131 Rev.1.00 Mini57 MCU Interrupt Request Source Register (INT_IRQSTS) Register Offset R/W Description Reset Value INT_IRQSTS INT_BA+0x84 R/W MCU IRQ Number Identity Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 IRQ 23 22 21 20 IRQ 15 14 13 12 IRQ 7 6 5 4 IRQ Bits Description MCU IRQ Source Register The IRQ collects all the interrupts from the peripherals and generates the synchronous ® ® interrupt to Cortex -M0 core. There is one mode to generate interrupt to Cortex -M0 - the normal mode. [31:0] IRQ The IRQ collects all interrupts from each peripheral and synchronizes them then interrupts ® the Cortex -M0. ® When the IRQ[n] is 0, setting IRQ[n] to 1 will generate an interrupt to Cortex -M0 NVIC[n]. When the IRQ[n] is 1 (i.e. an interrupt is assert), setting 1 to the MCU_bit[n] will clear the interrupt and setting IRQ[n] 0 has no effect. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 77 of 131 Rev.1.00 Mini57 6.2.10 System Control Registers Key control and status features of Cortex® -M0 are managed centrally in a System Control Block within the System Control Registers. For more detailed information, please refer to the “ARM® Cortex® -M0 Technical Reference Manual” and “ARM® v6-M Architecture Reference Manual”. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 78 of 131 Rev.1.00 Mini57 6.2.10.1 System Control Register Memory Map R: read only, W: write only, R/W: both read and write Register Offset R/W Description Reset Value SCS Base Address: SCS_BA = 0xE000_E000 SCS_CPUID SCS_BA+0xD00 R CPUID Base Register 0x410C_C200 SCS_ICSR SCS_BA+0xD04 R/W Interrupt Control State Register 0x0000_0000 SCS_AIRCR SCS_BA+0xD0C R/W Application Register SCS_SCR SCS_BA+0xD10 R/W System Control Register 0x0000_0000 SCS_SHPR2 SCS_BA+0xD1C R/W System Handler Priority Register 2 0x0000_0000 SCS_SHPR3 SCS_BA+0xD20 R/W System Handler Priority Register 3 0x0000_0000 Interrupt and Reset Control 0xFA05_0000 MINI57 SERIES DATASHEET Apr. 06, 2017 Page 79 of 131 Rev.1.00 Mini57 6.2.10.2 System Control Register Description CPUID Base Register (CPUID) Register Offset R/W Description Reset Value SCS_CPUID SCS_BA+0xD00 R CPUID Base Register 0x410C_C200 31 30 29 28 27 26 25 24 18 17 16 IMPLEMENTER 23 22 21 20 19 Reserved 15 14 PART 13 12 11 10 9 8 3 2 1 0 PARTNO 7 6 5 4 PARTNO MINI57 SERIES DATASHEET Bits Description [31:24] IMPLEMENTER [23:20] Reserved [19:16] PART [15:4] PARTNO [3:0] REVISION Apr. 06, 2017 REVISION Implementer Code Implementer code assigned by ARM ( ARM = 0x41). Reserved. Architecture of the Processor Reads as 0xC for ARMv6-M parts Part Number of the Processor Reads as 0xC20. Revision Number Reads as 0x0 Page 80 of 131 Rev.1.00 Mini57 Interrupt Control State Register (ICSR) Register Offset R/W Description Reset Value SCS_ICSR SCS_BA+0xD04 R/W Interrupt Control State Register 0x0000_0000 31 30 NMIPENDSET 23 29 Reserved 22 ISRPREEMPT ISRPENDING 15 14 28 27 PENDSVSET PENDSVCLR 21 20 6 25 24 PENDSTSET PENDSTCLR Reserved 18 17 16 9 8 19 Reserved VECTPENDING 13 12 11 VECTPENDING 7 26 10 Reserved 5 4 3 2 VECTACTIVE 1 0 VECTACTIVE Bits Description NMI Set-pending Bit Write Operation: 0 = No effect. 1 = Changes NMI exception state to pending. [31] NMIPENDSET Read Operation: 0 = NMI exception not pending. 1 = NMI exception pending. [30:29] Reserved Reserved. PendSV Set-pending Bit Write Operation: 0 = No effect. [28] PENDSVSET 1 = Changes PendSV exception state to pending. Read Operation: 0 = PendSV exception is not pending. 1 = PendSV exception is pending. Note: Writing 1 to this bit is the only way to set the PendSV exception state to pending PendSV Clear-pending Bit Write Operation: [27] PENDSVCLR 0 = No effect. 1 = Removes the pending state from the PendSV exception. This bit is write-only. To clear the PENDSV bit, you must “write 0 to PENDSVSET andwrite 1 to PENDSVCLR” at the same time. [26] Apr. 06, 2017 PENDSTSET SysTick Exception Set-pending Bit Page 81 of 131 Rev.1.00 MINI57 SERIES DATASHEET Note: Because NMI is the highest-priority exception, normally the processor entersthe NMI exception handler as soon as it detects a write of 1 to this bit. Entering thehandler then clears this bit to 0. This means a read of this bit by the NMI exceptionhandler returns 1 only if the NMI signal is reasserted while the processor is executingthat handler. Mini57 Write Operation: 0 = No effect. 1 = Changes SysTick exception state to pending. Read Operation: 0 = SysTick exception is not pending. 1 = SysTick exception is pending. SysTick Exception Clear-pending Bit Write Operation: [25] PENDSTCLR 0 = No effect. 1 = Removes the pending state from the SysTick exception. Note: This bit is write-only. When you want to clear PENDST bit, you must “write 0 toPENDSTSET and write 1 to PENDSTCLR” at the same time. [24] Reserved [23] ISRPREEMPT [22] ISRPENDING Reserved. Interrupt Preempt Bit(Read Only) If set, a pending exception will be serviced on exit from the debug halt state Interrupt Pending Flag,Excluding NMI and Faults (Read Only) 0 = Interrupt not pending. 1 = Interrupt pending. [21] Reserved [20:12] VECTPENDING Reserved. Exception Number of the Highest Priority Pending Enabled Exception 0 = No pending exceptions. Non-zero = Exception number of the highest priority pending enabled exception. [11:9] Reserved Reserved. Contains the Active Exception Number [8:0] VECTACTIVE 0 = Thread mode. Non-zero = Exception number of the currently active exception. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 82 of 131 Rev.1.00 Mini57 Application Interrupt and Reset Control Register (AIRCR) Register Offset R/W Description Reset Value SCS_AIRCR SCS_BA+0xD0C R/W Application Interrupt and Reset Control Register 0xFA05_0000 31 30 29 28 27 26 25 24 18 17 16 11 10 9 8 3 2 1 0 VECTORKEY 23 22 21 20 19 VECTORKEY 15 14 13 12 Reserved 7 6 5 4 Reserved Bits SYSRESETRE VECTCLRAC Q TIVE Reserved Description Register Access Key Write Operation: [31:16] VECTORKEY When writing to this register, the VECTORKEY field need to be set to 0x05FA, otherwise the write operation would be ignored. The VECTORKEY filed is used to prevent accidental write to this register from resetting the system or clearing of the exception status. Read Operation: Read as 0xFA05. [15:3] Reserved Reserved. [2] SYSRESETREQ Writing this bit 1 will cause a reset signal to be asserted to the chip to indicate a reset is requested. The bit is a write only bit and self-clears as part of the reset sequence. [1] Exception Active Status Clear Bit VECTCLRACTIVE Reserved for debug use. When writing to the register, user must write 0 to this bit, otherwise behavior is unpredictable. [0] Reserved Apr. 06, 2017 Reserved. Page 83 of 131 Rev.1.00 MINI57 SERIES DATASHEET System Reset Request Mini57 System Control Register (SCR) Register Offset R/W Description Reset Value SCS_SCR SCS_BA+0xD10 R/W System Control Register 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 4 3 2 1 0 SEVONPEND Reserved Reserved 23 22 21 20 Reserved 15 14 13 12 Reserved 7 6 5 Reserved Bits Description [31:5] Reserved SLEEPDEEP SLEEPONEXI T Reserved Reserved. Send Event on Pending Bit 0 = Only enabled interrupts or events can wake-up the processor, disabled interrupts areexcluded. [4] SEVONPEND 1 = Enabled events and all interrupts, including disabled interrupts, can wake-up theprocessor. When an event or interrupt enters pending state, the event signal wakes up the processorfrom WFE. If the processor is not waiting for an event, the event is registered and affectsthe next WFE. MINI57 SERIES DATASHEET The processor also wakes up on execution of an SEV instruction or an external event. [3] Reserved Reserved. Processor Deep Sleep and Sleep Mode Selection [2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low power mode: 0 = Sleep mode. 1 = Deep Sleep mode. Sleep-on-exit Enable Bit This bit indicates sleep-on-exit when returning from Handler mode to Thread mode. [1] SLEEPONEXIT 0 = Do not sleep when returning to Thread mode. 1 = Enter Sleep or Deep Sleep when returning from ISR to Thread mode.Setting this bit to 1 enables an interrupt driven application to avoid returning to an emptymain application. [0] Apr. 06, 2017 Reserved Reserved. Page 84 of 131 Rev.1.00 Mini57 System Handler Priority Register 2 (SHPR2) Register Offset R/W Description Reset Value SCS_SHPR2 SCS_BA+0xD1C R/W System Handler Priority Register 2 0x0000_0000 31 30 29 28 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0 PRI_11 23 Reserved 22 21 20 Reserved 15 14 13 12 Reserved 7 6 5 4 Reserved Bits Description [31:30] PRI_11 [29:0] Reserved Priority of System Handler 11 – SVCall “0” denotes the highest priority and “3” denotes the lowest priority. Reserved. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 85 of 131 Rev.1.00 Mini57 System Handler Priority Register 3 (SHPR3) Register Offset R/W Description Reset Value SCS_SHPR3 SCS_BA+0xD20 R/W System Handler Priority Register 3 0x0000_0000 31 30 29 28 27 26 25 24 18 17 16 11 10 9 8 3 2 1 0 PRI_15 23 Reserved 22 21 20 19 PRI_14 15 Reserved 14 13 12 Reserved 7 6 5 4 Reserved Bits Description [31:30] PRI_15 [29:24] Reserved [23:22] PRI_14 [21:0] Reserved Priority of System Handler 15 – SysTick “0” denotes the highest priority and “3” denotes the lowest priority. Reserved. Priority of System Handler 14 – PendSV “0” denotes the highest priority and “3” denotes the lowest priority. Reserved. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 86 of 131 Rev.1.00 Mini57 6.3 Clock Controller 6.3.1 Overview The clock controller generates clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when the Cortex® -M0 core executes the WFI instruction only if the PDEN (CLK_PWRCTL[7]) bit set to 1. After that, chip enters Power-down mode and waits for wake-up interrupt source triggered to exit Power-down mode. In Power-down mode, the clock controller turns off the 4~24 MHz external high speed crystal (HXT) and 48 MHz internal high speed RC oscillator (HIRC) to reduce the overall system power consumption. Figure 6.3-2 shows the clock generator and the overview of the clock source control. The clock generator consists of 4 clock sources, which are listed below:     32.768 kHz external low speed crystal oscillator (LXT) 4~24 MHz external high speed crystal oscillator (HXT) 48 MHz internal high speed RC oscillator (HIRC) 10 kHz internal low speed RC oscillator (LIRC) LXTEN (CLK_PWRCTL[1]) XT_IN External 32.768 kHz Crystal (LXT) LXT XT_OUT HXTEN (CLK_PWRCTL[0]) MINI57 SERIES DATASHEET External 4~24 MHz Crystal (HXT) HXT HIRCEN (CLK_PWRCTL[2]) Internal 48 MHz Oscillator (HIRC) HIRC LIRCEN (CLK_PWRCTL[3]) Internal 10 kHz Oscillator (LIRC) LIRC Figure 6.3-1 Clock Generator Block Diagram Apr. 06, 2017 Page 87 of 131 Rev.1.00 Mini57 HIRC CPUCLK 48 MHz HXT 10 kHz LXT 4~24 MHz/32.768kHz LIRC 11 HCLK 1/(HCLKDIV+1) 01 PCLK 00 CLK_CLKSEL0[1:0] 48 MHz 10 kHz T0~T1 BOD FMC HCLK HCLK HCLK 1/(PGADIV+1) CLK_CLKSEL1 [10:8] CLK_CLKSEL1[14:12] ACMP PGA 4~24 MHz/32.768kHz 4~24 MHz/32.768kHz 000 ECAP HCLK HCLK 001 4~24 MHz/32.768kHz 48 MHz 48 MHz 010 10 kHz HDIV TMR 0 TMR 1 011 HCLK 48 MHz HCLK 111 1/2 11 1/2 10 1/2 01 CPUCLK 1 SysTick 0 11 10 4~24 MHz/32.768kHz 00 Clock Output SYST_CTL[2] CLK_CLKSEL0[4:3] 00 CLK_CLKSEL1[31:30] 48 MHz MINI57 SERIES DATASHEET HCLK 4~24 MHz/32.768kHz 11 10 1/(ADCDIV+1) HCLK PWM 10 HCLK PWM 32 HCLK PWM 54 ADC 00 CLK_CLKSEL1[5:4] 4~24MHz/32.768kHz HCLK 1 0 USCI0 USCI1 USCI0_BRGEN[0] USCI1_BRGEN[0] 10 kHz HCLK 1/2048 4~24MHz/32.768kHz 11 10 WDT 00 CLK_CLKSEL1[1:0] Figure 6.3-2 Clock Generator Global View Diagram Apr. 06, 2017 Page 88 of 131 Rev.1.00 Mini57 6.3.2 Auto Trim This chip supports auto-trim function: the HIRC trim (48 MHz RC oscillator), according to the accurate LXT (32.768 kHz crystal oscillator), automatically gets accurate HIRC output frequency, 0.25 % deviation within all temperature ranges. For instance, the system needs an accurate 48MHz clock. In such case, if users do not want to use PLL as the system clock source, they need to solder 32.768 kHz crystal in system, and set FREQSEL (SYS_IRCTCTL[0] trim frequency selection) to “1”, and the auto-trim function will be enabled. Interrupt status bit FREQLOCK (SYS_IRCTISTS[0] HIRC frequency lock status) “1” indicates the HIRC output frequency is accurate within 0.25% deviation. To get better results, it is recommended to set both LOOPSEL (SYS_IRCTCTL[5:4] trim calculation loop) and RETRYCNT (SYS_IRCTCTL[7:6] trim value update limitation count) to “11”. 6.3.3 System Clock and SysTick Clock The system clock has three clock sources which were generated from clock generator block. The clock source switch depends on the register HCLKSEL (CLK_CLKSEL0[1:0]). The block diagram is shown in Figure 6.3-3. HCLKSEL (CLK_CLKSEL0[1:0]) 48 MHz HIRC 10 kHz LXT 11 01 CPUCLK 1/(HCLKDIV+1) 4~24 MHz HXT or 32.768 kHz LXT HCLKDIV (CLK_CLKDIV[3:0]) HCLK PCLK CPU AHB APB 00 CPU in Power Down Mode Figure 6.3-3 System Clock Block Diagram The clock source of SysTick in the Cortex® -M0 core can use CPU clock or external clock CLKSRC(SYST_CTL[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[4:3]). The block diagram is shown in Figure 6.3-4. Apr. 06, 2017 Page 89 of 131 Rev.1.00 MINI57 SERIES DATASHEET Legend: HXT = 4~24 MHz external high speed crystal oscillator HIRC = 48 MHz internal high speed RC oscillator LIRC = 10 kHz internal low speed RC oscillator Mini57 48 MHz HIRC HCLK 4~24 MHz HXT or 32.768 kHz LXT 1/2 11 1/2 10 CPUCLK 0 1/2 4~24 MHz HXT or 32.768 kHz LXT 00 1 SysTick 01 SYST_CTL[2] CLK_CLKSEL0[4:3] Legend: HXT = 4~24 MHz external high speed crystal oscillator HIRC = 48 MHz internal high speed RC oscillator LIRC = 10 kHz internal low speed RC oscillator Figure 6.3-4 SysTick Clock Control Block Diagram 6.3.4 Peripherals Clock Source Selection The peripheral clock has different clock source switch settings depending on different peripherals. Please note that, while switching clock source from one to another, user must wait until both clock sources are running stabled. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 90 of 131 Rev.1.00 Mini57 PCLK Watch Dog Timer WDTCKEN (CLK_APBCLK[0]) TMR0CKEN (CLK_APBCLK[2]) TMR1CKEN (CLK_APBCLK[3]) CLKOCKEN (CLK_APBCLK[6]) ECAPCKEN (CLK_APBCLK[8]) PGACKEN (CLK_APBCLK[12]) EPWMCKEN (CLK_APBCLK[20]) BPWMCKEN (CLK_APBCLK[16]) UART1CKEN (CLK_APBCLK[17]) USCI0CKEN (CLK_APBCLK[24]) USCI1CKEN (CLK_APBCLK[25]) ACMPCKEN (CLK_APBCLK[30]) Timer1 Frequency Divider ECAP PGA EPWM BPWM UART1 USCI0 USCI1 ADC MINI57 SERIES DATASHEET ADCCKEN (CLK_APBCLK[28]) Timer0 ACMP Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK Apr. 06, 2017 Page 91 of 131 Rev.1.00 Mini57 Peripheral Clock Selectable Ext. CLK (HXT Or LXT) HIRC LIRC HCLK WDT Yes Yes No Yes Yes WWDT Yes Yes No Yes Yes Timer0 Yes Yes Yes Yes Yes Timer1 Yes Yes Yes Yes Yes USCI0 Yes Yes Yes Yes Yes USCI1 Yes Yes Yes Yes Yes ADC Yes Yes Yes No Yes ACMP No No No No Yes ECAP No No No No Yes EBWM No No No No Yes BPWM No No No No Yes HDIV No No No No Yes Table 6.3-1 Peripheral Clock Source Selection Table Note: For the peripherals those peripheral clock are not selectable, its clock source is fixed to PCLK. MINI57 SERIES DATASHEET 6.3.5 Power-down Mode Clock When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are disabled. Some clock sources and peripherals clock are still active in Power-down mode. The clocks still kept active are listed below: 6.3.6  Clock Generator  10 kHz internal low speed oscillator (LIRC) clock  32.768 kHz external low speed crystal oscillator (LXT) clock (If PDLXT = 1 and XTLEN[1:0] = 10)  Peripherals Clock (When 10 kHz low speed oscillator is adopted as clock source)  Watchdog Clock  Timer 0/1 Clock Frequency Divider Output This device is equipped with a power-of-2 frequency divider which is composed of 16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one Apr. 06, 2017 Page 92 of 131 Rev.1.00 Mini57 multiplexer is reflected to the CKO pin. Therefore there are 16 options of power-of-2 divided clocks with the frequency from Fin/21 to Fin/216 where Fin is input clock frequency to the clock divider. The output formula is Fout = Fin/2(N+1), where Fin is the input clock frequency, Fout is the clock divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]). When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low state and stay in low state. if DIV1EN(CLK_CLKOCTL[5]) set to 1, the frequency divider clock will bypass power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly. CLKOSEL (CLK_CLKSEL1[31:30]) CLKOCKEN (CLK_APBCLK[6]) 48 MHz HIRC 11 HCLK CLKO_CLK 10 Reserved 01 4~24 MHz HXT or 32.768 kHz LXT Legend: HXT = 4~24 MHz external high speed crystal oscillator LXT = 32.768 kHz external low speed crystal oscillator HIRC = 48 MHz internal high speed RC oscillator 00 Figure 6.3-6 Clock Source of Frequency Divider Enable divide-by-2 counter CLKO_CLK 1/2 1/22 FREQSEL (CLK_CLKOCTL[3:0]) 16 chained divide-by-2 counter 1/23 …... 1/215 1/216 000 000 0 1 : : 111 111 0 1 DIV1EN (CLK_CLKOCTL[5]) 16 to 1 MUX 0 CLKO 1 Figure 6.3-7 Block Diagram of Frequency Divider Apr. 06, 2017 Page 93 of 131 Rev.1.00 MINI57 SERIES DATASHEET CLKOEN (CLK_CLKOCTL[4]) Mini57 6.4 Flash Memory Controller (FMC) 6.4.1 Overview The Mini57 series is equipped with 29.5 Kbytes on chip embedded Flash for application program memory (APROM) that can be updated through ISP procedure. In System Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip powered on Cortex® -M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, the Mini57 series also provides Data Flash Region, where the Data Flash is shared with original program memory and its start address is configurable and defined by user in Config1. The Data Flash size is defined by user depending on the application request. Security program memory (SPROM) provides user to protect any program code within SPROM. 6.4.2 Features  Running up to 48 MHz with one wait state and 24 MHz without discontinuous address read access  29.5 Kbytes application program memory (APROM)  2 Kbytes in system programming (ISP) loader program memory (LDROM)  Programmable Data Flash start address and memory size with 512 bytes page erase unit  Three 512 bytes security program memory (SPROM)  Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update embedded Flash memory. wait state for MINI57 SERIES DATASHEET Apr. 06, 2017 Page 94 of 131 Rev.1.00 Mini57 6.5 General Purpose I/O (GPIO) 6.5.1 Overview The Mini57 series has up to 22 General Purpose I/O pins. These pins could be shared with other functions depending on the chip configuration. 22 pins are arranged in 4 ports named as PA, PB, PC, and PD. Each of the 22 pins is independent and has the corresponding register bits to control the pin mode function and data. The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output, Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are depending on CIOIN (CONFIG0[10]). Each I/O pin has a very weakly individual pull-up resistor which is about 110 k ~ 300 k for VDD is from 5.0 V to 2.5 V. PIN[n] (Px_PIN) PULLSEL[0] (Px_PUEN) DOUT[n] (Px_DOUT) PAD MODE[n] (Px_MODE) MINI57 SERIES DATASHEET PULLSEL[1] (Px_PUEN) Note: Px_ means PA_, PB_, PC_, or PD_ Figure 6.5-1 I/O Pin Block Diagram 6.5.2 Features  Four I/O modes:  Quasi-bidirectional mode  Push-Pull Output mode  Open-Drain Output mode  Input only with high impendence mode  TTL/Schmitt trigger input selectable  I/O pin can be configured as interrupt source with edge/level setting Apr. 06, 2017 Page 95 of 131 Rev.1.00 Mini57 6.5.3  Supports High Drive and High Sink I/O mode  Supports software selectable slew rate control  Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting  CIOIN = 0, all GPIO pins in Quasi-bidirectional mode after chip reset  CIOIN = 1, all GPIO pins in input mode after chip reset  GPIOA supports the pull-up and pull-low resistor enabled in four I/O modes  GPIOB to GPIOD internal pull-up resistor enabled only in Quasi-bidirectional I/O mode  Enabling the pin interrupt function will also enable the wake-up function GPIO Interrupt and Wake-up Function Each GPIO pin can be set as chip interrupt source by setting correlative RHIEN (Px_INTEN[n+16])/ FLIEN (Px_INTEN[n]) bit and TYPE (Px_INTTYPE[n]). There are five types of interrupt conditions to be selected: low level trigger, high level trigger, falling edge trigger, rising edge trigger and both rising and falling edge trigger. For edge trigger condition, user can enable input signal de-bounce function to prevent unexpected interrupt happened which caused by noise. The de-bounce clock source and sampling cycle period can be set through DBCLKSRC (GPIO_DBCTL[4]) and DBCLKSEL (GPIO_DBCTL[3:0]) register. The GPIO can also be the chip wake-up source when chip enters Idle/Power-down mode. The setting of wake-up trigger condition is the same as GPIO interrupt trigger. 1. To ensure the I/O status before entering Idle/Power-down mode When using toggle GPIO to wake-up system, user must make sure the I/O status before entering Idle/Power-down mode according to the relative wake-up settings. MINI57 SERIES DATASHEET For example, if configuring the wake-up event occurred by I/O rising edge/high level trigger, user must make sure the I/O status of specified pin is at low level before entering Idle/Power-down mode; and if configuring I/O falling edge/low level trigger to trigger a wake-up event, user must make sure the I/O status of specified pin is at high level before entering Power-down mode. 2. To disable the I/O de-bounce function before entering Idle/Power-down mode If the specified wake-up I/O pin with enabling input signal de-bounce function, system will encounter two GPIO interrupt events while the system is woken up by this GPIO pin. One interrupt event is caused by wake-up function, the other is caused by I/O input de-bounce function. User should be disable the de-bounce function before entering Idle/Power-down mode to avoid the second interrupt event occurred after system woken up. Apr. 06, 2017 Page 96 of 131 Rev.1.00 Mini57 6.6 Timer Controller (TIMER) 6.6.1 Overview The Timer Controller includes two 32-bit timers, TIMER0 ~ TIMER1, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, delay timing, clock generation, and event counting by external input pins, and interval measurement by external capture pins. 6.6.2 Features  Supports two sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter  Supports independent clock source for each channel (TMR0_CLK, TMR1_CLK)  Supports four timer counting modes: one-shot, periodic, toggle and continuous counting  Time-out period = (period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit CMPDAT)  Supports maximum counting cycle time = (1 / T MHz) * (28) * (224); T is the period of timer clock  24-bit up counter value is readable through TIMERx_CNT (Timer Data Register)  Supports event counting function to count the event from external pin (TM0, TM1)  Supports internal capture triggered while internal ACMP output signal transition  Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated MINI57 SERIES DATASHEET Apr. 06, 2017 Page 97 of 131 Rev.1.00 Mini57 6.7 Enhanced Input Capture Timer (ECAP) 6.7.1 Overview This device provides an Input Capture Timer/Counter whose capture function can detect the digital edge-changed signal at channel inputs. This unit has three input capture channels. The timer/counter is equipped with up counting, reload and compare-match capabilities. 6.7.2 Features  24-bit Input Capture up-counting timer/counter.  3 input channels thatl has its own capture counter hold register.  Noise filter in front end of input ports.  Edge detector with three options.  Rising edge detection.  Falling edge detection.  Both edge detection.  Supports ADC compare output and ACMP output as input sources  Captured events reset and/or reload capture counter.  Supports compare-match function.  Supports interrupt function. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 98 of 131 Rev.1.00 Mini57 6.8 Enhanced PWM Generator (EPWM) 6.8.1 Overview The Mini57 series has built in one PWM unit which is specially designed for motor driving control applications. The PWM unit supports six PWM generators which can be configured as six independent PWM outputs, PWM0~PWM5, or as three complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5) with three programmable dead-zone generators. Every complementary PWM pairs share one clock divider providing nine divided frequencies (1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256) for each channel. Each PWM output shares one 16bit counter for PWM period control, and 16-bit comparators for PWM duty control. The six PWM generators provide fourteen independent PWM interrupt flags which are set by hardware when the corresponding PWM period counter comparison matched period and duty. Each PWM interrupt source with its corresponding enable bit can request PWM interrupt. The PWM generators can be configured as One-shot mode to produce only one PWM cycle signal or Autoreload mode to output PWM waveform continuously. To prevent PWM driving output pin with unsteady waveform, the 16-bit period up counter and 16bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers, the updated value will be loaded into the 16-bit counter/comparator at the end of current period. The double buffering feature avoids glitch at PWM outputs. Besides PWM, Motor controlling also need Timer, ACMP and ADC to work together. To control motor more precisely, some registers are provided to configure not only PWM but also Timer, ADC and ACMP. By doing so, it can save more CPU time and control motor with ease especially in BLDC. 6.8.2 Features  Supports one PWM clock timer and one 9 level Divider (1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256).  Supports six independent 16-bit PWM duty control units with maximum six port pins: Six independent PWM outputs – PWM0, PWM1, PWM2, PWM3, PWM4, and PWM5  Three complementary PWM pairs, with each pin in a pair mutually complement to each other and capable of programmable dead-zone insertion – (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5)  Three synchronous PWM pairs, with each pin in a pair in-phase – (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5)  Supports group function.  Supports one-shot (only edge alignment mode) or auto-reload mode PWM  Supports 16-bit resolution PWM counter  Supports Edge-aligned and Center-aligned mode  Supports Programmable dead-zone insertion between complementary paired PWMs  Supports hardware fault brake protections  Apr. 06, 2017 Two Interrupt source types:  one type is brake directed, and one type can resume from brake.  fault brake source: Page 99 of 131 Rev.1.00 MINI57 SERIES DATASHEET  Mini57  BRK0: ACMP0, ACMP1, EADC and External pin (BRAKE).  BRK1: ACMP0, ACMP1, EADC and External pin (BRAKE).  The PWM signals before polarity control stage are defined in the view of positive logic. The PWM ports is active high or active low are controlled by polarity control register.  Supports independently falling CMPDAT matching, central matching (in Centeraligned mode), rising CMPDAT matching (in Center-aligned mode), period matching to trigger EADC conversion  Supports ACMP output event trigger PWM to force PWM output at most one period low, this feature is usually for step motor control  Supports interrupt accumulation function MINI57 SERIES DATASHEET Apr. 06, 2017 Page 100 of 131 Rev.1.00 Mini57 6.9 Basic PWM Generator (BPWM) 6.9.1 Overview The Mini57 series has one set of BPWM group supporting one set of PWM generator that can be configured as 2 independent PWM outputs, BPWM CH0~BPWM CH1, or as 1 complementary PWM pairs, (BPWM CH0, BPWM CH1) with programmable Dead-zone generators. The PWM generator has one 8-bit pre-scalar, one clock divider with 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-counters for PWM period control, two 16-bit comparators for PWM duty control and one dead-zone generator. The PWM generator provides two independent PWM interrupt flags which are set by hardware when the corresponding PWM period down counter reaches zero. Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to output PWM waveform continuously. When DTCNT01(BPWM_CTL[4]) is set, BPWM CH0 and BPWM CH1 perform complementary; the paired PWM timing, period, duty and dead-time are determined by PWM0 timer and Dead-zone generator 0. To prevent PWM driving output pin from glitches, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers the updated value will be load into the 16-bit down counter/ comparator at the time down counter reaching zero. The double buffering feature avoids glitch at PWM outputs. When the 16-bit period down counter reaches zero, the interrupt request is generated. If PWMtimer is set as auto-reload mode, when the down counter reaches zero, it is reloaded with BPWM Counter Register(BPWM_PERIODx, x=0,1) automatically then start decreasing, repeatedly. If the PWM-timer is set as one-shot mode, the down counter will stop and generate one interrupt request when it reaches zero. The value of PWM counter comparator is used for pulse high width modulation. The counter control logic changes the output to high level when down-counter value matches the value of compare register. Features  One PWM generator which supports one 8-bit pre-scalar, one clock divider, two PWM timers (down counter), one dead-zone generator and two PWM outputs.  Up to 16-bit resolution  PWM Interrupt request synchronized with PWM period  One-shot or Auto-reload mode PWM  Edge-aligned type or Center-aligned type option Apr. 06, 2017 Page 101 of 131 Rev.1.00 MINI57 SERIES DATASHEET 6.9.2 Mini57 6.10 Watchdog Timer (WDT) 6.10.1 Overview The Watchdog Timer is used to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, the Watchdog Timer supports the function to wake-up system from Idle/Power-down mode. 6.10.2 Features  18-bit free running up counter for Watchdog Timer time-out interval  Selectable time-out interval (24 ~ 218) WDT_CLK cycle and the time-out interval period is 104 ms ~ 26.3168 s if WDT_CLK = 10 kHz  System kept in reset state for a period of (1 / WDT_CLK) * 63  Supports Watchdog Timer time-out wake-up function only if WDT clock source is selected as 10 kHz MINI57 SERIES DATASHEET Apr. 06, 2017 Page 102 of 131 Rev.1.00 Mini57 6.11 USCI – Universal Serial Control Interface Controller 6.11.1 Overview The Universal Serial Control Interface (USCI) is a flexible interface module covering several serial communication protocols. The user can configure this controller as UART, SPI, or I2C functional protocol. Note: For detailed USCI UART, I2C and SPI information, please refer to section 6.12, 6.13 and 6.14. 6.11.2 Features The controller can be individually configured to match the application needs. The following protocols are supported:  UART  SPI  I2C To increase readability, the registers of USCI have different alias names that depending on the selected protocol. For example, register USCI_CTL has alias name UUART_CTL for protocol UART, has alias name USPI_CTL for protocol SPI, and has alias name UI2C_CTL for protocol I2C. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 103 of 131 Rev.1.00 Mini57 6.12 USCI – UART Mode 6.12.1 Overview The asynchronous serial channel UART covers the reception and the transmission of asynchronous data frames. It performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the controller. The receiver and transmitter are independent, frames can start at different points in time for transmission and reception. The UART controller also provides the LIN function. There is incoming data to wake up the system. 6.12.2 Features  Supports one transmit buffer and two receive buffer for data payload  Supports programmable baud-rate generator  Supports 9-Bit Data Transfer  Supports LIN function  Supports baud rate detection by built-in capture event of baud rate generator  Supports Wake-up function MINI57 SERIES DATASHEET Apr. 06, 2017 Page 104 of 131 Rev.1.00 Mini57 6.13 USCI – SPI Mode 6.13.1 Overview The SPI protocol of USCI controller applies to synchronous serial data communication and allows full duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The SPI mode is selected by FUNMODE (USPI_CTL[2:0]) = 0x1. The SPI protocol can operate as master or Slave mode by setting the SLAVE (USPI_PROTCTL[0]) to communicate with the off-chip SPI Slave or master device. The application block diagrams in master and Slave mode are shown as Figure 6.13-1 and Figure 6.13-2. USCI USCI SPI SPI Master Master SPI Slave Device SPI_MOSI Master Transmit Data (USCIx_DAT0) SPI_MISO Master Receive Data (USCIx_DAT1) SPI_CLK Serial Bus Clock (USCIx_CLK) SPI_SS Slave Select (USCIx_CTL) SPI_MOSI SPI_MISO SPI_CLK SPI_SS Note: x = 0, 1 Figure 6.13-1 SPI Master Mode Application Block Diagram (x=0, 1) MINI57 SERIES DATASHEET USCI USCI SPI SPI Slave Slave SPI Master Device SPI_MOSI Slave Receive Data (USCIx_DAT0) SPI_MISO Slave Transmit Data (USCIx_DAT1) SPI_CLK Serial Bus Clock (USCIx_CLK) SPI_SS Slave Select (USCIx_CTL) SPI_MOSI SPI_MISO SPI_CLK SPI_SS Note: x = 0, 1 Figure 6.13-2 SPI Slave Mode Application Block Diagram (x=0, 1) 6.13.2 Features Apr. 06, 2017 Page 105 of 131 Rev.1.00 Mini57  Supports master or slave mode operation (the maximum frequency for Master = fPCLK / 2, for Slave < fPCLK / 5)  Configurable bit length of a transfer word from 4 to 16-bit  Supports one transmit buffer and two receive buffers for data payload  Supports MSB first or LSB first transfer sequence  Supports Word Suspend function  Supports 3-wire, no slave select signal, bi-direction interface  Supports wake-up function by slave select signal in Slave mode MINI57 SERIES DATASHEET Apr. 06, 2017 Page 106 of 131 Rev.1.00 Mini57 6.14 USCI – I2C Mode 6.14.1 Overview On I2C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit. There is one SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure 6.14-1 for more detailed I2C BUS Timing. STOP Repeated START START STOP SDA tBUF tLOW tr SCL tHD_STA tf tHIGH tHD_DAT tSU_DAT tSU_STA tSU_STO Figure 6.14-1 I2C Bus Timing The device on-chip I2C provides the serial interface that meets the I2C bus standard mode specification. The I2C port handles byte transfers autonomously. The I2C mode is selected by FUNMODE (UI2C_CTL [2:0]) = 0100B. When this port is enabled, the USCI interfaces to the I2C bus via two pins: SDA and SCL. When I/O pins are used as I2C ports, user must set the pins function to I2C in advance. Note: A pull-up resistor is needed for I2C operation because the SDA and SCL are set to opendrain pins when USCI is selected to I2C operation mode.  Full master and slave device capability  Supports of 7-bit addressing, as well as 10-bit addressing  Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)  Supports multi-master bus  Supports one transmit buffer and two receive buffer for data payload  Supports 10-bit bus time-out capability  Supports Power down wake-up by data toggle or address match  Supports setup/hold time programmable Apr. 06, 2017 Page 107 of 131 Rev.1.00 MINI57 SERIES DATASHEET 6.14.2 Features Mini57 6.15 Hardware Divider (HDIV) 6.15.1 Overview The hardware divider (HDIV) is useful to the high performance application. The hardware divider is a signed, integer divider with both quotient and remainder outputs. 6.15.2 Features  Signed (two’s complement) integer calculation  32-bit dividend with 16-bit divisor calculation capacity  32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32bit)  Divided by zero warning flag  6 HCLK clocks taken for one cycle calculation  Write divisor to trigger calculation  Waiting for calculation ready automatically when reading quotient and remainder MINI57 SERIES DATASHEET Apr. 06, 2017 Page 108 of 131 Rev.1.00 Mini57 6.16 Analog to Digital Converter (ADC) 6.16.1 Overview The Mini57 series contains one 12-bit successive approximation analog-to-digital converter (SAR A/D converter) with 8 single-end external input channels. The A/D converters can be started by software, external pin (STADC/PC.1) or PWM trigger. 6.16.2 Features  Analog input voltage range: 0~VDD.  12-bit resolution and 10-bit accuracy guaranteed.  Up to 8 single-end analog input channels.  ADC clock frequency up to 16MHz.  Configurable ADC internal sampling time. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 109 of 131 Rev.1.00 Mini57 6.17 Analog Comparator (ACMP) 6.17.1 Overview The Mini57 series contains two comparators which can be used in a number of different configurations. The comparator output is logic 1 when positive input greater than negative input, otherwise the output is 0. Each comparator can be configured to generate interrupt when the comparator output value changes. 6.17.2 Features  Analog input voltage range: 0 ~ VDD  Supports Hysteresis function  Optional internal reference voltage source for each comparator negative input MINI57 SERIES DATASHEET Apr. 06, 2017 Page 110 of 131 Rev.1.00 Mini57 6.18 Programmable Gain Amplifier (PGA) 6.18.1 Overview The Mini57 series contains a programmable gain amplifier (PGA) which can be enabled through the PGAEN bit. User can measure the outputs of the programmable gain amplifier as the programmable gain amplifier output to the integrated A/D converter channel, where digital results can be taken. Furthermore, user can adjust gain to 1, 2, 3, 5, 7, 9, 11, and 13. Note: The analog input port pins must be configured as input type before the PGA function is enabled. 6.18.2 Features  Supports analog input voltage range: 0~ VDD.  Supports programmable gain: 1,2, 3,5,7,9.11,13  Supports PGA output as input of ADC and ACMP MINI57 SERIES DATASHEET Apr. 06, 2017 Page 111 of 131 Rev.1.00 Mini57 7 APPLICATION CIRCUIT DVCC [1] AVCC AVDD DVCC Power CS CLK MISO MOSI SPI_SS SPI_CLK SPI_MISO SPI_MOSI FB VDD VDD SPI Device VSS 0.1uF 0.1uF VSS FB AVSS VDD ICE_DAT ICE_CLK nRESET VSS SWD Interface DVCC 4.7K 20p XT_IN Crystal 4~24 MHz or 32.768 kHz crystal 20p 4.7K [2] Mini57EDE TSSOP28 DVCC CLK I2Cx_SCL I2Cx_SDA VDD DIO I2C Device VSS XT_OUT DVCC Reset Circuit 10K RS232 Transceiver PC COM Port nRESET [2] 10uF/25V UARTx_RXD ROUT UARTx_TXD TIN RIN TOUT UART MINI57 SERIES DATASHEET LDO_CAP 1uF Note 1: For the SPI device, the Mini57 chip supply voltage must be equal to SPI device working voltage. For example, when the SPI Flash working voltage is 3.3 V, the Mini57 chip supply voltage must also be 3.3V. LDO Note 2: x denotes 0 or 1. Apr. 06, 2017 Page 112 of 131 Rev.1.00 Mini57 8 ELECTRICAL CHARACTERISTICS 8.1 Absolute Maximum Ratings Symbol Parameter Min Max Unit VDD VSS DC Power Supply -0.3 +7.0 V VIN Input Voltage VSS -0.3 VDD +0.3 V 1/tCLCL Oscillator Frequency 4 24 TA Operating Temperature -40 +105 TST Storage Temperature -55 +150 ℃ IDD Maximum Current into VDD - 120 mA ISS Maximum Current out of VSS - 120 mA Maximum Current sunk by an I/O pin - 35 mA Maximum Current sourced by an I/O pin - 35 mA Maximum Current sunk by total I/O pins - 100 mA Maximum Current sourced by total I/O pins - 100 mA IIO MHz Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the life and reliability of the device. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 113 of 131 Rev.1.00 Mini57 8.2 DC Electrical Characteristics (VDD - VSS = 2.1 ~ 5.5 V, TA = 25C) Symbol Parameter Min Typ Max Unit Test Conditions VDD = 2.1V ~ 5.5V up to 48 MHz VDD Operation voltage 2.1 - 5.5 V VSS / AVSS Power Ground -0.3 - - V VLDO LDO Output Voltage 1.5 V VBG Band-gap Voltage 1.2 V IDD5 - 9.7 - Operating Current HCLK = 48 MHz TA = -40C~105C All Digital VDD HXT HIRC 5.5V X 48 MHz V mA Normal Run Mode IDD6 VDD = 3.0V ~ 5.5V, Modules - 7.4 - mA 5.5V X 48 MHz X - 9.7 - mA 3V X 48 MHz V - 7.4 - mA 3V X 48 MHz X VDD HXT HIRC 5.5V 24 MHz X V while(1){} IDD7 Executed from Flash IDD8 IDD1 - 5.4 - mA Operating Current Normal Run Mode IDD2 HCLK = 24 MHz All Digital Modules MINI57 SERIES DATASHEET - 4.4 - mA 5.5V 24 MHz X X - 5.4 - mA 3V 24 MHz X V - 4.4 - mA 3V 24 MHz X X VDD HXT HIRC 5.5V 16 MHz X V while(1){} IDD3 Executed from Flash IDD4 IDD9 - 3.7 - mA Operating Current Normal Run Mode IDD10 HCLK = 16 MHz All Digital Modules - 3.0 - mA 5.5V 16 MHz X X - 3.7 - mA 3V 16 MHz X V - 3.1 - mA 3V 16 MHz X X VDD HXT HIRC 5.5V 12 MHz X while(1){} IDD11 Executed from Flash IDD12 Operating Current IDD9 Normal Run Mode - 2.8 - mA HCLK = 12 MHz Apr. 06, 2017 Page 114 of 131 All Digital Modules V Rev.1.00 Mini57 IDD10 while(1){} - 2.3 - mA 5.5V 12 MHz X X IDD11 - 2.8 - mA 3V 12 MHz X V IDD12 - 2.3 - mA 3V 12 MHz X X VDD HXT HIRC 5.5V 4 MHz X V IDD13 Executed from Flash - 1.2 - mA Operating Current Normal Run Mode IDD14 HCLK = 4 MHz All Digital Modules - 1.0 - mA 5.5V 4 MHz X X - 1.2 - mA 3V 4 MHz X V - 1.0 - mA 3V 4 MHz X X VDD LXT LIRC 5.5V 32 kHz V while(1){} IDD15 Executed from Flash IDD16 IDD17 - 291.7 - μA Operating Current Normal Run Mode IDD18 HCLK = 32 kHz - 290.7 - μA 5.5V 32 kHz V - 280.8 - μA 3V 32 kHz V - 281.4 - μA 3V 32 kHz V VDD HXT LIRC 5.5V X 10 kHz All Digital Modules V [1] X while(1){} IDD19 Executed from Flash IDD20 IDD17 - 248.0 - μA Operating Current IDD18 HCLK = 10 kHz [1] X All Digital Modules V [2] - 247.7 - μA 5.5V X 10 kHz X - 237.9 - μA 3V X 10 kHz - 237.5 - μA 3V X 10 kHz VDD HXT HIRC 5.5V X V V while(1){} IDD19 Executed from Flash IDD20 IIDLE5 - 4.9 - mA Operating Current IIDLE6 Idle Mode V [2] X All Digital Modules - 2.6 - mA 5.5V X V X IIDLE7 - 4.9 - mA 3V X V V IIDLE8 - 2.6 - mA 3V X V X VDD HXT HIRC 5.5V 24 MHz X HCLK= 48 MHz Operating Current IIDLE1 Idle Mode - 2.8 - mA HCLK = 24 MHz Apr. 06, 2017 Page 115 of 131 All Digital Modules V Rev.1.00 MINI57 SERIES DATASHEET Normal Run Mode V Mini57 IIDLE2 - 1.9 - mA 5.5V 24 MHz X X IIDLE3 - 2.8 - mA 3V 24 MHz X V IIDLE4 - 1.9 - mA 3V 24 MHz X X VDD HXT HIRC 5.5V V X V IIDLE9 - 2.0 - mA Operating Current IIDLE10 Idle Mode All Digital Modules - 1.3 - mA 5.5V V X X IIDLE11 - 2.0 - mA 3V V X V IIDLE12 - 1.4 - mA 3V V X X VDD HXT HIRC 5.5V V X V HCLK = 16 MHz IIDLE9 - 1.5 - mA Operating Current IIDLE10 Idle Mode All Digital Modules - 1.0 - mA 5.5V V X X IIDLE11 - 1.5 - mA 3V V X V IIDLE12 - 1.0 - mA 3V V X X VDD HXT HIRC 5.5V V X V HCLK = 12 MHz IIDLE13 - 0.8 - mA MINI57 SERIES DATASHEET Operating Current IIDLE14 Idle Mode All Digital Modules - 0.6 - mA 5.5V V X X IIDLE15 - 0.7 - mA 3V V X V IIDLE16 - 0.6 - mA 3V V X X VDD HXT LIRC 5.5V X V HCLK = 4 MHz IDD17 - 274.3 - μA Operating Current IDD18 Idle Mode - 273.0 - μA 5.5V X V IDD19 - 265.0 - μA 3V X V IDD20 - 263.9 - μA 3V X V VDD HXT LIRC 5.5V X V All Digital Modules V [1] X HCLK = 32 kHz Operating Current IDD17 Idle Mode - 232.6 - μA HCLK = 10 kHz Apr. 06, 2017 Page 116 of 131 V [1] X All Digital Modules V [2] Rev.1.00 Mini57 IDD18 - 232.2 - μA 5.5V X V IDD19 - 222.5 - μA 3V X V IDD20 - 222.1 - μA 3V X V - 1.9 - A VDD = 5.5 V, All oscillators and analog blocks turned off. VDD = 3 V, All oscillators and analog blocks turned off. IPWD1 Standby Current X V [2] X Power-down Mode IPWD2 (Deep Sleep Mode) - 1.7 - A ILK Input Leakage Current PA/PB/PC/PD -1 - +1 A Input Low Voltage PA/PB/PC/PD (TTL Input) -0.3 1.33 VIL1 VIH1 VILS VIHS RRST V -0.3 1.47 Input High Voltage PA/PB/PC/PD (TTL Input) Negative-going Threshold (Schmitt Input), nRESET Positive-going Threshold (Schmitt Input), nRESET Internal nRESET Pin Pullup Resistor 1 VDD = 5.5 V, 0 < VIN< VDD Open-drain or input only mode VDD = 5.5 V VDD = 3.3 V VDD + 0.3 V VDD = 5.5 V 1.08 VDD + 0.3 - - 0.3VDD V - 0.7VDD - - V - 148 kΩ VDD = 2.1 V ~ 5.5V 48 VDD = 3.3 V Negative-going Threshold VILS (Schmitt input), PA/PB/PC/PD - - 0.3VDD V - 0.7VDD - - V - A VDD = 5.5 V, VIN = 0V Positive-going Threshold (Schmitt input), PA/PB/PC/PD IIL Logic 0 Input Current PA/PB/PC/PD (Quasibidirectional Mode) - -63.65 ITL Logic 1 to 0 Transition Current PA/PB/PC/PD - -566.7 - A VDD = 5.5 V - -372 - A VDD = 4.5 V, VIN = 2.4 V - -76.8 - A VDD = 2.7 V, VIN = 2.2 V - -37.3 - A VDD = 2.1 V, VIN = 1.8 V - -19.2 - mA VDD = 4.5 V, VIN = 2.4 V - -4 - mA VDD = 2.7 V, VIN = 2.2 V - -2 - mA VDD = 2.1 V, VIN = 1.8 V - 12.8 - mA VDD = 4.5 V, VIN = 0.4 V - 8.1 - mA VDD = 2.7 V, VIN = 0.4 V ISR11 ISR12 Source Current PA/PB/PC/PD (Quasibidirectional Mode) ISR13 ISR21 ISR22 Source Current PA/PB/PC/PD (Push-pull Mode) ISR23 ISK11 ISK12 Sink Current PA/PB/PC/PD (Quasibidirectional, Open-Drain Apr. 06, 2017 Page 117 of 131 MINI57 SERIES DATASHEET VIHS Rev.1.00 Mini57 and Push-pull Mode) ISK13 - 6 - mA VDD = 2.1 V, VIN = 0.4 V Notes: 1. Only enable modules which support 32 kHz LIRC clock source 2. Only enable modules which support 10 kHz LIRC clock source MINI57 SERIES DATASHEET Apr. 06, 2017 Page 118 of 131 Rev.1.00 Mini57 8.3 AC Electrical Characteristics 8.3.1 External Input Clock tCLCL tCLCH 0.7 VDD 90% tCLCX 10% 0.3 VDD tCHCL tCHCX Note: Duty cycle is 50%. Symbol Parameter Min Typ Max Unit Test Conditions tCHCX Clock High Time 10 - - ns - tCLCX Clock Low Time 10 - - ns - tCLCH Clock Rise Time 2 - 15 ns - tCHCL Clock Fall Time 2 - 15 ns - 8.3.2 External 4~24 MHz High Speed Crystal (HXT) Symbol Parameter Typ. Max Unit Test Conditions VHXT Operation Voltage 2.1 - 5.5 V - TA Temperature -40 - 105 ℃ - - 414 - uA IHXT Operating Current 12 MHz, VDD = 5.5V - 407 - uA 12 MHz, VDD = 3.3V 4 - 24 MHz - fHXT Clock Frequency 8.3.3 External 32.768 kHz XTAL Oscillator (LXT) SPECIFICATIONS SYM. PARAMETER TEST CONDITIONS MIN. fLXTAL Oscillator frequency TLXTAL Temperature ILXTAL Operating current 8.3.4 TYP. MAX. UNIT 32.768 kHz o 105 -40 C A 17 VDD=2.1V Typical Crystal Application Circuits Crystal C1 C2 4 MHz ~ 24 MHz 20 pF 20 pF 32.768 kHz 20 pF 20 pF Apr. 06, 2017 Page 119 of 131 Rev.1.00 MINI57 SERIES DATASHEET Min. Mini57 XT_IN XT_OUT 4~24 MHz or 32.768 kHz Crystal C1 C2 Vss Vss Figure 8.3-1 Mini57 Typical Crystal Application Circuit 8.3.5 48 MHz Internal High Speed RC Oscillator (HIRC) Symbol Parameter VHRC fHRC Min Typ Max Unit Test Conditions Supply Voltage - 1.5 - V - Center Frequency - 48 - MHz - -1 - +1 % 2 % - mA TA = 25 ℃,VDD = 5 V Unit Test Conditions Calibrated Internal Oscillator Frequency -2 IHRC MINI57 SERIES DATASHEET 8.3.6 Operating Current 1.1 - VDD = 5.5 V TA = -40℃~105℃ VDD=2.1 V~ 5.5 V 10 kHz Internal Low Speed RC Oscillator (LIRC) Symbol Parameter VLRC Min Typ Max Supply Voltage - 1.5V - V - Center Frequency - 10 - kHz - fLRC Oscillator Frequency ILRC TA = 25 ℃ Operating Current -50 [1] - - 0.3 +50 [1] 0.5 % μA VDD = 2.1 V ~ 5.5 V TA = -40℃ ~ +105℃ TA = 25 ℃,VDD = 5 V Note: These parameters are characterized but not tested. Apr. 06, 2017 Page 120 of 131 Rev.1.00 Mini57 8.4 Analog Characteristics 8.4.1 12-bit SAR ADC Symbol Parameter Min Typ Max Unit Test Condition - Resolution - - 12 Bit - DNL Differential Nonlinearity Error - 2 - LSB VDD = 3.0~5.5 V INL Integral Nonlinearity Error - ±2 - LSB VDD = 3.0~5.5 V EO Offset Error - ±1 - LSB VDD = 3.0~5.5 V EG Gain Error (Transfer Gain) - -1 - LSB VDD = 3.0~5.5 V EA Absolute Error - ±3 - LSB VDD = 3.0~5.5 V - Monotonic - - FADC ADC Clock Frequency 16 MHz VDD = 3.0 ~5.5 V FS Sample Rate (FADC/TCONV) 700 kSPS VDD = 3.0~5.5 V Guaranteed 12 VDD = 3.0 ~5.5 V TACQ N+1 1/FADC N is sampling counter, N=1~1024 200 ns VDD = 3.0~5.5 V Acquisition Time (Sample Stage) 1050 ns VDD = 3.0~5.5 V 3.0 - 5.5 V - Supply Current (Avg.) - 1 - mA VDD = 5.5 V VIN Analog Input Voltage 0 - AVDD V - CIN Input Capacitance - 1.6 - pF - RIN Input Load - 2.5 - kΩ - Conversion Time VDD Supply Voltage IDDA MINI57 SERIES DATASHEET 1000 TCONV Note: ADC voltage reference is same with VDD Apr. 06, 2017 Page 121 of 131 Rev.1.00 Mini57 EF (Full scale error) = EO + EG Gain Error EG Offset Error EO 4095 4094 4093 4092 Ideal transfer curve 7 6 ADC output code 5 Actual transfer curve 4 3 2 DNL 1 1 LSB Offset Error EO MINI57 SERIES DATASHEET 8.4.2 4095 Analog input voltage (LSB) LDO & Power Management Symbol Parameter Min Typ Max Unit Test Condition VDD DC Power Supply 2.1 - 5.5 V - VLDO Output Voltage V - TA Temperature 1.5 25 -40 105 ℃ Note: It is recommended a 0.1μF bypass capacitor is connected between VDD and the closest VSS pin of the device. 8.4.3 Low Voltage Reset Symbol Parameter AVDD Supply Voltage 2.1 - TA Temperature -40 25 Apr. 06, 2017 Min Typ Max Page 122 of 131 Unit Test Condition 5.5 V - 105 ℃ - Rev.1.00 Mini57 ILVR Quiescent Current VLVR Threshold Voltage 8.4.4 Parameter AVDD Supply Voltage TA Temperature IBOD Quiescent Current VBOD TA=25℃ 1.8 1.9 2.0 V TA = -40 Min Typ Max Unit Test Condition 0 - 5.5 V - -40 25 105 ℃ - - 100 - μA AVDD =5.5V 4.33 4.3 4.39 V BOV_VL [2:0] = 3 4.03 4.0 4.10 V BOV_VL [2:0] = 2 3.73 3.7 3.79 V BOV_VL [2:0] = 7 3.02 3.0 3.09 V BOV_VL [2:0] = 1 2.72 2.7 2.79 V BOV_VL [2:0] = 6 2.42 2.4 2.49 V BOV_VL [2:0] = 0 2.22 2.2 2.30 V BOV_VL [2:0] = 5 2.02 2.0 2.09 V BOV_VL [2:0] = 4 4.3 V BOV_VL [2:0] = 3 4.0 V BOV_VL [2:0] = 2 3.7 V BOV_VL [2:0] = 7 3.0 V BOV_VL [2:0] = 1 2.7 V BOV_VL [2:0] = 6 2.4 V BOV_VL [2:0] = 0 2.2 V BOV_VL [2:0] = 5 2.0 V BOV_VL [2:0] = 4 ~ +105 Brown-out Hysteresis Brown-out Detector Power-on Reset Symbol Parameter Min Typ Max Unit Test Condition TA Temperature -40 25 105 ℃ - VPOR Threshold Voltage 1.75 V VDD = 5.0 V VPOR VDD Start Voltage Power-on Reset to Ensure TBD mV RRVDD VDD Raising Rate Power-on Reset to Ensure TBD V/ms tPOR Minimum Time for VDD Stays at VPOR to Ensure Power-on Reset TBD ms Apr. 06, 2017 Page 123 of 131 Rev.1.00 MINI57 SERIES DATASHEET 8.4.5 μA Brown-out Detector Symbol VBOD 1 Mini57 8.4.6 Comparator Symbol Parameter Min Typ Max Unit Test Condition VCMP Supply Voltage 2.1 - 5.5 V TA Temperature -40 25 105 ℃ - ICMP Operation Current - 46 μA VDD=3.3V VOFF Input Offset Voltage ±10 mV - VSW Output Swing VCOM Input Common Mode Range - DC Gain TPGD 0 - VDD V - 0.1 - AVDD – 0.1 V - - 60 - dB - Propagation Delay - 225 - ns VHYS Hysteresis - 10 - mV ACMPPHYSEN = 01 VHYS Hysteresis - 90 - mV ACMPPHYSEN = 10 TSTB Stable time - 1.06 - μs Typ Max [1] Note: Guaranteed by design, not test in production. 8.4.7 Symbol PGA Parameter Min Operation voltage range 2.5 3.3 Operating Current MINI57 SERIES DATASHEET Operating Temperature -40 25 Input Offset with calibration Type temp=25,VCM=AVDD/2 Unit 5.5 V 5 mA Test Condition VDD=5V, T=125℃ 125 +2 mV 1 uV/ corner, Input Offset Average Drift Output Swing 0.1 VDD - 0.1 V PGA gain accuracy -1 +1 % Input Common Mode Range 0 VDD - 1.5 V DC Gain 50 Unity Gain Frequency 7 Phase Margin 50° PSRR+ 49 90 dB VDD = 5V CMRR 69 90 dB VDD = 5V Apr. 06, 2017 80 dB 8.2 MHz VDD = 5V ° Page 124 of 131 Rev.1.00 Mini57 Slew Rate+ 6.0 7.5 V/us VDD=5V, RLoad=1.3K, CLoad=100p Wake Up Time 20 us Note: Guaranteed by design, not test in production. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 125 of 131 Rev.1.00 Mini57 8.5 Flash DC Electrical Characteristics Symbol Parameter Min Typ Max Unit Supply Voltage 1.35 1.5 1.65 V NENDUR Endurance 100,000 - - cycles TRET Data Retention 20 - - year TERASE Sector Erase Time - 5 ms TPROG Program Time - - 7.5 us IDD1 Read Current - 3 4.5 mA IDD2 Program Current - - 4 mA IDD3 Erase Current - - 2 mA V [2] FLA Test Condition [1] TA =125℃ @33 MHz Notes: 1. Number of program/erase cycles. 2. VFLA is source from chip LDO output voltage. Guaranteed by design, not test in production. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 126 of 131 Rev.1.00 Mini57 9 PACKAGE DIMENSIONS 9.1 28-Pin TSSOP (4.4x9.7x1.0 mm) MINI57 SERIES DATASHEET Apr. 06, 2017 Page 127 of 131 Rev.1.00 Mini57 9.2 20-Pin TSSOP (4.4x6.5x0.9 mm) MINI57 SERIES DATASHEET Apr. 06, 2017 Page 128 of 131 Rev.1.00 Mini57 9.3 33-pin QFN33 (4x4x0.8 mm) MINI57 SERIES DATASHEET Apr. 06, 2017 Page 129 of 131 Rev.1.00 Mini57 10 REVISION HISTORY Date Revision Description 2017.04.06 1.00 Preliminary version. MINI57 SERIES DATASHEET Apr. 06, 2017 Page 130 of 131 Rev.1.00 Mini57 Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, “Insecure Usage”. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life. All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton. Apr. 06, 2017 Page 131 of 131 Rev.1.00 MINI57 SERIES DATASHEET Important Notice
MINI57FDE 价格&库存

很抱歉,暂时无法提供与“MINI57FDE”相匹配的价格&库存,您可以联系我们找货

免费人工找货