CD74AC174
HEX D-TYPE FLIP-FLOP
WITH CLEAR
SCHS346 – APRIL 2003
D
D
D
D
D
D
D
D
D
E OR M PACKAGE
(TOP VIEW)
AC Types Feature 1.5-V to 5.5-V Operation
and Balanced Noise Immunity at 30% of the
Supply Voltage
Contains Six Flip-Flops With Single-Rail
Outputs
Buffered Inputs
Speed of Bipolar F, AS, and S, With
Significantly Reduced Power Consumption
Balanced Propagation Delays
±24-mA Output Drive Current
– Fanout to 15 F Devices
SCR-Latchup-Resistant CMOS Process and
Circuit Design
Exceeds 2-kV ESD Protection Per
MIL-STD-883, Method 3015
Applications Include:
– Buffer/Storage Registers
– Shift Registers
CLR
1Q
1D
2D
2Q
3D
3Q
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
6Q
6D
5D
5Q
4D
4Q
CLK
description/ordering information
The CD74AC174 is a positive-edge-triggered D-type flip-flop with a direct clear (CLR) input and is designed for
1.5-V to 5.5-V VCC operation.
Information at the data (D) inputs that meets the setup time requirements is transferred to the outputs on the
positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not
directly related to the transition time of the positive-going edge of CLK. When CLK is at either the high or low
level, the D input has no effect at the output.
ORDERING INFORMATION
PDIP – E
–55°C to 125°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOIC – M
Tube
CD74AC174E
Tube
CD74AC174M
Tape and reel
CD74AC174M96
TOP-SIDE
MARKING
CD74AC174E
AC174M
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
FUNCTION TABLE
(each flip-flop)
INPUTS
CLR
CLK
D
OUTPUT
Q
L
X
X
L
H
↑
H
H
H
↑
L
L
H
L
X
Q0
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
CD74AC174
HEX D-TYPE FLIP-FLOP
WITH CLEAR
SCHS346 – APRIL 2003
logic diagram (positive logic)
CLR
CLK
1D
1
9
3
1D
2
C1
1Q
R
To Five Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V
Input clamp current, IIK (VI < 0 V or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 V or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous output current, IO (VO > 0 V or VO < VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±150 mA
Package thermal impedance, θJA (see Note 2): E package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W
M package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
TA = 25°C
VCC
VIH
VIL
Supply voltage
High-level input voltage
Low-level input voltage
VI
VO
Input voltage
IOH
IOL
High-level output current
∆t/∆v
Input transition rise or fall rate
–40°C to
85°C
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
1.5
5.5
1.5
5.5
1.5
5.5
VCC = 1.5 V
VCC = 3 V
1.2
1.2
1.2
2.1
2.1
2.1
VCC = 5.5 V
VCC = 1.5 V
3.85
3.85
0.3
VCC = 3 V
VCC = 5.5 V
0
Output voltage
Low-level output current
–55°C to
125°C
0
V
3.85
0.3
0.3
0.9
0.9
0.9
1.65
1.65
1.65
VCC
VCC
0
0
V
VCC
VCC
0
0
V
VCC
VCC
V
V
VCC = 4.5 V to 5.5 V
VCC = 4.5 V to 5.5 V
–24
–24
–24
mA
24
24
24
mA
VCC = 1.5 V to 3 V
VCC = 3.6 V to 5.5 V
50
50
50
20
20
20
ns/V
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
CD74AC174
HEX D-TYPE FLIP-FLOP
WITH CLEAR
SCHS346 – APRIL 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
IOH = –50 µA
VOH
VI = VIH or VIL
IOH = –4 mA
IOH = –24 mA
IOH = –50 mA†
IOH = –75 mA†
IOL = 50 µA
VOL
II
ICC
VI = VIH or VIL
VI = VCC or GND
VI = VCC or GND,
–55°C to
125°C
TA = 25°C
MAX
MIN
–40°C to
85°C
MAX
MIN
1.5 V
1.4
1.4
1.4
2.9
3V
2.9
2.9
4.5 V
4.4
4.4
4.4
3V
2.58
2.4
2.48
4.5 V
3.94
3.7
3.8
5.5 V
UNIT
MAX
V
3.85
5.5 V
3.85
1.5 V
0.1
0.1
0.1
3V
0.1
0.1
0.1
4.5 V
0.1
0.1
0.1
IOL = 12 mA
IOL = 24 mA
IOL = 50 mA†
3V
0.36
0.5
0.44
4.5 V
0.36
0.5
0.44
IOL = 75 mA†
5.5 V
5.5 V
5.5 V
IO = 0
5.5 V
Ci
V
1.65
1.65
±0.1
±1
±1
µA
8
160
80
µA
10
10
10
pF
† Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize
power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C.
timing requirements over recommended operating free-air temperature range, VCC = 1.5 V (unless
otherwise noted)
–55°C to
125°C
MIN
fclock
Clock frequency
tw
Pulse duration
tsu
th
Setup time before CLK↑
trec
Recovery time, before CLK↑
–40°C to
85°C
MAX
MIN
8
9
MHz
CLR low
50
44
CLK high or low
65
57
2
2
ns
38
33
ns
1.5
1.5
ns
Data
Hold time, data after CLK↑
CLR↑
POST OFFICE BOX 655303
UNIT
MAX
• DALLAS, TEXAS 75265
ns
3
CD74AC174
HEX D-TYPE FLIP-FLOP
WITH CLEAR
SCHS346 – APRIL 2003
timing requirements over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V
(unless otherwise noted)
–55°C to
125°C
MIN
fclock
Clock frequency
tw
Pulse duration
tsu
th
Setup time before CLK↑
trec
Recovery time, before CLK↑
–40°C to
85°C
MAX
MIN
UNIT
MAX
68
77
MHz
CLR low
5.6
4.9
CLK high or low
7.3
6.4
2
2
ns
4.2
3.7
ns
1.5
1.5
ns
Data
Hold time, data after CLK↑
CLR↑
ns
timing requirements over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V
(unless otherwise noted)
–55°C to
125°C
MIN
fclock
–40°C to
85°C
MAX
Clock frequency
MIN
95
CLR low
tw
Pulse duration
tsu
th
Setup time before CLK↑
trec
Recovery time, before CLK↑
CLK high or low
Data
Hold time, data after CLK↑
CLR↑
108
4
3.5
5.2
4.6
UNIT
MAX
MHz
ns
2
2
ns
3
2.6
ns
1.5
1.5
ns
switching characteristics over recommended operating free-air temperature range,
VCC = 1.5 V, CL = 50 pF (unless otherwise noted) (see Figure 1)
PARAMETER
fmax
tPLH
tPHL
tPLH
tPHL
FROM
(INPUT)
TO
(OUTPUT)
–55°C to
125°C
MIN
MAX
8
CLK
Any Q
CLR
Any Q
–40°C to 85°C
UNIT
MIN
MAX
9
UNIT
MHz
169
154
169
154
181
165
181
165
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCC = 3.3 V ± 0.3 V, CL = 50 pF (unless otherwise noted) (see Figure 1)
PARAMETER
fmax
tPLH
tPHL
tPLH
tPHL
4
FROM
(INPUT)
TO
(OUTPUT)
–55°C to
125°C
MIN
MAX
MIN
4.7
18.9
4.9
17.2
4.7
18.9
4.9
17.2
5.1
20.3
5.2
18.5
5.1
20.3
5.2
18.5
68
CLK
Any Q
CLR
Any Q
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
–40°C to
85°C
UNIT
MAX
77
MHz
ns
ns
CD74AC174
HEX D-TYPE FLIP-FLOP
WITH CLEAR
SCHS346 – APRIL 2003
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V ± 0.5 V, CL = 50 pF (unless otherwise noted) (see Figure 1)
PARAMETER
fmax
tPLH
tPHL
tPLH
tPHL
FROM
(INPUT)
TO
(OUTPUT)
–55°C to
125°C
MIN
MAX
95
CLK
Any Q
CLR
Any Q
–40°C to
85°C
MIN
UNIT
MAX
108
MHz
3.4
13.5
3.5
12.3
3.4
13.5
3.5
12.3
3.6
14.5
3.7
13.2
3.6
14.5
3.7
13.2
ns
ns
operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
Cpd
Power dissipation capacitance
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TYP
UNIT
37
pF
5
CD74AC174
HEX D-TYPE FLIP-FLOP
WITH CLEAR
SCHS346 – APRIL 2003
PARAMETER MEASUREMENT INFORMATION
S1
R1 = 500 Ω†
From Output
Under Test
2 × VCC
Open
GND
CL = 50 pF
(see Note A)
R2 = 500 Ω†
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
tw
VCC
† When VCC = 1.5 V, R1 = R2 = 1 kΩ
Input
50% VCC
50% VCC
0V
LOAD CIRCUIT
VOLTAGE WAVEFORMS
PULSE DURATION
CLR
Input
VCC
Reference
Input
VCC
50% VCC
50% VCC
0V
0V
tsu
trec
Data
50%
Input 10%
VCC
50% VCC
CLK
90%
VOLTAGE WAVEFORMS
RECOVERY TIME
tf
VCC
50% VCC
50% VCC
tPLH
tPHL
50%
10%
90%
90%
tr
tPHL
Out-of-Phase
Output
VCC
50% VCC
10% 0 V
VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES
0V
In-Phase
Output
90%
tr
0V
Input
th
90%
VOH
50% VCC
10%
VOL
tf
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
50% VCC
10%
tf
50%
10%
90%
tr
VOH
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES
VCC
Output
Control
50% VCC
50% VCC
0V
tPLZ
tPZL
50% VCC
tPHZ
tPZH
Output
Waveform 2
S1 at GND
(see Note B)
≈VCC
20% VCC
VOL
50% VCC
VOH
80% VCC
≈0 V
VOLTAGE WAVEFORMS
OUTPUT ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 3 ns, tf = 3 ns.
Phase relationships between waveforms are arbitrary.
D. For clock inputs, fmax is measured with the input duty cycle at 50%.
E. The outputs are measured one at a time with one input transition per measurement.
F. tPLH and tPHL are the same as tpd.
G. tPZL and tPZH are the same as ten.
H. tPLZ and tPHZ are the same as tdis.
I. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
6-Feb-2020
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
CD74AC174E
ACTIVE
PDIP
N
16
25
Green (RoHS
& no Sb/Br)
NIPDAU
N / A for Pkg Type
-55 to 125
CD74AC174E
CD74AC174M
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-55 to 125
AC174M
CD74AC174M96
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-55 to 125
AC174M
CD74AC174M96E4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-55 to 125
AC174M
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of