Freescale Semiconductor
Data Sheet
MPC5200
Rev. 4, 01/2005
MPC5200 Data Sheet
NOTE
The information in this
document is subject to
change. For the latest data
on the MPC5200, visit
www.freescale.com and
proceed to the MPC5200
Product Summary Page.
1
Overview
The MPC5200 integrates a high performance MPC603e
series G2_LE core with a rich set of peripheral functions
focused on communications and systems integration.
The G2_LE core design is based on the PowerPCTM core
architecture. MPC5200 incorporates an innovative
BestComm I/O subsystem, which isolates routine
maintenance of peripheral functions from the embedded
G2_LE core. The MPC5200 contains a SDRAM/DDR
Memory Controller, a flexible External Bus Interface,
PCI Controller, USB, ATA, Ethernet, six Programmable
Serial Controllers (PSC), I2C, SPI, CAN, J1850, Timers,
and GPIOs.
Table of Contents
1
2
3
4
5
6
7
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Electrical and Thermal Characteristics . . . . . . . . . 6
3.1 DC Electrical Characteristics . . . . . . . . . . . . . 6
3.2 Oscillator and PLL Electrical
Characteristics . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 AC Electrical Characteristics . . . . . . . . . . . . 14
Package Description . . . . . . . . . . . . . . . . . . . . . . 64
4.1 Package Parameters . . . . . . . . . . . . . . . . . . 64
4.2 Mechanical Dimensions. . . . . . . . . . . . . . . . 64
4.3 Pinout Listings . . . . . . . . . . . . . . . . . . . . . . . 66
System Design Information. . . . . . . . . . . . . . . . . 71
5.1 Power UP/Down Sequencing . . . . . . . . . . . 71
5.2 System and CPU Core AVDD power
supply filtering . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Pull-up/Pull-down Resistor Requirements . . 73
5.4 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Ordering Information . . . . . . . . . . . . . . . . . . . . . . 79
Document Revision History. . . . . . . . . . . . . . . . . 79
“Definitive Data: Freescale reserves the right to change the production detail specifications
as may be required to permit improvements in the design of its products.”
© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.
Features
2
Features
Key features are shown below.
• MPC603e series G2_LE core
— Superscalar architecture
— 760 MIPS at 400 MHz (-40 to +85 oC)
— 16 k Instruction cache, 16 k Data cache
— Double precision FPU
— Instruction and Data MMU
— Standard and Critical interrupt capability
• SDRAM / DDR Memory Interface
— up to 132-MHz operation
— SDRAM and DDR SDRAM support
— 256-MByte addressing range per CS, two CS available
— 32-bit data bus
— Built-in initialization and refresh
• Flexible multi-function External Bus Interface
— Supports interfacing to ROM/Flash/SRAM memories or other memory mapped devices
— 8 programmable Chip Selects
— Non multiplexed data access using 8/16/32 bit databus with up to 26-bit address
— Short or Long Burst capable
— Multiplexed data access using 8/16/32 bit databus with up to 25-bit address
• Peripheral Component Interconnect (PCI) Controller
— Version 2.2 PCI compatibility
— PCI initiator and target operation
— 32-bit PCI Address/Data bus
— 33- and 66-MHz operation
— PCI arbitration function
• ATA Controller
— Version 4 ATA compatible external interface—IDE Disk Drive connectivity
• BestComm DMA subsystem
— Intelligent virtual DMA Controller
— Dedicated DMA channels to control peripheral reception and transmission
— Local memory (SRAM 16 kBytes)
• 6 Programmable Serial Controllers (PSC), configurable for the following:
— UART or RS232 interface
MPC5200 Data Sheet, Rev. 4
2
Freescale Semiconductor
Features
•
•
•
•
•
•
•
— CODEC interface for Soft Modem, Master/Slave CODEC Mode, I2S and AC97
— Full duplex SPI mode
— IrDA mode from 2400 bps to 4 Mbps
Fast Ethernet Controller (FEC)
— Supports 100Mbps IEEE 802.3 MII, 10 Mbps IEEE 802.3 MII, 10 Mbps 7-wire interface
Universal Serial Bus Controller (USB)
— USB Revision 1.1 Host
— Open Host Controller Interface (OHCI)
— Integrated USB Hub, with two ports.
Two Inter-Integrated Circuit Interfaces (I2C)
Serial Peripheral Interface (SPI)
Dual CAN 2.0 A/B Controller (MSCAN)
—Freescale Scalable Controller Area Network (FSCAN) architecture
— Implementation of version 2.0A/B CAN protocol
— Standard and extended data frames
J1850 Byte Data Link Controller (BDLC)
— J1850 Class B data communication network interface compatible and ISO compatible for low
speed ( LB = 1
Data bus width is 8 bit. => DS = 8
=> 41*2*(32/8) = 32 => ACK is asserted for 32 PCI cycles to transfer one cache line.
Wait State is set to 10. => WS = 10
1+10+32 = 43 => CS is asserted for 43 PCI cycles.
3. ACK is output and indicates the burst.
MPC5200 Data Sheet, Rev. 4
30
Freescale Semiconductor
Electrical and Thermal Characteristics
PCI CLK
CS[x]
t1
t3
t2
ADDR
t5
t4
OE
t6
t7
R/W
t8
t10
DATA (rd)
t9
t11
t12
ACK
t14
t15
t13
TS
Figure 13. Timing Diagram—Burst Mode
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
31
Electrical and Thermal Characteristics
3.3.7.3
MUXed Mode
Table 26. MUXed Mode Timing
Sym
Description
Min
Max
Units
t CSA
PCI CLK to CS assertion
-
1.8
ns
A7.15
t CSN
PCI CLK to CS negation
-
1.8
ns
A7.16
tALEA
PCI CLK to ALE assertion
-
1
ns
A7.16
t1
ALE assertion before Address, Bank,
TSIZ assertion
-
0.8
ns
A7.17
t2
CS assertion before Address, Bank,
TSIZ negation
-
0.7
ns
A7.18
t3
CS assertion before Data wr valid
-
0.7
ns
A7.19
t4
Data wr hold after CS negation
tIPBIck
-
ns
A7.20
t5
Data rd setup before CS negation
2.8
-
ns
A7.21
t6
Data rd hold after CS negation
0
(DC+1)*tPCIck
ns
t7
ALE pulse width
-
tPCIck
ns
A7.23
CS assertion after TS assertion
-
0.8
ns
A7.24
t8
TS pulse width
-
tPCIck
ns
A7.24
t9
CS pulse width
(2+WS)*tPCIck
(2+WS)*tPCIck
ns
A7.25
tTSA
Notes
1
SpecID
A7.22
tOEA
OE assertion before CS assertion
-
0.4
ns
A7.26
tOEN
OE negation before CS negation
-
0.4
ns
A7.27
tIPBIck
-
ns
A7.26
-
tPCIck
ns
A7.27
t10
RW assertion before ALE assertion
t11
RW negation after CS negation
t12
ACK assertion after CS assertion
tIPBIck
-
ns
2
A7.28
t13
ACK negation after CS negation
-
tPCIck
ns
2
A7.28
Note:
1. ACK can shorten the CS pulse width.
Wait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified 0 - 65535.
2. ACK is input and can be used to shorten the CS pulse width.
MPC5200 Data Sheet, Rev. 4
32
Freescale Semiconductor
Electrical and Thermal Characteristics
PCI CLK
t1
t2
t4
AD[31,27] (wr)
Data
AD[30:28] (wr)
TSIZ[0:2] bits
Data
AD[26:25] (wr)
Bank[0:1] bits
Data
AD[24:0] (wr)
Address[7:31]
Data
t3
t5
AD[31:0] (rd)
t6
Data
t7
ALE
Address latch
t8
TS
t9
CSx
OE
t10
t11
RW
t12
ACK
t13
Address tenure
Data tenure
Figure 14. Timing Diagram—MUXed Mode
3.3.8
ATA
The MPC5200 ATA Controller is completely software programmable. It can be programmed to operate
with ATA protocols using their respective timing, as described in the ANSI ATA-4 specification. The ATA
interface is completely asynchronous in nature. Signal relationships are based on specific fixed timing in
terms of timing units (nano seconds).
ATA data setup and hold times, with respect to Read/Write strobes, are software programmable inside the
ATA Controller. Data setup and hold times are implemented using counters. The counters count the
number of ATA clock cycles needed to meet the ANSI ATA-4 timing specifications. For details, see the
ANSI ATA-4 specification [5] and how to program an ATA Controller and ATA drive for different ATA
protocols and their respective timing. See the MPC5200 User Manual [1].
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
33
Electrical and Thermal Characteristics
The MPC5200 ATA Host Controller design makes data available coincidentally with the active edge of the
WRITE strobe in PIO and Multiword DMA modes.
• Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample
setup-time beyond that required by the ATA-4 specification.
• Data is held unchanged until the next active edge of the WRITE strobe. This gives ample
hold-time beyond that required by the ATA-4 specification.
All ATA transfers are programmed in terms of system clock cycles (IP bus clocks) in the ATA Host
Controller timing registers. This puts constraints on the ATA protocols and their respective timing modes
in which the ATA Controller can communicate with the drive.
Faster ATA modes (i.e., UDMA 0, 1, 2) are supported when the system is running at a sufficient frequency
to provide adequate data transfer rates. Adequate data transfer rates are a function of the following:
• The MPC5200 operating frequency (IP bus clock frequency)
• Internal MPC5200 bus latencies
• Other system load dependent variables
The ATA clock is the same frequency as the IP bus clock in MPC5200. See the MPC5200 User Manual [1].
NOTE
All output timing numbers are specified for nominal 50 pF loads.
Table 27. PIO Mode Timing Specifications
PIO Timing Parameter
Min/Max
(ns)
Mode 0
(ns)
Mode 1
(ns)
Mode 2
(ns)
Mode 3
(ns)
Mode 4
(ns)
SpecID
t0
Cycle Time
min
600
383
240
180
120
A8.1
t1
Address valid to DIOR/DIOW setup
min
70
50
30
30
25
A8.2
t2
DIOR/DIOW pulse width 16-bit
8-bit
min
min
165
290
125
290
100
290
80
80
70
70
A8.3
t2i
DIOR/DIOW recovery time
min
—
—
—
70
25
A8.4
t3
DIOW data setup
min
60
45
30
30
20
A8.5
t4
DIOW data hold
min
30
20
15
10
10
A8.6
t5
DIOR data setup
min
50
35
20
20
20
A8.7
t6
DIOR data hold
min
5
5
5
5
5
A8.8
t9
DIOR/DIOW to address
valid hold
min
20
15
10
10
10
A8.9
tA
IORDY setup
max
35
35
35
35
35
A8.10
tB
IORDY pulse width
max
1250
1250
1250
1250
1250
A8.11
MPC5200 Data Sheet, Rev. 4
34
Freescale Semiconductor
Electrical and Thermal Characteristics
CS[0]/CS[3]/DA[2:0]
t2
t9
t1
DIOR/DIOW
t8
t0
t3
t4
WDATA
t5
t6
RDATA
tA
tB
IORDY
Figure 15. PIO Mode Timing
Table 28. Multiword DMA Timing Specifications
Multiword DMA Timing Parameters
Min/Max
Mode 0(ns)
Mode 1(ns)
Mode 2(ns)
SpecID
t0
Cycle Time
min
480
150
120
A8.12
tC
DMACK to DMARQ delay
max
—
—
—
A8.13
tD
DIOR/DIOW pulse width (16-bit)
min
215
80
70
A8.14
tE
DIOR data access
max
150
60
50
A8.15
tG
DIOR/DIOW data setup
min
100
30
20
A8.16
tF
DIOR data hold
min
5
5
5
A8.17
tH
DIOW data hold
min
20
15
10
A8.18
tI
DMACK to DIOR/DIOW setup
min
0
0
0
A8.19
tJ
DIOR/DIOW to DMACK hold
min
20
5
5
A8.20
tKr
DIOR negated pulse width
min
50
50
25
A8.21
tKw
DIOW negated pulse width
min
215
50
25
A8.22
tLr
DIOR to DMARQ delay
max
120
40
35
A8.23
tLw
DIOW to DMARQ delay
max
40
40
35
A8.24
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
35
Electrical and Thermal Characteristics
t0
DMARQ
(Drive)
tL
tC
DMACK
(Host)
tI
tD
tJ
tK
DIOR
DIOW
(Host)
tE
RDATA
(Drive)
tS
tF
WDATA
(Host)
tH
tG
NOTE: The directionof signalassertionis towardsthe
top of the page, and the direction of negation is
towards the bottom of the page, irrespective of the
electrical properties of the signal.
Figure 16. Multiword DMA Timing
Table 29. Ultra DMA Timing Specification
Name
(t) 2CYC
MODE 0
(ns)
MODE 1
(ns)
MODE 2
(ns)
Min
Max
Min
Max
Min
Max
240
—
160
—
120
—
Comment
SpecID
Typical sustained average two cycle time.
A8.26
For information only, do not test.
(t) CYC
114
—
75
—
55
—
Cycle time allowing for asymmetry and clock
variations from STROBE edge to STROBE edge
A8.27
(t) 2CYC
235
—
156
—
117
—
Two-cycle time allowing for clock variations, from
rising edge to next rising edge or from falling edge to
next falling edge of STROBE.
A8.28
(t) DS
15
—
10
—
7
—
Data setup time at recipient.
A8.29
(t) DH
5
—
5
—
5
—
Data hold time at recipient.
A8.30
(t) DVS
70
—
48
—
34
—
Data valid setup time at sender, to STROBE edge.
A8.31
(t) DVH
6
—
6
—
6
—
Data valid hold time at sender, from STROBE edge.
A8.32
(t) FS
0
230
0
200
0
170
First STROBE time for drive to first negate DSTROBE
from STOP during a data-in burst.
A8.33
MPC5200 Data Sheet, Rev. 4
36
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 29. Ultra DMA Timing Specification (continued)
Name
(t) LI
(t) MLI
MODE 0
(ns)
MODE 1
(ns)
MODE 2
(ns)
Min
Max
Min
Max
Min
Max
0
150
0
150
0
150
20
—
20
—
20
—
Comment
Limited Interlock time.1,2
Interlock time with
SpecID
A8.34
minimum.1,2
A8.35
1,2
A8.36
(t) UI
0
—
0
—
0
—
Unlimited interlock time.
(t) AZ
—
10
—
10
—
10
Maximum time allowed for output drivers to release
from being asserted or negated
A8.37
(t) ZAH
20
—
20
—
20
—
A8.38
(t) ZAD
0
—
0
—
0
—
Minimum delay time required for output drivers to
assert or negate from released state
(t) ENV
20
70
20
70
20
70
Envelope time—from DMACK to STOP and
HDMARDY during data out burst initiation.
A8.40
(t) SR
—
50
—
30
—
20
STROBE to DMARDY time, if DMARDY is negated
before this long after STROBE edge, the recipient
receives no more than one additional data word.
A8.41
(t) RFS
—
75
—
60
—
50
Ready-to-Final STROBE time—no STROBE edges
are sent this long after negation of DMARDY.
A8.42
(t) RP
160
—
125
—
100
—
Ready-to-Pause time—the time recipient waits to
initiate pause after negating DMARDY.
A8.43
(t) IORDYZ
—
20
—
20
—
20
Pull-up time before allowing IORDY to be released.
A8.44
(t) ZIORDY
0
—
0
—
0
—
Minimum time drive waits before driving IORDY
A8.45
(t) ACK
20
—
20
—
20
—
Setup and hold times for DMACK, before assertion or
negation.
A8.46
(t) SS
50
—
50
—
50
—
Time from STROBE edge to negation of DMARQ or
assertion of STOP, when sender terminates a burst.
A8.47
A8.39
NOTES:
1 t ,t
UI MLI, t LI indicate sender-to-recipient or recipient-to-sender interlocks. That is, one agent (either sender or recipient)
is waiting for the other agent to respond with a signal before proceeding.
• t UI is an unlimited interlock that has no maximum time value.
• t MLI is a limited time-out that has a defined minimum.
• t LI is a limited time-out that has a defined maximum.
2
All timing parameters are measured at the connector of the drive to which the parameter applies. For example, the
sender shall stop generating STROBE edges t RFS after negation of DMARDY. Both STROBE and DMARDY timing
measurements are taken at the connector of the sender. Even though the sender stops generating STROBE edges,
the receiver may receive additional STROBE edges due to propagation delays. All timing measurement switching
points (low to high and high to low) are taken at 1.5 V.
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
37
Electrical and Thermal Characteristics
DMARQ
(device)
t UI
DMACK
(device)
t ACK
t ENV
t FS
t ZAD
STOP
(host)
t ACK
t ENV
HDMARDY
(host)
t FS
t ZAD
t ZIORDY
DSTROBE
(device)
t DVS
t AZ
t DVH
DD(0:15)
t ACK
DA0, DA1, DA2,
CS[0:1]1
Figure 17. Timing Diagram—Initiating an Ultra DMA Data In Burst
t 2CYC
t CYC
t CYC
t 2CYC
DSTROBE
at device
tDVH
tDVS
tDVH
tDVS
tDVH
DD(0:15)
at device
DSTROBE
at host
tDH
tDS
tDH
tDS
tDH
DD(0:15)
at host
Figure 18. Timing Diagram—Sustained Ultra DMA Data In Burst
MPC5200 Data Sheet, Rev. 4
38
Freescale Semiconductor
Electrical and Thermal Characteristics
DMARQ
(device)
DMARQ
(host)
t RP
STOP
(host)
t SR
HDMARDY
(host)
t RFS
DSTROBE
(device)
DD[0:15]
(device)
Figure 19. Timing Diagram—Host Pausing an Ultra DMA Data In Burst
DMARQ
(device)
DMACK
(host)
t LI
t MLI
t LI
t ACK
STOP
(host)
tLI
HDMARDY
(host)
DSTROBE
(device)
t ACK
t SS
t IORDYZ
t ZAH
t AZ
t DVS
t DVH
CRC
DD[0:15]
t ACK
DA0,DA1,DA2,
CS[0:1]
Figure 20. Timing Diagram—Drive Terminating Ultra DMA Data In Burst
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
39
Electrical and Thermal Characteristics
DMARQ
(device)
t LI
DMACK
(host)
t RP
t MLI
t ZAH
t ACK
STOP
(host)
tACK
t AZ
HDMARDY
(host)
t RFS
t LI
t MLI
DSTROBE
(device)
t IORDYZ
t DVS
t DVH
DD[0:15]
CRC
t ACK
DA0,DA1,DA2,
CS[0:1]
Figure 21. Timing Diagram—Host Terminating Ultra DMA Data In Burst
MPC5200 Data Sheet, Rev. 4
40
Freescale Semiconductor
Electrical and Thermal Characteristics
DMARQ
(device)
tUI
DMACK
(host)
tACK
tENV
STOP
(host)
tLI
tZIORDY
tUI
DDMARDY
(host)
tACK
HSTROBE
(device)
tDVS
tDVH
DD[0:15]
(host)
tACK
DA0,DA1,DA2,
CS[0:1]
Figure 22. Timing Diagram—Initiating an Ultra DMA Data Out Burst
t 2CYC
t CYC
t CYC
t 2CYC
HSTROBE
(host)
t DVS
t DVH
t DVS
t DVH
t DVH
DD[0:15]
(host)
HSTROBE
(device)
t DH
t DS
t DS
t DH
t DH
DD[0:15]
(device)
Figure 23. Timing Diagram—Sustained Ultra DMA Data Out Burst
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
41
Electrical and Thermal Characteristics
t RP
DMARQ
(device)
DMACK
(host)
STOP
(host)
t SR
DDMARDY
(device)
t RFS
HSTROBE
DD[0:15]
(host)
Figure 24. Timing Diagram—Drive Pausing an Ultra DMA Data Out Burst
DMARQ
(device)
t LI
t MLI
DMACK
(host)
t SS
t ACK
t LI
STOP
(host)
t LI
t IORDYZ
DDMARDY
(device)
tACK
HSTROBE
(host)
t DVS
DD[0:15]
(host)
t DVH
CRC
t ACK
DA0,DA1,DA2,
CS[0:1]
Figure 25. Timing Diagram—Host Terminating Ultra DMA Data Out Burst
MPC5200 Data Sheet, Rev. 4
42
Freescale Semiconductor
Electrical and Thermal Characteristics
DMARQ
(device)
DMACK
(host)
t LI
t MLI
t ACK
STOP
(host)
t RP
t IORDYZ
DDMARDY
(device)
t RFS
t LI
t MLI
t ACK
HSTROBE
(host)
t DVS
DD[0:15]
(host)
t DVH
CRC
t ACK
DA0,DA1,DA2,
CS[0:1]
Figure 26. Timing Diagram—Drive Terminating Ultra DMA Data Out Burst
Table 30. Timing Specification ata_isolation
Sym
Description
Min
Max
Units
SpecID
1
ata_isolation setup time
7
-
IP Bus cycles
A8.48
2
ata_isolation hold time
-
19
IP Bus cycles
A8.49
DIOR
ATA_ISOLATION
1
2
Figure 27. Timing Diagram-ATA-ISOLATION
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
43
Electrical and Thermal Characteristics
3.3.9
Ethernet
AC Test Timing Conditions:
• Output Loading
All Outputs: 25 pF
Table 31. MII Rx Signal Timing
Sym
Description
Min
Max
Unit
SpecID
M1
RXD[3:0], RX_DV, RX_ER to RX_CLK setup
10
—
ns
A9.1
M2
RX_CLK to RXD[3:0], RX_DV, RX_ER hold
10
—
ns
A9.2
M3
RX_CLK pulse width high
35%
65%
RX_CLK Period1
A9.3
M4
RX_CLK pulse width low
35%
65%
RX_CLK Period1
A9.4
NOTES:
1 RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification [6].
M3
RX_CLK (Input)
M4
RXD[3:0] (inputs)
RX_DV
RX_ER
M1
M2
Figure 28. Ethernet Timing Diagram—MII Rx Signal
MPC5200 Data Sheet, Rev. 4
44
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 32. MII Tx Signal Timing
Sym
Description
Min
Max
Unit
SpecID
0
25
ns
A9.5
M5
TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER
Delay
M6
TX_CLK pulse width high
35%
65%
TX_CLK Period1
A9.6
M7
TX_CLK pulse width low
35%
65%
TX_CLK Period(1)
A9.7
NOTES:
1 the TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must
provide a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5
MHz. See the IEEE 802.3 Specification [6].
M6
TX_CLK (Input)
M5
M7
TXD[3:0] (Outputs)
TX_EN
TX_ER
Figure 29. Ethernet Timing Diagram—MII Tx Signal
Table 33. MII Async Signal Timing
Sym
M8
Description
CRS, COL minimum pulse width
Min
Max
Unit
SpecID
1.5
—
TX_CLK Period
A9.8
CRS, COL
M8
Figure 30. Ethernet Timing Diagram—MII Async
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
45
Electrical and Thermal Characteristics
Table 34. MII Serial Management Channel Signal Timing
Sym
Description
Min
Max
Unit
SpecID
M9
MDC falling edge to MDIO output delay
0
25
ns
A9.9
M10
MDIO (input) to MDC rising edge setup
10
—
ns
A9.10
M11
MDIO (input) to MDC rising edge hold
10
—
ns
A9.11
M12
MDC pulse width
high1
160
—
ns
A9.12
M13
MDC pulse width low(1)
160
—
ns
A9.13
M14
MDC period2
400
—
ns
A9.14
NOTES:
1
MDC is generated by MPC5200 with a duty cycle of 50% except when MII_SPEED in the FEC MII_SPEED control
register is changed during operation. See the MPC5200 User Manual [1].
2 The MDC period must be set to a value of less then or equal to 2.5 MHz (to be compliant with the IEEE MII
characteristic) by programming the FEC MII_SPEED control register. See the MPC5200 User Manual [1].
M12
M13
MDC (Output)
M14
M9
MDIO (Output)
MDIO (Input)
M10 M11
Figure 31. Ethernet Timing Diagram—MII Serial Management
3.3.10 USB
Table 35. Timing Specifications—USB Output Line
Sym
Description
Min
Max
Units
SpecID
1
USB Bit width1
83.3
667
ns
A10.1
2
Transceiver enable time
83.3
667
ns
A10.2
3
Signal falling time
—
7.9
ns
A10.3
4
Signal rising time
—
7.9
ns
A10.4
NOTES:
1 Defined in the USB config register, (12 Mbit/s or 1.5 Mbit/s mode).
MPC5200 Data Sheet, Rev. 4
46
Freescale Semiconductor
Electrical and Thermal Characteristics
NOTE
Output timing was specified at a nominal 50 pF load.
2
USB_OE
3
4
USB_TXN
1
1
4
3
USB_TXP
Figure 32. Timing Diagram—USB Output Line
3.3.11 SPI
Table 36. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)
Sym
1
Description
Cycle time
2
Clock high or low time
3
Slave select clock delay
4
Min
Max
Units
SpecID
4
1024
IP-Bus Cycle1
A11.1
1
2
512
IP-Bus Cycle
A11.2
15.0
—
ns
A11.3
Output Data valid after Slave Select (SS)
—
20.0
ns
A11.4
5
Output Data valid after SCK
—
20.0
ns
A11.5
6
Input Data setup time
20.0
—
ns
A11.6
7
Input Data hold time
20.0
—
ns
A11.7
8
Slave disable lag time
15.0
—
ns
A11.8
9
Sequential transfer delay
1
—
IP-Bus Cycle1
A11.9
10
Clock falling time
—
7.9
ns
A11.10
11
Clock rising time
—
7.9
ns
A11.11
NOTES:
1
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
47
Electrical and Thermal Characteristics
1
10
SCK
(CLKPOL=0)
Output
2
2
11
SCK
(CLKPOL=1)
Output
11
10
9
8
3
SS
Output
5
4
MOSI
Output
6
6
MISO
Input
7
7
Figure 33. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)
Table 37. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)
Sym
1
Description
Cycle time
Min
Max
Units
SpecID
4
1024
IP-Bus Cycle1
A11.12
1
2
512
IP-Bus Cycle
A11.13
15.0
—
ns
A11.14
Output Data valid after Slave Select (SS)
—
50.0
ns
A11.15
5
Output Data valid after SCK
—
50.0
ns
A11.16
6
Input Data setup time
50.0
—
ns
A11.17
7
Input Data hold time
0.0
—
ns
A11.18
8
Slave disable lag time
15.0
—
ns
A11.19
9
Sequential Transfer delay
1
—
IP-Bus Cycle1
A11.20
2
Clock high or low time
3
Slave select clock delay
4
NOTES:
1 Inter Peripheral Clock is defined in the MPC5200 User Manual [1].
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
48
Freescale Semiconductor
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
8
3
9
SS
Input
6
7
MOSI
Input
4
5
MISO
Output
Figure 34. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)
Table 38. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)
Sym
1
Description
Cycle time
Min
Max
Units
SpecID
4
1024
IP-Bus Cycle1
A11.21
2
512
Cycle1
A11.22
15.0
—
ns
A11.23
—
20.0
ns
A11.24
2
Clock high or low time
IP-Bus
3
Slave select clock delay
4
Output data valid
5
Input Data setup time
20.0
—
ns
A11.25
6
Input Data hold time
20.0
—
ns
A11.26
7
Slave disable lag time
15.0
—
ns
A11.27
1
8
Sequential Transfer delay
1
—
IP-Bus Cycle
A11.28
9
Clock falling time
—
7.9
ns
A11.29
10
Clock rising time
—
7.9
ns
A11.30
NOTES:
1 Inter Peripheral Clock is defined in the MPC5200 User Manual [1].
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
49
Electrical and Thermal Characteristics
1
9
SCK
(CLKPOL=0)
Output
2
2
10
SCK
(CLKPOL=1)
Output
10
9
7
3
8
SS
Output
4
MOSI
Output
5
MISO
Input
6
Figure 35. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)
Table 39. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)
Sym
Description
Min
Max
Units
SpecID
1
Cycle time
4
1024
IP-Bus Cycle1 A11.31
2
Clock high or low time
2
512
IP-Bus Cycle1 A11.32
3
Slave select clock delay
15.0
—
ns
A11.33
4
Output data valid
—
50.0
ns
A11.34
5
Input Data setup time
50.0
—
ns
A11.35
6
Input Data hold time
0.0
—
ns
A11.36
7
Slave disable lag time
15.0
—
ns
A11.37
8
Sequential Transfer delay
1
—
IP-Bus Cycle1 A11.38
NOTES:
1
Inter Peripheral Clock is defined in the MPC5200 User Manual [1].
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
50
Freescale Semiconductor
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
8
7
3
SS
Input
5
6
MOSI
Input
4
MISO
Output
Figure 36. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)
3.3.12 MSCAN
The CAN functions are available as RX and TX pins at normal IO pads (I2C1+GPTimer or PSC2). There
is no filter for the WakeUp dominant pulse. Any High-to-Low edge can cause WakeUp, if configured.
3.3.13 I2C
Table 40. I2C Input Timing Specifications—SCL and SDA
Sym
1
Description
Start condition hold time
Min
Max
Units
SpecID
2
—
IP-Bus Cycle1
A13.1
8
—
1
IP-Bus Cycle
A13.2
2
Clock low period
4
Data hold time
0.0
—
ns
A13.3
6
Clock high time
4
—
IP-Bus Cycle1
A13.4
7
Data setup time
0.0
—
ns
A13.5
1
8
Start condition setup time (for repeated start condition
only)
2
—
IP-Bus Cycle
A13.6
9
Stop condition setup time
2
—
IP-Bus Cycle1
A13.7
NOTES:
1 Inter Peripheral Clock is defined in the MPC5200 User Manual [1].
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
51
Electrical and Thermal Characteristics
Table 41. I2C Output Timing Specifications—SCL and SDA
Sym
1
1
21
3
2
4
1
Description
Min
Max
Units
SpecID
Cycle3
A13.8
Start condition hold time
6
—
IP-Bus
Clock low period
10
—
IP-Bus Cycle3
A13.9
SCL/SDA rise time
—
7.9
ns
A13.10
Data hold time
7
—
51
SCL/SDA fall time
—
7.9
ns
A13.12
61
Clock high time
10
—
IP-Bus Cycle3
A13.13
—
IP-Bus
Cycle3
A13.14
Cycle3
A13.15
A13.16
71
8
1
91
Data setup time
2
IP-Bus
Cycle3
Start condition setup time (for repeated start condition
only)
20
—
IP-Bus
Stop condition setup time
10
—
IP-Bus Cycle3
A13.11
NOTES:
1 Programming IFDR with the maximum frequency (IFDR=0x20) results in the minimum output timings listed. The
I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual
position is affected by the prescale and division values programmed in IFDR.
2
Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL
or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values
3 Inter Peripheral Clock is defined in the MPC5200 User Manual [1].
NOTE
Output timing was specified at a nominal 50 pF load.
2
5
6
SCL
1
4
7
8
3
9
SDA
Figure 37. Timing Diagram—I2C Input/Output
3.3.14 J1850
See the MPC5200 User Manual [1].
MPC5200 Data Sheet, Rev. 4
52
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.15 PSC
3.3.15.1 Codec Mode (8,16,24 and 32-bit) / I2S Mode
Table 42. Timing Specifications—8,16, 24 and 32-bit CODEC / I2S Master Mode
Sym
Description
Min
Typ
Max
Units
SpecID
40.0
—
—
ns
A15.1
1
Bit Clock cycle time, programmed in CCS register
2
Clock pulse width
—
50
—
%1
A15.2
3
Bit Clock fall time
—
—
7.9
ns
A15.3
4
Bit Clock rise time
—
—
7.9
ns
A15.4
5
FrameSync valid after clock edge
—
—
8.4
ns
A15.5
6
FrameSync invalid after clock edge
—
—
8.4
ns
A15.6
7
Output Data valid after clock edge
—
—
9.3
ns
A15.7
8
Input Data setup time
6.0
—
—
ns
A15.8
NOTES:
1 Bit Clock cycle time
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
53
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Output
2
3
2
4
BitClk
(CLKPOL=1)
Output
4
5
Frame
(SyncPol = 1)
Output
Frame
(SyncPol = 0)
Output
3
6
7
TxD
Output
8
RxD
Input
Figure 38. Timing Diagram — 8,16, 24, and 32-bit CODEC / I2S Master Mode
Table 43. Timing Specifications — 8,16, 24, and 32-bit CODEC / I2S Slave Mode
Sym
1
Description
Bit Clock cycle time
Min
Typ
Max
Units
SpecID
40.0
—
—
ns
A15.9
A15.10
2
Clock pulse width
—
50
—
%1
3
FrameSync setup time
1.0
—
—
ns
A15.11
4
Output Data valid after clock edge
—
—
14.0
ns
A15.12
5
Input Data setup time
1.0
—
—
ns
A15.13
6
Input Data hold time
1.0
—
—
ns
A15.14
NOTES:
1
Bit Clock cycle time
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
54
Freescale Semiconductor
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Input
2
2
BitClk
(CLKPOL=1)
Input
3
Frame
(SyncPol = 1)
Input
Frame
(SyncPol = 0)
Input
4
TxD
Output
5
RxD
Input
6
Figure 39. Timing Diagram — 8,16, 24, and 32-bit CODEC / I2S Slave Mode
3.3.15.2 AC97 Mode
Table 44. Timing Specifications — AC97 Mode
Sym
Description
Min
Typ
Max
Units
SpecID
1
Bit Clock cycle time
—
81.4
—
ns
A15.15
2
Clock pulse high time
—
40.7
—
ns
A15.16
3
Clock pulse low time
—
40.7
—
ns
A15.17
4
Frame valid after rising clock edge
—
—
13.0
ns
A15.18
5
Output Data valid after rising clock edge
—
—
14.0
ns
A15.19
6
Input Data setup time
1.0
—
—
ns
A15.20
7
Input Data hold time
1.0
—
—
ns
A15.21
NOTE
Output timing was specified at a nominal 50 pF load.
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
55
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Input
4
Sync
(SyncPol = 1)
Output
5
3
2
Sdata_out
Output
6
7
Sdata_in
Input
Figure 40. Timing Diagram — AC97 Mode
3.3.15.3 IrDA Mode
Table 45. Timing Specifications — IrDA Transmit Line
Sym
Description
Min
Max
Units
SpecID
1
Pulse high time, defined in the IrDA protocol definition
0.125
10000
µs
A15.22
2
Pulse low time, defined in the IrDA protocol definition
0.125
10000
µs
A15.23
3
Transmitter rising time
—
7.9
ns
A15.24
4
Transmitter falling time
—
7.9
ns
A15.25
NOTE
Output timing was specified at a nominal 50 pF load.
4
IrDA_TX
(SIR / FIR / MIR)
1
2
3
Figure 41. Timing Diagram — IrDA Transmit Line
MPC5200 Data Sheet, Rev. 4
56
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.15.4 SPI Mode
Table 46. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A15.26
2
SCK pulse width, 50% SCK cycle time
15.0
—
ns
A15.27
3
Slave select clock delay, programable in the PSC CCS register
30.0
—
ns
A15.28
4
Output Data valid after Slave Select (SS)
—
8.9
ns
A15.29
5
Output Data valid after SCK
—
8.9
ns
A15.30
6
Input Data setup time
6.0
—
ns
A15.31
7
Input Data hold time
1.0
—
ns
A15.32
8
Slave disable lag time
—
8.9
ns
A15.33
9
Sequential Transfer delay, programable in the PSC CTUR / CTLR
register
15.0
—
ns
A15.34
10
Clock falling time
—
7.9
ns
A15.35
11
Clock rising time
—
7.9
ns
A15.36
NOTE
Output timing was specified at a nominal 50 pF load.
1
10
SCK
(CLKPOL=0)
Output
2
2
11
SCK
(CLKPOL=1)
Output
11
10
8
3
9
SS
Output
5
4
MOSI
Output
6
6
MISO
Input
7
7
Figure 42. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
57
Electrical and Thermal Characteristics
Table 47. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0)
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A15.37
2
SCK pulse width, 50% SCK cycle time
15.0
—
ns
A15.38
3
Slave select clock delay
1.0
—
ns
A15.39
4
Input Data setup time
1.0
—
ns
A15.40
5
Input Data hold time
1.0
—
ns
A15.41
6
Output data valid after SS
—
14.0
ns
A15.42
7
Output data valid after SCK
—
14.0
ns
A15.43
8
Slave disable lag time
0.0
—
ns
A15.44
9
Minimum Sequential Transfer delay = 2 * IP Bus clock cycle time
30.0
—
—
A15.45
NOTE
Output timing was specified at a nominal 50 pF load.
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
8
3
9
SS
Input
5
4
MOSI
Input
6
7
MISO
Output
Figure 43. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)
MPC5200 Data Sheet, Rev. 4
58
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 48. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1)
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A15.46
2
SCK pulse width, 50% SCK cycle time
15.0
—
ns
A15.47
3
Slave select clock delay, programable in the PSC CCS register
30.0
—
ns
A15.48
4
Output data valid
—
8.9
ns
A15.49
5
Input Data setup time
6.0
—
ns
A15.50
6
Input Data hold time
1.0
—
ns
A15.51
7
Slave disable lag time
—
8.9
ns
A15.52
8
Sequential Transfer delay, programable in the PSC CTUR / CTLR
register
15.0
—
ns
A15.53
9
Clock falling time
—
7.9
ns
A15.54
10
Clock rising time
—
7.9
ns
A15.55
NOTE
Output timing was specified at a nominal 50 pF load.
1
9
SCK
(CLKPOL=0)
Output
2
2
10
SCK
(CLKPOL=1)
Output
10
9
7
3
8
SS
Output
4
MOSI
Output
5
MISO
Input
6
Figure 44. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
59
Electrical and Thermal Characteristics
Table 49. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1)
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A15.56
2
SCK pulse width, 50% SCK cycle time
15.0
—
ns
A15.57
3
Slave select clock delay
0.0
—
ns
A15.58
4
Output data valid
—
14.0
ns
A15.59
5
Input Data setup time
2.0
—
ns
A15.60
6
Input Data hold time
1.0
—
ns
A15.61
7
Slave disable lag time
0.0
—
ns
A15.62
8
Minimum Sequential Transfer delay = 2 * IP-Bus clock cycle time
30.0
—
ns
A15.63
NOTE
Output timing was specified at a nominal 50 pF load.
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
7
3
8
SS
Input
5
6
MOSI
Input
4
MISO
Output
Figure 45. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)
MPC5200 Data Sheet, Rev. 4
60
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.16 GPIOs and Timers
3.3.16.1 General and Asynchronous Signals
The MPC5200 contains several sets if I/Os that do not require special setup, hold, or valid requirements.
Most of these are asynchronous to the system clock. The following numbers are provided for test and
validation purposes only, and they assume a 133 MHz internal bus frequency.
Figure 46 shows the GPIO Timing Diagram. Table 50 gives the timing specifications.
Table 50. Asynchronous Signals
Sym
Description
Min
Max
Units
SpecID
7.52
—
ns
A16.1
tCK
Clock Period
tIS
Input Setup for Async Signal
12
—
ns
A16.2
tIH
Input Hold for Async Signals
1
—
ns
A16.3
tDV
Output Valid
—
15.33
ns
A16.4
tDH
Output Hold
1
—
ns
A16.5
tCK
tDH
tDV
Output
Input
valid
tIH
tIS
valid
Figure 46. Timing Diagram—Asynchronous Signals
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
61
Electrical and Thermal Characteristics
3.3.17 IEEE 1149.1 (JTAG) AC Specifications
Table 51. JTAG Timing Specification
Sym
Characteristic
Min
Max
Unit
SpecID
—
TCK frequency of operation.
0
25
MHz
A17.1
1
TCK cycle time.
40
—
ns
A17.2
2
TCK clock pulse width measured at 1.5V.
1.08
—
ns
A17.3
3
TCK rise and fall times.
0
3
ns
A17.4
10
—
ns
A17.5
5
—
ns
A17.6
5
—
ns
A17.7
15
—
ns
A17.8
0
30
ns
A17.9
0
30
ns
A17.10
4
TRST setup time to tck falling
5
TRST assert time.
6
7
8
Input data setup
Input data hold
edge1.
time2.
time2.
3.
TCK to output data valid
impedance3
9
TCK to output high
10
TMS, TDI data setup time.
5
—
ns
A17.11
11
TMS, TDI data hold time.
1
—
ns
A17.12
12
TCK to TDO data valid.
0
15
ns
A17.13
13
TCK to TDO high impedance.
0
15
ns
A17.14
.
NOTES:
TRST is an asynchronous signal. The setup time is for test purposes only.
2 Non-test, other than TDI and TMS, signal input timing with respect to TCK.
3 Non-test, other than TDO, signal output timing with respect to TCK.
1
1
2
TCK
2
VM
3
VM
3
VM
VM = Midpoint Voltage
Numbers shown reference Table 51.
Figure 47. Timing Diagram—JTAG Clock Input
MPC5200 Data Sheet, Rev. 4
62
Freescale Semiconductor
Electrical and Thermal Characteristics
TCK
4
TRST
5
Numbers shown reference Table 51.
Figure 48. Timing Diagram—JTAG TRST
TCK
6
DATA INPUTS
7
INPUT DATA VALID
8
DATA OUTPUTS
OUTPUT DATA VALID
9
DATA OUTPUTS
Numbers shown reference Table 51.
Figure 49. Timing Diagram—JTAG Boundary Scan
TCK
10
TDI, TMS
11
INPUT DATA VALID
12
TDO
OUTPUT DATA VALID
13
TDO
Numbers shown reference Table 51.
Figure 50. Timing Diagram—Test Access Port
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
63
Package Description
4
Package Description
4.1
Package Parameters
The MPC5200 uses a 27 mm x 27 mm TE-PBGA package. The package parameters are as provided in the
following list:
• Package outline 27 mm x 27 mm
• Interconnects 272
• Pitch
1.27 mm
4.2
Mechanical Dimensions
Figure 51 provides the mechanical dimensions, top surface, side profile, and pinout for the MPC5200, 272
TE-PBGA package.
MPC5200 Data Sheet, Rev. 4
64
Freescale Semiconductor
Package Description
PIN A1
INDEX
D
C
0.2
4X
A
272X
0.2 A
E
0.35 A
E2
D2
0.2
M
NOTES:
1. DIMENSIONS AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DIMENSION IS MEASURED AT THE MAXIMUM
SOLDER BALL DIAMETER PARALLEL TO
PRIMARY DATUM A.
4. PRIMARY DATUM A AND THE SEATING PLANE
ARE DEFINED BY THE SPHERICAL CROWNS OF
THE SOLDER BALLS.
A B C
B
TOP VIEW
DIM
A
A1
A2
A3
b
D
D1
D2
E
E1
E2
e
(D1)
19X
19X
e
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
e
(E1)
4X
e /2
A1
A3
A2
A
SIDE VIEW
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
b 3
272X
BOTTOM VIEW
MILLIMETERS
MIN
MAX
2.05
2.65
0.50
0.70
0.50
0.70
1.05
1.25
0.60
0.90
27.00 BSC
24.13 REF
23.30
24.70
27.00 BSC
24.13 REF
23.30
24.70
1.27 BSC
0.3
M
A B C
0.15
M
A
CASE 1135A–01
ISSUE B
DATE 10/15/1997
Figure 51. Mechanical Dimensions and Pinout Assignments for the MPC5200, 272 TE-PBGA
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
65
Package Description
4.3
Pinout Listings
See details in the MPC5200 User Manual [1].
Table 52. MPC5200 Pinout Listing
Name
Alias
Type
Power Supply
Output Driver
Type
Input
Type
Pull-up/
down
SDRAM
MEM_CAS
MEM_CLK_EN
CAS
I/O
VDD_MEM_IO
DRV16_MEM
TTL
CLK_EN
I/O
VDD_MEM_IO
DRV16_MEM
TTL
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_CS
MEM_DQM[3:0]
DQM
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_MA[12:0]
MA
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_MBA[1:0]
MBA
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_MDQS[3:0]
MDQS
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_MDQ[31:0]
MDQ
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_CLK
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_CLK
I/O
VDD_MEM_IO
DRV16_MEM
TTL
I/O
VDD_MEM_IO
DRV16_MEM
TTL
I/O
VDD_MEM_IO
DRV16_MEM
TTL
MEM_RAS
MEM_WE
RAS
PCI
EXT_AD[31:0]
I/O
VDD_IO
PCI
PCI
PCI_CBE_0
I/O
VDD_IO
PCI
PCI
PCI_CBE_1
I/O
VDD_IO
PCI
PCI
PCI_CBE_2
I/O
VDD_IO
PCI
PCI
PCI_CBE_3
I/O
VDD_IO
PCI
PCI
PCI_CLOCK
I/O
VDD_IO
PCI
PCI
PCI_DEVSEL
I/O
VDD_IO
PCI
PCI
PCI_FRAME
I/O
VDD_IO
PCI
PCI
PCI_GNT
I/O
VDD_IO
DRV8
TTL
PCI_IDSEL
I/O
VDD_IO
DRV8
TTL
PCI_IRDY
I/O
VDD_IO
PCI
PCI
PCI_PAR
I/O
VDD_IO
PCI
PCI
PCI_PERR
I/O
VDD_IO
PCI
PCI
PCI_REQ
I/O
VDD_IO
DRV8
TTL
PCI_RESET
I/O
VDD_IO
PCI
PCI
PCI_SERR
I/O
VDD_IO
PCI
PCI
PCI_STOP
I/O
VDD_IO
PCI
PCI
MPC5200 Data Sheet, Rev. 4
66
Freescale Semiconductor
Package Description
Table 52. MPC5200 Pinout Listing (continued)
Name
Alias
PCI_TRDY
Type
Power Supply
Output Driver
Type
Input
Type
I/O
VDD_IO
PCI
PCI
Pull-up/
down
Local Plus
LP_ACK
I/O
VDD_IO
DRV8
TTL
LP_ALE
I/O
VDD_IO
DRV8
TTL
LP_OE
I/O
VDD_IO
DRV8
TTL
LP_RW
I/O
VDD_IO
DRV8
TTL
LP_TS
I/O
VDD_IO
DRV8
TTL
LP_CS0
I/O
VDD_IO
DRV8
TTL
LP_CS1
I/O
VDD_IO
DRV8
TTL
LP_CS2
I/O
VDD_IO
DRV8
TTL
LP_CS3
I/O
VDD_IO
DRV8
TTL
LP_CS4
I/O
VDD_IO
DRV8
TTL
LP_CS5
I/O
VDD_IO
DRV8
TTL
PULLUP
ATA
ATA_DACK
I/O
VDD_IO
DRV8
TTL
ATA_DRQ
I/O
VDD_IO
DRV8
TTL
PULLDOWN
ATA_INTRQ
I/O
VDD_IO
DRV8
TTL
PULLDOWN
ATA_IOCHRDY
I/O
VDD_IO
DRV8
TTL
PULLUP
ATA_IOR
I/O
VDD_IO
DRV8
TTL
ATA_IOW
I/O
VDD_IO
DRV8
TTL
ATA_ISOLATION
I/O
VDD_IO
DRV8
TTL
Ethernet
ETH_0
TX, TX_EN
I/O
VDD_IO
DRV4
TTL
ETH_1
RTS, TXD[0]
I/O
VDD_IO
DRV4
TTL
ETH_2
USB_TXP, TX,
TXD[1]
I/O
VDD_IO
DRV4
TTL
ETH_3
USB_PRTPWR,
TXD[2]
I/O
VDD_IO
DRV4
TTL
ETH_4
USB_SPEED,
TXD[3]
I/O
VDD_IO
DRV4
TTL
ETH_5
USB_SUPEND,
TX_ER
I/O
VDD_IO
DRV4
TTL
ETH_6
USB_OE, RTS,
MDC
I/O
VDD_IO
DRV4
TTL
ETH_7
TXN, MDIO
I/O
VDD_IO
DRV4
TTL
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
67
Package Description
Table 52. MPC5200 Pinout Listing (continued)
Alias
Type
Power Supply
Output Driver
Type
Input
Type
ETH_8
RX_DV
I/O
VDD_IO
DRV4
TTL
ETH_9
CD, RX_CLK
I/O
VDD_IO
DRV4
Schmitt
ETH_10
CTS, COL
I/O
VDD_IO
DRV4
TTL
ETH_11
TX_CLK
I/O
VDD_IO
DRV4
Schmitt
ETH_12
RXD[0]
I/O
VDD_IO
DRV4
TTL
ETH_13
USB_RXD, CTS,
RXD[1]
I/O
VDD_IO
DRV4
TTL
ETH_14
USB_RXP,
UART_RX, RXD[2]
I/O
VDD_IO
DRV4
TTL
ETH_15
USB_RXN, RX,
RXD[3]
I/O
VDD_IO
DRV4
TTL
ETH_16
USB_OVRCNT,
CTS, RX_ER
I/O
VDD_IO
DRV4
TTL
ETH_17
CD, CRS
I/O
VDD_IO
DRV4
TTL
Name
Pull-up/
down
IRDA
PSC6_0
IRDA_RX, TxD
I/O
VDD_IO
DRV4
TTL
PSC6_1
RxD
I/O
VDD_IO
DRV4
TTL
PSC6_2
Frame, CTS
I/O
VDD_IO
DRV4
TTL
PSC6_3
IR_USB_CLK,BitC
lk, RTS
I/O
VDD_IO
DRV4
TTL
USB
USB_0
USB_OE
I/O
VDD_IO
DRV4
TTL
USB_1
USB_TXN
I/O
VDD_IO
DRV4
TTL
USB_2
USB_TXP
I/O
VDD_IO
DRV4
TTL
USB_3
USB_RXD
I/O
VDD_IO
DRV4
TTL
USB_4
USB_RXP
I/O
VDD_IO
DRV4
TTL
USB_5
USB_RXN
I/O
VDD_IO
DRV4
TTL
USB_6
USB_PRTPWR
I/O
VDD_IO
DRV4
TTL
USB_7
USB_SPEED
I/O
VDD_IO
DRV4
TTL
USB_8
USB_SUPEND
I/O
VDD_IO
DRV4
TTL
USB_9
USB_OVRCNT
I/O
VDD_IO
DRV4
TTL
I2C
I2C_0
SCL
I/O
VDD_IO
DRV4
Schmitt
I2C_1
SDA
I/O
VDD_IO
DRV4
Schmitt
I2C_2
SCL
I/O
VDD_IO
DRV4
Schmitt
MPC5200 Data Sheet, Rev. 4
68
Freescale Semiconductor
Package Description
Table 52. MPC5200 Pinout Listing (continued)
Name
I2C_3
Alias
Type
Power Supply
Output Driver
Type
Input
Type
SDA
I/O
VDD_IO
DRV4
Schmitt
Pull-up/
down
PSC
PSC1_0
TxD, Sdata_out,
MOSI, TX
I/O
VDD_IO
DRV4
TTL
PSC1_1
RxD, Sdata_in,
MISO, TX
I/O
VDD_IO
DRV4
TTL
PSC1_2
Mclk, Sync, RTS
I/O
VDD_IO
DRV4
TTL
PSC1_3
BitClk, SCK, CTS
I/O
VDD_IO
DRV4
TTL
PSC1_4
Frame, SS, CD
I/O
VDD_IO
DRV4
TTL
PSC2_0
TxD, Sdata_out,
MOSI, TX
I/O
VDD_IO
DRV4
TTL
PSC2_1
RxD, Sdata_in,
MISO, TX
I/O
VDD_IO
DRV4
TTL
PSC2_2
Mclk, Sync, RTS
I/O
VDD_IO
DRV4
TTL
PSC2_3
BitClk, SCK, CTS
I/O
VDD_IO
DRV4
TTL
PSC2_4
Frame, SS, CD
I/O
VDD_IO
DRV4
TTL
PSC3_0
USB_OE, TxDS,
TX
I/O
VDD_IO
DRV4
TTL
PSC3_1
USB_TXN, RxD,
RX
I/O
VDD_IO
DRV4
TTL
PSC3_2
USB_TXP, BitClk,
RTS
I/O
VDD_IO
DRV4
TTL
PSC3_3
USB_RXD, Frame,
SS, CTS
I/O
VDD_IO
DRV4
TTL
PSC3_4
USB_RXP, CD
I/O
VDD_IO
DRV4
TTL
PSC3_5
USB_RXN
I/O
VDD_IO
DRV4
TTL
PSC3_6
USB_PRTPWR,
Mclk, MOSI
I/O
VDD_IO
DRV4
TTL
PSC3_7
USB_SPEED.
MISO
I/O
VDD_IO
DRV4
TTL
PSC3_8
USB_SUPEND,
SS
I/O
VDD_IO
DRV4
TTL
PSC3_9
USB_OVRCNT,
SCK
I/O
VDD_IO
DRV4
TTL
GPIO/TIMER
GPIO_WKUP_6
MEM_CS1
I/O
VDD_MEM_IO
DRV16_MEM
TTL
GPIO_WKUP_7
I/O
VDD_IO
DRV8
TTL
TIMER_0
I/O
VDD_IO
DRV4
TTL
PULLUP_MEM
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
69
Package Description
Table 52. MPC5200 Pinout Listing (continued)
Name
Alias
TIMER_1
Type
Power Supply
Output Driver
Type
Input
Type
I/O
VDD_IO
DRV4
TTL
Pull-up/
down
TIMER_2
MOSI
I/O
VDD_IO
DRV4
TTL
TIMER_3
MISO
I/O
VDD_IO
DRV4
TTL
TIMER_4
SS
I/O
VDD_IO
DRV4
TTL
TIMER_5
SCK
I/O
VDD_IO
DRV4
TTL
TIMER_6
I/O
VDD_IO
DRV4
TTL
TIMER_7
I/O
VDD_IO
DRV4
TTL
VDD_IO
DRV4
Schmitt
Schmitt
Clock
SYS_XTAL_IN
SYS_XTAL_OUT
RTC_XTAL_IN
RTC_XTAL_OUT
Input
VDD_IO
Output
VDD_IO
Input
VDD_IO
Output
VDD_IO
Misc
Input
PORRESET
HRESET
I/O
VDD_IO
DRV8_OD1
SRESET
I/O
VDD_IO
DRV8_OD1
Schmitt
IRQ0
I/O
VDD_IO
DRV4
TTL
IRQ1
I/O
VDD_IO
DRV4
TTL
IRQ2
I/O
VDD_IO
DRV4
TTL
IRQ3
I/O
VDD_IO
DRV4
TTL
Test/Configuration
SYS_PLL_TPA
I/O
VDD_IO
DRV4
TTL
TEST_MODE_0
Input
VDD_IO
DRV4
TTL
TEST_MODE_1
Input
VDD_IO
DRV4
TTL
TEST_SEL_0
I/O
VDD_IO
DRV4
TTL
TEST_SEL_1
I/O
VDD_IO
DRV8
TTL
PULLUP
JTAG_TCK
TCK
Input
VDD_IO
DRV4
TTL
PULLUP
JTAG_TDI
TDI
Input
VDD_IO
DRV4
TTL
PULLUP
JTAG_TDO
TDO
I/O
VDD_IO
DRV8
TTL
JTAG_TMS
TMS
Input
VDD_IO
DRV4
TTL
PULLUP
JTAG_TRST
TRST
Input
VDD_IO
DRV4
TTL
PULLUP
MPC5200 Data Sheet, Rev. 4
70
Freescale Semiconductor
System Design Information
Table 52. MPC5200 Pinout Listing (continued)
Name
Alias
Type
Power Supply
Output Driver
Type
Input
Type
Pull-up/
down
Power and Ground
VDD_IO
-
VDD_MEM_IO
-
VDD_CORE
-
VSS_IO/CORE
-
SYS_PLL_AVDD
-
CORE_PLL_AVDD
-
NOTES:
All “open drain” outputs of the MPC5200 are actually regular three-state output drivers with the output data tied low
and the output enable controlled. Thus, unlike a true open drain, there is a current path from the external system to
the MPC5200 I/O power rail if the external signal is driven above the MPC5200 I/O power rail voltage.
1
5
System Design Information
5.1
Power UP/Down Sequencing
Figure 52 shows situations in sequencing the I/O VDD (VDD_IO), Memory VDD (VDD_IO_MEM), PLL
VDD (PLL_AVDD), and Core VDD (VDD_CORE).
MPC5200 Data Sheet, Rev. 4
Freescale Semiconductor
71
DC Power Supply Voltage
System Design Information
3.3V
VDD_IO,
VDD_IO_MEM (SDR)
2.5V
VDD_IO_MEM (DDR)
1.5V
1
VDD_CORE,
PLL_AVDD
2
0
Time
Note:
1. VDD_CORE should not exceed VDD_IO, VDD_IO_MEM or PLL_AVDD by more than
0.4 V at any time, including power-up.
2. It is recommended that VDD_CORE/PLL_AVDD should track VDD_IO/VDD_IO_MEM
up to 0.9 V then separate for completion of ramps.
3. Input voltage must not be greater than the supply voltage (VDD_IO, VDD_IO_MEM,
VDD_CORE, or PLL_AVDD) by more than 0.5 V at any time, including during power-up.
4. Use 1 microsecond or slower rise time for all supplies.
Figure 52. Supply Voltage Sequencing
The relationship between VDD_IO_MEM and VDD_IO is non-critical during power-up and power-down
sequences. Both VDD_IO_MEM (2.5 V or 3.3 V) and VDD_IO are specified relative to VDD_CORE.
5.1.1
Power Up Sequence
If VDD_IO/VDD_IO_MEM are powered up with the VDD_CORE at 0V, the sense circuits in the I/O pads
will cause all pad output drivers connected to the VDD_IO/VDD_IO_MEM to be in a high-impedance
state. There is no limit to how long after VDD_IO/VDD_IO_MEM powers up before VDD_CORE must
power up. VDD_CORE should not lead the VDD_IO, VDD_IO_MEM or PLL_AVDD by more than 0.4
V during power ramp up or there will be high current in the internal ESD protection diodes. The rise times
on the power supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection
clamp diodes.
The recommended power up sequence is as follows:
Use one microsecond or slower rise time for all supplies.
MPC5200 Data Sheet, Rev. 4
72
Freescale Semiconductor
System Design Information
VDD_CORE/PLL_AVDD and VDD_IO/VDD_IO_MEM should track up to 0.9 V and then separate for
the completion of ramps with VDD_IO/VDD_IO_MEM going to the higher external voltages. One way
to accomplish this is to use a low drop-out voltage regulator.
5.1.2
Power Down Sequence
If VDD_CORE/PLL_AVDD are powered down first, then sense circuits in the I/O pads will cause all
output drivers to be in a high impedance state. There is no limit on how long after VDD_CORE and
PLL_AVDD power down before VDD_IO or VDD_IO_MEM must power down. VDD_CORE should not
lag VDD_IO, VDD_IO_MEM, or PLL_AVDD going low by more than 0.4V during power down or there
will be undesired high current in the ESD protection diodes. There are no requirements for the fall times
of the power supplies.
The recommended power down sequence is as follows:
Drop VDD_CORE/PLL_AVDD to 0V.
Drop VDD_IO/VDD_IO_MEM supplies.
5.2
System and CPU Core AVDD power supply filtering
Each of the independent PLL power supplies require filtering external to the device. The following
drawing is a recommendation for the required filter circuit.
Power
Supply
source