0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC68HC908JK8MP

MC68HC908JK8MP

  • 厂商:

    ROCHESTER(罗切斯特)

  • 封装:

    DIP20

  • 描述:

    IC MCU 8BIT 1.5KB FLASH 20DIP

  • 数据手册
  • 价格&库存
MC68HC908JK8MP 数据手册
MC68HC908JL8 MC68HC908JK8 Technical Data M68HC08 Microcontrollers MC68HC908JL8/D Rev. 2, 12/2002 MOTOROLA.COM/SEMICONDUCTORS MC68HC908JL8 MC68HC908JK8 Technical Data Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Motorola and the Stylized M logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. MC68HC908JL8 — Rev. 2.0 MOTOROLA © Motorola, Inc., 2002 Technical Data 3 Revision History To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://motorola.com/semiconductors/ The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Revision History Date Revision Level Dec 2002 2 Technical Data 4 Description First general release. Page Number(s) — MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data – MC68HC908JL8 List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 27 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 47 Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 49 Section 5. Configuration and Mask Option Registers (CONFIG & MOR). . . . . . . . . . . . . . . . . . . . . . 59 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 65 Section 7. System Integration Module (SIM) . . . . . . . . . 85 Section 8. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . 109 Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . 117 Section 10. Timer Interface Module (TIM) . . . . . . . . . . . 145 Section 11. Serial Communications Interface (SCI) . . . 169 Section 12. Analog-to-Digital Converter (ADC) . . . . . . 207 Section 13. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 217 Section 14. External Interrupt (IRQ) . . . . . . . . . . . . . . . 235 Section 15. Keyboard Interrupt Module (KBI). . . . . . . . 241 Section 16. Computer Operating Properly (COP) . . . . 249 Section 17. Low Voltage Inhibit (LVI) . . . . . . . . . . . . . . 255 Section 18. Break Module (BREAK) . . . . . . . . . . . . . . . 259 Section 19. Electrical Specifications. . . . . . . . . . . . . . . 267 Section 20. Mechanical Specifications . . . . . . . . . . . . . 279 Section 21. Ordering Information . . . . . . . . . . . . . . . . . 285 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data List of Sections 5 List of Sections Technical Data 6 MC68HC908JL8 — Rev. 2.0 List of Sections MOTOROLA Technical Data – MC68HC908JL8 Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Section 4. FLASH Memory (FLASH) 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Table of Contents 7 Table of Contents 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .57 Section 5. Configuration and Mask Option Registers (CONFIG & MOR) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .61 5.5 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .62 5.6 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Section 6. Central Processor Unit (CPU) 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .70 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .72 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Technical Data 8 MC68HC908JL8 — Rev. 2.0 Table of Contents MOTOROLA Table of Contents 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Section 7. System Integration Module (SIM) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 89 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3.2 Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . . . 89 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 89 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 91 7.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 93 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . 94 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 94 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 94 7.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .95 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 7.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 102 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Table of Contents 9 Table of Contents 7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.1 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.2 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . 106 7.8.3 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 108 Section 8. Oscillator (OSC) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.3 Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.3.1 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 8.3.2 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.5.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 114 8.5.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) . 115 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 115 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . 115 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . 115 8.5.6 Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . 115 8.5.7 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5.8 Internal Oscillator Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . 116 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.7 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 116 Section 9. Monitor ROM (MON) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Technical Data 10 MC68HC908JL8 — Rev. 2.0 Table of Contents MOTOROLA Table of Contents 9.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.2 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 9.4.4 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.4.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 9.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 9.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Section 10. Timer Interface Module (TIM) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . 153 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 153 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 154 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 155 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Table of Contents 11 Table of Contents 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9.1 TIM Clock Pin (ADC12/T2CLK) . . . . . . . . . . . . . . . . . . . . . 159 10.9.2 TIM Channel I/O Pins (PTD4/T1CH0, PTD5/T1CH1, PTE0/T2CH0, PTE1/T2CH1) . . . . . . . . . . . . . . . . . . . . 159 10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 160 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 163 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .164 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Section 11. Serial Communications Interface (SCI) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 11.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 179 11.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Technical Data 12 MC68HC908JL8 — Rev. 2.0 Table of Contents MOTOROLA Table of Contents 11.5.3.3 11.5.3.4 11.5.3.5 11.5.3.6 11.5.3.7 11.5.3.8 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 189 11.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 11.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 11.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Section 12. Analog-to-Digital Converter (ADC) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Table of Contents 13 Table of Contents 12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 212 12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 215 Section 13. Input/Output (I/O) Ports 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 221 13.3.3 Port A Input Pull-Up Enable Registers . . . . . . . . . . . . . . . . 223 13.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 225 13.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 228 13.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . . 230 13.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . 232 Section 14. External Interrupt (IRQ) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Technical Data 14 MC68HC908JL8 — Rev. 2.0 Table of Contents MOTOROLA Table of Contents 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 14.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 14.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .239 14.6 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 239 Section 15. Keyboard Interrupt Module (KBI) 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 15.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 15.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 246 15.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 247 15.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 15.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .248 Section 16. Computer Operating Properly (COP) 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 16.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Table of Contents 15 Table of Contents 16.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 252 16.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 16.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 16.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .254 Section 17. Low Voltage Inhibit (LVI) 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 17.5 LVI Control Register (CONFIG2/CONFIG1) . . . . . . . . . . . . . . 257 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Section 18. Break Module (BREAK) 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . .262 18.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 18.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . . 263 Technical Data 16 MC68HC908JL8 — Rev. 2.0 Table of Contents MOTOROLA Table of Contents 18.5.2 18.5.3 18.5.4 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .264 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 266 18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Section 19. Electrical Specifications 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 19.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .268 19.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.6 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 270 19.7 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 19.8 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 272 19.9 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 273 19.10 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 19.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 275 19.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 19.13 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 277 19.14 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 19.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Section 20. Mechanical Specifications 20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.3 20-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 280 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Table of Contents 17 Table of Contents 20.4 20-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 280 20.5 28-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 281 20.6 28-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 281 20.7 32-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 282 20.8 32-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 283 Section 21. Ordering Information 21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 21.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Technical Data 18 MC68HC908JL8 — Rev. 2.0 Table of Contents MOTOROLA Technical Data – MC68HC908JL8 List of Figures Figure Title 1-1 1-2 1-3 1-4 1-5 MC68HC908JL8 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 30 32-Pin LQFP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32-Pin SDIP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 31 28-Pin PDIP/SOIC Pin Assignment . . . . . . . . . . . . . . . . . . . . . 32 20-Pin PDIP/SOIC Pin Assignment . . . . . . . . . . . . . . . . . . . . . 32 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 38 4-1 4-2 4-3 4-4 FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 50 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 51 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 55 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 57 5-1 5-2 5-3 5-4 CONFIG Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .61 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .62 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6-1 6-2 6-3 6-4 6-5 6-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 70 7-1 7-2 7-3 7-4 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 MC68HC908JL8 — Rev. 2.0 MOTOROLA Page Technical Data List of Figures 19 List of Figures Figure Title 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13 7-14 7-15 7-16 7-17 7-18 7-19 7-20 7-21 7-22 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 98 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .100 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .100 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . .101 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 103 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 103 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 105 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 105 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . 107 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .108 8-1 8-2 8-3 8-4 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . 111 XTAL Oscillator External Connections . . . . . . . . . . . . . . . . . . 112 RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . . 113 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 122 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Data Block Format for ROM-Resident Routines. . . . . . . . . . . 132 EE_WRITE FLASH Memory Usage . . . . . . . . . . . . . . . . . . . . 141 10-1 10-2 10-3 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 154 Technical Data 20 Page MC68HC908JL8 — Rev. 2.0 List of Figures MOTOROLA List of Figures Figure Title 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 160 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 162 TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 163 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . .163 TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 163 TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 164 TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 164 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 168 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 168 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 168 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 168 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 11-13 11-14 11-15 11-16 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 173 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 181 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 191 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 194 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 197 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 199 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 203 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 204 12-1 12-2 12-3 12-4 12-5 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .208 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 212 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .215 13-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 218 MC68HC908JL8 — Rev. 2.0 MOTOROLA Page Technical Data List of Figures 21 List of Figures Figure Title 13-2 13-3 13-4 13-5 13-6 13-7 13-8 13-9 13-10 13-11 13-12 13-13 13-14 13-15 13-16 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .220 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 221 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . . . . 223 PTA7 Input Pull-up Enable Register (PTA7PUE) . . . . . . . . . . 223 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .224 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 225 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .227 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 228 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Port D Control Register (PDCR) . . . . . . . . . . . . . . . . . . . . . . . 230 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .231 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 232 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 14-1 14-2 14-3 14-4 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .237 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 237 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 239 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .240 15-1 15-2 15-3 15-4 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 243 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 246 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 247 16-1 16-2 16-3 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .252 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . .253 17-1 17-2 17-3 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .257 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .257 18-1 18-2 18-3 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 261 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 261 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 263 Technical Data 22 Page MC68HC908JL8 — Rev. 2.0 List of Figures MOTOROLA List of Figures Figure 18-4 18-5 18-6 18-7 Title Page Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 264 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 264 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 264 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .266 19-1 RC vs. Frequency (5V @25°C) . . . . . . . . . . . . . . . . . . . . . . . 272 19-2 RC vs. Frequency (3V @25°C) . . . . . . . . . . . . . . . . . . . . . . . 275 19-3 Internal Oscillator Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 276 19-4 Typical Operating IDD (XTAL osc), with All Modules Turned On (25 °C) . . . . . . . . . . . . . . . . . 276 19-5 Typical Wait Mode IDD (XTAL osc), with All Modules Turned Off (25 °C) . . . . . . . . . . . . . . . . . 276 20-1 20-2 20-3 20-4 20-5 20-6 20-Pin PDIP (Case #738) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 20-Pin SOIC (Case #751D) . . . . . . . . . . . . . . . . . . . . . . . . . .280 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . . 281 32-Pin SDIP (Case #1376) . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 32-Pin LQFP (Case #873A) . . . . . . . . . . . . . . . . . . . . . . . . . .283 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data List of Figures 23 List of Figures Technical Data 24 MC68HC908JL8 — Rev. 2.0 List of Figures MOTOROLA Technical Data – MC68HC908JL8 List of Tables Table Title 1-1 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2-1 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6-1 6-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7-1 7-2 7-3 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 Monitor Mode Entry Requirements and Options. . . . . . . . . . . 120 Monitor Mode Vector Differences . . . . . . . . . . . . . . . . . . . . . .123 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 123 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 126 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 126 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 127 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 127 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . .128 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 128 Summary of ROM-Resident Routines . . . . . . . . . . . . . . . . . . 131 PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 ERARNGE Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 MON_PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 MON_ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 ICP_LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 EE_WRITE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 EE_READ Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 10-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 MC68HC908JL8 — Rev. 2.0 MOTOROLA Page Technical Data List of Tables 25 List of Tables Table Title 10-2 10-3 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . .166 11-1 11-2 11-3 11-4 11-5 11-7 11-6 11-8 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .193 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . . 206 12-1 12-2 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 13-1 13-2 13-3 13-4 13-5 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . . 219 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 15-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 17-1 Trip Voltage Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 19-1 19-2 19-3 19-4 19-5 19-6 19-7 19-8 19-9 19-10 19-11 19-12 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .268 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 DC Electrical Characteristics (5V) . . . . . . . . . . . . . . . . . . . . . 270 Control Timing (5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Oscillator Specifications (5V) . . . . . . . . . . . . . . . . . . . . . . . . . 272 DC Electrical Characteristics (3V) . . . . . . . . . . . . . . . . . . . . . 273 Control Timing (3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Oscillator Specifications (3V) . . . . . . . . . . . . . . . . . . . . . . . . . 275 Timer Interface Module Characteristics (5V and 3V) . . . . . . . 277 ADC Characteristics (5V and 3V). . . . . . . . . . . . . . . . . . . . . .277 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 21-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Technical Data 26 Page MC68HC908JL8 — Rev. 2.0 List of Tables MOTOROLA Technical Data – MC68HC908JL8 Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.2 Introduction The MC68HC908JL8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data General Description 27 General Description 1.3 Features Features of the MC68HC908JL8 include the following: • High-performance M68HC08 architecture, • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • Low-power design; fully static with stop and wait modes • Maximum internal bus frequency: – 8-MHz at 5V operating voltage – 4-MHz at 3V operating voltage • Oscillator options: – Crystal or resonator – RC oscillator • 8,192 bytes user program FLASH memory with security1 feature • 256 bytes of on-chip RAM • Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and PWM capability on each channel; external clock input option on TIM2 • 13-channel, 8-bit analog-to-digital converter (ADC) • Serial communications interface module (SCI) • 26 general-purpose input/output (I/O) ports: – 8 keyboard interrupt with internal pull-up – 11 LED drivers (sink) – 2 × 25mA open-drain I/O with pull-up • Resident routines for in-circuit programming and EEPROM emulation • System protection features: – Optional computer operating properly (COP) reset, driven by internal RC oscillator 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 28 MC68HC908JL8 — Rev. 2.0 General Description MOTOROLA General Description Features – Optional low-voltage detection with reset and selectable trip points for 3V and 5V operation – Illegal opcode detection with reset – Illegal address detection with reset • Master reset pin with internal pull-up and power-on reset • IRQ with schmitt-trigger input and programmable pull-up • 20-pin dual in-line package (PDIP), 20-pin small outline integrated package (SOIC), 28-pin PDIP, 28-pin SOIC, 32-pin shrink dual inline package (SDIP), and 32-pin low-profile quad flat pack (LQFP) • Specific features of the MC68HC908JL8 in 28-pin packages are: – 23 general-purpose I/Os only – 7 keyboard interrupt with internal pull-up – 10 LED drivers (sink) – 12-channel ADC – Timer I/O pins on TIM1 only • Specific features of the MC68HC908JL8 in 20-pin packages are: – 15 general-purpose I/Os only – 1 keyboard interrupt with internal pull-up – 4 LED drivers (sink) – 10-channel ADC – Timer I/O pins on TIM1 only Features of the CPU08 include the following: • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) • 16-bit index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Efficient C language support MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data General Description 29 General Description 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908JL8. INTERNAL BUS CONTROL AND STATUS REGISTERS — 64 BYTES USER FLASH — 8,192 BYTES PORTA ARITHMETIC/LOGIC UNIT (ALU) PTA7/KBI7**‡ PTA6/KBI6**¥ PTA5/KBI5**‡ PTA4/KBI4**‡ PTA3/KBI3**‡ PTA2/KBI2**‡ PTA1/KBI1**‡ PTA0/KBI0**‡ PTB7/ADC7 PTB6/ADC6 PTB5/ADC5 PTB4/ADC4 PTB3/ADC3 PTB2/ADC2 PTB1/ADC1 PTB0/ADC0 KEYBOARD INTERRUPT MODULE 8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE DDRA CPU REGISTERS PORTB M68HC08 CPU 2-CHANNEL TIMER INTERFACE MODULE 1 MONITOR ROM — 959 BYTES USER FLASH VECTORS — 36 BYTES INTERNAL OSCILLATOR POWER-ON RESET MODULE * RST SYSTEM INTEGRATION MODULE LOW-VOLTAGE INHIBIT MODULE * IRQ EXTERNAL INTERRUPT MODULE VDD POWER VSS ADC REFERENCE COMPUTER OPERATING PROPERLY MODULE PORTD RC OSCILLATOR PTE OSC2/RCCLK ADC12/T2CLK SERIAL COMMUNICATIONS INTERFACE MODULE DDRD ¥ CRYSTAL OSCILLATOR BREAK MODULE DDRE OSC1 2-CHANNEL TIMER INTERFACE MODULE 2 DDRB USER RAM — 256 BYTES PTD7/RxD**†‡ PTD6/TxD**†‡ PTD5/T1CH1 PTD4/T1CH0 PTD3/ADC8‡ PTD2/ADC9‡ PTD1/ADC10 PTD0/ADC11 # ## # ## PTE1/T2CH1 # PTE0/T2CH0 * Pin contains integrated pull-up device. ** Pin contains programmable pull-up device. † 25mA open-drain if output pin. ‡ LED direct sink pin. ¥ Shared pin: OSC2/RCCLK/PTA6/KBI6. # Pins available on 32-pin packages only. ## Pins available on 28-pin and 32-pin packages only. Figure 1-1. MC68HC908JL8 Block Diagram Technical Data 30 MC68HC908JL8 — Rev. 2.0 General Description MOTOROLA General Description Pin Assignments IRQ ADC12/T2CLK PTA7/KBI7 RST PTA5/KBI5 30 29 28 27 26 25 PTD4/T1CH0 PTA0/KBI0 OSC1 1 31 32 VSS 1.5 Pin Assignments 24 PTD5/T1CH1 PTA2/KBI2 5 20 PTB0/ADC0 6 19 PTB1/ADC1 7 18 PTB7/ADC7 PTB5/ADC5 9 PTB6/ADC6 8 PTD1/ADC10 17 PTB2/ADC2 PTB3/ADC3 16 PTA3/KBI3 15 PTD3/ADC8 PTD0/ADC11 21 14 4 PTB4/ADC4 VDD 13 PTA4/KBI4 12 22 PTE1/T2CH1 3 PTE0/T2CH0 PTA1/KBI1 11 PTD2/ADC9 PTD6/TxD 23 10 2 PTD7/RxD OSC2/RCCLK/PTA6/KBI6 Figure 1-2. 32-Pin LQFP Pin Assignment IRQ 1 32 ADC12/T2CLK PTA0/KBI0 2 31 PTA7/KBI7 VSS 3 30 RST OSC1 4 29 PTA5/KBI5 OSC2/RCCLK/PTA6/KBI6 5 28 PTD4/T1CH0 PTA1/KBI1 6 27 PTD5/T1CH1 VDD 7 26 PTD2/ADC9 PTA2/KBI2 8 25 PTA4/KBI4 PTA3/KBI3 9 24 PTD3/ADC8 PTB7/ADC7 10 23 PTB0/ADC0 PTB6/ADC6 11 22 PTB1/ADC1 PTB5/ADC5 12 21 PTD1/ADC10 PTD7/RxD 13 20 PTB2/ADC2 PTD6/TxD 14 19 PTB3/ADC3 PTE0/T2CH0 15 18 PTD0/ADC11 PTE1/T2CH1 16 17 PTB4/ADC4 Figure 1-3. 32-Pin SDIP Pin Assignment MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data General Description 31 General Description IRQ 1 28 RST PTA0/KBI0 2 27 PTA5/KBI5 VSS 3 26 PTD4/T1CH0 OSC1 4 25 PTD5/T1CH1 OSC2/RCCLK/PTA6/KBI6 5 24 PTD2/ADC9 PTA1/KBI1 6 23 PTA4/KBI4 VDD 7 22 PTD3/ADC8 PTA2/KBI2 8 21 PTB0/ADC0 PTA3/KBI3 9 20 PTB1/ADC1 PTB7/ADC7 10 19 PTD1/ADC10 PTB6/ADC6 11 18 PTB2/ADC2 PTB5/ADC5 12 17 PTB3/ADC3 PTD7/RxD 13 16 PTD0/ADC11 PTD6/TxD 14 15 PTB4/ADC4 Pins not available on 28-pin packages PTE0/T2CH0 PTE1/T2CH1 ADC12/T2CLK PTA7/KBI7 Internal pads are unconnected. Set these unused port I/Os to output low. Figure 1-4. 28-Pin PDIP/SOIC Pin Assignment IRQ 1 20 RST VSS 2 19 PTD4/T1CH0 OSC1 3 18 PTD5/T1CH1 PTA0/KBI0 PTD0/ADC11 OSC2/RCCLK/PTA6/KBI6 4 17 PTD2/ADC9 PTA1/KBI1 PTD1/ADC10 PTA2/KBI2 VDD 5 16 PTD3/ADC8 PTB7/ADC7 6 15 PTB0/ADC0 PTB6/ADC6 7 14 PTB1/ADC1 PTB5/ADC5 8 13 PTB2/ADC2 PTD7/RxD 9 12 PTB3/ADC3 PTD6/TxD 10 11 PTB4/ADC4 Pins not available on 20-pin packages PTA3/KBI3 PTE0/T2CH0 PTA4/KBI4 PTE1/T2CH1 PTA5/KBI5 ADC12/T2CLK PTA7/KBI7 Internal pads are unconnected. Set these unused port I/Os to output low. The 20-pin MC68HC908JL8 is designated MC68HC908JK8. Figure 1-5. 20-Pin PDIP/SOIC Pin Assignment Technical Data 32 MC68HC908JL8 — Rev. 2.0 General Description MOTOROLA General Description Pin Functions 1.6 Pin Functions Description of the pin functions are provided in Table 1-1. Table 1-1. Pin Functions IN/OUT VOLTAGE LEVEL In 5V or 3V Out 0V In/Out VDD External IRQ pin; with programmable internal pull-up and schmitt trigger input. In VDD Used for monitor mode entry. In VDD to VTST Crystal or RC oscillator input. In VDD OSC2: crystal oscillator output; inverted OSC1 signal. Out VDD RCCLK: RC oscillator clock output. Out VDD In/Out VDD ADC12: channel-12 input of ADC. In VSS to VDD T2CLK: external input clock for TIM2. In VDD In/Out VDD Each pin has programmable internal pull-up when configured as input. In VDD Pins as keyboard interrupts, KBI0–KBI7. In VDD PTA0–PTA5 and PTA7 have LED direct sink capability. Out VSS PTA6 as OSC2/RCCLK. Out VDD In/Out VDD In VSS to VDD PIN NAME PIN DESCRIPTION VDD Power supply. VSS Power supply ground. RST Reset input, active low; with internal pull-up and schmitt trigger input. IRQ OSC1 OSC2/RCCLK Pin as PTA6/KBI6 (see PTA0–PTA7). ADC12/T2CLK 8-bit general purpose I/O port. PTA0–PTA7 8-bit general purpose I/O port. PTB0–PTB7 Pins as ADC input channels, ADC0–ADC7. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data General Description 33 General Description Table 1-1. Pin Functions (Continued) IN/OUT VOLTAGE LEVEL 8-bit general purpose I/O port; with programmable internal pull-ups on PTD6–PTD7. In/Out VDD PTD0–PTD3 as ADC input channels, ADC11–ADC8. Input VSS to VDD PTD2–PTD3 and PTD6–PTD7 have LED direct sink capability Out VSS PTD4 as T1CH0 of TIM1. In/Out VDD PTD5 as T1CH1 of TIM1. In/Out VDD PTD6–PTD7 have configurable 25mA open-drain output. Out VSS PTD6 as TxD of SCI. Out VDD PTD7 as RxD of SCI. In VDD 2-bit general purpose I/O port. In/Out VDD PTE0 as T2CH0 of TIM2. In/Out VDD PTE1 as T2CH1 of TIM2. In/Out VDD PIN NAME PIN DESCRIPTION PTD0–PTD7 PTE0–PTE1 NOTE: Devices in 28-pin packages, the following pins are not available: PTA7/KBI7, PTE0/T2CH0, PTE1/T2CH1, and ADC12/T2CLK. Devices in 20-pin packages, the following pins are not available: PTA0/KBI0–PTA5/KBI5, PTD0/ADC11, PTD1/ADC10, PTA7/KBI7, PTE0/T2CH0, PTE1/T2CH1, and ADC12/T2CLK. Technical Data 34 MC68HC908JL8 — Rev. 2.0 General Description MOTOROLA Technical Data – MC68HC908JL8 Section 2. Memory Map 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 Introduction The CPU08 can address 64-kbytes of memory space. The memory map, shown in Figure 2-1, includes: • 8,192 bytes of user FLASH memory • 36 bytes of user-defined vectors • 959 bytes of monitor ROM MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Memory Map 35 Memory Map $0000 ↓ $003F I/O REGISTERS 64 BYTES $0040 ↓ $005F RESERVED 32 BYTES $0060 ↓ $015F RAM 256 BYTES $0160 ↓ $DBFF UNIMPLEMENTED 55,968 BYTES $DC00 ↓ $FBFF FLASH MEMORY 8,192 BYTES $FC00 ↓ $FDFF MONITOR ROM 512 BYTES $FE00 BREAK STATUS REGISTER (BSR) $FE01 RESET STATUS REGISTER (RSR) $FE02 RESERVED $FE03 BREAK FLAG CONTROL REGISTER (BFCR) $FE04 INTERRUPT STATUS REGISTER 1 (INT1) $FE05 INTERRUPT STATUS REGISTER 2 (INT2) $FE06 INTERRUPT STATUS REGISTER 3 (INT3) $FE07 RESERVED $FE08 FLASH CONTROL REGISTER (FLCR) $FE09 ↓ $FF0B RESERVED $FE0C BREAK ADDRESS HIGH REGISTER (BRKH) $FE0D BREAK ADDRESS LOW REGISTER (BRKL) $FE0E BREAK STATUS AND CONTROL REGISTER (BRKSCR) $FE0F RESERVED $FE10 ↓ $FFCE MONITOR ROM 447 BYTES $FFCF FLASH BLOCK PROTECT REGISTER (FLBPR) $FFD0 MASK OPTION REGISTER (MOR) $FFD1 ↓ $FFDB RESERVED 11 BYTES $FFDC ↓ $FFFF USER FLASH VECTORS 36 BYTES Figure 2-1. Memory Map Technical Data 36 MC68HC908JL8 — Rev. 2.0 Memory Map MOTOROLA Memory Map I/O Section 2.3 I/O Section Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have the following addresses: • $FE00; Break Status Register, BSR • $FE01; Reset Status Register, RSR • $FE02; Reserved • $FE03; Break Flag Control Register, BFCR • $FE04; Interrupt Status Register 1, INT1 • $FE05; Interrupt Status Register 2, INT2 • $FE06; Interrupt Status Register 3, INT3 • $FE07; Reserved • $FE08; FLASH Control Register, FLCR • $FE09; Reserved • $FE0A; Reserved • $FE0B; Reserved • $FE0C; Break Address Register High, BRKH • $FE0D; Break Address Register Low, BRKL • $FE0E; Break Status and Control Register, BRKSCR • $FE0F; Reserved • $FFCF; FLASH Block Protect Register, FLBPR (FLASH register) • $FFD0; Mask Option Register, MOR (FLASH register) • $FFFF; COP Control Register, COPCTL 2.4 Monitor ROM The 959 bytes at addresses $FC00–$FDFF and $FE10–$FFCE are reserved ROM addresses that contain the instructions for the monitor functions. (See Section 9. Monitor ROM (MON).) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Memory Map 37 Memory Map Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 Read: Port B Data Register Write: (PTB) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 Unaffected by reset Read: $0002 Unimplemented Write: $0003 Read: Port D Data Register Write: (PTD) Reset: PTD7 PTD6 PTD5 PTD4 PTD3 Unaffected by reset Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 PTE1 PTE0 Read: Unimplemented Write: $0006 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 $0008 Read: Port E Data Register Write: (PTE) Reset: Unaffected by reset Read: $0009 Unimplemented Write: U = Unaffected X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8) Technical Data 38 MC68HC908JL8 — Rev. 2.0 Memory Map MOTOROLA Memory Map Monitor ROM Addr. $000A Register Name Read: Port D Control Register Write: (PDCR) Reset: Bit 7 6 5 4 0 0 0 0 0 0 0 0 3 2 1 SLOWD7 SLOWD6 PTDPU7 0 0 Bit 0 PTDPU6 0 0 DDRE1 DDRE0 0 0 Read: $000B Unimplemented Write: Read: Data Direction Register E Write: $000C (DDRE) Reset: Read: PTA7 Input Pull-up PTAPUE7 Enable Register Write: (PTA7PUE) Reset: 0 $000E $0015 $0016 0 0 0 0 0 0 0 0 0 0 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE Read: $000F ↓ $0012 $0014 0 Read: Port A Input Pull-up PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Enable Register Write: (PTAPUE) Reset: 0 0 0 0 0 0 0 0 $000D $0013 0 Unimplemented Write: Read: LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: R8 U U 0 0 0 0 0 0 Read: SCI Status Register 1 Write: (SCS1) Reset: SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 = Unimplemented R U = Unaffected X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Memory Map 39 Memory Map Addr. Register Name $0017 Read: SCI Status Register 2 Write: (SCS2) Reset: $0018 $0019 $001A $001B Bit 7 Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: Read: Keyboard Status and Control Register Write: (KBSCR) Reset: Read: Keyboard Interrupt Enable Register Write: (KBIER) Reset: 6 5 4 3 2 1 Bit 0 BKF RPF 0 0 0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Unaffected by reset SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 IMASKK MODEK 0 0 0 0 0 0 0 0 0 0 KEYF 0 ACKK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 0 0 0 0 IRQF 0 IMASK MODE Read: $001C $001D $001E $001F Unimplemented Write: Read: IRQ Status and Control Register Write: (INTSCR) Reset: ACK 0 Read: IRQPUD Configuration Register 2 † Write: (CONFIG2) Reset: 0 Read: COPRS Configuration Register 1 Write: (CONFIG1)† Reset: 0 0 0 0 0 0 0 0 R R LVIT1 LVIT0 R R STOP_ ICLKDIS 0 0 0* 0* 0 0 0 R R LVID R SSREC STOP COPD 0 0 0 0 0 0 0 † One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only. U = Unaffected X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8) Technical Data 40 MC68HC908JL8 — Rev. 2.0 Memory Map MOTOROLA Memory Map Monitor ROM Addr. $0020 $0021 $0022 $0023 $0024 $0025 Register Name 6 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 Read: TIM1 Status and Control Register Write: (T1SC) Reset: TOF 0 0 1 0 0 0 0 0 Read: TIM1 Counter Register High Write: (T1CNTH) Reset: Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 Read: TIM1 Counter Register Low Write: (T1CNTL) Reset: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM1 Counter Modulo Register Low Write: (T1MODL) Reset: Read: TIM1 Channel 0 Status and Control Register Write: (T1SC0) Reset: Read: TIM1 Channel 0 Register High Write: (T1CH0H) Reset: $0026 Read: TIM1 Channel 0 Register Low Write: (T1CH0L) Reset: $0027 $0028 Bit 7 Read: TIM1 Channel 1 Status and Control Register Write: (T1SC1) Reset: $0029 Read: TIM1 Channel 1 Register High Write: (T1CH1H) Reset: U = Unaffected 0 CH0F 0 TRST Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset CH1F 0 CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Indeterminate after reset X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Memory Map 41 Memory Map Addr. Register Name Read: TIM1 Channel 1 Register Low Write: (T1CH1L) Reset: $002A Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 PS2 PS1 PS0 Indeterminate after reset Read: $002B ↓ $002F Unimplemented Write: TOF $0030 Read: TIM2 Status and Control Register Write: (T2SC) Reset: $0031 $0032 $0033 $0034 $0035 0 0 TOIE TSTOP 0 0 1 0 0 0 0 0 Read: TIM2 Counter Register High Write: (T2CNTH) Reset: Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 Read: TIM2 Counter Register Low Write: (T2CNTL) Reset: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Read: TIM2 Counter Modulo Register High Write: (T2MODH) Reset: Read: TIM2 Counter Modulo Register Low Write: (T2MODL) Reset: Read: TIM2 Channel 0 Status and Control Register Write: (T2SC0) Reset: $0036 $0037 Read: TIM2 Channel 0 Register High Write: (T2CH0H) Reset: Read: TIM2 Channel 0 Register Low Write: (T2CH0L) Reset: U = Unaffected 0 CH0F 0 TRST Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8) Technical Data 42 MC68HC908JL8 — Rev. 2.0 Memory Map MOTOROLA Memory Map Monitor ROM Addr. $0038 Register Name Bit 7 Read: TIM2 Channel 1 Status and Control Register Write: (T2SC1) Reset: Read: TIM2 Channel 1 Register High Write: (T2CH1H) Reset: $0039 Read: TIM2 Channel 1 Register Low Write: (T2CH1L) Reset: $003A CH1F 0 6 CH1IE 5 0 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset Read: $003B $003C Unimplemented Write: Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset: $003D Read: ADC Input Clock Register $003E Write: (ADICLK) Reset: COCO AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Indeterminate after reset 0 0 0 0 0 0 0 0 0 0 0 R R R R ADIV2 ADIV1 ADIV0 0 0 R R Read: $003F $FE00 Unimplemented Write: Read: Break Status Register Write: (BSR) Reset: SBSW See note R 0 Note: Writing a logic 0 clears SBSW. U = Unaffected X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Memory Map 43 Memory Map Addr. $FE01 Register Name Read: Reset Status Register Write: (RSR) POR: Read: $FE02 Reserved Write: $FE03 Read: Break Flag Control Register Write: (BFCR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 R R R R R R R R BCFE R R R R R R R 0 Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: IF6 IF5 IF4 IF3 0 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: IF14 IF13 IF12 IF11 0 0 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset: 0 0 0 0 0 0 0 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 HVEN MASS ERASE PGM 0 0 0 0 0 0 0 0 R R R R R R R R Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 = Unimplemented R Read: $FE07 Reserved Write: $FE08 Read: FLASH Control Register Write: (FLCR) Reset: Read: $FE09 ↓ $FE0B Reserved Write: $FE0C Read: Break Address High Register Write: (BRKH) Reset: U = Unaffected X = Indeterminate = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8) Technical Data 44 MC68HC908JL8 — Rev. 2.0 Memory Map MOTOROLA Memory Map Monitor ROM Addr. Register Name Read: Break Address low Register Write: (BRKL) Reset: $FE0D Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset: $FFCF $FFD0 Read: FLASH Block Protect Register Write: (FLBPR)# Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 R R Unaffected by reset; $FF when blank Read: OSCSEL Mask Option Register Write: (MOR)# Reset: R R R R R Unaffected by reset; $FF when blank # Non-volatile FLASH registers; write by programming. $FFFF Read: COP Control Register Write: (COPCTL) Reset: U = Unaffected Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Memory Map 45 Memory Map . Table 2-1. Vector Addresses Vector Priority Lowest INT Flag Address — $FFD0 ↓ $FFDD Not Used $FFDE ADC Conversion Complete Vector (High) $FFDF ADC Conversion Complete Vector (Low) $FFE0 Keyboard Interrupt Vector (High) $FFE1 Keyboard Interrupt Vector (Low) $FFE2 SCI Transmit Vector (High) $FFE3 SCI Transmit Vector (Low) $FFE4 SCI Receive Vector (High) $FFE5 SCI Receive Vector (Low) $FFE6 SCI Error Vector (High) $FFE7 SCI Error Vector (Low) IF15 IF14 IF13 IF12 IF11 IF10 ↓ IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 — Highest — — Not Used $FFEC TIM2 Overflow Vector (High) $FFED TIM2 Overflow Vector (Low) $FFEE TIM2 Channel 1 Vector (High) $FFEF TIM2 Channel 1 Vector (Low) $FFF0 TIM2 Channel 0 Vector (High) $FFF1 TIM2 Channel 0 Vector (Low) $FFF2 TIM1 Overflow Vector (High) $FFF3 TIM1 Overflow Vector (Low) $FFF4 TIM1 Channel 1 Vector (High) $FFF5 TIM1 Channel 1 Vector (Low) $FFF6 TIM1 Channel 0 Vector (High) $FFF7 TIM1 Channel 0 Vector (Low) — Not Used $FFFA IRQ Vector (High) $FFFB IRQ Vector (Low) $FFFC SWI Vector (High) $FFFD SWI Vector (Low) $FFFE Reset Vector (High) $FFFF Reset Vector (Low) Technical Data 46 Vector MC68HC908JL8 — Rev. 2.0 Memory Map MOTOROLA Technical Data – MC68HC908JL8 Section 3. Random-Access Memory (RAM) 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Introduction This section describes the 256 bytes of RAM. 3.3 Functional Description Addresses $0060 through $015F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M6805 compatibility, the H register is not stacked. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Random-Access Memory (RAM) 47 Random-Access Memory (RAM) During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. Technical Data 48 MC68HC908JL8 — Rev. 2.0 Random-Access Memory (RAM) MOTOROLA Technical Data – MC68HC908JL8 Section 4. FLASH Memory (FLASH) 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .57 4.2 Introduction This section describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data FLASH Memory (FLASH) 49 FLASH Memory (FLASH) Addr. $FE08 $FFCF Register Name Bit 7 6 5 4 0 0 0 0 0 0 0 BPR7 BPR6 BPR5 Read: FLASH Control Register Write: (FLCR) Reset: Read: FLASH Block Protect Register Write: (FLBPR)# Reset: 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 0 BPR4 BPR3 BPR2 BPR1 BPR0 Unaffected by reset; $FF when blank # Non-volatile FLASH register; write by programming. = Unimplemented Figure 4-1. FLASH I/O Register Summary 4.3 Functional Description The FLASH memory consists of an array of 8,192 bytes for user memory plus a block of 36 bytes for user interrupt vectors. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. The FLASH memory page size is defined as 64 bytes, and is the minimum size that can be erased in a page erase operation. Program and erase operations are facilitated through control bits in FLASH control register (FLCR). The address ranges for the FLASH memory are: • $DC00–$FBFF; user memory; 12,288 bytes • $FFDC–$FFFF; user interrupt vectors; 36 bytes Programming tools are available from Motorola. Contact your local Motorola representative for more information. NOTE: A security feature prevents viewing of the FLASH contents.1 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 50 MC68HC908JL8 — Rev. 2.0 FLASH Memory (FLASH) MOTOROLA FLASH Memory (FLASH) FLASH Control Register 4.4 FLASH Control Register The FLASH control register (FCLR) controls FLASH program and erase operations. Address: Read: $FE08 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 Write: Reset: 0 0 0 0 Figure 4-2. FLASH Control Register (FLCR) HVEN — High Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit This read/write bit configures the memory for mass erase operation or page erase operation when the ERASE bit is set. 1 = Mass erase operation selected 0 = Page erase operation selected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation not selected PGM — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation not selected MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data FLASH Memory (FLASH) 51 FLASH Memory (FLASH) 4.5 FLASH Page Erase Operation Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80 or $XXC0. The 36-byte user interrupt vectors area also forms a page. Any page within the 8,192 bytes user memory area ($DC00–$FBFF) can be erased alone. The 36-byte user interrupt vectors cannot be erased by the page erase operation because of security reasons. Mass erase is required to erase this page. 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH address within the page address range desired. 4. Wait for a time, tnvs (10µs). 5. Set the HVEN bit. 6. Wait for a time terase (4ms). 7. Clear the ERASE bit. 8. Wait for a time, tnvh (5µs). 9. Clear the HVEN bit. 10. After time, trcv (1µs), the memory can be accessed in read mode again. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. Technical Data 52 MC68HC908JL8 — Rev. 2.0 FLASH Memory (FLASH) MOTOROLA FLASH Memory (FLASH) FLASH Mass Erase Operation 4.6 FLASH Mass Erase Operation Use the following procedure to erase the entire FLASH memory: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH location within the FLASH memory address range. 4. Wait for a time, tnvs (10µs). 5. Set the HVEN bit. 6. Wait for a time tmerase (4ms). 7. Clear the ERASE bit. 8. Wait for a time, tnvh1 (100µs). 9. Clear the HVEN bit. 10. After time, trcv (1µs), the memory can be accessed in read mode again. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data FLASH Memory (FLASH) 53 FLASH Memory (FLASH) 4.7 FLASH Program Operation Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0 or $XXE0. Use this step-by-step procedure to program a row of FLASH memory: (Figure 4-3 shows a flowchart of the programming algorithm.) 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Read the FLASH block protect register. 3. Write any data to any FLASH location within the address range of the row to be programmed. 4. Wait for a time, tnvs (10µs). 5. Set the HVEN bit. 6. Wait for a time, tpgs (5µs). 7. Write data to the FLASH address to be programmed. 8. Wait for time, tprog (30µs). 9. Repeat steps 7 and 8 until all bytes within the row are programmed. 10. Clear the PGM bit. 11. Wait for time, tnvh (5µs). 12. Clear the HVEN bit. 13. After time, trcv (1µs), the memory can be accessed in read mode again. This program sequence is repeated throughout the memory until all data is programmed. NOTE: The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH addressed programmed to clearing the PGM bit (step 7 to step 10), must not exceed the maximum programming time, tprog max. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Technical Data 54 MC68HC908JL8 — Rev. 2.0 FLASH Memory (FLASH) MOTOROLA FLASH Memory (FLASH) FLASH Program Operation Algorithm for programming a row (32 bytes) of FLASH memory 1 Set PGM bit 2 Read the FLASH block protect register 3 Write any data to any FLASH location within the address range of the row to be programmed 4 Wait for a time, tnvs 5 Set HVEN bit 6 Wait for a time, tpgs 7 8 Write data to the FLASH address to be programmed Wait for a time, tprog Completed programming this row? Y N NOTE: The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming time, tprog max. 10 Clear PGM bit 11 Wait for a time, tnvh 12 Clear HVEN bit 13 Wait for a time, trcv This row program algorithm assumes the row/s to be programmed are initially erased. End of programming Figure 4-3. FLASH Programming Flowchart MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data FLASH Memory (FLASH) 55 FLASH Memory (FLASH) 4.8 FLASH Block Protection Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program operations. NOTE: In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit When the FLBPR is program with all 0’s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in 4.8.1 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode. Technical Data 56 MC68HC908JL8 — Rev. 2.0 FLASH Memory (FLASH) MOTOROLA FLASH Memory (FLASH) FLASH Block Protection 4.8.1 FLASH Block Protect Register The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory. Address: $FFCF Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 Read: Write: Reset: Unaffected by reset; $FF when blank Non-volatile FLASH register; write by programming. Figure 4-4. FLASH Block Protect Register (FLBPR) BPR[7:0] — FLASH Block Protect Bits BPR[7:0] represent bits [13:6] of a 16-bit memory address. Bits [15:14] are logic 1’s and bits [5:0] are logic 0’s. 16-bit memory address Start address of FLASH block protect 1 1 0 0 0 0 0 0 BPR[7:0] The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 (at page boundaries — 64 bytes) within the FLASH memory. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data FLASH Memory (FLASH) 57 FLASH Memory (FLASH) Examples of protect start address: BPR[7:0] Start of Address of Protect Range (1) $00–$70 The entire FLASH memory is protected. $71 (0111 0001) $DC40 (1101 1100 0100 0000) $72 (0111 0010) $DC80 (1101 1100 1000 0000) $73 (0111 0011) $DCC0 (1101 1100 1100 0000) and so on... $FD (1111 1101) $FF40 (1111 1111 0100 0000) $FE (1111 1110) $FF80 (1111 1111 1000 0000) $FF The entire FLASH memory is not protected. NOTES: 1. The end address of the protected range is always $FFFF. Technical Data 58 MC68HC908JL8 — Rev. 2.0 FLASH Memory (FLASH) MOTOROLA Technical Data – MC68HC908JL8 Section 5. Configuration and Mask Option Registers (CONFIG & MOR) 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .61 5.5 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .62 5.6 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Introduction This section describes the configuration registers, CONFIG1 and CONFIG2; and the mask option register (MOR). The configuration registers enable or disable these options: • Computer operating properly module (COP) • COP timeout period (213 –24 or 218 –24 ICLK cycles) • Internal oscillator during stop mode • Low voltage inhibit (LVI) module • LVI module voltage trip point selection • STOP instruction • Stop mode recovery time (32 or 4096 ICLK cycles) • Pull-up on IRQ pin The mask option register selects the oscillator option: • Crystal or RC MC68HC908JL8 — Rev. 2.0 MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) Technical Data 59 Configuration and Mask Option Addr. $001E $001F $FFD0 Register Name Bit 7 Read: IRQPUD Configuration Register 2 Write: (CONFIG2)† Reset: 0 Read: COPRS Configuration Register 1 † Write: (CONFIG1) Reset: 0 Read: OSCSEL Mask Option Register Write: (MOR)# Reset: 6 5 4 3 2 1 Bit 0 R R LVIT1 LVIT0 R R STOP_ ICLKDIS 0 0 0* 0* 0 0 0 R R LVID R SSREC STOP COPD 0 0 0 0 0 0 0 R R R R R R R Unaffected by reset; $FF when blank † One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only. # Non-volatile FLASH register; write by programming. R = Reserved Figure 5-1. CONFIG Registers Summary 5.3 Functional Description The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration registers are located at $001E and $001F. The configuration registers may be read at anytime. NOTE: The options except LVIT[1:0] are one-time writable by the user after each reset. The LVIT[1:0] bits are one-time writable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-2 and Figure 5-3. The mask option register (MOR) is used to select the oscillator option for the MCU: crystal oscillator or RC oscillator. The MOR is implemented as a byte in FLASH memory. Hence, writing to the MOR requires programming the byte. Technical Data 60 MC68HC908JL8 — Rev. 2.0 Configuration and Mask Option Registers (CONFIG & MOR) MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) Configuration Register 1 (CONFIG1) 5.4 Configuration Register 1 (CONFIG1) Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 COPRS R R LVID R SSREC STOP COPD 0 0 0 0 0 0 0 0 Read: Write: Reset: R = Reserved Figure 5-2. Configuration Register 1 (CONFIG1) COPRS — COP Rate Select Bit COPRS selects the COP time-out period. Reset clears COPRS. (See Section 16. Computer Operating Properly (COP).) 1 = COP timeout period is (213 – 24) ICLK cycles 0 = COP timeout period is (218 – 24) ICLK cycles LVID — Low Voltage Inhibit Disable Bit LVID disables the LVI module. Reset clears LVID. (See Section 17. Low Voltage Inhibit (LVI).) 1 = Low voltage inhibit disabled 0 = Low voltage inhibit enabled SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 ICLK cycles instead of a 4096 ICLK cycle delay. 1 = Stop mode recovery after 32 ICLK cycles 0 = Stop mode recovery after 4096 ICLK cycles NOTE: Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal, do not set the SSREC bit. STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode MC68HC908JL8 — Rev. 2.0 MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) Technical Data 61 Configuration and Mask Option COPD — COP Disable Bit COPD disables the COP module. Reset clears COPD. (See Section 16. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled 5.5 Configuration Register 2 (CONFIG2) Address: $001E Bit 7 6 5 4 3 2 1 Bit 0 IRQPUD R R LVIT1 LVIT0 R R STOP_ ICLKDIS Reset: 0 0 0 Not affected Not affected 0 0 0 POR: 0 0 0 0 0 0 0 0 Read: Write: R = Reserved Figure 5-3. Configuration Register 2 (CONFIG2) IRQPUD — IRQ Pin Pull-Up Disable Bit IRQPUD disconnects the internal pull-up on the IRQ pin. 1 = Internal pull-up is disconnected 0 = Internal pull-up is connected between IRQ pin and VDD LVIT1, LVIT0 — LVI Trip Voltage Selection Bits Detail description of trip voltage selection is given in Section 17. Low Voltage Inhibit (LVI). STOP_ICLKDIS — Internal Oscillator Stop Mode Disable Bit Setting STOP_ICLKDIS disables the internal oscillator during stop mode. When this bit is cleared, the internal oscillator continues to operate in stop mode. Reset clears this bit. 1 = Internal oscillator disabled during stop mode 0 = Internal oscillator enabled during stop mode Technical Data 62 MC68HC908JL8 — Rev. 2.0 Configuration and Mask Option Registers (CONFIG & MOR) MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) Mask Option Register (MOR) 5.6 Mask Option Register (MOR) The mask option register (MOR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. This register is read after a power-on reset to determine the type of oscillator selected. (See Section 8. Oscillator (OSC).) Address: $FFD0 Bit 7 6 5 4 3 2 1 Bit 0 OSCSEL R R R R R R R 1 1 1 1 1 1 1 1 Read: Write: Erased: Reset: Unaffected by reset Non-volatile FLASH register; write by programming. R = Reserved Figure 5-4. Mask Option Register (MOR) OSCSEL — Oscillator Select Bit OSCSEL selects the oscillator type for the MCU. The erased or unprogrammed state of this bit is logic 1, selecting the crystal oscillator option. This bit is unaffected by reset. 1 = Crystal oscillator 0 = RC oscillator Bits 6–0 — Should be left as logic 1’s. NOTE: When Crystal oscillator is selected, the OSC2/RCCLK/PTA6/KBI6 pin is used as OSC2; other functions such as PTA6/KBI6 will not be available. MC68HC908JL8 — Rev. 2.0 MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) Technical Data 63 Configuration and Mask Option Technical Data 64 MC68HC908JL8 — Rev. 2.0 Configuration and Mask Option Registers (CONFIG & MOR) MOTOROLA Technical Data – MC68HC908JL8 Section 6. Central Processor Unit (CPU) 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .70 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .72 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Central Processor Unit (CPU) 65 Central Processor Unit (CPU) 6.3 Features • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with x-register manipulation instructions • 8-MHz CPU internal bus frequency • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes 6.4 CPU Registers Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map. Technical Data 66 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers 7 0 ACCUMULATOR (A) 15 0 H X INDEX REGISTER (H:X) 0 15 STACK POINTER (SP) 0 15 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 6-1. CPU Registers 6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 6-2. Accumulator (A) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Central Processor Unit (CPU) 67 Central Processor Unit (CPU) 6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 6-3. Index Register (H:X) 6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Technical Data 68 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 6-4. Stack Pointer (SP) NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. 6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF Figure 6-5. Program Counter (PC) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Central Processor Unit (CPU) 69 Central Processor Unit (CPU) 6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X Read: Write: Reset: X = Indeterminate Figure 6-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled Technical Data 70 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Central Processor Unit (CPU) 71 Central Processor Unit (CPU) 6.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 6.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 6.6.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock 6.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. Technical Data 72 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU During Break Interrupts 6.7 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. 6.8 Instruction Set Summary Table 6-1 provides a summary of the M68HC08 instruction set. 6.9 Opcode Map The opcode map is provided in Table 6-2. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Central Processor Unit (CPU) 73 Central Processor Unit (CPU) V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry ↕ ↕ IMM DIR EXT IX2 – ↕ ↕ ↕ IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT IX2 – ↕ ↕ ↕ IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) – – – – – – IMM AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Arithmetic Shift Left (Same as LSL) Arithmetic Shift Right BCC rel Branch if Carry Bit Clear C C PC ← (PC) + 2 + rel ? (C) = 0 Mn ← 0 Technical Data 74 ff ee ff 2 3 4 4 3 2 4 5 A7 ii 2 AF ii 2 2 3 4 4 3 2 4 5 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 38 48 58 68 78 9E68 dd DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 37 47 57 67 77 9E67 dd ff 4 1 1 4 3 5 – – – – – – REL 24 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 ↕ b0 b0 2 3 4 4 3 2 4 5 IMM DIR EXT IX2 – IX1 IX SP1 SP2 0 – – ↕ ↕ 0 b7 b7 Clear Bit n in M ↕ ↕ A ← (A) & (M) Logical AND ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCLR n, opr A ← (A) + (M) ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary ↕ ff ee ff ff ff ff 4 1 1 4 3 5 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Opcode Map Effect on CCR V H I N Z C Cycles Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 +rel ? (Z) | (N ⊕ V)=0 – – – – – – REL 92 rr 3 BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel (A) & (M) 0 – – ↕ ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V)=1 – – – – – – REL A5 B5 C5 D5 E5 F5 9EE5 9ED5 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Central Processor Unit (CPU) 75 Central Processor Unit (CPU) Table 6-1. Instruction Set Summary DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – ↕ DIR (b4) DIR (b5) DIR (b6) DIR (b7) 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 – – – – – – REL 21 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – ↕ DIR (b4) DIR (b5) DIR (b6) DIR (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 Mn ← 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 – – – – – – REL AD rr 4 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 Description V H I N Z C BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never BRSET n,opr,rel Branch if Bit n in M Set BSET n,opr BSR rel Set Bit n in M Branch to Subroutine CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel PC ← (PC) + 3 + rel ? (A) – (M) = $00 DIR IMM PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (X) – (M) = $00 – – – – – – IX1+ PC ← (PC) + 3 + rel ? (A) – (M) = $00 IX+ PC ← (PC) + 2 + rel ? (A) – (M) = $00 PC ← (PC) + 4 + rel ? (A) – (M) = $00 SP1 31 41 51 61 71 9E61 Cycles Operand Effect on CCR Opcode Operation Address Mode Source Form CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F 4F 5F 8C 6F 7F 9E6F CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Clear Technical Data 76 dd ff ff 3 1 1 1 3 2 4 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Opcode Map V H I N Z C CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Compare A with M (A) – (M) COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A (H:X) – (M:M + 1) (X) – (M) (A)10 DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide M ← (M) = $FF – (M) A ← (A) = $FF – (M) X ← (X) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) A1 B1 C1 D1 E1 F1 9EE1 9ED1 ii dd hh ll ee ff ff DIR INH INH 1 IX1 IX SP1 33 43 53 63 73 9E63 dd 0 – – ↕ ↕ IMM DIR ↕ – – ↕ ↕ ↕ ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 U – – ↕ ↕ ↕ INH A ← (A)–1 or M ← (M)–1 or X ← (X)–1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 A ← (H:A)/(X) H ← Remainder MC68HC908JL8 — Rev. 2.0 MOTOROLA ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 ↕ – – ↕ ↕ DIR INH INH – IX1 IX SP1 – – – – ↕ ↕ INH ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary 2 3 4 4 3 2 4 5 ff 4 1 1 4 3 5 65 75 ii ii+1 dd 3 4 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ff ff ee ff 72 2 3B 4B 5B 6B 7B 9E6B dd rr rr rr ff rr rr ff rr 3A 4A 5A 6A 7A 9E6A dd 52 ff ff 5 3 3 5 4 6 4 1 1 4 3 5 7 Technical Data Central Processor Unit (CPU) 77 Central Processor Unit (CPU) V H I N Z C EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X Load A from M LDHX #opr LDHX opr Load H:X from M LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP DIR INH INH – IX1 IX SP1 3C 4C 5C 6C 7C 9E6C dd ff ee ff ff ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 PC ← Jump Address dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ii jj dd 3 4 2 3 4 4 3 2 4 5 A ← (M) 0 – – ↕ ↕ H:X ← (M:M + 1) X ← (M) C 0 b7 b0 Technical Data 78 – – ↕ ↕ ii dd hh ll ee ff ff BC CC DC EC FC Load X from M Logical Shift Left (Same as ASL) ↕ A8 B8 C8 D8 E8 F8 9EE8 9ED8 DIR EXT – – – – – – IX2 IX1 IX Jump Jump to Subroutine 0 – – ↕ ↕ M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 Increment LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP A ← (A ⊕ M) Exclusive OR M with A IMM DIR EXT IX2 – IX1 IX SP1 SP2 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary IMM DIR EXT IX2 – IX1 IX SP1 SP2 IMM DIR 45 55 0 – – ↕ ↕ – 0 – – ↕ ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 38 48 58 68 78 9E68 dd ↕ ff ee ff ff ff 4 1 1 4 3 5 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Opcode Map V H I N Z C LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP Logical Shift Right 0 C b7 MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr Move MUL Unsigned multiply ↕ b0 (M)Destination ← (M)Source H:X ← (H:X) + 1 (IX+D, DIX+) X:A ← (X) × (A) DIR INH INH – – 0 ↕ ↕ IX1 IX SP1 0 – – ↕ ↕ DD DIX+ – IMD IX+D – 0 – – – 0 INH DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 34 44 54 64 74 9E64 4E 5E 6E 7E dd ff 4 1 1 4 3 5 dd dd dd ii dd dd 5 4 4 4 ff 42 30 40 50 60 70 9E60 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary 5 dd 4 1 1 4 3 5 NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation None – – – – – – INH 9D 1 NSA Nibble Swap A A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 ff ff ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Rotate Left through Carry A ← (A) | (M) 0 – – ↕ ↕ ↕ C b7 b0 MC68HC908JL8 — Rev. 2.0 MOTOROLA DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 AA BA CA DA EA FA 9EEA 9EDA 39 49 59 69 79 9E69 ii dd hh ll ee ff ff ff ee ff dd ff ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 Technical Data Central Processor Unit (CPU) 79 Central Processor Unit (CPU) V H I N Z C 36 46 56 66 76 9E66 dd 4 1 1 4 3 5 ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Right through Carry RSP Reset Stack Pointer SP ← $FF – – – – – – INH 9C 1 RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) ↕ ↕ ↕ ↕ ↕ ↕ INH 80 7 RTS Return from Subroutine SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 C b7 ↕ b0 DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 ff ff ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP Subtract with Carry SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP Store X in M A ← (A) – (M) – (C) M ← (A) (M:M + 1) ← (H:X) I ← 0; Stop Oscillator M ← (X) Technical Data 80 ↕ DIR EXT IX2 – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 – DIR 35 – – 0 – – – INH 8E 0 – – ↕ ↕ 0 – – ↕ ↕ 0 – – ↕ ↕ DIR EXT IX2 – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF ff ee ff dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 dd 4 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Opcode Map V H I N Z C SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Subtract A ← (A) – (M) ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary 2 3 4 4 3 2 4 5 SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1 TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP (A) – $00 or (X) – $00 or (M) – $00 83 9 0 – – ↕ ↕ DIR INH INH – IX1 IX SP1 3D 4D 5D 6D 7D 9E6D dd ff ff 3 1 1 3 2 4 H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 MC68HC908JL8 — Rev. 2.0 MOTOROLA – – 1 – – – INH Technical Data Central Processor Unit (CPU) 81 Central Processor Unit (CPU) V H I N Z C A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : ↕ — Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected Technical Data 82 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA MC68HC908JL8 — Rev. 2.0 MOTOROLA Table 6-2. Opcode Map Bit Manipulation DIR DIR MSB Branch REL DIR INH 3 4 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 Register/Memory IX2 SP2 IMM DIR EXT A B C D 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB IX2 4 CMP IX2 4 SBC IX2 4 CPX IX2 4 AND IX2 4 BIT IX2 4 LDA IX2 4 STA IX2 4 EOR IX2 4 ADC IX2 4 ORA IX2 4 ADD IX2 4 JMP IX2 6 JSR IX2 4 LDX IX2 4 STX IX2 9ED IX1 SP1 IX E 9EE F LSB 0 1 2 3 4 Central Processor Unit (CPU) 0 Read-Modify-Write INH IX1 5 6 7 8 9 A B C E F Technical Data 83 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR MSB 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 SUB SP2 5 CMP SP2 5 SBC SP2 5 CPX SP2 5 AND SP2 5 BIT SP2 5 LDA SP2 5 STA SP2 5 EOR SP2 5 ADC SP2 5 ORA SP2 5 ADD SP2 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX SP2 2 IX1 5 3 STX STX SP2 2 IX1 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode Central Processor Unit (CPU) Opcode Map D 4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH Central Processor Unit (CPU) Technical Data 84 MC68HC908JL8 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Technical Data – MC68HC908JL8 Section 7. System Integration Module (SIM) 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 89 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3.2 Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . . . 89 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 89 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 91 7.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 93 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . 94 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 94 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 94 7.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .95 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 7.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 102 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 85 System Integration Module (SIM) 7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.1 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.2 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . 106 7.8.3 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 108 7.2 Introduction This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 7-1. Figure 7-2 is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and COP timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources Technical Data 86 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK ICLK (FROM OSCILLATOR) OSCOUT (FROM OSCILLATOR) ÷2 VDD INTERNAL PULL-UP RESET PIN LOGIC CLOCK CONTROL CLOCK GENERATORS POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER INTERNAL CLOCKS ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP TIMEOUT (FROM COP MODULE) USB RESET (FROM USB MODULE) RESET INTERRUPT SOURCES INTERRUPT CONTROL AND PRIORITY DECODE CPU INTERFACE Figure 7-1. SIM Block Diagram Table 7-1. Signal Name Conventions Signal Name ICLK OSCOUT Description Internal oscillator clock The XTAL or RC frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = OSCOUT ÷ 2) IAB Internal address bus IDB Internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 87 System Integration Module (SIM) Addr. Register Name Bit 7 6 5 4 3 2 R R R R R R Read: $FE00 Break Status Register Write: (BSR) Reset: 1 Bit 0 SBSW R NOTE 0 0 0 0 0 0 0 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 R R R R R R R R BCFE R R R R R R R IF6 IF5 IF4 IF3 0 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 IF14 IF13 IF12 IF11 0 0 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 Note: Writing a logic 0 clears SBSW. Read: $FE01 Reset Status Register Write: (RSR) POR: Read: $FE02 Reserved Write: Reset: $FE03 Read: Break Flag Control Register Write: (BFCR) Reset: Read: $FE04 Interrupt Status Register 1 Write: (INT1) Reset: Read: $FE05 Interrupt Status Register 2 Write: (INT2) Reset: Read: $FE06 Interrupt Status Register 3 Write: (INT3) Reset: 0 = Unimplemented R = Reserved Figure 7-2. SIM I/O Register Summary Technical Data 88 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Bus Clock Control and Generation 7.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 7-3. From OSCILLATOR ICLK From OSCILLATOR OSCOUT SIM COUNTER ÷2 BUS CLOCK GENERATORS OSCOUT is OSC frequency divided by 2 SIM Figure 7-3. SIM Clock Signals 7.3.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency divided by four. 7.3.2 Clock Start-Up from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. 7.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay time-out. This time-out is selectable as 4096 or 32 ICLK cycles. (See 7.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 89 System Integration Module (SIM) 7.4 Reset and System Initialization The MCU has these reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit module (LVI) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE–$FFFF ($FEFE–$FEFF in Monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 7.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the reset status register (RSR). (See 7.8 SIM Registers.) 7.4.1 External Pin Reset The RST pin circuits include an internal pull-up device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the reset status register (RSR) is set as long as RST is held low for a minimum of 67 ICLK cycles, assuming that the POR was not the source of the reset. See Table 7-2 for details. Figure 7-4 shows the relative timing. Table 7-2. PIN Bit Set Timing Reset Type Number of Cycles Required to Set PIN POR 4163 (4096 + 64 + 3) All others 67 (64 + 3) ICLK RST IAB VECT H VECT L PC Figure 7-4. External Reset Timing Technical Data 90 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Reset and System Initialization 7.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (Figure 7-5). An internal reset can be caused by an illegal address, illegal opcode, COP time-out, or POR. (See Figure 7-6 . Sources of Internal Reset.) Note that for POR resets, the SIM cycles through 4096 ICLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 7-5. IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES ICLK IAB VECTOR HIGH Figure 7-5. Internal Reset Timing The COP reset is asynchronous to the bus clock. ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST POR INTERNAL RESET LVI Figure 7-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 91 System Integration Module (SIM) 7.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, the following events occur: • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables OSCOUT. • Internal clocks to the CPU and modules are held inactive for 4096 ICLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the reset status register (RSR) is set and all other bits in the register are cleared. OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES ICLK OSCOUT RST $FFFE IAB $FFFF Figure 7-7. POR Recovery Technical Data 92 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Reset and System Initialization 7.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module time-out, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every (212 – 24) ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out. The COP module is disabled if the RST pin or the IRQ pin is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module. 7.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 93 System Integration Module (SIM) 7.4.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTRIP. The LVI bit in the reset status register (RSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources. 7.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of ICLK. 7.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine. 7.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32 ICLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register 1 (CONFIG1). Technical Data 94 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control 7.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 7.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 7.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.) 7.6 Exception Control Normal, sequential program execution can be changed in three different ways: • Interrupts – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) • Reset • Break interrupts 7.6.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 7-8 flow charts the handling of system interrupts. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 95 System Integration Module (SIM) FROM RESET BREAK INTERRUPT? I BIT SET? YES NO YES I BIT SET? NO IRQ INTERRUPT? YES NO TIMER 1 INTERRUPT? YES NO STACK CPU REGISTERS. SET I BIT. LOAD PC WITH INTERRUPT VECTOR. (As many interrupts as exist on chip) FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS. NO EXECUTE INSTRUCTION. Figure 7-8. Interrupt Processing Technical Data 96 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 7-9 shows interrupt entry timing. Figure 7-10 shows interrupt recovery timing. MODULE INTERRUPT I BIT IAB IDB DUMMY SP DUMMY SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 7-9. Interrupt Entry MODULE INTERRUPT I BIT IAB SP – 4 IDB SP – 3 CCR SP – 2 A SP – 1 X SP PC PC – 1[15:8] PC – 1[7:0] PC + 1 OPCODE OPERAND R/W Figure 7-10. Interrupt Recovery 7.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 97 System Integration Module (SIM) If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI LDA #$FF INT1 BACKGROUND ROUTINE PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 7-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. Technical Data 98 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control 7.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 7.6.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 7-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 7-3. Interrupt Sources Flag Mask1(1) INT Flag Vector Address Reset — — — $FFFE–$FFFF SWI Instruction — — — $FFFC–$FFFD IRQ Pin IRQF IMASK IF1 $FFFA–$FFFB Timer 1 Channel 0 Interrupt CH0F CH0IE IF3 $FFF6–$FFF7 Timer 1 Channel 1 Interrupt CH1F CH1IE IF4 $FFF4–$FFF5 TOF TOIE IF5 $FFF2–$FFF3 Timer 2 Channel 0 Interrupt CH0F CH0IE IF6 $FFF0–$FFF1 Timer 2 Channel 1 Interrupt CH1F CH1IE IF7 $FFEE–$FFEF Timer 2 Overflow Interrupt TOF TOIE IF8 $FFEC–$FFED SCI Error OR NF FE PE ORIE NEIE FEIE PEIE IF11 $FFE6–$FFE7 SCI Receive SCRF IDLE SCRIE ILIE IF12 $FFE4–$FFE5 SCI Transmit SCTE TC SCTIE TCIE IF13 $FFE2–$FFE3 Keyboard Interrupt KEYF IMASKK IF14 $FFE0–$FFE1 ADC Conversion Complete Interrupt COCO AIEN IF15 $FFDE–$FFDF Priority Highest Source Timer 1 Overflow Interrupt Lowest NOTES: 1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 99 System Integration Module (SIM) 7.6.2.1 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF6 IF5 IF4 IF3 0 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-12. Interrupt Status Register 1 (INT1) IF1, IF3 to IF6 — Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0, 1, and 3 — Always read 0 7.6.2.2 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF14 IF13 IF12 IF11 0 0 IF8 IF7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-13. Interrupt Status Register 2 (INT2) IF7, IF8, IF11 to F14 — Interrupt Flags This flag indicates the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 2 and 3 — Always read 0 Technical Data 100 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control 7.6.2.3 Interrupt Status Register 3 Address: $FE06 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 0 0 0 0 IF15 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-14. Interrupt Status Register 3 (INT3) IF15 — Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 1 to 7 — Always read 0 7.6.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 7.6.4 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 18. Break Module (BREAK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 101 System Integration Module (SIM) 7.6.5 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. 7.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low-powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 7.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Technical Data 102 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Low-Power Modes Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the mask option register is logic zero, then the computer operating properly module (COP) is enabled and remains active in wait mode. WAIT ADDR IAB WAIT ADDR + 1 PREVIOUS DATA IDB SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 7-15. Wait Mode Entry Timing Figure 7-16 and Figure 7-17 show the timing for WAIT recovery. IAB $6E0B $A6 IDB $A6 $6E0C $A6 $00FF $01 $0B $00FE $00FD $00FC $6E EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt Figure 7-16. Wait Recovery from Interrupt or Break 32 Cycles IAB IDB 32 Cycles $6E0B $A6 $A6 RST VCT H RST VCTL $A6 RST ICLK Figure 7-17. Wait Recovery from Internal Reset MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 103 System Integration Module (SIM) 7.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the oscillator signals (OSCOUT) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. NOTE: External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the break status register (BSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 7-18 shows stop mode entry timing. NOTE: To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0. CPUSTOP IAB IDB STOP ADDR STOP ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 7-18. Stop Mode Entry Timing Technical Data 104 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers STOP RECOVERY PERIOD ICLK INT/BREAK IAB STOP + 2 STOP +1 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 7-19. Stop Mode Recovery from Interrupt or Break 7.8 SIM Registers The SIM has three memory mapped registers. • Break Status Register (BSR) • Reset Status Register (RSR) • Break Flag Control Register (BFCR) 7.8.1 Break Status Register (BSR) The break status register contains a flag to indicate that a break caused an exit from stop or wait mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: 1 Bit 0 SBSW Write: Note(1) Reset: 0 R = Reserved R 1. Writing a logic zero clears SBSW. Figure 7-20. Break Status Register (BSR) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 105 System Integration Module (SIM) SBSW — SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing zero to the SBSW bit clears it. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the ; break service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited ; by break. TST LOBYTE,SP ; If RETURNLO is not zero, BNE DOLO ; then just decrement low byte. DEC HIBYTE,SP ; Else deal with high byte, too. DOLO DEC LOBYTE,SP ; Point to WAIT/STOP opcode. RETURN PULH RTI ; Restore H register. 7.8.2 Reset Status Register (RSR) This register contains six flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Technical Data 106 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 Write: POR: = Unimplemented Figure 7-21. Reset Status Register (RSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of RSR PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of RSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of RSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of RSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of RSR MODRST — Monitor Mode Entry Module Reset bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQ = VDD 0 = POR or read of RSR LVI — Low Voltage Inhibit Reset bit 1 = Last reset caused by LVI circuit 0 = POR or read of RSR MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data System Integration Module (SIM) 107 System Integration Module (SIM) 7.8.3 Break Flag Control Register (BFCR) The break control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 7-22. Break Flag Control Register (BFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data 108 MC68HC908JL8 — Rev. 2.0 System Integration Module (SIM) MOTOROLA Technical Data – MC68HC908JL8 Section 8. Oscillator (OSC) 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.3 Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.3.1 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 8.3.2 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.5.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 114 8.5.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) . 115 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 115 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . 115 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . 115 8.5.6 Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . 115 8.5.7 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5.8 Internal Oscillator Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . 116 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.7 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 116 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Oscillator (OSC) 109 Oscillator (OSC) 8.2 Introduction The oscillator module provides the reference clocks for the MCU system and bus. Two oscillators are running on the device: Selectable oscillator — for bus clock • Crystal oscillator (XTAL) — built-in oscillator that requires an external crystal or ceramic-resonator. This option also allows an external clock that can be driven directly into OSC1. • RC oscillator (RC) — built-in oscillator that requires an external resistor-capacitor connection only. The selected oscillator is used to drive the bus clock, the SIM, and other modules on the MCU. The oscillator type is selected by programming a bit FLASH memory. The RC and crystal oscillator cannot run concurrently; one is disabled while the other is selected; because the RC and XTAL circuits share the same OSC1 pin. Non-selectable oscillator — for COP • Internal oscillator — built-in RC oscillator that requires no external components. This internal oscillator is used to drive the computer operating properly (COP) module and the SIM. The internal oscillator runs continuously after a POR or reset, and is always available. Technical Data 110 MC68HC908JL8 — Rev. 2.0 Oscillator (OSC) MOTOROLA Oscillator (OSC) Oscillator Selection 8.3 Oscillator Selection The oscillator type is selected by programming a bit in a FLASH memory location; the mask option register (MOR), at $FFD0. (See 5.6 Mask Option Register (MOR).) NOTE: On the ROM device, the oscillator is selected by a ROM-mask layer at factory. Address: $FFD0 Bit 7 6 5 4 3 2 1 Bit 0 OSCSEL R R R R R R R 1 1 1 1 1 1 1 1 Read: Write: Erased: Reset: Unaffected by reset Non-volatile FLASH register; write by programming. R = Reserved Figure 8-1. Mask Option Register (MOR) OSCSEL — Oscillator Select Bit OSCSEL selects the oscillator type for the MCU. The erased or unprogrammed state of this bit is logic 1, selecting the crystal oscillator option. This bit is unaffected by reset. 1 = Crystal oscillator 0 = RC oscillator Bits 6–0 — Should be left as logic 1’s. NOTE: When Crystal oscillator is selected, the OSC2/RCCLK/PTA6/KBI6 pin is used as OSC2; other functions such as PTA6/KBI6 will not be available. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Oscillator (OSC) 111 Oscillator (OSC) 8.3.1 XTAL Oscillator The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide accurate clock source. In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown in Figure 8-2. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: • Crystal, X1 • Fixed capacitor, C1 • Tuning capacitor, C2 (can also be a fixed capacitor) • Feedback resistor, RB • Series resistor, RS (optional) To SIM From SIM 2OSCOUT XTALCLK To SIM OSCOUT ÷2 SIMOSCEN MCU OSC1 RB OSC2 R S* *RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. X1 See Section 19. for component value requirements. C1 C2 Figure 8-2. XTAL Oscillator External Connections Technical Data 112 MC68HC908JL8 — Rev. 2.0 Oscillator (OSC) MOTOROLA Oscillator (OSC) Oscillator Selection The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information. 8.3.2 RC Oscillator The RC oscillator circuit is designed for use with external resistor and capacitor to provide a clock source with tolerance less than 10%. In its typical configuration, the RC oscillator requires two external components, one R and one C. Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10% tolerance. The oscillator configuration uses two components: • CEXT • REXT From SIM To SIM To SIM 2OSCOUT SIMOSCEN EN EXT-RC OSCILLATOR OSCOUT RCCLK ÷2 0 1 PTA6 I/O PTA6 PTA6EN MCU OSC1 VDD REXT RCCLK/PTA6 (OSC2) CEXT See Section 19. for component value requirements. Figure 8-3. RC Oscillator External Connections MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Oscillator (OSC) 113 Oscillator (OSC) 8.4 Internal Oscillator The internal oscillator clock (ICLK) is a free running 50-kHz clock that requires no external components. It is used as the reference clock input to the computer operating properly (COP) module and the SIM. The internal oscillator by default is always available and is free running after POR or reset. It can be stopped in stop mode by setting the STOP_ICLKDIS bit before executing the STOP instruction. Figure 8-4 shows the logical representation of components of the internal oscillator circuitry. From SIM To SIM and COP SIMOSCEN ICLK CONFIG2 STOP_ICLKDIS EN INTERNAL OSCILLATOR Figure 8-4. Internal Oscillator NOTE: The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by setting the STOP_ICLKDIS bit in CONFIG2 (see 5.5 Configuration Register 2 (CONFIG2)). 8.5 I/O Signals The following paragraphs describe the oscillator I/O signals. 8.5.1 Crystal Amplifier Input Pin (OSC1) OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit. Technical Data 114 MC68HC908JL8 — Rev. 2.0 Oscillator (OSC) MOTOROLA Oscillator (OSC) I/O Signals 8.5.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) For the XTAL oscillator, OSC2 pin is the output of the crystal oscillator inverting amplifier. For the RC oscillator, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the output of the RC oscillator, RCCLK. Oscillator OSC2 pin function XTAL Inverting OSC1 Controlled by PTA6EN bit in PTAPUE ($000D) PTA6EN = 0: RCCLK output PTA6EN = 1: PTA6/KBI6 RC 8.5.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the XTAL oscillator circuit or the RC-oscillator. 8.5.4 XTAL Oscillator Clock (XTALCLK) XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 8-2 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start-up. 8.5.5 RC Oscillator Clock (RCCLK) RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the external R and C. Figure 8-3 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry. 8.5.6 Oscillator Out 2 (2OSCOUT) 2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Oscillator (OSC) 115 Oscillator (OSC) 8.5.7 Oscillator Out (OSCOUT) The frequency of this signal is equal to half of the 2OSCOUT, this signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one fourth of the XTALCLK or RCCLK frequency. 8.5.8 Internal Oscillator Clock (ICLK) ICLK is the internal oscillator output signal (typically 50-kHz), for the COP module and the SIM. Its frequency depends on the VDD voltage. (See Section 19. Electrical Specifications for ICLK parameters.) 8.6 Low Power Modes The WAIT and STOP instructions put the MCU in low-power consumption standby modes. 8.6.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. OSCOUT, 2OSCOUT, and ICLK continues to drive to the SIM module. 8.6.2 Stop Mode The STOP instruction disables the XTALCLK or the RCCLK output, hence, OSCOUT and 2OSCOUT are disabled. The STOP instruction also turns off the ICLK input to the COP module if the STOP_ICLKDIS bit is set in configuration register 2 (CONFIG2). After reset, the STOP_ICLKDIS bit is clear by default and ICLK is enabled during stop mode. 8.7 Oscillator During Break Mode The OSCOUT, 2OSCOUT, and ICLK clocks continue to be driven out when the device enters the break state. Technical Data 116 MC68HC908JL8 — Rev. 2.0 Oscillator (OSC) MOTOROLA Technical Data – MC68HC908JL8 Section 9. Monitor ROM (MON) 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.2 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 9.4.4 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.4.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 9.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 9.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.2 Introduction This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. This mode is also used for programming and erasing of FLASH memory in the MCU. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 117 Monitor ROM (MON) 9.3 Features Features of the monitor ROM include the following: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • Execution of code in RAM or FLASH • FLASH memory security feature1 • FLASH memory programming interface • 959 bytes monitor ROM code size • Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) • Standard monitor mode entry if high voltage, VTST, is applied to IRQ • Resident routines for FLASH programming and EEPROM emulation 9.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 9-1 shows a example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTB0 pin. A level-shifting and multiplexing interface is required between PTB0 and the host computer. PTB0 is used in a wired-OR configuration and requires a pull-up resistor. 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 118 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description RST 0.1 µF HC908JL8 VDD VDD VDD EXT OSC (50% DUTY) 0.1 µF OSC1 VSS EXT OSC CONNECTION TO OSC1, WITH OSC2 UNCONNECTED, CAN REPLACE XTAL CIRCUIT. 9.8304MHz 10M OSC1 20 pF OSC2 20 pF MAX232 1 1 µF + 3 4 1 µF C1+ VDD VCC C1– GND C2+ V+ 16 + XTAL CIRCUIT 1 µF 15 + 1 µF A VTST 2 VDD + 5 C2– V– 6 1 µF 7 10 3 8 9 5 B VDD 10 k 10 k 74HC125 5 6 DB9 2 (SEE NOTE 1) IRQ 8.5 V + SW1 1k 2 74HC125 3 PTB0 4 VDD VDD 1 10 k 10 k C PTB1 SW2 PTB3 (SEE NOTE 2) NOTES: 1. Monitor mode entry method: SW1: Position A — High voltage entry (VTST) Bus clock depends on SW2. SW1: Position B — Reset vector must be blank ($FFFE = $FFFF = $FF) Bus clock = OSC1 ÷ 4. 2. Affects high voltage entry to monitor mode only (SW1 at position A): SW2: Position C — Bus clock = OSC1 ÷ 4 SW2: Position D — Bus clock = OSC1 ÷ 2 5. See Table 19-4 for VTST voltage level requirements. D 10 k PTB2 10 k Figure 9-1. Monitor Mode Circuit MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 119 Monitor ROM (MON) 9.4.1 Entering Monitor Mode Table 9-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR. Communication at 9600 baud will be established provided one of the following sets of conditions is met: 1. If IRQ = VTST: – Clock on OSC1 is 4.9125MHz – PTB3 = low 2. If IRQ = VTST: – Clock on OSC1 is 9.8304MHz – PTB3 = high 3. If $FFFE and $FFFF are blank (contain $FF): – Clock on OSC1 is 9.8304MHz – IRQ = VDD PTB2 VTST(2) X 0 0 VTST(1) X 1 0 1 VDD BLANK (contain $FF) X X X 1 9.8304MHz 2.4576MHz VDD NOT BLANK X X X X X OSC1 ÷ 4 PTB0 $FFFE and $FFFF PTB1 IRQ PTB3 Table 9-1. Monitor Mode Entry Requirements and Options OSC1 Clock(1) Bus Frequency Comments 1 1 4.9152MHz 2.4576MHz 1 9.8304MHz 2.4576MHz High voltage entry to monitor mode. 9600 baud communication on PTB0. COP disabled. Blank reset vector (lowvoltage) entry to monitor mode. 9600 baud communication on PTB0. COP disabled. Enters User mode. NOTES: 1. RC oscillator cannot be used for monitor mode; must use either external oscillator or XTAL oscillator circuit. 2. See Table 19-4 for VTST voltage level requirements. Technical Data 120 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description If VTST is applied to IRQ and PTB3 is low upon monitor mode entry (Table 9-1 condition set 1), the bus frequency is a divide-by-two of the clock input to OSC1. If PTB3 is high with VTST applied to IRQ upon monitor mode entry (Table 9-1 condition set 2), the bus frequency is a divide-by-four of the clock input to OSC1. Holding the PTB3 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if VTST is applied to IRQ. In this event, the OSCOUT frequency is equal to the 2OSCOUT frequency, and OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. Entering monitor mode with VTST on IRQ, the COP is disabled as long as VTST is applied to either IRQ or RST. (See Section 7. System Integration Module (SIM) for more information on modes of operation.) If entering monitor mode without high voltage on IRQ and reset vector being blank ($FFFE and $FFFF) (Table 9-1 condition set 3, where applied voltage is VDD), then all port B pin requirements and conditions, including the PTB3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming. Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the state of IRQ or the RST. Figure 9-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and IRQ = VDD. An OSC1 frequency of 9.8304MHz is required for a baud rate of 9600. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 121 Monitor ROM (MON) POR RESET IS VECTOR BLANK? NO NORMAL USER MODE YES MONITOR MODE EXECUTE MONITOR CODE POR TRIGGERED? NO YES Figure 9-2. Low-Voltage Monitor Mode Entry Flowchart Enter monitor mode with the pin configuration shown above by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See 9.5 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate. In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. Technical Data 122 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description Table 9-2 is a summary of the vector differences between user mode and monitor mode. Table 9-2. Monitor Mode Vector Differences Functions COP Reset Vector High Reset Vector Low Break Vector High Break Vector Low SWI Vector High SWI Vector Low User Enabled $FFFE $FFFF $FFFC $FFFD $FFFC $FFFD Monitor Disabled(1) $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD Modes Notes: 1. If the high voltage (VTST) is removed from the IRQ pin or the RST pin, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the configuration register. When the host computer has completed downloading code into the MCU RAM, the host then sends a RUN command, which executes an RTI, which sends control to the address on the stack pointer. 9.4.2 Baud Rate The communication baud rate is dependant on oscillator frequency. The state of PTB3 also affects baud rate if entry to monitor mode is by IRQ = VTST. When PTB3 is high, the divide by ratio is 1024. If the PTB3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 512. Table 9-3. Monitor Baud Rate Selection Monitor Mode Entry By: IRQ = VTST Blank reset vector, IRQ = VDD OSC1 Clock Frequency PTB3 Baud Rate 4.9152 MHz 0 9600 bps 9.8304 MHz 1 9600 bps 4.9152 MHz 1 4800 bps 9.8304 MHz X 9600 bps 4.9152 MHz X 4800 bps MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 123 Monitor ROM (MON) 9.4.3 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 9-3 and Figure 9-4.) START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 STOP BIT BIT 7 NEXT START BIT Figure 9-3. Monitor Data Format $A5 START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BREAK START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT STOP BIT NEXT START BIT NEXT START BIT Figure 9-4. Sample Monitor Waveforms The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive baud rates must be identical. 9.4.4 Echoing As shown in Figure 9-5, the monitor ROM immediately echoes each received byte back to the PTB0 pin for error checking. SENT TO MONITOR READ READ ADDR. HIGH ADDR. HIGH ADDR. LOW ECHO ADDR. LOW DATA RESULT Figure 9-5. Read Transaction Any result of a command appears after the echo of the last byte of the command. Technical Data 124 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description 9.4.5 Break Signal A start bit followed by nine low bits is a break signal. (See Figure 9-6.) When the monitor receives a break signal, it drives the PTB0 pin high for the duration of two bits before echoing the break signal. MISSING STOP BIT TWO-STOP-BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 9-6. Break Transaction 9.4.6 Commands The monitor ROM uses the following commands: • READ (read memory) • WRITE (write memory) • IREAD (indexed read) • IWRITE (indexed write) • READSP (read stack pointer) • RUN (run user program) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 125 Monitor ROM (MON) Table 9-4. READ (Read Memory) Command Description Read byte from memory Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR READ READ ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA ECHO RESULT Table 9-5. WRITE (Write Memory) Command Description Write byte to memory Operand Specifies 2-byte address in high byte:low byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence SENT TO MONITOR WRITE WRITE ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA DATA ECHO Technical Data 126 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description Table 9-6. IREAD (Indexed Read) Command Description Read next 2 bytes in memory from last address accessed Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence SENT TO MONITOR IREAD IREAD DATA DATA RESULT ECHO Table 9-7. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Specifies single data byte Data Returned None Opcode $19 Command Sequence SENT TO MONITOR IWRITE IWRITE DATA DATA ECHO NOTE: A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-Kbyte memory map. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 127 Monitor ROM (MON) Table 9-8. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns stack pointer in high byte:low byte order Opcode $0C Command Sequence SENT TO MONITOR READSP READSP SP HIGH SP LOW RESULT ECHO Table 9-9. RUN (Run User Program) Command Description Executes RTI instruction Operand None Data Returned None Opcode $28 Command Sequence SENT TO MONITOR RUN RUN ECHO Technical Data 128 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Security 9.5 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data. NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTB0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 9-7.) VDD 4096 + 32 ICLK CYCLES RST COMMAND BYTE 8 BYTE 2 BYTE 1 24 BUS CYCLES FROM HOST PTB0 NOTES: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte. 4 1 COMMAND ECHO 2 BREAK 1 BYTE 8 ECHO 1 BYTE 2 ECHO FROM MCU 4 BYTE 1 ECHO 1 Figure 9-7. Monitor Mode Entry Timing MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 129 Monitor ROM (MON) Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command. NOTE: The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank). 9.6 ROM-Resident Routines Eight routines stored in the monitor ROM area (thus ROM-resident) are provided for FLASH memory manipulation. Six of the eight routines are intended to simplify FLASH program, erase, and load operations. The other two routines are intended to simplify the use of the FLASH memory as EEPROM. Table 9-10 shows a summary of the ROM-resident routines. Technical Data 130 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines Table 9-10. Summary of ROM-Resident Routines Routine Name Routine Description Call Address Stack Used(1) (bytes) PRGRNGE Program a range of locations $FC06 15 ERARNGE Erase a page or the entire array $FCBE 9 Loads data from a range of locations $FF30 9 MON_PRGRNGE Program a range of locations in monitor mode $FF28 17 MON_ERARNGE Erase a page or the entire array in monitor mode $FF2C 11 Loads data from a range of locations in monitor mode $FF24 11 EE_WRITE Emulated EEPROM write. Data size ranges from 2 to 15 bytes at a time. $FD3F 24 EE_READ Emulated EEPROM read. Data size ranges from 2 to 15 bytes at a time. $FDD0 16 LDRNGE MON_LDRNGE NOTES: 1. The listed stack size excludes the 2 bytes used by the calling instruction, JSR. The routines are designed to be called as stand-alone subroutines in the user program or monitor mode. The parameters that are passed to a routine are in the form of a contiguous data block, stored in RAM. The index register (H:X) is loaded with the address of the first byte of the data block (acting as a pointer), and the subroutine is called (JSR). Using the start address as a pointer, multiple data blocks can be used, any area of RAM be used. A data block has the control and data bytes in a defined order, as shown in Figure 9-8. During the software execution, it does not consume any dedicated RAM location, the run-time heap will extend the system stack, all other RAM location will not be affected. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 131 Monitor ROM (MON) R FILE_PTR $XXXX A M BUS SPEED (BUS_SPD) ADDRESS AS POINTER DATA SIZE (DATASIZE) START ADDRESS HIGH (ADDRH) START ADDRESS LOW (ADDRL) DATA 0 DATA BLOCK DATA 1 DATA ARRAY DATA N Figure 9-8. Data Block Format for ROM-Resident Routines The control and data bytes are described below. • Bus speed — This one byte indicates the operating bus speed of the MCU. The value of this byte should be equal to 4 times the bus speed, and should not be set to less than 4 (i.e. minimum bus speed is 1MHz). • Data size — This one byte indicates the number of bytes in the data array that are to be manipulated. The maximum data array size is 128. Routines EE_WRITE and EE_READ are restricted to manipulate a data array between 2 to 15 bytes. Whereas routines ERARNGE and MON_ERARNGE do not manipulate a data array, thus, this data size byte has no meaning. • Start address — These two bytes, high byte followed by low byte, indicate the start address of the FLASH memory to be manipulated. • Data array — This data array contains data that are to be manipulated. Data in this array are programmed to FLASH memory by the programming routines: PRGRNGE, MON_PRGRNGE, EE_WRITE. For the read routines: LDRNGE, MON_LDRNGE, and EE_READ, data is read from FLASH and stored in this array. Technical Data 132 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines 9.6.1 PRGRNGE PRGRNGE is used to program a range of FLASH locations with data loaded into the data array. Table 9-11. PRGRNGE Routine Routine Name PRGRNGE Routine Description Program a range of locations Calling Address $FC06 Stack Used 15 bytes Data Block Format Bus speed (BUS_SPD) Data size (DATASIZE) Start address high (ADDRH) Start address (ADDRL) Data 1 (DATA1) : Data N (DATAN) The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be programmed in one routine call is 128 bytes (max. DATASIZE is 128). ADDRH:ADDRL do not need to be at a page boundary, the routine handles any boundary misalignment during programming. A check to see that all bytes in the specified range are erased is not performed by this routine prior programming. Nor does this routine do a verification after programming, so there is no return confirmation that programming was successful. User must assure that the range specified is first erased. The coding example below is to program 32 bytes of data starting at FLASH location $EF00, with a bus speed of 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address pointer, FILE_PTR, pointing to the first byte of the data block. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 133 Monitor ROM (MON) ORG RAM : FILE_PTR: BUS_SPD DATASIZE START_ADDR DATAARRAY DS.B DS.B DS.W DS.B 1 1 1 32 PRGRNGE FLASH_START EQU EQU $FC06 $EF00 ; ; ; ; Indicates 4x bus frequency Data size to be programmed FLASH start address Reserved data array ORG FLASH INITIALISATION: MOV #20, BUS_SPD MOV #32, DATASIZE LDHX #FLASH_START STHX START_ADDR RTS MAIN: BSR INITIALISATION : : LDHX #FILE_PTR JSR PRGRNGE Technical Data 134 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines 9.6.2 ERARNGE ERARNGE is used to erase a range of locations in FLASH. Table 9-12. ERARNGE Routine Routine Name ERARNGE Routine Description Erase a page or the entire array Calling Address $FCBE Stack Used 9 bytes Data Block Format Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH) Starting address (ADDRL) There are two sizes of erase ranges: a page or the entire array. The ERARNGE will erase the page (64 consecutive bytes) in FLASH specified by the address ADDRH:ADDRL. This address can be any address within the page. Calling ERARNGE with ADDRH:ADDRL equal to $FFFF will erase the entire FLASH array (mass erase). Therefore, care must be taken when calling this routine to prevent an accidental mass erase. To avoid undesirable routine return addresses after a mass erase, the ERARNGE routine should not be called from code executed from FLASH memory. Load the code into an area of RAM before calling the ERARNGE routine. The ERARNGE routine do not use a data array. The DATASIZE byte is a dummy byte that is also not used. The coding example below is to perform a page erase, from $EF00–$EF3F. The Initialization subroutine is the same as the coding example for PRGRNGE (see 9.6.1 PRGRNGE). ERARNGE MAIN: EQU BSR : : LDHX JSR : $FCBE INITIALISATION #FILE_PTR ERARNGE MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 135 Monitor ROM (MON) 9.6.3 LDRNGE LDRNGE is used to load the data array in RAM with data from a range of FLASH locations. Table 9-13. LDRNGE Routine Routine Name LDRNGE Routine Description Loads data from a range of locations Calling Address $FF30 Stack Used 9 bytes Data Block Format Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH) Starting address (ADDRL) Data 1 : Data N The start location of FLASH from where data is retrieved is specified by the address ADDRH:ADDRL and the number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be retrieved in one routine call is 128 bytes. The data retrieved from FLASH is loaded into the data array in RAM. Previous data in the data array will be overwritten. User can use this routine to retrieve data from FLASH that was previously programmed. The coding example below is to retrieve 32 bytes of data starting from $EF00 in FLASH. The Initialization subroutine is the same as the coding example for PRGRNGE (see 9.6.1 PRGRNGE). LDRNGE MAIN: EQU BSR : : LDHX JSR : $FF30 INITIALIZATION #FILE_PTR LDRNGE Technical Data 136 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines 9.6.4 MON_PRGRNGE In monitor mode, MON_PRGRNGE is used to program a range of FLASH locations with data loaded into the data array. Table 9-14. MON_PRGRNGE Routine Routine Name MON_PRGRNGE Routine Description Program a range of locations, in monitor mode Calling Address $FC28 Stack Used 17 bytes Data Block Format Bus speed Data size Starting address (high byte) Starting address (low byte) Data 1 : Data N The MON_PRGRNGE routine is designed to be used in monitor mode. It performs the same function as the PRGRNGE routine (see 9.6.1 PRGRNGE), except that MON_PRGRNGE returns to the main program via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction will return the control back to the monitor code. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 137 Monitor ROM (MON) 9.6.5 MON_ERARNGE In monitor mode, ERARNGE is used to erase a range of locations in FLASH. Table 9-15. MON_ERARNGE Routine Routine Name MON_ERARNGE Routine Description Erase a page or the entire array, in monitor mode Calling Address $FF2C Stack Used 11 bytes Data Block Format Bus speed Data size Starting address (high byte) Starting address (low byte) The MON_ERARNGE routine is designed to be used in monitor mode. It performs the same function as the ERARNGE routine (see 9.6.2 ERARNGE), except that MON_ERARNGE returns to the main program via an SWI instruction. After a MON_ERARNGE call, the SWI instruction will return the control back to the monitor code. Technical Data 138 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines 9.6.6 MON_LDRNGE In monitor mode, LDRNGE is used to load the data array in RAM with data from a range of FLASH locations. Table 9-16. ICP_LDRNGE Routine Routine Name MON_LDRNGE Routine Description Loads data from a range of locations, in monitor mode Calling Address $FF24 Stack Used 11 bytes Data Block Format Bus speed Data size Starting address (high byte) Starting address (low byte) Data 1 : Data N The MON_LDRNGE routine is designed to be used in monitor mode. It performs the same function as the LDRNGE routine (see 9.6.3 LDRNGE), except that MON_LDRNGE returns to the main program via an SWI instruction. After a MON_LDRNGE call, the SWI instruction will return the control back to the monitor code. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 139 Monitor ROM (MON) 9.6.7 EE_WRITE EE_WRITE is used to write a set of data from the data array to FLASH. Table 9-17. EE_WRITE Routine Routine Name EE_WRITE Routine Description Emulated EEPROM write. Data size ranges from 2 to 15 bytes at a time. Calling Address $FD3F Stack Used 24 bytes Data Block Format Bus speed (BUS_SPD) Data size (DATASIZE)(1) Starting address (ADDRH)(2) Starting address (ADDRL)(1) Data 1 : Data N NOTES: 1. The minimum data size is 2 bytes. The maximum data size is 15 bytes. 2. The start address must be a page boundary start address: $xx00, $xx40, $xx80, or $00C0. The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the number of bytes in the data array is specified by DATASIZE. The minimum number of bytes that can be programmed in one routine call is 2 bytes, the maximum is 15 bytes. ADDRH:ADDRL must always be the start of boundary address (the page start address: $XX00, $XX40, $XX80, or $00C0) and DATASIZE must be the same size when accessing the same page. In some applications, the user may want to repeatedly store and read a set of data from an area of non-volatile memory. This is easily possible when using an EEPROM array. As the write and erase operations can be executed on a byte basis. For FLASH memory, the minimum erase size is the page — 64 bytes per page for MC68HC908JL8. If the data array size is less than the page size, writing and erasing to the same page cannot fully utilize the page. Unused locations in the page will be wasted. The EE_WRITE routine is designed to emulate the properties similar to the EEPROM. Allowing a more efficient use of the FLASH page for data storage. Technical Data 140 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines When the user dedicates a page of FLASH for data storage, and the size of the data array defined, each call of the EE_WRTIE routine will automatically transfer the data in the data array (in RAM) to the next blank block of locations in the FLASH page. Once a page is filled up, the EE_WRITE routine automatically erases the page, and starts to reuse the page again. In the 64-byte page, an 4-byte control block is used by the routine to monitor the utilization of the page. In effect, only 60 bytes are used for data storage. (see Figure 9-9). The page control operations are transparent to the user. F L A S H PAGE BOUNDARY CONTROL: 8 BYTES $XX00, $XX40, $XX80, OR $XXC0 DATA ARRAY DATA ARRAY DATA ARRAY ONE PAGE = 64 BYTES PAGE BOUNDARY Figure 9-9. EE_WRITE FLASH Memory Usage When using this routine to store a 3-byte data array, the FLASH page can be programmed 20 times before the an erase is required. In effect, the write/erase endurance is increased by 20 times. When a 15-byte data array is used, the write/erase endurance is increased by 5 times. Due to the FLASH page size limitation, the data array is limited from 2 bytes to 15 bytes. The coding example below uses the $EF00–$EE3F page for data storage. The data array size is 15 bytes, and the bus speed is 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address pointer, FILE_PTR, pointing to the first byte of the data block. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 141 Monitor ROM (MON) ORG RAM : FILE_PTR: BUS_SPD DATASIZE START_ADDR DATAARRAY DS.B DS.B DS.W DS.B 1 1 1 15 EE_WRITE FLASH_START EQU EQU $FD3F $EF00 ; ; ; ; Indicates 4x bus frequency Data size to be programmed FLASH starting address Reserved data array ORG FLASH INITIALISATION: MOV #20, BUS_SPD MOV #15, DATASIZE LDHX #FLASH_START STHX START_ADDR RTS MAIN: BSR INITIALISATION : : LHDX #FILE_PTR JSR EE_WRITE NOTE: The EE_WRITE routine is unable to check for incorrect data blocks, such as the FLASH page boundary address and data size. It is the responsibility of the user to ensure the starting address indicated in the data block is at the FLASH page boundary and the data size is 2 to 15. If the FLASH page is already programmed with a data array with a different size, the EE_WRITE call will be ignored. Technical Data 142 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) ROM-Resident Routines 9.6.8 EE_READ EE_READ is used to load the data array in RAM with a set of data from FLASH. Table 9-18. EE_READ Routine Routine Name EE_READ Routine Description Emulated EEPROM read. Data size ranges from 2 to 15 bytes at a time. Calling Address $FDD0 Stack Used 16 bytes Data Block Format Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH)(1) Starting address (ADDRL)(1) Data 1 : Data N NOTES: 1. The start address must be a page boundary start address: $xx00, $xx40, $xx80, or $00C0. The EE_READ routine reads data stored by the EE_WRITE routine. An EE_READ call will retrieve the last data written to a FLASH page and loaded into the data array in RAM. Same as EE_WRITE, the data size indicated by DATASIZE is 2 to 15, and the start address ADDRH:ADDRL must the FLASH page boundary address. The coding example below uses the data stored by the EE_WRITE coding example (see 9.6.7 EE_WRITE). It loads the 15-byte data set stored in the $EF00–$EE7F page to the data array in RAM. The initialization subroutine is the same as the coding example for EE_WRITE (see 9.6.7 EE_WRITE). EE_READ EQU $FDD0 MAIN: BSR : : LDHX JSR : INITIALIZATION FILE_PTR EE_READ MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Monitor ROM (MON) 143 Monitor ROM (MON) NOTE: The EE_READ routine is unable to check for incorrect data blocks, such as the FLASH page boundary address and data size. It is the responsibility of the user to ensure the starting address indicated in the data block is at the FLASH page boundary and the data size is 2 to 15. If the FLASH page is programmed with a data array with a different size, the EE_READ call will be ignored. Technical Data 144 MC68HC908JL8 — Rev. 2.0 Monitor ROM (MON) MOTOROLA Technical Data – MC68HC908JL8 Section 10. Timer Interface Module (TIM) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . 153 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 153 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 154 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 155 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9.1 TIM Clock Pin (T2CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9.2 TIM Channel I/O Pins (T1CH0, T1CH1, T2CH0, T2CH1) . 159 10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 160 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 163 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .164 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 145 Timer Interface Module (TIM) 10.2 Introduction This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with Input capture, output compare, and pulse-width-modulation functions. Figure 10-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2. 10.3 Features Features of the TIM include: • Two input capture/output compare channels: – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action • Buffered and unbuffered pulse-width-modulation (PWM) signal generation • Programmable TIM clock input – 7-frequency internal bus clock prescaler selection – External clock input on timer 2 (bus frequency ÷2 maximum) • Free-running or modulo up-count operation • Toggle any channel pin on overflow • TIM counter stop and reset bits Technical Data 146 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Pin Name Conventions 10.4 Pin Name Conventions The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2” is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The external clock input for TIM2 is shared with the an ADC channel pin. The full names of the TIM I/O pins are listed in Table 10-1. The generic pin names appear in the text that follows. Table 10-1. Pin Name Conventions TIM Generic Pin Names: Full TIM Pin Names: NOTE: T[1,2]CH0 T[1,2]CH1 T2CLK TIM1 PTD4/T1CH0 PTD5/T1CH1 — TIM2 PTE0/T2CH0 PTE1/T2CH1 ADC12/T2CLK References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1. 10.5 Functional Description Figure 10-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 147 Timer Interface Module (TIM) T2CLK (FOR TIM2 ONLY) PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE INTERRUPT LOGIC 16-BIT COMPARATOR TMODH:TMODL TOV0 ELS0B CHANNEL 0 ELS0A CH0MAX 16-BIT COMPARATOR PORT LOGIC T[1,2]CH0 CH0F TCH0H:TCH0L 16-BIT LATCH MS0A CH0IE INTERRUPT LOGIC MS0B INTERNAL BUS TOV1 ELS0B CHANNEL 1 ELS0A CH1MAX PORT LOGIC CH01IE INTERRUPT LOGIC T[1,2]CH1 16-BIT COMPARATOR CH1F TCH1H:TCH1L 16-BIT LATCH MS0A CH1IE Figure 10-1. TIM Block Diagram Figure 10-2 summarizes the timer registers. NOTE: References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC. Technical Data 148 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description Addr. $0020 $0021 $0022 $0023 $0024 $0025 Register Name 6 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 Read: TIM1 Status and Control Register Write: (T1SC) Reset: TOF 0 0 1 0 0 0 0 0 Read: TIM1 Counter Register High Write: (T1CNTH) Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: TIM1 Counter Register Low Write: (T1CNTL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM1 Counter Modulo Register Low Write: (T1MODL) Reset: Read: TIM1 Channel 0 Status and Control Register Write: (T1SC0) Reset: Read: TIM1 Channel 0 Register High Write: (T1CH0H) Reset: $0026 Read: TIM1 Channel 0 Register Low Write: (T1CH0L) Reset: $0027 $0028 Bit 7 Read: TIM1 Channel 1 Status and Control Register Write: (T1SC1) Reset: 0 TRST CH0F 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 10-2. TIM I/O Register Summary (Sheet 1 of 3) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 149 Timer Interface Module (TIM) Addr. Register Name Read: TIM1 Channel 1 Register High Write: (T1CH1H) Reset: $0029 Read: TIM1 Channel 1 Register Low Write: (T1CH1L) Reset: $002A $0030 $0031 $0032 $0033 $0034 $0035 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 PS2 PS1 PS0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset Read: TIM2 Status and Control Register Write: (T2SC) Reset: TOF 0 0 1 0 0 0 0 0 Read: TIM2 Counter Register High Write: (T2CNTH) Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: TIM2 Counter Register Low Write: (T2CNTL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: TIM2 Counter Modulo Register High Write: (T2MODH) Reset: Read: TIM2 Counter Modulo Register Low Write: (T2MODL) Reset: Read: TIM2 Channel 0 Status and Control Register Write: (T2SC0) Reset: $0036 Read: TIM2 Channel 0 Register High Write: (T2CH0H) Reset: 0 TOIE 0 TSTOP 0 TRST CH0F 0 Indeterminate after reset = Unimplemented Figure 10-2. TIM I/O Register Summary (Sheet 2 of 3) Technical Data 150 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description Addr. Register Name Read: TIM2 Channel 0 Register Low Write: (T2CH0L) Reset: $0037 $0038 Read: TIM2 Channel 1 Status and Control Register Write: (T2SC1) Reset: $0039 $003A Read: TIM2 Channel 1 Register High Write: (T2CH1H) Reset: Read: TIM2 Channel 1 Register Low Write: (T2CH1L) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Indeterminate after reset CH1F 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset = Unimplemented Figure 10-2. TIM I/O Register Summary (Sheet 3 of 3) 10.5.1 TIM Counter Prescaler The TIM1 clock source can be one of the seven prescaler outputs; TIM2 clock source can be one of the seven prescaler outputs or the TIM2 clock pin, T2CLK. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source. 10.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 151 Timer Interface Module (TIM) 10.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. 10.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 10.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. Technical Data 152 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description 10.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. 10.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 10-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 153 Timer Interface Module (TIM) The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 10.10.1 TIM Status and Control Register. OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 10-3. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 10.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 10.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Technical Data 154 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: NOTE: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 10.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 155 Timer Interface Module (TIM) NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals. 10.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 10-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 10-3.) NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Technical Data 156 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Interrupts Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 10.10.4 TIM Channel Status and Control Registers.) 10.6 Interrupts The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register. 10.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 157 Timer Interface Module (TIM) 10.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 10.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. 10.8 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 7.8.3 Break Flag Control Register (BFCR).) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. Technical Data 158 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Signals 10.9 I/O Signals Port D shares two of its pins with TIM1 and port E shares two of its pins with TIM2. The ADC12/T2CLK pin is an external clock input to TIM2. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1. 10.9.1 TIM Clock Pin (ADC12/T2CLK) ADC12/T2CLK is an external clock input that can be the clock source for the TIM2 counter instead of the prescaled internal bus clock. Select the ADC12/T2CLK input by writing logic 1’s to the three prescaler select bits, PS[2:0]. (See 10.10.1 TIM Status and Control Register.) The minimum T2CLK pulse width, T2CLKLMIN or T2CLKHMIN, is: 1 ------------------------------------- + t SU bus frequency The maximum T2CLK frequency is: bus frequency ÷ 2 ADC12/T2CLK is available as a ADC input channel pin when not used as the TIM2 clock input. 10.9.2 TIM Channel I/O Pins (PTD4/T1CH0, PTD5/T1CH1, PTE0/T2CH0, PTE1/T2CH1) Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 159 Timer Interface Module (TIM) 10.10 I/O Registers NOTE: References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: • TIM status and control register (TSC) • TIM counter registers (TCNTH:TCNTL) • TIM counter modulo registers (TMODH:TMODL) • TIM channel status and control registers (TSC0, TSC1) • TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L) 10.10.1 TIM Status and Control Register The TIM status and control register (TSC): • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: T1SC, $0020 and T2SC, $0030 Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 10-4. TIM Status and Control Register (TSC) Technical Data 160 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 161 Timer Interface Module (TIM) PS[2:0] — Prescaler Select Bits These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 10-2 shows. Reset clears the PS[2:0] bits. Table 10-2. Prescaler Selection PS2 PS1 PS0 TIM Clock Source 0 0 0 Internal bus clock ÷ 1 0 0 1 Internal bus clock ÷ 2 0 1 0 Internal bus clock ÷ 4 0 1 1 Internal bus clock ÷ 8 1 0 0 Internal bus clock ÷ 16 1 0 1 Internal bus clock ÷ 32 1 1 0 Internal bus clock ÷ 64 1 1 1 T2CLK (for TIM2 only) 10.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. Address: T1CNTH, $0021 and T2CNTH, $0031 Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 10-5. TIM Counter Registers High (TCNTH) Technical Data 162 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers Address: T1CNTL, $0022 and T2CNTL, $0032 Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 10-6. TIM Counter Registers Low (TCNTL) 10.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Address: T1MODH, $0023 and T2MODH, $0033 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 10-7. TIM Counter Modulo Register High (TMODH) Address: T1MODL, $0024 and T2MODL, $0034 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 10-8. TIM Counter Modulo Register Low (TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 163 Timer Interface Module (TIM) 10.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 0% and 100% PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Address: T1SC0, $0025 and T2SC0, $0035 Bit 7 Read: CH0F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 Figure 10-9. TIM Channel 0 Status and Control Register (TSC0) Address: T1SC1, $0028 and T2SC1, $0038 Bit 7 Read: 6 CH1F 5 0 Reset: 0 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 CH1IE Write: 4 0 0 Figure 10-10. TIM Channel 1 Status and Control Register (TSC1) Technical Data 164 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:ELSxA ≠ 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 10-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 165 Timer Interface Module (TIM) When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table 10-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 10-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 10-3. Mode, Edge, and Level Selection MSxB:MSxA ELSxB:ELSxA X0 00 Mode Configuration Pin under port control; initial output level high Output preset X1 00 Pin under port control; initial output level low 00 01 Capture on rising edge only 00 10 00 11 01 01 01 10 01 11 1X 01 1X 10 1X 11 Input capture Capture on rising or falling edge Output compare or PWM Buffered output compare or buffered PWM Technical Data 166 Capture on falling edge only Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers NOTE: Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks. TOVx — Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow 0 = Channel x pin does not toggle on TIM counter overflow NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 10-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 10-11. CHxMAX Latency 10.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Timer Interface Module (TIM) 167 Timer Interface Module (TIM) In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Address: T1CH0H, $0026 and T2CH0H, $0036 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 10-12. TIM Channel 0 Register High (TCH0H) Address: T1CH0L, $0027 and T2CH0L $0037 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 10-13. TIM Channel 0 Register Low (TCH0L) Address: T1CH1H, $0029 and T2CH1H, $0039 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 10-14. TIM Channel 1 Register High (TCH1H) Address: T1CH1L, $002A and T2CH1L, $003A Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 10-15. TIM Channel 1 Register Low (TCH1L) Technical Data 168 MC68HC908JL8 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Technical Data – MC68HC908JL8 Section 11. Serial Communications Interface (SCI) 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 11.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 179 11.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 189 11.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 169 Serial Communications Interface (SCI) 11.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 11.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 11.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.2 Introduction This section describes the serial communications interface (SCI) module, which allows high-speed asynchronous communications with peripheral devices and other MCUs. NOTE: References to DMA (direct-memory access) and associated functions are only valid if the MCU has a DMA module. This MCU does not have the DMA function. Any DMA-related register bits should be left in their reset state for normal MCU operation. 11.3 Features Features of the SCI module include the following: • Full-duplex operation • Standard mark/space non-return-to-zero (NRZ) format • 32 programmable baud rates • Programmable 8-bit or 9-bit character length • Separately enabled transmitter and receiver • Separate receiver and transmitter CPU interrupt requests • Programmable transmitter output polarity Technical Data 170 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Features • Two receiver wakeup methods: – Idle line wakeup – Address mark wakeup • Interrupt-driven operation with eight interrupt flags: – Transmitter empty – Transmission complete – Receiver full – Idle receiver input – Receiver overrun – Noise error – Framing error – Parity error • Receiver framing error detection • Hardware parity checking • 1/16 bit-time noise detection • OSCOUT as baud rate clock source MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 171 Serial Communications Interface (SCI) 11.4 Pin Name Conventions The generic names of the SCI I/O pins are: • RxD (receive data) • TxD (transmit data) The SCI I/O (input/output) lines are dedicated pins for the SCI module. Table 11-1 shows the full names and the generic names of the SCI I/O pins. The generic pin names appear in the text of this section. Table 11-1. Pin Name Conventions Generic Pin Names: RxD TxD Full Pin Names: PTD7/RxD PTD6/TxD 11.5 Functional Description Figure 11-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The baud rate clock source for the SCI is OSCOUT clock. Technical Data 172 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description INTERNAL BUS SCI DATA REGISTER ERROR INTERRUPT CONTROL RECEIVER INTERRUPT CONTROL DMA INTERRUPT CONTROL RECEIVE SHIFT REGISTER RxD TRANSMITTER INTERRUPT CONTROL SCI DATA REGISTER TRANSMIT SHIFT REGISTER TxD TXINV SCTIE R8 TCIE T8 SCRIE ILIE DMARE TE SCTE RE DMATE TC RWU SBK SCRF OR ORIE IDLE NF NEIE FE FEIE PE PEIE LOOPS LOOPS RECEIVE CONTROL WAKEUP CONTROL ENSCI ENSCI TRANSMIT CONTROL FLAG CONTROL BKF M RPF WAKE ILTY OSCOUT ÷4 PRESCALER PEN BAUD DIVIDER ÷ 16 PTY DATA SELECTION CONTROL Figure 11-1. SCI Module Block Diagram MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 173 Serial Communications Interface (SCI) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U U 0 0 0 0 0 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 BKF RPF Read: $0013 LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: $0014 SCI Control Register 2 Write: (SCC2) Reset: Read: $0015 SCI Control Register 3 Write: (SCC3) Reset: Read: $0016 SCI Status Register 1 Write: (SCS1) Reset: R8 Read: $0017 $0018 SCI Status Register 2 Write: (SCS2) Reset: 0 0 0 0 0 0 0 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 SCI Data Register Write: (SCDR) Reset: Read: $0019 SCI Baud Rate Register Write: (SCBR) Reset: Unaffected by reset 0 0 0 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 11-2. SCI I/O Register Summary Technical Data 174 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description 11.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 11-3. 8-BIT DATA FORMAT BIT M IN SCC1 CLEAR START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 PARITY BIT BIT 6 BIT 7 9-BIT DATA FORMAT BIT M IN SCC1 SET START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 STOP BIT NEXT START BIT PARITY BIT BIT 6 BIT 7 BIT 8 STOP BIT NEXT START BIT Figure 11-3. SCI Data Formats 11.5.2 Transmitter Figure 11-4 shows the structure of the SCI transmitter. The baud rate clock source for the SCI is the OSCOUT clock. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 175 Serial Communications Interface (SCI) INTERNAL BUS PRESCALER ÷4 BAUD DIVIDER ÷ 16 SCI DATA REGISTER SCP1 11-BIT TRANSMIT SHIFT REGISTER STOP SCP0 SCR1 H SCR2 8 7 6 5 4 3 2 START OSCOUT 1 0 L TxD MSB TXINV T8 DMATE DMATE SCTIE SCTE DMATE SCTE SCTIE TC TCIE BREAK ALL 0s PTY PARITY GENERATION PREAMBLE ALL 1s PEN SHIFT ENABLE M LOAD FROM SCDR TRANSMITTER DMA SERVICE REQUEST TRANSMITTER CPU INTERRUPT REQUEST SCR0 TRANSMITTER CONTROL LOGIC SCTE SBK LOOPS SCTIE ENSCI TC TE TCIE Figure 11-4. SCI Transmitter Technical Data 176 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description 11.5.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). 11.5.2.2 Character Transmission During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port pin. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 177 Serial Communications Interface (SCI) 11.5.2.3 Break Characters Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: • Sets the framing error bit (FE) in SCS1 • Sets the SCI receiver full bit (SCRF) in SCS1 • Clears the SCI data register (SCDR) • Clears the R8 bit in SCC3 • Sets the break flag bit (BKF) in SCS2 • May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits 11.5.2.4 Idle Characters An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted. Technical Data 178 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description NOTE: When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. Toggle the TE bit for a queued idle character when the SCTE bit becomes set and just before writing the next byte to the SCDR. 11.5.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See 11.9.1 SCI Control Register 1.) 11.5.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the SCI transmitter: • SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. • Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 179 Serial Communications Interface (SCI) 11.5.3 Receiver Figure 11-5 shows the structure of the SCI receiver. 11.5.3.1 Character Length The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7). 11.5.3.2 Character Reception During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request. Technical Data 180 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description INTERNAL BUS SCR1 SCR2 SCP0 SCR0 BAUD DIVIDER ÷ 16 DATA RECOVERY RxD CPU INTERRUPT REQUEST 11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 4 M WAKE ILTY PEN PTY 3 2 1 0 L ALL 0s RPF ERROR CPU INTERRUPT REQUEST DMA SERVICE REQUEST H ALL 1s BKF STOP PRESCALER MSB ÷4 OSCOUT SCI DATA REGISTER START SCP1 SCRF WAKEUP LOGIC IDLE R8 PARITY CHECKING IDLE ILIE DMARE ILIE SCRF SCRIE DMARE SCRF SCRIE DMARE RWU SCRIE DMARE OR ORIE NF NEIE FE FEIE PE PEIE OR ORIE NF NEIE FE FEIE PE PEIE Figure 11-5. SCI Receiver Block Diagram MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 181 Serial Communications Interface (SCI) 11.5.3.3 Data Sampling The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 11-6): • After every start bit • After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0) To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16. START BIT LSB START BIT VERIFICATION DATA SAMPLING RT8 START BIT QUALIFICATION SAMPLES RT3 RxD RT4 RT3 RT2 RT1 RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT7 RT6 RT5 RT4 RT2 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT CLOCK STATE RT1 RT CLOCK RT CLOCK RESET Figure 11-6. Receiver Data Sampling Technical Data 182 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 11-2 summarizes the results of the start bit verification samples. Table 11-2. Start Bit Verification RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag 000 Yes 0 001 Yes 1 010 Yes 1 011 No 0 100 Yes 1 101 No 0 110 No 0 111 No 0 Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 11-3 summarizes the results of the data bit samples. Table 11-3. Data Bit Recovery RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag 000 0 0 001 0 1 010 0 1 011 1 1 100 0 1 101 1 1 110 1 1 111 1 0 MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 183 Serial Communications Interface (SCI) NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 11-4 summarizes the results of the stop bit samples. Table 11-4. Stop Bit Recovery RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag 000 1 0 001 1 1 010 1 1 011 0 1 100 1 1 101 0 1 110 0 1 111 0 0 11.5.3.4 Framing Errors If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set. 11.5.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment that is likely to occur. Technical Data 184 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. Slow Data Tolerance Figure 11-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10. RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 STOP RT5 RT4 RT3 RT2 RECEIVER RT CLOCK RT1 MSB DATA SAMPLES Figure 11-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 11-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is 154 – 147 × 100 = 4.54% -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 11-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 185 Serial Communications Interface (SCI) The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 – 163 × 100 = 4.12% -------------------------170 Fast Data Tolerance Figure 11-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10. RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 IDLE OR NEXT CHARACTER RT6 RT5 RT4 RT3 RT2 RECEIVER RT CLOCK RT1 STOP DATA SAMPLES Figure 11-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 11-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is · 154 – 160 × 100 = 3.90% -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 11-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles. Technical Data 186 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Functional Description The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is 170 – 176 × 100 = 3.53% -------------------------170 11.5.3.6 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state: NOTE: • Address mark — An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. • Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 187 Serial Communications Interface (SCI) 11.5.3.7 Receiver Interrupts The following sources can generate CPU interrupt requests from the SCI receiver: • SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. • Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests. 11.5.3.8 Error Interrupts The following receiver error flags in SCS1 can generate CPU interrupt requests: • Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. • Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests. • Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. • Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests. Technical Data 188 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) Low-Power Modes 11.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 11.6.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. Refer to 7.7 Low-Power Modes for information on exiting wait mode. 11.6.2 Stop Mode The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect SCI register states. SCI module operation resumes after an external interrupt. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Refer to 7.7 Low-Power Modes for information on exiting stop mode. 11.7 SCI During Break Module Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 189 Serial Communications Interface (SCI) To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 11.8 I/O Signals The two SCI I/O pins are: • PTD6/TxD — Transmit data • PTD7/RxD — Receive data 11.8.1 TxD (Transmit Data) The PTD6/TxD pin is the serial data output from the SCI transmitter. 11.8.2 RxD (Receive Data) The PTD7/RxD pin is the serial data input to the SCI receiver. 11.9 I/O Registers These I/O registers control and monitor SCI operation: • SCI control register 1 (SCC1) • SCI control register 2 (SCC2) • SCI control register 3 (SCC3) • SCI status register 1 (SCS1) • SCI status register 2 (SCS2) • SCI data register (SCDR) • SCI baud rate register (SCBR) Technical Data 190 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers 11.9.1 SCI Control Register 1 SCI control register 1: • Enables loop mode operation • Enables the SCI • Controls output polarity • Controls character length • Controls SCI wakeup method • Controls idle character detection • Enables parity function • Controls parity type Address: $0013 Bit 7 6 5 4 3 2 1 Bit 0 LOOPS ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 11-9. SCI Control Register 1 (SCC1) LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI — Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 191 Serial Communications Interface (SCI) TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits. M — Mode (Character Length) Bit This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 11-5.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters WAKE — Wakeup Condition Bit This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY — Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit 0 = Idle character bit count begins after start bit Technical Data 192 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers PEN — Parity Enable Bit This read/write bit enables the SCI parity function. (See Table 11-5.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 11-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled PTY — Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 11-5.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity NOTE: Changing the PTY bit in the middle of a transmission or reception can generate a parity error. Table 11-5. Character Format Selection Control Bits Character Format M PEN and PTY Start Bits Data Bits Parity Stop Bits Character Length 0 0X 1 8 None 1 10 bits 1 0X 1 9 None 1 11 bits 0 10 1 7 Even 1 10 bits 0 11 1 7 Odd 1 10 bits 1 10 1 8 Even 1 11 bits 1 11 1 8 Odd 1 11 bits MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 193 Serial Communications Interface (SCI) 11.9.2 SCI Control Register 2 SCI control register 2: • Enables the following CPU interrupt requests: – Enables the SCTE bit to generate transmitter CPU interrupt requests – Enables the TC bit to generate transmitter CPU interrupt requests – Enables the SCRF bit to generate receiver CPU interrupt requests – Enables the IDLE bit to generate receiver CPU interrupt requests • Enables the transmitter • Enables the receiver • Enables SCI wakeup • Transmits SCI break characters Address: $0014 Bit 7 6 5 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 11-10. SCI Control Register 2 (SCC2) SCTIE — SCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt Technical Data 194 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers TCIE — Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests SCRIE — SCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE — Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests TE — Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RE — Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 195 Serial Communications Interface (SCI) NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RWU — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble. 11.9.3 SCI Control Register 3 SCI control register 3: • Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted • Enables these interrupts: – Receiver overrun interrupts – Noise error interrupts – Framing error interrupts • Parity error interrupts Technical Data 196 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers Address: $0015 Bit 7 Read: 6 5 4 3 2 1 Bit 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U 0 0 0 0 0 0 R8 Write: Reset: U = Unimplemented U = Unaffected Figure 11-11. SCI Control Register 3 (SCC3) R8 — Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 — Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. DMARE — DMA Receive Enable Bit CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) 0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 197 Serial Communications Interface (SCI) DMATE — DMA Transfer Enable Bit CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled 0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled ORIE — Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. 1 = SCI error CPU interrupt requests from OR bit enabled 0 = SCI error CPU interrupt requests from OR bit disabled NEIE — Receiver Noise Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = SCI error CPU interrupt requests from NE bit enabled 0 = SCI error CPU interrupt requests from NE bit disabled FEIE — Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = SCI error CPU interrupt requests from FE bit enabled 0 = SCI error CPU interrupt requests from FE bit disabled PEIE — Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the parity error bit, PE. (See 11.9.4 SCI Status Register 1.) Reset clears PEIE. 1 = SCI error CPU interrupt requests from PE bit enabled 0 = SCI error CPU interrupt requests from PE bit disabled Technical Data 198 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers 11.9.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: • Transfer of SCDR data to transmit shift register complete • Transmission complete • Transfer of receive shift register data to SCDR complete • Receiver input idle • Receiver overrun • Noisy data • Framing error • Parity error Address: Read: $0016 Bit 7 6 5 4 3 2 1 Bit 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 11-12. SCI Status Register 1 (SCS1) SCTE — SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 199 Serial Communications Interface (SCI) TC — Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF — SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE — Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared) Technical Data 200 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers OR — Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 11-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after reading the data register. NF — Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an SCI error CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected FE — Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 201 Serial Communications Interface (SCI) BYTE 1 BYTE 2 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 NORMAL FLAG CLEARING SEQUENCE BYTE 3 BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1 READ SCDR BYTE 2 READ SCDR BYTE 3 BYTE 1 BYTE 2 BYTE 3 SCRF = 0 OR = 0 SCRF = 1 OR = 1 SCRF = 0 OR = 1 SCRF = 1 SCRF = 1 OR = 1 DELAYED FLAG CLEARING SEQUENCE BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 1 READ SCDR BYTE 3 Figure 11-13. Flag Clearing Sequence PE — Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates an SCI error CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected Technical Data 202 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers 11.9.5 SCI Status Register 2 SCI status register 2 contains flags to signal the following conditions: • Break character detected • Incoming data Address: $0017 Bit 7 6 5 4 3 2 Read: 1 Bit 0 BKF RPF 0 0 Write: Reset: 0 0 0 0 0 0 = Unimplemented Figure 11-14. SCI Status Register 2 (SCS2) BKF — Break Flag Bit This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF — Reception in Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 203 Serial Communications Interface (SCI) 11.9.6 SCI Data Register The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register. Address: $0018 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Unaffected by reset Figure 11-15. SCI Data Register (SCDR) R7/T7–R0/T0 — Receive/Transmit Data Bits Reading the SCDR accesses the read-only received data bits, R[7:0]. Writing to the SCDR writes the data to be transmitted, T[7:0]. Reset has no effect on the SCDR. NOTE: Do not use read/modify/write instructions on the SCI data register. 11.9.7 SCI Baud Rate Register The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter. Address: Read: $0019 Bit 7 6 0 0 5 4 3 2 1 Bit 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 R = Reserved Write: Reset: 0 0 = Unimplemented Figure 11-16. SCI Baud Rate Register (SCBR) SCP1 and SCP0 — SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 11-6. Reset clears SCP1 and SCP0. Technical Data 204 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Serial Communications Interface (SCI) I/O Registers Table 11-6. SCI Baud Rate Prescaling SCP1 and SCP0 Prescaler Divisor (PD) 00 1 01 3 10 4 11 13 SCR2–SCR0 — SCI Baud Rate Select Bits These read/write bits select the SCI baud rate divisor as shown in Table 11-7. Reset clears SCR2–SCR0. Table 11-7. SCI Baud Rate Selection SCR2, SCR1, and SCR0 Baud Rate Divisor (BD) 000 1 001 2 010 4 011 8 100 16 101 32 110 64 111 128 Use this formula to calculate the SCI baud rate: SCI clock source baud rate = --------------------------------------------64 × PD × BD where: SCI clock source = OSCOUT PD = prescaler divisor BD = baud rate divisor Table 11-8 shows the SCI baud rates that can be generated with a 4.9152MHz OSCOUT clock. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Serial Communications Interface (SCI) 205 Serial Communications Interface (SCI) Table 11-8. SCI Baud Rate Selection Examples SCP1 and SCP0 Prescaler Divisor (PD) SCR2, SCR1, and SCR0 Baud Rate Divisor (BD) Baud Rate (OSCOUT = 4.9152 MHz) 00 1 000 1 76,800 00 1 001 2 38,400 00 1 010 4 19,200 00 1 011 8 9,600 00 1 100 16 4,800 00 1 101 32 2,400 00 1 110 64 1,200 00 1 111 128 600 01 3 000 1 25,600 01 3 001 2 12,800 01 3 010 4 6,400 01 3 011 8 3,200 01 3 100 16 1,600 01 3 101 32 800 01 3 110 64 400 01 3 111 128 200 10 4 000 1 19,200 10 4 001 2 9,600 10 4 010 4 4,800 10 4 011 8 2,400 10 4 100 16 1,200 10 4 101 32 600 10 4 110 64 300 10 4 111 128 150 11 13 000 1 5,908 11 13 001 2 2,954 11 13 010 4 1,477 11 13 011 8 739 11 13 100 16 369 11 13 101 32 185 11 13 110 64 92 11 13 111 128 46 Technical Data 206 MC68HC908JL8 — Rev. 2.0 Serial Communications Interface (SCI) MOTOROLA Technical Data – MC68HC908JL8 Section 12. Analog-to-Digital Converter (ADC) 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 212 12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.2 Introduction This section describes the 13-channel, 8-bit linear successive approximation analog-to-digital converter (ADC). MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Analog-to-Digital Converter (ADC) 207 Analog-to-Digital Converter (ADC) 12.3 Features Features of the ADC module include: Addr. $003C $003D • 13 channels with multiplexed input • Linear successive approximation with monotonicity • 8-bit resolution • Single or continuous conversion • Conversion complete flag or conversion complete interrupt Register Name Bit 7 Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset: Read: ADC Input Clock Register $003E Write: (ADICLK) Reset: 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 COCO Indeterminate after reset ADIV2 ADIV1 ADIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 12-1. ADC I/O Register Summary 12.4 Functional Description Thirteen ADC channels are available for sampling external sources at pins PTB0–PTB7, PTD0–PTD3, and ADC12/T2CLK. An analog multiplexer allows the single ADC converter to select one of the 13 ADC channels as ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is 8 bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt. Figure 12-2 shows a block diagram of the ADC. Technical Data 208 MC68HC908JL8 — Rev. 2.0 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) Functional Description INTERNAL DATA BUS READ DDRB/DDRD DISABLE WRITE DDRB/DDRD DDRBx/DDRDx RESET WRITE PTB/PTD ADCx PTBx/PTDx READ PTB/PTD DISABLE ADC CHANNEL x ADC DATA REGISTER ADC0–ADC11 INTERRUPT LOGIC AIEN CONVERSION COMPLETE ADC ADC VOLTAGE IN ADCVIN CHANNEL SELECT (1 OF 13 CHANNELS) ADC12 ADCH[4:0] ADC CLOCK COCO CLOCK GENERATOR BUS CLOCK ADIV[2:0] Figure 12-2. ADC Block Diagram 12.4.1 ADC Port I/O Pins PTB0–PTB7 and PTD0–PTD3 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status and control register, $003C), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Analog-to-Digital Converter (ADC) 209 Analog-to-Digital Converter (ADC) Writes to the port register or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read. 12.4.2 Voltage Conversion When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straightline linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS. NOTE: Input voltage should not exceed the analog supply voltages. 12.4.3 Conversion Time Fourteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1MHz, then one conversion will take 14µs to complete. With a 1MHz ADC internal clock the maximum sample rate is 71.43kHz. Conversion Time = 14 ADC Clock Cycles ADC Clock Frequency Number of Bus Cycles = Conversion Time × Bus Frequency 12.4.4 Continuous Conversion In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADC status and control register, $003C) is set after each conversion and can be cleared by writing the ADC status and control register or reading of the ADC data register. Technical Data 210 MC68HC908JL8 — Rev. 2.0 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) Interrupts 12.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. 12.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. 12.6 Low-Power Modes The following subsections describe the ADC in low-power modes. 12.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to logic 1’s before executing the WAIT instruction. 12.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. 12.7 I/O Signals The ADC module has 12 channels that are shared with I/O port B and port D, and one channel on ADC12/T2CLK pin. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Analog-to-Digital Converter (ADC) 211 Analog-to-Digital Converter (ADC) 12.7.1 ADC Voltage In (ADCVIN) ADCVIN is the input voltage signal from one of the 13 ADC channels to the ADC module. 12.8 I/O Registers These I/O registers control and monitor ADC operation: • ADC status and control register (ADSCR) • ADC data register (ADR) • ADC clock register (ADICLK) 12.8.1 ADC Status and Control Register The following paragraphs describe the function of the ADC status and control register. Address: $003C Bit 7 Read: 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 1 1 1 1 1 COCO Write: Reset: 0 = Unimplemented Figure 12-3. ADC Status and Control Register (ADSCR) COCO — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADC status and control register is written or whenever the ADC data register is read. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be logic 0 when read. Technical Data 212 MC68HC908JL8 — Rev. 2.0 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) I/O Registers AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH[4:0] — ADC Channel Select Bits ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select bits are detailed in the following table. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. (See Table 12-1.) The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a logic 1. NOTE: Recovery from the disabled state requires one conversion cycle to stabilize. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Analog-to-Digital Converter (ADC) 213 Analog-to-Digital Converter (ADC) Table 12-1. MUX Channel Select ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 ADC Channel Input Select 0 0 0 0 0 ADC0 PTB0 0 0 0 0 1 ADC1 PTB1 0 0 0 1 0 ADC2 PTB2 0 0 0 1 1 ADC3 PTB3 0 0 1 0 0 ADC4 PTB4 0 0 1 0 1 ADC5 PTB5 0 0 1 1 0 ADC6 PTB6 0 0 1 1 1 ADC7 PTB7 0 1 0 0 0 ADC8 PTD3 0 1 0 0 1 ADC9 PTD2 0 1 0 1 0 ADC10 PTD1 0 1 0 1 1 ADC11 PTD0 0 1 1 0 0 ADC12 ADC12/T2CLK 0 1 1 0 1 : : : : : — Unused(1) 1 1 0 1 0 1 1 0 1 1 — Reserved 1 1 1 0 0 — Reserved 1 1 1 0 1 VDD(2) 1 1 1 1 0 VSS(2) 1 1 1 1 1 ADC power off NOTES: 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications. Technical Data 214 MC68HC908JL8 — Rev. 2.0 Analog-to-Digital Converter (ADC) MOTOROLA Analog-to-Digital Converter (ADC) I/O Registers 12.8.2 ADC Data Register One 8-bit result register is provided. This register is updated each time an ADC conversion completes. Address: Read: $003D Bit 7 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write: Reset: Indeterminate after reset = Unimplemented Figure 12-4. ADC Data Register (ADR) 12.8.3 ADC Input Clock Register This register selects the clock frequency for the ADC. Address: $003E Bit 7 6 5 ADIV2 ADIV1 ADIV0 0 0 0 Read: 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 12-5. ADC Input Clock Register (ADICLK) ADIV[2:0] — ADC Clock Prescaler Bits ADIV[2:0] form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 12-2 shows the available clock configurations. The ADC clock should be set to approximately 1MHz. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Analog-to-Digital Converter (ADC) 215 Analog-to-Digital Converter (ADC) Table 12-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 Bus Clock ÷ 1 0 0 1 Bus Clock ÷ 2 0 1 0 Bus Clock ÷ 4 0 1 1 Bus Clock ÷ 8 1 X X Bus Clock ÷ 16 X = don’t care Technical Data 216 MC68HC908JL8 — Rev. 2.0 Analog-to-Digital Converter (ADC) MOTOROLA Technical Data – MC68HC908JL8 Section 13. Input/Output (I/O) Ports 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 221 13.3.3 Port A Input Pull-Up Enable Registers . . . . . . . . . . . . . . . . 223 13.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 225 13.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 228 13.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . . 230 13.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . 232 13.2 Introduction Twenty six (26) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable as inputs or outputs. NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 217 Input/Output (I/O) Ports Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 $0003 Read: Port B Data Register Write: (PTB) Reset: Read: Port D Data Register Write: (PTD) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 PTD7 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: Data Direction Register E $000C Write: (DDRE) Reset: $000D $000E PTD6 PTD5 PTB3 PTD4 PTD3 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 PTE1 PTE0 Read: Port E Data Register Write: (PTE) Reset: Read: Port D Control Register Write: (PDCR) Reset: PTB4 Unaffected by reset Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 $000A PTB5 Unaffected by reset Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 $0008 PTB6 Unaffected by reset 0 0 0 0 0 0 0 0 0 0 0 0 SLOWD7 SLOWD6 PTDPU7 0 0 0 0 PTDPU6 0 0 DDRE1 DDRE0 0 0 Port A Input Pull-up Read: PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Enable Register Write: (PTAPUE) Reset: 0 0 0 0 0 0 0 0 PTA7 Input Pull-up Read: PTAPUE7 Enable Register Write: (PTA7PUE) Reset: 0 0 0 0 0 0 0 0 Figure 13-1. I/O Port Register Summary Technical Data 218 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Introduction Table 13-1. Port Control Register Bits Summary Module Control Port Bit DDR Pin Module Control Bit 0 DDRA0 KBIE0 PTA0/KBI0 1 DDRA1 KBIE1 PTA1/KBI1 2 DDRA2 KBIE2 PTA2/KBI2 KBI A Register KBIER ($001B) 3 DDRA3 KBIE3 PTA3/KBI3 4 DDRA4 KBIE4 PTA4/KBI4 5 DDRA5 KBIE5 PTA5/KBI5 6 DDRA6 OSC KBI PTAPUE ($000D) KBIER ($001B) PTA6EN KBIE6 RCCLK/PTA6/KBI6(1) 7 DDRA7 KBI KBIER ($001B) KBIE7 PTA7/KBI7 0 DDRB0 PTB0/ADC0 1 DDRB1 PTB1/ADC1 2 DDRB2 PTB2/ADC2 3 DDRB3 B PTB3/ADC3 ADC ADSCR ($003C) ADCH[4:0] 4 DDRB4 PTB4/ADC4 5 DDRB5 PTB5/ADC5 6 DDRB6 PTB6/ADC6 7 DDRB7 PTB7/ADC7 0 DDRD0 PTD0/ADC11 1 DDRD1 PTD1/ADC10 ADC ADSCR ($003C) ADCH[4:0] 2 DDRD2 PTD2/ADC9 3 DDRD3 PTD3/ADC8 4 DDRD4 D T1SC0 ($0025) ELS0B:ELS0A PTD4/T1CH0 T1SC1 ($0028) ELS1B:ELS1A PTD5/T1CH1 SCC1 ($0013) ENSCI TIM1 5 DDRD5 6 DDRD6 PTD6/TxD SCI 7 DDRD7 0 DDRE0 PTD7/RxD T2SC0 ($0035) ELS0B:ELS0A PTE0/T2CH0 T2SC1 ($0038) ELS1B:ELS1A PTE1/T2CH1 TIM2 E 1 DDRE1 NOTES: 1. RCCLK/PTA6/KBI6 pin is only available when OSCSEL=0 (RC option); PTAPUE register has priority control over the port pin. RCCLK/PTA6/KBI6 is the OSC2 pin when OSCSEL=1 (XTAL option). MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 219 Input/Output (I/O) Ports 13.3 Port A Port A is an 8-bit special function port that shares all of its pins with the keyboard interrupt (KBI) module (see Section 15. Keyboard Interrupt Module (KBI)). Each port A pin also has software configurable pull-up device if the corresponding port pin is configured as input port. PTA0–PTA5 and PTA7 has direct LED drive capability. NOTE: PTA0–PTA5 pins are available on 28-pin and 32-pin packages only. PTA7 pin is available on 32-pin packages only. 13.3.1 Port A Data Register (PTA) The port A data register (PTA) contains a data latch for each of the eight port A pins. Address: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 Read: Write: Reset: Additional Functions: Unaffected by Reset LED (Sink) pull-up Alternative Functions: pull-up LED (Sink) LED (Sink) LED (Sink) LED (Sink) LED (Sink) LED (Sink) pull-up pull-up pull-up pull-up pull-up pull-up Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Figure 13-2. Port A Data Register (PTA) PTA[7:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBI7–KBI0 — Port A Keyboard Interrupts The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt control register (KBIER) enable the port A pins as external interrupt pins, (see Section 15. Keyboard Interrupt Module (KBI)). Technical Data 220 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port A 13.3.2 Data Direction Register A (DDRA) Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. NOTE: For those devices packaged in a 28-pin package, PTA7 is not connected. DDRA7 should be set to a 1 to configure PTA7 as an output. For those devices packaged in a 20-pin package, PTA0–PTA5 and PTA7 are not connected. DDRA0–DDRA5 and DDRA7 should be set to a 1 to configure PTA0–PTA5 and PTA7 as outputs. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 13-3. Data Direction Register A (DDRA) DDRA[7:0] — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 13-4 shows the port A I/O logic. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 221 Input/Output (I/O) Ports READ DDRA ($0004) PTAPUEx INTERNAL DATA BUS WRITE DDRA ($0004) RESET DDRAx WRITE PTA ($0000) PTAx PTAx READ PTA ($0000) To KBI Figure 13-4. Port A I/O Circuit When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-2 summarizes the operation of the port A pins. Table 13-2. Port A Pin Functions PTAPUE Bit DDRA Bit PTA Bit 1 0 X(1) 0 0 X 1 I/O Pin Mode Accesses to DDRA Accesses to PTA Read/Write Read Write Input, VDD(2) DDRA[7:0] Pin PTA[7:0](3) X Input, Hi-Z(4) DDRA[7:0] Pin PTA[7:0](3) X Output DDRA[7:0] PTA[7:0] PTA[7:0] NOTES: 1. X = Don’t care. 2. Pin pulled to VDD by internal pull-up. 3. Writing affects data register, but does not affect input. 4. Hi-Z = High impedance. Technical Data 222 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port A 13.3.3 Port A Input Pull-Up Enable Registers The port A input pull-up enable registers contain a software configurable pull-up device for each of the eight port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx be configured as input. Each pull-up device is automatically disabled when its corresponding DDRAx bit is configured as output. Address: $000D Bit 7 6 5 4 3 2 1 Bit 0 Read: PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Write: Reset: 0 0 0 0 0 0 0 0 Figure 13-5. Port A Input Pull-up Enable Register (PTAPUE) Address: $000E Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 Read: PTAPUE7 Write: Reset: 0 Figure 13-6. PTA7 Input Pull-up Enable Register (PTA7PUE) PTA6EN — Enable PTA6 on OSC2 This read/write bit configures the OSC2 pin function when RC oscillator option is selected. This bit has no effect for XTAL oscillator option. 1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and pull-up functions 0 = OSC2 pin outputs the RC oscillator clock (RCCLK) PTAPUE[7:0] — Port A Input Pull-up Enable Bits These read/write bits are software programmable to enable pull-up devices on port A pins. 1 = Corresponding port A pin configured to have internal pull-up if its DDRA bit is set to 0 0 = Pull-up device is disconnected on the corresponding port A pin regardless of the state of its DDRA bit MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 223 Input/Output (I/O) Ports 13.4 Port B Port B is an 8-bit special function port that shares all of its port pins with the analog-to-digital converter (ADC) module, see Section 12. 13.4.1 Port B Data Register (PTB) The port B data register contains a data latch for each of the eight port B pins. Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 ADC2 ADC2 ADC0 Read: Write: Reset: Alternative Functions: Unaffected by reset ADC7 ADC6 ADC5 ADC4 ADC3 Figure 13-7. Port B Data Register (PTB) PTB[7:0] — Port B Data Bits These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. ADC7–ADC0 — ADC channels 7 to 0 ADC7–ADC0 are pins used for the input channels to the analog-todigital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 12. Analog-to-Digital Converter (ADC). Technical Data 224 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port B 13.4.2 Data Direction Register B (DDRB) Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 13-8. Data Direction Register B (DDRB) DDRB[7:0] — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 13-9 shows the port B I/O logic. READ DDRB ($0005) INTERNAL DATA BUS WRITE DDRB ($0005) RESET DDRBx WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) To Analog-To-Digital Converter Figure 13-9. Port B I/O Circuit MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 225 Input/Output (I/O) Ports When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-3 summarizes the operation of the port B pins. Table 13-3. Port B Pin Functions I/O Pin Mode Accesses to DDRB Read/Write Read Write X(1) Input, Hi-Z(2) DDRB[7:0] Pin PTB[7:0](3) X Output DDRB[7:0] PTB[7:0] PTB[7:0] DDRB Bit PTB Bit 0 1 Accesses to PTB NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input. Technical Data 226 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port D 13.5 Port D Port D is an 8-bit special function port that shares two of its pins with the serial communications interface module (see Section 11.), two of its pins with the timer 1 interface module, (see Section 10.), and four of its pins with the analog-to-digital converter module (see Section 12.). PTD6 and PTD7 each has high current sink (25mA) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each has LED sink capability. NOTE: PTD0–PTD1 are available on 28-pin and 32-pin packages only. 13.5.1 Port D Data Register (PTD) The port D data register contains a data latch for each of the eight port D pins. Address: $0003 Bit 7 6 5 4 3 2 1 Bit 0 PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 ADC10 ADC11 Read: Write: Reset: Additional Functions Unaffected by reset LED (Sink) LED (Sink) LED (Sink) LED (Sink) ADC8 ADC9 25mA sink 25mA sink (Slow Edge) (Slow Edge) Alternative Functions: pull-up pull-up RxD TxD T1CH1 T1CH0 Figure 13-10. Port D Data Register (PTD) PTD[7:0] — Port D Data Bits These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 227 Input/Output (I/O) Ports ADC11–ADC8 — ADC channels 11 to 8 ADC[11:8] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 12. Analog-to-Digital Converter (ADC). T1CH1, T1CH0 — Timer 1 Channel I/Os The T1CH1 and T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD4/T1CH0 and PTD5/T1CH1 pins are timer channel I/O pins or general-purpose I/O pins. See Section 10. Timer Interface Module (TIM). TxD, RxD — SCI Data I/O Pins The TxD and RxD pins are the transmit data output and receive data input for the SCI module. The enable SCI bit, ENSCI, in the SCI control register 1 enables the PTD6/TxD and PTD7/RxD pins as SCI TxD and RxD pins and overrides any control from the port I/O logic. See Section 11. Serial Communications Interface (SCI). 13.5.2 Data Direction Register D (DDRD) Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer. NOTE: For those devices packaged in a 20-pin package, PTD0–PTD1 and are not connected. DDRD0–DDRD1 should be set to a 1 to configure PTD0–PTD1 as outputs. Address: $0007 Bit 7 6 5 4 3 2 1 Bit 0 DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 13-11. Data Direction Register D (DDRD) Technical Data 228 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port D DDRD[7:0] — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 13-12 shows the port D I/O logic. READ DDRD ($0007) PTDPU[6:7] INTERNAL DATA BUS WRITE DDRD ($0007) RESET DDRDx WRITE PTD ($0003) PTDx PTDx READ PTD ($0003) To ADC, TIM1, SCI Figure 13-12. Port D I/O Circuit When DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-4 summarizes the operation of the port D pins. Table 13-4. Port D Pin Functions DDRD Bit PTD Bit 0 X(1) 1 X I/O Pin Mode Accesses to DDRD Accesses to PTD Read/Write Read Write Input, Hi-Z(2) DDRD[7:0] Pin PTD[7:0](3) Output DDRD[7:0] PTD[7:0] PTD[7:0] NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 229 Input/Output (I/O) Ports 13.5.3 Port D Control Register (PDCR) The port D control register enables/disables the pull-up resistor and slow-edge high current capability of pins PTD6 and PTD7. Address: Read: $000A Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 SLOWD7 SLOWD6 PTDPU7 PTDPU6 Write: Reset: 0 0 0 0 0 0 0 0 Figure 13-13. Port D Control Register (PDCR) SLOWDx — Slow Edge Enable The SLOWD6 and SLOWD7 bits enable the slow-edge, open-drain, high current output (25mA sink) of port pins PTD6 and PTD7 respectively. DDRDx bit is not affected by SLOWDx. 1 = Slow edge enabled; pin is open-drain output 0 = Slow edge disabled; pin is push-pull (standard I/O) PTDPUx — Port D Pull-up Enable Bits The PTDPU6 and PTDPU7 bits enable the pull-up device on PTD6 and PTD7 respectively, regardless the status of DDRDx bit. 1 = Enable pull-up device 0 = Disable pull-up device Technical Data 230 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port E 13.6 Port E Port E is a 2-bit special function port that shares its pins with the timer 2 interface module (see Section 10.). NOTE: PTE0–PTE1 are available on 32-pin packages only. 13.6.1 Port E Data Register (PTE) The port E data register contains a data latch for each of the two port E pins. Address: $0008 Bit 7 6 5 4 3 2 1 Bit 0 PTE1 PTE0 T2CH1 T2CH0 Read: Write: Reset: Unaffected by reset Alternative Functions: Figure 13-14. Port E Data Register (PTE) PTE[1:0] — Port E Data Bits These read/write bits are software programmable. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. Reset has no effect on port D data. T2CH1, T2CH0 — Timer 2 Channel I/Os The T2CH1 and T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTE0/T2CH0 and PTE1/T2CH1 pins are timer channel I/O pins or general-purpose I/O pins. See Section 10. Timer Interface Module (TIM). MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 231 Input/Output (I/O) Ports 13.6.2 Data Direction Register E (DDRE) Data direction register E determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer. NOTE: For those devices packaged in a 20-pin package and 28-pin package, PTE0–PTE1 are not connected. DDRE0–DDRE1 should be set to a 1 to configure PTE0–PTE1 as outputs. Address: $000C Bit 7 6 5 4 3 2 1 Bit 0 DDRE1 DDRE0 0 0 Read: Write: Reset: 0 0 0 0 0 0 Figure 13-15. Data Direction Register E (DDRE) DDRE[1:0] — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE[1:0], configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input NOTE: Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 13-16 shows the port E I/O logic. Technical Data 232 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port E READ DDRE ($000C) INTERNAL DATA BUS WRITE DDRE ($000C) RESET DDREx WRITE PTE ($0008) PTEx PTEx READ PTE ($0008) To TIM2 Figure 13-16. Port E I/O Circuit When DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-5 summarizes the operation of the port E pins. Table 13-5. Port E Pin Functions DDRE Bit PTE Bit 0 X(1) 1 X I/O Pin Mode Accesses to DDRE Accesses to PTE Read/Write Read Write Input, Hi-Z(2) DDRE[1:0] Pin PTE[1:0](3) Output DDRE[1:0] PTE[1:0] PTE[1:0] NOTES: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Input/Output (I/O) Ports 233 Input/Output (I/O) Ports Technical Data 234 MC68HC908JL8 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Technical Data – MC68HC908JL8 Section 14. External Interrupt (IRQ) 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 14.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 14.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .239 14.6 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 239 14.2 Introduction The external interrupt (IRQ) module provides a maskable interrupt input. 14.3 Features Features of the IRQ module include the following: • A dedicated external interrupt pin (IRQ) • IRQ interrupt control bits • Hysteresis buffer • Programmable edge-only or edge and level interrupt sensitivity • Automatic interrupt acknowledge • Selectable internal pullup resistor MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data External Interrupt (IRQ) 235 External Interrupt (IRQ) 14.4 Functional Description A logic zero applied to the external interrupt pin can latch a CPU interrupt request. Figure 14-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch. • Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic one to the ACK bit clears the IRQ latch. • Reset — A reset automatically clears the interrupt latch. The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs. When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set until both of the following occur: • Vector fetch or software clear • Return of the interrupt pin to logic one The vector fetch or software clear may occur before or after the interrupt pin returns to logic one. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear. Technical Data 236 MC68HC908JL8 — Rev. 2.0 External Interrupt (IRQ) MOTOROLA External Interrupt (IRQ) Functional Description NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. (See 7.6 Exception Control.) RESET INTERNAL ADDRESS BUS ACK TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD IRQPUD INTERNAL PULLUP DEVICE VDD IRQF D CLR Q IRQ INTERRUPT REQUEST SYNCHRONIZER CK IRQ IMASK MODE TO MODE SELECT LOGIC HIGH VOLTAGE DETECT Figure 14-1. IRQ Module Block Diagram Addr. $001D Register Name Read: IRQ Status and Control Register Write: (INTSCR) Reset: Bit 7 6 5 4 3 2 0 0 0 0 IRQF 0 1 Bit 0 IMASK MODE 0 0 ACK 0 0 0 0 0 0 = Unimplemented Figure 14-2. IRQ I/O Register Summary 14.4.1 IRQ Pin A logic zero on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data External Interrupt (IRQ) 237 External Interrupt (IRQ) If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic one to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ pin to logic one — As long as the IRQ pin is at logic zero, IRQ remains active. The vector fetch or software clear and the return of the IRQ pin to logic one may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic zero. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ pin. NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. NOTE: An internal pull-up resistor to VDD is connected to the IRQ pin; this can be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E). Technical Data 238 MC68HC908JL8 — Rev. 2.0 External Interrupt (IRQ) MOTOROLA External Interrupt (IRQ) IRQ Module During Break Interrupts 14.5 IRQ Module During Break Interrupts The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See Section 7. System Integration Module (SIM).) To allow software to clear the IRQ latch during a break interrupt, write a logic one to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latches during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ latch. 14.6 IRQ Status and Control Register (INTSCR) The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR has the following functions: • Shows the state of the IRQ flag • Clears the IRQ latch • Masks IRQ and interrupt request • Controls triggering sensitivity of the IRQ interrupt pin Address: Read: $001D Bit 7 6 5 4 3 0 0 0 0 IRQF Write: Reset: 2 1 Bit 0 IMASK MODE 0 0 ACK 0 0 0 0 0 0 = Unimplemented Figure 14-3. IRQ Status and Control Register (INTSCR) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data External Interrupt (IRQ) 239 External Interrupt (IRQ) IRQF — IRQ Flag Bit This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK — IRQ Interrupt Request Acknowledge Bit Writing a logic one to this write-only bit clears the IRQ latch. ACK always reads as logic zero. Reset clears ACK. IMASK — IRQ Interrupt Mask Bit Writing a logic one to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only Address: $001E Bit 7 6 5 4 3 2 1 Bit 0 IRQPUD R R LVIT1 LVIT0 R R R Reset: 0 0 0 Not affected Not affected 0 0 0 POR: 0 0 0 0 0 0 0 0 Read: Write: R = Reserved Figure 14-4. Configuration Register 2 (CONFIG2) IRQPUD — IRQ Pin Pull-Up Disable Bit IRQPUD disconnects the internal pull-up on the IRQ pin. 1 = Internal pull-up is disconnected 0 = Internal pull-up is connected between IRQ pin and VDD Technical Data 240 MC68HC908JL8 — Rev. 2.0 External Interrupt (IRQ) MOTOROLA Technical Data – MC68HC908JL8 Section 15. Keyboard Interrupt Module (KBI) 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 15.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 15.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 246 15.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 247 15.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 15.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .248 15.2 Introduction The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pull-up device is also enabled on the pin. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Keyboard Interrupt Module (KBI) 241 Keyboard Interrupt Module (KBI) 15.3 Features Features of the keyboard interrupt module include the following: • Eight keyboard interrupt pins with pull-up devices • Separate keyboard interrupt enable bits and one keyboard interrupt mask • Programmable edge-only or edge- and level- interrupt sensitivity • Exit from low-power modes Addr. Register Name $001A Read: Keyboard Status and Control Register Write: (KBSCR) Reset: $001B Read: Keyboard Interrupt Enable Register Write: (KBIER) Reset: Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 1 Bit 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 = Unimplemented Figure 15-1. KBI I/O Register Summary 15.4 I/O Pins The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins are listed in Table 15-1. The generic pin name appear in the text that follows. Table 15-1. Pin Name Conventions KBI Generic Pin Name Full MCU Pin Name Pin Selected for KBI Function by KBIEx Bit in KBIER KBI0–KBI5 PTA0/KBI0–PTA5/KBI5 KBIE0–KBIE5 KBI6 OSC2/RCCLK/PTA6/KBI6(1) KBIE6 KBI7 PTA7/KBI7 KBIE7 NOTES: 1. PTA6/KBI6 is only available when OSCSEL=0 at $FFD0 (RC option), and PTA6EN=1 at $000D. Technical Data 242 MC68HC908JL8 — Rev. 2.0 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) Functional Description 15.5 Functional Description INTERNAL BUS KBI0 ACKK VDD VECTOR FETCH DECODER KEYF RESET . KBIE0 D CLR Q SYNCHRONIZER . CK TO PULLUP ENABLE . KEYBOARD INTERRUPT FF KBI7 Keyboard Interrupt Request IMASKK MODEK KBIE7 TO PULLUP ENABLE Figure 15-2. Keyboard Interrupt Block Diagram Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pull-up device regardless of PTAPUEx bits in the port A input pull-up enable register (see 13.3.3 Port A Input Pull-Up Enable Registers). A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low. If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request: MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Keyboard Interrupt Module (KBI) 243 Keyboard Interrupt Module (KBI) • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. • Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, disable the pullup device, use the data direction register to configure the pin as an input and then read the data register. NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. Technical Data 244 MC68HC908JL8 — Rev. 2.0 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) Keyboard Interrupt Registers 15.5.1 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction register A. 2. Write logic 1’s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 15.6 Keyboard Interrupt Registers Two registers control the operation of the keyboard interrupt module: • Keyboard status and control register • Keyboard interrupt enable register MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Keyboard Interrupt Module (KBI) 245 Keyboard Interrupt Module (KBI) 15.6.1 Keyboard Status and Control Register • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity Address: Read: $001A Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 Write: Reset: 1 Bit 0 IMASKK MODEK 0 0 ACKK 0 0 0 0 0 0 = Unimplemented Figure 15-3. Keyboard Status and Control Register (KBSCR) KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending on port A. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request on port A. ACKK always reads as logic 0. Reset clears ACKK. IMASKK— Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port A. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only Technical Data 246 MC68HC908JL8 — Rev. 2.0 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) Low-Power Modes 15.6.2 Keyboard Interrupt Enable Register The port-A keyboard interrupt enable register enables or disables each port-A pin to operate as a keyboard interrupt pin. Address: $001B Bit 7 6 5 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 15-4. Keyboard Interrupt Enable Register (KBIER) KBIE7–KBIE0 — Port-A Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin on port-A to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin 15.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 15.7.1 Wait Mode The keyboard modules remain active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 15.7.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Keyboard Interrupt Module (KBI) 247 Keyboard Interrupt Module (KBI) 15.8 Keyboard Module During Break Interrupts The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. Technical Data 248 MC68HC908JL8 — Rev. 2.0 Keyboard Interrupt Module (KBI) MOTOROLA Technical Data – MC68HC908JL8 Section 16. Computer Operating Properly (COP) 16.1 Contents 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 16.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 16.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 252 16.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 16.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 16.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .254 16.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG1 register. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Computer Operating Properly (COP) 249 Computer Operating Properly (COP) 16.3 Functional Description Figure 16-1 shows the structure of the COP module. SIM RESET VECTOR FETCH RESET STATUS REGISTER COP TIMEOUT CLEAR STAGES 5–12 CLEAR ALL STAGES INTERNAL RESET SOURCES(1) SIM RESET CIRCUIT 12-BIT SIM COUNTER ICLK COPCTL WRITE COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COPD (FROM CONFIG1) RESET COPCTL WRITE CLEAR COP COUNTER COP RATE SEL (COPRS FROM CONFIG1) NOTE: 1. See SIM section for more details. Figure 16-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 ICLK cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the SIM counter. NOTE: Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. Technical Data 250 MC68HC908JL8 — Rev. 2.0 Computer Operating Properly (COP) MOTOROLA Computer Operating Properly (COP) I/O Signals A COP reset pulls the RST pin low for 32 × ICLK cycles and sets the COP bit in the reset status register (RSR). (See 7.8.2 Reset Status Register (RSR).). NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 16.4 I/O Signals The following paragraphs describe the signals shown in Figure 16-1. 16.4.1 ICLK ICLK is the internal oscillator output signal, typically 50-kHz. The ICLK frequency varies depending on the supply voltage. See Section 19. Electrical Specifications for ICLK parameters. 16.4.2 COPCTL Write Writing any value to the COP control register (COPCTL) (see 16.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector. 16.4.3 Power-On Reset The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × ICLK cycles after power-up. 16.4.4 Internal Reset An internal reset clears the SIM counter and the COP counter. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Computer Operating Properly (COP) 251 Computer Operating Properly (COP) 16.4.5 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter. 16.4.6 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register 1 (CONFIG1). (See Section 5. Configuration and Mask Option Registers (CONFIG & MOR).) 16.4.7 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1. Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 COPRS R R LVID R SSREC STOP COPD 0 0 0 0 0 0 0 0 Read: Write: Reset: R = Reserved Figure 16-2. Configuration Register 1 (CONFIG1) COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. 1 = COP timeout period is (213 – 24) ICLK cycles 0 = COP timeout period is (218 – 24) ICLK cycles COPD — COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled Technical Data 252 MC68HC908JL8 — Rev. 2.0 Computer Operating Properly (COP) MOTOROLA Computer Operating Properly (COP) COP Control Register 16.5 COP Control Register The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 16-3. COP Control Register (COPCTL) 16.6 Interrupts The COP does not generate CPU interrupt requests. 16.7 Monitor Mode The COP is disabled in monitor mode when VTST is present on the IRQ pin or on the RST pin. 16.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low-power consumption standby modes. 16.8.1 Wait Mode The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Computer Operating Properly (COP) 253 Computer Operating Properly (COP) 16.8.2 Stop Mode Stop mode turns off the ICLK input to the COP if the STOP_ICLKDIS bit is set in configuration register 2 (CONFIG2). Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. After reset, the STOP_ICLKDIS bit is clear by default and ICLK is enabled during stop mode. 16.9 COP Module During Break Mode The COP is disabled during a break interrupt when VTST is present on the RST pin. Technical Data 254 MC68HC908JL8 — Rev. 2.0 Computer Operating Properly (COP) MOTOROLA Technical Data – MC68HC908JL8 Section 17. Low Voltage Inhibit (LVI) 17.1 Contents 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 17.5 LVI Control Register (CONFIG2/CONFIG1) . . . . . . . . . . . . . . 257 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 17.2 Introduction This section describes the low-voltage inhibit module (LVI), which monitors the voltage on the VDD pin and generates a reset when the VDD voltage falls to the LVI trip (LVITRIP) voltage. 17.3 Features Features of the LVI module include the following: • Selectable LVI trip voltage • Selectable LVI circuit disable MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Low Voltage Inhibit (LVI) 255 Low Voltage Inhibit (LVI) 17.4 Functional Description Figure 17-1 shows the structure of the LVI module. The LVI is enabled after a reset. The LVI module contains a bandgap reference circuit and comparator. Setting LVI disable bit (LVID) disables the LVI to monitor VDD voltage. The LVI trip voltage selection bits (LVIT1, LVIT0) determine at which VDD level the LVI module should take actions. The LVI module generates one output signal: LVI Reset — an reset signal will be generated to reset the CPU when VDD drops to below the set trip point. VDD LVID VDD > LVITRIP = 0 LVI RESET VDD < LVITRIP = 1 LOW VDD DETECTOR LVIT1 LVIT0 Figure 17-1. LVI Module Block Diagram Technical Data 256 MC68HC908JL8 — Rev. 2.0 Low Voltage Inhibit (LVI) MOTOROLA Low Voltage Inhibit (LVI) LVI Control Register (CONFIG2/CONFIG1) 17.5 LVI Control Register (CONFIG2/CONFIG1) The LVI module is controlled by three bits in the configuration registers, CONFIG1 and CONFIG2. Address: $001E Bit 7 6 5 4 3 2 1 Bit 0 IRQPUD R R LVIT1 LVIT0 R R STOP_ ICLKDIS Reset: 0 0 0 Not affected Not affected 0 0 0 POR: 0 0 0 0 0 0 0 0 Read: Write: Figure 17-2. Configuration Register 2 (CONFIG2) Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 COPRS R R LVID R SSREC STOP COPD 0 0 0 0 0 0 0 0 Read: Write: Reset: R = Reserved Figure 17-3. Configuration Register 1 (CONFIG1) LVID — Low Voltage Inhibit Disable Bit LVID disables the LVI module. Reset clears LVID. 1 = Low voltage inhibit disabled 0 = Low voltage inhibit enabled LVIT1, LVIT0 — LVI Trip Voltage Selection Bits These two bits determine at which level of VDD the LVI module will come into action. LVIT1 and LVIT0 are cleared by a power-on reset only. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Low Voltage Inhibit (LVI) 257 Low Voltage Inhibit (LVI) Table 17-1. Trip Voltage Selection LVIT1 LVIT0 Trip Voltage(1) Comments 0 0 VLVR3 (2.49V) For VDD =3V operation 0 1 VLVR3 (2.49V) For VDD =3V operation 1 0 VLVR5 (4.25V) For VDD =5V operation 1 1 Reserved NOTES: 1. See Section 19. Electrical Specifications for full parameters. 17.6 Low-Power Modes The STOP and WAIT instructions put the MCU in low-powerconsumption standby modes. 17.6.1 Wait Mode The LVI module, when enabled, will continue to operate in wait mode. 17.6.2 Stop Mode The LVI module, when enabled, will continue to operate in stop mode. Technical Data 258 MC68HC908JL8 — Rev. 2.0 Low Voltage Inhibit (LVI) MOTOROLA Technical Data – MC68HC908JL8 Section 18. Break Module (BREAK) 18.1 Contents 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . .262 18.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 18.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . . 263 18.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .264 18.5.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 18.5.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 266 18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 18.2 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Break Module (BREAK) 259 Break Module (BREAK) 18.3 Features Features of the break module include the following: • Accessible I/O registers during the break Interrupt • CPU-generated break interrupts • Software-generated break interrupts • COP disabling during break interrupts 18.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic one to the BRKA bit in the break status and control register. When a CPU generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return from interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 18-1 shows the structure of the break module. Technical Data 260 MC68HC908JL8 — Rev. 2.0 Break Module (BREAK) MOTOROLA Break Module (BREAK) Functional Description IAB[15:8] BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB[15:0] BKPT (TO SIM) CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB[7:0] Figure 18-1. Break Module Block Diagram Addr. $FE00 Register Name Read: Break Status Register Write: (BSR) Reset: Read: Break Flag Control Register Write: (BFCR) Reset: $FE03 $FE0C Read: Break Address High Register Write: (BRKH) Reset: $FE0D Read: Break Address low Register Write: (BRKL) Reset: Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset: Note: Writing a logic 0 clears SBSW. Bit 7 6 5 4 3 2 R R R R R R 1 SBSW See note Bit 0 R 0 BCFE R R R R R R R Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented R 0 = Reserved Figure 18-2. Break I/O Register Summary MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Break Module (BREAK) 261 Break Module (BREAK) 18.4.1 Flag Protection During Break Interrupts The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 7.8.3 Break Flag Control Register (BFCR) and see the Break Interrupts subsection for each module.) 18.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 18.4.3 TIM During Break Interrupts A break interrupt stops the timer counter. 18.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin. 18.5 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • Break status register (BSR) • Break flag control register (BFCR) Technical Data 262 MC68HC908JL8 — Rev. 2.0 Break Module (BREAK) MOTOROLA Break Module (BREAK) Break Module Registers 18.5.1 Break Status and Control Register (BRKSCR) The break status and control register contains break module enable and status bits. Address: $FE0E Bit 7 6 BRKE BRKA 0 0 Read: 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 18-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic zero to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic one to BRKA generates a break interrupt. Clear BRKA by writing a logic zero to it before exiting the break routine. Reset clears the BRKA bit. 1 = Break address match 0 = No break address match MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Break Module (BREAK) 263 Break Module (BREAK) 18.5.2 Break Address Registers The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: $FE0C Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-4. Break Address Register High (BRKH) Address: $FE0D Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 18-5. Break Address Register Low (BRKL) 18.5.3 Break Status Register The break status register contains a flag to indicate that a break caused an exit from stop or wait mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: 1 Bit 0 SBSW Write: Note(1) Reset: 0 R = Reserved R 1. Writing a logic zero clears SBSW. Figure 18-6. Break Status Register (BSR) Technical Data 264 MC68HC908JL8 — Rev. 2.0 Break Module (BREAK) MOTOROLA Break Module (BREAK) Break Module Registers SBSW — SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the ; break service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited ; by break. TST LOBYTE,SP ; If RETURNLO is not zero, BNE DOLO ; then just decrement low byte. DEC HIBYTE,SP ; Else deal with high byte, too. DOLO DEC LOBYTE,SP ; Point to WAIT/STOP opcode. RETURN PULH RTI ; Restore H register. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Break Module (BREAK) 265 Break Module (BREAK) 18.5.4 Break Flag Control Register (BFCR) The break control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 18-7. Break Flag Control Register (BFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break 18.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes. 18.6.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see 7.7 Low-Power Modes). Clear the SBSW bit by writing logic zero to it. 18.6.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. See 7.8 SIM Registers. Technical Data 266 MC68HC908JL8 — Rev. 2.0 Break Module (BREAK) MOTOROLA Technical Data – MC68HC908JL8 Section 19. Electrical Specifications 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 19.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .268 19.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.6 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 270 19.7 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 19.8 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 272 19.9 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 273 19.10 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 19.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 275 19.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 19.13 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 277 19.14 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 19.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 19.2 Introduction This section contains electrical and timing specifications. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Electrical Specifications 267 Electrical Specifications 19.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to Sections 19.6 and 19.9 for guaranteed operating conditions. Table 19-1. Absolute Maximum Ratings Characteristic(1) Symbol Value Unit Supply voltage VDD –0.3 to +6.0 V Input voltage VIN VSS –0.3 to VDD +0.3 V VTST VSS –0.3 to +8.5 V I ± 25 mA Storage temperature TSTG –55 to +150 °C Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Mode entry voltage, IRQ pin Maximum current per pin excluding VDD and VSS NOTES: 1. Voltages referenced to VSS. NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.) Technical Data 268 MC68HC908JL8 — Rev. 2.0 Electrical Specifications MOTOROLA Electrical Specifications Functional Operating Range 19.4 Functional Operating Range Table 19-2. Operating Range Characteristic Operating temperature range Operating voltage range Symbol Value Unit TA – 40 to +125 – 40 to +85 °C VDD — 5 ± 10% 3 ± 10% 5 ± 10% V 19.5 Thermal Characteristics Table 19-3. Thermal Characteristics Characteristic Symbol Value Unit Thermal resistance 20-pin PDIP 20-pin SOIC 28-pin PDIP 28-pin SOIC 32-pin SDIP 32-pin LQFP θJA I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD × VDD) + PI/O = K/(TJ + 273 °C) W Constant(2) K Average junction temperature TJ 70 70 70 70 70 95 °C/W PD x (TA + 273 °C) + PD2 × θJA TA + (PD × θJA) W/°C °C NOTES: 1. Power dissipation is a function of temperature. 2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Electrical Specifications 269 Electrical Specifications 19.6 5V DC Electrical Characteristics Table 19-4. DC Electrical Characteristics (5V) Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –2.0mA) PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1 VOH VDD –0.8 — — V Output low voltage (ILOAD = 1.6mA) PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5, PTE0–PTE1 VOL — — 0.4 V Output low voltage (ILOAD = 25mA) PTD6, PTD7 VOL — — 0.5 V LED drives (VOL = 3V) PTA0–PTA5, PTA7, PTD2, PTD3, PTD6, PTD7 IOL 10 16 25 mA Input high voltage PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1, RST, IRQ, OSC1 VIH 0.7 × VDD — VDD V Input low voltage PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1, RST, IRQ, OSC1 VIL VSS — 0.3 × VDD V — — 7.5 11 10 13 mA mA — — 3 3.5 5.5 6 mA mA — — 1.5 0.5 8 3 µA µA VDD supply current, fOP = 8MHz Run(3) XTAL oscillator option RC oscillator option Wait(4) XTAL oscillator option RC oscillator option Stop(5) (–40°C to 125°C) XTAL oscillator option RC oscillator option IDD Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR rearm voltage(6) VPOR 0 — 100 mV POR rise time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VTST 1.5 × VDD — 8.5 V Technical Data 270 MC68HC908JL8 — Rev. 2.0 Electrical Specifications MOTOROLA Electrical Specifications 5V Control Timing Table 19-4. DC Electrical Characteristics (5V) Characteristic(1) Symbol Min Typ(2) Max Unit RPU1 RPU2 1.8 16 3.3 26 4.8 36 kΩ kΩ Low-voltage inhibit, trip falling voltage VTRIPF 3.60 4.25 4.48 V Low-voltage inhibit, trip rising voltage VTRIPR 3.75 4.40 4.63 V Pullup resistors(8) PTD6, PTD7 RST, IRQ, PTA0–PTA7 NOTES: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source (fOP = 8MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 8MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V. 19.7 5V Control Timing Table 19-5. Control Timing (5V) Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 8 MHz RST input pulse width low(3) tIRL 750 — ns fT2CLK — 4 MHz TIM2 external clock input NOTES: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Electrical Specifications 271 Electrical Specifications 19.8 5V Oscillator Characteristics Table 19-6. Oscillator Specifications (5V) Characteristic Symbol Internal oscillator clock frequency fICLK External reference clock to OSC1 (2) fOSC Crystal reference frequency (3) Min Typ Max 50k(1) dc fXTALCLK Hz — 32M Hz — 32M Hz Crystal load capacitance (4) CL — — — Crystal fixed capacitance (3) C1 — 2 × CL — Crystal tuning capacitance (3) C2 — 2 × CL — Feedback bias resistor RB — 10 MΩ — Series resistor (3), (5) RS — — — fRCCLK 2M — 12M External RC clock frequency RC oscillator external R REXT RC oscillator external C CEXT Unit Hz Ω See Figure 19-1 — 10 — pF NOTES: 1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only. See Figure 19-3 for plot. 2. No more than 10% duty cycle deviation from 50%. 3. Fundamental mode crystals only. 4. Consult crystal vendor data sheet. 5. Not required for high frequency crystals. RC frequency, fRCCLK (MHz) 14 12 CEXT = 10 pF 10 MCU 5V @ 25 °C OSC1 8 6 VDD 4 REXT CEXT 2 0 0 10 20 30 Resistor, REXT (kΩ) 40 50 Figure 19-1. RC vs. Frequency (5V @25°C) Technical Data 272 MC68HC908JL8 — Rev. 2.0 Electrical Specifications MOTOROLA Electrical Specifications 3V DC Electrical Characteristics 19.9 3V DC Electrical Characteristics Table 19-7. DC Electrical Characteristics (3V) Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –1.0mA) PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1 VOH VDD – 0.4 — — V Output low voltage (ILOAD = 0.8mA) PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5, PTE0–PTE1 VOL — — 0.4 V Output low voltage (ILOAD = 20mA) PTD6, PTD7 VOL — — 0.5 V LED drives (VOL = 1.8V) PTA0–PTA5, PTA7, PTD2, PTD3, PTD6, PTD7 IOL 3 8 12 mA Input high voltage PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1, RST, IRQ, OSC1 VIH 0.7 × VDD — VDD V Input low voltage PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1,RST, IRQ, OSC1 VIL VSS — 0.3 × VDD V — — 3 4 8 10 mA mA — — 1 2 4.5 6 mA mA — — 0.5 0.3 5 2 µA µA VDD supply current, fOP = 4MHz Run(3) XTAL oscillator option RC oscillator option Wait(4) XTAL oscillator option RC oscillator option Stop(5) (–40°C to 85°C) XTAL oscillator option RC oscillator option IDD Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR rearm voltage(6) VPOR 0 — 100 mV POR rise time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VTST 1.5 × VDD — 8.5 V MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Electrical Specifications 273 Electrical Specifications Table 19-7. DC Electrical Characteristics (3V) Characteristic(1) Symbol Min Typ(2) Max Unit Pullup resistors(8) PTD6, PTD7 RST, IRQ, PTA0–PTA7 RPU1 RPU2 1.8 16 3.3 26 4.8 36 kΩ kΩ Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI) VLVI3 2.18 2.49 2.68 V NOTES: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V. 19.10 3V Control Timing Table 19-8. Control Timing (3V) Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 4 MHz RST input pulse width low(3) tIRL 1.5 — µs fT2CLK — 2 MHz TIM2 external clock input NOTES: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. Technical Data 274 MC68HC908JL8 — Rev. 2.0 Electrical Specifications MOTOROLA Electrical Specifications 3V Oscillator Characteristics 19.11 3V Oscillator Characteristics Table 19-9. Oscillator Specifications (3V) Characteristic Symbol Internal oscillator clock frequency fICLK External reference clock to OSC1 (2) fOSC Crystal reference frequency (3) Min Typ Max 45k(1) dc fXTALCLK Hz — 16M Hz — 16M Hz Crystal load capacitance (4) CL — — — Crystal fixed capacitance (3) C1 — 2 × CL — Crystal tuning capacitance (3) C2 — 2 × CL — Feedback bias resistor RB — 10 MΩ — Series resistor (3), (5) RS — — — fRCCLK 2M — 10M External RC clock frequency RC oscillator external R REXT RC oscillator external C CEXT Unit Hz Ω See Figure 19-2 — 10 — pF NOTES: 1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only. See Figure 19-3 for plot. 2. No more than 10% duty cycle deviation from 50%. 3. Fundamental mode crystals only. 4. Consult crystal vendor data sheet. 5. Not required for high frequency crystals. RC frequency, fRCCLK (MHz) 14 12 CEXT = 10 pF 10 MCU 3V @ 25 °C OSC1 8 6 VDD REXT 4 CEXT 2 0 0 10 20 30 Resistor, REXT (kΩ) 40 50 Figure 19-2. RC vs. Frequency (3V @25°C) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Electrical Specifications 275 Internal OSC frequency, fICLK (kHz) Electrical Specifications 70 60 –40 °C 50 +25 °C 40 +85 °C +125 °C 30 20 2 3 4 5 Supply Voltage, VDD (V) 6 Figure 19-3. Internal Oscillator Frequency 19.12 Typical Supply Currents IDD (mA) 10 XTAL oscillator option 8 5.5 V 3.3 V 6 4 2 0 0 1 2 3 4 5 6 fOP or fBUS (MHz) 7 8 9 Figure 19-4. Typical Operating IDD (XTAL osc), with All Modules Turned On (25 °C) 5 XTAL oscillator option IDD (mA) 4 5.5 V 3.3 V 3 2 1 0 0 1 2 3 4 5 6 fOP or fBUS (MHz) 7 8 9 Figure 19-5. Typical Wait Mode IDD (XTAL osc), with All Modules Turned Off (25 °C) Technical Data 276 MC68HC908JL8 — Rev. 2.0 Electrical Specifications MOTOROLA Electrical Specifications Timer Interface Module Characteristics 19.13 Timer Interface Module Characteristics Table 19-10. Timer Interface Module Characteristics (5V and 3V) Characteristic Input capture pulse width Input clock pulse width (T2CLK pulse width) Symbol Min Max tTIH, tTIL 1/fOP — tLMIN, tHMIN (1/fOP) + 5ns — Unit 19.14 ADC Characteristics Table 19-11. ADC Characteristics (5V and 3V) Characteristic Symbol Min Max Unit Supply voltage VDDAD 2.7 (VDD min) 5.5 (VDD max) V Input voltages VADIN VSS VDD V Resolution BAD 8 8 Bits Absolute accuracy AAD ± 0.5 ± 1.5 LSB Includes quantization ADC internal clock fADIC 0.5 1.048 MHz tAIC = 1/fADIC, tested only at 1 MHz Conversion range RAD VSS VDD V Power-up time tADPU 16 Conversion time tADC 14 15 tAIC cycles Sample time(1) tADS 5 — tAIC cycles Zero input reading(2) ZADI 00 01 Hex VIN = VSS Full-scale reading(3) FADI FE FF Hex VIN = VDD Input capacitance CADI — (20) 8 pF Not tested — — ±1 µA Input leakage(3) Port B/port D Comments tAIC cycles NOTES: 1. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling. 2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 3. The external system error caused by input leakage current is approximately equal to the product of R source and input current. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Electrical Specifications 277 Electrical Specifications 19.15 Memory Characteristics Table 19-12. Memory Characteristics Characteristic Symbol Min Max Unit VRDR 1.3 — V — 1 — MHz FLASH read bus clock frequency fread(1) 32k 8M Hz FLASH page erase time terase(2) 4 — ms FLASH mass erase time tmerase(3) 4 — ms FLASH PGM/ERASE to HVEN set up time tnvs 10 — µs FLASH high-voltage hold time tnvh 5 — µs FLASH high-voltage hold time (mass erase) tnvhl 100 — µs FLASH program hold time tpgs 5 — µs FLASH program time tprog 30 40 µs FLASH return to read time trcv(4) 1 — µs FLASH cumulative program hv period tHV(5) — 4 ms — 10k — cycles — 10k — cycles — 10 — years RAM data retention voltage FLASH program bus clock frequency FLASH row erase endurance(6) FLASH row program endurance FLASH data retention time(8) (7) NOTES: 1. fread is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than terase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tmerase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tprog × 32) ≤ tHV max. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified. Technical Data 278 MC68HC908JL8 — Rev. 2.0 Electrical Specifications MOTOROLA Technical Data – MC68HC908JL8 Section 20. Mechanical Specifications 20.1 Contents 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.3 20-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 280 20.4 20-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 280 20.5 28-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 281 20.6 28-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 281 20.7 32-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 282 20.8 32-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 283 20.2 Introduction This section gives the dimensions for: • 20-pin plastic dual in-line package (case #738) • 20-pin small outline integrated circuit package (case #751D) • 28-pin plastic dual in-line package (case #710) • 28-pin small outline integrated circuit package (case #751F) • 32-pin shrink dual in-line package (case #1376) • 32-pin low-profile quad flat pack (case #873A) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Mechanical Specifications 279 Mechanical Specifications 20.3 20-Pin Plastic Dual In-Line Package (PDIP) –A– 20 11 1 10 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. B L C –T– DIM A B C D E F G J K L M N K SEATING PLANE M N E G F J D 20 PL 0.25 (0.010) 20 PL 0.25 (0.010) M T A M T B M M INCHES MIN MAX 1.010 1.070 0.240 0.260 0.150 0.180 0.015 0.022 0.050 BSC 0.050 0.070 0.100 BSC 0.008 0.015 0.110 0.140 0.300 BSC 0_ 15 _ 0.020 0.040 MILLIMETERS MIN MAX 25.66 27.17 6.10 6.60 3.81 4.57 0.39 0.55 1.27 BSC 1.27 1.77 2.54 BSC 0.21 0.38 2.80 3.55 7.62 BSC 0_ 15_ 0.51 1.01 Figure 20-1. 20-Pin PDIP (Case #738) 20.4 20-Pin Small Outline Integrated Circuit Package (SOIC) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 20 11 –B– 10X P 0.010 (0.25) 1 M B M 10 20X D 0.010 (0.25) M T A B S J S F R X 45 _ C –T– 18X G K SEATING PLANE DIM A B C D F G J K M P R MILLIMETERS MIN MAX 12.65 12.95 7.40 7.60 2.35 2.65 0.35 0.49 0.50 0.90 1.27 BSC 0.25 0.32 0.10 0.25 0_ 7_ 10.05 10.55 0.25 0.75 INCHES MIN MAX 0.499 0.510 0.292 0.299 0.093 0.104 0.014 0.019 0.020 0.035 0.050 BSC 0.010 0.012 0.004 0.009 0_ 7_ 0.395 0.415 0.010 0.029 M Figure 20-2. 20-Pin SOIC (Case #751D) Technical Data 280 MC68HC908JL8 — Rev. 2.0 Mechanical Specifications MOTOROLA Mechanical Specifications 28-Pin Plastic Dual In-Line Package (PDIP) 20.5 28-Pin Plastic Dual In-Line Package (PDIP) 28 NOTES: 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 15 B DIM A B C D F G H J K L M N 14 1 L C A N H G F M K D J SEATING PLANE MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 1.02 1.52 2.54 BSC 1.65 2.16 0.20 0.38 2.92 3.43 15.24 BSC 0° 15° 0.51 1.02 INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.040 0.060 0.100 BSC 0.065 0.085 0.008 0.015 0.115 0.135 0.600 BSC 0° 15° 0.020 0.040 Figure 20-3. 28-Pin PDIP (Case #710) 20.6 28-Pin Small Outline Integrated Circuit Package (SOIC) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. -A15 28 14X -B1 P 0.010 (0.25) M B M 14 28X D 0.010 (0.25) M T A S B M S R X 45 C 26X -T- G SEATING PLANE K F J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 17.80 18.05 7.40 7.60 2.35 2.65 0.35 0.49 0.41 0.90 1.27 BSC 0.23 0.32 0.13 0.29 0° 8° 10.01 10.55 0.25 0.75 INCHES MIN MAX 0.701 0.711 0.292 0.299 0.093 0.104 0.014 0.019 0.016 0.035 0.050 BSC 0.009 0.013 0.005 0.011 0° 8° 0.395 0.415 0.010 0.029 Figure 20-4. 28-Pin SOIC (Case #751F) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Mechanical Specifications 281 Mechanical Specifications 20.7 32-Pin Shrink Dual In-Line Package (SDIP) 3 27.9 27.8 A B 32 17 10.46 9.86 8.9 8.8 1 4.35 4.05 0.75 0.45 3 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5, 1994. 3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. 4. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. 16 30X 1.778 2X 0.889 C 2.49 2.39 C 32X 0.13 M 0.5 0.4 4 T A B T SEATING PLANE 10 ° 0° 0.34 0.22 SECTION C–C Figure 20-5. 32-Pin SDIP (Case #1376) Technical Data 282 MC68HC908JL8 — Rev. 2.0 Mechanical Specifications MOTOROLA Mechanical Specifications 32-Pin Low-Profile Quad Flat Pack (LQFP) A –T–, –U–, –Z– 20.8 32-Pin Low-Profile Quad Flat Pack (LQFP) 4X A1 32 0.20 (0.008) AB T–U Z 25 1 –U– –T– B V AE P B1 DETAIL Y 17 8 V1 AE DETAIL Y 9 4X –Z– 9 0.20 (0.008) AC T–U Z S1 S DETAIL AD G –AB– 0.10 (0.004) AC AC T–U Z –AC– BASE METAL ÉÉ ÉÉ ÉÉ ÉÉ F 8X M_ R M N D J 0.20 (0.008) SEATING PLANE SECTION AE–AE W K X DETAIL AD Q_ GAUGE PLANE H 0.250 (0.010) C E NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –AB– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –T–, –U–, AND –Z– TO BE DETERMINED AT DATUM PLANE –AB–. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –AC–. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –AB–. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION. DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.500 0.700 12_ REF 0.090 0.160 0.400 BSC 1_ 5_ 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.020 0.028 12_ REF 0.004 0.006 0.016 BSC 1_ 5_ 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF Figure 20-6. 32-Pin LQFP (Case #873A) MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Mechanical Specifications 283 Mechanical Specifications Technical Data 284 MC68HC908JL8 — Rev. 2.0 Mechanical Specifications MOTOROLA Technical Data – MC68HC908JL8 Section 21. Ordering Information 21.1 Contents 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 21.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 21.2 Introduction This section contains ordering numbers for the MC68HC908JL8. 21.3 MC Order Numbers Table 21-1. MC Order Numbers MC Order Number Operating Temperature Range MC68HC908JK8CP –40 °C to +85 °C MC68HC908JK8MP –40 °C to +125 °C MC68HC908JK8CDW –40 °C to +85 °C MC68HC908JK8MDW –40 °C to +125 °C MC68HC908JL8CP –40 °C to +85 °C MC68HC908JL8MP –40 °C to +125 °C MC68HC908JL8CDW –40 °C to +85 °C MC68HC908JL8MDW –40 °C to +125 °C MC68HC908JL8CSP –40 °C to +85 °C MC68HC908JL8MSP –40 °C to +125 °C MC68HC908JL8CFA –40 °C to +85 °C MC68HC908JL8MFA –40 °C to +125 °C Package 20-pin PDIP 20-pin SOIC 28-pin PDIP 28-pin SOIC 32-pin SDIP 32-pin LQFP NOTE: Temperature grade "M" is available for VDD = 5V only. MC68HC908JL8 — Rev. 2.0 MOTOROLA Technical Data Ordering Information 285 Ordering Information Technical Data 286 MC68HC908JL8 — Rev. 2.0 Ordering Information MOTOROLA HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the 1-800-521-6274 suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: liability arising out of the application or use of any product or circuit, and specifically http://motorola.com/semiconductors disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2002 MC68HC908JL8/D Rev. 2.0 12/2002
MC68HC908JK8MP 价格&库存

很抱歉,暂时无法提供与“MC68HC908JK8MP”相匹配的价格&库存,您可以联系我们找货

免费人工找货