DOCUMENT NUMBER
9S12DT128BDGV1/D
MC9S12DT128B
Device User Guide
V01.09
Covers also
MC9S12DG128B, MC9S12DJ128B,
MC9S12DB128B
Original Release Date: 18 June 2001
Revised: 31 October 2002
Motorola, Inc
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.
1
MC9S12DT128B Device User Guide — V01.09
Revision History
Version Revision Effective
Number
Date
Date
Author
Description of Changes
V01.00
18 Jun
2001
18 June
2001
Initial version (parent doc v2.03 dug for dp256).
V01.01
23 July
2001
23 July
2001
Updated version after review
V01.02
23 Sep
2001
23 Sep
2001
Changed Partname, added pierce mode, updated electrical
characteristics
some minor corrections
V01.03
12 Oct
2001
12 Oct
2001
Replaced Star12 by HCS12
V01.04
27 Feb
2002
27 Feb
2002
Updated electrical spec after MC-Qualification (IOL/IOH), Data for
Pierce, NVM reliability
New document numbering. Corrected Typos
V01.05
4 Mar
2002
4 Mar
2002
Increased VDD to 2.35V, removed min. oscillator startup
Removed Document order number except from Cover Sheet
V01.06
8 July
2002
22 July
2002
Added:
Pull-up columns to signal table,
example for PLL Filter calculation,
Thermal values for junction to board and package,
BGND pin pull-up
Part Order Information
Global Register Table
Chip Configuration Summary
Modified:
Reduced Wait and Run IDD values
Mode of Operation chapter
changed leakage current for ADC inputs down to +-1uA
Corrected:
Interrupt vector table enable register inconsistencies
PCB layout for 80QFP VREGEN position
V01.07
16 Aug
2002
16 Aug
2002
Minor corrections in table 1-1 & section 1.5.1
V01.08
12 Sep
2002
12 Sep
2002
Corrected register address mismatches in section 1.5.1
31 Oct
2002
Removed document order no. from Revision History page
Renamed "Preface" section to "Derivative Differences and
Document references". Added details for derivatives missing CAN1,
BDLC, IIC and/or Byteflight
Added oscillator clock connection to BDM in S12_CORE in fig 3-1
Section HCS12 Core Block Description: mentioned alternate clock
of BDM to be equivalent to oscillator clock
Corrected several register and bit names in “Local Enable” column
of Table 5.1 Interrupt Vector Locations.
Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz
V01.09
2
31 Oct
2002
MC9S12DT128B Device User Guide — V01.09
3
MC9S12DT128B Device User Guide — V01.09
4
MC9S12DT128B Device User Guide — V01.09
Table of Contents
Section 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1
1.2
1.3
1.4
1.5
1.5.1
1.6
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Section 2 Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
2.2
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
2.3
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.3.1
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.3.2
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.3.3
TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.3.4
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.3.5
BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .55
2.3.6
PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.7
PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.8
PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.9
PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .56
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.18 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
5
MC9S12DT128B Device User Guide — V01.09
2.3.21
2.3.22
2.3.23
2.3.24
2.3.25
2.3.26
2.3.27
2.3.28
2.3.29
2.3.30
2.3.31
2.3.32
2.3.33
2.3.34
2.3.35
2.3.36
2.3.37
2.3.38
2.3.39
2.3.40
2.3.41
2.3.42
2.3.43
2.3.44
2.3.45
2.3.46
2.3.47
2.3.48
2.3.49
2.3.50
2.3.51
2.3.52
2.3.53
2.3.54
2.3.55
2.3.56
6
PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . .59
PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . .60
PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . .60
PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . . . .61
PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . .61
PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . . . .61
PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .62
PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .62
PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
MC9S12DT128B Device User Guide — V01.09
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
2.4
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
2.4.1
VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . .64
2.4.2
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
64
2.4.3
VDD1, VDD2, VSS1, VSS2 — Core Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
2.4.4
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .65
2.4.5
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2.4.6
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .65
2.4.7
VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Section 3 System Clock Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Section 4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Section 5 Resets and Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
5.2
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
5.2.1
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
5.3
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
5.3.1
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
5.3.2
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Section 6 HCS12 Core Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7
MC9S12DT128B Device User Guide — V01.09
Section 7 Clock and Reset Generator (CRG) Block Description . . . . . . . . . 77
7.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
7.1.1
XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Section 8 Enhanced Capture Timer (ECT) Block Description . . . . . . . . . . . . 77
Section 9 Analog to Digital Converter (ATD) Block Description. . . . . . . . . . 77
Section 10 Inter-IC Bus (IIC) Block Description . . . . . . . . . . . . . . . . . . . . . . . 77
Section 11 Serial Communications Interface (SCI) Block Description. . . . . 77
Section 12 Serial Peripheral Interface (SPI) Block Description . . . . . . . . . . 78
Section 13 J1850 (BDLC) Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . 78
Section 14 Byteflight (BF) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . 78
Section 15 Pulse Width Modulator (PWM) Block Description . . . . . . . . . . . . 78
Section 16 Flash EEPROM 128K Block Description . . . . . . . . . . . . . . . . . . . 78
Section 17 EEPROM 2K Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Section 18 RAM Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Section 19 MSCAN Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Section 20 Port Integration Module (PIM) Block Description . . . . . . . . . . . . 79
Section 21 Voltage Regulator (VREG) Block Description . . . . . . . . . . . . . . . 79
Section 22 Printed Circuit Board Layout Proposal . . . . . . . . . . . . . . . . . . . . 80
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
A.1.1
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
A.1.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
8
MC9S12DT128B Device User Guide — V01.09
A.1.3
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
A.1.4
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
A.1.5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
A.1.6
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
A.1.7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
A.1.8
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
A.1.9
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
A.2.1
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
A.2.2
Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
A.2.3
ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
A.3.1
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
A.3.2
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
A.5.1
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
A.5.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
A.5.3
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
A.7.1
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
A.7.2
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
A.8.1
General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Appendix B Package Information
B.1
B.2
B.3
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
9
MC9S12DT128B Device User Guide — V01.09
10
MC9S12DT128B Device User Guide — V01.09
List of Figures
Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 1-1 MC9S12DT128B Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 1-2 MC9S12DT128B Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128B,MC9S12DG128B,
MC9S12DJ128B, MC9S12DB128B50
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128B, MC9S12DJ128B Bondout . .51
Figure 2-3 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 2-4 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 2-5 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 2-6 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . . . .81
Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .82
Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .83
Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .84
Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure A-2 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure A-3 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure A-4 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure A-5 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure A-6 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure A-7 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure A-8 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure A-9 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 22-5 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . .122
11
MC9S12DT128B Device User Guide — V01.09
12
MC9S12DT128B Device User Guide — V01.09
List of Tables
Table 0-1 Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 0-2 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
$0000 - $000F MEBI map 1 of 3 (Core User Guide) ........................................................24
$0010 - $0014 MMC map 1 of 4 (Core User Guide) ........................................................24
$0015 - $0016 INT map 1 of 2 (Core User Guide) ...........................................................25
$0017 - $0017 MMC map 2 of 4 (Core User Guide) ........................................................25
$0018 - $001B Miscellaneous Peripherals (Device User Guide, Table 1-3) ....................25
$001C - $001D MMC map 3 of 4 (Core and Device User Guide, Table 1-4) ...................25
$001E - $001E MEBI map 2 of 3 (Core User Guide) ........................................................25
$001F - $001F INT map 2 of 2 (Core User Guide) ...........................................................25
$0020 - $0027 Reserved ..................................................................................................26
$0028 - $002F BKP (Core User Guide) ...........................................................................26
$0030 - $0031 MMC map 4 of 4 (Core User Guide) ........................................................26
$0032 - $0033 MEBI map 3 of 3 (Core User Guide) ........................................................26
$0034 - $003F CRG (Clock and Reset Generator) ..........................................................27
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) .................................27
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ..............................30
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) .......................................31
$00C8 - $00CF SCI0 (Asynchronous Serial Interface) ......................................................33
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ......................................................33
$00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................34
$00E0 - $00E7 IIC (Inter IC Bus) ......................................................................................34
$00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ........................................35
$00F0 - $00F7 SPI1 (Serial Peripheral Interface) ............................................................35
$00F8 - $00FF Reserved ..................................................................................................35
$0100 - $010F Flash Control Register (fts128k2) ............................................................36
$0110 - $011B EEPROM Control Register (eets2k) ........................................................36
$011C - $011F Reserved for RAM Control Register ........................................................37
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ..............................37
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ..............................................38
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . .39
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) ..............................................40
13
MC9S12DT128B Device User Guide — V01.09
$01C0 - $01FF Reserved ..................................................................................................41
$0200 - $023F Reserved ..................................................................................................41
$0240 - $027F PIM (Port Integration Module) ..................................................................42
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ..............................................44
$02C0 - $02FF Reserved ..................................................................................................45
$0300 - $035F Byteflight ..................................................................................................45
$0360 - $03FF Reserved ..................................................................................................47
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Table 2-2 MC9S12DT128B Power and Ground Connection Summary . . . . . . . . . . . . . . . . .63
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 22-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Table A-12 NVM Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . . .103
Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
14
MC9S12DT128B Device User Guide — V01.09
Derivative Differences and Document References
Derivative Differences
Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the
compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.
Table 0-1 Derivative Differences1
Modules
MC9S12DT128B MC9S12DG128B MC9S12DJ128B MC9S12DB128B
# of CANs
3
2
2
2
CAN4
✓
✓
✓
✓
CAN1
✓
✕
✕
✕
CAN0
✓
✓
✓
✓
J1850/BDLC
✕
✕
✓
✕
IIC
✓
✓
✓
✕
Byteflight
✕
✕
✕
✓
Package
112 LQFP
112 LQFP/80 QFP 112 LQFP/80 QFP
112 LQFP
Package
PV
PV/FU
PV/FU
PV
Code
Mask set
L85D
L85D
L85D
L85D
Temp Options
M, V, C
M, V, C
M, V, C
M, V, C
An errata exists
An errata exists
An errata exists
An errata exists
Notes
contact Sales
contact Sales
contact Sales
contact Sales
Office
Office
Office
Office
NOTES:
1. ✓: Available for this device, ✕: Not available for this device
The following figure provides an ordering number example for the MC9S12D128B devices.
MC9S12 DJ128B C FU
Package Option
Temperature Option
Device Title
Controller Family
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU =
80QFP
PV = 112LQFP
Figure 0-1 Order Partnumber Example
The following items should be considered when using a derivative.
•
Registers
–
Do not write or read CAN1 registers (after reset: address range $0180 - $01BF), if using a
derivative without CAN1 (see Table 0-1).
15
MC9S12DT128B Device User Guide — V01.09
•
•
•
16
–
Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a
derivative without BDLC (see Table 0-1).
–
Do not write or read IIC registers (after reset: address range $00E0 - $00E7), if using a
derivative without IIC (see Table 0-1).
–
Do not write or read Byteflight registers (after reset: address range $0300 - $035F), if using a
derivative without Byteflight registers (see Table 0-1).
Interrupts
–
Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for
unused interrupts, if using a derivative without CAN1 (see Table 0-1).
–
Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused
interrupts, if using a derivative without BDLC (see Table 0-1).
–
Fill the IIC interrupt vector ($FFC0, $FFC1) according to your coding policies for unused
interrupts, if using a derivative without IIC (see Table 0-1).
–
Fill the four Byteflight interrupt vectors ($FFA0 - $FFA7) according to your coding policies for
unused interrupts, if using a derivative without Byteflight (see Table 0-1).
Ports
–
The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if
using a derivative without CAN1 (see Table 0-1).
–
The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a
derivative without BDLC (see Table 0-1).
–
The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative
without IIC (see Table 0-1).
–
The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF,
RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative
without Byteflight (see Table 0-1).
Pins not available in 80 pin QFP package
–
Port H
In order to avoid floating nodes the ports should be either configured as outputs by setting the
data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing
a $FF to the pull enable register (PERH at Base+$0264).
–
Port J[1:0]
Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must
be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at
Base+$026C.
–
Port K
Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at
Base+$000C. Therefore care must be taken not to clear this bit.
MC9S12DT128B Device User Guide — V01.09
–
Port M[7:6]
PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
Port P6
PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
–
Port S[7:4]
PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
PAD[15:8] (ATD1 channels)
Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1
registers!
Document References
The Device User Guide provides information about the MC9S12DT128B device made up of standard
HCS12 blocks and the HCS12 processor core.
This document is part of the customer documentation. A complete set of device manuals also includes the
HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In a effort
to reduce redundancy all module specific information is located only in the respective Block User Guide.
If applicable, special implementation details of the module are given in the block description sections of
this document.
See Table 0-2 for names and versions of the referenced documents throughout the Device User Guide.
Table 0-2 Document References
User Guide
Version
Document Order Number
HCS12_V1.5 Core User Guide
1.2
HCS12COREUG
Clock and Reset Generator (CRG) Block User Guide
V03
S12CRGV3/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide
V01
S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide
V02
S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide
V02
S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide
V02
S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide
V02
S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide
V01
S12PWM8B8CV1/D
128K Byte Flash (FTS128K) Block User Guide
V01
S12FTS128KV1/D
2K Byte EEPROM (EETS2K) Block User Guide
V01
S12EETS2KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide
V01
S12BDLCV1/D
Motorola Scalable CAN (MSCAN) Block User Guide
V02
S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide
V01
S12VREGV1/D
Port Integration Module (PIM_9DT128) Block User Guide
V01
S12PIMDT128V1/D
Byteflight (BF) Block User Guide
V01
S12BFV1/D
17
MC9S12DT128B Device User Guide — V01.09
18
MC9S12DT128B Device User Guide — V01.09
Section 1 Introduction
1.1 Overview
The MC9S12DT128B microcontroller unit (MCU) is a 16-bit device composed of standard on-chip
peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K
bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link
Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital
I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules
(MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128B has full 16-bit data paths
throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory
can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and
performance to be adjusted to suit operational requirements.
1.2 Features
•
HCS12 Core
–
16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. 20-bit ALU
iv. Instruction queue
v. Enhanced indexed addressing
•
•
–
MEBI (Multiplexed External Bus Interface)
–
MMC (Module Mapping Control)
–
INT (Interrupt control)
–
BKP (Breakpoints)
–
BDM (Background Debug Mode)
CRG (Clock and Reset Generator)
–
Choice of low current Colpitts oscillator or standard Pierce Oscillator
–
PLL
–
COP watchdog
–
real time interrupt
–
clock monitor
8-bit and 4-bit ports with interrupt functionality
17
MC9S12DT128B Device User Guide — V01.09
•
•
•
•
•
•
•
18
–
Digital filtering
–
Programmable rising or falling edge trigger
Memory
–
128K Flash EEPROM
–
2K byte EEPROM
–
8K byte RAM
Two 8-channel Analog-to-Digital Converters
–
10-bit resolution
–
External conversion trigger capability
Three 1M bit per second, CAN 2.0 A, B software compatible modules
–
Five receive and three transmit buffers
–
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
–
Four separate interrupt channels for Rx, Tx, error and wake-up
–
Low-pass filter wake-up function
–
Loop-back for self test operation
Enhanced Capture Timer
–
16-bit main counter with 7-bit prescaler
–
8 programmable input capture or output compare channels
–
Two 8-bit or one 16-bit pulse accumulators
8 PWM channels
–
Programmable period and duty cycle
–
8-bit 8-channel or 16-bit 4-channel
–
Separate control for each pulse width and duty cycle
–
Center-aligned or left-aligned outputs
–
Programmable clock select logic with a wide range of frequencies
–
Fast emergency shutdown input
–
Usable as interrupt inputs
Serial interfaces
–
Two asynchronous Serial Communications Interfaces (SCI)
–
Two Synchronous Serial Peripheral Interface (SPI)
–
Byteflight
Byte Data Link Controller (BDLC)
MC9S12DT128B Device User Guide — V01.09
•
SAE J1850 Class B Data Communications Network Interface
–
•
•
Compatible and ISO Compatible for Low-Speed (= 100nF
C5
VDDPLL filter cap
ceramic X7R
100nF
C6
VDDX filter cap
X7R/tantalum
>= 100nF
C7
OSC load cap
C8
OSC load cap
C9 / CS
PLL loop filter cap
C10 / CP
PLL loop filter cap
C11 / CDC
DC cutoff cap
Colpitts mode only, if recommended by
quartz manufacturer
R1 / R
PLL loop filter res
See PLL Specification chapter
See PLL specification chapter
R2 / RB
Pierce mode only
R3 / RS
Q1
Quartz
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
•
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 – C6).
•
Central point of the ground star should be the VSSR pin.
•
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
•
VSSPLL must be directly connected to VSSR.
•
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
•
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
•
Central power input should be fed in at the VDDA/VSSA pins.
80
MC9S12DT128B Device User Guide — V01.09
Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
C4
C7
C8
C10
C9
R1
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
81
MC9S12DT128B Device User Guide — V01.09
Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSR
C4
C5
VDDR
C7
C8
C11
Q1
C10
C9
R1
82
VSSPLL
VDDPLL
MC9S12DT128B Device User Guide — V01.09
Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
VSSPLL
C4
R3
C5
VDDR
R2
Q1
C7
C8
C10
C9
VDDPLL
R1
83
MC9S12DT128B Device User Guide — V01.09
Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSPLL
VSSR
C4
R3
C5
VDDR
R2
Q1
C7
84
C8
C10
C9
R1
VSSPLL
VDDPLL
MC9S12DT128B Device User Guide — V01.09
Appendix A Electrical Characteristics
A.1 General
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
P:
Those parameters are guaranteed during production testing on each individual device.
C:
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T:
Those parameters are achieved by design characterization on a small sample size from typical
devices. All values shown in the typical column are within this category.
D:
Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12DT128B utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and
PLL as well as the digital core.
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins ,VDDR supplies also the internal voltage
regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
85
MC9S12DT128B Device User Guide — V01.09
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some
of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down
resistors are disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.3.5 VREGEN
This pin is used to enable the on chip voltage regulator.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
86
MC9S12DT128B Device User Guide — V01.09
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings1
Num
Rating
Symbol
Min
Max
Unit
1
I/O, Regulator and Analog Supply Voltage
VDD5
-0.3
6.0
V
2
Digital Logic Supply Voltage 2
VDD
-0.3
3.0
V
3
PLL Supply Voltage 2
VDDPLL
-0.3
3.0
V
4
Voltage difference VDDX to VDDR and VDDA
∆VDDX
-0.3
0.3
V
5
Voltage difference VSSX to VSSR and VSSA
∆VSSX
-0.3
0.3
V
6
Digital I/O Input Voltage
VIN
-0.3
6.0
V
7
Analog Reference
VRH, VRL
-0.3
6.0
V
8
XFC, EXTAL, XTAL inputs
VILV
-0.3
3.0
V
9
TEST input
VTEST
-0.3
10.0
V
10
Instantaneous Maximum Current
Single pin limit for all digital I/O pins 3
ID
-25
+25
mA
11
Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL4
I
DL
-25
+25
mA
12
Instantaneous Maximum Current
Single pin limit for TEST 5
IDT
-0.25
0
mA
13
Storage Temperature Range
T
– 65
155
°C
stg
NOTES:
1. Beyond absolute maximum ratings device might be damaged.
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
4. Those pins are internally clamped to VSSPLL and VDDPLL.
5. This pin is clamped low to VSSPLL, but not clamped high. This pin must be tied low in applications.
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
87
MC9S12DT128B Device User Guide — V01.09
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2 ESD and Latch-up Test Conditions
Model
Human Body
Machine
Description
Symbol
Value
Unit
Series Resistance
R1
1500
Ohm
Storage Capacitance
C
100
pF
Number of Pulse per pin
positive
negative
–
–
3
3
Series Resistance
R1
0
Ohm
Storage Capacitance
C
200
pF
Number of Pulse per pin
positive
negative
–
–
3
3
Minimum input voltage limit
–2.5
V
Maximum input voltage limit
7.5
V
Latch-up
Table A-3 ESD and Latch-Up Protection Characteristics
Num
C
Rating
Symbol
Min
Max
Unit
1
C Human Body Model (HBM)
VHBM
2000
–
V
2
C Machine Model (MM)
VMM
200
–
V
3
C Charge Device Model (CDM)
VCDM
500
–
V
4
Latch-up Current at 125°C
C positive
negative
ILAT
+100
–100
–
mA
5
Latch-up Current at 27°C
C positive
negative
ILAT
+200
–200
–
mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
NOTE:
88
Please refer to the temperature rating of the device (C, V, M) with regards to the
ambient temperature TA and the junction temperature TJ. For power dissipation
MC9S12DT128B Device User Guide — V01.09
calculations refer to Section A.1.8 Power Dissipation and Thermal
Characteristics.
Table A-4 Operating Conditions
Rating
Symbol
Min
Typ
Max
Unit
I/O, Regulator and Analog Supply Voltage
VDD5
4.5
5
5.25
V
Digital Logic Supply Voltage 1
VDD
2.35
2.5
2.75
V
PLL Supply Voltage 2
VDDPLL
2.25
2.5
2.75
V
Voltage Difference VDDX to VDDR and VDDA
∆VDDX
-0.1
0
0.1
V
Voltage Difference VSSX to VSSR and VSSA
∆VSSX
-0.1
0
0.1
V
Oscillator
fosc
0.5
-
16
MHz
Bus Frequency
fbus
0.5
-
25
MHz
Operating Junction Temperature Range
T
J
-40
-
100
°C
Operating Ambient Temperature Range 2
T
A
-40
27
85
°C
Operating Junction Temperature Range
TJ
-40
-
120
°C
Operating Ambient Temperature Range 2
TA
-40
27
105
°C
Operating Junction Temperature Range
TJ
-40
-
140
°C
Operating Ambient Temperature Range 2
TA
-40
27
125
°C
MC9S12DT128BC
MC9S12DT128BV
MC9S12DT128BM
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external
source.
2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
T J = T A + ( P D • Θ JA )
T J = Junction Temperature, [°C ]
T A = Ambient Temperature, [°C ]
89
MC9S12DT128B Device User Guide — V01.09
P D = Total Chip Power Dissipation, [W]
Θ JA = Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P D = P INT + P IO
P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA
2
P IO =
R DSON ⋅ I IO
i
i
∑
Which is the sum of all output currents on I/O ports associated with VDDX and VDDM.
For RDSON is valid:
V OL
R DSON = ------------ ;for outputs driven low
I OL
respectively
V DD5 – V OH
R DSON = ------------------------------------ ;for outputs driven high
I OH
2. Internal voltage regulator enabled
P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA
IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
P IO =
∑ RDSON ⋅ IIOi
2
i
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
90
MC9S12DT128B Device User Guide — V01.09
Table A-5 Thermal Package Characteristics1
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
T Thermal Resistance LQFP112, single sided PCB2
θJA
–
–
54
o
2
T
Thermal Resistance LQFP112, double sided PCB
with 2 internal planes3
θJA
–
–
41
oC/W
3
T Junction to Board LQFP112
θJB
–
–
31
o
C/W
4
T Junction to Case LQFP112
θJC
–
–
11
o
C/W
5
T Junction to Package Top LQFP112
ΨJT
–
–
2
o
C/W
6
T Thermal Resistance QFP 80, single sided PCB
θJA
–
–
51
o
C/W
7
T
θJA
–
–
41
oC/W
8
T Junction to Board QFP80
θJB
–
–
27
oC/W
9
T Junction to Case QFP80
θJC
–
–
14
oC/W
10
T Junction to Package Top QFP80
ΨJT
–
–
3
oC/W
Thermal Resistance QFP 80, double sided PCB with
2 internal planes
C/W
NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-3
3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.
not all pins feature pull up/down resistances.
91
MC9S12DT128B Device User Guide — V01.09
Table A-6 5V I/O Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
1
2
Rating
Symbol
Min
Typ
Max
IH
0.65*VDD5
–
IH
–
–
VDD5 + 0.3
Unit
P Input High Voltage
V
T Input High Voltage
V
P Input Low Voltage
V
–
–
0.35*VDD5
V
T Input Low Voltage
V
VSS5 – 0.3
–
–
V
3
C Input Hysteresis
4
Input Leakage Current (pins in high ohmic input
mode)1
P Vin = VDD5 or VSS5
IL
IL
V
HYS
I
in
ADC Inputs AN15:0
All other Ports (A, B, E, K, M, S, T)
250
mV
–
µA
1.0
2.5
-1.0
–2.5
5
Output High Voltage (pins in output mode)
C Partial Drive IOH = –2.0mA
P Full Drive IOH = –10.0mA
V
6
Output Low Voltage (pins in output mode)
C Partial Drive IOL = +2.0mA
P Full Drive IOL = +10.0mA
7
V
VDD5 – 0.8
–
–
V
V
OL
–
–
0.8
V
Internal Pull Up Device Current,
P tested at V Max.
IPUL
–
–
–130
µA
Internal Pull Up Device Current,
C tested at V Min.
IPUH
–10
–
–
µA
Internal Pull Down Device Current,
P tested at V Min.
IPDH
–
–
130
µA
Internal Pull Down Device Current,
C tested at V Max.
IPDL
10
–
–
µA
11
D Input Capacitance
Cin
6
–
pF
12
Injection current2
T Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
–
2.5
25
mA
13
P Port H, J, P Interrupt Input Pulse filtered 3
tPULSE
3
µs
14
P Port H, J, P Interrupt Input Pulse passed 3
tPULSE
IL
8
IH
9
IH
10
IL
OH
–2.5
–25
10
µs
NOTES:
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for
each 8 C to 12 C in the temperature range from 50 C to 125 C.
2. Refer to Section A.1.4 Current Injection, for more details
3. Parameter only applies in STOP or Pseudo STOP mode.
92
MC9S12DT128B Device User Guide — V01.09
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
93
MC9S12DT128B Device User Guide — V01.09
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Table A-7 Supply Current Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Run supply currents
Single Chip, Internal regulator enabled
IDD5
55
IDDW
30
5
1
P
2
P
P
All modules enabled, PLL on
only RTI enabled 1
C
P
C
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled) 1, 2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
“M” Temp Option 140°C
C
C
C
C
C
C
C
Pseudo Stop Current (RTI and COP enabled) 1, 2
-40°C
27°C
70°C
85°C
105°C
125°C
140°C
Min
Typ
Max
Unit
mA
Wait Supply current
3
4
IDDPS
IDDPS
370
400
450
550
600
650
800
850
1200
mA
500
1600
µA
2100
5000
570
600
650
750
850
1200
1500
µA
Stop Current 2
5
C
P
C
C
P
C
P
C
P
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
“M” Temp Option 140°C
NOTES:
1. PLL off, Oscillator in Colpitts Mode
2. At those low power dissipation levels TJ = TA can be assumed
94
IDDS
12
25
100
130
160
200
350
400
600
100
1200
1700
5000
µA
MC9S12DT128B Device User Guide — V01.09
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.2.1 ATD Operating Characteristics
The Table A-8 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.
Table A-8 ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
VRL
VRH
VSSA
VDDA/2
Typ
Max
Unit
VDDA/2
VDDA
V
V
5.25
V
Reference Potential
1
D
Low
High
2
C Differential Reference Voltage1
VRH-VRL
4.50
3
D ATD Clock Frequency
fATDCLK
0.5
2.0
MHz
4
D
14
7
28
14
Cycles
µs
5
D
12
6
26
13
Cycles
µs
6
D Stop Recovery Time (VDDA=5.0 Volts)
tSR
20
µs
7
P Reference Supply current (Both ATD modules on)
IREF
0.75
mA
8
P Reference Supply current (Only one ATD module on)
IREF
0.375
mA
5.00
ATD 10-Bit Conversion Period
Clock Cycles2 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
ATD 8-Bit Conversion Period
Clock Cycles(2)
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV8
TCONV8
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
A.2.2 Factors influencing accuracy
Three factors – source resistance, source capacitance and current injection – have an influence on the
accuracy of the ATD.
A.2.2.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
95
MC9S12DT128B Device User Guide — V01.09
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.
A.2.2.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS– CINN).
A.2.2.3 Current injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than
VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channe
Table A-9 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
RS
-
-
1
KΩ
10
22
pF
2.5
mA
1
C Max input Source Resistance
2
Total Input Capacitance
T Non Sampling
Sampling
3
C Disruptive Analog Input Current
INA
4
C Coupling Ratio positive current injection
Kp
10-4
A/A
5
C Coupling Ratio negative current injection
Kn
10-2
A/A
96
CINN
CINS
-2.5
MC9S12DT128B Device User Guide — V01.09
A.2.3 ATD accuracy
Table A-10 specifies the ATD conversion performance excluding any errors due to current injection,
input capacitance and source resistance.
Table A-10 ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num C
Rating
Symbol
Min
1
P 10-Bit Resolution
LSB
2
P 10-Bit Differential Nonlinearity
DNL
–1
3
P 10-Bit Integral Nonlinearity
INL
–2.5
4
P 10-Bit Absolute Error1
AE
-3
5
P 8-Bit Resolution
LSB
6
P 8-Bit Differential Nonlinearity
DNL
–0.5
7
P 8-Bit Integral Nonlinearity
INL
–1.0
8
P 8-Bit Absolute Error(1)
AE
-1.5
Typ
Max
5
Unit
mV
1
Counts
±1.5
2.5
Counts
±2.0
3
Counts
20
mV
0.5
Counts
±0.5
1.0
Counts
±1.0
1.5
Counts
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
For the following definitions see also Figure A-1.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1
DNL ( i ) = ------------------------ – 1
1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
n
INL ( n ) =
∑
i=1
Vn – V0
DNL ( i ) = -------------------- – n
1LSB
97
MC9S12DT128B Device User Guide — V01.09
DNL
10-Bit Absolute Error Boundary
LSB
Vi-1
Vi
$3FF
8-Bit Absolute Error Boundary
$3FE
$3FD
$3FC
$FF
$3FB
$3FA
$3F9
$3F8
$FE
$3F7
$3F6
$3F4
8-Bit Resolution
10-Bit Resolution
$3F5
$FD
$3F3
9
Ideal Transfer Curve
8
2
7
10-Bit Transfer Curve
6
5
4
1
3
8-Bit Transfer Curve
2
1
0
5
10
15
20
25
30
35
40
45
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120
Vin
mV
Figure A-1 ATD Accuracy Definitions
NOTE:
98
Figure A-1 shows only definitions, for specification values refer to Table A-10.
MC9S12DT128B Device User Guide — V01.09
A.3 NVM, Flash and EEPROM
NOTE:
Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency f¨NVMOP and can be calculated according to the following formula.
1
1
t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP
f bus
A.3.1.2 Burst Programming
This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst
programming by keeping the command pipeline filled. The time to program a consecutive word can be
calculated as:
1
1
t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP
f bus
The time to program a whole row is:
t brpgm = t swpgm + 31 ⋅ t bwpgm
Burst programming is more than 2 times faster than single word programming.
99
MC9S12DT128B Device User Guide — V01.09
A.3.1.3 Sector Erase
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
1
t era ≈ 4000 ⋅ --------------------f NVMOP
The setup times can be ignored for this operation.
A.3.1.4 Mass Erase
Erasing a NVM block takes:
1
t mass ≈ 20000 ⋅ --------------------f NVMOP
The setup times can be ignored for this operation.
A.3.1.5 Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
t check ≈ location ⋅ t cyc + 10 ⋅ t cyc
Table A-11 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
50 1
MHz
1
D External Oscillator Clock
fNVMOSC
0.5
2
D Bus frequency for Programming or Erase Operations
fNVMBUS
1
3
D Operating Frequency
fNVMOP
150
200
kHz
4
P Single Word Programming Time
tswpgm
46 2
74.5 3
µs
5
D Flash Burst Programming consecutive word 4
tbwpgm
20.4 2
31 3
µs
6
D Flash Burst Programming Time for 32 Words 4
tbrpgm
678.4 2
1035.5 3
µs
7
P Sector Erase Time
tera
20 5
26.7 3
ms
8
P Mass Erase Time
tmass
100 5
133 3
ms
9
D Blank Check Time Flash per block
tcheck
11 6
32778 7
tcyc
10
D Blank Check Time EEPROM per block
tcheck
11 6
20587
tcyc
MHz
NOTES:
1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formulae in Sections A.3.1.1 - A.3.1.5 for guidance.
100
MC9S12DT128B Device User Guide — V01.09
4. Burst Programming operations are not applicable to EEPROM
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.
6. Minimum time, if first word in the array is not blank
7. Maximum time to complete check on an erased block
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at the operating conditions
noted.
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed.
NOTE:
All values shown in Table A-12 are target values and subject to further extensive
characterization
Table A-12 NVM Reliability Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
1
C Flash/EEPROM (-40˚C to +125˚C)
2
C EEPROM (-40˚C to +125˚C)
Cycles
Data Retention
Lifetime
Unit
10
15
Years
10,000
5
Years
NOTE:
Flash cycling performance is 10 cycles at -40˚C to +125˚C. Data retention is
specified for 15 years.
NOTE:
EEPROM cycling performance is 10K cycles at -40˚C to 125˚C. Data retention is
specified for 5 years on words after cycling 10K times. However if only 10 cycles
are executed on a word the data retention is specified for 15 years.
101
MC9S12DT128B Device User Guide — V01.09
102
MC9S12DT128B Device User Guide — V01.09
A.4 Voltage Regulator
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external
DC load is allowed.
Table A-13 Voltage Regulator Recommended Load Capacitances
Rating
Symbol
Min
Typ
Max
Unit
Load Capacitance on VDD1, 2
CLVDD
220
nF
Load Capacitance on VDDPLL
CLVDDfcPLL
220
nF
103
MC9S12DT128B Device User Guide — V01.09
104
MC9S12DT128B Device User Guide — V01.09
A.5 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
A.5.1 Startup
Table A-14 summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table A-14 Startup Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
2.07
V
1
T POR release level
VPORR
2
T POR assert level
VPORA
0.97
V
3
D Reset input pulse width, minimum input time
PWRSTL
2
tosc
4
D Startup from Reset
nRST
192
5
D Interrupt pulse width, IRQ edge-sensitive mode
PWIRQ
20
6
D Wait recovery startup time
tWRS
196
nosc
ns
14
tcyc
A.5.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
A.5.1.2 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
A.5.1.3 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
A.5.1.4 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
105
MC9S12DT128B Device User Guide — V01.09
A.5.1.5 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.
A.5.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the
XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before
asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start
from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the
internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also
determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A
Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert
Frequency fCMFA.
Table A-15 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1a
C Crystal oscillator range (Colpitts)
fOSC
0.5
16
MHz
1b
C Crystal oscillator range (Pierce) 1
fOSC
0.5
40
MHz
2
P Startup Current
iOSC
100
3
C Oscillator start-up time (Colpitts)
tUPOSC
4
D Clock Quality check time-out
tCQOUT
0.45
5
P Clock Monitor Failure Assert Frequency
fCMFA
50
6
P External square wave input frequency 4
fEXT
0.5
7
D External square wave pulse width low
tEXTL
9.5
ns
8
D External square wave pulse width high
tEXTH
9.5
ns
9
D External square wave rise time
tEXTR
1
ns
10
D External square wave fall time
tEXTF
1
ns
11
D Input Capacitance (EXTAL, XTAL pins)
12
C
DC Operating Bias in Colpitts Configuration on
EXTAL Pin
82
100
1003
ms
2.5
s
200
KHz
50
MHz
CIN
7
pF
VDCBIAS
1.1
V
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. XCLKS =0 during reset
106
µA
MC9S12DT128B Device User Guide — V01.09
A.5.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
A.5.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Cp
VDDPLL
R
Phase
Cs
fosc
fref
1
refdv+1
∆
fcmp
XFC Pin
VCO
KΦ
KV
fvco
Detector
Loop Divider
1
synr+1
1
2
Figure A-2 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table A-16.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
KV = K1 ⋅ e
( f 1 – f vco )
----------------------K 1 ⋅ 1V
= – 120 ⋅ e
( 75 – 50 )
-----------------------– 120
= -97.43MHz/V
The phase detector relationship is given by:
K Φ = – i ch ⋅ K V
= 341.0Hz/Ω
ich is the current in tracking mode.
107
MC9S12DT128B Device User Guide — V01.09
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
2 ⋅ ζ ⋅ f ref
f ref
1
f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 )
4 ⋅ 10
2 10
π⋅ ζ+ 1+ζ
fC < 25kHz
And finally the frequency relationship is defined as
f VCO
n = ------------- = 2 ⋅ ( synr + 1 )
f ref
= 50
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=11kHz:
2 ⋅ π ⋅ n ⋅ fC
R = ----------------------------- = 2*π*50*11kHz/(341.0Hz/Ω)=10.1kΩ =~ 10kΩ
KΦ
The capacitance Cs can now be calculated as:
2
0.516
2⋅ζ
C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 4.69nF =~ 4.7nF
π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:
C s ⁄ 20 ≤ C p ≤ C s ⁄ 10
Cp = 470pF
A.5.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure A-2. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-3.
108
MC9S12DT128B Device User Guide — V01.09
1
0
2
3
N-1
N
tmin1
tnom
tmax1
tminN
tmaxN
Figure A-3 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
t max ( N )
t min ( N )
J ( N ) = max 1 – --------------------- , 1 – ---------------------
N ⋅ t nom
N ⋅ t nom
For N < 100, the following equation is a good fit for the maximum jitter:
j1
J ( N ) = -------- + j 2
N
J(N)
1
5
10
20
N
Figure A-4 Maximum bus clock jitter approximation
109
MC9S12DT128B Device User Guide — V01.09
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table A-16 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Self Clock Mode frequency
fSCM
1
5.5
MHz
2
D VCO locking range
fVCO
8
50
MHz
3
D
|∆trk|
3
4
%1
4
D Lock Detection
|∆Lock|
0
1.5
%(1)
5
D Un-Lock Detection
|∆unl|
0.5
2.5
%(1)
6
D
|∆unt|
6
8
%(1)
7
C PLLON Total Stabilization delay (Auto Mode) 2
tstab
0.5
ms
8
D PLLON Acquisition mode stabilization delay (2)
tacq
0.3
ms
9
D PLLON Tracking mode stabilization delay (2)
tal
0.2
ms
10
D Fitting parameter VCO loop gain
K1
-120
MHz/V
11
D Fitting parameter VCO loop frequency
f1
75
MHz
12
D Charge pump current acquisition mode
| ich |
38.5
µA
13
D Charge pump current tracking mode
| ich |
3.5
µA
14
C Jitter fit parameter 1(2)
j1
1.1
%
15
C Jitter fit parameter 2(2)
j2
0.13
%
Lock Detector transition from Acquisition to Tracking
mode
Lock Detector transition from Tracking to Acquisition
mode
NOTES:
1. % deviation from target frequency
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10KΩ.
110
MC9S12DT128B Device User Guide — V01.09
A.6 MSCAN
Table A-17 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C
Rating
Symbol
1
P MSCAN Wake-up dominant pulse filtered
tWUP
2
P MSCAN Wake-up dominant pulse pass
tWUP
Min
5
Typ
Max
Unit
2
µs
µs
111
MC9S12DT128B Device User Guide — V01.09
112
MC9S12DT128B Device User Guide — V01.09
A.7 SPI
A.7.1 Master Mode
Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18.
SS1
(OUTPUT)
2
1
SCK
(CPOL = 0)
(OUTPUT)
4
4
12
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
9
MOSI
(OUTPUT)
3
11
BIT 6 . . . 1
LSB IN
9
MSB OUT2
BIT 6 . . . 1
10
LSB OUT
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-5 SPI Master Timing (CPHA = 0)
113
MC9S12DT128B Device User Guide — V01.09
SS1
(OUTPUT)
1
2
12
11
11
12
3
SCK
(CPOL = 0)
(OUTPUT)
4
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
BIT 6 . . . 1
LSB IN
10
9
MOSI
(OUTPUT) PORT DATA
MASTER MSB OUT2
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-6 SPI Master Timing (CPHA =1)
Table A-18 SPI Master Mode Timing Characteristics1
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Operating Frequency
fop
DC
1/4
fbus
1
P SCK Period tsck = 1./fop
tsck
4
2048
tbus
2
D Enable Lead Time
tlead
1/2
—
tsck
3
D Enable Lag Time
tlag
1/2
4
D Clock (SCK) High or Low Time
twsck
tbus − 30
5
D Data Setup Time (Inputs)
tsu
25
ns
6
D Data Hold Time (Inputs)
thi
0
ns
9
D Data Valid (after SCK Edge)
tv
10
D Data Hold Time (Outputs)
tho
11
D Rise Time Inputs and Outputs
tr
25
ns
12
D Fall Time Inputs and Outputs
tf
25
ns
tsck
1024 tbus
25
0
ns
ns
ns
NOTES:
1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the
Master and the Slave timing shown in Table A-19.
114
MC9S12DT128B Device User Guide — V01.09
A.7.2 Slave Mode
Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-19.
SS
(INPUT)
1
12
11
11
12
3
SCK
(CPOL = 0)
(INPUT)
4
2
4
SCK
(CPOL = 1)
(INPUT)
8
7
MISO
(OUTPUT)
9
5
MOSI
(INPUT)
BIT 6 . . . 1
MSB OUT
SLAVE
10
10
SLAVE LSB OUT
6
BIT 6 . . . 1
MSB IN
LSB IN
Figure A-7 SPI Slave Timing (CPHA = 0)
SS
(INPUT)
3
1
2
12
11
11
12
SCK
(CPOL = 0)
(INPUT)
4
4
SCK
(CPOL = 1)
(INPUT)
SLAVE
7
MOSI
(INPUT)
8
10
9
MISO
(OUTPUT)
MSB OUT
5
BIT 6 . . . 1
SLAVE LSB OUT
6
MSB IN
BIT 6 . . . 1
LSB IN
Figure A-8 SPI Slave Timing (CPHA =1)
115
MC9S12DT128B Device User Guide — V01.09
Table A-19 SPI Slave Mode Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Operating Frequency
fop
DC
1/4
fbus
1
P SCK Period tsck = 1./fop
tsck
4
2048
tbus
2
D Enable Lead Time
tlead
1
tcyc
3
D Enable Lag Time
tlag
1
tcyc
4
D Clock (SCK) High or Low Time
twsck
tcyc − 30
ns
5
D Data Setup Time (Inputs)
tsu
25
ns
6
D Data Hold Time (Inputs)
thi
25
ns
7
D Slave Access Time
ta
1
tcyc
8
D Slave MISO Disable Time
tdis
1
tcyc
9
D Data Valid (after SCK Edge)
tv
25
ns
10
D Data Hold Time (Outputs)
tho
11
D Rise Time Inputs and Outputs
tr
25
ns
12
D Fall Time Inputs and Outputs
tf
25
ns
116
0
ns
MC9S12DT128B Device User Guide — V01.09
A.8 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing
values shown on table Table A-20. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.8.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
117
MC9S12DT128B Device User Guide — V01.09
1, 2
3
4
ECLK
PE4
5
9
Addr/Data
(read)
PA, PB
6
16
15
7
data
8
14
13
data
addr
17
11
data
addr
data
12
Addr/Data
(write)
PA, PB
10
19
18
Non-Multiplexed
Addresses
PK5:0
20
21
22
23
ECS
PK7
24
25
26
27
28
29
30
31
32
33
34
R/W
PE2
LSTRB
PE3
NOACC
PE7
35
36
PIPO0
PIPO1, PE6,5
Figure A-9 General External Bus Timing
118
MC9S12DT128B Device User Guide — V01.09
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C
Rating
Symbol
Min
Typ
Max
Unit
fo
0
25.0
MHz
tcyc
40
ns
1
P Frequency of operation (E-clock)
2
P Cycle time
3
D Pulse width, E low
PWEL
19
ns
4
D Pulse width, E high1
PWEH
19
ns
5
D Address delay time
tAD
6
D Address valid time to E rise (PWEL–tAD)
tAV
11
ns
7
D Muxed address hold time
tMAH
2
ns
8
D Address hold to data valid
tAHDS
7
ns
9
D Data hold to address
tDHA
2
ns
10
D Read data setup time
tDSR
13
ns
11
D Read data hold time
tDHR
0
ns
12
D Write data delay time
tDDW
13
D Write data hold time
tDHW
2
ns
14
D Write data setup time(1) (PWEH–tDDW)
tDSW
12
ns
15
D Address access time(1) (tcyc–tAD–tDSR)
tACCA
19
ns
16
D E high access time(1) (PWEH–tDSR)
tACCE
6
ns
17
D Non-multiplexed address delay time
tNAD
18
D Non-muxed address valid to E rise (PWEL–tNAD)
tNAV
15
ns
19
D Non-multiplexed address hold time
tNAH
2
ns
20
D Chip select delay time
tCSD
21
D Chip select access time(1) (tcyc–tCSD–tDSR)
tACCS
11
ns
22
D Chip select hold time
tCSH
2
ns
23
D Chip select negated time
tCSN
8
ns
24
D Read/write delay time
tRWD
25
D Read/write valid time to E rise (PWEL–tRWD)
tRWV
14
ns
26
D Read/write hold time
tRWH
2
ns
27
D Low strobe delay time
tLSD
28
D Low strobe valid time to E rise (PWEL–tLSD)
tLSV
14
ns
29
D Low strobe hold time
tLSH
2
ns
30
D NOACC strobe delay time
tNOD
31
D NOACC valid time to E rise (PWEL–tNOD)
tNOV
8
7
6
16
7
7
7
14
ns
ns
ns
ns
ns
ns
ns
ns
119
MC9S12DT128B Device User Guide — V01.09
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C
Rating
Symbol
Min
32
D NOACC hold time
tNOH
2
33
D IPIPO[1:0] delay time
tP0D
2
34
D IPIPO[1:0] valid time to E rise (PWEL–tP0D)
tP0V
11
35
D IPIPO[1:0] delay time(1) (PWEH-tP1V)
tP1D
2
36
D IPIPO[1:0] valid time to E fall
tP1V
11
Typ
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
120
Max
Unit
ns
7
ns
ns
25
ns
ns
MC9S12DT128B Device User Guide — V01.09
Appendix B Package Information
B.1 General
This section provides the physical dimensions of the MC9S12DT128B packages.
121
MC9S12DT128B Device User Guide — V01.09
B.2 112-pin LQFP package
0.20 T L-M N
4X
PIN 1
IDENT
0.20 T L-M N
4X 28 TIPS
112
J1
85
4X
P
J1
1
CL
84
VIEW Y
108X
G
X
X=L, M OR N
VIEW Y
B
L
V
M
B1
28
57
29
F
D
56
0.13
N
S1
A
S
C2
VIEW AB
θ2
0.050
0.10 T
112X
SEATING
PLANE
θ3
T
θ
R
R2
R
0.25
R1
GAGE PLANE
(K)
C1
E
(Y)
(Z)
VIEW AB
M
T L-M N
θ1
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
P
R1
R2
S
S1
V
V1
Y
Z
AA
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
20.000 BSC
10.000 BSC
20.000 BSC
10.000 BSC
--1.600
0.050
0.150
1.350
1.450
0.270
0.370
0.450
0.750
0.270
0.330
0.650 BSC
0.090
0.170
0.500 REF
0.325 BSC
0.100
0.200
0.100
0.200
22.000 BSC
11.000 BSC
22.000 BSC
11.000 BSC
0.250 REF
1.000 REF
0.090
0.160
8 °
0°
7 °
3 °
13 °
11 °
11 °
13 °
Figure 22-5 112-pin LQFP mechanical dimensions (case no. 987)
122
BASE
METAL
SECTION J1-J1
ROTATED 90 ° COUNTERCLOCKWISE
A1
C
AA
J
V1
MC9S12DT128B Device User Guide — V01.09
B.3 80-pin QFP package
L
60
41
61
D
S
M
V
P
B
C A-B
D
0.20
M
B
B
-A-,-B-,-D-
0.20
L
H A-B
-B-
0.05 D
-A-
S
S
S
40
DETAIL A
DETAIL A
21
80
1
0.20
A
H A-B
M
S
F
20
-DD
S
0.05 A-B
J
S
0.20
C A-B
M
S
D
S
D
M
E
DETAIL C
C
-H-
-C-
DATUM
PLANE
0.20
M
C A-B
S
D
S
SECTION B-B
VIEW ROTATED 90 °
0.10
H
SEATING
PLANE
N
M
G
U
T
DATUM
PLANE
-H-
R
K
W
X
DETAIL C
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
--0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10 °
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
--0°
--16.95
17.45
0.35
0.45
1.6 REF
Figure 1 80-pin QFP Mechanical Dimensions (case no. 841B)
123
MC9S12DT128B Device User Guide — V01.09
124
MC9S12DT128B Device User Guide — V01.09
User Guide End Sheet
125
MC9S12DT128B Device User Guide — V01.09
FINAL PAGE OF
126
PAGES
126