0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HFA1305IA

HFA1305IA

  • 厂商:

    L3HARRIS

  • 封装:

    SSOP16

  • 描述:

    OPERATIONAL AMPLIFIER

  • 数据手册
  • 价格&库存
HFA1305IA 数据手册
HFA1305 TM Data Sheet January 2001 Triple, 675MHz, Low Power, Video Operational Amplifier File Number 4727.2 Features • Low Supply Current . . . . . . . . . . . . . . . . . 5.8mA/Op Amp The HFA1305 is a triple, high speed, low power current feedback amplifier built with Intersil’s proprietary complementary bipolar UHF-1 process. • High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1MΩ • Wide -3dB Bandwidth (AV = +2) . . . . . . . . . . . . . . 675MHz These amplifiers deliver up to 675MHz bandwidth and 2500V/µs slew rate, on only 58mW of quiescent power. They are specifically designed to meet the performance, power, and cost requirements of high volume video applications. The excellent gain flatness and differential gain/phase performance make these amplifiers well suited for component or composite video applications. Video performance is maintained even when driving a double terminated cable (RL = 150Ω), and degrades only slightly when driving two double terminated cables (RL = 75Ω). RGB applications will benefit from the high slew rates, and high full power bandwidth. • Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 2500V/µs The HFA1305 is a pin compatible, low power, high performance upgrade for the popular Intersil HA5013, and for the AD8073 and CLC5623, in ±5V applications. • Professional Video Processing • Gain Flatness (to 50MHz) . . . . . . . . . . . . . . . . . . . . ±0.03dB • Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02% • Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees • All Hostile Crosstalk (5MHz). . . . . . . . . . . . . . . . . . -64dB • Pin Compatible Upgrade to HA5013, AD8073 and CLC5623 in ±5V Supply Applications. Applications • Flash A/D Drivers • Video Digitizing Boards/Systems • Computer Video Plug-In Boards Ordering Information • RGB Preamps TEMP. RANGE (oC) PART NUMBER PACKAGE PKG. NO. • Medical Imaging • Hand Held and Miniaturized RF Equipment HFA1305IB -40 to 85 14 Ld SOIC M14.15 HFA1305IA -40 to 85 16 Ld SSOP M16.15A • Battery Powered Communications HA5025EVAL (Note) • High Speed Oscilloscopes and Analyzers High Speed Op Amp SOIC Evaluation Board OPAMPSSOPEVAL1 High Speed Op Amp SSOP Evaluation Board NOTE: Requires a SOIC-to-DIP adapter. See “Evaluation Board” section inside. Related Literature • Technical Brief TB363 “Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)” Pinouts HFA1305 (SOIC) TOP VIEW HFA1305 (SSOP) TOP VIEW 14 OUT 3 NC 1 13 -IN 3 NC 2 NC 3 12 +IN 3 NC 3 14 +IN 3 V+ 4 11 V- V+ 4 13 V- NC 1 NC 2 - 10 +IN 2 +IN 1 5 9 -IN 2 -IN 1 6 8 OUT 2 OUT 1 7 OUT 1 7 NC 8 1 + - + + -IN 1 6 + +IN 1 5 15 -IN 3 + - + - 16 OUT 3 - - 12 +IN 2 11 -IN 2 10 OUT 2 9 NC CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2001 HFA1305 Absolute Maximum Ratings TA = 25oC Thermal Information Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSUPPLY Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Output Current (Note 2) . . . . . . . . . . . . . . . . .Short Circuit Protected 30mA Continuous 60mA ≤ 50% Duty Cycle ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V Thermal Resistance (Typical, Note 1) θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 SSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Moisture Sensitivity (see Technical Brief TB363) All Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 1 Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (Lead Tips Only) Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 2. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability. Electrical Specifications VSUPPLY = 5V, AV = +1, RF = 510Ω, RL = 100Ω, Unless Otherwise Specified PARAMETER TEST CONDITIONS (NOTE 4) TEST LEVEL TEMP. (oC) MIN TYP MAX MIN TYP MAX UNITS A 25 - 2 5 - 2 5 mV A Full - 3 8 - 3 8 mV B Full - 1 10 - 1 10 µV/oC HFA1305IB (SOIC) HFA1305IA (SSOP) INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Voltage Common-Mode Rejection Ratio Input Offset Voltage Power Supply Rejection Ratio ∆VCM = ±1.8V A 25 45 48 - 45 48 - dB ∆VCM = ±1.8V A 85 43 46 - 43 46 - dB ∆VCM = ±1.2V A -40 43 46 - 43 46 - dB ∆VPS = ±1.8V A 25 48 52 - 48 52 - dB ∆VPS = ±1.8V A 85 46 48 - 46 48 - dB ∆VPS = ±1.2V A -40 46 48 - 46 48 - dB A 25 - 6 15 - 6 15 µA A Full - 10 25 - 10 25 µA B Full - 5 60 - 5 60 nA/oC ∆VPS = ±1.8V A 25 - 0.5 1 - 0.5 1 µA/V ∆VPS = ±1.8V A 85 - 0.8 3 - 0.8 3 µA/V ∆VPS = ±1.2V A -40 - 0.8 3 - 0.8 3 µA/V ∆VCM = ±1.8V A 25 0.8 1.2 - 0.8 1.2 - MΩ ∆VCM = ±1.8V A 85 0.5 0.8 - 0.5 0.8 - MΩ ∆VCM = ±1.2V A -40 0.5 0.8 - 0.5 0.8 - MΩ A 25 - 2 7.5 - 2 7.5 µA A Full - 5 15 - 5 15 µA B Full - 60 200 - 60 200 nA/oC ∆VCM = ±1.8V A 25 - 3 6 - 3 6 µA/V ∆VCM = ±1.8V A 85 - 4 8 - 4 8 µA/V ∆VCM = ±1.2V A -40 - 4 8 - 4 8 µA/V Non-Inverting Input Bias Current Non-Inverting Input Bias Current Drift Non-Inverting Input Bias Current Power Supply Sensitivity Non-Inverting Input Resistance Inverting Input Bias Current Inverting Input Bias Current Drift Inverting Input Bias Current Common-Mode Sensitivity 2 HFA1305 Electrical Specifications VSUPPLY = 5V, AV = +1, RF = 510Ω, RL = 100Ω, Unless Otherwise Specified (Continued) PARAMETER HFA1305IA (SSOP) TEMP. (oC) MIN TYP MAX MIN TYP MAX UNITS ∆VPS = ±1.8V A 25 - 2 5 - 2 5 µA/V ∆VPS = ±1.8V A 85 - 4 8 - 4 8 µA/V ∆VPS = ±1.2V A -40 - 4 8 - 4 8 µA/V TEST CONDITIONS Inverting Input Bias Current Power Supply Sensitivity HFA1305IB (SOIC) (NOTE 4) TEST LEVEL Inverting Input Resistance C 25 - 60 - - 60 - Ω Input Capacitance B 25 - 1.4 - - 1.2 - pF Input Voltage Common Mode Range (Implied by VIO CMRR, +RIN, and -IBIAS CMS Tests) A 25, 85 ±1.8 ±2.4 - ±1.8 ±2.4 - V A -40 ±1.2 ±1.7 - ±1.2 ±1.7 - V Input Noise Voltage Density f = 100kHz B 25 - 3.5 - - 3.5 - nV/√Hz Non-Inverting Input Noise Current Density f = 100kHz B 25 - 2.5 - - 2.5 - pA/√Hz Inverting Input Noise Current Density f = 100kHz B 25 - 20 - - 20 - pA/√Hz C 25 - 500 - - 500 - kΩ AV = +1 B 25 - 375 - - 330 - MHz AV = -1 B 25 - 420 - - 450 - MHz AV = +2 B 25 - 560 - - 675 - MHz AV = +1 B 25 - 160 - - 190 - MHz AV = -1 B 25 - 260 - - 290 - MHz AV = +2 B 25 - 165 - - 190 - MHz AV = +1, To 25MHz B 25 - ±0.03 - - ±0.04 - dB AV = +1, To 50MHz B 25 - ±0.03 - - ±0.05 - dB AV = +1, To 100MHz B 25 - ±0.07 - - ±0.08 - dB AV = -1, To 25MHz B 25 - ±0.03 - - ±0.03 - dB AV = -1, To 50MHz B 25 - ±0.04 - - ±0.06 - dB AV = -1, To 100MHz B 25 - ±0.09 - - ±0.07 - dB AV = +2, To 25MHz B 25 - ±0.03 - - ±0.04 - dB AV = +2, To 50MHz B 25 - ±0.03 - - ±0.08 - dB AV = +2, To 100MHz B 25 - ±0.07 - - ±0.09 - dB TRANSFER CHARACTERISTICS Open Loop Transimpedance Gain AC CHARACTERISTICS (Note 3) -3dB Bandwidth (VOUT = 0.2VP-P, Notes 3, 5) Full Power Bandwidth (VOUT = 5VP-P, Notes 3, 5) Gain Flatness (VOUT = 0.2VP-P, Notes 3, 5) Minimum Stable Gain Crosstalk (AV = +1, All Channels Hostile, Note 5) A Full - 1 - - 1 - V/V 5MHz B 25 - -60 - - -64 - dB 10MHz B 25 - -56 - - -60 - dB OUTPUT CHARACTERISTICS AV = +2 (Note 3), Unless Otherwise Specified A 25 ±3 ±3.4 - ±3 ±3.4 - V A Full ±2.8 ±3 - ±2.8 ±3 - V A 25, 85 50 60 - 50 60 - mA A -40 28 42 - 28 42 - mA Output Short Circuit Current B 25 - 90 - - 90 - mA Closed Loop Output Impedance B 25 - 0.2 - - 0.2 - Ω Output Voltage Swing (Note 5) AV = -1, RL = 100Ω Output Current (Note 5) AV = -1, RL = 50Ω 3 HFA1305 Electrical Specifications VSUPPLY = 5V, AV = +1, RF = 510Ω, RL = 100Ω, Unless Otherwise Specified (Continued) PARAMETER TEST CONDITIONS HFA1305IB (SOIC) HFA1305IA (SSOP) (NOTE 4) TEST LEVEL TEMP. (oC) MIN TYP MAX MIN TYP MAX UNITS Second Harmonic Distortion (VOUT = 2VP-P, Note 5) 10MHz B 25 - -51 - - -51 - dBc 20MHz B 25 - -46 - - -46 - dBc Third Harmonic Distortion (VOUT = 2VP-P, Note 5) 10MHz B 25 - -63 - - -63 - dBc 20MHz B 25 - -56 - - -56 - dBc TRANSIENT CHARACTERISTICS AV = +2 (Note 3), Unless Otherwise Specified Rise and Fall Times (VOUT = 0.5VP-P, Note 3) Overshoot (VOUT = 0.5VP-P, VIN tRISE = 1ns, Notes 3, 6) Slew Rate (VOUT = 5VP-P at AV = +2, -1, VOUT = 4VP-P, at AV = +1, Notes 3, 5) Settling Time (VOUT = +2V to 0V Step, Note 5) Overdrive Recovery Time VIDEO CHARACTERISTICS AV = +1 B 25 - 1.0 - - 1.1 - ns AV = -1 B 25 - - - - 0.9 - ns AV = +2 B 25 - 0.8 - - 0.6 - ns AV = +1, +OS B 25 - 5 - - 5 - % AV = +1, -OS B 25 - 11 - - 6 - % AV = -1, +OS B 25 - 7 - - 2 - % AV = -1, -OS B 25 - 8 - - 8 - % AV = +2, +OS B 25 - 5 - - 5 - % AV = +2, -OS B 25 - 10 - - 5 - % AV = +1, +SR B 25 - 1230 - - 1650 - V/µs AV = +1, -SR B 25 - 1350 - - 1650 - V/µs AV = -1, +SR B 25 - 2500 - - 2900 - V/µs AV = -1, -SR B 25 - 1900 - - 2500 - V/µs AV = +2, +SR B 25 - 1700 - - 2100 - V/µs AV = +2, -SR B 25 - 1700 - - 1900 - V/µs To 0.1% B 25 - 23 - - 30 - ns To 0.05% B 25 - 30 - - 33 - ns To 0.025% B 25 - 37 - - 50 - ns VIN = ±2V B 25 - 8.5 - - 8.5 - ns AV = +2 (Note 3), Unless Otherwise Specified Differential Gain (f = 3.58MHz) RL = 150Ω B 25 - 0.02 - - 0.02 - % RL = 75Ω B 25 - 0.03 - - 0.03 - % Differential Phase (f = 3.58MHz) RL = 150Ω B 25 - 0.03 - - 0.03 - Degrees RL = 75Ω B 25 - 0.06 - - 0.06 - Degrees Power Supply Range C 25 ±4.5 - ±5.5 ±4.5 - ±5.5 V Power Supply Current (Note 5) A 25 - 5.8 6.1 - 5.8 6.1 mA/Op Amp A Full - 5.9 6.3 - 5.9 6.3 mA/Op Amp POWER SUPPLY CHARACTERISTICS NOTES: 3. The optimum feedback resistor depends on closed loop gain and package type. See the “Optimum Feedback Resistor” table in the Application Information section for details. 4. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only. 5. See Typical Performance Curves for more information. 6. Undershoot dominates for output signal swings below GND (e.g., 2VP-P), yielding a higher overshoot limit compared to the VOUT = 0V to 2V condition. See the “Application Information” section for details. 4 HFA1305 Application Information Non-inverting Input Source Impedance Performance Differences Between SOIC and SSOP The amplifiers comprising the HFA1305 are high frequency current feedback amplifiers. As such, they are sensitive to feedback capacitance which destabilizes the op amp and causes overshoot and peaking. Unfortunately, the standard triple op amp pinout places the amplifier’s output next to its inverting input, thus making the package capacitance an unavoidable parasitic feedback capacitor. The larger parasitic capacitance of the SSOP requires a larger feedback resistor to stabilize the amplifier, yielding an SSOP device with different performance characteristics than the SOIC device - see Electrical Specification tables for details. Because of these performance differences, designers should evaluate and breadboard with the same package style to be used in production. Note that the “Typical Performance Curves” section has separate pulse and frequency response graphs for each package type. Graphs not labeled with a specific package type are applicable to both packages. Optimum Feedback Resistor Although a current feedback amplifier’s bandwidth dependency on closed loop gain isn’t as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier’s unique relationship between bandwidth and RF. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and RF, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier’s bandwidth is inversely proportional to RF. The HFA1305 design is optimized for RF = 510Ω/681Ω (SOIC/SSOP) at a gain of +2. Decreasing RF decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback causes the same problems due to the feedback impedance decrease at higher frequencies). However, at higher gains the amplifier is more stable so RF can be decreased in a trade-off of stability for bandwidth. The table below lists recommended RF values for various gains, and the expected bandwidth. For good channel-tochannel gain matching, it is recommended that all resistors (termination as well as gain setting) be ±1% tolerance or better. OPTIMUM FEEDBACK RESISTOR GAIN (ACL) RF (Ω) SOIC/SSOP BANDWIDTH (MHz) SOIC/SSOP -1 360/432 420/450 +1 464 (+RS = 649)/ 681 (+RS = 806) 375/330 +2 510/681 560/675 +5 200/649 330/200 +10 180/681 140/120 5 For best operation, the DC source impedance seen by the non-inverting input should be ≥ 50Ω. This is especially important in inverting gain configurations where the noninverting input would normally be connected directly to GND. Pulse Undershoot The HFA1305 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing 0V, resulting in added distortion for signals swinging below ground, and an increased undershoot on the negative portion of the output waveform (see Figure 8). This undershoot isn’t present for small bipolar signals, or large positive signals (see Figure 6 and Figure 7). PC Board Layout The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must! Attention should be given to decoupling the power supplies. A large value (10µF) tantalum in parallel with a small value (0.1µF) chip capacitor works well in most cases. Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance, parasitic or planned, connected to the output must be minimized, or isolated as discussed in the next section. Care must also be taken to minimize the capacitance to ground at the amplifier’s inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and eventual instability. To reduce this capacitance the designer should remove the ground plane under traces connected to -IN, and keep connections to -IN as short as possible. An example of a good high frequency layout is the Evaluation Boards shown in Figures 3 and 5. Driving Capacitive Loads Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier’s phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (RS) in series with the output prior to the capacitance. Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the RS and CL combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance. HFA1305 RS and CL form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 560MHz. By decreasing RS as CL increases (as illustrated in the curve), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth still decreases as the load capacitance increases. TOP LAYOUT SERIES OUTPUT RESISTANCE (Ω) 50 40 30 20 AV = +2 10 0 BOTTOM LAYOUT 0 50 100 150 200 250 300 350 400 LOAD CAPACITANCE (pF) FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE Evaluation Board The performance of the HFA1305IB (SOIC) may be evaluated using the HA5025 Evaluation Board and a SOIC to DIP adaptor like the Aries Electronics Part Number 14-350000-10. The SSOP version can be evaluated using the OPAMPSSOPEVAL board. FIGURE 3. EVALUATION BOARD LAYOUT FOR SOIC The schematic for the SOIC amplifier 1 and the HA5025EVAL board layout are shown in Figure 2 and Figure 3. Resistors RF, RG , and +RS may require a change to values applicable to the HFA1305IB. The schematic for the SSOP amplifier 1 and the OPAMPSSOPEVAL board layout are shown in Figure 4 and Figure 5. Resistors RF, RG , and +RS may require a change to values applicable to the HFA1305IA. To order evaluation boards (part number HA5025EVAL or OPAMPSSOPEVAL), please contact your local sales office. 10µF 0.1µF 1 14 2 13 3 12 4 11 -5V +RS 5 IN RG OUT 50Ω RF 6 10 + - 0.1µF 10µF 9 GND 8 7 GND FIGURE 2. EVALUATION BOARD SCHEMATIC FOR SOIC 6 14 2 13 3 12 4 11 0Ω 49.9Ω IN +RS 5 RG 6 + - 10 0.1µF 7 10µF 9 RF 49.9Ω -5V GND 8 GND FIGURE 4. EVALUATION BOARD SCHEMATIC FOR SSOP +5V 50Ω 1 +5V OUT 10µF 0Ω 0.1µF HFA1305 BOTTOM LAYOUT TOP LAYOUT FIGURE 5. EVALUATION BOARD LAYOUT FOR SSOP VSUPPLY = ±5V, TA = 25oC, RF = Value From the Optimum Feedback Resistor Table, RL = 100Ω, Unless Otherwise Specified 160 1.6 AV = +2 120 SOIC 1.2 80 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) Typical Performance Curves 40 0 -40 -80 AV = +2 SOIC 0.8 0.4 0 -0.4 -0.8 -120 -1.2 -160 -1.6 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 6. SMALL SIGNAL PULSE RESPONSE FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE 160 1.6 120 OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) 1.2 AV = +2 SOIC 0.8 0.4 0 -0.4 -0.8 AV = -1 SOIC 80 40 0 -40 -80 -120 -1.2 -160 -1.6 TIME (5ns/DIV.) FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE 7 TIME (5ns/DIV.) FIGURE 9. SMALL SIGNAL PULSE RESPONSE HFA1305 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RF = Value From the Optimum Feedback Resistor Table, RL = 100Ω, Unless Otherwise Specified (Continued) 1.6 1.2 OUTPUT VOLTAGE (V) 0.8 0.4 0 -0.4 AV = -1 SOIC 0.8 0.4 0 -0.4 -0.8 -0.8 -1.2 -1.2 -1.6 -1.6 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE 160 1.2 80 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 120 1.6 AV = +1 SOIC 40 0 -40 -80 0 -0.4 -1.6 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 13. LARGE SIGNAL BIPOLAR PULSE RESPONSE VOUT = 200mVP-P SOIC GAIN 0 AV = -1 -3 AV = +1 PHASE 0 90 AV = +1 180 AV = -1 AV = +2 270 360 1 10 100 FREQUENCY (MHz) FIGURE 14. FREQUENCY RESPONSE 8 800 NORMALIZED PHASE (DEGREES) AV = +2 3 NORMALIZED GAIN (dB) FIGURE 12. SMALL SIGNAL PULSE RESPONSE NORMALIZED GAIN (dB) 0.4 -1.2 -160 0.3 0.8 -0.8 -120 6 AV = +1 SOIC 2 AV = +2 VOUT = 200mVP-P 1 SOIC 0 RF = 500Ω RF = 683Ω RF = 750Ω GAIN -1 RF = 1kΩ RF = 1.5kΩ -2 -3 RF = 1.5kΩ PHASE 0 90 180 270 RF = 500Ω 1 10 100 360 800 PHASE (DEGREES) OUTPUT VOLTAGE (V) 1.2 1.6 AV = -1 SOIC FREQUENCY (MHz) FIGURE 15. FREQUENCY RESPONSE vs FEEDBACK RESISTOR HFA1305 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RF = Value From the Optimum Feedback Resistor Table, RL = 100Ω, Unless Otherwise Specified (Continued) 0.3 0.2 VOUT = 200mVP-P 0.2 SOIC AV = -1 0.1 RF = 500Ω 0 0 -0.1 AV = +1 AVV == +2 +2 A -0.2 -0.3 -0.4 NORMALIZED GAIN (dB) NORMALIZED GAIN (dB) AV = +2, SOIC VOUT = 200mVP-P 0.1 -0.5 -0.1 RF = 683Ω -0.2 -0.3 RF = 750Ω -0.4 RF = 1kΩ -0.5 RF = 1.5kΩ -0.6 -0.6 -0.7 -0.7 1 10 -0.8 100 FREQUENCY (MHz) 1 10 100 FREQUENCY (MHz) FIGURE 16. GAIN FLATNESS FIGURE 17. GAIN FLATNESS vs FEEDBACK RESISTOR -10 AV = +2 VOUT = 2V SOIC -20 0.2 -30 0.15 CROSSTALK (dB) SETTLING ERROR (%) RL = 100Ω -40 -50 -60 RL = ∞ -70 -80 0.1 0.05 0.025 0 -0.025 -0.05 -0.1 -90 -0.15 -100 -0.2 -110 0.3 1 10 FREQUENCY (MHz) 100 SOIC 0 200 FIGURE 18. ALL HOSTILE CROSSTALK 5 10 15 20 25 30 TIME (ns) 40 45 50 FIGURE 19. SETTLING RESPONSE 160 1.6 AV = +2 AV = +2 SSOP 120 80 40 0 -40 0.8 0.4 0 -0.4 -80 -0.8 -120 -1.2 -160 SSOP 1.2 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 35 -1.6 TIME (5ns/DIV.) FIGURE 20. SMALL SIGNAL PULSE RESPONSE 9 TIME (5ns/DIV.) FIGURE 21. LARGE SIGNAL POSITIVE PULSE RESPONSE HFA1305 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RF = Value From the Optimum Feedback Resistor Table, RL = 100Ω, Unless Otherwise Specified (Continued) 1.6 160 AV = +2 AV = -1 SSOP 1.2 120 80 OUTPUT VOLTAGE (mV) OUTPUT VOLTAGE (V) 0.8 SSOP 0.4 0 -0.4 -0.8 -1.2 40 0 -40 -80 -120 -1.6 -160 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 22. LARGE SIGNAL BIPOLAR PULSE RESPONSE FIGURE 23. SMALL SIGNAL PULSE RESPONSE 1.6 1.6 AV = -1 AV = -1 1.2 SSOP 1.2 0.8 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0.8 0.4 0 -0.4 -0.8 0.4 0 -0.4 -0.8 -1.2 -1.2 -1.6 -1.6 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 24. LARGE SIGNAL POSITIVE PULSE RESPONSE 160 FIGURE 25. LARGE SIGNAL BIPOLAR PULSE RESPONSE 1.6 AV = +1 AV = +1 SSOP 120 SSOP 1.2 80 0.8 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) SSOP 40 0 -40 -80 0.4 0 -0.4 -0.8 -1.2 -120 -1.6 -160 TIME (5ns/DIV.) FIGURE 26. SMALL SIGNAL PULSE RESPONSE 10 TIME (5ns/DIV.) FIGURE 27. LARGE SIGNAL BIPOLAR PULSE RESPONSE HFA1305 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RF = Value From the Optimum Feedback Resistor Table, RL = 100Ω, Unless Otherwise Specified (Continued) 160 AV = +5 SSOP 120 SSOP 1.2 0.8 80 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 1.6 AV = +5 40 0 -40 -80 0.4 0 -0.4 -0.8 -120 -1.2 -160 -1.6 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 28. SMALL SIGNAL PULSE RESPONSE 160 1.6 AV = +10 AV = +10 SSOP 120 SSOP 1.2 0.8 80 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) FIGURE 29. LARGE SIGNAL BIPOLAR PULSE RESPONSE 40 0 -40 0.4 0 -0.4 -80 -0.8 -120 -1.2 -1.6 -160 TIME (10ns/DIV.) TIME (10ns/DIV.) VOUT = 200mVP-P SSOP 3 FIGURE 31. LARGE SIGNAL BIPOLAR PULSE RESPONSE AV = +2 4 0 VOUT = 200mVP-P SSOP AV = -1 -3 -6 AV = +1 0 AV = +2 PHASE 90 180 AV = -1 270 AV = +1 1 10 100 FREQUENCY (MHz) FIGURE 32. FREQUENCY RESPONSE 11 360 1000 NORMALIZED GAIN (dB) 3 GAIN NORMALIZED PHASE (DEGREES) NORMALIZED GAIN (dB) FIGURE 30. SMALL SIGNAL PULSE RESPONSE 2 1 0 -1 -2 AV = +10 AV = +5 -3 -4 1 10 100 FREQUENCY (MHz) FIGURE 33. FREQUENCY RESPONSE 1000 HFA1305 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RF = Value From the Optimum Feedback Resistor Table, RL = 100Ω, Unless Otherwise Specified (Continued) 0.4 4 AV = -1 VOUT = 200mVP-P SSOP NORMALIZED GAIN (dB) NORMALIZED GAIN (dB) VOUT = 5VP-P 3 0.3 0.2 0.1 AV = +1 0 -0.1 -0.2 1 AV = -1 0 AV = +1 -1 -2 -3 AV = +2 -0.3 SSOP 2 -4 AV = +2 -0.4 1 10 100 200 1 FREQUENCY (MHz) 10 100 FREQUENCY (MHz) FIGURE 34. GAIN FLATNESS 1000 FIGURE 35. FULL POWER BANDWIDTH -10 SSOP AV = +2 VOUT = 2V -20 0.1 -30 SETTLING ERROR (%) CROSSTALK (dB) -40 -50 RL = 100Ω -60 -70 -80 RL = ∞ -90 SSOP 0.05 0.025 0 -0.025 -0.05 -0.1 -100 -110 0.3 1 10 FREQUENCY (MHz) 10 100 |-VOUT| (RL= 100Ω) |-VOUT| (RL= 50Ω) 3.2 3.1 +VOUT (RL= 50Ω) 2.9 2.8 2.7 2.6 -50 -25 60 70 80 90 100 6.5 +VOUT (RL= 100Ω) 3.0 50 6.6 AV = -1 SUPPLY CURRENT (mA/AMPLIFIER) OUTPUT VOLTAGE (V) 3.3 40 FIGURE 37. SETTLING RESPONSE 3.6 3.4 30 TIME (ns) FIGURE 36. ALL HOSTILE CROSSTALK 3.5 20 0 25 50 75 100 TEMPERATURE (oC) FIGURE 38. OUTPUT VOLTAGE vs TEMPERATURE 12 125 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 4.5 5 5.5 6 6.5 SUPPLY VOLTAGE (±V) FIGURE 39. SUPPLY CURRENT vs SUPPLY VOLTAGE 7 HFA1305 Die Characteristics DIE DIMENSIONS SUBSTRATE POTENTIAL (POWERED UP) 79 mils x 118 mils 2000µm x 3000µm Floating (Recommend Connection to V-) PASSIVATION METALLIZATION Type: Nitride Thickness: 4kÅ ±0.5kÅ Type: Metal 1: AICu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.4kÅ Type: Metal 2: AICu(2%) Thickness: Metal 2: 16kÅ ±0.8kÅ TRANSISTOR COUNT 240 Metallization Mask Layout HFA1305 NC NC OUT3 -IN3 NC +IN3 V+ V- +IN1 +IN2 -IN1 13 OUT1 V- OUT2 -IN2 HFA1305 Small Outline Plastic Packages (SOIC) M14.15 (JEDEC MS-012-AB ISSUE C) N INDEX AREA H 0.25(0.010) M 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE B M E INCHES -B- 1 2 3 L SEATING PLANE -A- h x 45o A D -C- α e A1 B 0.25(0.010) M C A M C B S NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. 14 SYMBOL MIN MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.0040 0.0098 0.10 0.25 - B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 - D 0.3367 0.3444 8.55 8.75 3 E 0.1497 0.1574 3.80 4.00 4 e 0.10(0.004) MILLIMETERS 0.050 BSC 1.27 BSC - H 0.2284 0.2440 5.80 6.20 - h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6 N α 14 0o 14 8o 0o 7 8o Rev. 0 12/93 HFA1305 Shrink Small Outline Plastic Packages (SSOP) M16.15A N INDEX AREA H 0.25(0.010) M 16 LEAD SHRINK NARROW BODY SMALL OUTLINE PLASTIC PACKAGE B M E GAUGE PLANE -B- INCHES SYMBOL 1 2 3 L 0.25 0.010 SEATING PLANE -A- h x 45o A D -C- α e B 0.17(0.007) M A2 A1 C 0.10(0.004) C A M B S NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “B” does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm (0.004 inch) total in excess of “B” dimension at maximum material condition. 10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact. MIN MAX MILLIMETERS MIN MAX NOTES A 0.053 0.069 1.35 1.75 - A1 0.004 0.010 0.10 0.25 - A2 - 0.061 - 1.54 - B 0.008 0.012 0.20 0.30 9 C 0.007 0.010 0.18 0.25 - D 0.189 0.196 4.80 4.98 3 E 0.150 0.157 3.81 3.98 4 e 0.025 BSC 0.635 BSC - H 0.228 0.244 5.80 6.19 - h 0.0099 0.0196 0.26 0.49 5 L 0.016 0.050 0.41 1.27 6 N α 16 0o 16 8o 0o 7 8o Rev. 0 5/96 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 15 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil Ltd. 8F-2, 96, Sec. 1, Chien-kuo North, Taipei, Taiwan 104 Republic of China TEL: 886-2-2515-8508 FAX: 886-2-2515-8369
HFA1305IA 价格&库存

很抱歉,暂时无法提供与“HFA1305IA”相匹配的价格&库存,您可以联系我们找货

免费人工找货