ON Semiconductor
TL062
TL064
Low Power JFET Input
Operational Amplifiers
These JFET input operational amplifiers are designed for low power
applications. They feature high input impedance, low input bias current and
low input offset current. Advanced design techniques allow for higher slew
rates, gain bandwidth products and output swing.
The commercial and vehicular devices are available in Plastic dual in–line
and SOIC packages.
• Low Supply Current: 200 µA/Amplifier
•
•
•
•
•
•
LOW POWER JFET INPUT
OPERATIONAL AMPLIFIERS
SEMICONDUCTOR
TECHNICAL DATA
Low Input Bias Current: 5.0 pA
DUAL
High Gain Bandwidth: 2.0 MHz
High Slew Rate: 6.0 V/µs
High Input Impedance:
8
8
1012 Ω
Large Output Voltage Swing: ±14 V
P SUFFIX
PLASTIC PACKAGE
CASE 626
Output Short Circuit Protection
VCC
Output 1
Inputs 1
1
8
2
7
3
VEE
Inputs
D2
+
+
Q4
R1
5
Inputs 2
Output
QUAD
C1
Q5
R2
6
(Top View)
14
C2
Q2
+
VCC
Output 2
R4
D1
Q3
Q1
R3
+
4
Q7
J2
J1
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
Representative Schematic Diagram
(Each Amplifier)
-
1
1
14
1
1
Q6
N SUFFIX
PLASTIC PACKAGE
CASE 646
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
VEE
R5
PIN CONNECTIONS
Output 1
ORDERING INFORMATION
Op Amp
Function
Device
TL062CD, ACD
TL062CP, ACP
Dual
TL062VD
TL062VP
TL064CD, ACD
TL064CN, ACN
Quad
TL064VD
TL064VN
Operating
Temperature Range
Package
TA = 0° to +70°C
SO–8
Plastic DIP
TA = –40° to +85°C
SO–8
Plastic DIP
TA = 0° to +70°C
SO–14
Plastic DIP
TA = –40° to +85°C
SO–14
Plastic DIP
Semiconductor Components Industries, LLC, 2002
March, 2002 – Rev. 6
1
Inputs 1
VCC
1
14
2
13
3
Output 2
1
4
+
+
4
5
Inputs 2
6
12
11
+
2
3
-
+
-
7
10
9
8
Output 4
Inputs 4
VEE
Inputs 3
Output 3
(Top View)
Publication Order Number:
TL062/D
TL062 TL064
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
Input Differential Voltage Range (Note 1)
VIDR
±30
V
Input Voltage Range (Notes 1 and 2)
VIR
±15
V
Output Short Circuit Duration (Note 3)
tSC
Indefinite
sec
Operating Junction Temperature
TJ
+150
°C
Storage Temperature Range
Tstg
–60 to +150
°C
Supply Voltage (from VCC to VEE)
NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input
terminal.
2. The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V,
whichever is less.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded. (See Figure 1.)
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 0° to +70°C, unless otherwise noted.)
TL062AC
TL064AC
Characteristics
Symbol
TL062C
TL064C
Min
Typ
Max
Min
Typ
Max
—
—
3.0
—
6.0
7.5
—
—
3.0
—
15
20
—
10
—
—
10
—
µV/°C
—
—
0.5
—
100
2.0
—
—
0.5
—
200
2.0
pA
nA
—
—
3.0
—
200
2.0
—
—
3.0
—
200
10
pA
nA
—
–11.5
+14.5
–12.0
+11.5
—
—
–11
+14.5
–12.0
+11
—
V
4.0
4.0
58
—
—
—
3.0
3.0
58
—
—
—
VO+
VO–
+10
—
+14
–14
—
–10
+10
—
+14
–14
—
–10
VO+
VO–
+10
—
—
—
—
–10
+10
—
—
—
—
–10
Common Mode Rejection
(RS = 50 Ω, VCM = VICR min, VO = 0 V, TA = 25°C)
CMR
80
84
—
70
84
—
dB
Power Supply Rejection
(RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C)
PSR
80
86
—
70
86
—
dB
Power Supply Current (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
ID
—
200
250
—
200
250
µA
Total Power Dissipation (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
PD
—
6.0
7.5
—
6.0
7.5
mW
Input Offset Voltage (RS = 50 Ω, VO = 0V)
TA = 25°C
TA = 0° to +70°C
VIO
∆VIO/∆T
Average Temperature Coefficient for Offset Voltage
(RS = 50 Ω, VO = 0 V)
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = 0° to +70°C
IIO
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = 0° to +70°C
IIB
Input Common Mode Voltage Range
TA = 25°C
VICR
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = 25°C
TA = 0° to +70°C
AVOL
Unit
mV
V/mV
V
Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V)
TA = 25°C
TA = 0° to +70°C
http://onsemi.com
2
TL062 TL064
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = Tlow to Thigh [Note 4], unless otherwise noted.)
TL062V
Characteristics
Symbol
Input Offset Voltage (RS = 50 Ω, VO = 0V)
TA = 25°C
TA = Tlow to Thigh
Max
Min
Typ
Max
—
—
3.0
—
6.0
9.0
—
—
3.0
—
9.0
15
IIO
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = Tlow to Thigh
IIB
Input Common Mode Voltage Range (TA = 25°C)
VICR
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = 25°C
TA = Tlow to Thigh
AVOL
Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V)
TA = 25°C
Unit
—
10
—
—
10
—
—
—
5.0
—
100
20
—
—
5.0
—
100
20
pA
nA
—
—
30
—
200
50
—
—
30
—
200
50
pA
nA
—
–11.5
+14.5
–12.0
+11.5
—
—
–11.5
+14.5
–12.0
+11.5
—
V
4.0
4.0
58
—
—
—
4.0
4.0
58
—
—
—
+10
—
+10
—
+14
–14
—
—
—
–10
—
–10
+10
—
+10
—
+14
–14
—
—
—
–10
—
–10
80
84
—
80
84
—
80
86
—
80
86
—
—
200
250
—
200
250
—
6.0
7.5
—
6.0
7.5
mV
∆VIO/∆T
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = 25°C
TA = Tlow to Thigh
µV/°C
V/mV
V
VO+
VO–
VO+
VO–
TA = Tlow to Thigh
Common Mode Rejection
(RS = 50 Ω, VCM = VICR min, VO = 0, TA = 25°C)
CMR
Power Supply Rejection
(RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C)
PSR
Power Supply Current (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
ID
Total Power Dissipation (each amplifier)
(No Load, VO = 0 V, TA = 25°C)
PD
4. Tlow = –40°C
Typ
VIO
Average Temperature Coefficient for Offset Voltage
(RS = 50 Ω, VO = 0 V)
NOTE:
TL064V
Min
dB
dB
µA
mW
Thigh = +85°C for TL062,4V
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = +25°C, unless otherwise noted.)
Characteristics
Symbol
Min
Typ
Max
Unit
SR
2.0
6.0
—
V/µs
Rise Time (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
tr
—
0.1
—
µs
Overshoot (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
OS
—
10
—
%
—
—
1.6
2.2
—
—
GBW
—
2.0
—
MHz
en
—
47
—
nV/ √ Hz
—
W
—
dB
Slew Rate (Vin = –10 V to +10 V, RL = 10 kΩ, CL = 100 pF, AV = +1.0)
Settling Time
(VCC = +15 V, VEE = –15 V, AV = –1.0,
RL = 10 kΩ, VO = 0 V to +10 V step)
µs
tS
To within 10 mV
To within 1.0 mV
Gain Bandwidth Product (f = 200 kHz)
Equivalent Input Noise (RS = 100 Ω, f = 1.0 kHz)
Input Resistance
Ri
—
1012
Channel Separation (f = 10 kHz)
CS
—
120
http://onsemi.com
3
TL062 TL064
Figure 1. Maximum Power Dissipation versus
Temperature for Package Variations
Figure 2. Output Voltage Swing
versus Supply Voltage
2000
1600
SO-14
1200
800
40
VO, OUTPUT VOLTAGE SWING (Vpp )
P,
D MAXIMUM POWER DISSIPATION (mW)
2400
SO-8
400
0
-55 -40 -20
0
20
40
60
80
35
30
25
20
15
10
5.0
0
100 120 140 160
4.0
6.0
8.0
10
12
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 3. Output Voltage Swing
versus Temperature
Figure 4. Output Voltage Swing
versus Load Resistance
VO, OUTPUT VOLTAGE SWING (Vpp )
35
30
25
20
15
VCC = +15 V
VEE = -15 V
RL = 10 kΩ
10
5.0
-50
-25
0
25
50
75
100
24
14
16
12
6.0
0
0.1
125
RL = 10 kΩ
TA = 25°C
15
VCC = +5.0 V, VEE = -5.0 V
5.0
100
2.0
3.0
5.0 7.0 10
Figure 6. Large Signal Voltage Gain
versus Temperature
VCC = +12 V, VEE = -12 V
10
0.5 0.7 1.0
Figure 5. Output Voltage Swing
versus Frequency
VCC = +15 V, VEE = -15 V
20
0.3
RL, LOAD RESISTANCE (kΩ)
100
25
0.2
TA, AMBIENT TEMPERATURE (°C)
35
30
VCC = +15 V
VEE = -15 V
TA = 25°C
18
A VOL , LARGE SIGNAL VOLTAGE GAIN (V/mV)
VO, OUTPUT VOLTAGE SWING (Vpp )
2.0
30
0
-75
VO, OUTPUT VOLTAGE SWING (Vpp )
0
TA, AMBIENT TEMPERATURE (°C)
40
0
RL = 10 kΩ
TA = 25°C
VCC = +2.5 V, VEE = -2.5 V
1.0 k
10 k
100 k
1.0 M
10 M
70
VCC = +15 V
VEE = -15 V
RL = 10 kΩ
50
40
30
20
10
-75
f, FREQUENCY (Hz)
-50
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
http://onsemi.com
4
100
125
TL062 TL064
Figure 8. Supply Current per Amplifier
versus Supply Voltage
100
80
60
Gain
Phase
0
45
40
90
20
135
0
1.0
10
100
1.0 k
10 k
100 k
1.0 M
I CC , SUPPLY CURRENT (µ A)
250
VCC = +15 V
VEE = -15 V
VO = 0 V
RL = 10 kΩ
CL = 0 pF
TA = 25°C
φ , EXCESS PHASE (DEGREES)
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
Figure 7. Open Loop Voltage Gain
and Phase versus Frequency
200
150
100
50
0
180
10 M 100 M
TA = 25°C
VO = 0 V
RL = ∞Ω
0
2.0
4.0
f, FREQUENCY (Hz)
CMR, COMMON MODE REJECTION (dB)
P D, TOTAL POWER DISSIPATION (MW)
100
86
VCC = +15 V
VEE = -15 V
VO = 0 V
RL = ∞Ω
-50
-25
0
25
50
75
100
125
16
18
20
20
15
TL064
VCC = +15 V
VEE = -15 V
VO = 0 V
RL = ∞Ω
TL062
10
5.0
0
-75
-50
-25
0
25
50
75
100
TA, AMBIENT TEMPERATURE (°C)
Figure 11. Common Mode Rejection
versus Temperature
Figure 12. Common Mode Rejection
versus Frequency
VCC = +15 V
VEE = -15 V
VO = 0 V
RL = 10 kΩ
85
84
83
82
81
80
-75
14
TA, AMBIENT TEMPERATURE (°C)
CMR, COMMON MODE REJECTION (dB)
I CC , SUPPLY CURRENT (µ/A)
150
87
12
25
200
88
10
Figure 10. Total Power Dissipation
versus Temperature
250
0
-75
8.0
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 9. Supply Current per Amplifier
versus Temperature
50
6.0
-50
-25
0
25
50
75
100
140
120
100
VCC = +15 V
VEE = -15 V
∆VCM = ±1.5 V
TA = 25°C
80
∆VCM
CMR = 20 Log
ADM
∆VCM
∆VO
∆VO
X ADM
40
20
TA, AMBIENT TEMPERATURE (°C)
1k
10 k
f, FREQUENCY (Hz)
http://onsemi.com
5
+
60
0
100
125
125
100 k
1M
TL062 TL064
Figure 14. Normalized Gain Bandwidth
Product, Slew Rate and Phase
Margin versus Temperature
120
+PSR = 20Log
∆VO/ADM
∆VCC
-PSR = 20Log
∆VO/ADM
∆VEE
+PSR (∆VCC = ±1.5 V)
100
-PSR (∆VEE = ±1.5 V)
80
60
VCC = +15 V
VEE = -15 V
TA = 25°C
40
20
0
100
ADM
+
1.0 k
VCC
∆VO
VEE
10 k
100 k
1.08
1.4
1.0 M
1.2
GBW
1.1
Slew Rate
1.0
0.8
0.94
0.7
0.6
-75
-50
-25
0
25
50
75
100
0.92
125
e n , INPUT NOISE VOLTAGE ( nV/ √ Hz )
10
1.0
0.1
0.01
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
70
60
50
40
30
20
10
125
0
10
Figure 17. Small Signal Response
VCC = +15 V
VEE = -15 V
RS = 100 Ω
TA = 25°C
100
1.0 k
f, FREQUENCY (Hz)
10 k
Figure 18. Large Signal Response
VCC = +15 V
VEE = -15 V
RL = 10 kΩ
CL = 0 pF
AV = +1.0
VCC = +15 V
VEE = -15 V
RL = 10 kΩ
CL = 0 pF
AV = +1.0
V O , OUTPUT VOLTAGE (5.0 V/DIV)
I IB , INPUT BIAS CURRENT (pA)
0.96
Figure 16. Input Noise Voltage
versus Frequency
VCC = +15 V
VEE = -15 V
VCM = 0 V
V O , OUTPUT VOLTAGE (10 mV/DIV)
1.02
TA, AMBIENT TEMPERATURE (°C)
1000
-25
1.04
0.98
Phase Margin
Figure 15. Input Bias Current
versus Temperature
0.001
-55
1.06
1.0
0.9
f, FREQUENCY (Hz)
100
VCC = +15 V
VEE = -15 V
RL = 10 kΩ
CL = 0 pF
1.3
φ m , NORMALIZED PHASE MARGIN
140
NORMALIZED GAIN BANDWIDTH
PRODUCT AND SLEW RATE
PSR, POWER SUPPLY REJECTION (dB)
Figure 13. Power Supply Rejection
versus Frequency
t, TIME (2.0 µs/DIV)
t, TIME (0.5 µs/DIV)
http://onsemi.com
6
100 k
TL062 TL064
Figure 19. AC Amplifier
Figure 20. High–Q Notch Filter
VCC
0.1 µF
-
10 kΩ
1.0 MΩ
10 kΩ
-
Inputs
+
50 Ω
1/2
10 kΩ
R2
+
5
VEE
R3
C2
C1
R1 = R2 = 2R3 = 1.5 MΩ
C1 = C2 =
250 kΩ
0.1 µF
Output
TL062
C3
Output
TL062
1
R1
Input
VCC
1/2
fo =
C3
= 110 pF
2
1
= 1.0 kHz
2π R1 C1
Figure 21. Instrumentation Amplifier
VCC
100 kΩ
Input A
TL064
+
10 kΩ
0.1%
10 kΩ
0.1%
VEE
VCC
TL064
100 kΩ
Input B
VEE
VCC
+
TL064
-
VEE
10 kΩ
0.1%
Output
100 kΩ
+
VCC
1.0
MΩ
TL064
10 kΩ
0.1%
100 Ω
+
VEE
Figure 22. 0.5 Hz Square–Wave Oscillator
Figure 23. Audio Distribution Amplifier
RF = 100 kΩ
3.3 kΩ
CF = 3.3 µF
+15 V
+
TL062
3.3 kΩ
1
1.0 MΩ
1/2
-15 V
f=
-
1.0 µF
1.0 kΩ
100 kΩ
2π RF CF
100 µF
http://onsemi.com
7
100 kΩ
Output A
VCC
TL064
+
100 kΩ
100 kΩ
TL064
+
+
Input
9.1 kΩ
TL064
VCC
VCC
TL064
+
VCC
Output B
VCC
Output C
TL062 TL064
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
–A–
NOTE 2
L
C
J
–T–
N
SEATING
PLANE
D
M
K
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
--10
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
--10
0.030
0.040
G
H
0.13 (0.005)
T A
M
B
M
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
8
5
0.25
H
E
1
M
B
M
4
h
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
e
X 45
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
M
C B
S
A
S
http://onsemi.com
8
DIM
A
A1
B
C
D
E
e
H
h
L
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0
7
TL062 TL064
OUTLINE DIMENSIONS
N SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0
10
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0
10
0.39
1.01
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
B
M
M
F
R X 45
C
–T–
SEATING
PLANE
0.25 (0.010)
M
K
D 14 PL
M
T B
S
A
S
http://onsemi.com
9
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0
7
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0
7
0.228
0.244
0.010
0.019
TL062 TL064
NOTES
http://onsemi.com
10
TL062 TL064
NOTES
http://onsemi.com
11
TL062 TL064
ON Semiconductor is a trademark and
is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right
to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
12
TL062/D