0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TL062CDR2

TL062CDR2

  • 厂商:

    ROCHESTER(罗切斯特)

  • 封装:

    SOIC8_150MIL

  • 描述:

    OPERATIONAL AMPLIFIER

  • 数据手册
  • 价格&库存
TL062CDR2 数据手册
ON Semiconductor TL062 TL064 Low Power JFET Input Operational Amplifiers These JFET input operational amplifiers are designed for low power applications. They feature high input impedance, low input bias current and low input offset current. Advanced design techniques allow for higher slew rates, gain bandwidth products and output swing. The commercial and vehicular devices are available in Plastic dual in–line and SOIC packages. • Low Supply Current: 200 µA/Amplifier • • • • • • LOW POWER JFET INPUT OPERATIONAL AMPLIFIERS SEMICONDUCTOR TECHNICAL DATA Low Input Bias Current: 5.0 pA DUAL High Gain Bandwidth: 2.0 MHz High Slew Rate: 6.0 V/µs High Input Impedance: 8 8 1012 Ω Large Output Voltage Swing: ±14 V P SUFFIX PLASTIC PACKAGE CASE 626 Output Short Circuit Protection VCC Output 1 Inputs 1 1 8 2 7 3 VEE Inputs D2 + + Q4 R1 5 Inputs 2 Output QUAD C1 Q5 R2 6 (Top View) 14 C2 Q2 + VCC Output 2 R4 D1 Q3 Q1 R3 + 4 Q7 J2 J1 D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) PIN CONNECTIONS Representative Schematic Diagram (Each Amplifier) - 1 1 14 1 1 Q6 N SUFFIX PLASTIC PACKAGE CASE 646 D SUFFIX PLASTIC PACKAGE CASE 751A (SO–14) VEE R5 PIN CONNECTIONS Output 1 ORDERING INFORMATION Op Amp Function Device TL062CD, ACD TL062CP, ACP Dual TL062VD TL062VP TL064CD, ACD TL064CN, ACN Quad TL064VD TL064VN Operating Temperature Range Package TA = 0° to +70°C SO–8 Plastic DIP TA = –40° to +85°C SO–8 Plastic DIP TA = 0° to +70°C SO–14 Plastic DIP TA = –40° to +85°C SO–14 Plastic DIP  Semiconductor Components Industries, LLC, 2002 March, 2002 – Rev. 6 1 Inputs 1 VCC 1 14 2 13 3 Output 2 1 4  + + 4 5 Inputs 2  6 12 11 + 2 3 - + - 7 10 9 8 Output 4 Inputs 4 VEE Inputs 3 Output 3 (Top View) Publication Order Number: TL062/D TL062 TL064 MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V Input Differential Voltage Range (Note 1) VIDR ±30 V Input Voltage Range (Notes 1 and 2) VIR ±15 V Output Short Circuit Duration (Note 3) tSC Indefinite sec Operating Junction Temperature TJ +150 °C Storage Temperature Range Tstg –60 to +150 °C Supply Voltage (from VCC to VEE) NOTES: 1. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal. 2. The magnitude of the input voltage must never exceed the magnitude of the supply or 15 V, whichever is less. 3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 1.) ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 0° to +70°C, unless otherwise noted.) TL062AC TL064AC Characteristics Symbol TL062C TL064C Min Typ Max Min Typ Max — — 3.0 — 6.0 7.5 — — 3.0 — 15 20 — 10 — — 10 — µV/°C — — 0.5 — 100 2.0 — — 0.5 — 200 2.0 pA nA — — 3.0 — 200 2.0 — — 3.0 — 200 10 pA nA — –11.5 +14.5 –12.0 +11.5 — — –11 +14.5 –12.0 +11 — V 4.0 4.0 58 — — — 3.0 3.0 58 — — — VO+ VO– +10 — +14 –14 — –10 +10 — +14 –14 — –10 VO+ VO– +10 — — — — –10 +10 — — — — –10 Common Mode Rejection (RS = 50 Ω, VCM = VICR min, VO = 0 V, TA = 25°C) CMR 80 84 — 70 84 — dB Power Supply Rejection (RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C) PSR 80 86 — 70 86 — dB Power Supply Current (each amplifier) (No Load, VO = 0 V, TA = 25°C) ID — 200 250 — 200 250 µA Total Power Dissipation (each amplifier) (No Load, VO = 0 V, TA = 25°C) PD — 6.0 7.5 — 6.0 7.5 mW Input Offset Voltage (RS = 50 Ω, VO = 0V) TA = 25°C TA = 0° to +70°C VIO ∆VIO/∆T Average Temperature Coefficient for Offset Voltage (RS = 50 Ω, VO = 0 V) Input Offset Current (VCM = 0 V, VO = 0 V) TA = 25°C TA = 0° to +70°C IIO Input Bias Current (VCM = 0 V, VO = 0 V) TA = 25°C TA = 0° to +70°C IIB Input Common Mode Voltage Range TA = 25°C VICR Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V) TA = 25°C TA = 0° to +70°C AVOL Unit mV V/mV V Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V) TA = 25°C TA = 0° to +70°C http://onsemi.com 2 TL062 TL064 DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = Tlow to Thigh [Note 4], unless otherwise noted.) TL062V Characteristics Symbol Input Offset Voltage (RS = 50 Ω, VO = 0V) TA = 25°C TA = Tlow to Thigh Max Min Typ Max — — 3.0 — 6.0 9.0 — — 3.0 — 9.0 15 IIO Input Bias Current (VCM = 0 V, VO = 0 V) TA = 25°C TA = Tlow to Thigh IIB Input Common Mode Voltage Range (TA = 25°C) VICR Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V) TA = 25°C TA = Tlow to Thigh AVOL Output Voltage Swing (RL = 10 kΩ, VID = 1.0 V) TA = 25°C Unit — 10 — — 10 — — — 5.0 — 100 20 — — 5.0 — 100 20 pA nA — — 30 — 200 50 — — 30 — 200 50 pA nA — –11.5 +14.5 –12.0 +11.5 — — –11.5 +14.5 –12.0 +11.5 — V 4.0 4.0 58 — — — 4.0 4.0 58 — — — +10 — +10 — +14 –14 — — — –10 — –10 +10 — +10 — +14 –14 — — — –10 — –10 80 84 — 80 84 — 80 86 — 80 86 — — 200 250 — 200 250 — 6.0 7.5 — 6.0 7.5 mV ∆VIO/∆T Input Offset Current (VCM = 0 V, VO = 0 V) TA = 25°C TA = Tlow to Thigh µV/°C V/mV V VO+ VO– VO+ VO– TA = Tlow to Thigh Common Mode Rejection (RS = 50 Ω, VCM = VICR min, VO = 0, TA = 25°C) CMR Power Supply Rejection (RS = 50 Ω, VCM = 0 V, VO = 0, TA = 25°C) PSR Power Supply Current (each amplifier) (No Load, VO = 0 V, TA = 25°C) ID Total Power Dissipation (each amplifier) (No Load, VO = 0 V, TA = 25°C) PD 4. Tlow = –40°C Typ VIO Average Temperature Coefficient for Offset Voltage (RS = 50 Ω, VO = 0 V) NOTE: TL064V Min dB dB µA mW Thigh = +85°C for TL062,4V AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = +25°C, unless otherwise noted.) Characteristics Symbol Min Typ Max Unit SR 2.0 6.0 — V/µs Rise Time (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0) tr — 0.1 — µs Overshoot (Vin = 20 mV, RL = 10 kΩ, CL = 100 pF, AV = +1.0) OS — 10 — % — — 1.6 2.2 — — GBW — 2.0 — MHz en — 47 — nV/ √ Hz — W — dB Slew Rate (Vin = –10 V to +10 V, RL = 10 kΩ, CL = 100 pF, AV = +1.0) Settling Time (VCC = +15 V, VEE = –15 V, AV = –1.0, RL = 10 kΩ, VO = 0 V to +10 V step) µs tS To within 10 mV To within 1.0 mV Gain Bandwidth Product (f = 200 kHz) Equivalent Input Noise (RS = 100 Ω, f = 1.0 kHz) Input Resistance Ri — 1012 Channel Separation (f = 10 kHz) CS — 120 http://onsemi.com 3 TL062 TL064 Figure 1. Maximum Power Dissipation versus Temperature for Package Variations Figure 2. Output Voltage Swing versus Supply Voltage 2000 1600 SO-14 1200 800 40 VO, OUTPUT VOLTAGE SWING (Vpp ) P, D MAXIMUM POWER DISSIPATION (mW) 2400 SO-8 400 0 -55 -40 -20 0 20 40 60 80 35 30 25 20 15 10 5.0 0 100 120 140 160 4.0 6.0 8.0 10 12 VCC, |VEE|, SUPPLY VOLTAGE (V) Figure 3. Output Voltage Swing versus Temperature Figure 4. Output Voltage Swing versus Load Resistance VO, OUTPUT VOLTAGE SWING (Vpp ) 35 30 25 20 15 VCC = +15 V VEE = -15 V RL = 10 kΩ 10 5.0 -50 -25 0 25 50 75 100 24 14 16 12 6.0 0 0.1 125 RL = 10 kΩ TA = 25°C 15 VCC = +5.0 V, VEE = -5.0 V 5.0 100 2.0 3.0 5.0 7.0 10 Figure 6. Large Signal Voltage Gain versus Temperature VCC = +12 V, VEE = -12 V 10 0.5 0.7 1.0 Figure 5. Output Voltage Swing versus Frequency VCC = +15 V, VEE = -15 V 20 0.3 RL, LOAD RESISTANCE (kΩ) 100 25 0.2 TA, AMBIENT TEMPERATURE (°C) 35 30 VCC = +15 V VEE = -15 V TA = 25°C 18 A VOL , LARGE SIGNAL VOLTAGE GAIN (V/mV) VO, OUTPUT VOLTAGE SWING (Vpp ) 2.0 30 0 -75 VO, OUTPUT VOLTAGE SWING (Vpp ) 0 TA, AMBIENT TEMPERATURE (°C) 40 0 RL = 10 kΩ TA = 25°C VCC = +2.5 V, VEE = -2.5 V 1.0 k 10 k 100 k 1.0 M 10 M 70 VCC = +15 V VEE = -15 V RL = 10 kΩ 50 40 30 20 10 -75 f, FREQUENCY (Hz) -50 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) http://onsemi.com 4 100 125 TL062 TL064 Figure 8. Supply Current per Amplifier versus Supply Voltage 100 80 60 Gain Phase 0 45 40 90 20 135 0 1.0 10 100 1.0 k 10 k 100 k 1.0 M I CC , SUPPLY CURRENT (µ A) 250 VCC = +15 V VEE = -15 V VO = 0 V RL = 10 kΩ CL = 0 pF TA = 25°C φ , EXCESS PHASE (DEGREES) A, VOL OPEN LOOP VOLTAGE GAIN (dB) Figure 7. Open Loop Voltage Gain and Phase versus Frequency 200 150 100 50 0 180 10 M 100 M TA = 25°C VO = 0 V RL = ∞Ω 0 2.0 4.0 f, FREQUENCY (Hz) CMR, COMMON MODE REJECTION (dB) P D, TOTAL POWER DISSIPATION (MW) 100 86 VCC = +15 V VEE = -15 V VO = 0 V RL = ∞Ω -50 -25 0 25 50 75 100 125 16 18 20 20 15 TL064 VCC = +15 V VEE = -15 V VO = 0 V RL = ∞Ω TL062 10 5.0 0 -75 -50 -25 0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) Figure 11. Common Mode Rejection versus Temperature Figure 12. Common Mode Rejection versus Frequency VCC = +15 V VEE = -15 V VO = 0 V RL = 10 kΩ 85 84 83 82 81 80 -75 14 TA, AMBIENT TEMPERATURE (°C) CMR, COMMON MODE REJECTION (dB) I CC , SUPPLY CURRENT (µ/A) 150 87 12 25 200 88 10 Figure 10. Total Power Dissipation versus Temperature 250 0 -75 8.0 VCC, |VEE|, SUPPLY VOLTAGE (V) Figure 9. Supply Current per Amplifier versus Temperature 50 6.0 -50 -25 0 25 50 75 100 140 120 100 VCC = +15 V VEE = -15 V ∆VCM = ±1.5 V TA = 25°C 80 ∆VCM CMR = 20 Log ADM ∆VCM ∆VO ∆VO X ADM 40 20 TA, AMBIENT TEMPERATURE (°C) 1k 10 k f, FREQUENCY (Hz) http://onsemi.com 5 + 60 0 100 125 125 100 k 1M TL062 TL064 Figure 14. Normalized Gain Bandwidth Product, Slew Rate and Phase Margin versus Temperature 120 +PSR = 20Log ∆VO/ADM ∆VCC -PSR = 20Log ∆VO/ADM ∆VEE +PSR (∆VCC = ±1.5 V) 100 -PSR (∆VEE = ±1.5 V) 80 60 VCC = +15 V VEE = -15 V TA = 25°C 40 20 0 100 ADM + 1.0 k VCC ∆VO VEE 10 k 100 k 1.08 1.4 1.0 M 1.2 GBW 1.1 Slew Rate 1.0 0.8 0.94 0.7 0.6 -75 -50 -25 0 25 50 75 100 0.92 125 e n , INPUT NOISE VOLTAGE ( nV/ √ Hz ) 10 1.0 0.1 0.01 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 70 60 50 40 30 20 10 125 0 10 Figure 17. Small Signal Response VCC = +15 V VEE = -15 V RS = 100 Ω TA = 25°C 100 1.0 k f, FREQUENCY (Hz) 10 k Figure 18. Large Signal Response VCC = +15 V VEE = -15 V RL = 10 kΩ CL = 0 pF AV = +1.0 VCC = +15 V VEE = -15 V RL = 10 kΩ CL = 0 pF AV = +1.0 V O , OUTPUT VOLTAGE (5.0 V/DIV) I IB , INPUT BIAS CURRENT (pA) 0.96 Figure 16. Input Noise Voltage versus Frequency VCC = +15 V VEE = -15 V VCM = 0 V V O , OUTPUT VOLTAGE (10 mV/DIV) 1.02 TA, AMBIENT TEMPERATURE (°C) 1000 -25 1.04 0.98 Phase Margin Figure 15. Input Bias Current versus Temperature 0.001 -55 1.06 1.0 0.9 f, FREQUENCY (Hz) 100 VCC = +15 V VEE = -15 V RL = 10 kΩ CL = 0 pF 1.3 φ m , NORMALIZED PHASE MARGIN 140 NORMALIZED GAIN BANDWIDTH PRODUCT AND SLEW RATE PSR, POWER SUPPLY REJECTION (dB) Figure 13. Power Supply Rejection versus Frequency t, TIME (2.0 µs/DIV) t, TIME (0.5 µs/DIV) http://onsemi.com 6 100 k TL062 TL064 Figure 19. AC Amplifier Figure 20. High–Q Notch Filter VCC 0.1 µF - 10 kΩ 1.0 MΩ 10 kΩ - Inputs + 50 Ω 1/2 10 kΩ R2 + 5 VEE R3 C2 C1 R1 = R2 = 2R3 = 1.5 MΩ C1 = C2 = 250 kΩ 0.1 µF Output TL062 C3 Output TL062 1 R1 Input VCC 1/2 fo = C3 = 110 pF 2 1 = 1.0 kHz 2π R1 C1 Figure 21. Instrumentation Amplifier VCC 100 kΩ Input A TL064 + 10 kΩ 0.1% 10 kΩ 0.1% VEE VCC TL064 100 kΩ Input B VEE VCC + TL064 - VEE 10 kΩ 0.1% Output 100 kΩ + VCC 1.0 MΩ TL064 10 kΩ 0.1% 100 Ω + VEE Figure 22. 0.5 Hz Square–Wave Oscillator Figure 23. Audio Distribution Amplifier RF = 100 kΩ 3.3 kΩ CF = 3.3 µF +15 V + TL062 3.3 kΩ 1 1.0 MΩ 1/2 -15 V f= - 1.0 µF 1.0 kΩ 100 kΩ 2π RF CF 100 µF http://onsemi.com 7 100 kΩ Output A VCC TL064 + 100 kΩ 100 kΩ TL064 + + Input 9.1 kΩ TL064 VCC VCC TL064 + VCC Output B VCC Output C TL062 TL064 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. –B– 1 4 F DIM A B C D F G H J K L M N –A– NOTE 2 L C J –T– N SEATING PLANE D M K MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10 0.030 0.040 G H 0.13 (0.005) T A M B M M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A 8 5 0.25 H E 1 M B M 4 h B NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C e X 45   A C SEATING PLANE L 0.10 A1 B 0.25 M C B S A S http://onsemi.com 8 DIM A A1 B C D E e H h L  MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0 7 TL062 TL064 OUTLINE DIMENSIONS N SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0 10 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0 10 0.39 1.01 D SUFFIX PLASTIC PACKAGE CASE 751A–03 (SO–14) ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 8 –B– 1 P 7 PL 0.25 (0.010) 7 G B M M F R X 45  C –T– SEATING PLANE 0.25 (0.010) M K D 14 PL M T B S A S http://onsemi.com 9 J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.228 0.244 0.010 0.019 TL062 TL064 NOTES http://onsemi.com 10 TL062 TL064 NOTES http://onsemi.com 11 TL062 TL064 ON Semiconductor is a trademark and is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 12 TL062/D
TL062CDR2 价格&库存

很抱歉,暂时无法提供与“TL062CDR2”相匹配的价格&库存,您可以联系我们找货

免费人工找货