0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NJU77552RB1-TE1

NJU77552RB1-TE1

  • 厂商:

    NJR(新日本无线)

  • 封装:

    VSSOP8

  • 描述:

    IC OPAMP GP 2 CIRCUIT 8TVSP

  • 数据手册
  • 价格&库存
NJU77552RB1-TE1 数据手册
NJU77550/NJU77551/NJU77552/NJU77554 1.7MHz, 50μA/ch, Excellent EMI Immunity, Rail-to-Rail Input/Output, Operational Amplifier ■ FEATURES (V+ = 5V, Typical value) ● High Efficiency: - GBW 1.7MHz - Supply Current 50μA/ch ● Rail-to-Rail Input and Output ● Supply Voltage 1.8V to 5.5V ● Integrated EMI filter EMIRR = 75dB @f = 900MHz ● Input Tolerant ● Unity-Gain stable ● Input Offset Voltage 5mV max. ● Slew Rate 0.8V/μs ● Operating Temperature -55°C to 125°C ● Package NJU77550 / NJU77551 SOT-23-5, SC-88A NJU77552 SOP8, MSOP8 (TVSP8)* * meet JEDEC MO-187-DA / thin type DFN8-U1 (ESON8-U1) NJU77554 SSOP14 ■ DESCRIPTION The NJU77550/NJU77551/NJU77552/NJU77554 are single, dual and quad rail-to-rail input and output single supply OpAmp, featuring low supply current of 50μA typical per amplifier, wide gain bandwidth product of 1.7MHz and a slew rate of 0.8V/μs. Furthermore, operating voltage from 1.8V single supply can contribute to energy saving design, it is most suitable for battery equipment required low power. ■ APPLICATIONS ● Battery-Powered Equipment - Audio, Healthcare, Security, etc. ● Gas / Smoke Sensors ● Smart Meter ● Sensor Interface ● Active Filters ● Photodiode Amplifier The NJU7755x series guarantees the specifications from 1.8V to 5.5V single supply, making it ideal for low voltage applications. In addition, the operating temperature is expanded to -55°C to 125°C, which can be used in harsh environments with large temperature changes. Low input bias current makes NJU7755x series suitable for photodiode amplifiers, piezoelectric sensors, smoke detector and other applications with high-impedance applications. A rail-to-rail input and output allows the device to be used in wide variety of applications, such as audio amplifier, high-side current sensing, active filter, buffering and others. And also, High EMI immunity that can reduced malfunctions caused by RF-noises from mobile phones and other electronic devices, and input tolerant that allows the input voltage (Recommended: V-+5.5V) that exceed positive supply voltage is ideal for robust industrial applications. The NJU77550/NJU77551 is available in 5-pin SC-88A and SOT-23-5 package. The NJU77552 is available in 8-pin SOP8, MSOP (TVSP): meet JEDEC MO-187-DA / thin type package and DFN that is thin and 2mm square small package. The NJU77554 is available in SSOP14 package. TYPICAL APPLICATION High Efficiency GBW=1.7MHz ( ISUPPLY = 50μA/ch ) Gain vs. Frequency GV=40dB, CL=100pF 70 VOUT ADC Voltage Gain [dB] VIN Voltage [1V/div] Overvoltage up to 5.5V 60 VIN (Overvoltage) 3.3V VOUT 0 50 40 V+=1.8V 30 V+=5V 20 10 Time 0 100 ADC buffer with input tolerant ver.3.0 www.njr.com 1k 10k 100k Frequency [Hz] 1M 10M -1- NJU77550/NJU77551/NJU77552/NJU77554 ■ PIN CONFIGURATIONS PRODUCT NAME NJU77550F3 NJU77550F NJU77551F3 NJU77551F Package SC88A SOT-23-5 SC88A SOT-23-5 (Top View) Pin Functions OUTPUT 1 V- 2 +INPUT 3 (Top View) V+ 5 4 -INPUT +INPUT 1 V- 2 -INPUT 3 5 V+ 4 OUTPUT PRODUCT NAME NJU77552G NJU77552RB1 NJU77552KU1 Package SOP8 MSOP8 (TVSP8) DFN8-U1 (ESON8-U1) (Top View) (Top View) Pin Functions A OUTPUT 1 8 V+ A -INPUT 2 7 B OUTPUT A OUTPUT 1 A -INPUT 2 A +INPUT 3 6 B -INPUT A +INPUT 3 V- 4 5 B +INPUT V- 4 Exposed Pad on Underside 8 V+ 7 B OUTPUT 6 B -INPUT 5 B +INPUT (Connect to exposed pad to V-) PRODUCT NAME NJU77554V Package SSOP14 (Top View) Pin Functions ver.3.0 A OUTPUT 1 14 D OUTPUT A -INPUT 2 13 D -INPUT A +INPUT 3 12 D +INPUT V+ 4 11 V- B +INPUT 5 10 C +INPUT B -INPUT 6 9 C -INPUT B OUTPUT 7 8 C OUTPUT www.njr.com -2- NJU77550/NJU77551/NJU77552/NJU77554 ■ PRODUCT NAME INFORMATION NJU77552 Part Number RB1 (TE1) Package Taping Form ■ ORDERING INFORMATION PRODUCT NAME PACKAGE RoHS HALOGENFREE TERMINAL FINISH MARKING WEIGHT (mg) MOQ (pcs) NJU77550F (TE1) NJU77550F3 (TE1) NJU77551F (TE1) NJU77551F3 (TE1) NJU77552G (TE2) NJU77552RB1 (TE1) SOT-23-5 SC-88A SOT-23-5 SC-88A SOP8 MSOP8 (TVSP8) DFN8-U1 (ESON8-U1) SSOP14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Sn2Bi Sn2Bi Sn2Bi Sn2Bi Pure Sn Sn2Bi 11P AU 11R AV 77552 77552 15 7.5 15 7.5 88 18 3000 3000 3000 3000 2500 2000 Yes Yes Sn2Bi 77552 5.3 3000 Yes Yes Sn2Bi 77554 65 2000 NJU77552KU1 (TE3) NJU77554V (TE1) ■ BLOCK DIAGRAM V+ +INPUT OUTPUT -INPUT ESD protection ver.3.0 V- www.njr.com -3- NJU77550/NJU77551/NJU77552/NJU77554 ■ ABSOLUTE MAXIMUM RATINGS PARAMETER SYMBOL RATING UNIT 7 V − V −V + Supply Voltage − − (1) VIN V − 0.3 to V + 7 V Input Current (2) IIN 10 mA Output Terminal Input Voltage (3) VO V− − 0.3 to V+ + 0.3 V VID ±7 V Input Voltage Differential Input Voltage (4) Output Short-Circuit Duration (5) Continuous 2-Layer / 4-Layer (6) Power Dissipation (Ta = 25°C) SOT-23-5 SC-88A SOP8 MSOP8 (TVSP8) DFN8-U1 (ESON8-U1) SSOP14 480 / 650 360 / 490 690 / 1000 510 / 680 450 / 1200 (7) 500 / 620 PD Storage Temperature Tstg -65 to 150 Junction Temperature Tj 150 mW °C °C + (1) Input voltage is the voltage should be allowed to apply to the input terminal independent of the magnitude of V . The normal operation will establish when any input is within the "Common-Mode Input Voltage Range" of electrical characteristics. (2) Input voltages below the negative supply voltage will be clamped by ESD protection diodes. If the input voltage lower than V--0.3V, the input current must be limited 10 mA or less by using a restriction resistance. (3) The output terminal input voltage is limited at 7V. (4) Differential voltage is the voltage difference between +INPUT and -INPUT. (5) Short-circuit can cause excessive heating and destructive dissipation. (6) 2-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4). 4-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4), internal Cu area: 74.2 mm × 74.2 mm. (7) 2-Layer: Mounted on glass epoxy board (101.5 mm × 114.5 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4) with exposed pad. 4-Layer: Mounted on glass epoxy board (101.5 mm × 114.5 mm × 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4) with exposed pad. (For 4-layer: Applying 99.5 mm × 99.5 mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5.) ■ RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL CONDITIONS V+ − V− Supply Voltage Input Voltage VIN Operating Temperature Topr VALUE UNIT -40°C to 125°C 1.8 to 5.5 V -55°C to 125°C 2.0 to 5.5 V − Closed-loop Gain ≥ 1 − V − 0.3 to V + 5.5 V -55 to 125 °C ■ TYPICAL APPLICATIONS V+ VIN V+ VOUT VOUT Vref VIN Vref R1 R2 R1 Non-i nverting a mplifier ver.3.0 R2 Inverti ng amplifier www.njr.com -4- NJU77550/NJU77551/NJU77552/NJU77554 ■ ELECTRICAL CHARACTERISTICS (V+ = 1.8 to 5.5V, V− = 0V, VCOM = V+ / 2, RL = 10kΩ to VCOM, Ta = 25°C, unless otherwise noted.) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT INPUT CHARACTERISTICS Input Offset Voltage VCOM = 0V to V+ - 1 5 mV Input Bias Current IB - 1 - pA Input Offset Current IIO - 1 - pA Input Offset Voltage Drift VIO ΔVIO/ΔT Ta = −40°C to 125°C - 1 - µV/°C Common-Mode Input Resistance RIC - 1 - TΩ Differential Input Resistance RID - 1 - TΩ Input Capacitance CIN Open-Loop Voltage Gain AV Common-Mode Rejection Ratio Common-Mode Input Voltage Range CMR VICM - 5 - pF V+ = 5V, RL = 10kΩ to V+ / 2 68 90 - dB V+ = 5.5V, VCOM = V− − 0.2V to V+ − 1.5V 70 90 - dB V+ = 5.5V, VCOM = V− − 0.2V to V+ 55 70 - dB V+ = 1.8V, VCOM = V− − 0.2V to V+ + 0.2V 50 65 - dB V− − 0.2 - V+ + 0.2 (8) V RL = 10kΩ to V+ / 2 V+ − 0.025 V+ − 0.010 - V RL = 2kΩ to V+ / 2 V+ − 0.100 V+ − 0.050 - V - 6 25 mV RL = 2kΩ to V / 2 - 30 60 mV RL = 10kΩ to V− - 0 5 mV - 0 5 mV - 100 - pF CMR ≥ 50dB OUTPUT CHARACTERISTICS High-level Output Voltage VOH + RL = 10kΩ to V / 2 + Low-level Output Voltage VOL − RL = 2kΩ to V Capacitive Load Drive CL + Output Short-Circuit Current ISC Sourcing, V = 5V - 40 - mA Sinking, V+ = 5V - 60 - mA NJU77550, NJU77551 - 55 76 μA NJU77552, NJU77554 - 50 70 μA 70 90 - dB POWER SUPPLY No signal, VCOM = 0V Supply Current per Amplifier ISUPPLY + Supply Voltage Rejection Ratio SVR V = 1.8V to 5.5V, VCOM = 0V or V+ (8) V+ + 0.2V value is limited at 5.5V. ver.3.0 www.njr.com -5- NJU77550/NJU77551/NJU77552/NJU77554 ■ ELECTRICAL CHARACTERISTICS [Continued] (V+ = 1.8 to 5.5V, V− = 0V, VCOM = V+ / 2, RL = 10kΩ to VCOM, Ta = 25°C, unless otherwise noted.) PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT + AC CHARACTERISTICS (V = 5V) Slew Rate Gain Bandwidth Product SR CL = 100pF - 0.8 - V/μs GBW CL = 100pF - 1.7 - MHz 0.1%, V+ = 5V, CL = 100pF - 6.5 - μs CL = 10pF - 60 - Deg Gain = +2, f = 1kHz, VO = 1.5Vrms - 0.005 - % f = 0.1Hz to 10Hz - 1.6 - μVPP Settling Time ts Phase Margin ΦM Total Harmonic Distortion + Noise Equivalent Input Noise Voltage Channel Separation ver.3.0 THD+N VNI en f = 1kHz - 24 - nV/√Hz CS f = 1kHz - 120 - dB www.njr.com -6- NJU77550/NJU77551/NJU77552/NJU77554 ■ THERMAL CHARACTERISTICS PACKAGE SYMBOL VALUE Junction-to-Ambient Thermal Resistance 2-Layer / 4-Layer SOT-23-5 SC-88A SOP8 MSOP8 (TVSP8) DFN8-U1 (ESON8-U1) SSOP14 UNIT (6) 260 / 192 347 / 255 181 / 125 245 / 184 278 / 104 (7) 250 / 202 θja °C/W 2-Layer / 4-Layer (6) Junction-to-Top of Package Characterization Parameter SOT-23-5 SC-88A SOP8 MSOP8 (TVSP8) DFN8-U1 (ESON8-U1) SSOP14 67 / 58 91 / 73 49 / 43 51 / 45 42 / 25 (7) 53 / 52 ψjt °C/W (6) 2-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4). 4-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4), internal Cu area: 74.2 mm × 74.2 mm. (7) 2-Layer: Mounted on glass epoxy board (101.5 mm × 114.5 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4) with exposed pad. 4-Layer: Mounted on glass epoxy board (101.5 mm × 114.5 mm × 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4) with exposed pad. (For 4-layer: Applying 99.5 mm × 99.5 mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5.) ■ POWER DISSIPATION vs. AMBIENT TEMPERATURE Power Dissipation vs. Temperature Power Dissipation vs. Temperature 4-Layer 1200 1200 1100 1100 1000 1000 Power Dissipation PD [mW] Power Dissipation PD [mW] 2-Layer 900 800 MSOP8 (TVSP8) 700 SSOP14 600 SOP8 500 400 300 200 SOT-23-5 100 900 SOT-23-5 800 700 SOP8 600 500 400 300 200 SSOP14 100 SC-88A SC-88A 0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 Ambient Temperature [°C] Ambient Temperature [°C] ver.3.0 MSOP8 (TVSP8) www.njr.com -7- NJU77550/NJU77551/NJU77552/NJU77554 ■ TYPICAL CHARACTERISTICS Supply Current per Amplifier vs. Supply Voltage VCOM = 0V 70 Ta = 25°C 60 Ta = 125°C 50 40 30 Ta = −55°C 20 10 0 70 60 1 50 40 30 V+ = 1.8V 20 10 2 3 4 5 6 Supply Voltage V+ − V− [V] 7 -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] Input Offset Voltage vs. Supply Voltage 5 Ta = −55°C 2 Ta = 25°C 1 0 Ta = 125°C -1 3 2 1 0 -1 -2 -2 -3 0 1 2 3 4 5 6 Supply Voltage V+ − V− [V] 7 -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] Input Offset Voltage Distribution Input Offset Voltage Drift Distribution V+ = 1.8V to 5.5V, VCOM = 0.5V, Ta = 25°C, n = 300 30% Percent of Amplifiers [%] 30% Percent of Amplifiers [%] V+ = 5V, VCOM = 0.5V, n = 100 4 3 Input Offset Voltage [mV] Input Offset Voltage [mV] Input Offset Voltage vs. Temperature VCOM = 0V 4 25% 20% 15% 10% 5% 0% V+ = 1.8V to 5.5V, VCOM = 0.5V, n = 300 25% 20% 15% 10% 5% 0% -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 Input Offset Voltage [mV] ver.3.0 V+ = 5.5V V+ = 5V 0 0 35% VCOM = 0V 80 Supply Current per Amplifier [μA] 80 Supply Current per Amplifier [μA] Supply Current per Amplifier vs. Temperature 5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 Input Offset Voltage Drift [μV / °C] www.njr.com 4.0 -8- NJU77550/NJU77551/NJU77552/NJU77554 ■ TYPICAL CHARACTERISTICS Input Offset Voltage vs. Common-Mode Input Voltage V+ Input Offset Voltage vs. Common-Mode Input Voltage V+ = 5V = 5.5V 4 4 3 Ta = 125°C Input Offset Voltage [mV] Input Offset Voltage [mV] 3 2 1 0 -1 Ta = 25°C -2 Ta = −55°C -3 Ta = 125°C 2 1 0 -1 Ta = −55°C Ta = 25°C -2 -3 -4 -4 -1 0 1 2 3 4 5 Common-Mode Input Voltage [V] 6 -1 Input Offset Voltage vs. Common-Mode Input Voltage 0 1 2 3 4 5 Common-Mode Input Voltage [V] 6 Input Bias Currentvs. Temperature V+ = 1.8V V+ = 5V 10000 4 Ta = 125°C 2 1000 Input Bias Current [pA] Input Offset Voltage [mV] 3 1 0 -1 Ta = 25°C -2 VCOM = 7V 100 10 VCOM = 5.5V 1 Ta = −55°C Measuament uncertainly -3 -4 0.1 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 Common-Mode Input Voltage [V] 2.1 -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] Open-Loop Voltage Gain vs. Temperature CMR vs. Temperature VCOM = V+ / 2V, RL = 10kΩ to VCOM 140 Common-Mode Rejection Ratio [dB] 140 Open-Loop Voltage Gain [dB] 130 120 V+ = 5.5V 110 100 90 V+ = 5V 80 70 60 50 V+ = 1.8V 40 130 120 110 V+ = 5.5V (VCOM = −0.2V to 4V) V+ = 1.8V (VCOM = −0.2V to 0.3V) 100 90 80 V+ = 5.5V (VCOM = −0.2V to 5.5V) 70 60 50 V+ = 1.8V (VCOM = −0.2V to 2V) 40 -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] ver.3.0 VCOM = 0V VCOM = 5V www.njr.com -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] -9- NJU77550/NJU77551/NJU77552/NJU77554 ■ TYPICAL CHARACTERISTICS SVR vs. Temperature Maximum Output Voltage vs. Output Current V+ = 5.5V 5.5 130 5.0 Maximum Output Voltage [V] Supply Voltage Rejection Ratio [dB] V+ = 1.8V to 5.5V 140 120 110 VCOM = V− 100 90 80 70 VCOM = V+ 60 4.5 VOH 4.0 3.5 3.0 2.5 Ta = 125°C 2.0 Ta = 25°C 1.5 1.0 50 0.5 40 0.0 -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] VOL Ta = −55°C 0 Maximum Output Voltage vs. Output Current 10 20 30 40 50 60 70 80 90 100 Output Current [mA] Maximum Output Voltage vs. Output Current V+ = 1.8V 1.8 4.5 1.6 4.0 Maximum Output Voltage [V] Maximum Output Voltage [V] V+ = 5V 5.0 VOH 3.5 3.0 2.5 Ta = 125°C Ta = 25°C 2.0 1.5 1.0 VOL 0.5 1.2 1.0 0.8 0.6 Ta = 25°C 0.4 Ta = −55°C 10 20 30 40 50 60 70 80 90 100 Output Current [mA] 0 70 V+ − VOH (RL = 2kΩ) 50 VOL (RL = 2kΩ) 30 V+ − VOH (RL = 10kΩ) 20 VOL (RL = 10kΩ) 10 0 80 6 9 12 Output Current [mA] 15 V+ = 1.8V, RL connected to V+ / 2 70 60 V+ − VOH (RL = 2kΩ) 50 40 30 VOL (RL = 2kΩ) 20 VOL (RL = 10kΩ) V+ − VOH (RL = 10kΩ) 10 0 -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] ver.3.0 3 Maximum Output Voltage vs. Temperature V+ = 5.5V, RL connected to V+ / 2 High-level Output Voltage (V+ − VOH) [mV] Low-level Output Voltage (VOL) [mV] High-level Output Voltage (V+ − VOH) [mV] Low-level Output Voltage (VOL) [mV] Maximum Output Voltage vs. Temperature 40 VOL 0.0 0 60 VOH 0.2 Ta = −55°C 0.0 80 Ta = 125°C 1.4 www.njr.com -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] - 10 - NJU77550/NJU77551/NJU77552/NJU77554 ■ TYPICAL CHARACTERISTICS 40dB Gain / Phase vs. Frequency 40dB Gain / Phase vs. Frequency V+ / V− = ±2.5V, GV = 40dB, RF = 100kΩ, CL = 100pF 50 V+ / V− = ±0.9V, GV = 40dB, RF = 100kΩ, CL = 100pF 50 40 40 Gain Ta = 125°C Ta = −55°C 20 0 Phase 10 -45 Ta = 125°C 0 -90 30 Ta = 25°C Ta = 125°C Ta = −55°C 20 10 -45 Ta = 125°C 0 -90 -135 -10 -20 1k 10k 100k Frequency [Hz] 1M -180 10M -20 100 GBW, fT vs. Temperature 30 2.2 1.8 1.6 1.4 1.2 fT (V+ = 1.8V) 1.0 fT (V+ = 5V) -10 CL = 0pF -20 Total Harmonic Distortion + Noise [%] CL = 220pF CL = 10pF 10 0 -10 CL = 0pF -20 -30 -40 100k 1M Frequency [Hz] 1M Frequency [Hz] 10M THD+N vs. Output Voltage V+ / V− = ±0.9V, GV = 0dB, RL = 100kΩ, Ta = 25°C CL = 100pF CL = 10pF 0 Voltage Gain vs. Frequency Open-Loop Voltage Gain [dB] CL = 220pF 10 -40 100k -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] 20 -180 10M -30 0.8 30 1M V+ / V− = ±2.5V, GV = 0dB, RL = 100kΩ, Ta = 25°C CL = 100pF GBW (V+ = 5V) 2.0 0.6 ver.3.0 10k 100k Frequency [Hz] 20 GBW (V+ = 1.8V) Voltage Gain [dB] Gain Bandwidth Product GBW [MHz] Unity Gain Frequency fT [MHz] 2.4 1k Voltage Gain vs. Frequency CL = 100pF 2.6 -135 Ta = −55°C Ta = −55°C 100 0 Phase Ta = 25°C Ta = 25°C -10 Voltage Gain [dB] Ta = 25°C Phase [deg] 30 Phase [deg] Voltage Gain [dB] Gain 10M 1 V+ / V− = ±2.5V, GV = 2, RF = 10kΩ, CL = 10pF f = 20kHz 0.1 0.01 f = 10kHz f = 1kHz f = 20Hz 0.001 0.01 www.njr.com 0.1 1 Output Voltage [Vrms] 10 - 11 - NJU77550/NJU77551/NJU77552/NJU77554 ■ TYPICAL CHARACTERISTICS Total Harmonic Distortion + Noise [%] 1 THD+N vs. Frequency No Phase Reversal V+ / V− = ±2.5V, VO = 1.5Vrms, GV = 2, RF = 10kΩ, CL = 10pF V+ = 5V, GV = 1, RL = 100kΩ, CL = 100pF Voltage [1V / div] Input 0.1 0.01 Output 0.001 10 100 1k 10k Frequency [Hz] 100k Time [250μs / div] Pulse Response Slew Rate vs. Temperature V+ = 5V, GV = 1, RL = 100kΩ, CL = 100pF, Ta = 25°C RL = 100kΩ, CL = 100pF 1.6 1.4 Fall (V+ = 1.8V) Voltage [1V / div] Rise Slew Rate [V/μs] INPUT (V+ = 1.8V) 1.2 1.0 0.8 0.6 Fall (V+ = 5V) OUTPUT 0.4 Rise (V+ = 5V) -75 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] Voltage Noise Density vs. Frequency 0.1Hz to 10Hz Voltage Noise Density V+ / V− = ±2.5V V+ / V− = ±2.5V 100 10 1 ver.3.0 Time [10μs / div] Voltage [0.5μV / div] Equivalent Input Noise Voltage [nV / √Hz] 0.2 10 100 1k Frequency [Hz] 10k 100k www.njr.com Time [1s / div] - 12 - NJU77550/NJU77551/NJU77552/NJU77554 ■ TYPICAL CHARACTERISTICS Channel Separation vs. Frequency V+ / V− = ±2.5V 0 Channel Separation [dB] -20 -40 -60 -80 -100 -120 -140 -160 -180 10 ver.3.0 100 1k 10k Frequency [Hz] 100k 1M www.njr.com - 13 - NJU77550/NJU77551/NJU77552/NJU77554 ■ TEST CIRCUITS ● ISUPPLY ● VIO, CMR, SVR RG = 50Ω, RF = 50kΩ V+ RF A V+ RG VO RG VCOM VCOM V- RF VVS=V+-V- ● VOH, VOL ● GBW VOH; Vin+ = 1V, Vin- = 0V, VCOM = V+ / 2 RG = 1kΩ, RF = 100kΩ + VOL; Vin+ = 0V, Vin- = 1V, VCOM = V / 2, VRF V+ V+ RG VO VO RL Vin+ Vin- V- 50Ω VCOM V- CL ● SR RL = 100kΩ 90% V+ Vo VO 50Ω ver.3.0 V- RL 90% ΔV ΔV 10% Δt Δt 10% CL www.njr.com - 14 - NJU77550/NJU77551/NJU77552/NJU77554 ■ APPLICATION NOTE Single and Dual Supply Voltage Operation The NJU7755x series works with both single supply and dual  supply when the voltage supplied is between V+ and V−.  These amplifiers operate from single 1.8V to 5.5V supply  and dual ±0.9V to ±2.75V supply. The power supply pin  should have bypass capacitor (i.e. 0.1µF). No Phase Reversal The NJU7755x series are designed to prevent phase  reversal at the input voltage above the supply voltage.  Figure1 shows no phase reversal characteristics with the  input voltage exceeding the supply voltage. Rail-to-Rail Input The input stage of NJU7755x series has two input differential  pairs, PMOS and NMOS (Figure3). When the common-  mode input voltage is from 200mV below the negative supply  voltage to the typically (V+) − 1.3V, the PMOS pair is active.  When the common-mode input voltage close to the positive  supply, typically (V+) − 1.3V to 200mV above positive supply,  the NMOS pair is active. In the transition region, the  performance of offset voltage, as shown in figure4, offset  voltage drift, CMR, SVR and THD is slightly degraded. No Phase Reversal V+ = 5V, GV = 1, RL = 100kΩ, CL = 100pF +INPUT Input -INPUT Voltage [1V / div] ESD Protection ESD Protection Figure3. Simplified Schematic of Input Stage Input Offset Voltage vs. Common-Mode Input Voltage Output V+ = 5V 4 3 Figure1. No phase reversal Power-on Time The NJU7755x series typically require a power-on time of  20μs (Figure2). Power-on time depends on the supply  voltage, bypass capacitor, impedance of supply source and  impedance other devices. While settling time, IC is unstable,  such as output voltage, input offset voltage and slew rate. Input Offset Voltage [mV] Time [250μs / div] 1 0 -1 Ta = −55°C Ta = 25°C -2 -3 -4 -1 0 1 2 3 4 5 Common-Mode Input Voltage [V] 6 Figure4. Offset Voltage change with common-mode input voltage. Power-on Time 2.1 Ta = 125°C 2 V+ = 1.8V with 0.1μF bypass capacitor, GV = 0dB, Ta = 25°C 1.8 For the best performance design is inverting amplifier shown  in Figure5. Inverting amplifier has a constant common-mode  voltage equal to Vref. If Vref voltage is constant and is  chosen to avoid transition region, output will be best linearity  performance. V+ Voltage [V] 1.5 1.2 VO (VIN = 1.5V) 0.9 0.6 R2 VO (VIN = 0.3V) R1 0.3 Vin Vout 0 -10 0 10 20 Time [μsec] 30 40 VCOM = Vref Figure2. Power on time Vref Figure5. Inverting Amplifier ver.3.0 www.njr.com - 15 - NJU77550/NJU77551/NJU77552/NJU77554 ■ APPLICATION NOTE Input Tolerant In general, common OpAmp is protected by internal ESD  diode that is connected from input pin to both the positive  and negative power supply. In a buffer configuration, when  input exceeds either supply voltage, ESD diode will be  forward biased and current. If the current is high enough,  even when input current over long periods of time or even  short periods of time, can shift the electrical characteristics  beyond the data sheet's guaranteed limits, or cause a  permanent failure of the op amp.  The input of the NJU7755x series has an ESD protection as  shown in Figure 3. The input bias current is minimized in the  input voltage even in operating voltage range and exceeding  the V+ supply, and the OpAmp is protected from overvoltage  current (Figure6). The maximum input voltage is absolute maximum rating of  V− + 7V, but usually recommend design so that the input  voltage is up to V− + 5.5V. V+ D1 D2 R1 V1 OUTPUT V2 R2 V- (R1, R2) > (R1, R2) > V - -(V1, V2) 10mA (V1, V2)-V + IF IF :Forward current of external diode. Figure7. Example of input protection Input Bias Currentvs. Input Voltage V+ = 1.8V, V− = 0V, Ta = 25°C Power Supply Protection for Overvoltage Condition In general, many power supplies cannot sink current. If  nothing within the circuit can sink the overvoltage current, if  the overvoltage occurs with the supplies powered on, in the  ESD diode protection OpAmp, the supply voltage can  exceed the intended operating voltage of the system. Even if  the overvoltage occurs with the system powered off, the  overvoltage current can unintentionally power up the OpAmp  or system. NJU7755x series prevents the positive  overvoltage current flowing from input pin to positive supply  pin, prevents rising the supply voltage, and prevents  malfunctioning with OpAmp or system. Figure8 shows the  output voltage when applying 5V peak to peak overvoltage to  the input pin when the power supply V+ is 0V, 3V. Due to the  input tolerant, the output voltage is clamped at V+ (0V, 3V).  750 Operating Voltage Overvoltage Input 500 250 0 0 1 2 3 4 5 Input Voltage [V] 6 7 NJU7755x series protects the input pin from overvoltage by  shunting the overvoltage current to the V− supply rail. When the input voltage for V− − 0.3V to V− + 7V, the ESD  protection is not activate and minimize the input bias current  (Figure6). For the input voltage 300mV below the negative supply  voltage, the ESD protection operates to protect the input  terminal. At this moment, the current flowing in protection  element is allowed up to 10 mA. Momentary voltages above V− + 7V, the ESD protection also  activate, and clamp inputs, but cannot protect against  overvoltage excepting ESD. V+(0V) In some applications, it may be necessary to prevent  excessive overvoltage. Figure6 is example to protect input  transistors. The external resistors R1, R2 limit the current  through external diodes D1, D2. ver.3.0 VIN (5V) VIN = 5V Voltage [1V / div] Input Bias Current [pA] 1000 www.njr.com VOUT VO (V+ = 3V) 0 VO (V+ = 0V) Time [200μs / div] - 16 - NJU77550/NJU77551/NJU77552/NJU77554 ■ APPLICATION NOTE Power Supply Protection for Overvoltage Condition  (Continues) Input tolerant can be applied to the input buffer of the ADC  (Figure9). Gain peaking vs. Frequency V+ = 5V, GV = 0dB, CL = 100pF 10 8 V+ RISO = 0Ω 6 VOUT VIN Gain [dB] 4 ADC RISO = 1kΩ 2 0 -2 -4 RISO = 2kΩ -6 Figure9. ADC buffer with input tolerant -8 RISO = 10kΩ -10 10k Capacitive Load The NJU7755x series can use at unity gain follower, but the  unity gain follower is the most sensitive configuration to  capacitive loading. The combination of capacitive load placed  directly on the output of an amplifier along with the output  impedance of the amplifier creates a phase lag which in turn  reduces the phase margin of the amplifier.  If phase margin is significantly reduced, the response will  cause overshoot and ringing in the step response. The NJU7755x series is unity gain stable for capacitive loads  of 100pF. To drive heavier capacitive loads, an isolation  resistor, RISO as shown Figure10, should be used. RISO  improves the feedback loop’s phase margin by making the  output load resistive at higher frequencies. The larger the  value of RISO, the more stable the output voltage will be.  However, larger values of RISO result in reduced output  swing, reduced output current drive and reduced frequency  bandwidth (Figure11). 100k 1M Frequency [Hz] 10M Figure12 shows the isolation circuit with RISO, RF and CC.  Minimize the effect of voltage drop due to RISO and output  current.  RF CC V+ RISO VOUT VIN CL V- 10R ISO CL < R F CC R ISO is more than 300Ω Figure12. Isolating capacitive load with RISO, RF and CC V+ R Vin ISO Vout C L Terminating unused OpAmps Examples of common methods of terminating an  uncommitted OpAmp are shown in Figure13. Improper  termination can be result increase supply current, heating  and noise in OpAmps. V- Figure10. Isolating capacitive load V+ V+ V+ R1 Vref R2 Figure13. Terminating unused OpAmps ver.3.0 www.njr.com - 17 - NJU77550/NJU77551/NJU77552/NJU77554 ■ APPLICATION NOTE Differential Amplifier Figure15 shows a one OpAmp differential amplifier that consists of the single OpAmp and four external resistors. Differential amplifier amplifies the difference between its two input pins, and rejects the common- mode input voltage at both input pins. This is used in variety of applications including current sensing, differential to single-end converter, isolation amplifier to remove common-mode noise. Instrumentation Amplifier The instrumentation amplifier is suitable for requiring high input impedance and high common mode noise rejection at high gains. Figure16 and Figure17 is instrumentation amplifier using two or three OpAmp. Supply the reference voltage (Vref) with a low impedance source to keep accuracy. RG R2 R1 R2 R3 R4 Vout R1 V1 Vout Vref V2 R3 R4 V1 V2 R4 R1+R2 R4 R2 2R4 Vout= ቀ1+R3+ R ቁ (V2-V1)+Vref Vref R1=R4, R2=R3 R1+R2 R3 Vout= ቀR3+R4ቁ R1V2- R1V1+ ቀR3+R4ቁ R1Vref G CMR R_error ≈ 20log ൭ R1=R3, R2=R4 R2 Vout=R1(V2-V1)+ Vref 1+ R4 2R4 + R3 R G 4R error ൱ Figure16. Instrumentation Amplifier with two OpAmp Figure15. Differential Amplifier The differential amplifier’s common-mode rejection ratio (CMR) is primarily determined by resistor mismatches, not by the OpAmp’s CMR. Ideally, the resistors are chosen such that R2/R1 = R4/R3. The CMR due to the resistors in differential amplifier can be calculated using the below formula: R4 V1 R5 R2 Vout R1 R3 CMR ୖ_ୣ୰୰୭୰ ≈ 20log ൬ భశ ౎మ ౎భ ସୖ౛౨౨౥౨ ൰ V2 CMR ୖ_ୣ୰୰୭୰ = CMR due only to the resistors R ୣ୰୰୭୰ = Resistor′s tolerance R6 R7 Vref Example: R2 / R1 = 1 and Rerror = 0.1%, then CMR = 54dB R2 / R1 = 1 and Rerror = 1%, then CMR = 34dB If using resistors with 1% tolerance and gain = 1, the CMR will only be 34dB. 2R2 R5 Vout= ቀ1+ R1 ቁ ቀR4ቁ +Vref R2=R3, R4=R6, R5=R7 CMR R_error ≈ 20log ቆ R5 1+ R1+2R2 R4 × ቇ R1 4R error Figure17. Instrumentation Amplifier with three OpAmp ver.3.0 www.njr.com - 18 - NJU77550/NJU77551/NJU77552/NJU77554 ■ APPLICATION NOTE Current Sensing Current sensing applications are one such application in a  wide range of electronic applications and mostly used for  feedback control systems, including power metering battery  life indicators and chargers, over- current protection and  supervising circuit, automotive, and medical equipment. In  such applications, it is desirable to use a shunt with very low  resistance to minimize the series voltage drop and minimizes  wasted power, and allows the measurement of high current.  The NJU7755x series is ideal for these current sensing  applications.  Figure18 shows a high-side current sensing circuit, and  Figure19 shows a low-side current sensing circuit. The  NJU7755x series has rail-to-rail input and output  characteristics, thus allows the both of high-side and low-side  current sensing circuit. Futuremore, low supply current of  50µA/ch can save the power at battery applications.  The differential amplifier’s common-mode rejection ratio  (CMR) is primarily determined by resistor mismatches. For  details, refer to differential amplifiers in the application note. Rs Transimpedance Amplifier The features high input impedance with CMOS input and low power can be used for transimpedance amplifier applications shown in Figure20. The output voltage of amplifier is given by the equation VOUT = IIN∙RF. Since the output voltage swing of amplifier is limited, RF should be selected such that all possible values of IIN can be detected. CF RF V+ IIN VVB CD: photodiode capacitance CIN: OpAmp input capacitance Figure20. Transimpedance amplifier I Power Supply RF Load V+ RG Vout RG The CD, CIN and RF generate a phase lag which causes gainpeaking and can destabilized circuit. The essential component for obtaining a maximally flat response is a feedback capacitor CF. CF is usually added in parallel with RF to maintain circuit stability and to control the frequency response. To maximally flat, 2nd order response, RF and CF should be chosen by using below equation. RF CF =ඨ Figure18. High-Side Current Sensing Rs CIN +CD GBW×2π×R F Sallen-Key 2nd-Order Active Low-Pass Filter The Sallen-Key 2nd-order active low-pass filter is shown in  Figure21. It can be used for a multiple pole filter required high  attenuation. Power Supply Load VOUT CIN CD C1 I R1 R2 RF C2 V+ RG R4 Vout R3 RG RF R=R1=R2 , C=C1=C2 Q: Quality factor , GDC : DC Gain f-3dB = Figure19. Low-Side Current Sensing 1 2πRC , Q= 1 3-GDC R4 , GDC =1+ R3 =3- 1 Q Figure21. Sallen-Key 2nd-Order Low-Pass Filter ver.3.0 www.njr.com - 19 - NJU77550/NJU77551/NJU77552/NJU77554 ■ APPLICATION NOTE EMIRR (EMI Rejection Ratio) Definition EMIRR is a parameter indicating the EMI robustness of an OpAmp. The definition of EMIRR is given by the following equation1. VRF_PEAK EMIRR=20∙log ൬ ൰ |∆VIO | --- eq.1 VRF_PEAK : RF Signal Amplitude [VP] ∆VIO : Input offset voltage shift quantity [V] The tolerance of the RF signal can be grasped by measuring an RF signal and offset voltage shift quantity. Offset voltage shift is small so that a value of EMIRR is big. And it understands that the tolerance for the RF signal is high. In addition, about the input offset voltage shift with the RF signal, there is the thinking that influence applied to the input terminal is dominant. Therefore, generally the EMIRR becomes value that applied an RF signal to +INPUT terminal. EMIRR vs. Frequency 140 V+ / V− = ±2.5V, Ta = 25°C 120 EMIRR [dB] 100 80 60 40 20 0 10M 100M 1G Frequency [Hz] 6G *For details, refer to “Application Note for EMI Immunity" in our HP: http://www.njr.com/ ver.3.0 www.njr.com - 20 - NJU77550/NJU77551/NJU77552/NJU77554 SOT-23-5 Unit: mm ■ PACKAGE DIMENSIONS 2.9 ± 0.2 0 ∼15 ° 1.9 ±0.2 4 0.6 2.8 ± 0.2 1.6 +0.2 -0.1 0.2 5 2 1 3 0.1 0.95 ±0.1 + 0. 1 - 0. 03 0.4 ±0.1 0.1 0.1max 1.1 ± 0.1 0.6max ■ EXAMPLE OF SOLDER PADS DIMENSIONS 2.4 1 .0 0 .7 0.95 ver.3.0 0.95 www.njr.com - 21 - NJU77550/NJU77551/NJU77552/NJU77554 SC-88A Unit: mm 0.4 25 ± 0.2 ■ PACKAGE DIMENSIONS 2.0 ± 0.2 1.3 ± 0.2 5 2 (0.2 45 ) 2 .1 ± 0.2 1.25 ± 0 .1 0.23 +0.1 -0.03 4 3 0 .425 ± 0. 2 1 0.13 +0.1 -0.05 0 ∼10 ° 0.1 +0.05 -0.15 0.9 5 0.05 ± 0.05 0.9 ± 0. 1 +0.2 0.2 -0.1 0.65 ±0.07 ■ EXAMPLE OF SOLDER PADS DIMENSIONS 1.9 0.8 0.3 0.65 ver.3.0 0.65 www.njr.com - 22 - NJU77550/NJU77551/NJU77552/NJU77554 SOP8 Unit: mm ■ PACKAGE DIMENSIONS DETAIL F D T e/2 5 8 E E1 1 4 U h ×45 ° 6 ×e ∞0 M U M θ A2 CCC Z A A1 Z S EA TI NG P L AN E 8 ×b bbb M DESC RIPTION TOTAL THI CKNESS SYMBOL A MIN .053 IN CH N CM MAX .069 STAND OF F A1 .004 .010 0. 10 0.25 MOL D THICKNE SS LEA D WIDTH A2 b .049 . 014 .01 9 1.25 0.35 0.49 L/F THIC KNESS C .007 .010 0. 19 0.25 D .189 .197 4. 80 5.00 E1 .150 .157 3.80 4.0 0 E .228 .244 5. 80 BOD Y SIZE LEAD PITC H ver.3.0 e .0 50 BSC 6.20 .015 .04 9 0.40 1.25 h .010 .0 20 0.2 5 0.50 0° 5° θ2 2° 7° θ1 1.27 B SC L θ θ1 Z U S T S MI LLIMETER MIN NCM MAX 1.3 5 1.75 7° 15 ° 0° 5° 12 ° 2° 7° 15 ° 7° LEAD EDGE OFFSET LEAD OFFSET ∞O bb b .010 .010 0 .25 0.25 COPLANAR ITY CCC .004 0.1 0 θ2 C 12 ° www.njr.com [0.25] L DETAIL F - 23 - NJU77550/NJU77551/NJU77552/NJU77554 SOP8 Unit: mm ■ EXAMPLE OF SOLDER PADS DIMENSIONS 0.72 5.72 1.27 1.27 3.81 ver.3.0 www.njr.com - 24 - NJU77550/NJU77551/NJU77552/NJU77554 MSOP8 (TVSP8) JEDEC MO-187-DA/THIN TYPE Unit: mm ■ PACKAGE DIMENSIONS 2.9 ±0.1 0 ∼10゚ 1 0 .55 ± 0.1 4.0 ± 0.2 5 2.8 ± 0.1 8 4 0.127 +0.05 -0.03 0.65 0.08 0.2 ±0.05 0.05 M 0 .1 ± 0. 05 1.0max 0.475 ±0.1 ■ EXAMPLE OF SOLDER PADS DIMENSIONS 0.65 3.5 1 .0 0.23 1.95 ver.3.0 www.njr.com - 25 - NJU77550/NJU77551/NJU77552/NJU77554 DFN8-U1 (ESON8-U1) Unit: mm ■ EXAMPLE OF SOLDER PADS DIMENSIONS ■ PACKAGE DIMENSIONS 0.28 0.5 2.20 1. 02 2.0 ±0.05 0.31 2.0 ± 0.05 0.075 0.01 +0.010 -0.008 S 0.397 ±0.03 1.54 1.78 S S 0.05 A 0.21 -0.04 +0.06 06 1.6 +- 0. 0. 0 4 0.25 C0 .3 3- R0 .3 1.08 -0.04 +0.06 B 0.5 6 0.26 +- 00 .0 .0 4 ver.3.0 φ 0.05 M S AB www.njr.com - 26 - NJU77550/NJU77551/NJU77552/NJU77554 SSOP14 Unit: mm ■ PACKAGE DIMENSIONS 5.0 0 ∼10゚ +0.3 -0.1 7 +0.1 1 .1 5 ± 0.1 0 .65 0. 15 -0.05 0.1 ± 0 .1 0. 67 max 0.10 0.22 ±0.1 0.5 ± 0.2 4.4 ± 0.2 1 6.4 ± 0.3 8 14 0.10 M ■ EXAMPLE OF SOLDER PADS DIMENSIONS 0.35 5.90 1. 00 0.65 3.90 ver.3.0 www.njr.com - 27 - NJU77550/NJU77551/NJU77552/NJU77554 SOT-23-5 Unit: mm ■ PACKING SPEC TAPING DIMENSIONS SYMBOL A B D0 D1 E F P0 P1 P2 T T2 K0 W W1 Feed direction P0 φD0 T B W1 W F E P2 A K0 φD1 P1 T2 DIMENSION 3.3±0.1 3.2±0.1 1.55 1.05 1.75±0.1 3.5±0.05 4.0±0.1 4.0±0.1 2.0±0.05 0.25±0.05 1.82 1.5±0.1 8.0±0.3 5.5 REMARKS BOTTOM DIMENSION BOTTOM DIMENSION THICKNESS 0.1MAX REEL DIMENSIONS W1 SYMBOL A B C D E W W1 E A D B C DIMENSION φ180±1 φ 60±1 φ 13±0.2 φ 21±0.8 2±0.5 9±0.5 1.2±0.2 W TAPING STATE Insert direction Sealing with covering tape (TE1) Drawing direction Empty tape Device attaching tape more than 20pitch 3000pcs/reel Empty tape Covering tape more than 20pitch reel more than 1 round PACKING STATE Label Label Put a reel into a box ver.3.0 www.njr.com - 28 - NJU77550/NJU77551/NJU77552/NJU77554 SC-88A Unit: mm ■ PACKING SPEC TAPING DIMENSIONS Feed direction P0 φ D0 SYMBOL A B D0 D1 E F P0 P1 P2 T T2 W W1 T B W1 W F E P2 A P1 T2 φ D1 DIMENSION 2.3±0.1 2.5±0.1 1.55±0.05 1.05±0.05 1.75±0.1 3.5±0.05 4.0±0.1 4.0±0.1 2.0±0.05 0.25±0.05 1.3±0.1 8.0±0.2 5.5 REMARKS BOTTOM DIMENSION BOTTOM DIMENSION THICKNESS 0.1max REEL DIMENSIONS W1 SYMBOL A B C D E W W1 E A D B C DIMENSION φ180±1 φ 60±1 φ 13±0.2 φ 21±0.8 2±0.5 9±0.5 1.2±0.2 W TAPING STATE Insert direction Sealing with covering tape (TE1) Drawing direction Empty tape Device attaching tape more than 20pitch 3000pcs/reel Empty tape Covering tape more than 20pitch reel more than 1 round PACKING STATE Label Label Put a reel into a box ver.3.0 www.njr.com - 29 - NJU77550/NJU77551/NJU77552/NJU77554 SOP8 Unit: mm ■ PACKING SPEC REEL DIMENSIONS / TAPING DIMENSIONS 8 12 330 F e e d d i r e c t i on 8 12.4 TAPING STATE Insert direction Sealing with covering tape (TE2) Feed direction Empty tape Devices Empty tape Trailer 60pcs 2500pcs/reel Leader 60pcs PACKING STATE Label Label ESD Label ver.3.0 www.njr.com - 30 - NJU77550/NJU77551/NJU77552/NJU77554 MSOP8 (TVSP8) MEET JEDEC MO-187-DA/THIN Unit: mm ■TYPE PACKING SPEC TAPING DIMENSIONS F ee d d ir ec ti on P2 P0 φD0 B W1 W F E T A T2 φD1 P1 SYMBOL A B D0 D1 E F P0 P1 P2 T T2 W W1 DIMENSION 4.4 3.2 1.5 +0.1 0 1.5 +0.1 0 1.75±0.1 5.5±0.05 4.0±0.1 8.0±0.1 2.0±0.05 0.30±0.05 1.75 (MAX.) 12.0±0.3 9.5 REMARKS BOTTOM DIMENSION BOTTOM DIMENSION THICKNESS 0.1max REEL DIMENSIONS W1 SYMBOL A B C D E W W1 B D A C E DIMENSION φ254±2 φ100±1 φ 13±0.2 φ 21±0.8 2±0.5 13.5±0.5 2.0±0.2 W TAPING STATE Insert direction Sealing with covering tape (TE1) Devices Empty tape Feed direction more than 20pitch 2000pcs/reel Empty tape Covering tape more than 20pitch reel more than 1round PACKING STATE Label Label Put a reel into a box ver.3.0 www.njr.com - 31 - NJU77550/NJU77551/NJU77552/NJU77554 DFN8-U1 (ESON8-U1) Unit: mm ■ PACKING SPEC TAPING DIMENSIONS Feed direction P0 φD0 SYMBOL A B D0 D1 E F P0 P1 P2 T T2 K0 W W1 T B W1 W F E P2 K0 A T2 φD1 P1 DIMENSION 2.25±0.05 2.25±0.05 1.5 +0.1 0 0.5±0.1 1.75±0.1 3.5±0.05 4.0±0.1 4.0±0.1 2.0±0.05 0.25±0.05 1.00±0.07 0.65±0.05 8.0±0.2 5.5 REMARKS BOTTOM DIMENSION BOTTOM DIMENSION THICKNESS 0.1max REEL DIMENSIONS W1 SYMBOL A B C D E W W1 E B A D C DIMENSION 0 φ180 -1.5 φ 60 +10 φ 13±0.2 φ 21±0.8 2±0.5 9 +0.3 0 1.2 W TAPING STATE Insert direction Sealing with covering tape (TE3) Feed direction Empty tape Devices more than 40 pitch 3000pcs/reel Empty tape Covering tape more than 25 pitch reel more than 1 round PACKING STATE Label Label Put a reel into a box ver.3.0 www.njr.com - 32 - NJU77550/NJU77551/NJU77552/NJU77554 SSOP14 Unit: mm ■ PACKING SPEC TAPING DIMENSIONS Feed direction φD0 P0 T B W1 W F E P2 SYMBOL A B D0 D1 E F P0 P1 P2 T T2 W W1 A φD1 P1 T2 DIMENSION 6.95 5.4 1.55±0.05 1.55±0.1 1.75±0.1 5.5±0.05 4.0±0.1 8.0±0.1 2.0±0.05 0.3±0.05 2.2 12.0±0.3 9.5 REMARKS BOTTOM DIMENSION BOTTOM DIMENSION THICKNESS 0.1max REEL DIMENSIONS W1 SYMBOL A B C D E W W1 B D A C E DIMENSION φ254±2 φ100±1 φ 13±0.2 φ 21±0.8 2±0.5 13.5±0.5 2±0.2 W TAPING STATE Insert direction Sealing with covering tape (TE1) Empty tape Feed direction PACKING STATE more than 20pitch Devices 2000pcs/reel Label Empty tape Covering tape more than 20pitch reel more than 1round Label Put a reel into a box ver.3.0 www.njr.com - 33 - NJU77550/NJU77551/NJU77552/NJU77554 ■ RECOMMENDED MOUNTING METHOD INFRARED REFLOW SOLDERING PROFILE f 260°C e 230°C 220°C d a b 180°C c d e f g 150°C Temperature ramping rate Pre-heating temperature Pre-heating time Temperature ramp rate 220°C or higher time 230°C or higher time Peak temperature Temperature ramping rate 1 to 4°C/s 150 to 180°C 60 to 120s 1 to 4°C/s shorter than 60s shorter than 40s lower than 260°C 1 to 6°C/s The temperature indicates at the surface of mold package. Room Temp. a b c g ■ REVISION HISTORY DATE REVISION April 10, 2018 1.0 New Release May 27, 2019 2.0 Added DFN8-U1 (ESON8-U1) package. Changed status NJU77550 and NJU77551. Thermal Characteristics: Changed values of Θja. Added Power Dissipation vs. Ambient Temperature. Electrical Characteristics: Changed value and unit in High-level Output Voltage. Typical Characteristics: Deleted Figure of EMIRR vs. Frequency. Application Note: Changed Figure of EMIRR vs. Frequency in EMIRR (EMI Rejection Ratio) Definition. Recommended Mounting Method: Deleted Flow and Iron Soldering Profile. September 5, 2019 2.1 Added note of input voltage in ABSOLUTE MAXIMUM RATINGS. Added condition of input voltage in RECOMMENDED OPERATING CONDITIONS. November 15, 2019 2.2 Changed status NJU77552KU1 July 22, 2020 3.0 Updated datasheet format. Updated Features and Application note. ver.3.0 CHANGES www.njr.com - 34 - NJU77550/NJU77551/NJU77552/NJU77554 [ CAUTION ] 1. NJR strives to produce reliable and high quality semiconductors. NJR’s semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights. All other trademarks mentioned herein are the property of their respective companies. 3. To ensure the highest levels of reliability, NJR products must always be properly handled. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products. 4. NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet. 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design. 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.        7. 8. 9. ver.3.0 Aerospace Equipment Equipment Used in the Deep Sea Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.) Life Maintenance Medical Equipment Fire Alarms / Intruder Detectors Vehicle Control Equipment (Airplane, railroad, ship, etc.) Various Safety Devices NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice. www.njr.com - 35 -
NJU77552RB1-TE1 价格&库存

很抱歉,暂时无法提供与“NJU77552RB1-TE1”相匹配的价格&库存,您可以联系我们找货

免费人工找货