1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
DATASHEET
1
GD25LQ64C
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Contents
1.
FEATURES .........................................................................................................................................................4
2.
GENERAL DESCRIPTION ................................................................................................................................5
3.
MEMORY ORGANIZATION ...............................................................................................................................8
4.
DEVICE OPERATION ........................................................................................................................................9
5.
DATA PROTECTION ........................................................................................................................................ 10
6.
STATUS REGISTER......................................................................................................................................... 12
7.
COMMANDS DESCRIPTION .......................................................................................................................... 14
7.1
WRITE ENABLE (WREN) (06H) ........................................................................................................................ 18
7.2
WRITE DISABLE (WRDI) (04H) ........................................................................................................................ 19
7.3
WRITE ENABLE FOR VOLATILE STATUS REGISTER (50H)................................................................................ 20
7.4
READ STATUS REGISTER (RDSR) (05H OR 35H OR 15H) ............................................................................. 20
7.5
WRITE STATUS REGISTER (WRSR) (01H) ...................................................................................................... 21
7.6
READ DATA BYTES (READ) (03H) .................................................................................................................. 23
7.7
READ DATA BYTES AT HIGHER SPEED (FAST READ) (0BH) ........................................................................... 23
7.8
DUAL OUTPUT FAST READ (3BH) .................................................................................................................... 24
7.9
QUAD OUTPUT FAST READ (6BH) .................................................................................................................... 25
7.10
DUAL I/O FAST READ (BBH) ............................................................................................................................ 25
7.11
QUAD I/O FAST READ (EBH)............................................................................................................................ 27
7.12
QUAD I/O WORD FAST READ (E7H) ................................................................................................................ 29
7.13
SET BURST WITH WRAP (77H) ......................................................................................................................... 30
7.14
PAGE PROGRAM (PP) (02H) ............................................................................................................................ 31
7.15
QUAD PAGE PROGRAM (32H) .......................................................................................................................... 32
7.16
SECTOR ERASE (SE) (20H) ............................................................................................................................. 33
7.17
32KB BLOCK ERASE (BE) (52H) ..................................................................................................................... 34
7.18
64KB BLOCK ERASE (BE) (D8H) ..................................................................................................................... 35
7.19
CHIP ERASE (CE) (60/C7H) ............................................................................................................................. 36
7.20
DEEP POWER-DOWN (DP) (B9H) .................................................................................................................... 37
7.21
RELEASE FROM DEEP POWER-DOWN AND READ DEVICE ID (RDI) (ABH) .................................................... 38
7.22
READ MANUFACTURE ID/ DEVICE ID (REMS) (90H) ...................................................................................... 40
7.23
READ MANUFACTURE ID/ DEVICE ID DUAL I/O (92H) ..................................................................................... 41
7.24
READ MANUFACTURE ID/ DEVICE ID QUAD I/O (94H) .................................................................................... 42
7.25
READ IDENTIFICATION (RDID) (9FH) ............................................................................................................... 43
7.26
PROGRAM/ERASE SUSPEND (PES) (75H) ....................................................................................................... 44
7.27
PROGRAM/ERASE RESUME (PER) (7AH) ........................................................................................................ 45
7.28
READ UNIQUE ID (4BH) .................................................................................................................................... 46
7.29
ERASE SECURITY REGISTERS (44H) ................................................................................................................ 47
7.30
PROGRAM SECURITY REGISTERS (42H) .......................................................................................................... 48
7.31
READ SECURITY REGISTERS (48H).................................................................................................................. 49
2
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.32
SET READ PARAMETERS (C0H) ....................................................................................................................... 50
7.33
BURST READ WITH WRAP (0CH) ...................................................................................................................... 51
7.34
ENABLE QPI (38H) ........................................................................................................................................... 51
7.35
DISABLE QPI (FFH) .......................................................................................................................................... 52
7.36
ENABLE RESET (66H) AND RESET (99H) ......................................................................................................... 52
7.37
READ SERIAL FLASH DISCOVERABLE PARAMETER (5AH) ............................................................................... 53
ELECTRICAL CHARACTERISTICS .............................................................................................................. 59
8.
8.1
POWER-ON TIMING ...................................................................................................................................... 59
8.2
INITIAL DELIVERY STATE ........................................................................................................................... 59
8.3
ABSOLUTE MAXIMUM RATINGS ............................................................................................................... 59
8.4
CAPACITANCE MEASUREMENT CONDITIONS ..................................................................................... 60
8.5
DC CHARACTERISTICS ............................................................................................................................... 61
8.6
AC CHARACTERISTICS ............................................................................................................................... 64
ORDERING INFORMATION ............................................................................................................................ 69
9.
9.1
10.
VALID PART NUMBERS ...................................................................................................................................... 70
PACKAGE INFORMATION ......................................................................................................................... 72
10.1
PACKAGE SOP8 208MIL.................................................................................................................................. 72
10.2
PACKAGE VSOP8 208MIL ............................................................................................................................... 73
10.3
PACKAGE USON8 (4*4MM, 0.45MM THICKNESS) ............................................................................................ 74
10.4
PACKAGE WSON8 (6*5MM) ............................................................................................................................. 75
10.5
PACKAGE WLCSP (2X4 FUNCTIONAL BALL ARRAY) ........................................................................................ 76
10.6
PACKAGE WLCSP (4X2 FUNCTIONAL BALL ARRAY) ........................................................................................ 77
11.
REVISION HISTORY .................................................................................................................................... 78
3
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
1. FEATURES
◆
64M-bit Serial Flash
◆ Fast
Program/Erase Speed
-8192K-byte
-Page Program time: 0.7ms typical
-256 bytes per programmable page
-Sector Erase time: 90ms typical
-Block Erase time: 0.3/0.45s typical
◆
Standard, Dual, Quad SPI, QPI
-Chip Erase time: 30s typical
-Standard SPI: SCLK, CS#, SI, SO, WP#, HOLD#
-Dual SPI: SCLK, CS#, IO0, IO1, WP#, HOLD#
◆
Flexible Architecture
-Quad SPI: SCLK, CS#, IO0, IO1, IO2, IO3
-Uniform Sector of 4K-byte
-QPI: SCLK, CS#, IO0, IO1, IO2, IO3
-Uniform Block of 32/64K-byte
-Erase/Program Suspend/Resume
◆
High Speed Clock Frequency
-120MHz for fast read with 30PF load
◆ Low
Power Consumption
-Dual I/O Data transfer up to 240Mbits/s
-35uA typical stand-by current
-Quad I/O Data transfer up to 480Mbits/s
-1uA typical power down current
-QPI Mode Data transfer up to 480Mbits/s
◆
◆ Software/Hardware
Write Protection
Advanced security Features
-128-Bit Unique ID for each device
-Write protect all/portion of memory via software
-3x1024-Byte Security Registers With OTP Lock
-Enable/Disable protection with WP# Pin
-Top/Bottom Block protection
◆
Single Power Supply Voltage
-Full voltage range: 1.65~2.0V
◆
Minimum 100,000 Program/Erase Cycles
◆
◆
Data Retention
Allows XIP (execute in place) Operation
-Continuous Read With 8/16/32/64-byte Wrap
-20-year data retention typical
4
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
2. GENERAL DESCRIPTION
The GD25LQ64C (64M-bit) Serial flash supports the standard Serial Peripheral Interface (SPI), and supports the
Dual/Quad SPI and QPI mode: Serial Clock, Chip Select, Serial Data I/O0 (SI), I/O1 (SO), I/O2 (WP#), and I/O3 (HOLD#).
The Dual I/O data is transferred with speed of 240Mbits/s and the Quad I/O & Quad output data is transferred with speed of
480Mbits/s.
CONNECTION DIAGRAM
CS#
1
8
SO/
IO1
2
7
Top View
VCC
CS#
1
8
HOLD#/
IO3
SO/
IO1
2
7
HOLD#/
IO3
3
6
SCLK
4
5
SI/
IO0
WP#/
IO2
3
6
SCLK
WP#/
IO2
VSS
4
5
SI/
IO0
VSS
Top View
8–LEAD VSOP/SOP
VCC
8–LEAD WSON/USON
PIN DESCRIPTION
Pin Name
Ball Name
I/O
Description
CS#
A3
I
Chip Select Input
SO (IO1)
B3
I/O
Data Output (Data Input Output 1)
WP# (IO2)
C3
I/O
Write Protect Input (Data Input Output 2)
VSS
D3
SI (IO0)
D2
I/O
Data Input (Data Input Output 0)
SCLK
C2
I
Serial Clock Input
HOLD# (IO3)
B2
I/O
Hold Input (Data Input Output 3)
VCC
A2
Ground
Power Supply
Note: CS# must be driven high if chip is not selected. Please don’t leave CS# floating any time after power is on.
TOP VIEW
BOTTOM VIEW
A1
A2
A3
A4
A4
A3
A2
A1
NC
VCC
CS#
NC
NC
CS#
VCC
NC
B2
B3
B3
B2
SO/IO1
HOLD#/
IO3
HOLD#/
IO3
SO/IO1
C2
C3
C3
C2
SCLK
WP#/
IO2
WP#/
IO2
SCLK
D1
D2
D3
D4
D4
D3
D2
D1
NC
SI/IO0
VSS
NC
NC
VSS
SI/IO0
NC
WLCSP (2x4 functional ball array, GD25LQ64CLxxR)
5
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Pin Description of WLCSP (2x4 functional ball array) Package
Pin Name
Ball No.
I/O
Description
CS#
A3
I
Chip Select Input
SO (IO1)
B3
I/O
Data Output (Data Input Output 1)
WP# (IO2)
C3
I/O
Write Protect Input (Data Input Output 2)
VSS
D3
SI (IO0)
D2
I/O
Data Input (Data Input Output 0)
SCLK
C2
I
Serial Clock Input
HOLD# (IO3)
B2
I/O
Hold Input (Data Input Output 3)
VCC
A2
Ground
Power Supply
Note: CS# must be driven high if chip is not selected. Please don’t leave CS# floating any time after power is on.
TOP VIEW
BOTTOM VIEW
F1
A1
A1
F1
NC
NC
NC
NC
E2
D2
C2
B2
SI/IO0
SLCK
HOLD#/IO3
VCC
B2
C2
D2
VCC HOLD#/IO3 SLCK
E3
D3
C3
B3
B3
VSS
WP#/IO2
SO/IO1
CS#
CS#
C3
D3
SO/IO1 WP#/IO2
E2
SI/IO0
E3
VSS
F4
A4
A4
F4
NC
NC
NC
NC
WLCSP (4x2 functional ball array, GD25LQ64CLxxR-SG)
Pin Description of WLCSP (4x2 functional ball array) Package
Pin Name
Ball No.
I/O
Description
CS#
B3
I
Chip Select Input
SO (IO1)
C3
I/O
Data Output (Data Input Output 1)
WP#(IO2)
D3
I/O
Write Protect Input (Data Input Output 2)
VSS
E3
SI (IO0)
E2
I/O
Data Input (Data Input Output 0)
SCLK
D2
I
Serial Clock Input
HOLD#(IO3)
C2
I/O
Hold Input (Data Input Output 3)
VCC
B2
Ground
Power Supply
Note: CS# must be driven high if chip is not selected. Please don’t leave CS# floating any time after power is on.
6
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
BLOCK DIAGRAM
Write Control
Logic
Status
Register
HOLD#(IO3)
SCLK
CS#
SPI
Command &
Control Logic
High Voltage
Generators
Page Address
Latch/Counter
Write Protect Logic
and Row Decode
WP#(IO2)
Flash
Memory
Column Decode And
256-Byte Page Buffer
SI(IO0)
SO(IO1)
Byte Address
Latch/Counter
7
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
3. MEMORY ORGANIZATION
GD25LQ64C
Each device has
Each block has
Each sector has
Each page has
8M
64/32K
4K
256
bytes
32K
256/128
16
-
pages
2048
16/8
-
-
sectors
128/256
-
-
-
blocks
UNIFORM BLOCK SECTOR ARCHITECTURE
GD25LQ64C 64K Bytes Block Sector Architecture
Block
127
126
……
……
2
1
0
Sector
Address range
2047
7FF000H
7FFFFFH
……
……
……
2032
7F0000H
7F0FFFH
2031
7EF000H
7EFFFFH
……
……
……
2016
7E0000H
7E0FFFH
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
……
47
02F000H
02FFFFH
……
……
……
32
020000H
020FFFH
31
01F000H
01FFFFH
……
……
……
16
010000H
010FFFH
15
00F000H
00FFFFH
……
……
……
0
000000H
000FFFH
8
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
4. DEVICE OPERATION
SPI Mode
Standard SPI
The GD25LQ64C features a serial peripheral interface on 4 signals bus: Serial Clock (SCLK), Chip Select (CS#),
Serial Data Input (SI) and Serial Data Output (SO). Both SPI bus mode 0 and 3 are supported. Input data is latched on the
rising edge of SCLK and data shifts out on the falling edge of SCLK.
Dual SPI
The GD25LQ64C supports Dual SPI operation when using the “Dual Output Fast Read” and “Dual I/O Fast Read”
(3BH and BBH) commands. These commands allow data to be transferred to or from the device at twice the rate of the
standard SPI. When using the Dual SPI command the SI and SO pins become bidirectional I/O pins: IO0 and IO1.
Quad SPI
The GD25LQ64C supports Quad SPI operation when using the “Quad Output Fast Read”,” Quad I/O Fast Read”,
“Quad I/O Word Fast Read”, “Quad Page Program” (6BH, EBH, E7H, 32H) commands. These commands allow data to be
transferred to or from the device at four times the rate of the standard SPI. When using the Quad SPI command the SI and
SO pins become bidirectional I/O pins: IO0 and IO1, and WP# and HOLD# pins become IO2 and IO3. Quad SPI
commands require the non-volatile Quad Enable bit (QE) in Status Register to be set.
QPI
The GD25LQ64C supports Quad Peripheral Interface (QPI) operations only when the device is switched from
Standard/Dual/Quad SPI mode to QPI mode using the “Enable the QPI (38H)” command. The QPI mode utilizes all four IO
pins to input the command code. Standard/Dual/Quad SPI mode and QPI mode are exclusive. Only one mode can be
active at any given times. “Enable the QPI (38H)” and “Disable the QPI (FFH)” commands are used to switch between
these two modes. Upon power-up and after software reset using “”Reset (99H)” command, the default state of the device is
Standard/Dual/Quad SPI mode. The QPI mode requires the non-volatile Quad Enable bit (QE) in Status Register to be set.
Hold
The HOLD# signal goes low to stop any serial communications with the device, but doesn’t stop the operation of write
status register, programming, or erasing in progress.
The operation of HOLD, need CS# keep low, and starts on falling edge of the HOLD# signal, with SCLK signal being
low (if SCLK is not being low, HOLD operation will not start until SCLK being low). The HOLD condition ends on rising edge
of HOLD# signal with SCLK being low (If SCLK is not being low, HOLD operation will not end until SCLK being low).
The SO is high impedance, both SI and SCLK don’t care during the HOLD operation, if CS# drives high during HOLD
operation, it will reset the internal logic of the device. To re-start communication with chip, the HOLD# must be at high and
then CS# must be at low.
Figure1. Hold Condition
CS#
SCLK
HOLD#
HOLD
HOLD
9
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
5. DATA PROTECTION
The GD25LQ64C provide the following data protection methods:
◆
Write Enable (WREN) command: The WREN command is set the Write Enable Latch bit (WEL). The WEL bit will
return to reset by the following situation:
-Power-Up
-Write Disable (WRDI)
-Write Status Register (WRSR)
-Page Program (PP)
-Sector Erase (SE) / Block Erase (BE) / Chip Erase (CE)
-Erase Security Registers / Program Security Registers
◆
Software Protection Mode: The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits define the section of the
memory array that can be read but not change.
◆
Hardware Protection Mode: WP# goes low to protect the writable bit of Status Register
◆
Deep Power-Down Mode: In Deep Power-Down Mode, all commands are ignored except the Release from Deep
Power-Down Mode command reset command (66H+99H).
Table1. GD25LQ64C Protected area size (CMP=0)
Status Register Content
Memory Content
BP4
BP3
BP2
BP1
BP0
Blocks
Addresses
Density
Portion
X
X
0
0
0
NONE
NONE
NONE
NONE
0
0
0
0
1
126 to 127
7E0000H-7FFFFFH
128KB
Upper 1/64
0
0
0
1
0
124 to 127
7C0000H-7FFFFFH
256KB
Upper 1/32
0
0
0
1
1
120 to 127
780000H-7FFFFFH
512KB
Upper 1/16
0
0
1
0
0
112 to 127
700000H-7FFFFFH
1MB
Upper 1/8
0
0
1
0
1
96 to 127
600000H-7FFFFFH
2MB
Upper 1/4
0
0
1
1
0
64 to 127
400000H-7FFFFFH
4MB
Upper 1/2
0
1
0
0
1
0 to 1
000000H-01FFFFH
128KB
Lower 1/64
0
1
0
1
0
0 to 3
000000H-03FFFFH
256KB
Lower 1/32
0
1
0
1
1
0 to 7
000000H-07FFFFH
512KB
Lower 1/16
0
1
1
0
0
0 to 15
000000H-0FFFFFH
1MB
Lower 1/8
0
1
1
0
1
0 to 31
000000H-1FFFFFH
2MB
Lower 1/4
0
1
1
1
0
0 to 63
000000H-3FFFFFH
4MB
Lower 1/2
X
X
1
1
1
0 to 127
000000H-7FFFFFH
8MB
ALL
1
0
0
0
1
127
7FF000H-7FFFFFH
4KB
Top Block
1
0
0
1
0
127
7FE000H-7FFFFFH
8KB
Top Block
1
0
0
1
1
127
7FC000H-7FFFFFH
16KB
Top Block
1
0
1
0
X
127
7F8000H-7FFFFFH
32KB
Top Block
1
0
1
1
0
127
7F8000H-7FFFFFH
32KB
Top Block
1
1
0
0
1
0
000000H-000FFFH
4KB
Bottom Block
1
1
0
1
0
0
000000H-001FFFH
8KB
Bottom Block
1
1
0
1
1
0
000000H-003FFFH
16KB
Bottom Block
1
1
1
0
X
0
000000H-007FFFH
32KB
Bottom Block
1
1
1
1
0
0
000000H-007FFFH
32KB
Bottom Block
10
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Table1a. GD25LQ64C Protected area size (CMP=1)
Status Register Content
Memory Content
BP4
BP3
BP2
BP1
BP0
Blocks
Addresses
Density
Portion
X
X
0
0
0
ALL
000000H-7FFFFFH
ALL
ALL
0
0
0
0
1
0 to 125
000000H-7DFFFFH
8064KB
Lower 63/64
0
0
0
1
0
0 to 123
000000H-7BFFFFH
7936KB
Lower 31/32
0
0
0
1
1
0 to 119
000000H-77FFFFH
7680KB
Lower 15/16
0
0
1
0
0
0 to 111
000000H-6FFFFFH
7MB
Lower 7/8
0
0
1
0
1
0 to 95
000000H-5FFFFFH
6MB
Lower 3/4
0
0
1
1
0
0 to 63
000000H-3FFFFFH
4MB
Lower 1/2
0
1
0
0
1
2 to 127
020000H-7FFFFFH
8064KB
Upper 63/64
0
1
0
1
0
4 to 127
040000H-7FFFFFH
7936KB
Upper 31/32
0
1
0
1
1
8 to 127
080000H-7FFFFFH
7680KB
Upper 15/16
0
1
1
0
0
16 to 127
100000H-7FFFFFH
7MB
Upper 7/8
0
1
1
0
1
32 to 127
200000H-7FFFFFH
6MB
Upper 3/4
0
1
1
1
0
64 to 127
400000H-7FFFFFH
4MB
Upper 1/2
X
X
1
1
1
NONE
NONE
NONE
NONE
1
0
0
0
1
0 to 127
000000H-7FEFFFH
8188KB
L-2047/2048
1
0
0
1
0
0 to 127
000000H-7FDFFFH
8184KB
L-1023/1024
1
0
0
1
1
0 to 127
000000H-7FBFFFH
8176KB
L-511/512
1
0
1
0
X
0 to 127
000000H-7F7FFFH
8160KB
L-255/256
1
0
1
1
0
0 to 127
000000H-7F7FFFH
8160KB
L-255/256
1
1
0
0
1
0 to 127
001000H-7FFFFFH
8188KB
U-2047/2048
1
1
0
1
0
0 to 127
002000H-7FFFFFH
8184KB
U-1023/1024
1
1
0
1
1
0 to 127
004000H-7FFFFFH
8176KB
U-511/512
1
1
1
0
X
0 to 127
008000H-7FFFFFH
8160KB
U-255/256
1
1
1
1
0
0 to 127
008000H-7FFFFFH
8160KB
U-255/256
11
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
6. STATUS REGISTER
S15
S14
S13
S12
S11
S10
S9
S8
SUS1
CMP
LB3
LB2
LB1
SUS2
QE
SRP1
S7
S6
S5
S4
S3
S2
S1
S0
SRP0
BP4
BP3
BP2
BP1
BP0
WEL
WIP
The status and control bits of the Status Register are as follows:
WIP bit
The Write in Progress (WIP) bit indicates whether the memory is busy in program/erase/write status register progress.
When WIP bit sets to 1, means the device is busy in program/erase/write status register progress, when WIP bit sets 0,
means the device is not in program/erase/write status register progress.
WEL bit
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal
Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write Status Register, Program or
Erase command is accepted.
BP4, BP3, BP2, BP1, BP0 bits
The Block Protect (BP4, BP3, BP2, BP1, and BP0) bits are non-volatile. They define the size of the area to be
software protected against Program and Erase commands. These bits are written with the Write Status Register (WRSR)
command. When the Block Protect (BP4, BP3, BP2, BP1, BP0) bits are set to 1, the relevant memory area (as defined in
Table1) becomes protected against Page Program (PP), Sector Erase (SE) and Block Erase (BE) commands. The Block
Protect (BP4, BP3, BP2, BP1, and BP0) bits can be written provided that the Hardware Protected mode has not been set.
The Chip Erase (CE) command is executed, if the Block Protect (BP2, BP1, BP0) bits are 0 and CMP=0 or the Block
Protect (BP2, BP1, and BP0) bits are 1 and CMP=1.
SRP1, SRP0 bits
The Status Register Protect (SRP1 and SRP0) bits are non-volatile Read/Write bits in the status register. The SRP
bits control the method of write protection: software protection, hardware protection, power supply lock-down or one time
programmable protection.
SRP1
SRP0
#WP
Status Register
0
0
X
Software Protected
0
1
0
Hardware Protected
0
1
1
Hardware Unprotected
1
0
X
Power Supply Lock-Down(1)(2)
1
1
X
One Time Program(2)
Description
The Status Register can be written to after a Write Enable
command, WEL=1.(Default)
WP#=0, the Status Register locked and cannot be written to.
WP#=1, the Status Register is unlocked and can be written to
after a Write Enable command, WEL=1.
Status Register is protected and cannot be written to again
until the next Power-Down, Power-Up cycle.
Status Register is permanently protected and cannot be
written to.
NOTE:
1. When SRP1, SRP0= (1, 0), a Power-Down, Power-Up cycle will change SRP1, SRP0 to (0, 0) state.
2. This feature is available on special order. Please contact GigaDevice for details.
12
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
QE bit
The Quad Enable (QE) bit is a non-volatile Read/Write bit in the Status Register that allows Quad operation. When
the QE bit is set to 0 (Default) the WP# pin and HOLD# pin are enable. When the QE pin is set to 1, the Quad IO2 and IO3
pins are enabled. (It is best to set the QE bit to 0 to avoid short issue if the WP# or HOLD# pin is tied directly to the power
supply or ground.)
LB3, LB2, LB1 bits
The LB3, LB2, LB1 bits are non-volatile One Time Program (OTP) bits in Status Register (S13-S11) that provide the
write protect control and status to the Security Registers. The default state of LB3-LB1 are 0, the security registers are
unlocked. The LB3-LB1 bits can be set to 1 individually using the Write Register instruction. The LB3-LB1 bits are One
Time Programmable, once they are set to 1, the Security Registers will become read-only permanently.
CMP bit
The CMP bit is a non-volatile Read/Write bit in the Status Register (S14). It is used in conjunction with the BP4-BP0
bits to provide more flexibility for the array protection. Please see the Status registers Memory Protection table for details.
The default setting is CMP=0.
SUS1, SUS2 bits
The SUS1 and SUS2 bits are read only bits in the status register (S15 and S10) that are set to 1 after executing an
Program/Erase Suspend (75H) command (The Erase Suspend will set the SUS1 to 1, and the Program Suspend will set
the SUS2 to 1). The SUS1 and SUS2 bits are cleared to 0 by Program/Erase Resume (7AH) command software reset
(66H+99H) command as well as a power-down, power-up cycle.
13
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7. COMMANDS DESCRIPTION
All commands, addresses and data are shifted in and out of the device, beginning with the most significant bit on the
first rising edge of SCLK after CS# is driven low. Then, the one-byte command code must be shifted in to the device, with
most significant bit first on SI, and each bit being latched on the rising edges of SCLK.
See Table2, every command sequence starts with a one-byte command code. Depending on the command, this
might be followed by address bytes, or by data bytes, or by both or none. CS# must be driven high after the last bit of the
command sequence has been completed in. For the command of Read, Fast Read, Read Status Register or Release from
Deep Power-Down, and Read Device ID, the shifted-in command sequence is followed by a data-out sequence. All read
instruction can be completed after any bit of the data-out sequence is being shifted out, and then CS# must be driven high
to return to deselected status.
For the command of Page Program, Sector Erase, Block Erase, Chip Erase, Write Status Register, Write Enable,
Write Disable or Deep Power-Down command, CS# must be driven high exactly at a byte boundary, otherwise the
command is rejected, and is not executed. That is CS# must be driven high when the number of clock pulses after CS#
being driven low is an exact multiple of eight. For Page Program, if at any time the input byte is not a full byte, nothing will
happen and WEL will not be reset.
Table2. Commands (Standard/Dual/Quad SPI)
Command Name
Write Enable
Write Disable
Volatile SR
Write Enable
Read Status Register
Read Status Register-1
Write Status Register
Read Data
Fast Read
Dual Output
Fast Read
Dual I/O
Fast Read
Quad Output
Fast Read
Quad I/O
Fast Read
Quad I/O Word
Fast Read(7)
Page Program
Quad Page Program
Sector Erase
Block Erase(32K)
Block Erase(64K)
Chip Erase
Enable QPI
Enable Reset
Reset
Set Burst with Wrap
Program/Erase
Suspend
Program/Erase Resume
Byte 1
06H
04H
50H
Byte 2
05H
35H
01H
03H
0BH
3BH
(S7-S0)
(S15-S8)
S7-S0
A23-A16
A23-A16
A23-A16
BBH
A23-A8(2)
6BH
A23-A16
EBH
A23-A0
M7-M0(4)
A23-A0
M7-M0(4)
A23-A16
A23-A16
A23-A16
A23-A16
A23-A16
E7H
02H
32H
20H
52H
D8H
C7/60H
38H
66H
99H
77H
75H
Byte 3
Byte 4
Byte 5
Byte 6
n-Bytes
(continuous)
(continuous)
S15-S8
A15-A8
A15-A8
A15-A8
A7-A0
A7-A0
A7-A0
(D7-D0)
dummy
dummy
(Next byte)
(D7-D0)
(D7-D0)(1)
(continuous)
(continuous)
(continuous)
A7-A0
M7-M0(2)
A15-A8
(D7-D0)(1)
dummy(5)
(D7-D0)(3)
(continuous)
dummy(6)
(D7-D0)(3)
(continuous)
A15-A8
A15-A8
A15-A8
A15-A8
A15-A8
A7-A0
A7-A0
A7-A0
A7-A0
A7-A0
W6-W4
7AH
14
A7-A0
(continuous)
dummy
D7-D0
D7-D0
(D7-D0)(3)
Next byte
(continuous)
1.8V Uniform Sector
Dual and Quad Serial Flash
Release From Deep
Power-Down, And
Read Device ID
Release From Deep
Power-Down
Deep Power-Down
Manufacturer/
Device ID
Manufacturer/
Device ID by Dual I/O
Manufacturer/
Device ID by Quad I/O
Read Identification
Read Unique ID
Read Serial Flash
Discoverable
Parameter(10)
Erase Security
Registers(8)
Program Security
Registers(8)
Read Security
Registers(8)
ABH
GD25LQ64C
dummy
dummy
dummy
(ID7-ID0)
B9H
90H
00H
00H
00H
(M7-M0)
92H
A23-A8
A7-A0,
M[7:0]
dummy
(M7-M0)
(ID7-ID0)
(M7-M0)
(ID7-ID0)
(ID7-ID0)
(continuous)
ABH
94H
9FH
A23-A0,
M[7:0]
(M7-M0)
(ID15-ID8)
(ID7-ID0)
(continuous)
(continuous)
(continuous)
(UID7-UID
4BH
00H
00H
00H
dummy
5AH
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
44H
A23-A16
A15-A8
A7-A0
42H
A23-A16
A15-A8
A7-A0
D7-D0
(D7-D0)
48H
A23-A16
A15-A8
A7-A0
dummy
(D7-D0)
(continuous)
(continuous)
0)
(continuous)
Table2a. Commands (QPI)
Command Name
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Clock Number
Write Enable
Volatile SR Write Enable
Write Disable
Read Status Register
Read Status Register-1
Read Status Register-2
Write Status Register
Page Program
Sector Erase
Block Erase(32K)
Block Erase(64K)
Chip Erase
Program/Erase Suspend
Program/Erase Resume
Deep Power-Down
Set Read Parameters
Fast Read
Burst Read with Wrap
Quad I/O Fast Read
Release From Deep
Power-Down, And
Read Device ID
Manufacturer/
Device ID
Read Identification
(0,1)
06H
50H
04H
05H
35H
15H
01H
02H
20H
52H
D8H
C7/60H
75H
7AH
B9H
C0H
0BH
0CH
EBH
ABH
(2,3)
(4,5)
(6,7)
(8,9)
(10,11)
(12,13)
(S7-S0)
(S15-S8)
(S1-S0)
S7-S0
A23-A16
A23-A16
A23-A16
A23-A16
S15-S8
A15-A8
A15-A8
A15-A8
A15-A8
A7-A0
A7-A0
A7-A0
A7-A0
D7-D0
Next byte
P7-P0
A23-A16
A23-A16
A23-A16
dummy
A15-A8
A15-A8
A15-A8
dummy
A7-A0
A7-A0
A7-A0
dummy
dummy
dummy
M7-M0
(ID7-ID0)
dummy
dummy
dummy
90H
dummy
dummy
00H
(M7-M0)
(ID7-ID0)
9FH
(M7-M0)
(ID15-ID8
)
(ID7-ID0)
15
(D7-D0)
(D7-D0)
(D7-D0)
1.8V Uniform Sector
Dual and Quad Serial Flash
Read Serial Flash
Discoverable Parameter(10)
Disable QPI
Enable Reset
Reset
NOTE:
1. Dual Output data
5AH
A23-A16
GD25LQ64C
A15-A8
A7-A0
dummy
FFH
66H
99H
IO0 = (D6, D4, D2, D0)
IO1 = (D7, D5, D3, D1)
2. Dual Input Address
IO0 = A22, A20, A18, A16, A14, A12, A10, A8
A6, A4, A2, A0, M6, M4, M2, M0
IO1 = A23, A21, A19, A17, A15, A13, A11, A9
A7, A5, A3, A1, M7, M5, M3, M1
3. Quad Output Data
IO0 = (D4, D0, …..)
IO1 = (D5, D1, …..)
IO2 = (D6, D2, …..)
IO3 = (D7, D3,…..)
4. Quad Input Address
IO0 = A20, A16, A12, A8,
A4, A0, M4, M0
IO1 = A21, A17, A13, A9,
A5, A1, M5, M1
IO2 = A22, A18, A14, A10, A6, A2, M6, M2
IO3 = A23, A19, A15, A11, A7, A3, M7, M3
5. Fast Read Quad I/O Data
IO0 = (x, x, x, x, D4, D0,…)
IO1 = (x, x, x, x, D5, D1,…)
IO2 = (x, x, x, x, D6, D2,…)
IO3 = (x, x, x, x, D7, D3,…)
6. Fast Word Read Quad I/O Data
IO0 = (x, x, D4, D0,…)
IO1 = (x, x, D5, D1,…)
IO2 = (x, x, D6, D2,…)
IO3 = (x, x, D7, D3,…)
7. Fast Word Read Quad I/O Data: the lowest address bit must be 0.
8. Security Registers Address:
Security Register1: A23-A16=00H, A15-A10=000100b, A9-A0=Byte Address;
Security Register2: A23-A16=00H, A15-A10=001000b, A9-A0=Byte Address;
Security Register3: A23-A16=00H, A15-A10=001100b, A9-A0=Byte Address.
9. QPI Command, Address, Data input/output format:
CLK #0
1
2
3
4
5
6
7
8
9
10 11
IO0= C4, C0,
A20, A16,
A12, A8,
A4, A0,
D4, D0,
D4, D0,
IO1= C5, C1,
A21, A17,
A13, A9,
A5, A1,
D5, D1,
D5, D1
IO2= C6, C2,
A22, A18,
A14, A10,
A6, A2,
D6, D2,
D6, D2
IO3= C7, C3,
A23, A19,
A15, A11,
A7, A3,
D7, D3,
D7, D3
16
(D7-D0)
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Table of ID Definitions:
GD25LQ64C
Operation Code
M7-M0
ID15-ID8
ID7-ID0
9FH
C8
60
17
90H
C8
16
ABH
16
17
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.1 Write Enable (WREN) (06H)
The Write Enable (WREN) command is for setting the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL)
bit must be set prior to every Page Program (PP), Sector Erase (SE), Block Erase (BE), and Chip Erase (CE), Write Status
Register (WRSR) and Erase/Program Security Registers command. The Write Enable (WREN) command sequence: CS#
goes low → sending the Write Enable command → CS# goes high.
Figure2. Write Enable Sequence Diagram
CS#
SCLK
SI
SO
0
1
2
3
4
5
6
7
Command
06H
High-Z
Figure2a. Write Enable Sequence Diagram (QPI)
CS#
0
1
SCLK
Command
06H
IO0
IO1
IO2
IO3
18
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.2 Write Disable (WRDI) (04H)
The Write Disable command is for resetting the Write Enable Latch (WEL) bit. The Write Disable command sequence:
CS# goes low →Sending the Write Disable command →CS# goes high. The WEL bit is reset by following condition:
Power-up and upon completion of the Write Status Register, Page Program, Sector Erase, Block Erase, Chip Erase,
Erase/Program Security Registers and Reset commands.
Figure3. Write Disable Sequence Diagram
CS#
SCLK
SI
SO
0
1
2
3
4
5
6
7
Command
04H
High-Z
Figure3a. Write Disable Sequence Diagram (QPI)
CS#
0
1
SCLK
Command
04H
IO0
IO1
IO2
IO3
19
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.3 Write Enable for Volatile Status Register (50H)
The non-volatile Status Register bits can also be written to as volatile bits. This gives more flexibility to change the
system configuration and memory protection schemes quickly without waiting for the typical non-volatile bit write cycles or
affecting the endurance of the Status Register non-volatile bits. The Write Enable for Volatile Status Register command
must be issued prior to a Write Status Register command any other commands cannot be inserted between them.
Otherwise, Write Enable for Volatile Status Register will be cleared. The Write Enable for Volatile Status Register
command will not set the Write Enable Latch bit, it is only valid for the Write Status Register command to change the
volatile Status Register bit values.
Figure4. Write Enable for Volatile Status Register Sequence Diagram
CS#
SCLK
0
1
2
3
4
5
6
7
Command(50H)
SI
SO
High-Z
Figure4a. Write Enable for Volatile Status Register Sequence Diagram (QPI)
CS#
0
1
SCLK
Command
50H
IO0
IO1
IO2
IO3
7.4 Read Status Register (RDSR) (05H or 35H or 15H)
The Read Status Register (RDSR) command is for reading the Status Register. The Status Register may be read at
any time, even while a Program, Erase or Write Status Register cycle is in progress. When one of these cycles is in
progress, it is recommended to check the Write in Progress (WIP) bit before sending a new command to the device. It is
also possible to read the Status Register continuously. For command code “05H” / “35H”, the SO will output Status
Register bits S7~S0 / S15-S8. The command code “15H” only supports the QPI mode, the I/O0 will output Status Register
S1-S0. (For 120MHz Frequency, the 15H will better than 05H to check the WIP bit)
20
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure5. Read Status Register Sequence Diagram
CS#
SCLK
SI
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
Command
05H or 35H
SO
High-Z
7
S7~S0 or S15~S8 out
6 5 4 3 2 1 0
MSB
7
S7~S0 or S15~S8 out
6 5 4 3 2 1 0
7
MSB
Figure5a. Read Status Register Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
SCLK
Command
05H or 35H
IO0
4
0
4
0
4
IO1
5
1
5
1
5
IO2
6
2
6
2
6
IO3
7
3
7
3
7
S7-S0 or S15-S8 out
Figure5b. Read Status Register Sequence Diagram (QPI) (15H)
CS#
0
1
2
3
4
5
SCLK
Command
15H
S1
IO0
S0
S1
S0
S1-S0 out
IO1
IO2
IO3
7.5 Write Status Register (WRSR) (01H)
The Write Status Register (WRSR) command allows new values to be written to the Status Register. Before it can be
accepted, a Write Enable (WREN) command must previously have been executed. After the Write Enable (WREN)
command has been decoded and executed, the device sets the Write Enable Latch (WEL).
The Write Status Register (WRSR) command has no effect on S15, S10, S1 and S0 of the Status Register. CS# must
21
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
be driven high after the eighth or sixteen bit of the data byte has been latched in. If not, the Write Status Register (WRSR)
command is not executed. If CS# is driven high after eighth bit of the data byte, the CMP and QE bits will be cleared to 0 in
SPI mode, while only CMP will be cleared to 0 in QPI mode. As soon as CS# is driven high, the self-timed Write Status
Register cycle (whose duration is tW) is initiated. While the Write Status Register cycle is in progress, the Status Register
may still be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the
self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is completed, the Write Enable Latch
(WEL) is reset.
The Write Status Register (WRSR) command allows the user to change the values of the Block Protect (BP4, BP3,
BP2, BP1, and BP0) bits, to define the size of the area that is to be treated as read-only, as defined in Table1. The Write
Status Register (WRSR) command also allows the user to set or reset the Status Register Protect (SRP1 and SRP0) bits in
accordance with the Write Protect (WP#) signal. The Status Register Protect (SRP1 and SRP0) bits and Write Protect
(WP#) signal allow the device to be put in the Hardware Protected Mode. The Write Status Register (WRSR) command is
not executed once the Hardware Protected Mode is entered.
Figure6. Write Status Register Sequence Diagram
CS#
SCLK
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
7
6
Command
SI
01H
Status Register in
5
MSB
SO
4
3
2
1
0 15 14 13 12 11 10 9
High-Z
Figure6a. Write Status Register Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
SCLK
Command
01H
IO0
4
0
12
8
IO1
5
1
13
9
IO2
6
2 14
10
IO3
7
3
15 11
Status Register in
22
8
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.6 Read Data Bytes (READ) (03H)
The Read Data Bytes (READ) command is followed by a 3-byte address (A23-A0), and each bit is latched-in on the
rising edge of SCLK. Then the memory content at that address is shifted out on SO, each bit being shifted out, at a Max
frequency fR, during the falling edge of SCLK. The first byte addressed can be at any location. The address is automatically
incremented to the next higher address after each byte of data is shifted out. The whole memory can, therefore, be read
with a single Read Data Bytes (READ) command. Any Read Data Bytes (READ) command, while an Erase, Program or
Write cycle is in progress, is rejected without having any effects on the cycle that is in progress.
Figure7. Read Data Bytes Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
SI
24-bit address
03H
23 22 21
2
1
0
MSB
High-Z
SO
3
MSB
7
6
5
Data Out1
4 3 2 1
Data Out2
0
7.7 Read Data Bytes at Higher Speed (Fast Read) (0BH)
The Read Data Bytes at Higher Speed (Fast Read) command is for quickly reading data out. It is followed by a 3-byte
address (A23-A0) and a dummy byte, each bit being latched-in during the rising edge of SCLK. Then the memory content,
at that address, is shifted out on SO, each bit being shifted out, at a Max frequency fC, during the falling edge of SCLK. The
first byte addressed can be at any location. The address is automatically incremented to the next higher address after each
byte of data is shifted out.
Figure8. Read Data Bytes at Higher Speed Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24-bit address
0BH
23 22 21
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
SO
7
6
5
4
3
2
1
0
7 6
MSB
23
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Fast Read (0BH) in QPI mode
The Fast Read command is also supported in QPI mode. In QPI mode, the number of dummy clocks is configured by
the “Set Read Parameters (C0H)” command to accommodate a wide range application with different needs for either
maximum Fast Read frequency or minimum data access latency. Depending on the Read Parameter Bits P[5:4] setting,
the number of dummy clocks can be configured as either 4/6/8.
Figure8a. Read Data Bytes at Higher Speed Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
6
7
8
9
10 11 12 13
SCLK
IOs switch from
Input to output
Command
0BH
IO0
A23-16 A15-8
20 16 12 8
A7-0
4 0
IO1
21 17 13
9
5
IO2
22 18 14 10
IO3
23 19 15 11
Dummy* Dummy*
4
0
4
0
4
0
4
1
5
1
5
1
5
1
5
6
2
6
2
6
2
6
2
6
7
3
7
3
7
3
7
3
7
Byte1
*"Set Read Parameters" Command (C0H)
can set the number of dummy clocks
7.8 Dual Output Fast Read (3BH)
The Dual Output Fast Read command is followed by 3-byte address (A23-A0) and a dummy byte, each bit being
latched in during the rising edge of SCLK, then the memory contents are shifted out 2-bit per clock cycle from SI and SO.
The command sequence is shown in followed Figure9. The first byte addressed can be at any location. The address is
automatically incremented to the next higher address after each byte of data is shifted out.
Figure9. Dual Output Fast Read Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24-bit address
3BH
23 22 21
3
2
1
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Clocks
SI
SO
6
0
6
Data Out1
Data Out2
7 5 3 1 7 5 3 1
MSB
MSB
7
24
4
2
0
6
4
2
0
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.9 Quad Output Fast Read (6BH)
The Quad Output Fast Read command is followed by 3-byte address (A23-A0) and a dummy byte, each bit being
latched in during the rising edge of SCLK, then the memory contents are shifted out 4-bit per clock cycle from IO3, IO2, IO1
and IO0. The command sequence is shown in followed Figure10. The first byte addressed can be at any location. The
address is automatically incremented to the next higher address after each byte of data is shifted out.
Figure10. Quad Output Fast Read Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI(IO0)
24-bit address
6BH
23 22 21
SO(IO1)
High-Z
WP#(IO2)
High-Z
HOLD#(IO3)
High-Z
3
2
1
0
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Clocks
SI(IO0)
4
0
4
0
4
0
4
0
4
SO(IO1)
5
1
5
1
5
1
5
1
5
WP#(IO2)
6
2
6
2
6
2
6
2
6
HOLD#(IO3)
7 3 7 3 7 3 7 3 7
Byte1 Byte2 Byte3 Byte4
7.10 Dual I/O Fast Read (BBH)
The Dual I/O Fast Read command is similar to the Dual Output Fast Read command but with the capability to input
the 3-byte address (A23-0) and a “Continuous Read Mode” byte 2-bit per clock by SI and SO, each bit being latched in
during the rising edge of SCLK, then the memory contents are shifted out 2-bit per clock cycle from SI and SO. The
command sequence is shown in followed Figure11. The first byte addressed can be at any location. The address is
automatically incremented to the next higher address after each byte of data is shifted out.
Dual I/O Fast Read with “Continuous Read Mode”
The Dual I/O Fast Read command can further reduce command overhead through setting the “Continuous Read
Mode” bits (M7-0) after the input 3-byte address (A23-A0). If the “Continuous Read Mode” bits (M5-4) = (1, 0), then the next
Dual I/O Fast Read command (after CS# is raised and then lowered) does not require the BBH command code. The
command sequence is shown in followed Figure11a. If the “Continuous Read Mode” bits (M5-4) do not equal (1, 0), the
next command requires the first BBH command code, thus returning to normal operation. A “Continuous Read Mode”
Reset command can be used to reset (M5-4) before issuing normal command.
25
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure11. Dual I/O Fast Read Sequence Diagram (M5-4≠ (1, 0))
CS#
0
SCLK
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
Command
SI(IO0)
BBH
SO(IO1)
A23-16
A15-8
A7-0
CS#
SCLK
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
SI(IO0)
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
SO(IO1)
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
Byte1
Byte2
Byte3
Byte4
Figure11a. Dual I/O Fast Read Sequence Diagram (M5-4= (1, 0))
CS#
SCLK
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
A23-16
A15-8
A7-0
M7-0
CS#
SCLK
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SI(IO0)
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
SO(IO1)
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
Byte1
Byte2
Byte3
26
Byte4
M7-0
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.11 Quad I/O Fast Read (EBH)
The Quad I/O Fast Read command is similar to the Dual I/O Fast Read command but with the capability to input the
3-byte address (A23-0) and a “Continuous Read Mode” byte and 4-dummy clock 4-bit per clock by IO0, IO1, IO3, IO4, each
bit being latched in during the rising edge of SCLK, then the memory contents are shifted out 4-bit per clock cycle from IO0,
IO1, IO2, IO3. The command sequence is shown in followed Figure12. The first byte addressed can be at any location. The
address is automatically incremented to the next higher address after each byte of data is shifted out. The Quad Enable bit
(QE) of Status Register (S9) must be set to enable for the Quad I/O Fast read command.
Quad I/O Fast Read with “Continuous Read Mode”
The Quad I/O Fast Read command can further reduce command overhead through setting the “Continuous Read
Mode” bits (M7-0) after the input 3-byte address (A23-A0). If the “Continuous Read Mode” bits (M5-4) = (1, 0), then the next
Quad I/O Fast Read command (after CS# is raised and then lowered) does not require the EBH command code. The
command sequence is shown in followed Figure12a. If the “Continuous Read Mode” bits (M5-4) do not equal to (1, 0), the
next command requires the first EBH command code, thus returning to normal operation. A “Continuous Read Mode”
Reset command can be used to reset (M5-4) before issuing normal command.
Figure12. Quad I/O Fast Read Sequence Diagram (M5-4≠ (1, 0))
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4
0
4
0
4
0
4
0
4
0
4
0
4
SO(IO1)
5
1
5
1
5
1
5
1
5
1
5
1
5
WP#(IO2)
6
2
6
2
6
2
6
2
6
2
6
2
6
HOLD#(IO3)
7
3
7
3
7
3
7
3
7
3
7
3
7
SCLK
Command
SI(IO0)
EBH
A23-16 A15-8 A7-0
M7-0
Dummy
Byte1 Byte2
Figure12a. Quad I/O Fast Read Sequence Diagram (M5-4= (1, 0))
CS#
0
1
2
3
4
5
6
7
SI(IO0)
4
0
4
0
4
0
4
0
4
0
4
0
4
SO(IO1)
5
1
5
1
5
1
5
1
5
1
5
1
5
WP#(IO2)
6
2
6
2
6
2
6
2
6
2
6
2
6
HOLD#(IO3)
7
3
7
3
7
3
7
3
7
3
7
3
7
SCLK
A23-16 A15-8 A7-0 M7-0
27
8
9 10 11 12 13 14 15
Dummy
Byte1 Byte2
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Quad I/O Fast Read with “8/16/32/64-Byte Wrap Around” in Standard SPI mode
The Quad I/O Fast Read command can be used to access a specific portion within a page by issuing “Set Burst with
Wrap” (77H) commands prior to EBH. The “Set Burst with Wrap” (77H) command can either enable or disable the “Wrap
Around” feature for the following EBH commands. When “Wrap Around” is enabled, the data being accessed can be limited
to either an 8/16/32/64-byte section of a 256-byte page. The output data starts at the initial address specified in the
command, once it reaches the ending boundary of the 8/16/32/64-byte section, the output will wrap around the beginning
boundary automatically until CS# is pulled high to terminate the command.
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the
cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read commands. The “Set Burst
with Wrap” command allows three “Wrap Bits” W6-W4 to be set. The W4 bit is used to enable or disable the “Wrap Around”
operation while W6-W5 is used to specify the length of the wrap around section within a page.
Quad I/O Fast Read (EBH) in QPI mode
The Quad I/O Fast Read command is also supported in QPI mode. See Figure12b. In QPI mode, the number of
dummy clocks is configured by the “Set Read Parameters (C0H)” command to accommodate a wide range application with
different needs for either maximum Fast Read frequency or minimum data access latency. Depending on the Read
Parameter Bits P[5:4] setting, the number of dummy clocks can be configured as either 4/6/8. In QPI mode, the
“Continuous Read Mode” bits M7-M0 are also considered as dummy clocks. “Continuous Read Mode” feature is also
available in QPI mode for Quad I/O Fast Read command. “Wrap Around” feature is not available in QPI mode for Quad I/O
Fast Read command. To perform a read operation with fixed data length wrap around in QPI mode, a dedicated “Burst
Read with Wrap” (0CH) command must be used.
Figure12b. Quad I/O Fast Read Sequence Diagram (M5-4= (1, 0) QPI)
CS#
0
1
2
3
4
5
6
7
8
9
10 11 12 13
14
SCLK
IOs switch from
Input to output
Command
EBH
IO0
20 16 12
8
4
0
4
0
4
0
4
0
4
IO1
21 17 13
9
5
1
5
1
5
1
5
1
5
IO2
22 18 14 10
6
2
6
2
6
2
6
2
6
IO3
23 19 15 11
A23-16
7
3
A15-8 A7-0
7
3
7
3
7
3
7
M7-0* dummy* Byte1 Byte2
28
*"Set Read Parameters"
Command (C0H) can
set the number of
dummy clocks
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.12 Quad I/O Word Fast Read (E7H)
The Quad I/O Word Fast Read command is similar to the Quad I/O Fast Read command except that the lowest
address bit (A0) must equal 0 and only 2-dummy clock. The command sequence is shown in followed Figure13. The first
byte addressed can be at any location. The address is automatically incremented to the next higher address after each
byte of data is shifted out. The Quad Enable bit (QE) of Status Register (S9) must be set to enable for the Quad I/O Word
Fast read command.
Quad I/O Word Fast Read with “Continuous Read Mode”
The Quad I/O Word Fast Read command can further reduce command overhead through setting the “Continuous
Read Mode” bits (M7-0) after the input 3-byte address (A23-A0). If the “Continuous Read Mode” bits (M5-4) = (1, 0), then
the next Quad I/O Word Fast Read command (after CS# is raised and then lowered) does not require the E7H command
code. The command sequence is shown in followed Figure13. If the “Continuous Read Mode” bits (M5-4) do not equal to (1,
0), the next command requires the first E7H command code, thus returning to normal operation. A “Continuous Read
Mode” Reset command can be used to reset (M5-4) before issuing normal command.
Figure13. Quad I/O Word Fast Read Sequence Diagram (M5-4≠ (1, 0))
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
SO(IO1)
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
WP#(IO2)
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
HOLD#(IO3)
7
3
7
3
7
3
7
3
7
3
7
3
7
3
7
SCLK
Command
SI(IO0)
E7H
A23-16 A15-8 A7-0 M7-0 Dummy Byte1 Byte2 Byte3
Figure13a. Quad I/O Word Fast Read Sequence Diagram (M5-4= (1, 0))
CS#
0
1
2
3
4
5
6
7
SI(IO0)
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
SO(IO1)
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
WP#(IO2)
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
HOLD#(IO3)
7
3
7
3
7
3
7
3
7
3
7
3
7
3
7
SCLK
8
9 10 11 12 13 14 15
A23-16 A15-8 A7-0 M7-0 Dummy Byte1 Byte2 Byte3
29
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Quad I/O Word Fast Read with “8/16/32/64-Byte Wrap Around” in Standard SPI mode
The Quad I/O Word Fast Read command can be used to access a specific portion within a page by issuing “Set Burst
with Wrap” (77H) commands prior to E7H. The “Set Burst with Wrap” (77H) command can either enable or disable the
“Wrap Around” feature for the following E7H commands. When “Wrap Around” is enabled, the data being accessed can be
limited to either an 8/16/32/64-byte section of a 256-byte page. The output data starts at the initial address specified in the
command, once it reaches the ending boundary of the 8/16/32/64-byte section, the output will wrap around the beginning
boundary automatically until CS# is pulled high to terminate the command.
The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the
cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read commands. The “Set Burst
with Wrap” command allows three “Wrap Bits” W6-W4 to be set. The W4 bit is used to enable or disable the “Wrap Around”
operation while W6-W5 is used to specify the length of the wrap around section within a page.
7.13 Set Burst with Wrap (77H)
The Set Burst with Wrap command is used in conjunction with “Quad I/O Fast Read” and “Quad I/O Word Fast Read”
command to access a fixed length of 8/16/32/64-byte section within a 256-byte page.
The Set Burst with Wrap command sequence: CS# goes low → Send Set Burst with Wrap command → Send 24
dummy bits → Send 8 bits “Wrap bits” → CS# goes high.
W6,W5
W4=0
W4=1 (default)
Wrap Around
Wrap Length
Wrap Around
Wrap Length
0, 0
Yes
8-byte
No
N/A
0, 1
Yes
16-byte
No
N/A
1, 0
Yes
32-byte
No
N/A
1, 1
Yes
64-byte
No
N/A
If the W6-W4 bits are set by the Set Burst with Wrap command, all the following “Quad I/O Fast Read” and “Quad I/O
Word Fast Read” command will use the W6-W4 setting to access the 8/16/32/64-byte section within any page. To exit the
“Wrap Around” function and return to normal read operation, another Set Burst with Wrap command should be issued to set
W4=1. In QPI mode, the “Burst Read with Wrap (0CH)” command should be used to perform the Read Operation with
“Wrap Around” feature. The Wrap Length set by W5-W6 in Standard SPI mode is still valid in QPI mode and can also be
re-configured by “Set Read Parameters (C0H) command.
Figure14. Set Burst with Wrap Sequence Diagram
CS#
8
9 10 11 12 13 14 15
x
x
x
x
x
x
4
x
SO(IO1)
x
x
x
x
x
x
5
x
WP#(IO2)
x
x
x
x
x
x
6
x
HOLD#(IO3)
x
x
x
x
x
x
x
x
SCLK
0
1
2
3
4
5
6
7
Command
SI(IO0)
77H
W6-W4
30
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.14 Page Program (PP) (02H)
The Page Program (PP) command is for programming the memory. A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit before sending the Page Program command.
The Page Program (PP) command is entered by driving CS# Low, followed by the command code, three address
bytes and at least one data byte on SI. If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data
that goes beyond the end of the current page are programmed from the start address of the same page (from the address
whose 8 least significant bits (A7-A0) are all zero). CS# must be driven low for the entire duration of the sequence. The
Page Program command sequence: CS# goes low → sending Page Program command → 3-byte address on SI → at least
1 byte data on SI → CS# goes high. The command sequence is shown in Figure15. If more than 256 bytes are sent to the
device, previously latched data are discarded and the last 256 data bytes are guaranteed to be programmed correctly
within the same page. If less than 256 data bytes are sent to device, they are correctly programmed at the requested
addresses without having any effects on the other bytes of the same page. CS# must be driven high after the eighth bit of
the last data byte has been latched in; otherwise the Page Program (PP) command is not executed.
As soon as CS# is driven high, the self-timed Page Program cycle (whose duration is t PP) is initiated. While the Page
Program cycle is in progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The
Write in Progress (WIP) bit is 1 during the self-timed Page Program cycle, and is 0 when it is completed. At some
unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset.
A Page Program (PP) command applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1, and
BP0) is not executed.
Figure15. Page Program Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
24-bit address
23 22 21
3
2
Data Byte 1
1
0 7
5
4
3
2
1
2078
6
2079
7
2076
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2077
CS#
2073
MSB
2072
MSB
6
2075
02H
2074
SI
1
0
SCLK
Data Byte 2
SI
7
MSB
6
5
4
3
2
Data Byte 3
1
0 7
6
5
4
3
MSB
2
Data Byte 256
1
0
MSB
31
5
4
3
2
0
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure15a. Page Program Sequence Diagram (QPI)
3
4
5
6
7
8
9
10 11 12 13
519
2
518
1
517
0
516
CS#
SCLK
Command
A23-16 A15-8
20 16 12 8
A7-0
4 0
Byte1
Byte2
Byte3
IO0
4
0
4
0
4
0
4
0
4
0
IO1
21 17 13
9
5
1
5
1
5
1
5
1
5
1
5
1
IO2
22 18 14 10
6
2
6
2
6
2
6
2
6
2
6
2
IO3
23 19 15 11
7
3
7
3
7
3
7
3
7
3
7
3
02H
Byte255 Byte256
7.15 Quad Page Program (32H)
The Quad Page Program command is for programming the memory using four pins: IO0, IO1, IO2, and IO3. To use
Quad Page Program the Quad enable in status register Bit9 must be set (QE=1). A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit before sending the Page Program command. The
quad Page Program command is entered by driving CS# Low, followed by the command code (32H), three address bytes
and at least one data byte on IO pins.
The command sequence is shown in Figure16. If more than 256 bytes are sent to the device, previously latched data
are discarded and the last 256 data bytes are guaranteed to be programmed correctly within the same page. If less than
256 data bytes are sent to device, they are correctly programmed at the requested addresses without having any effects on
the other bytes of the same page. CS# must be driven high after the eighth bit of the last data byte has been latched in;
otherwise the Quad Page Program (PP) command is not executed.
As soon as CS# is driven high, the self-timed Quad Page Program cycle (whose duration is tPP) is initiated. While the
Quad Page Program cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP)
bit. The Write in Progress (WIP) bit is 1 during the self-timed Quad Page Program cycle, and is 0 when it is completed. At
some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset.
A Quad Page Program command applied to a page which is protected by the Block Protect (BP4, BP3, BP2, BP1,
and BP0) is not executed.
32
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure16.Quad Page Program Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
24-bit address
0 4
0
4
0
4
0
4
0
SO(IO1)
5
1
5
1
5
1
5
1
WP#(IO2)
6
2
6
2
6
2
6
2
HOLD#(IO3)
7
3
7
3
7
3
7
3
537
539
540
541
542
543
32H
23 22 21
3
2
Byte1 Byte2
538
SI(IO0)
1
MSB
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
536
CS#
SCLK
Byte11 Byte12
Byte253
Byte256
SI(IO0)
4
SO(IO1)
5 1
5 1
5 1
5 1
5 1
5 1
5 1
5 1
5 1
5 1
5 1
5 1
WP#(IO2)
6 2
6 2
6 2
6 2
6 2
6 2
6 2
6 2
6 2
6 2
6 2
6 2
HOLD#(IO3)
7 3
7 3
7 3
7 3
7 3
7 3
7 3
7 3
7 3
7 3
7 3
7 3
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
7.16 Sector Erase (SE) (20H)
The Sector Erase (SE) command is erased the all data of the chosen sector. A Write Enable (WREN) command must
previously have been executed to set the Write Enable Latch (WEL) bit. The Sector Erase (SE) command is entered by
driving CS# low, followed by the command code, and 3-address byte on SI. Any address inside the sector is a valid
address for the Sector Erase (SE) command. CS# must be driven low for the entire duration of the sequence.
The Sector Erase command sequence: CS# goes low → sending Sector Erase command → 3-byte address on SI →
CS# goes high. The command sequence is shown in Figure17. CS# must be driven high after the eighth bit of the last
address byte has been latched in; otherwise the Sector Erase (SE) command is not executed. As soon as CS# is driven
high, the self-timed Sector Erase cycle (whose duration is tSE) is initiated. While the Sector Erase cycle is in progress, the
Status Register may be read to check the value of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1
during the self-timed Sector Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is
completed, the Write Enable Latch (WEL) bit is reset. A Sector Erase (SE) command applied to a sector which is protected
by the Block Protect (BP4, BP3, BP2, BP1, and BP0) bit (see Table1&1a) is not executed.
33
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure17. Sector Erase Sequence Diagram
CS#
0
SCLK
1
2
3
4
5
6
7
8
9
Command
SI
29 30 31
24 Bits Address
20H
23 22
MSB
2
1
0
Figure17a. Sector Erase Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
20H
A23-16 A12-8
A7-0
IO0
20 16 12
8
4
0
IO1
21 17 13
9
5
1
IO2
22 18 14 10 6
2
IO3
23 19 15 11 7
3
7.17 32KB Block Erase (BE) (52H)
The 32KB Block Erase (BE) command is erased the all data of the chosen block. A Write Enable (WREN) command
must previously have been executed to set the Write Enable Latch (WEL) bit. The 32KB Block Erase (BE) command is
entered by driving CS# low, followed by the command code, and three address bytes on SI. Any address inside the block is
a valid address for the 32KB Block Erase (BE) command. CS# must be driven low for the entire duration of the sequence.
The 32KB Block Erase command sequence: CS# goes low → sending 32KB Block Erase command → 3-byte
address on SI → CS# goes high. The command sequence is shown in Figure18. CS# must be driven high after the eighth
bit of the last address byte has been latched in; otherwise the 32KB Block Erase (BE) command is not executed. As soon
as CS# is driven high, the self-timed Block Erase cycle (whose duration is tSE) is initiated. While the Block Erase cycle is in
progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The Write in Progress
(WIP) bit is 1 during the self-timed Block Erase cycle, and is 0 when it is completed. At some unspecified time before the
cycle is completed, the Write Enable Latch (WEL) bit is reset. A 32KB Block Erase (BE) command applied to a block which
is protected by the Block Protect (BP4, BP3, BP2, BP1, and BP0) bits (see Table1&1a) is not executed.
34
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure18. 32KB Block Erase Sequence Diagram
CS#
0
SCLK
1
2
3
4
5
6
7
8
9
Command
SI
29 30 31
24 Bits Address
52H
23 22
MSB
2
1
0
Figure18a. 32KB Block Erase Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
52H
A23-16 A12-8
A7-0
IO0
20 16 12
8
4
0
IO1
21 17 13
9
5
1
IO2
22 18 14 10 6
2
IO3
23 19 15 11 7
3
7.18 64KB Block Erase (BE) (D8H)
The 64KB Block Erase (BE) command is erased the all data of the chosen block. A Write Enable (WREN) command
must previously have been executed to set the Write Enable Latch (WEL) bit. The 64KB Block Erase (BE) command is
entered by driving CS# low, followed by the command code, and three address bytes on SI. Any address inside the block is
a valid address for the 64KB Block Erase (BE) command. CS# must be driven low for the entire duration of the sequence.
The 64KB Block Erase command sequence: CS# goes low → sending 64KB Block Erase command → 3-byte
address on SI → CS# goes high. The command sequence is shown in Figure19. CS# must be driven high after the eighth
bit of the last address byte has been latched in; otherwise the 64KB Block Erase (BE) command is not executed. As soon
as CS# is driven high, the self-timed Block Erase cycle (whose duration is tSE) is initiated. While the Block Erase cycle is in
progress, the Status Register may be read to check the value of the Write in Progress (WIP) bit. The Write in Progress
(WIP) bit is 1 during the self-timed Block Erase cycle, and is 0 when it is completed. At some unspecified time before the
cycle is completed, the Write Enable Latch (WEL) bit is reset. A 64KB Block Erase (BE) command applied to a block which
is protected by the Block Protect (BP4, BP3, BP2, BP1, and BP0) bits (see Table1&1a) is not executed.
35
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure19. 64KB Block Erase Sequence Diagram
CS#
0
SCLK
1
2
3
4
5
6
7
8
9
Command
SI
29 30 31
24 Bits Address
D8H
23 22
MSB
2
1
0
Figure19a. 64KB Block Erase Sequence Diagram (QPI)
CS#
0
SCLK
1
2
3
4
5
6
7
Command
A23-16 A15-8
A7-0
IO0
20 16 12
8
4
0
IO1
21 17 13
9
5
1
IO2
22 18 14 10
6
2
IO3
23 19 15 11
7
3
D8H
7.19 Chip Erase (CE) (60/C7H)
The Chip Erase (CE) command is erased the all data of the chip. A Write Enable (WREN) command must previously
have been executed to set the Write Enable Latch (WEL) bit .The Chip Erase (CE) command is entered by driving CS#
Low, followed by the command code on Serial Data Input (SI). CS# must be driven Low for the entire duration of the
sequence.
The Chip Erase command sequence: CS# goes low → sending Chip Erase command → CS# goes high. The
command sequence is shown in Figure20. CS# must be driven high after the eighth bit of the command code has been
latched in; otherwise the Chip Erase command is not executed. As soon as CS# is driven high, the self-timed Chip Erase
cycle (whose duration is tCE) is initiated. While the Chip Erase cycle is in progress, the Status Register may be read to
check the value of the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Chip Erase
cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL)
bit is reset. The Chip Erase (CE) command is executed if the Block Protect (BP2, BP1, and BP0) bits are 0 and CMP=0 or
the Block Protect (BP2, BP1, and BP0) bits are 1 and CMP=1. The Chip Erase (CE) command is ignored if one or more
sectors are protected.
36
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure20. Chip Erase Sequence Diagram
CS#
SCLK
0
1
2
3
4
5
6
7
Command
SI
60H or C7H
Figure20a. Chip Erase Sequence Diagram (QPI)
CS#
0
1
SCLK
Instruction
C7H/60H
IO0
IO1
IO2
IO3
7.20 Deep Power-Down (DP) (B9H)
Executing the Deep Power-Down (DP) command is the only way to put the device in the lowest consumption mode
(the Deep Power-Down Mode). It can also be used as an extra software protection mechanism, while the device is not in
active use, since in this mode, the device ignores all Write, Program and Erase commands. Driving CS# high deselects the
device, and puts the device in the Standby Mode (if there is no internal cycle currently in progress). But this mode is not the
Deep Power-Down Mode. The Deep Power-Down Mode can only be entered by executing the Deep Power-Down (DP)
command. Once the device has entered the Deep Power-Down Mode, all commands are ignored except the Release from
Deep Power-Down and Read Device ID (RDI) command. This releases the device from this mode. The Release from Deep
Power-Down and Read Device ID (RDI) command also allows the Device ID of the device to be output on SO.
The Deep Power-Down Mode automatically stops at Power-Down, and the device always Power-Up in the Standby
Mode. The Deep Power-Down (DP) command is entered by driving CS# low, followed by the command code on SI. CS#
must be driven low for the entire duration of the sequence.
The Deep Power-Down command sequence: CS# goes low → sending Deep Power-Down command → CS# goes
high. The command sequence is shown in Figure21. CS# must be driven high after the eighth bit of the command code has
been latched in; otherwise the Deep Power-Down (DP) command is not executed. As soon as CS# is driven high, it
requires a delay of tDP before the supply current is reduced to I CC2 and the Deep Power-Down Mode is entered. Any Deep
Power-Down (DP) command, while an Erase, Program or Write cycle is in progress, is rejected without having any effects
on the cycle that is in progress.
37
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure21. Deep Power-Down Sequence Diagram
CS#
SCLK
Command
SI
tDP
0 1 2 3 4 5 6 7
Stand-by mode Deep Power-down mode
B9H
Figure21a. Deep Power-Down Sequence Diagram (QPI)
CS#
SCLK
0
tDP
1
Command
B9H
IO0
IO1
IO2
IO3
Stand-by mode
Deep Power-down mode
7.21 Release from Deep Power-Down and Read Device ID (RDI) (ABH)
The Release from Power-Down and Read Device ID command is a multi-purpose command. It can be used to release
the device from the Power-Down state or obtain the devices electronic identification (ID) number.
To release the device from the Power-Down state, the command is issued by driving the CS# pin low, shifting the
instruction code “ABH” and driving CS# high as shown in Figure22. Release from Power-Down will take the time duration
of tRES1 (See AC Characteristics) before the device will resume normal operation and other command are accepted. The
CS# pin must remain high during the tRES1 time duration.
When used only to obtain the Device ID while not in the Power-Down state, the command is initiated by driving the
CS# pin low and shifting the instruction code “ABH” followed by 3-dummy byte. The Device ID bits are then shifted out on
the falling edge of SCLK with most significant bit (MSB) first as shown in Figure23. The Device ID value for the
GD25LQ64C is listed in Manufacturer and Device Identification table. The Device ID can be read continuously. The
command is completed by driving CS# high.
When used to release the device from the Power-Down state and obtain the Device ID, the command is the same
as previously described, and shown in Figure23, except that after CS# is driven high it must remain high for a time
duration of tRES2 (See AC Characteristics). After this time duration the device will resume normal operation and other
command will be accepted. If the Release from Power-Down / Device ID command is issued while an Erase, Program or
Write cycle is in process (when WIP equal 1) the command is ignored and will not have any effects on the current cycle.
38
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure22. Release Power-Down Sequence Diagram
CS#
0
SCLK
1
2
3
4
5
6
t RES1
7
Command
SI
ABH
Deep Power-down mode
Stand-by mode
Figure22a. Release Power-Down Sequence Diagram (QPI)
CS#
tRES1
0
SCLK
1
Command
ABH
IO0
IO1
IO2
IO3
Deep Power-down mode
Stand-by mode
Figure23. Release Power-Down/Read Device ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31 32 33 34 35 36 37 38
SCLK
Command
SI
SO
ABH
High-Z
t RES2
3 Dummy Bytes
23 22
2
1
0
MSB
7
MSB
39
6
Device ID
5 4 3 2
1
0
Deep Power-down Mode Stand-by Mode
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure23a. Release Power-Down/Read Device ID Sequence Diagram (QPI)
CS#
tRES2
0
SCLK
1
2
3
4
Command
5
6
7
8
IOs switch from
Input to Output
3 Dummy Bytes
ABH
IO0
4
0
IO1
5
1
IO2
6
2
IO3
7 3
Device
ID
Deep Power-down mode
Stand-by mode
7.22 Read Manufacture ID/ Device ID (REMS) (90H)
The Read Manufacturer/Device ID command is an alternative to the Release from Power-Down / Device ID
command that provides both the JEDEC assigned Manufacturer ID and the specific Device ID.
The command is initiated by driving the CS# pin low and shifting the command code “90H” followed by a 24-bit
address (A23-A0) of 000000H. After which, the Manufacturer ID and the Device ID are shifted out on the falling edge of
SCLK with most significant bit (MSB) first as shown in Figure24. If the 24-bit address is initially set to 000001H, the Device
ID will be read first.
Figure24. Read Manufacture ID/ Device ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
90H
23 22 21
3
2
High-Z
SO
CS#
24-bit address
32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
SI
SO
7
MSB
Manufacturer ID
6 5 4 3 2 1
Device ID
0
7
MSB
40
6
5
4
3
2
1
0
1
0
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure24a. Read Manufacture ID/ Device ID Sequence Diagram (QPI)
CS#
0
SCLK
1
Command
2
3
4
5
6
7
IO0
A7-0
A23-16 A15-8 (00H)
20 16 12 8 4 0
IO1
21 17 13
9
5
IO2
22 18 14 10
IO3
23 19 15
90H
11
8
9
10
IOs switch from
Input to Output
4
0
4
0
1
5
1
5
1
6
2
6
2
6
2
7
3
7
3
7
3
Device
ID
MID
7.23 Read Manufacture ID/ Device ID Dual I/O (92H)
The Read Manufacturer/Device ID Dual I/O command is an alternative to the Release from Power-Down / Device ID
command that provides both the JEDEC assigned Manufacturer ID and the specific Device ID by dual I/O.
The command is initiated by driving the CS# pin low and shifting the command code “92H” followed by a 24-bit
address (A23-A0) of 000000H. After which, the Manufacturer ID and the Device ID are shifted out on the falling edge of
SCLK with most significant bit (MSB) first as shown in Figure25. If the 24-bit address is initially set to 000001H, the Device
ID will be read first.
Figure25. Read Manufacture ID/ Device ID Dual I/O Sequence Diagram
CS#
0
SCLK
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
Command
SI(IO0)
92H
SO(IO1)
A23-16
A15-8
A7-0
M7-0
CS#
SCLK
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SI(IO0)
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
4
2
0
SO(IO1)
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
5
3
1
MFR ID
Device ID
MFR ID
(Repeat)
41
Device ID
(Repeat)
MFR ID
(Repeat)
Device ID
(Repeat)
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.24 Read Manufacture ID/ Device ID Quad I/O (94H)
The Read Manufacturer/Device ID Quad I/O command is an alternative to the Release from Power-Down / Device ID
command that provides both the JEDEC assigned Manufacturer ID and the specific Device ID by quad I/O.
The command is initiated by driving the CS# pin low and shifting the command code “94H” followed by a 24-bit
address (A23-A0) of 000000H. After which, the Manufacturer ID and the Device ID are shifted out on the falling edge of
SCLK with most significant bit (MSB) first as shown in Figure26. If the 24-bit address is initially set to 000001H, the Device
ID will be read first.
Figure26. Read Manufacture ID/ Device ID Quad I/O Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4
0
4
0
4
0
4
0
4
0
4
0
SO(IO1)
5
1
5
1
5
1
5
1
5
1
5
1
WP#(IO2)
6
2
6
2
6
2
6
2
6
2
6
2
HOLD#(IO3)
7
3
7
3
7
3
7
3
7
3
7
3
SCLK
Command
SI(IO0)
94H
A23-16 A15-8 A7-0 M7-0
CS#
24 25 26 27 28 29 30 31
SCLK
SI(IO0)
4
0
4
0
4
0
4
0
SO(IO1)
5
1
5
1
5
1
5
1
WP#(IO2)
6
2
6
2
6
2
6
2
HOLD#(IO3) 7
3
7
3
7
3
7
3
MFR ID DID MFR ID DID
(Repeat)(Repeat)(Repeat)(Repeat)
42
Dummy
MFR ID DID
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.25 Read Identification (RDID) (9FH)
The Read Identification (RDID) command allows the 8-bit manufacturer identification to be read, followed by two
bytes of device identification. The device identification indicates the memory type in the first byte, and the memory capacity
of the device in the second byte. The Read Identification (RDID) command while an Erase or Program cycle is in progress,
is not decoded, and has no effect on the cycle that is in progress. The Read Identification (RDID) command should not be
issued while the device is in Deep Power-Down Mode.
The device is first selected by driving CS# low. Then, the 8-bit command code for the command is shifted in. This is
followed by the 24-bit device identification, stored in the memory. Each bit is shifted out on the falling edge of Serial Clock.
The command sequence is shown in Figure27. The Read Identification (RDID) command is terminated by driving CS# high
at any time during data output. When CS# is driven high, the device is in the Standby Mode. Once in the Standby Mode,
the device waits to be selected, so that it can receive, decode and execute commands.
Figure27. Read Identification ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
7
6
SCLK
SI
9FH
SO
Manufacturer ID
5 4 3 2 1
0
MSB
CS#
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SCLK
SI
Memory Type ID15-ID8
7 6 5 4 3 2 1 0
SO
MSB
Capacity ID7-ID0
6 5 4 3 2 1
7
0
MSB
Figure27a. Read Identification ID Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
6
SCLK
IOs switch from
Input to Output
Command
9FH
IO0
4
0
12
8
4
0
IO1
5
1
13
9
5
1
IO2
6
2
14 10 6
2
IO3
7
3
15 11 7
3
MID
43
ID15-8 ID7-0
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.26 Program/Erase Suspend (PES) (75H)
The Program/Erase Suspend command “75H”, allows the system to interrupt a page program or sector/block erase
operation and then read data from any other sector or block. The Write Status Register command (01H) and Erase
Security Registers (44H, 42H) and Erase commands (20H, 52H, D8H, C7H, 60H) and Page Program command (02H,
32H) are not allowed during Program suspend. The Write Status Register command (01H/31H/11H) and Erase Security
Registers command (44H) and Erase commands (20H, 52H, D8H, C7H, 60H) are not allowed during Erase suspend.
Program/Erase Suspend is valid only during the page program or sector/block erase operation. A maximum of time of
“tsus” (See AC Characteristics) is required to suspend the program/erase operation.
The Program/Erase Suspend command will be accepted by the device only if the SUS2/SUS1 bit in the Status
Register equal to 0 and WIP bit equal to 1 while a Page Program or a Sector or Block Erase operation is on-going. If the
SUS2/SUS1 bit equal to 1 or WIP bit equal to 0, the Suspend command will be ignored by the device. The WIP bit will be
cleared from 1 to 0 within “tsus” and the SUS2/SUS1 bit will be set from 0 to 1 immediately after Program/Erase Suspend.
A power-off during the suspend period will reset the device and release the suspend state. The command sequence is
show in Figure28.
Figure28. Program/Erase Suspend Sequence Diagram
CS#
SCLK
SI
SO
0
1
2
3
4
5
6
7
tSUS
Command
75H
High-Z
Accept read command
Figure28a. Program/Erase Suspend Sequence Diagram (QPI)
CS#
SCLK
0
tSUS
1
Command
75H
IO0
IO1
IO2
IO3
Accept Read
44
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.27 Program/Erase Resume (PER) (7AH)
The Program/Erase Resume command must be written to resume the program or sector/block erase operation after
a Program/Erase Suspend command. The Program/Erase Resume command will be accepted by the device only if the
SUS2/SUS1 bit equal to 1 and the WIP bit equal to 0. After issued the SUS2/SUS1 bit in the status register will be cleared
from 1 to 0 immediately, the WIP bit will be set from 0 to 1 within 200ns and the Sector or Block will complete the erase
operation or the page will complete the program operation. The Program/Erase Resume command will be ignored unless a
Program/Erase Suspend is active. The command sequence is show in Figure29.
Figure29. Program/Erase Resume Sequence Diagram
CS#
SCLK
0
1
2
3
4
5
6
7
Command
SI
7AH
SO
Resume Erase/Program
Figure29a. Program/Erase Resume Sequence Diagram (QPI)
CS#
SCLK
0
1
Command
7AH
IO0
IO1
IO2
IO3
Resume previously suspended
program or Erase
45
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.28 Read Unique ID (4BH)
The Read Unique ID command accesses a factory-set read-only 128bit number that is unique to each device. The
Unique ID can be used in conjunction with user software methods to help prevent copying or cloning of a system.
The Read Unique ID command sequence: CS# goes low → sending Read Unique ID command → 3-Byte Address
(000000H) →Dummy Byte→128bit Unique ID Out →CS# goes high.
Figure30. Read Unique ID Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
24-bit address
(000000H)
23 22 21
3 2
Command
SI
4BH
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
SO
7
6
5
4
3
2
1
0
7 6
MSB
46
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.29 Erase Security Registers (44H)
The GD25LQ64C provides three 1024-byte Security Registers which can be erased and programmed individually.
These registers may be used by the system manufacturers to store security and other important information separately
from the main memory array.
The Erase Security Registers command is similar to Sector/Block Erase command. A Write Enable (WREN)
command must previously have been executed to set the Write Enable Latch (WEL) bit.
The Erase Security Registers command sequence: CS# goes low → sending Erase Security Registers command →
3-Byte address on SI → CS# goes high. The command sequence is shown in Figure31. CS# must be driven high after the
eighth bit of the last address Byte has been latched in; otherwise the Erase Security Registers command is not executed.
As soon as CS# is driven high, the self-timed Erase Security Registers cycle (whose duration is tSE) is initiated. While the
Erase Security Registers cycle is in progress, the Status Register may be read to check the value of the Write in Progress
(WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Erase Security Registers cycle, and is 0 when it is
completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. The Security
Registers Lock Bit (LB3-1) in the Status Register can be used to OTP protect the security registers. Once the LB bit is set
to 1, the Security Registers will be permanently locked; the Erase Security Registers command will be ignored.
Address
Security Register #1
Security Register #2
Security Register #3
A23-16
00H
00H
00H
A15-12
0001
0010
0011
A11-10
00
00
00
Figure31. Erase Security Registers command Sequence Diagram
CS#
SCLK
0
1
2
3
4
5
6
7
Command
SI
44H
8
9
29 30 31
24 Bits Address
23 22
MSB
47
2
1
0
A9-0
Don’t care
Don’t care
Don’t care
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.30 Program Security Registers (42H)
The Program Security Registers command is similar to the Page Program command. Each security register
contains four pages content. A Write Enable (WREN) command must previously have been executed to set the Write
Enable Latch (WEL) bit before sending the Program Security Registers command. The Program Security Registers
command is entered by driving CS# Low, followed by the command code (42H), three address bytes and at least one data
byte on SI. As soon as CS# is driven high, the self-timed Program Security Registers cycle (whose duration is tPP) is
initiated. While the Program Security Registers cycle is in progress, the Status Register may be read to check the value of
the Write in Progress (WIP) bit. The Write in Progress (WIP) bit is 1 during the self-timed Program Security Registers cycle,
and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is
reset.
If the Security Registers Lock Bit (LB3-1) is set to 1, the Security Registers will be permanently locked. Program
Security Registers command will be ignored.
Address
Security Register #1
Security Register #2
Security Register #3
A23-16
00H
00H
00H
A15-12
0001
0010
0011
A11-10
00
00
00
A9-0
Byte Address
Byte Address
Byte Address
Figure32. Program Security Registers command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Command
23 22 21
3
2
Data Byte 1
1
0 7
MSB
5
4
3
2
1
2078
2079
6
2077
7
2075
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2073
MSB
2072
CS#
6
2076
42H
2074
SI
24-bit address
1
0
SCLK
Data Byte 2
SI
7
6
MSB
5
4
3
2
Data Byte 3
1
0 7
6
5
4
3
MSB
2
Data Byte 256
1
0
MSB
48
5
4
3
2
0
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.31 Read Security Registers (48H)
The Read Security Registers command is similar to Fast Read command. The command is followed by a 3-byte
address (A23-A0) and a dummy byte, each bit being latched-in during the rising edge of SCLK. Then the memory content,
at that address, is shifted out on SO, each bit being shifted out, at a Max frequency fC, during the falling edge of SCLK. The
first byte addressed can be at any location. The address is automatically incremented to the next higher address after each
byte of data is shifted out. Once the A9-A0 address reaches the last byte of the register (Byte 3FFH), it will reset to 000H,
the command is completed by driving CS# high.
Address
Security Register #1
Security Register #2
Security Register #3
A23-16
00H
00H
00H
A15-12
0001
0010
0011
A11-10
00
00
00
A9-0
Byte Address
Byte Address
Byte Address
Figure33. Read Security Registers command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24-bit address
48H
23 22 21
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
SO
7
6
5
4
3
2
1
0
7 6
MSB
49
Data Out1
5 4 3 2
1
0
Data Out2
7 6 5
MSB
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.32 Set Read Parameters (C0H)
In QPI mode the “Set Read Parameters (C0H)” command can be used to configure the number of dummy clocks for
“Fast Read (0BH)”, “Quad I/O Fast Read (EBH)” and “Burst Read with Wrap (0CH)” command, and to configure the
number of bytes of “Wrap Length” for the “Burst Read with Wrap (0CH)” command. The “Wrap Length” is set by W5-6 bit in
the “Set Burst with Wrap (77H)” command. This setting will remain unchanged when the device is switched from Standard
SPI mode to QPI mode.
Maximum Read Freq.
-40~105℃
-40~125℃
P5-P4
Dummy
Clocks
-40~85℃
00
4
80MHz
80MHz
80MHz
00
8-byte
01
4
80MHz
80MHz
80MHz
01
16-byte
10
6
104MHz
80MHz
80MHz
10
32-byte
11
8
120MHz
104MHz
104MHz
11
64-byte
P1-P0
Figure34. Set Read Parameters command Sequence Diagram
CS#
0
1
2
3
SCLK
Command
C0H
Read
Parameters
IO0
P4 P0
IO1
P5 P1
IO2
P6 P2
IO3
P7 P3
50
Wrap Length
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.33 Burst Read with Wrap (0CH)
The “Burst Read with Wrap (0CH)” command provides an alternative way to perform the read operation with “Wrap
Around” in QPI mode. This command is similar to the “Fast Read (0BH)” command in QPI mode, except the addressing of
the read operation will “Wrap Around” to the beginning boundary of the “Wrap Around” once the ending boundary is
reached. The “Wrap Length” and the number of dummy clocks can be configured by the “Set Read Parameters (C0H)”
command.
Figure35. Burst Read with Wrap command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9
10 11 12 13
14
SCLK
IOs switch from
Input to output
Command
0CH
IO0
20 16 12
8
4
0
4
0
4
0
4
0
4
IO1
21 17 13
9
5
1
5
1
5
1
5
1
5
IO2
22 18 14 10
6
2
6
2
6
2
6
2
6
23 19 15 11
7
3
7
3
7
3
7
3
7
IO3
A23-16
A15-8
Dummy*
A7-0
Byte1 Byte2
*"Set Read Parameters" Command (C0H)
can set the number of dummy clocks
7.34 Enable QPI (38H)
The device support both Standard/Dual/Quad SPI and QPI mode. The “Enable QPI (38H)” command can switch the
device from SPI mode to QPI mode. See the command Table 2a for all support QPI commands. In order to switch the
device to QPI mode, the Quad Enable (QE) bit in Status Register-1 must be set to 1 first, and “Enable QPI (38H)”
command must be issued. If the QE bit is 0, the “Enable QPI (38H)” command will be ignored and the device will remain in
SPI mode. When the device is switched from SPI mode to QPI mode, the existing Write Enable Latch and Program/Erase
Suspend status, and the Wrap Length setting will remain unchanged.
Figure36. Enable QPI mode command Sequence Diagram
CS#
SCLK
SI
0
1
2
3
4
5
Command
38H
51
6
7
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
7.35 Disable QPI (FFH)
To exit the QPI mode and return to Standard/Dual/Quad SPI mode, the “Disable QPI (FFH)” command must be
issued. When the device is switched from QPI mode to SPI mode, the existing Write Enable Latch and Program/Erase
Suspend status, and the Wrap Length setting will remain unchanged.
Figure37. Disable QPI mode command Sequence Diagram
CS#
0
1
SCLK
Command
FFH
IO0
IO1
IO2
IO3
7.36 Enable Reset (66H) and Reset (99H)
If the Reset command is accepted, any on-going internal operation will be terminated and the device will return to its
default power-on state and lose all the current volatile settings, such as Volatile Status Register bits, Write Enable Latch
status (WEL), Program/Erase Suspend status, Read Parameter setting (P7-P0), Continuous Read Mode bit setting
(M7-M0) and Wrap Bit Setting (W6-W4).
The “Enable Reset (66H)” and the “Reset (99H)” commands can be issued in either SPI or QPI mode. The “Reset
(99H)” command sequence as follow: CS# goes low → Sending Enable Reset command → CS# goes high → CS# goes
low → Sending Reset command → CS# goes high. Once the Reset command is accepted by the device, the device will
take approximately tRST / tRST_E to reset. During this period, no command will be accepted. Data corruption may happen if
there is an on-going or suspended internal Erase or Program operation when Reset command sequence is accepted by
the device. It is recommended to check the BUSY bit and the SUS bit in Status Register before issuing the Reset command
sequence.
Figure38. Enable Reset and Reset command Sequence Diagram
CS#
SCLK
SI
SO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
Command
Command
66H
99H
High-Z
52
6
7
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure39. Enable Reset and Reset command Sequence Diagram (QPI)
CS#
0
0
1
1
SCLK
Command
66H
Command
99H
IO0
IO1
IO2
IO3
7.37 Read Serial Flash Discoverable Parameter (5AH)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the
functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter
tables can be interrogated by host system software to enable adjustments needed to accommodate divergent features
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on CFI.
SFDP is a standard of JEDEC Standard No.216.
Figure40. Read Serial Flash Discoverable Parameter command Sequence Diagram
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24-bit address
5AH
23 22 21
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Byte
SI
SO
7
6
5
4
3
2
1
0
7
MSB
53
Data Out1
6 5 4 3 2
1
Data Out2
0 7 6 5
MSB
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure40a. Read Serial Flash Discoverable Parameter command Sequence Diagram (QPI)
CS#
0
1
2
3
4
5
6
7
8
9
10 11 12 13
SCLK
IOs switch from
Input to output
Command
5AH
IO0
A23-16 A15-8
20 16 12 8
A7-0
4 0
IO1
21 17 13
9
5
IO2
22 18 14 10
IO3
23 19 15 11
Dummy*
4
0
4
0
4
0
4
1
5
1
5
1
5
1
5
6
2
6
2
6
2
6
2
6
7
3
7
3
7
3
7
3
7
Byte1
54
Byte2
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Table3. Signature and Parameter Identification Data Values
Description
SFDP Signature
Comment
Fixed:50444653H
Add(H)
DW Add
Data
Data
(Byte)
(Bit)
00H
07:00
53H
53H
01H
15:08
46H
46H
02H
23:16
44H
44H
03H
31:24
50H
50H
SFDP Minor Revision Number
Start from 00H
04H
07:00
00H
00H
SFDP Major Revision Number
Start from 01H
05H
15:08
01H
01H
Number of Parameters Headers
Start from 00H
06H
23:16
01H
01H
Unused
Contains 0xFFH and can never be
07H
31:24
FFH
FFH
08H
07:00
00H
00H
Start from 0x00H
09H
15:08
00H
00H
Start from 0x01H
0AH
23:16
01H
01H
Parameter Table Length
How many DWORDs in the
0BH
31:24
09H
09H
(in double word)
Parameter table
Parameter Table Pointer (PTP)
First address of JEDEC Flash
0CH
07:00
30H
30H
Parameter table
0DH
15:08
00H
00H
0EH
23:16
00H
00H
0FH
31:24
FFH
FFH
10H
07:00
C8H
C8H
changed
ID number (JEDEC)
00H: It indicates a JEDEC specified
header
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Unused
Contains 0xFFH and can never be
changed
ID Number LSB
It is indicates GigaDevice
(GigaDevice Manufacturer ID)
manufacturer ID
Parameter Table Minor Revision
Start from 0x00H
11H
15:08
00H
00H
Start from 0x01H
12H
23:16
01H
01H
Parameter Table Length
How many DWORDs in the
13H
31:24
03H
03H
(in double word)
Parameter table
Parameter Table Pointer (PTP)
First address of GigaDevice Flash
14H
07:00
60H
60H
Parameter table
15H
15:08
00H
00H
16H
23:16
00H
00H
17H
31:24
FFH
FFH
Number
Parameter Table Major Revision
Number
Unused
Contains 0xFFH and can never be
changed
55
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Table4. Parameter Table (0): JEDEC Flash Parameter Tables
Description
Comment
Add(H)
DW Add
(Byte)
(Bit)
Data
Data
00: Reserved; 01: 4KB erase;
Block/Sector Erase Size
10: Reserved;
01:00
01b
02
1b
03
0b
11: not support 4KB erase
Write Granularity
0: 1Byte, 1: 64Byte or larger
Write Enable Instruction
0: Nonvolatile status bit
Requested for Writing to Volatile
1: Volatile status bit
Status Registers
(BP status register bit)
30H
E5H
0: Use 50H Opcode,
Write Enable Opcode Select for
1: Use 06H Opcode,
Writing to Volatile Status
Note: If target flash status register is
Registers
Nonvolatile, then bits 3 and 4 must
04
0b
07:05
111b
15:08
20H
16
1b
18:17
00b
19
0b
be set to 00b.
Unused
Contains 111b and can never be
changed
4KB Erase Opcode
31H
(1-1-2) Fast Read
0=Not support, 1=Support
Address Bytes Number used in
00: 3Byte only, 01: 3 or 4Byte,
addressing flash array
10: 4Byte only, 11: Reserved
Double Transfer Rate (DTR)
clocking
0=Not support, 1=Support
32H
F1H
(1-2-2) Fast Read
0=Not support, 1=Support
20
1b
(1-4-4) Fast Read
0=Not support, 1=Support
21
1b
(1-1-4) Fast Read
0=Not support, 1=Support
22
1b
23
1b
33H
31:24
FFH
37H:34H
31:00
Unused
Unused
Flash Memory Density
(1-4-4) Fast Read Number of Wait
0 0000b: Wait states (Dummy
states
Clocks) not support
(1-4-4) Fast Read Number of
Mode Bits
39H
(1-1-4) Fast Read Number of Wait
0 0000b: Wait states (Dummy
states
Clocks) not support
Mode Bits
(1-1-4) Fast Read Opcode
(1-1-2) Fast Read Number of
00100b
44H
07:05
010b
15:08
EBH
20:16
01000b
3AH
000b:Mode Bits not support
3BH
0 0000b: Wait states (Dummy
Wait states
Clocks) not support
(1-1-2) Fast Read Number
000b: Mode Bits not support
EBH
08H
23:21
000b
31:24
6BH
04:00
01000b
3CH
56
FFH
03FFFFFFH
38H
(1-4-4) Fast Read Opcode
(1-1-4) Fast Read Number of
04:00
000b:Mode Bits not support
20H
6BH
08H
07:05
000b
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
of Mode Bits
(1-1-2) Fast Read Opcode
3DH
(1-2-2) Fast Read Number
0 0000b: Wait states (Dummy
of Wait states
Clocks) not support
(1-2-2) Fast Read Number
of Mode Bits
000b: Mode Bits not support
3FH
0=not support
3BH
20:16
00010b
3EH
(1-2-2) Fast Read Opcode
(2-2-2) Fast Read
15:08
1=support
Unused
42H
23:21
010b
31:24
BBH
00
0b
03:01
111b
04
1b
07:05
111b
40H
(4-4-4) Fast Read
0=not support
1=support
Unused
3BH
BBH
FEH
Unused
43H:41H
31:08
0xFFH
0xFFH
Unused
45H:44H
15:00
0xFFH
0xFFH
20:16
00000b
(2-2-2) Fast Read Number
0 0000b: Wait states (Dummy
of Wait states
Clocks) not support
(2-2-2) Fast Read Number
of Mode Bits
46H
000b: Mode Bits not support
(2-2-2) Fast Read Opcode
Unused
(4-4-4) Fast Read Number of Wait
0 0000b: Wait states (Dummy
states
Clocks) not support
(4-4-4) Fast Read Number
of Mode Bits
Sector/block size=2^N bytes
0x00b: this sector type don’t exist
Sector/block size=2^N bytes
0x00b: this sector type don’t exist
Sector Type 2 erase Opcode
Sector Type 3 Size
Sector/block size=2^N bytes
0x00b: this sector type don’t exist
Sector Type 3 erase Opcode
Sector Type 4 Size
000b
47H
31:24
FFH
FFH
49H:48H
15:00
0xFFH
0xFFH
20:16
00100b
000b: Mode Bits not support
Sector Type 1 erase Opcode
Sector Type 2 Size
23:21
4AH
(4-4-4) Fast Read Opcode
Sector Type 1 Size
00H
Sector/block size=2^N bytes
0x00b: this sector type don’t exist
Sector Type 4 erase Opcode
57
44H (1)
23:21
010b
4BH
31:24
EBH
EBH
4CH
07:00
0CH
0CH
4DH
15:08
20H
20H
4EH
23:16
0FH
0FH
4FH
31:24
52H
52H
50H
07:00
10H
10H
51H
15:08
D8H
D8H
52H
23:16
00H
00H
53H
31:24
FFH
FFH
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Table5. Parameter Table (1): GigaDevice Flash Parameter Tables
Description
Comment
Add(H)
DW Add
(Byte)
(Bit)
61H:60H
63H:62H
Data
Data
15:00
2000H
2000H
31:16
1650H
1650H
2000H=2.000V
Vcc Supply Maximum Voltage
2700H=2.700V
3600H=3.600V
1650H=1.650V
Vcc Supply Minimum Voltage
2250H=2.250V
2350H=2.350V
2700H=2.700V
HW Reset# pin
0=not support
1=support
00
0b
HW Hold# pin
0=not support
1=support
01
1b
Deep Power Down Mode
0=not support
1=support
02
1b
SW Reset
0=not support
1=support
03
1b
11:04
99H
Should
SW Reset Opcode
be
issue
Reset
Enable(66H)
65H:64H
F99EH
before Reset cmd.
Program Suspend/Resume
0=not support
1=support
12
1b
Erase Suspend/Resume
0=not support
1=support
13
1b
14
1b
15
1b
66H
23:16
77H
77H
67H
31:24
64H
64H
00
0b
01
0b
09:02
FFH
10
0b
Unused
Wrap-Around Read mode
Wrap-Around
Read
0=not support
1=support
mode
Opcode
08H:support 8B wrap-around read
Wrap-Around Read data length
16H:8B&16B
32H:8B&16B&32B
64H:8B&16B&32B&64B
Individual block lock
Individual block lock bit
(Volatile/Nonvolatile)
0=not support
0=Volatile
1=support
1=Nonvolatile
Individual block lock Opcode
Individual block lock Volatile
protect bit default protect status
0=protect
1=unprotect
EBFCH
6BH:68H
Secured OTP
0=not support
1=support
11
1b
Read Lock
0=not support
1=support
12
0b
Permanent Lock
0=not support
1=support
13
1b
Unused
15:14
11b
Unused
31:16
FFFFH
58
FFFFH
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
8. ELECTRICAL CHARACTERISTICS
8.1 POWER-ON TIMING
Figure41. Power-on Timing
Vcc(max)
Chip Selection is not allowed
Vcc(min)
tVSL
Device is fully
accessible
VWI
Time
Table6. Power-Up Timing and Write Inhibit Threshold
Symbol
Parameter
tVSL
VCC (min) To CS# Low
VWI
Write Inhibit Voltage
Min
Max
Unit
1.8
1
ms
1.4
V
8.2 INITIAL DELIVERY STATE
The device is delivered with the memory array erased: all bits are set to 1(each byte contains FFH).The Status Register
contains 00H (all Status Register bits are 0).
8.3 ABSOLUTE MAXIMUM RATINGS
Parameter
Value
Ambient Operating Temperature
Unit
-40 to 85
-40 to 105
℃
-40 to 125
Storage Temperature
-65 to 150
℃
Transient Input/Output Voltage (note: overshoot)
-2.0 to VCC+2.0
V
Applied Input/Output Voltage
-0.6 to VCC+0.4
V
-0.6 to 2.5
V
VCC
59
1.8V Uniform Sector
Dual and Quad Serial Flash
GD25LQ64C
Figure42. Input Test Waveform and Measurement Level
Maximum Negative Overshoot Waveform
20ns
Maximum Positive Overshoot Waveform
20ns
20ns
Vss
Vcc + 2.0V
Vss-2.0V
Vcc
20ns
20ns
20ns
8.4 CAPACITANCE MEASUREMENT CONDITIONS
Symbol
Parameter
Min
Typ.
Max
Unit
Conditions
CIN
Input Capacitance
6
pF
VIN=0V
COUT
Output Capacitance
8
pF
VOUT=0V
CL
Load Capacitance
30
pF
Input Rise And Fall time
5
ns
Input Pause Voltage
0.1VCC to 0.8VCC
V
Input Timing Reference Voltage
0.2VCC to 0.7VCC
V
Output Timing Reference Voltage
0.5VCC
V
Figure43. Input Test Waveform and Measurement Level
Input timing reference level
0.8VCC
0.7VCC
0.1VCC
0.2VCC
Output timing reference level
AC Measurement Level
Note: Input pulse rise and fall time are