DISCRETE SEMICONDUCTORS
DATA SHEET
BTA212X series D, E and F
Three quadrant triacs
guaranteed commutation
Product specification
June 2003
NXP Semiconductors
Product specification
Three quadrant triacs
guaranteed commutation
GENERAL DESCRIPTION
Passivated guaranteed commutation
triacs in a full pack, plastic envelope
intended for use in motor control circuits
or with other highly inductive loads.
These
devices
balance
the
requirements
of
commutation
performance and gate sensitivity. The
"sensitive gate" E series and "logic level"
D series are intended for interfacing with
low power drivers, including micro
controllers.
PINNING - SOT186A
PIN
BTA212X series D, E and F
QUICK REFERENCE DATA
SYMBOL
PARAMETER
BTA212XBTA212XBTA212XRepetitive peak off-state
voltages
RMS on-state current
Non-repetitive peak on-state
current
VDRM
IT(RMS)
ITSM
PIN CONFIGURATION
MAX.
MAX.
UNIT
600D
600E
600F
600
800E
800
V
12
95
12
95
A
A
SYMBOL
DESCRIPTION
case
1
main terminal 1
2
main terminal 2
3
gate
T2
T1
G
1 2 3
case isolated
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL
PARAMETER
VDRM
Repetitive peak off-state
voltages
IT(RMS)
RMS on-state current
ITSM
Non-repetitive peak
on-state current
I2t
dIT/dt
IGM
PGM
PG(AV)
Tstg
Tj
I2t for fusing
Repetitive rate of rise of
on-state current after
triggering
Peak gate current
Peak gate power
Average gate power
CONDITIONS
MIN.
-
full sine wave;
Ths ≤ 56 ˚C
full sine wave;
Tj = 25 ˚C prior to
surge
t = 20 ms
t = 16.7 ms
t = 10 ms
ITM = 20 A; IG = 0.2 A;
dIG/dt = 0.2 A/µs
over any 20 ms
period
Storage temperature
Operating junction
temperature
MAX.
-600
6001
UNIT
-800
800
V
-
12
A
-
95
105
45
100
A
A
A2s
A/µs
-
2
5
0.5
A
W
W
-40
-
150
125
˚C
˚C
1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may
switch to the on-state. The rate of rise of current should not exceed 15 A/µs.
June 2003
1
Rev 3.000
NXP Semiconductors
Product specification
Three quadrant triacs
guaranteed commutation
BTA212X series D, E and F
ISOLATION LIMITING VALUE & CHARACTERISTIC
Ths = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
Visol
R.M.S. isolation voltage from all
three terminals to external
heatsink
f = 50-60 Hz; sinusoidal
waveform;
R.H. ≤ 65% ; clean and dustfree
Cisol
Capacitance from T2 to external f = 1 MHz
heatsink
MIN.
TYP.
MAX.
UNIT
-
-
2500
V
-
10
-
pF
MIN.
TYP.
MAX.
UNIT
-
55
4.0
5.5
-
K/W
K/W
K/W
THERMAL RESISTANCES
SYMBOL
PARAMETER
CONDITIONS
Rth j-hs
Thermal resistance
junction to heatsink
Rth j-a
Thermal resistance
junction to ambient
full or half cycle
with heatsink compound
without heatsink compound
in free air
STATIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
MIN.
BTA212X-
2
IGT
Gate trigger current
VD = 12 V; IT = 0.1 A
T2+ G+
T2+ GT2- GVD = 12 V; IGT = 0.1 A
T2+ G+
T2+ GT2- G-
IL
Latching current
IH
Holding current
VD = 12 V; IGT = 0.1 A
VT
VGT
On-state voltage
Gate trigger voltage
ID
Off-state leakage current
IT = 17 A
VD = 12 V; IT = 0.1 A
VD = 400 V; IT = 0.1 A;
Tj = 125 ˚C
VD = VDRM(max); Tj = 125 ˚C
MAX.
UNIT
...D
...E
...F
-
5
5
5
10
10
10
25
25
25
mA
mA
mA
-
15
25
25
25
30
30
30
40
40
mA
mA
mA
-
15
25
30
mA
0.25
1.6
1.5
-
V
V
V
-
0.5
mA
2 Device does not trigger in the T2-, G+ quadrant.
June 2003
2
Rev 3.000
NXP Semiconductors
Product specification
Three quadrant triacs
guaranteed commutation
BTA212X series D, E and F
DYNAMIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
MIN.
BTA212X-
dVD/dt
Critical rate of rise of
off-state voltage
dIcom/dt
Critical rate of change of
commutating current
dIcom/dt
Critical rate of change of
commutating current
June 2003
VDM = 67% VDRM(max);
Tj = 110 ˚C; exponential
waveform; gate open
circuit
VDM = 400 V; Tj = 125 ˚C;
IT(RMS) = 12 A;
dVcom/dt = 10 V/µs; gate
open circuit
VDM = 400 V; Tj = 125 ˚C;
IT(RMS) = 12 A;
dVcom/dt = 0.1 V/µs; gate
open circuit
3
...D
MAX.
UNIT
...E
...F
30
60
70
-
V/µs
1.0
8.0
21
-
A/ms
3.5
16
32
-
A/ms
Rev 3.000
NXP Semiconductors
Product specification
Three quadrant triacs
guaranteed commutation
20
BTA212X series D, E and F
Ths(max) / C
Ptot / W
45
15
BT138X
IT(RMS) / A
= 180
15
56 C
120
1
65
90
10
60
10
85
30
5
105
5
0
0
5
125
15
10
0
-50
0
50
Ths / C
IT(RMS) / A
Fig.1. Maximum on-state dissipation, Ptot, versus rms
on-state current, IT(RMS), where α = conduction angle.
1000
100
150
Fig.4. Maximum permissible rms current IT(RMS) ,
versus heatsink temperature Ths.
ITSM / A
25
IT(RMS) / A
20
dI T /dt limit
15
100
10
I TSM
IT
T
5
time
Tj initial = 25 C max
10
10us
100us
1ms
T/s
10ms
0
0.01
100ms
Fig.2. Maximum permissible non-repetitive peak
on-state current ITSM, versus pulse width tp, for
sinusoidal currents, tp ≤ 20ms.
100
1.6
ITSM
IT
T
10
Fig.5. Maximum permissible repetitive rms on-state
current IT(RMS), versus surge duration, for sinusoidal
currents, f = 50 Hz; Ths ≤ 56˚C.
ITSM / A
80
0.1
1
surge duration / s
VGT(Tj)
VGT(25 C)
1.4
time
Tj initial = 25 C max
1.2
60
1
40
0.8
20
0
0.6
1
10
100
Number of cycles at 50Hz
0.4
-50
1000
Fig.3. Maximum permissible non-repetitive peak
on-state current ITSM, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
June 2003
0
50
Tj / C
100
150
Fig.6. Normalised gate trigger voltage
VGT(Tj)/ VGT(25˚C), versus junction temperature Tj.
4
Rev 3.000
NXP Semiconductors
Product specification
Three quadrant triacs
guaranteed commutation
BTA212X series D, E and F
IGT(Tj)
IGT(25°C)
40
3
IT / A
Tj = 125 C
Tj = 25 C
T2+ G+
T2+ GT2- G-
2.5
typ
max
30 Vo = 1.175 V
Rs = 0.0316 Ohms
2
20
1.5
1
10
0.5
0
0
-50
0
50
Tj/°C
100
150
0.5
1
1.5
VT / V
2
2.5
3
Fig.10. Typical and maximum on-state characteristic.
Fig.7. Normalised gate trigger current
IGT(Tj)/ IGT(25˚C), versus junction temperature Tj.
3
0
IL(Tj)
IL(25 C)
10
Zth j-hs (K/W)
with heatsink compound
without heatsink compound
2.5
1
2
unidirectional
bidirectional
0.1
1.5
1
P
D
tp
0.01
0.5
t
0
-50
0
50
Tj / C
100
0.001
10us
150
Fig.8. Normalised latching current IL(Tj)/ IL(25˚C),
versus junction temperature Tj.
3
0.1ms
1ms
10ms
tp / s
0.1s
1s
10s
Fig.11. Transient thermal impedance Zth j-hs, versus
pulse width tp.
IH(Tj)
IH(25C)
103
dIcom/dt (A/ms)
F TYPE
E TYPE
D TYPE
2.5
102
2
1.5
10
1
0.5
0
-50
0
50
Tj / C
100
1
150
20
Fig.9. Normalised holding current IH(Tj)/ IH(25˚C),
versus junction temperature Tj.
June 2003
40
60
80
100
120
Tj (˚C)
140
Fig.12. Minimum critical rate of change of
commutating current dIcom/dt versus junction
temperature, dVcom/dt = 10 V/µs.
5
Rev 3.000
NXP Semiconductors
Product specification
Three quadrant triacs
guaranteed commutation
BTA212X series D, E and F
MECHANICAL DATA
Dimensions in mm
Net Mass: 2 g
10.3
max
4.6
max
3.2
3.0
2.9 max
2.8
Recesses (2x)
2.5
0.8 max. depth
6.4
15.8
max.
19
max.
15.8
max
seating
plane
3 max.
not tinned
3
2.5
13.5
min.
1
0.4
2
3
M
1.0 (2x)
0.6
2.54
0.9
0.7
0.5
2.5
5.08
1.3
Fig.13. SOT186A; The seating plane is electrically isolated from all terminals.
Notes
1. Refer to mounting instructions for F-pack envelopes.
2. Epoxy meets UL94 V0 at 1/8".
June 2003
6
Rev 3.000
NXP Semiconductors
Legal information
DATA SHEET STATUS
DOCUMENT
STATUS(1)
PRODUCT
STATUS(2)
DEFINITION
Objective data sheet
Development
This document contains data from the objective specification for product
development.
Preliminary data sheet
Qualification
This document contains data from the preliminary specification.
Product data sheet
Production
This document contains the product specification.
Notes
1. Please consult the most recently issued document before initiating or completing a design.
2. The product status of device(s) described in this document may have changed since this document was published
and may differ in case of multiple devices. The latest product status information is available on the Internet at
URL http://www.nxp.com.
DEFINITIONS
Product specification ⎯ The information and data
provided in a Product data sheet shall define the
specification of the product as agreed between NXP
Semiconductors and its customer, unless NXP
Semiconductors and customer have explicitly agreed
otherwise in writing. In no event however, shall an
agreement be valid in which the NXP Semiconductors
product is deemed to offer functions and qualities beyond
those described in the Product data sheet.
DISCLAIMERS
Limited warranty and liability ⎯ Information in this
document is believed to be accurate and reliable.
However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and
shall have no liability for the consequences of use of such
information.
In no event shall NXP Semiconductors be liable for any
indirect, incidental, punitive, special or consequential
damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the
removal or replacement of any products or rework
charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any
other legal theory.
Notwithstanding any damages that customer might incur
for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for
the products described herein shall be limited in
accordance with the Terms and conditions of commercial
sale of NXP Semiconductors.
Right to make changes ⎯ NXP Semiconductors
reserves the right to make changes to information
published in this document, including without limitation
specifications and product descriptions, at any time and
without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.
Suitability for use ⎯ NXP Semiconductors products are
not designed, authorized or warranted to be suitable for
use in life support, life-critical or safety-critical systems or
equipment, nor in applications where failure or malfunction
of an NXP Semiconductors product can reasonably be
expected to result in personal injury, death or severe
property or environmental damage. NXP Semiconductors
accepts no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at
the customer’s own risk.
Applications ⎯ Applications that are described herein for
any of these products are for illustrative purposes only.
NXP Semiconductors makes no representation or
warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of
their applications and products using NXP
Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or
customer product design. It is customer’s sole
responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as
for the planned application and use of customer’s third
party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors
Legal information
NXP Semiconductors does not accept any liability related
to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications
or products, or the application or use by customer’s third
party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and
products using NXP Semiconductors products in order to
avoid a default of the applications and the products or of
the application or use by customer’s third party
customer(s). NXP does not accept any liability in this
respect.
Limiting values ⎯ Stress above one or more limiting
values (as defined in the Absolute Maximum Ratings
System of IEC 60134) will cause permanent damage to
the device. Limiting values are stress ratings only and
(proper) operation of the device at these or any other
conditions above those given in the Recommended
operating conditions section (if present) or the
Characteristics sections of this document is not warranted.
Constant or repeated exposure to limiting values will
permanently and irreversibly affect the quality and
reliability of the device.
Terms and conditions of commercial sale ⎯ NXP
Semiconductors products are sold subject to the general
terms and conditions of commercial sale, as published at
http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an
individual agreement is concluded only the terms and
conditions of the respective agreement shall apply. NXP
Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license ⎯ Nothing in this document
may be interpreted or construed as an offer to sell products
that is open for acceptance or the grant, conveyance or
implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Export control ⎯ This document as well as the item(s)
described herein may be subject to export control
regulations. Export might require a prior authorization from
national authorities.
Quick reference data ⎯ The Quick reference data is an
extract of the product data given in the Limiting values and
Characteristics sections of this document, and as such is
not complete, exhaustive or legally binding.
Non-automotive qualified products ⎯ Unless this data
sheet expressly states that this specific NXP
Semiconductors product is automotive qualified, the
product is not suitable for automotive use. It is neither
qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts
no liability for inclusion and/or use of non-automotive
qualified products in automotive equipment or
applications.
In the event that customer uses the product for design-in
and use in automotive applications to automotive
specifications and standards, customer (a) shall use the
product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and
specifications, and (b) whenever customer uses the
product for automotive applications beyond NXP
Semiconductors’ specifications such use shall be solely at
customer’s own risk, and (c) customer fully indemnifies
NXP Semiconductors for any liability, damages or failed
product claims resulting from customer design and use of
the product for automotive applications beyond NXP
Semiconductors’ standard warranty and NXP
Semiconductors’ product specifications.
Customer notification
This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions
and disclaimers. No changes were made to the content, except for the legal definitions and disclaimers.
Contact information
For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com
© NXP B.V. 2011
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands