Dat
asheet
Rochest
erEl
ect
r
oni
cs
Manuf
act
ur
edComponent
s
Rochest
er br
anded component
s ar
e
manuf
act
ur
ed usi
ng ei
t
herdi
e/
waf
er
s
pur
chased f
r
om t
he or
i
gi
nalsuppl
i
er
s
or Rochest
er waf
er
sr
ecr
eat
ed f
r
om
t
he or
i
gi
nal I
P. Al
lr
ecr
eat
i
ons ar
e
donewi
t
ht
heappr
ovaloft
heOCM.
Par
t
sar
et
est
ed usi
ngor
i
gi
nalf
act
or
y
t
estpr
ogr
amsorRochest
erdevel
oped
t
est sol
ut
i
ons t
o guar
ant
ee pr
oduct
meet
sorexceedt
heOCM dat
asheet
.
Qual
i
t
yOver
vi
ew
•I
SO9001
• AS9120cer
t
icat
i
on
• Qual
iedManuf
act
ur
er
sLi
st(
QML)MI
LPRF35835
•Cl
assQ Mi
l
i
t
ar
y
•Cl
assVSpaceLevel
• Qual
iedSuppl
i
er
sLi
stofDi
st
r
i
but
or
s(
QSLD)
•Rochest
eri
sacr
i
t
i
calsuppl
i
ert
oDLA and
meet
sal
li
ndust
r
yandDLA st
andar
ds.
Rochest
erEl
ect
r
oni
cs,LLC i
scommi
t
t
edt
o
suppl
yi
ngpr
oduct
st
hatsat
i
sf
ycust
omerexpect
at
i
onsf
orqual
i
t
yandar
eequalt
ot
hoseor
i
gi
nal
l
y
suppl
i
edbyi
ndust
r
ymanuf
act
ur
er
s.
Theor
i
gi
nalmanuf
act
ur
er
’
sdat
asheetaccompanyi
ngt
hi
sdocumentr
e ect
st
heper
f
or
mance
andspecicat
i
onsoft
heRochest
ermanuf
act
ur
edver
si
onoft
hi
sdevi
ce.Rochest
erEl
ect
r
oni
csguar
ant
eest
heper
f
or
manceofi
t
ssemi
conduct
orpr
oduct
st
ot
heor
i
gi
nalOEM specicat
i
ons.‘
Typi
cal
’val
uesar
ef
orr
ef
er
encepur
posesonl
y.Cer
t
ai
nmi
ni
mum ormaxi
mum r
at
i
ngs
maybebasedonpr
oductchar
act
er
i
zat
i
on,desi
gn,si
mul
at
i
on,orsampl
et
est
i
ng.
© 2013Roc
hes
t
erEl
ec
t
r
oni
c
s
,LLC.Al
lRi
ght
sRes
er
v
ed07112013
Tol
ear
nmor
e,pl
eas
ev
i
s
i
twww.
r
oc
el
ec
.
c
om
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
General Purpose Transistors
2N4123
2N4124
NPN Silicon
COLLECTOR
3
2
BASE
1
EMITTER
1
2
3
MAXIMUM RATINGS
Rating
Symbol
2N4123
2N4124
Unit
Collector – Emitter Voltage
VCEO
30
25
Vdc
Collector – Base Voltage
VCBO
40
30
Vdc
Emitter – Base Voltage
VEBO
5.0
Vdc
Collector Current — Continuous
IC
200
mAdc
Total Device Dissipation @ TA = 25°C
Derate above 25°C
PD
625
5.0
mW
mW/°C
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
1.5
12
Watts
mW/°C
TJ, Tstg
– 55 to +150
°C
Symbol
Max
Unit
Operating and Storage Junction
Temperature Range
CASE 29–04, STYLE 1
TO–92 (TO–226AA)
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
RqJA
200
°C/W
Thermal Resistance, Junction to Case
RqJC
83.3
°C/W
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Max
30
25
—
—
40
30
—
—
V(BR)EBO
5.0
—
Vdc
Collector Cutoff Current
(VCB = 20 Vdc, IE = 0)
ICBO
—
50
nAdc
Emitter Cutoff Current
(VEB = 3.0 Vdc, IC = 0)
IEBO
—
50
nAdc
Characteristic
Unit
OFF CHARACTERISTICS
Collector – Emitter Breakdown Voltage(1)
(IC = 1.0 mAdc, IE = 0)
Collector – Base Breakdown Voltage
(IC = 10 mAdc, IE = 0)
Emitter – Base Breakdown Voltage
(IE = 10 mAdc, IC = 0)
V(BR)CEO
2N4123
2N4124
Vdc
V(BR)CBO
2N4123
2N4124
Vdc
1. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2.0%.
2–14
Motorola Small–Signal Transistors, FETs and Diodes Device Data
2N4123 2N4124
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
2N4123
2N4124
50
120
150
360
2N4123
2N4124
25
60
—
—
Unit
ON CHARACTERISTICS
DC Current Gain(1)
(IC = 2.0 mAdc, VCE = 1.0 Vdc)
hFE
(IC = 50 mAdc, VCE = 1.0 Vdc)
—
Collector – Emitter Saturation Voltage(1)
(IC = 50 mAdc, IB = 5.0 mAdc)
VCE(sat)
—
0.3
Vdc
Base – Emitter Saturation Voltage(1)
(IC = 50 mAdc, IB = 5.0 mAdc)
VBE(sat)
—
0.95
Vdc
250
300
—
—
SMALL– SIGNAL CHARACTERISTICS
Current – Gain — Bandwidth Product
(IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz)
fT
MHz
2N4123
2N4124
Input Capacitance
(VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)
Cibo
—
8.0
pF
Collector–Base Capacitance
(IE = 0, VCB = 5.0 V, f = 1.0 MHz)
Ccb
—
4.0
pF
50
120
200
480
2N4123
2N4124
2.5
3.0
—
—
2N4123
2N4124
50
120
200
480
—
—
6.0
5.0
Small–Signal Current Gain
(IC = 2.0 mAdc, VCE = 10 Vdc, RS = 10 k ohm, f = 1.0 kHz)
Current Gain — High Frequency
(IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz)
hfe
2N4123
2N4124
—
|hfe|
(IC = 2.0 mAdc, VCE = 10 V, f = 1.0 kHz)
(IC = 2.0 mAdc, VCE = 10 V, f = 1.0 kHz)
Noise Figure
(IC = 100 µAdc, VCE = 5.0 Vdc, RS = 1.0 k ohm,
f = 1.0 kHz)
—
NF
dB
2N4123
2N4124
1. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2.0%.
200
10
100
5.0
TIME (ns)
CAPACITANCE (pF)
7.0
Cibo
3.0
ts
70
50
td
30
tf
Cobo
2.0
VCC = 3 V
IC/IB = 10
VEB(off) = 0.5 V
10.0
7.0
1.0
0.1
tr
20
0.2 0.3
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE BIAS VOLTAGE (VOLTS)
20 30 40
Figure 1. Capacitance
Motorola Small–Signal Transistors, FETs and Diodes Device Data
5.0
1.0
2.0 3.0
5.0 7.0 10
20 30 50 70 100
IC, COLLECTOR CURRENT (mA)
200
Figure 2. Switching Times
2–15
2N4123 2N4124
AUDIO SMALL–SIGNAL CHARACTERISTICS
NOISE FIGURE
(VCE = 5 Vdc, TA = 25°C)
Bandwidth = 1.0 Hz
12
f = 1 kHz
SOURCE RESISTANCE = 200 W
IC = 0.5 mA
8
6
SOURCE RESISTANCE = 1 kΩ
IC = 50 mA
4
2
0
0.1
SOURCE RESISTANCE = 500 W
IC = 100 mA
0.2
0.4
1
2
4
10
f, FREQUENCY (kHz)
IC = 1 mA
12
NF, NOISE FIGURE (dB)
10
NF, NOISE FIGURE (dB)
14
SOURCE RESISTANCE = 200 W
IC = 1 mA
IC = 0.5 mA
10
IC = 50 mA
8
IC = 100 mA
6
4
2
20
40
0
0.1
100
0.2
0.4
Figure 3. Frequency Variations
40
1.0 2.0
4.0
10
20
RS, SOURCE RESISTANCE (kΩ)
100
Figure 4. Source Resistance
h PARAMETERS
(VCE = 10 V, f = 1 kHz, TA = 25°C)
100
hoe, OUTPUT ADMITTANCE (m mhos)
hfe , CURRENT GAIN
300
200
100
70
50
50
20
10
5
2
1
30
0.1
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (mA)
5.0
10
0.1
0.2
Figure 5. Current Gain
h re , VOLTAGE FEEDBACK RATIO (X 10 –4 )
hie , INPUT IMPEDANCE (kΩ )
10
5.0
10
10
10
5.0
2.0
1.0
0.5
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.1
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (mA)
Figure 7. Input Impedance
2–16
5.0
Figure 6. Output Admittance
20
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (mA)
5.0
10
0.1
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (mA)
Figure 8. Voltage Feedback Ratio
Motorola Small–Signal Transistors, FETs and Diodes Device Data
2N4123 2N4124
STATIC CHARACTERISTICS
h FE, DC CURRENT GAIN (NORMALIZED)
2.0
TJ = +125°C
1.0
VCE = 1 V
+25°C
0.7
– 55°C
0.5
0.3
0.2
0.1
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
20
30
50
70
100
200
VCE, COLLECTOR EMITTER VOLTAGE (VOLTS)
Figure 9. DC Current Gain
1.0
TJ = 25°C
0.8
IC = 1 mA
10 mA
30 mA
100 mA
0.6
0.4
0.2
0
0.01
0.02
0.03
0.05
0.07
0.1
0.2
0.3
0.5
IB, BASE CURRENT (mA)
0.7
1.0
2.0
3.0
5.0
7.0
10
Figure 10. Collector Saturation Region
θV, TEMPERATURE COEFFICIENTS (mV/°C)
1.2
TJ = 25°C
VBE(sat) @ IC/IB = 10
V, VOLTAGE (VOLTS)
1.0
0.8
VBE @ VCE = 1 V
0.6
0.4
VCE(sat) @ IC/IB = 10
0.2
0
1.0
2.0
50
5.0
10
20
IC, COLLECTOR CURRENT (mA)
100
200
Figure 11. “On” Voltages
Motorola Small–Signal Transistors, FETs and Diodes Device Data
1.0
0.5
+25°C to +125°C
qVC for VCE(sat)
0
– 55°C to +25°C
– 0.5
– 55°C to +25°C
– 1.0
+25°C to +125°C
qVB for VBE(sat)
– 1.5
– 2.0
0
20
40
60
80 100 120 140 160
IC, COLLECTOR CURRENT (mA)
180 200
Figure 12. Temperature Coefficients
2–17
EMBOSSED TAPE AND REEL
SOT-23, SC-59, SC-70/SOT-323, SC–90/SOT–416, SOT-223 and SO-16 packages are available only in
Tape and Reel. Use the appropriate suffix indicated below to order any of the SOT-23, SC-59,
SC-70/SOT-323, SOT-223 and SO-16 packages. (See Section 6 on Packaging for additional information).
SOT-23:
available in 8 mm Tape and Reel
Use the device title (which already includes the “T1” suffix) to order the 7 inch/3000 unit reel.
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/10,000 unit reel.
SC-59:
available in 8 mm Tape and Reel
Use the device title (which already includes the “T1” suffix) to order the 7 inch/3000 unit reel.
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/10,000 unit reel.
SC-70/
SOT-323:
available in 8 mm Tape and Reel
Use the device title (which already includes the “T1” suffix) to order the 7 inch/3000 unit reel.
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/10,000 unit reel.
SOT-223:
available in 12 mm Tape and Reel
Use the device title (which already includes the “T1” suffix) to order the 7 inch/1000 unit reel.
Replace the “T1” suffix in the device title with a “T3” suffix to order the 13 inch/4000 unit reel.
SO-16:
available in 16 mm Tape and Reel
Add an “R1” suffix to the device title to order the 7 inch/500 unit reel.
Add an “R2” suffix to the device title to order the 13 inch/2500 unit reel.
RADIAL TAPE IN FAN FOLD BOX OR REEL
TO-92 packages are available in both bulk shipments and in Radial Tape in Fan Fold Boxes or Reels.
Fan Fold Boxes and Radial Tape Reel are the best methods for capturing devices for automatic insertion in
printed circuit boards.
TO-92:
available in Fan Fold Box
Add an “RLR” suffix and the appropriate Style code* to the device title to order the Fan Fold box.
available in 365 mm Radial Tape Reel
Add an “RLR” suffix and the appropriate Style code* to the device title to order the Radial Tape
Reel.
*Refer to Section 6 on Packaging for Style code characters and additional information on ordering
*requirements.
DEVICE MARKINGS/DATE CODE CHARACTERS
SOT-23, SC-59, SC-70/SOT-323, and the SC–90/SOT–416 packages have a device marking and a date
code etched on the device. The generic example below depicts both the device marking and a representation of the date code that appears on the SC-70/SOT-323, SC-59 and SOT-23 packages.
ABC D
The “D” represents a smaller alpha digit Date Code. The Date Code indicates the actual month in which the
part was manufactured.
2–2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Tape and Reel Specifications
and Packaging Specifications
Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the
shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure
cavity for the product when sealed with the “peel–back” cover tape.
•
•
•
•
• SOD–123, SC–59, SC–70/SOT–323, SC–70ML/SOT–363,
SOT–23, TSOP–6, in 8 mm Tape
• SOT–223 in 12 mm Tape
• SO–14, SO–16 in 16 mm Tape
Two Reel Sizes Available (7″ and 13″)
Used for Automatic Pick and Place Feed Systems
Minimizes Product Handling
EIA 481, –1, –2
Use the standard device title and add the required suffix as listed in the option table on the following page. Note that the individual
reels have a finite number of devices depending on the type of product contained in the tape. Also note the minimum lot size is
one full reel for each line item, and orders are required to be in increments of the single reel quantity.
SOD–123
SC–59, SC–70/SOT–323, SOT–23
8 mm
8 mm
SOT–223
SC–70ML/SOT–363, TSOP–6
T1 ORIENTATION
8 mm
SO–14, 16
12 mm
16 mm
SC–70ML/SOT–363
T2 ORIENTATION
DIRECTION
8 mm
OF FEED
EMBOSSED TAPE AND REEL ORDERING INFORMATION
Devices Per Reel
and Minimum
Order Quantity
Device
Suffix
(7)
3,000
T1
178
330
(7)
(13)
3,000
10,000
T1
T3
8.0 ± 0.1 (.315 ± .004)
178
330
(7)
(13)
500
2,500
R1
R2
16
16
8.0 ± 0.1 (.315 ± .004)
178
330
(7)
(13)
500
2,500
R1
R2
SOD–123
8
8
4.0 ± 0.1 (.157 ± .004)
178
330
(7)
(13)
3,000
10,000
T1
T3
SOT–23
8
8
4.0 ± 0.1 (.157 ± .004)
178
330
(7)
(13)
3,000
10,000
T1
T3
SOT–223
12
12
8.0 ± 0.1 (.315 ± .004)
178
330
(7)
(13)
1,000
4,000
T1
T3
SC–70ML/SOT–363
8
8
4.0 ± 0.1 (.157 ± .004)
178
178
(7)
(7)
3,000
3,000
T1
T2
TSOP–6
8
4.0 ± 0.1 (.157 ± .004)
178
(7)
3,000
T1
Package
Tape Width
(mm)
Pitch
mm
(inch)
SC–59
8
4.0 ± 0.1 (.157 ± .004)
178
SC–70/SOT–323
8
8
4.0 ± 0.1 (.157 ± .004)
SO–14
16
16
SO–16
Tape and Reel Specifications
6–2
Reel Size
mm
(inch)
Motorola Small–Signal Transistors, FETs and Diodes Device Data
EMBOSSED TAPE AND REEL DATA FOR DISCRETES
CARRIER TAPE SPECIFICATIONS
P0
K
P2
D
t
10 Pitches Cumulative Tolerance on Tape
± 0.2 mm
(± 0.008″)
E
Top Cover
Tape
A0
K0
B1
F
W
B0
See
Note 1
P
For Machine Reference Only
Including Draft and RADII
Concentric Around B0
D1
For Components
2.0 mm x 1.2 mm and Larger
Center Lines
of Cavity
Embossment
User Direction of Feed
* Top Cover Tape
Thickness (t1)
0.10 mm
(.004″) Max.
Bar Code Label
R Min
Tape and Components
Shall Pass Around Radius “R”
Without Damage
Bending Radius
10°
Embossed Carrier
100 mm
(3.937″)
Maximum Component Rotation
Embossment
1 mm Max
Typical Component
Cavity Center Line
Tape
1 mm
(.039″) Max
Typical Component
Center Line
250 mm
(9.843″)
Camber (Top View)
Allowable Camber To Be 1 mm/100 mm Nonaccumulative Over 250 mm
DIMENSIONS
Tape
Size
B1 Max
D
D1
E
F
K
P0
P2
R Min
T Max
W Max
8 mm
4.55 mm
(.179″)
1.0 Min
(.039″)
1.75 ± 0.1 mm
(.069 ± .004″)
3.5 ± 0.05 mm
(.138 ± .002″)
2.4 mm Max
(.094″)
4.0 ± 0.1 mm
(.157 ± .004″)
2.0 ± 0.1 mm
(.079 ± .002″)
25 mm
(.98″)
0.6 mm
(.024″)
8.3 mm
(.327″)
12 mm
8.2 mm
(.323″)
1.5 + 0.1 mm
– 0.0
( 0 9 + .004″
004
(.059
– 0.0)
5.5 ± 0.05 mm
(.217 ± .002″)
6.4 mm Max
(.252″)
16 mm
12.1 mm
(.476″)
7.5 ± 0.10 mm
(.295 ± .004″)
7.9 mm Max
(.311″)
16.3 mm
(.642″)
24 mm
20.1 mm
(.791″)
11.5 ± 0.1 mm
(.453 ± .004″)
11.9 mm Max
(.468″)
24.3 mm
(.957″)
1.5 mm Min
(.060″)
30 mm
(1.18″)
12 ± .30 mm
(.470 ± .012″)
Metric dimensions govern — English are in parentheses for reference only.
NOTE 1: A0, B0, and K0 are determined by component size. The clearance between the components and the cavity must be within .05 mm min. to .50 mm max.,
NOTE 1: the component cannot rotate more than 10° within the determined cavity.
NOTE 2: If B1 exceeds 4.2 mm (.165) for 8 mm embossed tape, the tape may not feed through all tape feeders.
NOTE 3: Pitch information is contained in the Embossed Tape and Reel Ordering Information on pg. 5.12–3.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Tape and Reel Specifications
6–3
EMBOSSED TAPE AND REEL DATA FOR DISCRETES
T Max
Outside Dimension
Measured at Edge
1.5 mm Min
(.06″)
A
13.0 mm ± 0.5 mm
(.512″ ± .002″)
20.2 mm Min
(.795″)
50 mm Min
(1.969″)
Full Radius
G
Size
A Max
8 mm
330 mm
(12.992″)
8.4 mm + 1.5 mm, – 0.0
(.33″ + .059″, – 0.00)
14.4 mm
(.56″)
12 mm
330 mm
(12.992″)
12.4 mm + 2.0 mm, – 0.0
(.49″ + .079″, – 0.00)
18.4 mm
(.72″)
16 mm
360 mm
(14.173″)
16.4 mm + 2.0 mm, – 0.0
(.646″ + .078″, – 0.00)
22.4 mm
(.882″)
24 mm
360 mm
(14.173″)
24.4 mm + 2.0 mm, – 0.0
(.961″ + .070″, – 0.00)
30.4 mm
(1.197″)
G
Inside Dimension
Measured Near Hub
T Max
Reel Dimensions
Metric Dimensions Govern — English are in parentheses for reference only
Tape and Reel Specifications
6–4
Motorola Small–Signal Transistors, FETs and Diodes Device Data
TO–92 EIA, IEC, EIAJ
Radial Tape in Fan Fold
Box or On Reel
TO–92
RADIAL
TAPE IN
FAN FOLD
BOX OR
ON REEL
Radial tape in fan fold box or on reel of the reliable TO–92 package are
the best methods of capturing devices for automatic insertion in printed
circuit boards. These methods of taping are compatible with various
equipment for active and passive component insertion.
•
•
•
•
•
•
Available in Fan Fold Box
Available on 365 mm Reels
Accommodates All Standard Inserters
Allows Flexible Circuit Board Layout
2.5 mm Pin Spacing for Soldering
EIA–468, IEC 286–2, EIAJ RC1008B
Ordering Notes:
When ordering radial tape in fan fold box or on reel, specify the style per
Figures 3 through 8. Add the suffix “RLR” and “Style” to the device title, i.e.
MPS3904RLRA. This will be a standard MPS3904 radial taped and
supplied on a reel per Figure 9.
Fan Fold Box Information — Order in increments of 2000.
Reel Information — Order in increments of 2000.
US/European Suffix Conversions
US
EUROPE
RLRA
RL
RLRE
RL1
RLRM
ZL1
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Packaging Specifications
6–5
TO–92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL
H2A
H2A
H2B
H2B
H
W2
H4 H5
T1
L1
H1
W1 W
L
T
T2
F1
F2
P2
P2
P1
D
P
Figure 1. Device Positioning on Tape
Specification
Inches
Symbol
Item
Millimeter
Min
Max
Min
Max
D
Tape Feedhole Diameter
0.1496
0.1653
3.8
4.2
D2
Component Lead Thickness Dimension
0.015
0.020
0.38
0.51
Component Lead Pitch
0.0945
0.110
2.4
2.8
.059
.156
1.5
4.0
0.3346
0.3741
8.5
9.5
Deflection Left or Right
0
0.039
0
1.0
Deflection Front or Rear
0
0.051
0
1.0
Feedhole to Bottom of Component
0.7086
0.768
18
19.5
Feedhole to Seating Plane
0.610
0.649
15.5
16.5
F1, F2
H
H1
H2A
H2B
H4
H5
L
Bottom of Component to Seating Plane
Feedhole Location
Defective Unit Clipped Dimension
0.3346
0.433
8.5
11
L1
Lead Wire Enclosure
0.09842
—
2.5
—
P
Feedhole Pitch
0.4921
0.5079
12.5
12.9
P1
Feedhole Center to Center Lead
0.2342
0.2658
5.95
6.75
P2
First Lead Spacing Dimension
0.1397
0.1556
3.55
3.95
0.06
0.08
0.15
0.20
T
Adhesive Tape Thickness
T1
Overall Taped Package Thickness
—
0.0567
—
1.44
T2
Carrier Strip Thickness
0.014
0.027
0.35
0.65
W
Carrier Strip Width
0.6889
0.7481
17.5
19
W1
Adhesive Tape Width
0.2165
0.2841
5.5
6.3
W2
Adhesive Tape Position
.0059
0.01968
.15
0.5
NOTES:
1. Maximum alignment deviation between leads not to be greater than 0.2 mm.
2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm.
3. Component lead to tape adhesion must meet the pull test requirements established in Figures 5, 6 and 7.
4. Maximum non–cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
6. No more than 1 consecutive missing component is permitted.
7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.
8. Splices will not interfere with the sprocket feed holes.
Packaging Specifications
6–6
Motorola Small–Signal Transistors, FETs and Diodes Device Data
TO–92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL
FAN FOLD BOX STYLES
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ADHESIVE TAPE ON
TOP SIDE
FLAT SIDE
ADHESIVE TAPE ON
TOP SIDE
ROUNDED SIDE
CARRIER
STRIP
CARRIER
STRIP
Figure 2. Style M
252 mm
9.92”
FLAT SIDE OF TRANSISTOR
AND ADHESIVE TAPE VISIBLE.
Style M fan fold box is equivalent to styles E and F of
reel pack dependent on feed orientation from box.
330 mm
13”
MAX
ROUNDED SIDE OF TRANSISTOR AND
ADHESIVE TAPE VISIBLE.
Style P fan fold box is equivalent to styles A and B of
reel pack dependent on feed orientation from box.
Figure 3. Style P
MAX
58 mm
2.28”
MAX
Figure 4. Fan Fold Box Dimensions
ADHESION PULL TESTS
500 GRAM PULL FORCE
70 GRAM
PULL FORCE
100 GRAM
PULL FORCE
16 mm
16 mm
HOLDING
FIXTURE
The component shall not pull free with a 300 gram
load applied to the leads for 3 ± 1 second.
Figure 5. Test #1
HOLDING
FIXTURE
The component shall not pull free with a 70 gram
load applied to the leads for 3 ± 1 second.
Figure 6. Test #2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
HOLDING
FIXTURE
There shall be no deviation in the leads and
no component leads shall be pulled free of
the tape with a 500 gram load applied to the
component body for 3 ± 1 second.
Figure 7. Test #3
Packaging Specifications
6–7
TO–92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL
REEL STYLES
CORE DIA.
82mm ± 1mm
ARBOR HOLE DIA.
30.5mm ± 0.25mm
MARKING NOTE
HUB RECESS
76.2mm ± 1mm
RECESS DEPTH
9.5mm MIN
365mm + 3, – 0mm
38.1mm ± 1mm
48 mm
MAX
Material used must not cause deterioration of components or degrade lead solderability
Figure 8. Reel Specifications
ADHESIVE TAPE ON REVERSE SIDE
CARRIER STRIP
CARRIER STRIP
ROUNDED
SIDE
FLAT SIDE
ADHESIVE TAPE
FEED
FEED
Rounded side of transistor and adhesive tape visible.
Flat side of transistor and carrier strip visible
(adhesive tape on reverse side).
Figure 9. Style A
Figure 10. Style B
ADHESIVE TAPE ON REVERSE SIDE
CARRIER STRIP
CARRIER STRIP
FLAT SIDE
ROUNDED
SIDE
ADHESIVE TAPE
FEED
FEED
Flat side of transistor and adhesive tape visible.
Figure 11. Style E
Packaging Specifications
6–8
Rounded side of transistor and carrier strip visible
(adhesive tape on reverse side).
Figure 12. Style F
Motorola Small–Signal Transistors, FETs and Diodes Device Data
INFORMATION FOR USING SURFACE MOUNT PACKAGES
RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to ensure proper solder connection inter-
face between the board and the package. With the correct
pad geometry, the packages will self align when subjected to
a solder reflow process.
POWER DISSIPATION FOR A SURFACE MOUNT DEVICE
PD =
TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature TA of 25°C, one can
calculate the power dissipation of the device. For example,
for a SOT–223 device, PD is calculated as follows.
PD = 150°C – 25°C = 800 milliwatts
156°C/W
The 156°C/W for the SOT–223 package assumes the use
of the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 800 milliwatts. There
are other alternatives to achieving higher power dissipation
from the surface mount packages. One is to increase the
area of the drain/collector pad. By increasing the area of the
drain/collector pad, the power dissipation can be increased.
Although the power dissipation can almost be doubled with
this method, area is taken up on the printed circuit board
which can defeat the purpose of using surface mount
technology. For example, a graph of RθJA versus drain pad
area is shown in Figure 1.
Another alternative would be to use a ceramic substrate or
an aluminum core board such as Thermal Clad. Using a
board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the same
footprint.
RθJA , THERMAL RESISTANCE, JUNCTION
TO AMBIENT (°C/W)
The power dissipation for a surface mount device is a function of the drain/collector pad size. These can vary from the
minimum pad size for soldering to a pad size given for
maximum power dissipation. Power dissipation for a surface
mount device is determined by TJ(max), the maximum rated
junction temperature of the die, RθJA, the thermal resistance
from the device junction to ambient, and the operating
temperature, TA. Using the values provided on the data
sheet, PD can be calculated as follows:
160
140
Board Material = 0.0625″
G–10/FR–4, 2 oz Copper
TA = 25°C
0.8 Watts
120
1.25 Watts*
1.5 Watts
100
80
0.0
*Mounted on the DPAK footprint
0.2
0.4
0.6
A, AREA (SQUARE INCHES)
0.8
1.0
Figure 1. Thermal Resistance versus Drain Pad
Area for the SOT–223 Package (Typical)
SOLDER STENCIL GUIDELINES
Prior to placing surface mount components onto a printed
circuit board, solder paste must be applied to the pads.
Solder stencils are used to screen the optimum amount.
These stencils are typically 0.008 inches thick and may be
made of brass or stainless steel. For packages such as the
Surface Mount Information
7–10
SOT–23, SC–59, SC–70/SOT–323, SC–90/SOT–416,
SOD–123, SOT–223, SOT–363, SO–14, SO–16, and
TSOP–6 packages, the stencil opening should be the same
as the pad size or a 1:1 registration.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to minimize the thermal stress to which the devices are subjected.
• Always preheat the device.
• The delta temperature between the preheat and soldering
should be 100°C or less.*
• When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference should be a maximum of 10°C.
• The soldering temperature and time should not exceed
260°C for more than 10 seconds.
• When shifting from preheating to soldering, the maximum
temperature gradient shall be 5°C or less.
• After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used since the use of forced
cooling will increase the temperature gradient and will
result in latent failure due to mechanical stress.
• Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
TYPICAL SOLDER HEATING PROFILE
For any given circuit board, there will be a group of control
settings that will give the desired heat pattern. The operator
must set temperatures for several heating zones and a figure
for belt speed. Taken together, these control settings make
up a heating “profile” for that particular circuit board. On
machines controlled by a computer, the computer remembers these profiles from one operating session to the next.
Figure 2 shows a typical heating profile for use when
soldering a surface mount device to a printed circuit board.
This profile will vary among soldering systems, but it is a
good starting point. Factors that can affect the profile include
the type of soldering system in use, density and types of
components on the board, type of solder used, and the type
of board or substrate material being used. This profile shows
temperature versus time. The line on the graph shows the
STEP 1
PREHEAT
ZONE 1
“RAMP”
200°C
STEP 2 STEP 3
VENT
HEATING
“SOAK” ZONES 2 & 5
“RAMP”
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES
actual temperature that might be experienced on the surface
of a test board at or near a central solder joint. The two
profiles are based on a high density and a low density board.
The Vitronics SMD310 convection/infrared reflow soldering
system was used to generate this profile. The type of solder
used was 62/36/2 Tin Lead Silver with a melting point
between 177 –189°C. When this type of furnace is used for
solder reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
STEP 4
HEATING
ZONES 3 & 6
“SOAK”
STEP 5
HEATING
ZONES 4 & 7
“SPIKE”
STEP 6
VENT
STEP 7
COOLING
205° TO 219°C
PEAK AT
SOLDER JOINT
170°C
160°C
150°C
150°C
100°C
140°C
100°C
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
50°C
TIME (3 TO 7 MINUTES TOTAL)
TMAX
Figure 2. Typical Solder Heating Profile
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Surface Mount Information
7–11
Footprints for Soldering
0.037
0.95
0.037
0.95
0.037
0.95
0.037
0.95
0.094
2.4
0.079
2.0
0.039
1.0
0.035
0.9
inches
0.031
0.8
0.031
0.8
mm
mm
SOT–23
0.025
0.025
0.65
0.65
ÉÉÉ
ÉÉÉ
ÉÉÉ
0.075
0.5 min. (3x)
1.9
0.035
0.9
0.028
1.4
inches
0.7
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
0.5
0.5 min. (3x)
1
SC–59
inches
mm
SC–70/SOT–323
SOT 416/SC–90
0.15
3.8
0.060
1.52
0.079
2.0
0.091
2.3
0.248
6.3
0.091
2.3
0.079
2.0
0.275
7.0
0.155
4.0
0.024
0.6
0.059
1.5
0.059
1.5
0.059
1.5
0.050
1.270
inches
inches
mm
mm
SOT–223
Surface Mount Information
7–12
SO–14, SO–16
Motorola Small–Signal Transistors, FETs and Diodes Device Data
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
2.36
0.093
4.19
0.165
1.22
0.048
0.4 mm (min)
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
0.91
0.036
mm
inches
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
0.65 mm 0.65 mm
0.5 mm (min)
1.9 mm
SOD–123
SOT–363
(SC–70 6 LEAD)
0.094
2.4
0.037
0.95
0.074
1.9
0.037
0.95
0.028
0.7
0.039
1.0
inches
mm
TSOP–6
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Surface Mount Information
7–13
Package Outline Dimensions
Dimensions are in inches unless otherwise noted.
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSION D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
B
R
P
L
F
SEATING
PLANE
K
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
SECTION X–X
1
N
N
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
STYLE 14:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
STYLE 2:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 15:
PIN 1. ANODE 1
2. CATHODE
3. ANODE 2
STYLE 3:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
STYLE 17:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
STYLE 21:
PIN 1. COLLECTOR
2. EMITTER
3. BASE
STYLE 5:
PIN 1. DRAIN
2. SOURCE
3. GATE
STYLE 22:
PIN 1. SOURCE
2. GATE
3. DRAIN
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.022
0.016
0.019
0.045
0.055
0.095
0.105
0.015
0.020
0.500
–––
0.250
–––
0.080
0.105
–––
0.100
0.115
–––
0.135
–––
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.41
0.55
0.41
0.48
1.15
1.39
2.42
2.66
0.39
0.50
12.70
–––
6.35
–––
2.04
2.66
–––
2.54
2.93
–––
3.43
–––
STYLE 7:
PIN 1. SOURCE
2. DRAIN
3. GATE
STYLE 30:
PIN 1. DRAIN
2. GATE
3. SOURCE
CASE 029–04
(TO–226AA) TO–92
PLASTIC
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSIONS D AND J APPLY BETWEEN L AND K
MIMIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIMENSION K MINIMUM.
B
R
SEATING
PLANE
P
L
F
K
X X
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
D
G
H
J
V
1 2 3
N C
SECTION X–X
N
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
STYLE 14:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
INCHES
MIN
MAX
0.175
0.205
0.290
0.310
0.125
0.165
0.018
0.022
0.016
0.019
0.045
0.055
0.095
0.105
0.018
0.024
0.500
–––
0.250
–––
0.080
0.105
–––
0.100
0.135
–––
0.135
–––
MILLIMETERS
MIN
MAX
4.44
5.21
7.37
7.87
3.18
4.19
0.46
0.56
0.41
0.48
1.15
1.39
2.42
2.66
0.46
0.61
12.70
–––
6.35
–––
2.04
2.66
–––
2.54
3.43
–––
3.43
–––
STYLE 22:
PIN 1. SOURCE
2. GATE
3. DRAIN
CASE 029–05
(TO–226AE) TO–92
1–WATT PLASTIC
Package Outline Dimensions
8–2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE OUTLINE DIMENSIONS (continued)
B
NOTES:
1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B
AND LENGTH A. HEAT SLUGS, IF ANY, SHALL BE
INCLUDED WITHIN THIS CYLINDER, BUT SHALL
NOT BE SUBJECT TO THE MIN LIMIT OF DIA B.
2. LEAD DIA NOT CONTROLLED IN ZONES F, TO
ALLOW FOR FLASH, LEAD FINISH BUILDUP,
AND MINOR IRREGULARITIES OTHER THAN
HEAT SLUGS.
D
K
F
A
DIM
A
B
D
F
K
F
K
MILLIMETERS
MIN
MAX
5.84
7.62
2.16
2.72
0.46
0.56
–––
1.27
25.40
38.10
INCHES
MIN
MAX
0.230
0.300
0.085
0.107
0.018
0.022
–––
0.050
1.000
1.500
All JEDEC dimensions and notes apply.
CASE 51–02
(DO–204AA)
DO–7
A
B
R
SEATING
PLANE
ÉÉ
ÉÉ
D
P
L
F
K
J
SECTION X–X
X X
D
G
H
V
1
2
C
N
N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND ZONE R IS
UNCONTROLLED.
4. DIMENSION F APPLIES BETWEEN P AND L.
DIMENSIONS D AND J APPLY BETWEEN L AND K
MINIMUM. LEAD DIMENSION IS UNCONTROLLED
IN P AND BEYOND DIM K MINIMUM.
DIM
A
B
C
D
F
G
H
J
K
L
N
P
R
V
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.022
0.016
0.019
0.050 BSC
0.100 BSC
0.014
0.016
0.500
–––
0.250
–––
0.080
0.105
–––
0.050
0.115
–––
0.135
–––
MILLIMETERS
MIN
MAX
4.45
5.21
4.32
5.33
3.18
4.49
0.41
0.56
0.407
0.482
1.27 BSC
3.54 BSC
0.36
0.41
12.70
–––
6.35
–––
2.03
2.66
–––
1.27
2.93
–––
3.43
–––
STYLE 1:
PIN 1. ANODE
2. CATHODE
CASE 182–02
(T0–226AC) TO–92
PLASTIC
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Package Outline Dimensions
8–3
PACKAGE OUTLINE DIMENSIONS (continued)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIUMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS OF
BASE MATERIAL.
A
L
3
B S
1
DIM
A
B
C
D
G
H
J
K
L
S
V
2
V
G
C
H
D
STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE
STYLE 12:
PIN 1. CATHODE
2. CATHODE
3. ANODE
J
K
STYLE 10:
PIN 1. DRAIN
2. SOURCE
3. GATE
STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 18:
PIN 1. NO CONNECTION
2. CATHODE
3. ANODE
INCHES
MIN
MAX
0.1102 0.1197
0.0472 0.0551
0.0350 0.0440
0.0150 0.0200
0.0701 0.0807
0.0005 0.0040
0.0034 0.0070
0.0140 0.0285
0.0350 0.0401
0.0830 0.1039
0.0177 0.0236
STYLE 19:
PIN 1. CATHODE
2. ANODE
3. CATHODE–ANODE
MILLIMETERS
MIN
MAX
2.80
3.04
1.20
1.40
0.89
1.11
0.37
0.50
1.78
2.04
0.013
0.100
0.085
0.177
0.35
0.69
0.89
1.02
2.10
2.64
0.45
0.60
STYLE 11:
PIN 1. ANODE
2. CATHODE
3. CATHODE–ANODE
STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN
CASE 318–08
(TO–236AB) SOT–23
PLASTIC
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
L
3
S
2
DIM
A
B
C
D
G
H
J
K
L
S
B
1
D
G
J
C
H
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
MILLIMETERS
MIN
MAX
2.70
3.10
1.30
1.70
1.00
1.30
0.35
0.50
1.70
2.10
0.013
0.100
0.09
0.18
0.20
0.60
1.25
1.65
2.50
3.00
INCHES
MIN
MAX
0.1063 0.1220
0.0512 0.0669
0.0394 0.0511
0.0138 0.0196
0.0670 0.0826
0.0005 0.0040
0.0034 0.0070
0.0079 0.0236
0.0493 0.0649
0.0985 0.1181
K
STYLE 2:
PIN 1. N.C.
2. ANODE
3. CATHODE
STYLE 3:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 4:
PIN 1. N.C.
2. CATHODE
3. ANODE
STYLE 5:
PIN 1. CATHODE
2. CATHODE
3. ANODE
CASE 318D–04
SC–59
Package Outline Dimensions
8–4
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE OUTLINE DIMENSIONS (continued)
A
F
NOTES:
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
4. CONTROLLING DIMENSION: INCH.
4
S
INCHES
DIM MIN
MAX
A
0.249
0.263
B
0.130
0.145
C
0.060
0.068
D
0.024
0.035
F
0.115
0.126
G
0.087
0.094
H 0.0008 0.0040
J
0.009
0.014
K
0.060
0.078
L
0.033
0.041
M
0_
10 _
S
0.264
0.287
B
1
2
3
D
L
G
J
C
0.08 (0003)
M
H
MILLIMETERS
MIN
MAX
6.30
6.70
3.30
3.70
1.50
1.75
0.60
0.89
2.90
3.20
2.20
2.40
0.020
0.100
0.24
0.35
1.50
2.00
0.85
1.05
0_
10 _
6.70
7.30
K
STYLE 1:
PIN 1.
2.
3.
4.
BASE
COLLECTOR
EMITTER
COLLECTOR
STYLE 2:
PIN 1.
2.
3.
4.
ANODE
CATHODE
NC
CATHODE
STYLE 3:
PIN 1.
2.
3.
4.
GATE
DRAIN
SOURCE
DRAIN
CASE 318E–04
SOT–223
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.
L
6
5
4
2
3
B
S
1
D
G
M
J
C
0.05 (0.002)
H
K
DIM
A
B
C
D
G
H
J
K
L
M
S
MILLIMETERS
MIN
MAX
2.90
3.10
1.30
1.70
0.90
1.10
0.25
0.50
0.85
1.05
0.013
0.100
0.10
0.26
0.20
0.60
1.25
1.55
0_
10 _
2.50
3.00
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
INCHES
MIN
MAX
0.1142 0.1220
0.0512 0.0669
0.0354 0.0433
0.0098 0.0197
0.0335 0.0413
0.0005 0.0040
0.0040 0.0102
0.0079 0.0236
0.0493 0.0610
0_
10 _
0.0985 0.1181
DRAIN
DRAIN
GATE
SOURCE
DRAIN
DRAIN
CASE 318G–02
TSOP–6
PLASTIC
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Package Outline Dimensions
8–5
PACKAGE OUTLINE DIMENSIONS (continued)
A
L
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3
B
S
1
2
DIM
A
B
C
D
G
H
J
K
L
N
R
S
V
D
V
G
R N
C
0.05 (0.002)
J
K
H
STYLE 2:
PIN 1. ANODE
2. N.C.
3. CATHODE
STYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 7:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
STYLE 9:
PIN 1. ANODE
2. CATHODE
3. CATHODE–ANODE
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.035
0.049
0.012
0.016
0.047
0.055
0.000
0.004
0.004
0.010
0.017 REF
0.026 BSC
0.028 REF
0.031
0.039
0.079
0.087
0.012
0.016
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.90
1.25
0.30
0.40
1.20
1.40
0.00
0.10
0.10
0.25
0.425 REF
0.650 BSC
0.700 REF
0.80
1.00
2.00
2.20
0.30
0.40
STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 10:
PIN 1. CATHODE
2. ANODE
3. ANODE–CATHODE
CASE 419–02
SC–70/SOT–323
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
G
V
6
5
4
1
2
3
DIM
A
B
C
D
G
H
J
K
N
S
V
–B–
S
D 6 PL
0.2 (0.008)
M
B
M
N
J
C
H
K
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
–––
0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
0.012
0.016
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
EMITTER 2
BASE 2
COLLECTOR 1
EMITTER 1
BASE 1
COLLECTOR 2
STYLE 6:
PIN 1.
2.
3.
4.
5.
6.
ANODE 2
N/C
CATHODE 1
ANODE 1
N/C
CATHODE 2
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
–––
0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
0.30
0.40
CASE 419B-01
SOT–363
Package Outline Dimensions
8–6
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE OUTLINE DIMENSIONS (continued)
A
C
ÂÂÂ
ÂÂÂ
ÂÂÂ
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
H
1
K
DIM
A
B
C
D
E
H
J
K
B
INCHES
MIN
MAX
0.055
0.071
0.100
0.112
0.037
0.053
0.020
0.028
0.004
–––
0.000
0.004
–––
0.006
0.140
0.152
MILLIMETERS
MIN
MAX
1.40
1.80
2.55
2.85
0.95
1.35
0.50
0.70
0.25
–––
0.00
0.10
–––
0.15
3.55
3.85
E
2
STYLE 1:
PIN 1. CATHODE
2. ANODE
J
D
CASE 425–04
SOD–123
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
–A–
S
2
3
D 3 PL
0.20 (0.008)
G –B–
1
M
B
K
J
0.20 (0.008) A
MILLIMETERS
MIN
MAX
0.70
0.80
1.40
1.80
0.60
0.90
0.15
0.30
1.00 BSC
–––
0.10
0.10
0.25
1.45
1.75
0.10
0.20
0.50 BSC
INCHES
MIN
MAX
0.028
0.031
0.055
0.071
0.024
0.035
0.006
0.012
0.039 BSC
–––
0.004
0.004
0.010
0.057
0.069
0.004
0.008
0.020 BSC
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
C
L
DIM
A
B
C
D
G
H
J
K
L
S
STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
H
CASE 463–01
SOT–416/SC–90
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Package Outline Dimensions
8–7
PACKAGE OUTLINE DIMENSIONS (continued)
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
CASE 646–06
14–PIN DIP
PLASTIC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
16
9
1
8
B
F
C
L
S
–T–
SEATING
PLANE
K
H
G
D
M
J
16 PL
0.25 (0.010)
M
T A
M
DIM
A
B
C
D
F
G
H
J
K
L
M
S
INCHES
MIN
MAX
0.740
0.770
0.250
0.270
0.145
0.175
0.015
0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008
0.015
0.110
0.130
0.295
0.305
0_
10 _
0.020
0.040
MILLIMETERS
MIN
MAX
18.80
19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
CASE 648–08
16–PIN DIP
PLASTIC
Package Outline Dimensions
8–8
Motorola Small–Signal Transistors, FETs and Diodes Device Data
PACKAGE OUTLINE DIMENSIONS (continued)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
B
M
R X 45 _
C
F
–T–
0.25 (0.010)
M
J
M
K
D 14 PL
SEATING
PLANE
T B
A
S
S
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
CASE 751A–03
SO–14
PLASTIC
–A–
16
9
1
8
–B–
P
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
8 PL
0.25 (0.010)
B
M
S
G
R
K
F
X 45 _
C
–T–
SEATING
PLANE
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
CASE 751B–05
SO–16
PLASTIC
Motorola Small–Signal Transistors, FETs and Diodes Device Data
Package Outline Dimensions
8–9