[ /Title
(IRFR9
220,
IRFU92
20)
/Subject
(3.6A,
200V,
1.500
Ohm,
P-Channel
Power
MOSFETs)
/Author
()
/Keywords
(Harris
Semiconductor, PChannel
Power
MOSFETs,
TO251AA,
TO252AA)
/Creator ()
/DOCI
IRFR9220,
IRFU9220
Semiconductor
3.6A, 200V, 1.500 Ohm,
P-Channel Power MOSFETs
September 1998
Features
Description
• 3.6A, 200V
These are advanced power MOSFETs designed, tested, and
guaranteed to withstand a specific level of energy in the avalanche breakdown mode of operation. These are P-Channel
enhancement-mode silicon gate power field-effect transistors designed for applications such as switching regulators,
switching converters, motor drivers, relay drivers, and drivers
for high-power bipolar switching transistors requiring high
speed and low gate-drive power. These types can be operated directly from integrated circuits.
• rDS(ON) = 1.500Ω
• Temperature Compensating PSPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
PART NUMBER
PACKAGE
BRAND
IRFR9220
TO-252AA
IF9220
IRFU9220
TO-251AA
IF9220
Formerly developmental type TA17502.
Symbol
D
NOTE: When ordering use the entire part number. Add the suffix 9A
to obtain the TO-252AA variant in tape and reel, e.g., IRFR92209A.
G
S
Packaging
JEDEC TO-251AA
JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN (FLANGE)
DRAIN (FLANGE)
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.
Copyright
© Harris Corporation 1998
6-1
File Number
4015.2
IRFR9220, IRFU9220
TC = 25oC, Unless Otherwise Specified
Absolute Maximum Ratings
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Continuous Drain Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Single Pulse Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
IRFR9220, IRFU9220
-200
-200
±20
3.6
Refer to Peak Current Curve
Refer to UIS Curve
42
0.33
-55 to 150
UNITS
V
V
V
A
300
260
oC
oC
W
W/oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 125oC.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
Drain to Source Breakdown Voltage
BVDSS
Gate to Threshold Voltage
VGS(TH) VGS = VDS, ID = 250µA
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
Drain to Source On Resistance (Note 2)
Turn-On Time
-200
-
-
V
-
-4.0
V
-
-25
µA
VDS = 0.8 x Rated BVDSS, VGS = 0V, TC = 150oC
-
-
-250
µA
VGS = ±20V
-
-
±100
nA
-
-
1.500
Ω
-
-
50
ns
-
8.8
-
ns
-
27
-
ns
td(OFF)
-
7.3
-
ns
tf
-
19
-
ns
tOFF
-
-
50
ns
-
20
-
nC
IGSS
rDS(ON) ID = 2.2A, VGS = -10V (Figure 9)
td(ON)
Fall Time
Total Gate Charge
UNITS
-
tr
Turn-Off Time
MAX
-2.0
Rise Time
Turn-Off Delay Time
TYP
VDS = Rated BVDSS, VGS = 0V
IDSS
tON
Turn-On Delay Time
ID = 250µA, VGS = 0V
MIN
VDD = -100V, ID = 3.9A
RL = 24Ω, VGS = -10V
RGS = 18Ω
(Figures 13, 16, 17)
Qg(TOT) VGS = 0 to -10V
Gate to Drain Charge
Qgd
Gate to Source Charge
Qgs
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
Thermal Resistance Junction to Case
Thermal Resistance Junction to Ambient
VDD = -160V,
ID = 3.9A,
RL = 41Ω
IG(REF) = 1.45mA
-
11
-
nC
-
3.3
-
nC
-
550
-
pF
-
110
-
pF
CRSS
-
33
-
pF
RθJC
-
-
3.00
oC/W
RθJA
-
-
100
oC/W
MIN
TYP
MAX
UNITS
VDS = -25V, VGS = 0V, f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage (Note 2)
Diode Reverse Recovery Time
Reverse Recovery Charge
SYMBOL
VSD
trr
TEST CONDITIONS
ISD = -3.6A
-
-
-6.3
V
ISD = -3.6A, dISD/dt = -100A/µs
-
150
300
ns
0.97
2.0
µC
QRR
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
6-2
IRFR9220, IRFU9220
Typical Performance Curves
Unless Otherwise Specified
POWER DISSIPATION MULTIPLIER
1.2
-4
ID , DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
-3
-2
-1
0.2
0
0
0
25
50
75
100
TC , CASE TEMPERATURE (oC)
125
150
50
75
100
125
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
ZθJC , TRANSIENT THERMAL IMPEDANCE
25
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
10
0.5
1
0.2
0.1
PDM
0.05
0.1
t1
0.02
0.01
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
t1 , RECTANGULAR PULSE DURATION (s)
100
101
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
-50
IDM , PEAK CURRENT CAPABILITY (A)
-20
ID , DRAIN CURRENT (A)
-10
100µs
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
-1
10ms
100ms
DC
TC = 25oC
TJ = MAX RATED
-0.1
-1
VDSS MAX = -200V
-10
-100
VDS , DRAIN TO SOURCE VOLTAGE (V)
FOR TEMPERATURES ABOVE 25oC
DERATE PEAK CURRENT
CAPABILITY AS FOLLOWS:
-10
VGS = -10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
-1
10-5
-500
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
150 – T C
I = I 25 -----------------------
125
VGS = -20V
10-4
10-3
10-2
10-1
t, PULSE WIDTH (s)
TC = 25oC
100
FIGURE 5. PEAK CURRENT CAPABILITY
6-3
101
IRFR9220, IRFU9220
Typical Performance Curves
Unless Otherwise Specified (Continued)
-10
-5
STARTING TJ = 25oC
STARTING TJ = 150oC
If R = 0
tAV = (L) (IAS) / (1.3 RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R) ln [(IAS*R) / (1.3 RATED BVDSS - VDD) + 1]
-1
0.01
-3
VGS = -6V
-2
PULSE DURATION = 250µs, TC = 25oC
-1
VGS = -5V
VGS = -4.5V
0
0.1
1
tAV , TIME IN AVALANCHE (ms)
0
10
NORMALIZED ON RESISTANCE
-55oC
25oC
-4
150oC
-2
-2
-3
-4
-4.5
-6.0
-7.5
-5
-6
PULSE DURATION = 250µs
VGS = -10V
ID = -2.2A
2.0
1.5
1.0
0.5
0
-1
-3.0
FIGURE 7. SATURATION CHARACTERISTICS
2.5
PULSE DURATION = 250µs
DUTY CYCLE = 0.5% MAX
VDD = -15V
0
-1.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
-8
-6
VGS = -7V
VGS = -20V
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
IDS(ON), DRAIN TO SOURCE CURRENT (A)
VGS = -10V
-4
ID, DRAIN CURRENT (A)
IAS , AVALANCHE CURRENT (A)
VGS = -8V
0
-80
-7
-40
0
40
80
120
160
TJ , JUNCTION TEMPERATURE (oC)
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 8. TRANSFER CHARACTERISTICS
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
2.0
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
2.0
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
1.5
1.0
0.5
0
-80
ID = 250µA
1.5
1.0
0.5
0
-80
-40
0
40
80
120
-40
0
40
80
120
160
TJ , JUNCTION TEMPERATURE (oC)
160
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
TEMPERATURE
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs TEMPERATURE
6-4
IRFR9220, IRFU9220
Typical Performance Curves
Unless Otherwise Specified (Continued)
VDS , DRAIN TO SOURCE VOLTAGE (V)
-200
C, CAPACITANCE (pF)
600
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
400
300
COSS
100
CRSS
0
0
-10.0
VDD = BVDSS
-8.0
-160
CISS
500
200
VDD = BVDSS
-5
-10
-15
-20
VDS , DRAIN TO SOURCE VOLTAGE (V)
-120
RL = 51Ω
IG(REF) = -1.45mA
VGS = -10V
-80
0.75 BVDSS 0.75 BVDSS
-6.0
-4.0
0.50 BVDSS 0.50 BVDSS
0.25 BVDSS 0.25 BVDSS
-2.0
-40
0
-25
20
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
IG(REF)
t, TIME (µs)
IG(ACT)
80
0.0
IG(REF)
IG(ACT)
NOTE: Refer to Application Notes AN7254 and AN7260.
FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
tAV
L
0
VARY tP TO OBTAIN
REQUIRED PEAK IAS
-
RG
+
0V
VGS
VDD
DUT
VDD
tP
IAS
IAS
VDS
tP
0.01Ω
BVDSS
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(OFF)
td(ON)
tr
0
RL
DUT
VGS
RG
+
10%
10%
VDS
VDD
tf
VGS
0
90%
90%
10%
50%
50%
PULSE WIDTH
90%
FIGURE 16. SWITCHING TIME TEST CIRCUIT
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
6-5
VGS , GATE TO SOURCE VOLTAGE (V)
700
IRFR9220, IRFU9220
Test Circuits and Waveforms
(Continued)
-VDS
(ISOLATED
SUPPLY)
CURRENT
REGULATOR
0
VDS
DUT
12V
BATTERY
0.2µF
50kΩ
0.3µF
Qgs
Qg(TOT)
DUT
G
VGS
Qgd
D
VDD
0
S
Ig(REF)
IG CURRENT
SAMPLING
RESISTOR
0
+VDS
ID CURRENT
SAMPLING
RESISTOR
Ig(REF)
FIGURE 19. GATE CHARGE WAVEFORMS
FIGURE 18. GATE CHARGE TEST CIRCUIT
6-6
IRFR9220, IRFU9220
PSPICE Electrical Model
.SUBCKT IRFU9220 2 1 3
REV 9/6/94
CA 12 8 723e-12
CB 15 14 733e-12
CIN 6 8 517e-12
RLDRAIN
DPLCAP
5
DRAIN
2
10
DBODY 5 7 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 6 DPLCAPMOD
LDRAIN
RSCL2
EBREAK 7 11 17 18 -244.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 5 10 8 6 1
EVTO 20 6 8 18 1
ESG
+
IT 8 17 1
LDRAIN 2 5 1e-9
LGATE 1 9 2.609e-9
LSOURCE 3 7 2.609e-9
RLGATE
+
ESCL
RDRAIN
-
16
VTO +
21
6
11
+
EBREAK
17
18
MOS2
DBODY
MOS1
LGATE
RIN
CIN
RLSOURCE
MOS1 16 6 8 8 MOSMOD M=0.99
MOS2 16 21 8 8 MOSMOD M=0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 50 16 RDSMOD 1.194
RGATE 9 20 2.17
RIN 6 8 1e9
RLDRAIN 2 5 10
RLGATE 1 9 26.09
RLSOURCE 3 7 26.09
RSCL1 5 51 RSCLMOD 1e-6
RSCL2 5 50 1e3
RSOURCE 8 7 RDSMOD 90.1e-3
RVTO 18 19 RVTOMOD 1
DBREAK
50
6
8
-
18
20 8
9
5
51
EVTO
RGATE
GATE
1
RSCL1
+ 51
8
RSOURCE
7
3
SOURCE
LSOURCE
S1A
12
S2A
13
8
S1B
14
13
13
15
17
RBREAK
S2B
18
RVTO
CB
CA
IT
+
6
EGS
8
-
+
EDS
-
14
5
8
19
-
VBAT
+
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 -0.77
ESCL 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/4.6,6))}
.MODEL DBDMOD D (IS=2.56e-14 RS=8.09e-2 TRS1=-2.45e-3 TRS2=-1.33e-5 CJO=4.21e-10 TT=1.17e-7)
.MODEL DBKMOD D (RS=5.07 TRS1=-1.05e-3 TRS2=1.28e-5)
.MODEL DPLCAPMOD D (CJO=170e-12 IS=1e-30 N=10)
.MODEL MOSMOD PMOS (VTO=-3.58 KP=1.38 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL RBKMOD RES (TC1=1.1e-3 TC2=-2.73e-6)
.MODEL RDSMOD RES (TC1=6.95e-3 TC2=2.23e-5)
.MODEL RSCLMOD RES (TC1=2.40e-3 TC2=-1.5e-5)
.MODEL RVTOMOD RES (TC1=-3.27e-3 TC2=-1.33e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=5.29 VOFF=3.29)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=3.29 VOFF=5.29)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.1 VOFF=-4.9)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.9 VOFF=0.1)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
6-7