0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
C3M0120065D

C3M0120065D

  • 厂商:

    WOLFSPEED

  • 封装:

    TO-247-3

  • 描述:

    650V 120M SIC MOSFET

  • 详情介绍
  • 数据手册
  • 价格&库存
C3M0120065D 数据手册
C3M0120065D VDS 650 V ID @ 25˚C Silicon Carbide Power MOSFET TM C3M MOSFET Technology RDS(on) 22 A 120 mΩ N-Channel Enhancement Mode Features • • • • • Package 3rd Generation SiC MOSFET technology High blocking voltage with low on-resistance High speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant Benefits • • • • • • Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency Easy to parallel and simple to drive Enable new hard switching PFC topologies (Totem-Pole) Applications • • • • • Solar inverters DC/DC converters Switch Mode Power Supplies EV battery chargers UPS Part Number Package Marking C3M0120065D TO-247-3 C3M0120065D Maximum Ratings Symbol VDSS Drain - Source Voltage, TC = 25 ˚C VGS Gate - Source voltage (Under transient events < 100 ns) ID ID(pulse) PD TJ , Tstg 1 Parameter Value Unit 650 V -8/+19 V Fig. 29 A Fig. 19 Continuous Drain Current, VGS = 15 V, TC = 25˚C 22 Continuous Drain Current, VGS = 15 V, TC = 100˚C 16 Pulsed Drain Current, Pulse width tP limited by Tjmax 51 A Power Dissipation, TC=25˚C, TJ = 175 ˚C 98 W -40 to +175 ˚C Operating Junction and Storage Temperature TL Solder Temperature, 1.6mm (0.063”) from case for 10s 260 ˚C Md Mounting Torque, (M3 or 6-32 screw) 1 8.8 Nm lbf-in C3M0120065D Rev 1, 01-2021 Note Fig. 20 Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol V(BR)DSS Parameter Drain-Source Breakdown Voltage Min. Typ. Max. 650 Unit V VGSon Gate-Source Recommended Turn-On Voltage 15 V VGSoff Gate-Source Recommended Turn-Off Voltage -4 V VGS(th) Gate Threshold Voltage 1.8 2.3 3.6 1.9 Test Conditions VGS = 0 V, ID = 100 μA Static V VDS = VGS, ID = 1.86 mA V VDS = VGS, ID = 1.86 mA, TJ = 175ºC IDSS Zero Gate Voltage Drain Current 1 50 μA VDS = 650 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 120 157 RDS(on) Drain-Source On-State Resistance 168 5.0 gfs Transconductance Ciss Input Capacitance 640 Coss Output Capacitance 45 Crss Reverse Transfer Capacitance 2.3 Co(er) Effective Output Capacitance (Energy Related) 57 Co(tr) Effective Output Capacitance (Time Related) 79 Eoss Coss Stored Energy 4.3 EON Turn-On Switching Energy (Body Diode) 71 EOFF Turn Off Switching Energy (Body Diode) 8 EON Turn-On Switching Energy (External Diode) 57 EOFF Turn Off Switching Energy (External Diode) 7 td(on) Turn-On Delay Time 7 Rise Time 17 Turn-Off Delay Time 13 Fall Time 8 Internal Gate Resistance 6 Qgs Gate to Source Charge 7 Qgd Gate to Drain Charge 11 Qg Total Gate Charge 28 tr td(off) tf RG(int) 4.9 mΩ S VGS = 15 V, ID = 6.76 A VGS = 15 V, ID = 6.76 A, TJ = 175ºC VDS= 20 V, IDS= 6.76 A VDS= 20 V, IDS= 6.76 A, TJ = 175ºC VGS = 0 V, VDS = 0V to 400 V F = 1 Mhz pF C3M0120065D Rev 1, 01-2021 Fig. 29 Fig. 11 Fig. 4, 5,6 Fig. 7 Fig. 17, 18 VAC = 25 mV VGS = 0 V, VDS = 0V to 400 V Note: 1 Note: 1 μJ VDS = 400 V, F = 1 Mhz Fig. 16 μJ VDS = 400 V, VGS = -4 V/15 V, ID = 6.76 A, RG(ext) = 10 Ω, L= 237 μH, TJ = 175ºC Fig. 25 FWD = Internal Body Diode of MOSFET μJ VDS = 400 V, VGS = -4 V/15 V, ID = 6.76 A, RG(ext) = 10 Ω, L= 237 μH, TJ = 175ºC Fig. 25 FWD = External SiC DIODE ns VDD = 400 V, VGS = -4 V/15 V ID = 6.76 A, RG(ext) = 10 Ω Timing relative to VDS Inductive load Ω f = 1 MHz, VAC = 25 mV nC VDS = 400 V, VGS = -4 V/15 V ID = 6.76 A Per IEC60747-8-4 pg 21 Note (1): Co(er), a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V Co(tr), a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V 2 Note Fig. 26 Fig. 12 Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Typ. Diode Forward Voltage Max. Unit Test Conditions 4.5 V VGS = -4 V, ISD = 3.4 A, TJ = 25 °C 4.0 V VGS = -4 V, ISD = 3.4 A, TJ = 175 °C Continuous Diode Forward Current 16 A VGS = -4 V, TC = 25˚C Diode pulse Current 51 A VGS = -4 V, pulse width tP limited by Tjmax trr Reverse Recover time 18 ns Qrr Reverse Recovery Charge 81 nC Irrm Peak Reverse Recovery Current 7 A trr Reverse Recover time 25 ns Qrr Reverse Recovery Charge 76 nC Irrm Peak Reverse Recovery Current 4 A Note Fig. 8, 9, 10 VGS = -4 V, ISD = 6.76 A, VR = 400 V dif/dt = 2160 A/µs, TJ = 175 °C VGS = -4 V, ISD = 6.76 A, VR = 400 V dif/dt = 900 A/µs, TJ = 175 °C Thermal Characteristics Symbol 3 Parameter Typ. RθJC Thermal Resistance from Junction to Case 1.53 RθJA Thermal Resistance From Junction to Ambient C3M0120065D Rev 1, 01-2021 40 Unit °C/W Test Conditions Note Fig. 21 Typical Performance 40 35 40 VGS = 13V VGS = 11V 30 25 20 15 VGS = 9V 10 5 0 2.0 4.0 6.0 8.0 10.0 30 25 VGS = 9V 20 15 10 VGS = 7V 0 12.0 0.0 2.0 4.0 Figure 1. Output Characteristics TJ = -40 ºC VGS = 11V VGS = 15V 30 VGS = 9V 25 20 15 VGS = 7V 10 5 0 1.4 1.0 0.8 0.6 0.4 0.2 0.0 2.0 4.0 6.0 8.0 10.0 0.0 12.0 -50 -25 0 300 300 Conditions: VGS = 15 V tp < 200 µs 200 Tj = 175 °C 150 Tj = -40 °C Tj = 25 °C 100 50 0 0 5 10 15 20 25 30 Drain-Source Current, IDS (A) 35 Figure 5. On-Resistance vs. Drain Current For Various Temperatures C3M0120065D Rev 1, 01-2021 50 75 100 125 150 175 Conditions: IDS = 6.8 A tp < 200 µs 250 On Resistance, RDS On (mOhms) 250 25 Junction Temperature, Tj (°C) Figure 4. Normalized On-Resistance vs. Temperature Figure 3. Output Characteristics TJ = 175 ºC On Resistance, RDS On (mOhms) 12.0 1.2 Drain-Source Voltage, VDS (V) 4 10.0 Conditions: IDS = 6.8 A VGS = 15 V tp < 200 µs 1.6 On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 35 VGS = 13V 8.0 Figure 2. Output Characteristics TJ = 25 ºC 1.8 Conditions: Tj = 175 °C tp = < 200 µs 6.0 Drain-Source Voltage, VDS (V) Drain-Source Voltage, VDS (V) 40 VGS = 11V VGS = 13V 5 VGS = 7V 0.0 VGS = 15V Conditions: Tj = 25 °C tp = < 200 µs 35 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) VGS = 15V Conditions: Tj = -40 °C tp = < 200 µs 40 45 200 VGS = 11 V 150 VGS = 13 V 100 VGS = 15 V 50 0 -50 -25 0 25 50 75 100 Junction Temperature, Tj (°C) 125 Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 150 175 Typical Performance -10 Conditions: VDS = 20 V tp < 200 µs 30 TJ = 175 °C TJ = -40 °C TJ = 25 °C 20 -8 -6 10 -4 -2 0 0 -5 VGS = -4 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 40 -10 VGS = 0 V -15 VGS = -2 V -20 -25 -30 0 0 2 4 6 8 10 12 Conditions: Tj = -40°C tp < 200 µs 14 Figure 7. Transfer Characteristic for Various Junction Temperatures -4 Figure 8. Body Diode Characteristic at -40 ºC -2 0 0 -5 VGS = -4 V VGS = 0 V -10 -15 VGS = -2 V -20 -25 -10 -8 -6 -4 -2 0 VGS = 0 V -10 -15 VGS = -2 V -20 -25 -30 Conditions: Tj = 25°C tp < 200 µs Drain-Source Voltage VDS (V) -30 Conditions: Tj = 175°C tp < 200 µs -35 -40 Drain-Source Voltage VDS (V) Figure 9. Body Diode Characteristic at 25 ºC 4.0 16 -40 2.5 2.0 1.5 1.0 Conditions: IDS = 6.76 A IGS = 50 mA VDS = 400 V TJ = 25 °C 12 Gate-Source Voltage, VGS (V) 3.0 Threshold Voltage, Vth (V) -35 Figure 10. Body Diode Characteristic at 175 ºC Conditons VGS = VDS IDS = 1.86mA 3.5 0 -5 VGS = -4 V Drain-Source Current, IDS (A) -6 Drain-Source Current, IDS (A) -8 -40 Drain-Source Voltage VDS (V) Gate-Source Voltage, VGS (V) -10 -35 8 4 0 0.5 0.0 -50 -25 0 25 50 75 100 Junction Temperature TJ (°C) 125 Figure 11. Threshold Voltage vs. Temperature 5 C3M0120065D Rev 1, 01-2021 150 175 -4 0 5 10 15 20 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 25 30 Typical Performance -6 -2 -4 0 0 -5 VGS = 0 V VGS = 5 V -10 -15 -20 VGS = 10 V -25 VGS = 15 V -10 -8 -6 -2 -4 0 VGS = 0 V VGS = 5 V -10 -15 VGS = 10 V -30 Conditions: Tj = 25 °C tp < 200 µs -35 -40 Drain-Source Voltage VDS (V) -8 -6 -4 -2 12 0 10 -10 VGS = 10 V -15 -20 VGS = 15 V -25 Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) -5 VGS = 5 V Drain-Source Voltage VDS (V) 8 6 4 2 -30 Conditions: Tj = 175 °C tp < 200 µs -35 0 -40 0 100 Figure 15. 3rd Quadrant Characteristic at 175 ºC Ciss 100 200 300 400 500 600 Drain to Source Voltage, VDS (V) 700 Figure 16. Output Capacitor Stored Energy 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Coss 10 Ciss Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Capacitance (pF) Capacitance (pF) 1000 -40 Figure 14. 3rd Quadrant Characteristic at 25 ºC 0 VGS = 0 V -35 Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -40 ºC -10 100 Coss 10 Crss Crss 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 6 C3M0120065D Rev 1, 01-2021 -20 -25 VGS = 15 V -30 Conditions: Tj = -40 °C tp < 200 µs 0 -5 Drain-Source Current, IDS (A) -8 Drain-Source Current, IDS (A) -10 200 1 0 100 200 300 400 Drain-Source Voltage, VDS (V) 500 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 650V) 600 Typical Performance 100 Conditions: TJ ≤ 175 °C 20 15 10 5 0 -50 -25 0 25 50 75 100 Case Temperature, TC (°C) 125 150 Conditions: TJ ≤ 175 °C 90 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 25 80 70 60 50 40 30 20 10 0 175 -50 Figure 19. Continuous Drain Current Derating vs. Case Temperature -25 0 25 50 75 100 125 Case Temperature, TC (°C) 150 175 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 1 0.5 Limited by RDS On Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) 100.00 0.3 0.1 0.05 100E-3 0.02 0.01 10 µs 100 µs 1.00 1 ms 100 ms 0.10 0.01 1E-6 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 1 Figure 21. Transient Thermal Impedance (Junction - Case) 100 Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 10 Ω VGS = -4/+15 V FWD = C3M0120065D L = 237 μH 175 150 125 1 10 100 1000 Drain-Source Voltage, VDS (V) Conditions: TJ = 25 °C VDD = 400 V IDS = 6.76 A VGS = -4/+15 V FWD = C3M0120065D L = 237 μH 90 ETotal 80 70 EOn 100 75 50 ETotal EOn 60 50 40 30 20 EOff 25 0 0.1 Figure 22. Safe Operating Area Switching Loss (uJ) 200 Switching Loss (uJ) Conditions: TC = 25 °C D = 0, Parameter: tp SinglePulse 10E-3 EOff 10 0 2 4 6 8 10 Drain to Source Current, IDS (A) 12 14 Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V) 7 1 µs 10.00 C3M0120065D Rev 1, 01-2021 16 0 0 5 10 15 External Gate Resistor RG(ext) (Ohms) 20 Figure 24. Clamped Inductive Switching Energy vs. RG(ext) 25 Typical Performance 100 Switching Loss (uJ) 40 Conditions: IDS = 6.76 A VDD = 400 V RG(ext) = 10 Ω VGS = -4/+15 V L = 237 μH FWD = C3M0120065D FWD = C3D16065D 80 Conditions: TJ = 25 °C VDD = 400 V IDS = 6.76 A VGS = -4/+15 V FWD = C3M0120065D 30 ETotal EOn ETotal with Schottky 60 EOn with Schottky 40 Switching Times (ns) 120 tr td(off) 20 tf td(on) 10 20 0 EOff EOff with Schottky 0 25 50 75 100 125 Junction Temperature, TJ (°C) 150 175 Figure 25. Clamped Inductive Switching Energy vs. Temperature 8 C3M0120065D Rev 1, 01-2021 200 0 0 5 10 15 External Gate Resistor RG(ext) (Ohms) Figure 26. Switching Times vs. RG(ext) 20 25 Test Circuit Schematic D1 L=156 uH LL= 57.6 µH L==135 237µH uH VDC C4D10120A C4D20120A C3D16065D 10A,1200V 1200V 20A, 16A, 650V SiC Schottky Schottky SiC CDC=42.3 uF Q2 RG D.U.T D.U.T C3M0060065K C3M0015065K C3M0120065D C3M0015065D C2M0080120D Figure 27. Clamped Inductive Switching Waveform Test Circuit Q1 RG L = 57.6 µH µH LL= = 135 237uH uH L=156 VDC CDC=42.3 uF D.U.T C3M0060065K C3M0015065K C3M0120065D D.U.T C3M0015065D C2M0080120D VGS = �-�V 5V RG Q2 C3M0015065K C3M0015065D C3M0120065D C3M0060065K C2M0080120D Figure 28. Body Diode Recovery Test Circuit 19 V 15 V VGSon VGS 0V VGSoff -4 V t < 100ns -8 V 3 CREE CONFIDENTIAL & PROPRIETARY © 2018 Cree, Inc. All rights reserved. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc. Figure 29. VGS Waveform Example 9 C3M0120065D Rev 1, 01-2021 Package Dimensions POS Package TO-247-3 A T V U W Pinout Information: • • • Pin 1 = Gate Pin 2, 4 = Drain Pin 3 = Source Recommended Solder Pad Layout TO-247-3 10 C3M0120065D Rev 1, 01-2021 Inches Millimeters Min Max Min Max .190 .205 4.83 5.21 A1 .090 .100 2.29 2.54 A2 .075 .085 1.91 2.16 b .042 .052 1.07 1.33 b1 .075 .095 1.91 2.41 b2 .075 .085 1.91 2.16 b3 .113 .133 2.87 3.38 b4 .113 .123 2.87 3.13 c .022 .027 0.55 0.68 D .819 .831 20.80 21.10 D1 .640 .695 16.25 17.65 D2 .037 .049 0.95 1.25 E .620 .635 15.75 16.13 E1 .516 .557 13.10 14.15 E2 .145 .201 3.68 5.10 E3 .039 .075 1.00 1.90 E4 .487 .529 12.38 13.43 e .214 BSC N 3 5.44 BSC 3 L .780 .800 19.81 20.32 L1 .161 .173 4.10 4.40 ØP .138 .144 3.51 3.65 Q .216 .236 5.49 6.00 S .238 .248 6.04 6.30 T 9˚ 11˚ 9˚ 11˚ U 9˚ 11˚ 9˚ 11˚ V 2˚ 8˚ 2˚ 8˚ W 2˚ 8˚ 2˚ 8˚ Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • • SPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright © 2021 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 11 C3M0120065D Rev 1, 01-2021 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.wolfspeed.com/power
C3M0120065D
物料型号:C3M0120065D 封装类型:TO-247-3

器件简介: - 采用第三代SiC MOSFET技术 - N-Channel Enhancement Mode - 650V阻断电压,低导通电阻 - 高速开关,低电容 - 快速内置二极管,低反向恢复电荷(Qrr) - 无卤素,符合RoHS标准

参数特性: - 连续漏极电流(@25°C):22A - 导通电阻(RDS(on)):120mΩ - 漏极-源极电压(Vpss):650V - 栅极-源极电压(VGs):-8V至+19V

功能详解: - 提供更高的系统效率 - 降低冷却需求 - 增加功率密度 - 提升系统开关频率 - 易于并联,驱动简单 - 支持新型硬开关PFC拓扑(Totem-Pole)

应用信息: - 太阳能逆变器 - DC/DC转换器 - 开关模式电源 - 电动汽车电池充电器 - 不间断电源(UPS)

封装信息: - 符合RoHS标准 - 无卤素

电气特性和热特性表格提供了详细的操作条件和测试条件下的参数,如漏极-源极击穿电压、栅极阈值电压、导通电阻、输入电容、输出电容等。

文档还包含了性能图表,如输出特性、导通电阻与温度和漏极电流的关系、转移特性、体二极管特性、阈值电压与温度的关系、栅极电荷特性等。
C3M0120065D 价格&库存

很抱歉,暂时无法提供与“C3M0120065D”相匹配的价格&库存,您可以联系我们找货

免费人工找货
C3M0120065D
    •  国内价格
    • 1+56.23560
    • 10+48.96720
    • 30+44.52840
    • 90+40.81320

    库存:113