C3M0045065K
VDS
650 V
ID @ 25˚C
Silicon Carbide Power MOSFET
TM
C3M MOSFET Technology
49 A
RDS(on)
45 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
•
•
Package
C3MTM SiC MOSFET technology
Optimized package with separate driver source pin
8mm of creepage distance between drain and source
High blocking voltage with low on-resistance
High-speed switching with low capacitances
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
Benefits
•
•
•
•
•
Drain
(Pin 1, TAB)
Reduce switching losses and minimize gate ringing
Higher system efficiency
Reduce cooling requirements
Increase power density
Increase system switching frequency
Gate
(Pin 4)
Driver
Source
(Pin 3)
Applications
•
•
•
•
•
•
EV chargers
Server & Telecom PSU
UPS
Solar inverters
SMPS
DC/DC converters
Power
Source
(Pin 2)
Part Number
Package
Marking
C3M0045065K
TO 247-4
C3M0045065K
Maximum Ratings
Symbol
VDSS
Drain - Source Voltage, TC = 25 ˚C
VGS
Gate - Source voltage (Under transient events < 100 ns)
ID
ID(pulse)
PD
TJ , Tstg
1
Parameter
Value
Unit
650
V
-8/+19
V
Fig. 29
A
Fig. 19
Continuous Drain Current, VGS = 15 V, TC = 25˚C
49
Continuous Drain Current, VGS = 15 V, TC = 100˚C
35
Pulsed Drain Current, Pulse width tP limited by Tjmax
132
A
Power Dissipation, TC=25˚C, TJ = 175 ˚C
176
W
-40 to
+175
˚C
Operating Junction and Storage Temperature
TL
Solder Temperature, 1.6mm (0.063”) from case for 10s
260
˚C
Md
Mounting Torque, (M3 or 6-32 screw)
1
8.8
Nm
lbf-in
C3M0045065K Rev 1, 12-2020
Note
Fig. 20
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Parameter
Symbol
V(BR)DSS
Drain-Source Breakdown Voltage
Min.
Typ.
Max.
650
Unit
V
VGSon
Gate-Source Recommended Turn-On Voltage
15
V
VGSoff
Gate-Source Recommended Turn-Off Voltage
-4
V
VGS(th)
Gate Threshold Voltage
1.8
2.6
3.6
2.2
Test Conditions
VGS = 0 V, ID = 100 μA
Static
V
VDS = VGS, ID = 4.84 mA
V
VDS = VGS, ID = 4.84 mA, TJ = 175ºC
IDSS
Zero Gate Voltage Drain Current
1
50
μA
VDS = 650 V, VGS = 0 V
IGSS
Gate-Source Leakage Current
10
250
nA
VGS = 15 V, VDS = 0 V
45
60
RDS(on)
Drain-Source On-State Resistance
61
12
gfs
Transconductance
Ciss
Input Capacitance
1621
Coss
Output Capacitance
101
Crss
Reverse Transfer Capacitance
Co(er)
Effective Output Capacitance (Energy Related)
126
Co(tr)
Effective Output Capacitance (Time Related)
178
Eoss
Coss Stored Energy
20
EON
Turn-On Switching Energy (Body Diode)
57
11
8
EOFF
Turn Off Switching Energy (Body Diode)
14
EON
Turn-On Switching Energy (External Diode)
44
EOFF
Turn Off Switching Energy (External Diode)
14
td(on)
Turn-On Delay Time
9
Rise Time
12
Turn-Off Delay Time
18
Fall Time
6
tr
td(off)
tf
RG(int)
Internal Gate Resistance
3
Qgs
Gate to Source Charge
21
Qgd
Gate to Drain Charge
18
Qg
Total Gate Charge
63
mΩ
S
VGS = 15 V, ID = 17.6 A
VGS = 15 V, ID = 17.6 A, TJ = 175ºC
VDS= 20 V, IDS= 17.6 A
VDS= 20 V, IDS= 17.6 A, TJ = 175ºC
VGS = 0 V, VDS = 0V to 600 V
F = 1 Mhz
pF
C3M0045065K Rev 1, 12-2020
Fig. 29
Fig. 11
Fig. 4,
5,6
Fig. 7
Fig. 17,
18
VAC = 25 mV
VGS = 0 V, VDS = 0V to 400 V
Note: 1
Note: 1
μJ
VDS = 600 V, F = 1 Mhz
Fig. 16
μJ
VDS = 400 V, VGS = -4 V/15 V, ID = 17.6 A,
RG(ext) = 2.5 Ω, L= 99 μH, TJ = 175ºC
Fig. 25
FWD = Internal Body Diode of MOSFET
μJ
VDS = 400 V, VGS = -4 V/15 V, ID = 17.6 A,
RG(ext) = 2.5 Ω, L= 99 μH, TJ = 175ºC
Fig. 25
FWD = External SiC DIODE
ns
VDD = 400 V, VGS = -4 V/15 V
ID = 17.6 A, RG(ext) = 2.5 Ω, L= 99 μH
Timing relative to VDS
Inductive load
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 400 V, VGS = -4 V/15 V
ID = 17.6 A
Per IEC60747-8-4 pg 21
Note (1): Co(er), a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V
Co(tr), a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V
2
Note
Fig. 26
Fig. 12
Reverse Diode Characteristics (TC = 25˚C unless otherwise specified)
Symbol
VSD
IS
IS, pulse
Parameter
Typ.
Diode Forward Voltage
Max.
Unit
Test Conditions
4.8
V
VGS = -4 V, ISD = 8.8 A, TJ = 25 °C
4.2
V
VGS = -4 V, ISD = 8.8 A, TJ = 175 °C
Continuous Diode Forward Current
29
A
VGS = -4 V, TC = 25˚C
Diode pulse Current
132
A
VGS = -4 V, pulse width tP limited by Tjmax
trr
Reverse Recover time
13
ns
Qrr
Reverse Recovery Charge
247
nC
Irrm
Peak Reverse Recovery Current
36
A
trr
Reverse Recover time
18
ns
Qrr
Reverse Recovery Charge
171
nC
Irrm
Peak Reverse Recovery Current
16
A
Note
Fig. 8,
9, 10
VGS = -4 V, ISD = 17.6 A, VR = 400 V
dif/dt = 5215 A/µs, TJ = 175 °C
VGS = -4 V, ISD = 17.6 A, VR = 400 V
dif/dt = 1775 A/µs, TJ = 175 °C
Thermal Characteristics
Symbol
3
Parameter
Typ.
RθJC
Thermal Resistance from Junction to Case
0.85
RθJA
Thermal Resistance From Junction to Ambient
C3M0045065K Rev 1, 12-2020
40
Unit
°C/W
Test Conditions
Note
Fig. 21
Typical Performance
Drain-Source Current, IDS (A)
80
100
VGS = 13V
VGS = 15V
Conditions:
Tj = -40 °C
tp = < 200 µs
60
VGS = 11V
40
VGS = 9V
20
VGS = 15V
Conditions:
Tj = 25 °C
tp = < 200 µs
80
Drain-Source Current, IDS (A)
100
VGS = 13V
VGS = 11V
60
40
VGS = 9V
20
VGS = 7V
VGS = 7V
0
0.0
2.0
4.0
6.0
8.0
10.0
0
12.0
0.0
2.0
4.0
Figure 1. Output Characteristics TJ = -40 ºC
Conditions:
Tj = 175 °C
tp = < 200 µs
Drain-Source Current, IDS (A)
80
8.0
10.0
12.0
Figure 2. Output Characteristics TJ = 25 ºC
2.0
VGS = 15V
VGS = 13V
1.8
VGS = 11V
1.6
60
On Resistance, RDS On (P.U.)
100
6.0
Drain-Source Voltage, VDS (V)
Drain-Source Voltage, VDS (V)
VGS = 9V
40
VGS = 7V
20
Conditions:
IDS = 17.6 A
VGS = 15 V
tp < 200 µs
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
0.0
2.0
4.0
6.0
8.0
10.0
0.0
12.0
-50
-25
0
Drain-Source Voltage, VDS (V)
80
Tj = 175 °C
70
Tj = -40 °C
60
50
Tj = 25 °C
40
30
20
10
0
0
20
40
60
80
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
4
C3M0045065K Rev 1, 12-2020
100
75
100
125
150
175
Conditions:
IDS = 17.6 A
tp < 200 µs
140
On Resistance, RDS On (mOhms)
On Resistance, RDS On (mOhms)
160
Conditions:
VGS = 15 V
tp < 200 µs
90
50
Figure 4. Normalized On-Resistance vs. Temperature
Figure 3. Output Characteristics TJ = 175 ºC
100
25
Junction Temperature, Tvj (°C)
120
120
100
VGS = 11 V
80
VGS = 13 V
60
40
VGS = 15 V
20
0
-50
-25
0
25
50
75
100
Junction Temperature, Tj (°C)
125
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
150
175
Typical Performance
100
90
-8
-6
-4
-2
80
70
TJ = 175 °C
60
50
TJ = -40 °C
TJ = 25 °C
40
30
20
2
3
-20
VGS = -2 V
-40
-60
4
5
6
7
8
9
10
11
12
-6
-4
-2
0
0
-10
-8
-6
-4
-2
0
0
VGS = 0 V
-20
VGS = -2 V
-40
-60
Drain-Source Voltage VDS (V)
Drain-Source Current, IDS (A)
VGS = -4 V
VGS = -4 V
Drain-Source Current, IDS (A)
Figure 8. Body Diode Characteristic at -40 ºC
Conditions:
Tj = 25°C
tp < 200 µs
4.0
VGS = -2 V
-40
-60
-80
Conditions:
Tj = 175°C
tp < 200 µs
-100
Drain-Source Voltage VDS (V)
-80
-100
Figure 10. Body Diode Characteristic at 175 ºC
16
Conditons
VGS = VDS
IDS = 4.84 mA
3.5
-20
VGS = 0 V
Figure 9. Body Diode Characteristic at 25 ºC
2.5
2.0
1.5
1.0
Conditions:
IDS = 17.6 A
IGS = 50 mA
VDS = 400 V
TJ = 25 °C
12
Gate-Source Voltage, VGS (V)
3.0
Threshold Voltage, Vth (V)
-100
Drain-Source Voltage VDS (V)
Figure 7. Transfer Characteristic for
Various Junction Temperatures
-8
-80
Conditions:
Tj = -40°C
tp < 200 µs
Gate-Source Voltage, VGS (V)
-10
0
VGS = 0 V
10
0
0
VGS = -4 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
-10
Conditions:
VDS = 20 V
tp < 200 µs
8
4
0
0.5
0.0
-50
-25
0
25
50
75
100
Junction Temperature TJ (°C)
125
Figure 11. Threshold Voltage vs. Temperature
5
C3M0045065K Rev 1, 12-2020
150
175
-4
0
10
20
30
40
50
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
60
70
Typical Performance
-8
-6
-4
-2
0
0
-8
-20
VGS = 5 V
-40
VGS = 10 V
VGS = 15 V
-60
-4
-2
-40
-80
-100
Drain-Source Voltage VDS (V)
25
0
20
-20
VGS = 5 V
-40
VGS = 10 V
VGS = 15 V
-60
Stored Energy, EOSS (µJ)
Drain-Source Current, IDS (A)
-60
VGS = 15 V
Figure 14. 3rd Quadrant Characteristic at 25 ºC
0
15
10
5
Conditions:
Tj = 175 °C
tp < 200 µs
Drain-Source Voltage VDS (V)
-80
0
-100
0
100
Figure 15. 3rd Quadrant Characteristic at 175 ºC
10000
400
500
700
600
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
Capacitance (pF)
1000
Coss
100
Crss
10
1
300
Drain to Source Voltage, VDS (V)
10000
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
200
Figure 16. Output Capacitor Stored Energy
1000
Capacitance (pF)
0
-20
Conditions:
Tj = 25 °C
tp < 200 µs
VGS = 0 V
0
50
100
Drain-Source Voltage, VDS (V)
C3M0045065K Rev 1, 12-2020
Coss
100
Crss
10
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
6
0
VGS = 10 V
Figure 13. 3rd Quadrant Characteristic at -40 ºC
-6
-2
VGS = 5 V
-100
Drain-Source Voltage VDS (V)
-8
-4
-80
Conditions:
Tj = -40 °C
tp < 200 µs
-10
-6
VGS = 0 V
VGS = 0 V
Drain-Source Current, IDS (A)
-10
Drain-Source Current, IDS (A)
-10
200
1
0
100
300
200
400
Drain-Source Voltage, VDS (V)
500
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 650V)
600
Typical Performance
180
Conditions:
TJ ≤ 175 °C
45
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
50
40
35
30
25
20
15
10
5
0
-50
-25
0
25
50
75
100
125
Case Temperature, TC (°C)
150
Conditions:
TJ ≤ 175 °C
160
140
120
100
80
60
40
20
0
175
-50
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
-25
0
25
50
75
100
125
Case Temperature, TC (°C)
150
175
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
100.00
0.5
Limited by RDS On
0.3
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
1
0.1
100E-3
0.05
0.02
0.01
10E-3
SinglePulse
1E-3
1 µs
10.00
100 µs
1.00
10E-6
100E-6
1E-3
10E-3
Time, tp (s)
100E-3
0.10
1
Figure 21. Transient Thermal Impedance
(Junction - Case)
120
100
Switching Loss (uJ)
300
Conditions:
TJ = 25 °C
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -4/+15 V
FWD = C3M0045065K
L = 99 μH
250
EOn
60
40
EOff
0
5
10
15
20
25
Drain to Source Current, IDS (A)
30
35
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 400V)
7
1
10
100
1000
Drain-Source Voltage, VDS (V)
200
ETotal
EOn
150
100
EOff
50
20
0
0.1
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 17.6 A
VGS = -4/+15 V
FWD = C3M0045065K
L = 99 μH
ETotal
80
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
Figure 22. Safe Operating Area
Switching Loss (uJ)
140
1 ms
100 ms
0.01
1E-6
10 µs
C3M0045065K Rev 1, 12-2020
40
0
0
5
10
15
External Gate Resistor RG(ext) (Ohms)
20
Figure 24. Clamped Inductive Switching Energy vs. RG(ext)
25
Typical Performance
100
Switching Loss (uJ)
70
Conditions:
IDS = 17.6 A
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -4/+15 V
L = 99 μH
FWD = C3M0045065K
FWD = C4D20120A
80
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 17.6 A
VGS = -4/+15 V
FWD = C3M0045065K
60
Switching Times (ns)
120
ETotal
ETotal with Schottky
60
EOn
40
EOn with Schottky
20
EOff with Schottky
50
td(off)
40
tr
30
td(on)
20
tf
10
EOff
0
0
25
50
75
100
125
Junction Temperature, TJ (°C)
150
175
Figure 25. Clamped Inductive Switching Energy vs.
Temperature
8
C3M0045065K Rev 1, 12-2020
200
0
0
5
10
15
External Gate Resistor RG(ext) (Ohms)
Figure 26. Switching Times vs. RG(ext)
20
25
Test Circuit Schematic
D1
L=156
uH
LL=
57.6
µH
L==135
99 µH
uH
VDC
C4D10120A
C4D20120A
10A,1200V
1200V
20A,
SiC Schottky
Schottky
SiC
CDC=42.3 uF
Q2
RG
D.U.T
D.U.T
C3M0060065K
C3M0015065K
C3M0045065K
C2M0080120D
Figure 27. Clamped Inductive Switching
Waveform Test Circuit
Q1
RG
LL
==
57.6
99 µH
uH
L= 135uH
µH
L=156
VDC
D.U.T
C3M0060065K
C3M0015065K
C3M0045065K
D.U.T
C2M0080120D
VGS = --4V
5V
CDC=42.3 uF
Q2
RG
C3M0015065K
C3M0045065K
C3M0060065K
C2M0080120D
Figure 28. Body Diode Recovery Test Circuit
19 V
15 V
VGSon
VGS
0V
VGSoff
-4 V
t < 100ns
-8 V
3
CREE CONFIDENTIAL & PROPRIETARY © 2018 Cree, Inc. All rights reserved. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.
Figure 29. VGS Waveform Example
9
C3M0045065K Rev 1, 12-2020
Package Dimensions
Package TO-247-4L
10
C3M0045065K Rev 1, 12-2020
Package Dimensions
Package TO-247-4L
NOTE ;
1. ALL METAL SURFACES: TIN PLATED, EXCEPT AREA OF CUT
2. DIMENSIONING & TOLERANCEING CONFIRM TO
ASME Y14.5M-1994.
3. ALL DIMENSIONS ARE IN MILLIMETERS.
ANGLES ARE IN DEGREES.
4. ‘N’ IS THE NUMBER OF TERMINAL POSITIONS
11
C3M0045065K Rev 1, 12-2020
Notes
•
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
•
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.
Related Links
•
•
•
SPICE Models: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support
Copyright © 2020 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
12
C3M0045065K Rev 1, 12-2020
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.wolfspeed.com/power