C3M0025065D
VDS
650 V
ID @ 25˚C
Silicon Carbide Power MOSFET
TM
C3M MOSFET Technology
RDS(on)
97 A
25 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
Package
3rd Generation SiC MOSFET technology
High blocking voltage with low on-resistance
High speed switching with low capacitances
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
Benefits
•
•
•
•
•
•
Higher system efficiency
Reduced cooling requirements
Increased power density
Increased system switching frequency
Easy to parallel and simple to drive
Enable new hard switching PFC topologies (Totem-Pole)
Applications
•
•
•
•
•
EV chargers
UPS
Solar inverters
Industrial SMPS
DC/DC converters
Part Number
Package
Marking
C3M0025065D
TO-247-3
C3M0025065D
Maximum Ratings
Symbol
VDSS
Drain - Source Voltage, TC = 25 ˚C
VGS
Gate - Source voltage (Under transient events < 100 ns)
ID
ID(pulse)
PD
TJ , Tstg
1
Parameter
Value
Unit
650
V
-8/+19
V
Fig. 29
A
Fig. 19
Continuous Drain Current, VGS = 15 V, TC = 25˚C
97
Continuous Drain Current, VGS = 15 V, TC = 100˚C
70
Pulsed Drain Current, Pulse width tP limited by Tjmax
251
A
Power Dissipation, TC=25˚C, TJ = 175 ˚C
326
W
-40 to
+175
˚C
Operating Junction and Storage Temperature
TL
Solder Temperature, 1.6mm (0.063”) from case for 10s
260
˚C
Md
Mounting Torque, (M3 or 6-32 screw)
1
8.8
Nm
lbf-in
C3M0025065D Rev 1, 12-2020
Note
Fig. 20
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
V(BR)DSS
Parameter
Drain-Source Breakdown Voltage
Min.
Typ.
Max.
650
Unit
V
VGSon
Gate-Source Recommended Turn-On Voltage
15
V
VGSoff
Gate-Source Recommended Turn-Off Voltage
-4
V
VGS(th)
Gate Threshold Voltage
1.8
2.3
3.6
1.9
Test Conditions
VGS = 0 V, ID = 100 μA
Static
V
VDS = VGS, ID = 9.22 mA
V
VDS = VGS, ID = 9.22 mA, TJ = 175ºC
IDSS
Zero Gate Voltage Drain Current
1
50
μA
VDS = 650 V, VGS = 0 V
IGSS
Gate-Source Leakage Current
10
250
nA
VGS = 15 V, VDS = 0 V
25
34
RDS(on)
Drain-Source On-State Resistance
33
25
gfs
Transconductance
Ciss
Input Capacitance
2980
Coss
Output Capacitance
178
Crss
Reverse Transfer Capacitance
12
Co(er)
Effective Output Capacitance (Energy Related)
236
Co(tr)
Effective Output Capacitance (Time Related)
340
Eoss
Coss Stored Energy
37
EON
Turn-On Switching Energy (Body Diode)
578
EOFF
Turn Off Switching Energy (Body Diode)
214
EON
Turn-On Switching Energy (External Diode)
392
24
EOFF
Turn Off Switching Energy (External Diode)
238
td(on)
Turn-On Delay Time
14
Rise Time
60
Turn-Off Delay Time
27
Fall Time
12
Internal Gate Resistance
1.3
Qgs
Gate to Source Charge
29
Qgd
Gate to Drain Charge
37
Qg
Total Gate Charge
108
tr
td(off)
tf
RG(int)
mΩ
S
VGS = 15 V, ID = 33.5 A
VGS = 15 V, ID = 33.5 A, TJ = 175ºC
VDS= 20 V, IDS= 33.5 A
VDS= 20 V, IDS= 33.5 A, TJ = 175ºC
VGS = 0 V, VDS = 0V to 600 V
F = 1 Mhz
pF
C3M0025065D Rev 1, 12-2020
Fig. 29
Fig. 11
Fig. 4,
5,6
Fig. 7
Fig. 17,
18
VAC = 25 mV
VGS = 0 V, VDS = 0V to 400 V
Note: 1
Note: 1
μJ
VDS = 600 V, F = 1 Mhz
Fig. 16
μJ
VDS = 400 V, VGS = -4 V/15 V, ID = 33.5 A,
RG(ext) = 2.5 Ω, L= 59 μH, TJ = 175ºC
Fig. 25
FWD = Internal Body Diode of MOSFET
μJ
VDS = 400 V, VGS = -4 V/15 V, ID = 33.5 A,
RG(ext) = 2.5 Ω, L= 59 μH, TJ = 175ºC
Fig. 25
FWD = External SiC DIODE
ns
VDD = 400 V, VGS = -4 V/15 V
ID = 33.5 A, RG(ext) = 2.5 Ω
Timing relative to VDS
Inductive load
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 400 V, VGS = -4 V/15 V
ID = 33.5 A
Per IEC60747-8-4 pg 21
Note (1): Co(er), a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V
Co(tr), a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V
2
Note
Fig. 26
Fig. 12
Reverse Diode Characteristics (TC = 25˚C unless otherwise specified)
Symbol
VSD
IS
IS, pulse
Parameter
Typ.
Diode Forward Voltage
Max.
Unit
Test Conditions
5.0
V
VGS = -4 V, ISD = 16.8 A, TJ = 25 °C
4.5
V
VGS = -4 V, ISD = 16.8 A, TJ = 175 °C
Continuous Diode Forward Current
52
A
VGS = -4 V, TC = 25˚C
Diode pulse Current
251
A
VGS = -4 V, pulse width tP limited by Tjmax
trr
Reverse Recover time
33
ns
Qrr
Reverse Recovery Charge
309
nC
Irrm
Peak Reverse Recovery Current
17
A
trr
Reverse Recover time
51
ns
Qrr
Reverse Recovery Charge
261
nC
Irrm
Peak Reverse Recovery Current
12
A
Note
Fig. 8,
9, 10
VGS = -4 V, ISD = 33.5 A, VR = 400 V
dif/dt = 745 A/µs, TJ = 175 °C
VGS = -4 V, ISD = 33.5 A, VR = 400 V
dif/dt = 685 A/µs, TJ = 175 °C
Thermal Characteristics
Symbol
3
Parameter
Typ.
RθJC
Thermal Resistance from Junction to Case
0.46
RθJA
Thermal Resistance From Junction to Ambient
C3M0025065D Rev 1, 12-2020
40
Unit
°C/W
Test Conditions
Note
Fig. 21
Typical Performance
Conditions:
Tj = -40 °C
tp = < 200 µs
Drain-Source Current, IDS (A)
120
VGS = 15V
140
VGS = 11V
VGS = 13V
100
80
60
VGS = 9V
40
20
0
2.0
4.0
6.0
8.0
10.0
100
VGS = 9V
80
60
40
VGS = 7V
0
12.0
0.0
2.0
4.0
Figure 1. Output Characteristics TJ = -40 ºC
Drain-Source Current, IDS (A)
120
2.0
VGS = 15V
VGS = 11V
VGS = 13V
1.6
80
60
VGS = 7V
40
20
1.2
1.0
0.8
0.6
0.4
0.2
0.0
2.0
4.0
6.0
8.0
10.0
0.0
12.0
-50
-25
0
50
Tj = 175 °C
35
Tj = -40 °C
30
25
Tj = 25 °C
20
15
10
5
0
20
75
100
125
40
60
80
100
Drain-Source Current, IDS (A)
120
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
C3M0025065D Rev 1, 12-2020
150
175
Conditions:
IDS = 33.5 A
tp < 200 µs
60
On Resistance, RDS On (mOhms)
On Resistance, RDS On (mOhms)
40
50
70
Conditions:
VGS = 15 V
tp < 200 µs
45
25
Junction Temperature, Tj (°C)
Figure 4. Normalized On-Resistance vs. Temperature
Figure 3. Output Characteristics TJ = 175 ºC
4
12.0
1.4
Drain-Source Voltage, VDS (V)
0
10.0
Conditions:
IDS = 33.5 A
VGS = 15 V
tp < 200 µs
1.8
VGS = 9V
100
0
8.0
Figure 2. Output Characteristics TJ = 25 ºC
On Resistance, RDS On (P.U.)
Conditions:
Tj = 175 °C
tp = < 200 µs
6.0
Drain-Source Voltage, VDS (V)
Drain-Source Voltage, VDS (V)
140
VGS = 11V
VGS = 13V
20
VGS = 7V
0.0
VGS = 15V
Conditions:
Tj = 25 °C
tp = < 200 µs
120
Drain-Source Current, IDS (A)
140
140
160
50
VGS = 11 V
40
VGS = 13 V
30
VGS = 15 V
20
10
0
-50
-25
0
25
50
75
100
Junction Temperature, Tj (°C)
125
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
150
175
Typical Performance
140
-8
-6
-4
-2
0
VGS = -4 V
100
TJ = 175 °C
TJ = -40 °C
80
TJ = 25 °C
60
40
VGS = 0 V
-40
-60
VGS = -2 V
-80
-100
20
0
0
2
4
6
8
10
12
14
-4
Figure 8. Body Diode Characteristic at -40 ºC
-2
0
VGS = -4 V
0
Drain-Source Current, IDS (A)
-20
VGS = 0 V
-40
VGS = -2 V
-60
-80
-100
Conditions:
Tj = 25°C
tp < 200 µs
Drain-Source Voltage VDS (V)
-10
-8
Drain-Source Current, IDS (A)
-6
4.0
-4
-2
0
0
-20
VGS = 0 V
-40
-60
VGS = -2 V
-80
-100
-120
Conditions:
Tj = 175°C
tp < 200 µs
-140
Drain-Source Voltage VDS (V)
-120
-140
Figure 10. Body Diode Characteristic at 175 ºC
16
Conditons
VGS = VDS
IDS = 9.22mA
3.5
-6
VGS = -4 V
Figure 9. Body Diode Characteristic at 25 ºC
2.5
2.0
1.5
1.0
Conditions:
IDS = 33.5 A
IGS = 50 mA
VDS = 400 V
TJ = 25 °C
12
Gate-Source Voltage, VGS (V)
3.0
Threshold Voltage, Vth (V)
-140
Drain-Source Voltage VDS (V)
Figure 7. Transfer Characteristic for
Various Junction Temperatures
-8
-120
Conditions:
Tj = -40°C
tp < 200 µs
Gate-Source Voltage, VGS (V)
-10
0
-20
Drain-Source Current, IDS (A)
120
Drain-Source Current, IDS (A)
-10
Conditions:
VDS = 20 V
tp < 200 µs
8
4
0
0.5
0.0
-50
-25
0
25
50
75
100
Junction Temperature TJ (°C)
125
Figure 11. Threshold Voltage vs. Temperature
5
C3M0025065D Rev 1, 12-2020
150
175
-4
0
20
40
60
80
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
100
120
Typical Performance
-8
-6
-2
-4
0
Drain-Source Current, IDS (A)
VGS = 0 V
0
-20
VGS = 5 V
-40
-60
VGS = 10 V
-80
VGS = 15 V
-100
Conditions:
Tj = -40 °C
tp < 200 µs
-10
-8
VGS = 0 V
-4
-2
-60
-80
VGS = 15 V
Drain-Source Voltage VDS (V)
Drain-Source Current, IDS (A)
-60
-80
VGS = 15 V
Drain-Source Voltage VDS (V)
40
35
30
25
20
15
10
5
-120
0
-140
0
100
Figure 15. 3rd Quadrant Characteristic at 175 ºC
10000
500
600
700
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
Capacitance (pF)
Capacitance (pF)
400
1000
Coss
100
Crss
10
Coss
100
Crss
10
0
50
100
Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
6
300
Drain to Source Voltage, VDS (V)
10000
1000
1
200
Figure 16. Output Capacitor Stored Energy
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
-140
45
-100
Conditions:
Tj = 175 °C
tp < 200 µs
-120
50
0
-40
VGS = 10 V
-100
Figure 14. 3rd Quadrant Characteristic at 25 ºC
-20
VGS = 5 V
-20
VGS = 10 V
-140
0
VGS = 0 V
0
VGS = 5 V
Conditions:
Tj = 25 °C
tp < 200 µs
Stored Energy, EOSS (µJ)
-6
0
-40
Figure 13. 3rd Quadrant Characteristic at -40 ºC
-8
-2
-4
-120
Drain-Source Voltage VDS (V)
-10
-6
Drain-Source Current, IDS (A)
-10
C3M0025065D Rev 1, 12-2020
200
1
0
100
200
300
400
500
Drain-Source Voltage, VDS (V)
600
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 650V)
700
Typical Performance
350
Conditions:
TJ ≤ 175 °C
90
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
100
80
70
60
50
40
30
20
10
0
-50
-25
0
25
50
75
100
125
Case Temperature, TC (°C)
150
Conditions:
TJ ≤ 175 °C
300
250
200
150
100
50
0
175
-50
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
0.5
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
25
50
75
100
125
Case Temperature, TC (°C)
150
175
1000.00
0.3
100E-3
0.1
0.05
0.02
10E-3
0.01
SinglePulse
100.00
10E-6
100E-6
1E-3
Time, tp (s)
10E-3
100E-3
1 ms
100 ms
0.10
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
0.1
1
10
100
1000
Drain-Source Voltage, VDS (V)
Figure 22. Safe Operating Area
Conditions:
TJ = 25 °C
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -4/+15 V
FWD = C3M0025065D
L = 59 μH
2
10 µs
1.00
1
ETotal
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 33.5 A
VGS = -4/+15 V
FWD = C3M0025065D
L = 59 μH
1.4
1.2
EOn
1.5
Switching Loss (mJ)
2.5
1 µs
100 µs
0.01
1E-6
Limited by RDS On
10.00
Figure 21. Transient Thermal Impedance
(Junction - Case)
Switching Loss (mJ)
0
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
1
1E-3
-25
1
EOff
1
ETotal
EOn
0.8
0.6
EOff
0.4
0.5
0.2
0
0
10
20
30
40
50
Drain to Source Current, IDS (A)
60
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 400V)
7
C3M0025065D Rev 1, 12-2020
70
0
0
5
10
15
External Gate Resistor RG(ext) (Ohms)
20
Figure 24. Clamped Inductive Switching Energy vs. RG(ext)
25
Typical Performance
1
Switching Loss (mJ)
120
Conditions:
IDS = 33.5 A
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -4/+15 V
L = 59 μH
FWD = C3M0025065D
FWD = C3D16065A
0.8
ETotal
ETotal with Schottky
0.6
EOn
EOn with Schottky
0.4
80
tr
td(off)
60
40
tf
td(on)
EOff with Schottky
EOff
0.2
0
0
25
50
75
100
125
Junction Temperature, TJ (°C)
150
175
Figure 25. Clamped Inductive Switching Energy vs.
Temperature
8
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 33.5 A
VGS = -4/+15 V
FWD = C3M0025065D
100
Switching Times (ns)
1.2
C3M0025065D Rev 1, 12-2020
20
200
0
0
5
10
15
External Gate Resistor RG(ext) (Ohms)
Figure 26. Switching Times vs. RG(ext)
20
25
Test Circuit Schematic
D1
L=156
uH
LL=
57.6
µH
µH
L==135
59 uH
VDC
C4D10120A
C4D20120A
C3D16065A
10A,1200V
1200V
20A,
16A,
650V
SiC Schottky
Schottky
SiC
CDC=42.3 uF
Q2
RG
D.U.T
D.U.T
C3M0060065K
C3M0015065K
C3M0025065D
C3M0015065D
C2M0080120D
Figure 27. Clamped Inductive Switching
Waveform Test Circuit
Q1
RG
LL==57.6
µH
59 uH
L= 135uH
µH
L=156
VDC
CDC=42.3 uF
D.U.T
C3M0060065K
C3M0015065K
C3M0025065D
D.U.T
C3M0015065D
C2M0080120D
VGS = �-�V
5V
RG
Q2
C3M0015065K
C3M0015065D
C3M0025065D
C3M0060065K
C2M0080120D
Figure 28. Body Diode Recovery Test Circuit
19 V
15 V
VGSon
VGS
0V
VGSoff
-4 V
t < 100ns
-8 V
3
CREE CONFIDENTIAL & PROPRIETARY © 2018 Cree, Inc. All rights reserved. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo are registered trademarks of Cree, Inc.
Figure 29. VGS Waveform Example
9
C3M0025065D Rev 1, 12-2020
Package Dimensions
POS
Package TO-247-3
A
T
V
U
W
Pinout Information:
•
•
•
Pin 1 = Gate
Pin 2, 4 = Drain
Pin 3 = Source
Recommended Solder Pad Layout
TO-247-3
10
C3M0025065D Rev 1, 12-2020
Inches
Millimeters
Min
Max
Min
Max
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
E2
.145
.201
3.68
5.10
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
N
3
5.44 BSC
3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
T
9˚
11˚
9˚
11˚
U
9˚
11˚
9˚
11˚
V
2˚
8˚
2˚
8˚
W
2˚
8˚
2˚
8˚
Notes
•
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
•
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.
Related Links
•
•
•
SPICE Models: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support
Copyright © 2020 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
11
C3M0025065D Rev 1, 12-2020
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.wolfspeed.com/power