1N5985B Series
500 mW DO-35 Hermetically
Sealed Glass Zener Voltage
Regulators
This is a complete series of 500 mW Zener diodes with limits and
excellent operating characteristics that reflect the superior capabilities
of silicon–oxide passivated junctions. All this in an axial–lead
hermetically sealed glass package that offers protection in all common
environmental conditions.
http://onsemi.com
Cathode
Anode
Specification Features:
• Zener Voltage Range – 2.4 V to 20 V
• ESD Rating of Class 3 (>16 KV) per Human Body Model
• DO–204AH (DO–35) Package – Smaller than Conventional
DO–204AA Package
• Double Slug Type Construction
• Metallurgical Bonded Construction
AXIAL LEAD
CASE 299
GLASS
Mechanical Characteristics:
CASE: Double slug type, hermetically sealed glass
FINISH: All external surfaces are corrosion resistant and leads are
MARKING DIAGRAM
readily solderable
L
1N
xx
xxB
YWW
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:
230°C, 1/16″ from the case for 10 seconds
POLARITY: Cathode indicated by polarity band
MOUNTING POSITION: Any
L
= Assembly Location
1NxxxxB = Device Code
= (See Table Next Page)
Y
= Year
WW
= Work Week
MAXIMUM RATINGS (Note 1.)
Rating
Max. Steady State Power Dissipation
@ TL ≤ 75°C, Lead Length = 3/8″
Derate above 75°C
Operating and Storage
Temperature Range
Symbol
Value
Unit
PD
500
mW
4.0
mW/°C
–65 to
+200
°C
TJ, Tstg
ORDERING INFORMATION
Device
Package
Shipping
1NxxxxB
Axial Lead
3000 Units/Box
1NxxxxBRL
Axial Lead
5000/Tape & Reel
1NxxxxBRL2 *
Axial Lead
5000/Tape & Reel
1NxxxxBTA
Axial Lead
5000/Ammo Pack
1NxxxxBTA2 *
Axial Lead
5000/Tape & Reel
1NxxxxBRR1
Axial Lead
3000/Tape & Reel
1NxxxxBRR2
Axial Lead
3000/Tape & Reel
1. Some part number series have lower JEDEC registered ratings.
* The “2” suffix refers to 26 mm tape spacing.
Polarity band up with cathode lead off first
Polarity band down with cathode lead off first
Devices listed in bold, italic are ON Semiconductor
Preferred devices. Preferred devices are recommended
choices for future use and best overall value.
Semiconductor Components Industries, LLC, 2001
May, 2001 – Rev. 1
181
Publication Order Number:
1N5985B/D
1N5985B Series
ELECTRICAL CHARACTERISTICS (TL = 30°C unless
otherwise noted, VF = 1.5 V Max @ IF = 100 mA for all types)
Symbol
I
IF
Parameter
VZ
Reverse Zener Voltage @ IZT
IZT
Reverse Current
ZZT
Maximum Zener Impedance @ IZT
IZK
Reverse Current
ZZK
Maximum Zener Impedance @ IZK
IR
Reverse Leakage Current @ VR
VR
Breakdown Voltage
IF
Forward Current
VF
Forward Voltage @ IF
IZM
Maximum DC Zener Current
VZ VR
V
IR VF
IZT
Zener Voltage Regulator
ELECTRICAL CHARACTERISTICS (TL = 30°C unless otherwise noted, VF = 1.5 V Max @ IF = 100 mA for all types)
Zener Voltage (Note 3.)
VZ (Volts)
Zener Impedance (Note 4.)
@ IZT
ZZT @ IZT
Leakage Current
ZZK @ IZK
IR @ VR
IZM
(Note 5.)
Device
(Note 2.)
Device
Marking
Min
Nom
Max
mA
mA
µA
Volts
mA
1N5985B
1N5987B
1N5988B
1N5990B
1N5991B
1N5985B
1N5987B
1N5988B
1N5990B
1N5991B
2.28
2.85
3.13
3.7
4.08
2.4
3.0
3.3
3.9
4.3
2.52
3.15
3.46
4.09
4.51
5
5
5
5
5
100
95
95
90
88
1800
2000
2200
2400
2500
0.25
0.25
0.25
0.25
0.25
100
50
25
10
5.0
1.0
1.0
1.0
1.0
1.0
208
167
152
128
116
1N5992B
1N5993B
1N5994B
1N5995B
1N5996B
1N5992B
1N5993B
1N5994B
1N5995B
1N5996B
4.46
4.84
5.32
5.89
6.46
4.7
5.1
5.6
6.2
6.8
4.93
5.35
5.88
6.51
7.14
5
5
5
5
5
70
50
25
10
8.0
2200
2050
1800
1300
750
0.25
0.25
0.25
0.25
0.25
3.0
2.0
2.0
1.0
1.0
1.5
2.0
3.0
4.0
5.2
106
98
89
81
74
1N5997B
1N5998B
1N5999B
1N6000B
1N6001B
1N5997B
1N5998B
1N5999B
1N6000B
1N6001B
7.12
7.79
8.64
9.5
10.45
7.5
8.2
9.1
10
11
7.87
8.61
9.55
10.5
11.55
5
5
5
5
5
7.0
7.0
10
15
18
600
600
600
600
600
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.1
0.1
0.1
6.0
6.5
7.0
8.0
8.4
67
61
55
50
45
1N6002B
1N6004B
1N6007B
1N6002B
1N6004B
1N6007B
11.4
14.25
19
12
15
20
12.6
15.75
21
5
5
5
22
32
48
600
600
600
0.25
0.25
0.25
0.1
0.1
0.1
9.1
11
15
42
33
25
2. TOLERANCE AND VOLTAGE DESIGNATION
Tolerance designation – Device tolerance of ±5% is indicated by a “B” suffix.
3. ZENER VOLTAGE (VZ) MEASUREMENT
The zener voltage is measured with the device junction in the thermal equilibrium at the lead temperature (TL) at 30°C ± 1°C and 3/8″ lead
length.
4. ZENER IMPEDANCE (ZZ) DERIVATION
ZZT and ZZK are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for I Z(ac) =
0.1 IZ(dc) with the ac frequency = 1.0 kHz.
5. MAXIMUM ZENER CURRENT RATINGS (IZM)
This data was calculated using nominal voltages. The maximum current handling capability on a worst case basis is limited by the actual
zener voltage at the operation point and the power derating curve.
http://onsemi.com
182
1N5985B Series
PD, STEADY STATE
POWER DISSIPATION (WATTS)
0.7
HEAT
SINKS
0.6
0.5
0.4
3/8"
3/8"
0.3
0.2
0.1
0
0
20
40
60
80
100
120
140
160
TL, LEAD TEMPERATURE (°C)
Figure 1. Steady State Power Derating
http://onsemi.com
183
180
200
1N5985B Series
θ JL , JUNCTIONTOLEAD THERMAL RESISTANCE (°C/W)
APPLICATION NOTE — ZENER VOLTAGE
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to determine
junction temperature under any set of operating conditions
in order to calculate its value. The following procedure is
recommended:
Lead Temperature, TL, should be determined from:
TL = θLAPD + TA.
θLA is the lead-to-ambient thermal resistance (°C/W) and PD
is the power dissipation. The value for θLA will vary and
depends on the device mounting method. θLA is generally 30
to 40°C/W for the various clips and tie points in common use
and for printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the
tie point. The thermal mass connected to the tie point is
normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result of
pulsed operation once steady-state conditions are achieved.
Using the measured value of TL, the junction temperature
may be determined by:
500
400
L
L
300
2.4-60V
200
62-200V
100
0
0
0.2
0.4
0.6
0.8
1
L, LEAD LENGTH TO HEAT SINK (INCH)
Figure 2. Typical Thermal Resistance
1000
7000
5000
TYPICAL LEAKAGE CURRENT
AT 80% OF NOMINAL
BREAKDOWN VOLTAGE
2000
1000
700
500
TJ = TL + ∆TJL.
∆TJL is the increase in junction temperature above the lead
temperature and may be found from Figure 2 for dc power:
200
∆TJL = θJLPD.
I R , LEAKAGE CURRENT (µ A)
For worst-case design, using expected limits of IZ, limits
of PD and the extremes of TJ(∆TJ) may be estimated.
Changes in voltage, VZ, can then be found from:
∆V = θVZTJ.
θVZ, the zener voltage temperature coefficient, is found
from Figures 4 and 5.
Under high power-pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current
excursions as low as possible.
Surge limitations are given in Figure 7. They are lower
than would be expected by considering only junction
temperature, as current crowding effects cause temperatures
to be extremely high in small spots, resulting in device
degradation should the limits of Figure 7 be exceeded.
100
70
50
20
10
7
5
2
1
0.7
0.5
+125°C
0.2
0.1
0.07
0.05
0.02
0.01
0.007
0.005
+25°C
0.002
0.001
3
4
5
6
7
8
9
10
11
12
13
VZ, NOMINAL ZENER VOLTAGE (VOLTS)
Figure 3. Typical Leakage Current
http://onsemi.com
184
14
15
1N5985B Series
TEMPERATURE COEFFICIENTS
+12
θVZ , TEMPERATURE COEFFICIENT (mV/°C)
θVZ , TEMPERATURE COEFFICIENT (mV/°C)
(–55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)
+10
+8
+6
+4
+2
RANGE
0
VZ@IZT
(NOTE 2)
-2
-4
2
3
4
5
6
7
8
9
VZ, ZENER VOLTAGE (VOLTS)
10
11
12
100
70
50
30
20
3
2
1
10
200
180
160
140
100
VZ@IZT
(NOTE 2)
120
130
140
150
160
170
180
190
20
200
+2
20mA
0
0.01mA
1mA
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS
NOTE: CHANGES IN ZENER CURRENT DO NOT
NOTE: AFFECT TEMPERATURE COEFFICIENTS
-2
-4
3
4
C, CAPACITANCE (pF)
C, CAPACITANCE (pF)
100
70
50
200
1V BIAS
20
10
50% OF
VZBIAS
5
7
8
TA=25°C
0 BIAS
30
20
1VOLTBIAS
10
7
5
50% OF VZBIAS
3
2
2
1
6
Figure 5. Effect of Zener Current
0V BIAS
50
5
VZ, ZENER VOLTAGE (VOLTS)
TA=25°C
100
100
VZ@IZ
TA=25°C
+4
Figure 4c. Range for Units 120 to 200 Volts
500
70
+6
VZ, ZENER VOLTAGE (VOLTS)
1000
30
50
VZ, ZENER VOLTAGE (VOLTS)
Figure 4b. Range for Units 12 to 100 Volts
θVZ , TEMPERATURE COEFFICIENT (mV/°C)
θVZ , TEMPERATURE COEFFICIENT (mV/°C)
Figure 4a. Range for Units to 12 Volts
120
VZ@IZ(NOTE 2)
RANGE
10
7
5
1
2
5
10
20
50
1
100
120
VZ, ZENER VOLTAGE (VOLTS)
140
160
180
190
200
220
VZ, ZENER VOLTAGE (VOLTS)
Figure 6a. Typical Capacitance 2.4–100 Volts
Figure 6b. Typical Capacitance 120–200 Volts
http://onsemi.com
185
Ppk , PEAK SURGE POWER (WATTS)
1N5985B Series
100
70
50
RECTANGULAR
WAVEFORM
TJ=25°C PRIOR TO
INITIAL PULSE
11V-91V NONREPETITIVE
5% DUTY CYCLE
30
1.8V-10V NONREPETITIVE
20
10
7
5
10% DUTY CYCLE
20% DUTY CYCLE
3
2
1
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
20
50
100
200
500
1000
PW, PULSE WIDTH (ms)
Figure 7a. Maximum Surge Power 1.8–91 Volts
Ppk , PEAK SURGE POWER (WATTS)
RECTANGULAR
WAVEFORM, TJ=25°C
ZZ , DYNAMIC IMPEDANCE (OHMS)
1000
500
1000
700
500
300
200
200
47V
100
100
70
50
30
20
100-200VOLTS NONREPETITIVE
10
7
5
3
2
1
0.01
0.1
1
10
100
27V
50
20
6.2V
10
5
2
1
1000
0.1
0.2
0.5
Figure 7b. Maximum Surge Power DO-204AH
100–200 Volts
5mA
20
20mA
1000
50
100
50
20
75°C
10
25°C
5 150°C
0°C
2
2
20
100
2
1
10
200
10
7
5
1
5
MAXIMUM
MINIMUM
500
I F , FORWARD CURRENT (mA)
ZZ , DYNAMIC IMPEDANCE (OHMS)
100
70
50
2
Figure 8. Effect of Zener Current on
Zener Impedance
TJ=25°C
iZ(rms)=0.1 IZ(dc)
f=60Hz
IZ=1mA
200
1
IZ, ZENER CURRENT (mA)
PW, PULSE WIDTH (ms)
1000
700
500
TJ=25°C
iZ(rms)=0.1 IZ(dc)
f=60Hz
VZ=2.7V
3
5
7
10
20
30
50
70 100
1
0.4
VZ, ZENER VOLTAGE (VOLTS)
0.5
0.6
0.7
0.8
0.9
1
VF, FORWARD VOLTAGE (VOLTS)
Figure 9. Effect of Zener Voltage on Zener Impedance
http://onsemi.com
186
Figure 10. Typical Forward Characteristics
1.1
1N5985B Series
20
10
I Z , ZENER CURRENT (mA)
TA=25°
1
0.1
0.01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
29
30
VZ, ZENER VOLTAGE (VOLTS)
Figure 11. Zener Voltage versus Zener Current — VZ = 1 thru 16 Volts
10
I Z , ZENER CURRENT (mA)
TA=25°
1
0.1
0.01
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VZ, ZENER VOLTAGE (VOLTS)
Figure 12. Zener Voltage versus Zener Current — VZ = 15 thru 30 Volts
http://onsemi.com
187
1N5985B Series
I Z , ZENER CURRENT (mA)
10
TA=25°
1
0.1
0.01
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
250
260
VZ, ZENER VOLTAGE (VOLTS)
Figure 13. Zener Voltage versus Zener Current — VZ = 30 thru 105 Volts
I Z , ZENER CURRENT (mA)
10
1
0.1
0.01
110
120
130
140
150
160
170
180
190
200
210
220
230
240
VZ, ZENER VOLTAGE (VOLTS)
Figure 14. Zener Voltage versus Zener Current — VZ = 110 thru 220 Volts
http://onsemi.com
188