GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
TM
Silicon Carbide Schottky Diode
VRRM
=
IF (TC = 144°C) =
QC
=
Features
•
•
•
•
•
•
•
•
Package
Gen4 Thin Chip Technology for Low VF
Superior Figure of Merit QC*VF
100% Avalanche (UIL) Tested
Enhanced Surge Current Withstand Capability
Temperature Independent Fast Switching
Low Thermal Resistance
Positive Temperature Coefficient of VF
High dV/dt Ruggedness
Case
RoHS
TO-247-2
Advantages
•
•
•
•
•
•
•
•
1200 V
50 A
162 nC
K
REACH
A
Applications
Improved System Efficiency
High System Reliability
Optimal Price Performance
Reduced Cooling Requirements
Increased System Power Density
Zero Reverse Recovery Current
Easy to Parallel without Thermal Runaway
Enables Extremely Fast Switching
•
•
•
•
•
•
•
•
Electric Vehicles and Fast Chargers
Solar Inverters
Train Auxiliary Power Supplies
High frequency Converters
Motor Drives
Induction Heating and Welding
Uninterruptible Power Supplies
Pulsed Power
Absolute Maximum Ratings (At TC = 25°C Unless Otherwise Stated)
Parameter
Repetitive Peak Reverse Voltage
Continuous Forward Current
Symbol
VRRM
IF
Non-Repetitive Peak Forward Surge Current, Half Sine
Wave
IF,SM
Repetitive Peak Forward Surge Current, Half Sine Wave
IF,RM
Non-Repetitive Peak Forward Surge Current
i2t Value
Non-Repetitive Avalanche Energy
Diode Ruggedness
Power Dissipation
Operating and Storage Temperature
Rev 21/Jul
IF,MAX
∫i2dt
EAS
dV/dt
PTOT
T j , T stg
Conditions
TC = 100°C, D = 1
TC = 135°C, D = 1
TC = 144°C, D = 1
TC = 25°C, tP = 10 ms
TC = 150°C, tP = 10 ms
TC = 25°C, tP = 10 ms
TC = 150°C, tP = 10 ms
TC = 25°C, tP = 10 µs
TC = 25°C, tP = 10 ms
L = 0.4 mH, IAS = 50 A
VR = 0 ~ 960 V
TC = 25°C
Values
1200
86
59
50
400
320
240
168
2000
800
452
200
463
-55 to 175
Latest Version at: www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H.pdf
Unit
V
Note
A
Fig. 4
A
A
A
A2s
mJ
V/ns
W
°C
Fig. 3
Page 1 of 7
GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
TM
Electrical Characteristics
Parameter
Symbol
Diode Forward Voltage
VF
Reverse Current
IR
Total Capacitive Charge
QC
Switching Time
tS
Total Capacitance
C
Conditions
Min.
IF = 50 A, Tj = 25°C
IF = 50 A, Tj = 175°C
VR = 1200 V, Tj = 25°C
VR = 1200 V, Tj = 175°C
VR = 400 V
VR = 800 V
IF ≤ IF,MAX
dIF/dt = 200 A/µs
VR = 400 V
VR = 800 V
VR = 1 V, f = 1MHz
VR = 800 V, f = 1MHz
Values
Typ.
1.5
1.9
3
33
111
162
Max.
1.8
30
Unit
Note
V
Fig. 1
µA
Fig. 2
nC
Fig. 7
< 10
ns
1842
108
pF
Fig. 6
Unit
Note
°C/W
g
Nm
Fig. 9
Thermal/Package Characteristics
Parameter
Symbol
Thermal Resistance, Junction - Case
Weight
Mounting Torque
Rev 21/Jul
RthJC
WT
TM
Conditions
Screws to Heatsink
Min.
Values
Typ.
0.32
6.0
Max.
1.1
Latest Version at: www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H.pdf
Page 2 of 7
GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
Figure 1: Typical Forward Characteristics
I F = f(VF,Tj); tP = 250 µs
Figure 3: Power Derating Curves
PTOT = f(TC ); Tj = 175°C
Rev 21/Jul
TM
Figure 2: Typical Reverse Characteristics
I R = f(VR,Tj)
Figure 4: Current Derating Curves (Typical VF)
I F = f(TC ); D = tP/T; Tj ≤ 175°C; fSW > 10kHz
Latest Version at: www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H.pdf
Page 3 of 7
GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
Figure 5: Current Derating Curves (Maximum VF)
I F = f(TC ); D = tP/T; Tj ≤ 175°C; fSW > 10kHz
Figure 7: Typical Capacitive Charge vs Reverse Voltage
Characteristics
QC = f(VR); f = 1MHz
Rev 21/Jul
TM
Figure 6: Typical Junction Capacitance vs Reverse
Voltage Characteristics
C = f(VR); f = 1MHz
Figure 8: Typical Capacitive Energy vs Reverse Voltage
Characteristics
EC = f(VR); f = 1MHz
Latest Version at: www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H.pdf
Page 4 of 7
GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
TM
Figure 9: Transient Thermal Impedance
Zth,jc = f(tP,D); D = tP/T
Figure 10: Forward Curve Model
Forward Curve Model Equation:
I F = (VF - VBI)/RDIFF (A)
Built-In Voltage (VBI):
VBI(Tj) = m × Tj + n (V)
m = -0.00119 (V/°C)
n = 1.01 (V)
Differential Resistance (RDIFF):
1/RDIFF
RDIFF(Tj) = a × Tj2 + b × Tj + c (Ω)
a = 2.37e-07 (Ω/°C2)
b = 3.29e-05 (Ω/°C)
c = 0.00976 (Ω)
VBI
Forward Power Loss Equation:
PLOSS = VBI(Tj) × I AVG + RDIFF(Tj) × I RMS2
I F = f(VF,Tj)
Rev 21/Jul
Latest Version at: www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H.pdf
Page 5 of 7
GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
TM
Package Dimensions
TO-247-2 Package Outline
0.190 (4.83)
0.205 (5.21)
0.620 (15.75)
0.635 (16.13)
0.170 (4.32)
0.216 (5.49)
0.530 (13.46)
0.557 (14.16)
0.059 (1.50)
0.098 (2.49)
0.085 (2.16)
0.108 (2.75)
0.212 (5.39)
0.244 (6.20)
0.047
(1.19)
0.238 (6.04)
0.248 (6.30.)
0.819
0.831
(20.80)
(21.10)
0.640 (16.25)
0.695 (17.65)
Ø 0.140 (3.56)
Ø 0.144 (3.65)
Ø 0.283 (7.19) REF
0.161 (4.10)
0.173 (4.40)
0.780
0.800
(19.81)
(20.32)
0.075 (1.91)
0.094 (2.39)
0.044 (1.12)
0.052 (1.33)
0.214 (5.44) BSC.
Recommended Solder Pad Layout
0.022 (0.55)
0.027 (0.69)
0.090 (2.29)
0.100 (2.55)
Package View
Case (K)
0.120 (3.05)
0.428 (10.88)
0.08 (2.03)
K
A
NOTE
1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.
Rev 21/Jul
Latest Version at: www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H.pdf
Page 6 of 7
GD50MPS12H
1200V 50A SiC Schottky MPS™ Diode
TM
Compliance
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive
2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive
2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.
REACH Compliance
REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency
(ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a
GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information
(REACH Article 67) is also available upon request.
Disclaimer
GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without
notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or
implied to any intellectual property rights is granted by this document.
Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical,
aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in
death, personal injury and/or property damage.
Related Links
• SPICE Models:
https://www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H_SPICE.zip
• PLECS Models:
https://www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H_PLECS.zip
• CAD Models:
https://www.genesicsemi.com/sic-schottky-mps/GD50MPS12H/GD50MPS12H_3D.zip
• Evaluation Boards: https://www.genesicsemi.com/technical-support
• Reliability:
https://www.genesicsemi.com/reliability
• Compliance:
https://www.genesicsemi.com/compliance
• Quality Manual: https://www.genesicsemi.com/quality
Revision History
• Rev 21/Jul: Updated with most recent test data
• Supersedes: Rev 20/Jul
www.genesicsemi.com/sic-schottky-mps/
Rev 21/Jul
Copyright© 2021 GeneSiC Semiconductor Inc.
All Rights Reserved.
Published by GeneSiC Semiconductor, Inc.
43670 Trade Center Place Suite 155, Dulles, VA 20166; USA
Page 7 of 7