0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MS51FC0AE

MS51FC0AE

  • 厂商:

    NUVOTON(新唐)

  • 封装:

    TSSOP20_6.5X4.4MM

  • 描述:

    8位MUC单片机 TSSOP20_6.5X4.4MM 2KB 2.4~5.5V 8051 24MHz

  • 数据手册
  • 价格&库存
MS51FC0AE 数据手册
MS51 1T 8051 8-bit Microcontroller NuMicro® Family MS51 32K Series MS51FC0AE MS51XC0BE MS51EC0AE MS51TC0AE MS51PC0AE MS51 SERIES DATASHEET Datasheet The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. Nuvoton is providing this document only for reference purposes of NuMicro® microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice. For additional information or questions, please contact: Nuvoton Technology Corporation. www.nuvoton.com Nov. 28, 2019 Page 1 of 80 Rev 1.00 MS51 TABLE OF CONTENTS 1 GENERAL DESCRIPTION .............................................................................. 7 2 FEATURES ...................................................................................................... 8 3 PARTS INFORMATION ................................................................................. 12 3.1 Package Type .............................................................................................................. 12 3.2 MS51 Series Selection Gude .................................................................................... 12 3.3 MS51 Series Selection Code ..................................................................................... 13 4 PIN CONFIGURATION .................................................................................. 14 4.1 MS51 32K Series Multi Function Pin Diagram........................................................ 14 4.1.1 QFN 33-pin Package Pin Diagram ............................................................................. 14 4.1.2 LQFP 32-pin Package Pin Diagram ........................................................................... 15 4.1.3 TSSOP 28-pin Package Pin Diagram ........................................................................ 16 4.1.4 TSSOP 20-pin Package Pin Diagram ........................................................................ 16 4.1.5 QFN 20-pin Package Pin Diagram ............................................................................. 17 4.2 MS51 32K Series Pin Description ............................................................................. 18 5 BLOCK DIAGRAM ......................................................................................... 22 5.1 MS51 32K Series Block Diagram.............................................................................. 22 6 FUNCTIONAL DESCRIPTION ....................................................................... 23 6.1 Memory Organization.................................................................................................. 23 6.1.1 Overview .......................................................................................................................... 23 MS51 SERIES DATASHEET 6.2 Flash Memory Control ................................................................................................ 24 6.2.1 Reset ................................................................................................................................ 24 6.3 General Purpose I/O (GPIO) ..................................................................................... 33 6.4 Timer.............................................................................................................................. 34 6.4.1 Timer/Counter 0 And 1 ................................................................................................... 34 6.4.2 Timer2 And Input Capture ............................................................................................. 34 6.4.3 Timer 3 ............................................................................................................................. 36 6.5 Pulse Width Modulated (PWM) ................................................................................. 37 6.5.1 Overview .......................................................................................................................... 37 6.6 Watchdog Timer (WDT) .............................................................................................. 39 6.6.1 Overview .......................................................................................................................... 39 6.7 Self Wake-Up Timer (WKT) ....................................................................................... 40 6.7.1 Overview .......................................................................................................................... 40 6.8 Serial Port (UART0 & UART1) .................................................................................. 41 6.8.1 Overview .......................................................................................................................... 41 6.9 ISO 7816-3 Interface (SC0~2 & UART2 ~ 4) .......................................................... 42 Nov. 28, 2019 Page 2 of 80 Rev 1.00 MS51 6.9.1 Overview .......................................................................................................................... 42 6.10 2 Inter-Integrated Circuit (I C) ................................................................................. 44 6.10.1 Overview .......................................................................................................................... 44 6.11 Serial Peripheral Interface (SPI) ......................................................................... 45 6.11.1 Overview .......................................................................................................................... 45 6.12 12-Bit Analog-To-Digital Converter (ADC) ......................................................... 48 6.12.1 Overview .......................................................................................................................... 48 7 APPLICATION CIRCUIT ................................................................................ 49 7.1 Power supply scheme................................................................................................. 49 7.2 Peripheral Application scheme .................................................................................. 50 8 ELECTRICAL CHARACTERISTICS.............................................................. 51 8.1 General Operating Conditions ................................................................................... 51 8.2 DC Electrical Characteristics ..................................................................................... 52 8.2.1 Supply Current Characteristics ..................................................................................... 52 8.2.2 Wakeup Time from Low-Power Modes ....................................................................... 54 8.2.3 I/O DC Characteristics ................................................................................................... 55 8.3 AC Electrical Characteristics ..................................................................................... 58 8.3.1 Internal High Speed RC Oscillator (HIRC) ................................................................. 58 8.3.2 External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics 60 8.3.3 External 4~24 MHz High Speed Clock Input Signal Characteristics ...................... 61 8.3.4 10 kHz Internal Low Speed RC Oscillator (LIRC) ..................................................... 62 MS51 SERIES DATASHEET 8.3.5 I/O AC Characteristics ................................................................................................... 63 8.4 Analog Characteristics ................................................................................................ 64 8.4.1 Reset and Power Control Block Characteristics ........................................................ 64 8.4.2 12-bit SAR ADC .............................................................................................................. 65 8.5 Flash DC Electrical Characteristics .......................................................................... 67 8.6 Absolute Maximum Ratings ....................................................................................... 68 8.6.1 Voltage Characteristics .................................................................................................. 68 8.6.2 Current Characteristics .................................................................................................. 68 8.6.3 Thermal Characteristics................................................................................................. 69 8.6.4 EMC Characteristics ...................................................................................................... 70 8.6.5 Package Moisture Sensitivity(MSL) ............................................................................. 71 8.6.6 Soldering Profile ............................................................................................................. 72 9 PACKAGE DIMENSIONS .............................................................................. 73 9.1 QFN 33-pin (4.0 x 4.0 x 0.8 mm) .............................................................................. 73 9.2 LQFP 32-pin (7.0 x 7.0 x 1.4 mm)............................................................................. 74 9.3 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm) ......................................................................... 75 Nov. 28, 2019 Page 3 of 80 Rev 1.00 MS51 9.4 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm) ........................................................................ 76 9.5 QFN 20-pin (3.0 x 3.0 x 0.6mm) .............................................................................. 77 10 ABBREVIATIONS .......................................................................................... 78 10.1 Abbreviations List .................................................................................................. 78 11 REVISION HISTORY ..................................................................................... 79 MS51 SERIES DATASHEET Nov. 28, 2019 Page 4 of 80 Rev 1.00 MS51 LIST OF FIGURES Figure 4.1-1 Pin Assignment of LQFP-32 Package ....................................................................... 14 Figure 4.1-2 Pin Assignment of LQFP-32 Package ....................................................................... 15 Figure 4.1-3 Pin Assignment of TSSOP28 Package ..................................................................... 16 Figure 4.1-4 Pin Assignment of TSSOP20 Package ..................................................................... 16 Figure 4.1-5 Pin Assignment of QFN20 Package .......................................................................... 17 Figure 5.1-1 Functional Block Diagram .......................................................................................... 22 Figure 6.2-1 CONFIG0 Any Reset Reloading ................................................................................ 29 Figure 6.2-2 CONFIG2 Power-On Reset Reloading ...................................................................... 31 Figure 6.4-1 Timer 2 Block Diagram .............................................................................................. 35 Figure 6.4-2 Timer 3 Block Diagram .............................................................................................. 36 Figure 6.7-1 Self Wake-Up Timer Block Diagram .......................................................................... 40 Figure 6.9-1 SC Controller Block Diagram ..................................................................................... 42 Figure 6.11-1 SPI Block Diagram................................................................................................... 45 Figure 6.11-2 SPI Multi-Master, Multi-Slave Interconnection ........................................................ 46 Figure 6.11-3 SPI Single-Master, Single-Slave Interconnection .................................................... 46 ® Figure 7.1-1 NuMicro MS51 Power supply circuit ........................................................................ 49 ® Figure 7.2-1 NuMicro MS51 Peripheral interface circuit .............................................................. 50 Figure 8.6-1 Soldering profile from J-STD-020C ........................................................................... 72 Figure 9.1-1 QFN-33 Package Dimension ..................................................................................... 73 Figure 9.2-1 LQFP-32 Package Dimension ................................................................................... 74 Figure 9.3-1 TSSOP-28 Package Dimension ................................................................................ 75 MS51 SERIES DATASHEET Figure 9.4-1 TSSOP-20 Package Dimension ................................................................................ 76 Figure 9.5-1 QFN-20 Package Dimension for MS51XC0BE ......................................................... 77 Nov. 28, 2019 Page 5 of 80 Rev 1.00 MS51 List of Tables Table 6.5-1 PWM Pin Define And Enable Control Register ........................................................... 38 Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars.......................................... 39 Table 6.9-1 Smart Card or UART Pin Define And Enable Control Register .................................. 43 Table 8.1-1 General operating conditions ...................................................................................... 51 Table 8.2-1 Current consumption in Normal Run mode ................................................................ 52 Table 8.2-2 Current consumption in Idle mode .............................................................................. 53 Table 8.2-3 Chip Current Consumption in Power down mode ...................................................... 53 Table 8.2-4 Low-power mode wakeup timings .............................................................................. 54 Table 8.2-5 I/O input characteristics .............................................................................................. 55 Table 8.2-6 I/O output characteristics ............................................................................................ 56 Table 8.2-7 nRESET Input Characteristics .................................................................................... 57 Table 8.3-1 16 MHz Internal High Speed RC Oscillator(HIRC) characteristics ............................ 58 Table 8.3-2 24MHz Internal High Speed RC Oscillator(HIRC) characteristics .............................. 59 Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator .......................................... 60 Table 8.3-4 External 4~24 MHz High Speed Clock Input Signal ................................................... 61 Table 8.3-5 10 kHz Internal Low Speed RC Oscillator(LIRC) characteristics ............................... 62 Table 8.3-6 I/O AC characteristics ................................................................................................. 63 Table 8.4-1 Reset and power control unit ...................................................................................... 64 Table 8.4-2 Minimum Brown-out Detect Pulse Width .................................................................... 65 Table 8.4-3 ADC characteristics .................................................................................................... 66 Table 8.5-1 Flash memory characteristics ..................................................................................... 67 MS51 SERIES DATASHEET Table 8.6-1 Voltage characteristics ................................................................................................ 68 Table 8.6-2 Current characteristics ................................................................................................ 68 Table 8.6-3 Thermal characteristics ............................................................................................... 69 Table 8.6-4 EMC characteristics .................................................................................................... 70 Table 8.6-5 Package Moisture Sensitivity(MSL) ............................................................................ 71 Table 8.6-6 Soldering Profile.......................................................................................................... 72 Table 10.1-1 List of Abbreviations.................................................................................................. 78 Nov. 28, 2019 Page 6 of 80 Rev 1.00 MS51 1 GENERAL DESCRIPTION The MS51 is an embedded Flash type, 8-bit high performance 1T 8051-based microcontroller. The instruction set is fully compatible with the standard 80C51 and performance enhanced. The MS51 contains a up to 32 Kbytes of main Flash called APROM, in which the contents of User Code resides. The MS51 Flash supports In-Application-Programming (IAP) function, which enables on-chip firmware updates. IAP also makes it possible to configure any block of User Code array to be used as non-volatile data storage, which is written by IAP and read by IAP or MOVC instruction. There is an additional Flash called LDROM, in which the Boot Code normally resides for carrying out InSystem-Programming (ISP). The LDROM size is configurable with a maximum of 4 Kbytes. To facilitate programming and verification, the Flash allows to be programmed and read electronically by parallel Writer or In-Circuit-Programming (ICP). Once the code is confirmed, user can lock the code for security. The MS51 provides rich peripherals including 256 bytes of SRAM, 2 Kbytes of auxiliary RAM (XRAM), Up to 29 general purpose I/O, two 16-bit Timers/Counters 0/1, one 16-bit Timer2 with three-channel input capture module, one Watchdog Timer (WDT), one Self Wake-up Timer (WKT), one 16-bit autoreload Timer3 for general purpose or baud rate generator, two UARTs with frame error detection and 2 automatic address recognition, three ISO 7816-3 interfaces, one SPI, one I C, six basic PWM output channels, six enhanced PWM output channels, eight-channel shared pin interrupt for all I/O, and one 12-bit ADC. The peripherals are equipped with 24 sources with 4-level-priority interrupts capability. The MS51 is equipped with three clock sources and supports switching on-the-fly via software. The three clock sources include external clock input, 10 kHz internal oscillator, and one 16 MHz internal precise oscillator that is factory trimmed to ±1% at room temperature. The MS51 provides additional power monitoring detection such as power-on reset and 4-level brown-out detection, which stabilizes the power-on/off sequence for a high reliability system design. The MS51 microcontroller operation consumes a very low power with two economic power modes to reduce power consumption - Idle and Power-down mode, which are software selectable. Idle mode turns off the CPU clock but allows continuing peripheral operation. Power-down mode stops the whole system clock for minimum power consumption. The system clock of the MS51 can also be slowed down by software clock divider, which allows for a flexibility between execution performance and power consumption. MS51 SERIES DATASHEET With high performance CPU core and rich well-designed peripherals, the MS51 benefits to meet a general purpose, home appliances, or motor control system accomplishment. Nov. 28, 2019 Page 7 of 80 Rev 1.00 MS51 2 FEATURES Core and System 8051 Brown-out Detector (BOD) Low Voltage Reset (LVR) Security  Fully static design 8-bit high performance 1T 8051-based CMOS microcontroller.  Instruction set fully compatible with MCS-51.  4-priority-level interrupts capability.  Dual Data Pointers (DPTRs).  4-level selection, with brown-out interrupt and reset option. (4.4V / 3.7V / 2.7V / 2.2V)  LVR with 2.0V threshold voltage level  96-bit Unique ID (UID)  128-bit Unique Customer ID (UCID)  128-bytes security protection memory SPROM  Up to 32 KBytes of APROM for User Code.  4/3/2/1 Kbytes of Flash for loader (LDROM) configure from APROM for In-System-Programmable (ISP)  Flash Memory accumulated with pages of 128 Bytes from APROM by In-Application-Programmable (IAP) means whole APROM can be use as Data Flash  An additional 128 bytes security protection memory SPROM  Code lock for security by CONFIG  256 Bytes on-chip RAM.  Additional 2 KBytes on-chip auxiliary RAM (XRAM) accessed by MOVX instruction.  4~24 MHz High-speed external crystal oscillator (HXT) for precise timing operation  Default 16 MHz high-speed internal oscillator (HIRC) trimmed to ±1% (accuracy at 25 °C, 3.3 V), ±2% in -20~105°C.  Selectable 24 MHz high-speed internal oscillator (HIRC).  10 kHz low-speed internal oscillator (LIRC) calibrating to ±1% Memories MS51 SERIES DATASHEET Flash SRAM Clocks External Clock Source Internal Clock Source Nov. 28, 2019 Page 8 of 80 Rev 1.00 MS51 by software from high-speed internal oscillator Timers 16-bit Timer  Two 16-bit Timers/Counters 0 and 1 compatible with standard 8051.  One 16-bit Timer2 with three-channel input capture module and 9 input pin can be selected.  One 16-bit auto-reload Timer3, which can be the baud rate clock source of UART0 and UART1.  6-bit free running up counter for WDT time-out interval.  Selectable time-out interval is 6.40 ms ~ 1.638s since WDT_CLK = 10 kHz (LIRC).  Able to wake up from Power-down or Idle mode  Interrupt or reset selectable on watchdog time-out  16-bit free running up counter for time-out interval.  Clock sources from LIRC  Able self Wake-up wake up from Power-down or Idle mode, and auto reload count value.  Supports Interrupt  Up To 12 output pins can be selected  Supports maximum clock source frequency up to 24 MHz  Supports up to Three PWM modules, each module provides 6 output channels.  Supports independent mode for PWM output  Supports complementary mode for 3 complementary paired PWM output channels  Dead-time insertion with 8-bit resolution  Supports 16-bit resolution PWM counter  Supports mask function and tri-state enable for each PWM pin  Supports brake function  Supports trigger ADC on the following events  Analog input voltage range: 0 ~ AVDD.  12-bit resolution and 10-bit accuracy is guaranteed.  Up to 8 single-end analog input channels  1 internal channels, they are band-gap voltage (VBG).  Maximum ADC peripheral clock frequency is 1 MHz.  Up to 500 KSPS sampling rate. Watchdog Wake-up Timer MS51 SERIES DATASHEET PWM Analog Interfaces Analog-to-Digital Converter (ADC) Nov. 28, 2019 Page 9 of 80 Rev 1.00 MS51  Software Write 1 to ADCS bit.  External pin (STADC) trigger  PWM trigger.  Support continues convert function auto store the A/D conversion result in XRAM.  Supports up to 2 UARTs: UART0, UART1,  Three sets ISO 7816-3 device configuration as UART  UART baud rate clock from HIRC or HXT.  Full-duplex asynchronous communications  Programmable 9 bit.  TXD and RXD pins of UART0 exchangeable via software.  1 sets of I C devices  Master/Slave mode  Bidirectional data transfer between masters and slaves  Multi-master bus (no central master)  7-bit addressing mode  Standard mode (100 kbps) and Fast mode (400 kbps).  Supports 8-bit time-out counter requesting the I C interrupt if 2 the I C bus hangs up and timer-out counter overflows  Multiple address recognition (four slave addresses with mask option)  Supports hold time programmable  1 sets of SPI devices  Supports Master or Slave mode operation  Supports MSB first or LSB first transfer sequence  slave mode up to 12 MHz  Three sets ISO 7816-3 device  Supports ISO 7816-3 compliant T=0, T=1  Supports full-duplex UART mode.  Four I/O modes:  Quasi-bidirectional mode  Push-Pull Output mode  Open-Drain Output mode  Input only with high impendence mode  Schmitt trigger input / TTL mode selectable.  Each I/O pin configured as interrupt source with edge/level Communication Interfaces UART 2 IC MS51 SERIES DATASHEET SPI ISO-7816 GPIO Nov. 28, 2019 th 2 2 Page 10 of 80 Rev 1.00 MS51 trigger setting  ̅̅̅̅̅̅̅ and INT1 ̅̅̅̅̅̅̅. Standard interrupt pins INT0  Supports high drive and high sink current I/O  I/O pin internal pull-up or pull-down resistor enabled in input mode.  Maximum I/O Speed is 24 MHz  Enabling the pin interrupt function will also enable the wake-up function ESD  HBM pass 8 kV EFT  > ± 4.4 kV Latch-up  150 mA pass ESD & EFT MS51 SERIES DATASHEET Nov. 28, 2019 Page 11 of 80 Rev 1.00 MS51 3 PARTS INFORMATION 3.1 Package Type Part No. MSOP10 TSSOP14 TSSOP20 QFN20 TSSOP28 LQFP32 QFN33 MS51BA9AE MS51DA9AE MS51FB9AE MS51FC0AE MS51XB9AE MS51XB9BE MS51XC0BE MS51EC0AE MS51PC0AE MS51TC0AE 3.2 MS51 Series Selection Gude SRAM (KB) LDROM (KB) [1] I/O Timer/ PWM ISO-7816 [2] UART SPI I2C ADC(12-Bit) Package MS51 SERIES DATASHEET Part Number Flash (KB) Connectivity MS51BA9AE 8 1 4 8 4 5 - 2 - 1 5-ch MSOP10 MS51DA9AE 8 1 4 12 4 5 - 2 1 1 7-ch TSSOP14 MS51XB9AE 16 1 4 18 4 6 - 2 1 1 8-ch QFN20 [3] MS51XB9BE 16 1 4 18 4 6 - 2 1 1 8-ch QFN20 [3] MS51FB9AE 16 1 4 18 4 6 - 2 1 1 8-ch TSSOP20 MS51FC0AE 32 2 4 18 4 8 3 2 1 1 10-ch TSSOP20 MS51XC0BE 32 2 4 18 4 8 3 2 1 1 10-ch QFN20 MS51EC0AE 32 2 4 26 4 10 3 2 1 1 15-ch TSSOP28 MS51PC0AE 32 2 4 30 4 12 3 2 2 1 15-ch LQFP32 MS51TC0AE 32 2 4 30 4 12 3 2 2 1 15-ch QFN33 Note: 1. 2. 3. 4. ISP ROM programmable 1K/2K/3K/4KB Flash for user program loader (LDROM) share from ARPOM. ISO-7816 configurable as UART function, GPIO defined as UART2 ~ UART5. Detailed package information please refer to Chapter 7 This document is only for 32K flash size part number product Nov. 28, 2019 Page 12 of 80 Rev 1.00 MS51 3.3 MS51 Series Selection Code MS 51 F B 9 A E Core Line Package Flash SRAM Reserve Temperature 1T 8051 51: Base Industry B: MSOP10 (3x3 mm) A: 8 KB 0: 2 KB D: TSSOP14 (4.4x5.0 mm) B: 16 KB 1: 4 KB E: TSSOP28 (4.4x9.7 mm) C: 32 KB 2: 8/12 KB F: TSSOP20 (4.4x6.5 mm) 3: 16 KB I: SOP8 (4x5 mm) 6: 32 KB O: SOP20 (300 mil) 8: 64 KB P: LQFP32 (7x7 mm) 9: 1 KB T: QFN33 (4x4 mm) A: 96 KB E:-40 ~ 105°C U: SOP28 (300 mil) X: QFN20 (3x3mm) MS51 SERIES DATASHEET Nov. 28, 2019 Page 13 of 80 Rev 1.00 MS51 4 PIN CONFIGURATION Users can find pin configuaration informations by using NuTool - PinConfigure. The NuTool ® PinConfigure contains all Nuvoton NuMicro Family chip series with all part number, and helps users configure GPIO multi-function correctly and handily. 4.1 MS51 32K Series Multi Function Pin Diagram 4.1.1 QFN 33-pin Package Pin Diagram P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0 P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1 P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0 P1.1 / ADC_CH7 / CLKO / IC1 / PWM0_CH1 / UART3_RXD / PWM1_CH1 P1.2 / PWM0_CH0 / IC0 / UART3_TXD / PWM1_CH0 P3.2 / PWM3_CH0 P3.1 / PWM2_CH1 P3.5 / SPI0_SS 24 23 22 21 20 19 18 17 Corresponding Part Number: MS51TC0AE PWM0_BRAKE / CLKO / PWM0_CH0 / P3.3 25 16 P2.1 / ADC_CH9 / PWM2_CH0 UART1_RXD / I2C0_SCL / ICE_CLK / P0.2 26 15 P2.2 / ADC_CH10 / PWM1_CH1 / UART4_RXD PWM3_CH1 / UART2_TXD / PWM0_CH5 / IC5 / ADC_CH6 / P0.3 27 14 P2.3 / ADC_CH11 / PWM1_CH0 / UART4_TXD PWM2_CH1 / UART2_RXD / STADC / PWM0_CH3 / IC3 / ADC_CH5 / P0.4 28 13 P2.4 / ADC_CH12 / T0 PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5 29 12 P1.3 / STADC / I2C0_SCL / ADC_CH13 UART0_TXD / ADC_CH3 / P0.6 30 11 P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1 UART0_RXD / ADC_CH2 / P0.7 31 10 P3.6 / UART1_RXD 9 P3.7 / UART1_TXD QFN33 33 VSS 1 2 3 4 5 6 7 8 nRESET / P2.0 SPI0_CLK / UART2_RXD / INT1 / ADC_CH0 / P1.7 VSS UART1_TXD / I2C0_SDA / ICE_DAT / P1.6 VDD PWM3_CH1 / UART3_TXD / IC7 / SPI0_SS / PWM0_CH5 / P1.5 SPI0_MISO / UART3_RXD / ADC_CH15 / P2.5 32 SPI0_MOSI / UART2_TXD / INT0 / OSCIN / ADC_CH1 / P3.0 MS51 SERIES DATASHEET UART3_RXD / PWM3_CH1 / P3.4 Top transparent view Figure 4.1-1 Pin Assignment of LQFP-32 Package Nov. 28, 2019 Page 14 of 80 Rev 1.00 MS51 4.1.2 LQFP 32-pin Package Pin Diagram P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0 P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1 P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0 P1.1 / ADC_CH7 / CLKO / IC1 / PWM0_CH1 / UART3_RXD / PWM1_CH1 P1.2 / PWM0_CH0 / IC0 / UART3_TXD / PWM1_CH0 P3.2 / PWM3_CH0 P3.1 / PWM2_CH1 P3.5 / SPI0_SS 24 23 22 21 20 19 18 17 Corresponding Part Number: MS51PC0AE PWM0_BRAKE / CLKO / PWM0_CH0 / P3.3 25 16 P2.1 / ADC_CH9 / PWM2_CH0 UART1_RXD / I2C0_SCL / ICE_CLK / P0.2 26 15 P2.2 / ADC_CH10 / PWM1_CH1 / UART4_RXD PWM3_CH1 / UART2_TXD / PWM0_CH5 / IC5 / ADC_CH6 / P0.3 27 14 P2.3 / ADC_CH11 / PWM1_CH0 / UART4_TXD PWM2_CH1 / UART2_RXD / STADC / PWM0_CH3 / IC3 / ADC_CH5 / P0.4 28 13 P2.4 / ADC_CH12 / T0 PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5 29 12 P1.3 / STADC / I2C0_SCL / ADC_CH13 UART0_TXD / ADC_CH3 / P0.6 30 11 P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1 UART0_RXD / ADC_CH2 / P0.7 31 10 P3.6 / UART1_RXD UART3_RXD / PWM3_CH1 / P3.4 32 9 P3.7 / UART1_TXD 1 2 3 4 5 6 7 8 nRESET / P2.0 SPI0_CLK / UART2_RXD / INT1 / ADC_CH0 / P1.7 VSS UART1_TXD / I2C0_SDA / ICE_DAT / P1.6 VDD PWM3_CH1 / UART3_TXD / IC7 / SPI0_SS / PWM0_CH5 / P1.5 SPI0_MISO / UART3_RXD / ADC_CH15 / P2.5 MS51 SERIES DATASHEET SPI0_MOSI / UART2_TXD / INT0 / OSCIN / ADC_CH1 / P3.0 LQFP32 Figure 4.1-2 Pin Assignment of LQFP-32 Package Nov. 28, 2019 Page 15 of 80 Rev 1.00 MS51 4.1.3 TSSOP 28-pin Package Pin Diagram Corresponding Part Number: MS51EC0AE 1 28 P1.7 / ADC_CH0 / INT1 / UART2_RXD / SPI0_CLK 2 27 P3.0 / ADC_CH1 / OSCIN / INT0 / UART2_TXD / SPI0_MOSI VDD 3 26 P2.0 / nRESET PWM3_CH1 / UART3_TXD / IC7 / SPI0_SS / PWM0_CH5 / P1.5 4 25 P3.4 / PWM3_CH1 / UART3_RXD SPI0_MISO / UART3_RXD / ADC_CH15 / P2.5 5 24 P0.7 / ADC_CH2 / UART0_RXD PWM1_CH1 / ADC_CH14 / PWM0_BRAKE / I2C0_SDA / PWM0_CH1 / P1.4 6 23 P0.6 / ADC_CH3 / UART0_TXD ADC_CH13 / I2C0_SCL / STADC / P1.3 7 22 P0.5 / ADC_CH4 / IC6 / PWM0_CH2 / T0 / UART3_TXD / PWM2_CH0 T0 / ADC_CH12 / P2.4 8 21 P0.4 / ADC_CH5 / IC3 / PWM0_CH3 / STADC / UART2_RXD / PWM2_CH1 UART4_TXD / PWM1_CH0 / ADC_CH11 / P2.3 9 20 P0.3 / ADC_CH6 / IC5 / PWM0_CH5 / UART2_TXD / PWM3_CH1 UART4_RXD / PWM1_CH1 / ADC_CH10 / P2.2 10 19 P0.2 / ICE_CLK / I2C0_SCL / UART1_RXD PWM2_CH0 / ADC_CH9 / P2.1 11 18 P3.3 / PWM0_CH0 / CLKO / PWM0_BRAKE SPI0_SS / P3.5 12 17 P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0 PWM1_CH0 / UART3_TXD / IC0 / PWM0_CH0 / P1.2 13 16 P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1 PWM1_CH1 / UART3_RXD / PWM0_CH1 / IC1 / CLKO / ADC_CH7 / P1.1 14 15 P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0 TSSOP28 VSS UART1_TXD / I2C0_SDA / ICE_DAT / P1.6 Figure 4.1-3 Pin Assignment of TSSOP28 Package 4.1.4 TSSOP 20-pin Package Pin Diagram Corresponding Part Number: MS51FC0AE 1 20 P0.4 / ADC_CH5 / IC3 / PWM0_CH3 / STADC / UART2_RXD / PWM2_CH1 UART0_TXD / ADC_CH3 / P0.6 2 19 P0.3 / ADC_CH6 / IC5 / PWM0_CH5 / UART2_TXD / PWM3_CH1 UART0_RXD / ADC_CH2 / P0.7 3 18 P0.2 / ICE_CLK / I2C0_SCL / UART1_RXD nRESET / P2.0 4 17 P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0 SPI0_MOSI / UART2_TXD / INT0 / OSCIN / ADC_CH1 / P3.0 5 16 P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1 SPI0_CLK / UART2_RXD / INT1 / ADC_CH0 / P1.7 6 15 P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0 VSS 7 14 P1.1 / ADC_CH7 / CLKO / IC1 / PWM0_CH1 / UART3_RXD / PWM1_CH1 UART1_TXD / I2C0_SDA / ICE_DAT / P1.6 8 13 P1.2 / PWM0_CH0 / IC0 / UART3_TXD / PWM1_CH0 VDD 9 12 P1.3 / STADC / I2C0_SCL / ADC_CH13 PWM3_CH1 / UART3_TXD / IC7 / SPI0_SS / PWM0_CH5 / P1.5 10 11 P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1 TSSOP20 PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5 MS51 SERIES DATASHEET Figure 4.1-4 Pin Assignment of TSSOP20 Package Nov. 28, 2019 Page 16 of 80 Rev 1.00 MS51 4.1.5 QFN 20-pin Package Pin Diagram 16 17 PWM2_CH0 / UART3_TXD / T0 / PWM0_CH2 / IC6 / ADC_CH4 / P0.5 18 UART0_TXD / ADC_CH3 / P0.6 19 P0.1 / PWM0_CH4 / SPI0_MISO / IC4 / HXTOUT / PWM3_CH0 P0.0 / PWM0_CH3 / SPI0_MOSI / IC3 / UART1_RXD / T1 / HXTIN / PWM2_CH1 P1.0 / PWM0_CH2 / SPI0_CLK / IC2 / UART1_TXD / PWM2_CH0 P1.1 / ADC_CH7 / CLKO / IC1 / PWM0_CH1 / UART3_RXD / PWM1_CH1 13 12 11 P0.2 / ICE_CLK / I2C0_SCL / UART1_RXD 15 PWM3_CH1 / UART2_TXD / PWM0_CH5 / IC5 / ADC_CH6 / P0.3 PWM2_CH1 / UART2_RXD / STADC / PWM0_CH3 / IC3 / ADC_CH5 / P0.4 14 Corresponding Part Number: MS51XC0BE 10 P1.2 / PWM0_CH0 / IC0 / UART3_TXD / PWM1_CH0 Top transparent view QFN20 9 P1.3 / STADC / I2C0_SCL / ADC_CH13 8 P1.4 / PWM0_CH1 / I2C0_SDA / PWM0_BRAKE / ADC_CH14 / PWM1_CH1 7 P1.5 / PWM0_CH5 / SPI0_SS / IC7 / UART3_TXD / PWM3_CH1 6 VDD 33 VSS 1 2 3 4 5 SPI0_CLK / UART2_RXD / INT1 / ADC_CH0 / P1.7 VSS UART1_TXD / I2C0_SDA / ICE_DAT / P1.6 MS51 SERIES DATASHEET nRESET / P2.0 20 SPI0_MOSI / UART2_TXD / INT0 / OSCIN / ADC_CH1 / P3.0 UART0_RXD / ADC_CH2 / P0.7 Figure 4.1-5 Pin Assignment of QFN20 Package Nov. 28, 2019 Page 17 of 80 Rev 1.00 MS51 4.2 MS51 32K Series Pin Description Pin Number MS51XC0BE QFN 20 MS51FC0AE TSSOP20 MS51EC0AE TSSOP28 MS51PC0AE LQFP 32 MS51TC0AE QFN 33 6 4 9 7 3 1 6 4 13 16 16 23 VDD VSS P0.0 PWM0_CH3 PWM2_CH1 IC3 SPI0_MOSI UART1_RX XT1_IN OSCIN T1 14 17 17 24 P0.1 PWM0_CH4 PWM3_CH0 IC4 SPI0_MISO XT1_OUT P0.2 MS51 SERIES DATASHEET 15 18 19 26 16 19 20 27 17 20 21 28 18 1 22 29 I2C0_SCL UART1_RXD ICE_CLK P0.3 ADC_CH6 PWM0_CH5 PWM3_CH1 IC5 UART2_TXD6 SC0_CLK6 P0.4 ADC_CH5 PWM0_CH3 PWM2_CH1 IC3 UART2_RXD6 SC0_DAT STADC P0.5 ADC_CH4 PWM0_CH2 PWM2_CH0 IC6 UART3_TXD SC1_CLK T0 19 Nov. 28, 2019 2 23 30 Multi-Function Description[1] Symbol P0.6 ADC_CH3 Page 18 of 80 Supply voltage VDD for operation. Ground potential. Port 0 bit 0. PWM0 output channel 3. PWM2 output channel 1. Input capture channel 3. SPI master output/slave input. UART1 receive input. External 4~24 MHz (high speed) crystal input pin. If the EXTEN[1:0] = 10b, OSCIN is the external clock input pin. External count input to Timer/Counter 1 or its toggle output. Port 0 bit 1. PWM0 output channel 4. PWM3 output channel 0. Input capture channel 4. SPI master input/slave output. External 4~24 MHz (high speed) crystal output pin. Port 0 bit 2. 2 I C clock. UART1 receive input. ICE / ICP clock input. Port 0 bit 3. ADC input channel 6. PWM0 output channel5 PWM3 output channel1 Input capture channel 5. UART2 transmit data output. Smart Card 0 clock pin Port 0 bit 4. ADC input channel 5. PWM0 output channel 3. PWM2 output channel 1. Input capture channel 3. UART2 receive input. Smart Card 0 data pin External start ADC trigger Port 0 bit 5. ADC input channel 4. PWM0 output channel 2. PWM2 output channel 0. Input capture channel 6. UART3 transmit data output. Smart card clock pin. External count input to Timer/Counter 0 or its toggle output. Port 0 bit 6. ADC input channel 3. Rev 1.00 MS51 Pin Number MS51XC0BE QFN 20 MS51FC0AE TSSOP20 MS51EC0AE TSSOP28 MS51PC0AE LQFP 32 MS51TC0AE QFN 33 20 3 24 31 12 15 15 22 11 14 14 21 10 13 13 20 9 12 7 12 MS51 SERIES DATASHEET 8 11 6 11 UART0_TXD P0.7 ADC_CH2 UART0_RXD P1.0 PWM0_CH2 PWM2_CH0 IC2 SPI0_CLK UART1_TXD P1.1 ADC_CH7 PWM0_CH1 PWM1_CH1 IC1 UART3_RXD SC1_DAT CLKO P1.2 PWM0_CH0 PWM1_CH0 IC0 UART3_TXD6 SC1_CLK6 P1.3 ADC_CH13 UART0 transmit data output. Port 0 bit 7. ADC input channel 2. UART0 transmit data output. Port 1 bit 0. PWM0 output channel 2. PWM2 output channel 0. Input capture channel 2. SPI0 clock. UART1 receive input. Port 1 bit 1 ADC input channel 7. PWM0 output channel 1. PWM1 output channel 1. Input capture channel 1. UART3 receive input. Smart Card 1 data pin. System clock output. Port 1 bit 2. PWM0 output channel 0. PWM1 output channel 0. Input capture channel 0. UART3 transmit data output. Smart Card 1 clock pin. Port 1 bit 3. ADC input channel 13. I2C0_SCL I C0 clock. External start ADC trigger Port 1 bit 4. ADC input channel 14. PWM0 output channel 1. PWM1 output channel 1. STADC P1.4 ADC_CH14 PWM0_CH1 PWM1_CH1 I2C0_SDA 7 10 4 7 5 8 2 5 3 6 28 3 Nov. 28, 2019 Multi-Function Description[1] Symbol PWM0_Brake P1.5 PWM0_CH5 PWM3_CH1 IC7 SPI0_SS UART3_TXD6 SC1_CLK6 P1.6 I2C0_SDA UART1_TXD ICE_DAT P1.7 ADC_CH0 SPI0_CLK UART2_RXD6 SC0_DAT6 INT1 Page 19 of 80 2 2 I C0 data. PWM0 Fault Brake input. Port 1 bit 5. PWM0 output channel 5. PWM3 output channel 1. Input capture channel 7. SPI0 slave select input. UART3 transmit data output. Smart card 2 clock pin Port 1 bit 6. 2 I C0 data. UART1 transmit data output. ICE data input or output. Port 1 bit 7. ADC input channel 0. SPI0 clock. UART2 receive input. Smart Card 0 data pin External interrupt 1 input. Rev 1.00 MS51 Pin Number MS51XC0BE QFN 20 MS51FC0AE TSSOP20 MS51EC0AE TSSOP28 MS51PC0AE LQFP 32 MS51TC0AE QFN 33 Symbol P2.0 1 4 26 1 nRESET - - 11 16 - - 10 15 - - 9 14 - - 8 13 P2.1 ADC_CH9 PWM2_CH0 P2.2 ADC_CH10 PWM1_CH1 UART4_RX6 SC2_DAT6 P2.3 ADC_CH11 PWM1_CH0 UART4_TXD6 SC2_CLK6 P2.4 ADC_CH12 T0 MS51 SERIES DATASHEET - - 5 8 2 5 27 2 P2.5 ADC_CH15 SPI0_MISO UART3_RXD6 SC1_DAT6 P3.0 ADC_CH1 PI0_MOSI UART2_TXD6 SC0_CLK6 INT0 OSCIN - - - 18 - - - 19 - - 18 25 - - 25 32 - - 12 17 - - - 9 Nov. 28, 2019 P3.1 PWM2_CH1 P3.2 PWM3_CH0 P3.3 PWM0_CH0 CLK_OUT PWM0_Brake P3.4 PWM3_CH1 UART3_RXD6 SC1_DAT6 P3.5 SPI0_SS P3.6 UART1_TXD Page 20 of 80 Multi-Function Description[1] Port 2 bit 0 input pin available when RPD (CONFIG0.2) is programmed as 0. It is a Schmitt trigger input pin for hardware device reset. A low on this pin resets the device. nRESET pin has an internal pull-up resistor allowing power-on reset by simply connecting an external capacitor to VSS. Port 2 bit 1. ADC input channel 9. PWM2 output channel 0. Port 2 bit 2. ADC input channel 10. PWM1 output channel 1. UART4 receive input. Smart card 2 data pin Port 2 bit 3. ADC input channel 11. PWM1 output channel 0. UART4 transmit data output. Smart card 2 clock pin Port 2 bit 4. ADC input channel 12. External count input to Timer/Counter 0 or its toggle output. Port 2 bit 5. ADC input channel 15. SPI master input/slave output. UART3 receive input. Smart card 1 data pin Port 3 bit 0. ADC input channel 1. SPI master output/slave input. UART2 transmit data output. Smart card 0 clock pin External interrupt 0 input. If the EXTEN[1:0] = 11b, OSCIN is the external clock input pin. Port 3 bit 1. PWM2 output channel 1. Port 3 bit 2. PWM3 output channel 0. Port 3 bit 3. PWM3 output channel 0. System clock output. PWM0 Fault Brake input. Port 3 bit 4. PWM3 output channel 0. UART3 receive input. Smart card 0 data pin Port 3 bit 5. SPI0 slave select input. Port 3 bit 6. UART1 transmit data output. Rev 1.00 MS51 Pin Number MS51XC0BE QFN 20 MS51FC0AE TSSOP20 MS51EC0AE TSSOP28 MS51PC0AE LQFP 32 MS51TC0AE QFN 33 - - - 10 Symbol P3.7 UART1_RXD Multi-Function Description[1] Port 3 bit 7. UART1 receive input. Note: 1. All I/O pins can be configured as a interrupt pin. This feature is not listed in multi-function description 2. UART0_TXD and UART0_RXD pins are software exchangeable by UART0PX (AUXR1.2). 3. [I2C] alternate function remapping option. I2C pins is software switched by I2CPX (I2CON.0). 4. [STADC] alternate function remapping option. STADC pin is software switched by STADCPX(ADCCON1.6). 5. PIOx register decides which pins are PWM or GPIO. 6. UART2_TXD and UART2_RXD pin is defined by AUXR2 register. UART3_TXD, UART3_RXD, UART4_TXD and UART4_RXD pin defined by AUXR3 register. MS51 SERIES DATASHEET Nov. 28, 2019 Page 21 of 80 Rev 1.00 MS51 5 BLOCK DIAGRAM 5.1 MS51 32K Series Block Diagram Figure 5.1-1 Functional Block Diagram shows the MS51 functional block diagram and gives the outline of the device. User can find all the peripheral functions of the device in the diagram. 1T High Performance 8051 Core Memory Access POR / LVR / BOD 32 KB APROM Flash Timer 0/1 Max. 4KB LDROM Flash Timer 2 with Input Capture P1[7:0] P2[5:0] P3[7:0] MS51 SERIES DATASHEET Any Port INT0 INT1 8 P1 6 P2 Digital Peripheral UART0/1_TX UART0/1_RX Serial Ports (UART 0/1) UART2/3/4_TX UART2/3/4_RX UART2/3/4 (ISO 7816-3 port) I2C0_SDA I2C0_SCL I2C0 8 P3 8 ICAP0~2 Watchdog Timer 8-bit Internal Bus GPIO 3 Self Wake-up Timer 2 Kbytes XRAM (Auxiliary RAM) P0 T0 Timer 3 256 bytes Internal RAM P0[7:0] VSS T1 Max. Bytes Data Flash (page: 128B) 8 Power Management VDD SPI0 GPIO Interrupt PWM0/1/2/3 6 6 15 External Interrupt 12-bit ADC SPI0_MOSI SPI0_MISO SPI0_SS SPI0_SCK PWM0CH0~5 PWM1/2/3CH0~1 FB0 AIN0~7, 9~15 STADC Analog Peripheral System Clock XIN XOUT 4-24 MHz Oscillator Circuit (HXT) 16/24 MHz Internal RC Oscillator (HIRC) Clock Divider 10 kHz Internal RC Oscillator (LIRC) System Clock Source Figure 5.1-1 Functional Block Diagram Nov. 28, 2019 Page 22 of 80 Rev 1.00 MS51 6 FUNCTIONAL DESCRIPTION 6.1 Memory Organization 6.1.1 Overview A standard 80C51 based microcontroller divides the memory into two different sections, Program Memory and Data Memory. The Program Memory is used to store the instruction codes, whereas the Data Memory is used to store data or variations during the program execution. The Data Memory occupies a separate address space from Program Memory. In MS51, there are 256 bytes of internal scratch-pad RAM. For many applications those need more internal RAM, the MS51 provides another on-chip 2 Kbytes of RAM, which is called XRAM, accessed by MOVX instruction. The whole embedded Flash, functioning as Program Memory, is divided into three blocks: Application ROM (APROM) normally for User Code, Loader ROM (LDROM) normally for Boot Code, and CONFIG bytes for hardware initialization. Actually, APROM and LDROM function in the same way but have different size. Each block is accumulated page by page and the page size is 128 bytes. The Flash control unit supports Erase, Program, and Read modes. The external writer tools though specific I/O pins, In-Application-Programming (IAP), or In-System-Programming (ISP) can both perform these modes. MS51 SERIES DATASHEET Nov. 28, 2019 Page 23 of 80 Rev 1.00 MS51 6.2 Flash Memory Control 6.2.1 Reset 6.2.1.1 Overview The MS51 has several options to place device in reset condition. It also offers the software flags to indicate the source, which causes a reset. In general, most SFR go to their Reset value irrespective of the reset condition, but there are several reset source indicating flags whose state depends on the source of reset. User can read back these flags to determine the cause of reset using software. There are five ways of putting the device into reset state. They are power-on reset, brown-out reset, external reset, WDT reset, and software reset. 6.2.1.2 Power-On Reset (POR) and Low Voltage Reset (LVR) The MS51 incorporates an internal power-on reset (POR) and a low voltage reset (LVR). During a power-on process of rising power supply voltage VDD, the POR or LVR will hold the MCU in reset mode when VDD is lower than the voltage reference thresholds. This design makes CPU not access program Flash while the VDD is not adequate performing the Flash reading. If an undetermined operating code is read from the program Flash and executed, this will put CPU and even the whole system in to an erroneous state. After a while, VDD rises above the threshold where the system can work, the selected oscillator will start and then program code will execute from 0000H. At the same time, a power-on flag POF (PCON.4) will be set 1 to indicate a cold reset, a power-on process complete. Note that the contents of internal RAM will be undetermined after a power-on. It is recommended that user gives initial values for the RAM block. The POF is recommended to be cleared to 0 via software to check if a cold reset or warm reset performed after the next reset occurs. If a cold reset caused by power off and on, POF will be set 1 again. If the reset is a warm reset caused by other reset sources, POF will remain 0. User may take a different course to check other reset flags and deal with the warm reset event. For detailed electrical characteristics, refer to the table 35-7 and 35-8. PCON – Power Control MS51 SERIES DATASHEET Register SFR Address PCON 87H, All pages Reset Value POR: 0001_0000b Others: 000U _0000b 7 6 5 4 3 2 1 0 SMOD SMOD0 LPR POF GF1 GF0 PD IDL R/W R/W RW R/W R/W R/W R/W R/W Bit Name 4 POF Description Power-on reset flag This bit will be set as 1 after a power-on reset. It indicates a cold reset, a power-on reset complete. This bit remains its value after any other resets. This flag is recommended to be cleared via software. 6.2.1.3 Brown-Out Reset The brown-out detection circuit is used for monitoring the VDD level during execution. When VDD drops to the selected brown-out trigger level (VBOD), the brown-out detection logic will reset the MCU if Nov. 28, 2019 Page 24 of 80 Rev 1.00 MS51 BORST (BODCON0.2) setting 1. After a brown-out reset, BORF (BODCON0.1) will be set as 1 via hardware. BORF will not be altered by any reset other than a power-on reset or brown-out reset itself. This bit can be set or cleared by software. MS51 SERIES DATASHEET Nov. 28, 2019 Page 25 of 80 Rev 1.00 MS51 BODCON0 – Brown-out Detection Control 0 Register SFR Address Reset Value POR,CCCC XC0X b BODCON0 BOD, UUUU XU1X b A3H, Page 0, TA protected Others,UUUU XUUX b 7 6 5 4 3 2 1 0 BODEN BOV[2:0] BOF BORST BORF BOS R/W R/W R/W R/W R/W R Bit Name 1 BORF Description Brown-out reset flag When the MCU is reset by brown-out event, this bit will be set via hardware. This flag is recommended to be cleared via software. 6.2.1.4 External Reset and Hard Fault Reset ̅̅̅̅̅̅ is an input with a Schmitt trigger. An external reset is accomplished by The external reset pin RST ̅̅̅̅̅̅ holding the RST pin low for at least 24 system clock cycles to ensure detection of a valid hardware reset signal. The reset circuitry then synchronously applies the internal reset signal. Thus, the reset is a synchronous operation and requires the clock to be running to cause an external reset. MS51 SERIES DATASHEET Once the device is in reset condition, it will remain as long as ̅̅̅̅̅̅ RST pin is low. After the ̅̅̅̅̅̅ RST high is removed, the MCU will exit the reset state and begin code executing from address 0000H. If an external reset applies while CPU is in Power-down mode, the way to trigger a hardware reset is slightly different. Since the Power-down mode stops system clock, the reset signal will asynchronously cause the system clock resuming. After the system clock is stable, MCU will enter the reset state. There is a RSTPINF (AUXR0.6) flag, which indicates an external reset took place. After the external reset, this bit will be set as 1 via hardware. RSTPINF will not change after any reset other than a power-on reset or the external reset itself. This bit can be cleared via software. Hard Fault reset will occur if CPU fetches instruction address over Flash size, HardF (AUXR0.5) flag will be set via hardware. HardF will not change after any reset other than a power-on reset or the external reset itself. This bit can be cleared via software. If MCU run in OCD debug mode and OCDEN = 0, hard fault reset will be disabled. Only HardF flag be asserted. Nov. 28, 2019 Page 26 of 80 Rev 1.00 MS51 AUXR1 – Auxiliary Register 1 Register SFR Address Reset Value POR: 0000 0000b, AUXR1 Software reset: 1U00 0000b, A2H , Page 0 nRESET pin: U100 0000b, Others: UUU0 0000b 7 6 5 4 3 2 1 0 SWRF RSTPINF HardF SLOW GF2 UART0PX 0 DPS R/W R/W R/W R/W R/W R/W R R/W Bit Name 6 RSTPINF Description External reset flag When the MCU is reset by the external reset, this bit will be set via hardware. It is recommended that the flag be cleared via software. 5 HardF Hard Fault reset flag Once CPU fetches instruction address over Flash size while EHFI (EIE1.4)=0, MCU will reset and this bit will be set via hardware. It is recommended that the flag be cleared via software. Note: If MCU run in OCD debug mode and OCDEN = 0, Hard fault reset will disable. Only HardF flag be asserted. 6.2.1.5 Watchdog Timer Reset MS51 SERIES DATASHEET The WDT is a free running timer with programmable time-out intervals and a dedicated internal clock source. User can clear the WDT at any time, causing it to restart the counter. When the selected timeout occurs but no software response taking place for a while, the WDT will reset the system directly and CPU will begin execution from 0000H. Once a reset due to WDT occurs, the WDT reset flag WDTRF (WDCON.3) will be set. This bit keeps unchanged after any reset other than a power-on reset or WDT reset itself. User can clear WDTRF via software. WDCON – Watchdog Timer Control Register SFR Address Reset Value WDCON AAH, Page 0, TA protected WDT 0000_1UUU b POR 0000_0111 b Others 0000_UUUU b 7 6 5 4 3 WDTR WDCLR WDTF WIDPD WDTRF WDPS[2:0] R/W R/W R/W R/W R/W R/W Nov. 28, 2019 Page 27 of 80 2 1 0 Rev 1.00 MS51 Bit Name 3 WDTRF Description WDT reset flag When the CPU is reset by WDT time-out event, this bit will be set via hardware. This flag is recommended to be cleared via software after reset. 6.2.1.6 Software Reset The MS51 provides a software reset, which allows the software to reset the whole system just similar to an external reset, initializing the MCU as it reset state. The software reset is quite useful in the end of an ISP progress. For example, if an ISP of Boot Code updating User Code finishes, a software reset can be asserted to re-boot CPU to execute new User Code immediately. Writing 1 to SWRST (CHPCON.7) will trigger a software reset. Note that this bit is writing TA protection. The instruction that sets the SWRST bit is the last instruction that will be executed before the device reset. See demo code below. If a software reset occurs, SWRF (AUXR0.7) will be automatically set by hardware. User can check it as the reset source indicator. SWRF keeps unchanged after any reset other than a power-on reset or software reset itself. SWRF can be cleared via software. MS51 SERIES DATASHEET Nov. 28, 2019 Page 28 of 80 Rev 1.00 MS51 CONFIG0 7 6 5 4 3 2 1 0 CBS - OCDPWM OCDEN - RPD LOCK - R/W - R/W R/W - R/W R/W - Factory default value: 1111 1111b Bit Name 7 CBS Description CONFIG boot select This bit defines from which block that MCU re-boots after resets except software reset. 1 = MCU will re-boot from APROM after resets except software reset. 0 = MCU will re-boot from LDROM after resets except software reset. 5 OCDPWM PWM output state under OCD halt This bit decides the output state of PWM when OCD halts CPU. 1 = Tri-state pins those are used as PWM outputs. 0 = PWM continues. Note that this bit is valid only when the corresponding PIO bit of PWM channel is set as 1. 4 OCDEN OCD enable 1 = OCD Disabled. 0 = OCD Enabled. Note: If MCU run in OCD debug mode and OCDEN = 0, hard fault reset will be disabled and only Hard F flag be asserted. 2 RPD Reset pin disable 1 = The reset function of P2.0/Nrst pin Enabled. P2.0/Nrst functions as the external reset pin. 0 = The reset function of P2.0/Nrst pin Disabled. P2.0/Nrst functions as an input-only pin P2.0. MS51 SERIES DATASHEET 1 LOCK Chip lock enable 1 = Chip is unlocked. Flash Memory is not locked. Their contents can be read out through a parallel Writer/ICP programmer. 0 = Chip is locked. Whole Flash Memory is locked. Their contents read through a parallel Writer or ICP programmer will be all blank (FFH). Programming to Flash Memory is invalid. Note that CONFIG bytes are always unlocked and can be read. Hence, once the chip is locked, the CONFIG bytes cannot be erased or programmed individually. The only way to disable chip lock is execute “whole chip erase”. However, all data within the Flash Memory and CONFIG bits will be erased when this procedure is executed. If the chip is locked, it does not alter the IAP function. CONFIG0 7 6 5 4 3 2 1 0 CBS - OCDPWM OCDEN - RPD LOCK - Software reset does not reload CHPCON 7 6 5 4 3 2 1 0 SWRST IAPFF - - - - BS IAPEN Figure 6.2-1 CONFIG0 Any Reset Reloading Nov. 28, 2019 Page 29 of 80 Rev 1.00 MS51 CONFIG1 7 6 5 4 3 2 1 - - - - - LDSIZE[2:0] - - - - - R/W 0 Factory default value: 1111 1111b Bit Name 2:0 LDSIZE[2:0] Description LDROM size select This field selects the size of LDROM. 111 = No LDROM. APROM is 32 Kbytes. 110 = LDROM is 1 Kbytes. APROM is 31 Kbytes. 101 = LDROM is 2 Kbytes. APROM is 30 Kbytes. 100 = LDROM is 3 Kbytes. APROM is 29 Kbytes. 0xx = LDROM is 4 Kbytes. APROM is 28 Kbytes. MS51 SERIES DATASHEET Nov. 28, 2019 Page 30 of 80 Rev 1.00 MS51 CONFIG2 7 6 5 4 3 2 1 0 CBODEN CBOV[2:0] BOIAP CBORST - - R/W R/W R/W R/W - - Factory default value: 1111 1111b Bit Name 7 Description CBODEN CONFIG brown-out detect enable 1 = Brown-out detection circuit on. 0 = Brown-out detection circuit off. 5:4 CBOV[1:0] CONFIG brown-out voltage select 11 = VBOD is 2.2V. 10 = VBOD is 2.7V. 01 = VBOD is 3.7V. 00 = VBOD is 4.4V. 3 BOIAP Brown-out inhibiting IAP This bit decides whether IAP erasing or programming is inhibited by brown-out status. This bit is valid only when brown-out detection is enabled. 1 = IAP erasing or programming is inhibited if VDD is lower than VBOD. 0 = IAP erasing or programming is allowed under any workable V DD. 2 CBORST CONFIG brown-out reset enable This bit decides whether a brown-out reset is caused by a power drop below VBOD. 1 = Brown-out reset Enabled. 0 = Brown-out reset Disabled. MS51 SERIES DATASHEET CONFIG2 7 6 CBODEN BODCON0 7 6 BODEN 5 4 CBOV[2:0] 5 3 2 1 0 BOIAP CBORST - - 4 BOV[2:0] 3 2 1 0 BOF BORST BORF BOS Figure 6.2-2 CONFIG2 Power-On Reset Reloading Nov. 28, 2019 Page 31 of 80 Rev 1.00 MS51 CONFIG4 7 6 5 4 3 2 1 0 WDTEN[3:0] - - - - R/W - - - - Factory default value: 1111 1111b Bit Name 7:4 Description WDTEN[3:0] WDT enable This field configures the WDT behavior after MCU execution. 1111 = WDT is Disabled. WDT can be used as a general purpose timer via software control. 0101 = WDT is Enabled as a time-out reset timer and it stops running during Idle or Powerdown mode. Others = WDT is Enabled as a time-out reset timer and it keeps running during Idle or Powerdown mode. 3:0 - Reserved MS51 SERIES DATASHEET Nov. 28, 2019 Page 32 of 80 Rev 1.00 MS51 6.3 General Purpose I/O (GPIO) The MS51 has a maximum of 30 general purpose I/O pins which 29 bit-addressable general I/O pins grouped as 4 ports, P0 to P3, and 1 input only pin as P20. Each port has its port control register (Px register). The writing and reading of a port control register have different meanings. A write to port control register sets the port output latch logic value, whereas a read gets the port pin logic state. These four modes are quasi-bidirectional (standard 8051 port structure), push-pull, input-only, and open-drain modes. Each port spends two special function registers PxM1 and PxM2 to select the I/O mode of port Px. The list below illustrates how to select the I/O mode of Px.n. Note that the default configuration of is input-only (high-impedance) after any reset. MS51 SERIES DATASHEET Nov. 28, 2019 Page 33 of 80 Rev 1.00 MS51 6.4 6.4.1 Timer Timer/Counter 0 And 1 6.4.1.1 Overview Timer/Counter 0 and 1 on MS51 are two 16-bit Timers/Counters. Each of them has two 8-bit registers those form the 16-bit counting register. For Timer/Counter 0 they are TH0, the upper 8-bit register, and TL0, the lower 8-bit register. Similarly Timer/Counter 1 has two 8-bit registers, TH1 and TL1. TCON and TMOD can configure modes of Timer/Counter 0 and 1. ̅ bit in TMOD. Each Timer/Counter has its own The Timer or Counter function is selected by the C/T selection bit. TMOD.2 selects the function for Timer/Counter 0 and TMOD.6 selects the function for Timer/Counter 1 When configured as a “Timer”, the timer counts the system clock cycles. The timer clock is 1/12 of the system clock (FSYS) for standard 8051 capability or direct the system clock for enhancement, which is selected by T0M (CKCON.3) bit for Timer 0 and T1M (CKCON.4) bit for Timer 1. In the “Counter” mode, the countering register increases on the falling edge of the external input pin T0. If the sampled value is high in one clock cycle and low in the next, a valid 1-to-0 transition is recognized on T0 or T1 pin. The Timers 0 and 1 can be configured to automatically to toggle output whenever a timer overflow occurs. The same device pins that are used for the T0 and T1 count inputs are also used for the timer toggle outputs. This function is enabled by control bits T0OE and T1OE in the CKCON register, and apply to Timer 0 and Timer 1 respectively. The port outputs will be logic 1 prior to the first timer ̅ bit should be cleared overflow when this mode is turned on. In order for this mode to function, the C/T selecting the system clock as the clock source for the timer. Note that the TH0 (TH1) and TL0 (TL1) are accessed separately. It is strongly recommended that in mode 0 or 1, user should stop Timer temporally by clearing TR0 (TR1) bit before reading from or writing to TH0 (TH1) and TL0 (TL1). The free-running reading or writing may cause unpredictable result. MS51 SERIES DATASHEET 6.4.2 Timer2 And Input Capture 6.4.2.1 Overview Timer 2 is a 16-bit up counter cascaded with TH2, the upper 8 bits register, and TL2, the lower 8 bit register. Equipped with RCMP2H and RCMP2L, Timer 2 can operate under compare mode and auto̅̅̅̅̅̅ (T2CON.0). An 3-channel input capture module makes Timer 2 reload mode selected by CM/RL2 detect and measure the width or period of input pulses. The results of 3 input captures are stores in C0H and C0L, C1H and C1L, C2H and C2L individually. The clock source of Timer 2 is from the system clock pre-scaled by a clock divider with 8 different scales for wide field application. The clock is enabled when TR2 (T2CON.2) is 1, and disabled when TR2 is 0. The following registers are related to Timer 2 function. Nov. 28, 2019 Page 34 of 80 Rev 1.00 MS51 C0L P1.5/IC7 P0.5/IC6 P0.3/IC5 P0.1/IC4 P0.4/IC3 P0.0/IC3 P1.0/IC2 P1.1/IC1 P1.2/IC0 1000 0111 0110 0101 0100 0011 0010 0001 0000 CAP1 CAP2 CAPF0 CAPF0 [00] CAP0 C0H CAPF1 Noise Filter Input Capture Interrupt [01] CAPF2 ENF0 (CAPCON2.4) [10] or CAPEN0 (CAPCON0.4) CAP0LS[1:0] (CAPCON1[1:0]) Input Capture 0 Module Input Capture 1 Module Input Capture 2 Module Input Capture Flags (CAPF[2:0]) CAPF0 CAPF1 CAPF2 Clear Timer 2 CAPCR[1] (T2MOD.3) CMPCR (T2MOD.2) Clear Counter Clear Timer 2 FSYS Pre-scalar TL2 TH2 TF2 Timer 2 Interrupt TR2 (T2CON.2) T2DIV[2:0] (T2MOD[6:4]) CAPF0 CAPF1 CAPF2 LDTS[1:0] (T2MOD[1:0]) 00 01 10 11 = LDEN[1] (T2MOD.7) RCMP2L RCMP2H Timer 2 Module [1] Once CAPCR and LDEN are both set, an input capture event only clears TH2 and TL2 without reloading RCMP2H and RCMP2L contents. MS51 SERIES DATASHEET Figure 6.4-1 Timer 2 Block Diagram Nov. 28, 2019 Page 35 of 80 Rev 1.00 MS51 6.4.3 Timer 3 6.4.3.1 Overview Timer 3 is implemented simply as a 16-bit auto-reload, up-counting timer. The user can select the prescale with T3PS[2:0] (T3CON[2:0]) and fill the reload value into RH3 and RL3 registers to determine its overflow rate. User then can set TR3 (T3CON.3) to start counting. When the counter rolls over FFFFH, TF3 (T3CON.4) is set as 1 and a reload is generated and causes the contents of the RH3 and RL3 registers to be reloaded into the internal 16-bit counter. If ET3 (EIE1.1) is set as 1, Timer 3 interrupt service routine will be served. TF3 is auto-cleared by hardware after entering its interrupt service routine. Timer 3 can also be the baud rate clock source of both UARTs. For details, please see Section 錯誤! 找不到參照來源。“錯誤! 找不到參照來源。”. FSYS TR3 (T3CON.3) Pre-scalar (1/1~1/128) T3PS[2:0] (T3CON[2:0]) Timer 3 Overflow Internal 16-bit Counter 0 7 0 RL3 TF3 (T3CON.4) Timer 3 Interrupt 7 RH3 Figure 6.4-2 Timer 3 Block Diagram MS51 SERIES DATASHEET Nov. 28, 2019 Page 36 of 80 Rev 1.00 MS51 6.5 Pulse Width Modulated (PWM) 6.5.1 Overview The PWM (Pulse Width Modulation) signal is a useful control solution in wide application field. It can used on motor driving, fan control, backlight brightness tuning, LED light dimming, or simulating as a simple digital to analog converter output through a low pass filter circuit. The MS51 PWM0 is especially designed for motor control by providing three pairs, maximum 16-bit resolution of PWM0 output with programmable period and duty. The architecture makes user easy to drive the one-phase or three-phase brushless DC motor (BLDC), or three-phase AC induction motor. Each of six PWM can be configured as one of independent mode, complementary mode, or synchronous mode. If the complementary mode is used, a programmable dead-time insertion is available to protect MOS turn-on simultaneously. The PWM waveform can be edge-aligned or centeraligned with variable interrupt points. The MS51 PWM1/2/3 provide individual configurable period and duty. maximum 16-bit resolution output. Each of two PWM1/2/3 can be configured as one of independent mode, complementary mode, or synchronous mode.The PWM1/2/3 waveform can be edge-aligned or center-aligned with variable interrupt points. PWM output pin define and enable control register table. PWM Channel PWM0_CH0 PWM0_CH1 PWM0_CH2 Control register 1 Output Pin SFR Byte Name Bit name Value Control register2 SFR Byte Name Bit name Value MS51 SERIES DATASHEET P1.2 PIOCON0[0] PIO12 1 AUXR4[1:0] PWM1C0P 00 P1.1 PIOCON0[1] PIO11 1 AUXR4[3:2] PWM1C1P 00 P1.4 PIOCON1[1] PIO14 1 AUXR4[1:0] PWM1C0P 00 P3.3 PIOCON2[6] PIO33 1 - - - P1.0 PIOCON0[2] PIO10 1 AUXR4[5:4] PWM2C0P 00 P0.5 PIOCON1[2] PIO05 1 AUXR4[5:4] PWM2C0P 00 P0.0 PIOCON0[3] PIO00 1 AUXR4[7:6] PWM2C1P 00 P0.4 PIOCON1[3] PIO04 1 AUXR4[7:6] PWM2C1P 00 P0.1 PIOCON0[4] PIO01 1 AUXR5[1:0] PWM3C0P 00 P0.3 PIOCON0[5] PIO03 1 AUXR5[3:2] PWM3C1P 00 P1.5 PIOCON1[5] PIO15 1 AUXR5[3:2] PWM3C1P 00 P2.3 PIOCON2[2] PIO23 1 AUXR4[1:0] PWM1C0P 00 P1.2 PIOCON0[0] PIO12 1 AUXR4[1:0] PWM1C0P 00 P2.2 PIOCON2[1] PIO22 1 P1.4 PIOCON1[1] PIO14 1 P1.1 PIOCON0[1] PIO11 1 11 P2.1 PIOCON2[0] PIO21 1 00 P1.0 PIOCON0[2] PIO10 1 P0.5 PIOCON1[2] PIO05 1 P3.0 - - - PWM0_CH3 PWM0_CH4 PWM0_CH5 PWM1_CH0 PWM1_CH1 PWM2_CH0 PWM2_CH1 Nov. 28, 2019 Page 37 of 80 01 AUXR4[3:2] AUXR4[5:4] PWM1C1P PWM2C0P 10 01 10 AUXR4[7:6] PWM2C1P 00 Rev 1.00 MS51 PWM Channel PWM3_CH0 Control register 1 Output Pin SFR Byte Name Bit name Value Control register2 SFR Byte Name Bit name Value P3.1 PIOCON2[4] PIO31 1 01 P0.0 PIOCON0[3] PIO00 1 10 P0.4 PIOCON1[3] PIO04 1 11 P3.2 PIOCON2[5] PIO32 1 01 P0.1 PIOCON0[4] PIO01 1 P17 PIOCON1[7] PIO17 1 AUXR5[1:0] PWM3C0P- 10 11 Table 6.5-1 PWM Pin Define And Enable Control Register MS51 SERIES DATASHEET Nov. 28, 2019 Page 38 of 80 Rev 1.00 MS51 6.6 Watchdog Timer (WDT) 6.6.1 Overview The MS51 provides one Watchdog Timer (WDT). It can be configured as a time-out reset timer to reset whole device. Once the device runs in an abnormal status or hangs up by outward interference, a WDT reset recover the system. It provides a system monitor, which improves the reliability of the system. Therefore, WDT is especially useful for system that is susceptible to noise, power glitches, or electrostatic discharge. The WDT also can be configured as a general purpose timer, of which the periodic interrupt serves as an event timer or a durational system supervisor in a monitoring system, which is able to operate during Idle or Power-down mode. WDTEN[3:0] (CONFIG4[7:4]) initialize the WDT to operate as a time-out reset timer or a general purpose timer. 1 × 64 , where FLIRC × clock dividerscalar FLIRC is the frequency of internal 10 kHz oscillator. The following table shows an example of the Watchdog time-out interval with different pre-scales. The Watchdog time-out interval is determined by the formula WDT Time-Out Timing[1] MS51 SERIES DATASHEET WDPS.2 WDPS.1 WDPS.0 Clock Divider Scale 0 0 0 1/1 6.40 ms 0 0 1 1/4 25.60 ms 0 1 0 1/8 51.20 ms 0 1 1 1/16 102.40 ms 1 0 0 1/32 204.80 ms 1 0 1 1/64 409.60 ms 1 1 0 1/128 819.20 ms 1 1 1 1/256 1.638 s Note: This is an approximate value since the deviation of LIRC. Table 6.6-1 Watchdog Timer-out Interval Under Different Pre-scalars Since the limitation of the maxima vaule of WDT timer delay. To up MS51 from idle mode or power down mode suggest use WKT function see Chapter 6.7 Self Wake-Up Timer (WKT). Nov. 28, 2019 Page 39 of 80 Rev 1.00 MS51 6.7 Self Wake-Up Timer (WKT) 6.7.1 Overview The MS51 has a dedicated Self Wake-up Timer (WKT), which serves for a periodic wake-up timer in low power mode or for general purpose timer. WKT remains counting in Idle or Power-down mode. When WKT is being used as a wake-up timer, a start of WKT can occur just prior to entering a power management mode. WKT has one clock source, internal 10 kHz. Note that the system clock frequency must be twice over WKT clock. If WKT starts counting, the selected clock source will remain active once the device enters Idle or Power-down mode. Note that the selected clock source of WKT will not automatically enabled along with WKT configuration. User should manually enable the selected clock source and waiting for stability to ensure a proper operation. The WKT is implemented simply as a 8-bit auto-reload, up-counting timer with pre-scale 1/1 to 1/2048 selected by WKPS[2:0] (WKCON[2:0]). User fills the reload value into RWK register to determine its overflow rate. The WKTR (WKCON.3) can be set to start counting. When the counter rolls over FFH, WKTF (WKCON.4) is set as 1 and a reload is generated and causes the contents of the RWK register to be reloaded into the internal 8-bit counter. If EWKT (EIE1.2) is set as 1, WKT interrupt service routine will be served. 10 kHz Internal Oscillator FLIRC WKTR (WKCON.3) Pre-scalar (1/1~1/2048) Internal 16-bit Counter WKPS[2:0] (WKCON[2:0]) 0 WKT Overflow WKTF (WKCON.4) WKT Interrupt 15 RWK Figure 6.7-1 Self Wake-Up Timer Block Diagram MS51 SERIES DATASHEET Nov. 28, 2019 Page 40 of 80 Rev 1.00 MS51 6.8 Serial Port (UART0 & UART1) 6.8.1 Overview The MS51 includes two enhanced full duplex serial ports enhanced with automatic address recognition and framing error detection. As control bits of these two serial ports are implemented the same. Generally speaking, in the following contents, there will not be any reference to serial port 1, but only to serial port 0. Each serial port supports one synchronous communication mode, Mode 0, and three modes of full duplex UART (Universal Asynchronous Receiver and Transmitter), Mode 1, 2, and 3. This means it can transmit and receive simultaneously. The serial port is also receiving-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the register. The receiving and transmitting registers are both accessed at SBUF. Writing to SBUF loads the transmitting register, and reading SBUF accesses a physically separate receiving register. There are four operation modes in serial port. In all four modes, transmission initiates by any instruction that uses SBUF as a destination register. MS51 SERIES DATASHEET Nov. 28, 2019 Page 41 of 80 Rev 1.00 MS51 6.9 ISO 7816-3 Interface (SC0~2 & UART2 ~ 4) 6.9.1 Overview The HAG035 provides ISO 7816-3 Interface controller (SC controller) with asynchronous protocal based on ISO/IEC 7816-3 standard. Software controls GPIO pins as the smartcard reset function and card detection function. This controller also provides UART emulation for high precision baud rate communication. Internal Data Bus RX_IN RX_FIFO Control and Status Registers TX_FIFO RX Shift Register TX/RX Control Unit TX Shift Register Baud Rate Generator ETU Clock Generator TX_OUT Figure 6.9-1 SC Controller Block Diagram MS51 SERIES DATASHEET  ISO-7816-3 T = 0, T = 1 compliant  Programmable transmission clock frequency  Programmable extra guard time selection  Supports auto inverse convention function  Supports UART mode – Full duplex, asynchronous communications – Supports programmable baud rate generator for each channel – Programmable transmitting data delay time between the last stop bit leaving the TXFIFO and the de-assertion by setting SCnEGT register – Programmable even, odd or no parity bit generation and detection – Programmable stop bit, 1 or 2 stop bit generation Following is the ISO 7816-3 multi function pin define SFR Define URAT Pin SC Pin Pin Name SFR Byte Name SFR Bit Name AUXR2[7:6] UART2TXP P0.3 UART2_TXD SC0_CLK 01 P3.0 10 P0.4 UART2_RXD SC0_DAT 01 AUXR2[5:4] P1.7 Nov. 28, 2019 Value UART2RXP 10 Page 42 of 80 Rev 1.00 MS51 SFR Define URAT Pin SC Pin Pin Name SFR Byte Name SFR Bit Name P1.2 UART3_TXD SC1_CLK UART3_RXD SC1_DAT P1.5 Value 01 AUXR3[3:2] UART3TXP 10 P0.5 11 P1.1 01 P2.5 AUXR3[1:0] UART3RXP P3.4 10 11 UART4_TXD SC2_CLK P2.3 AUXR3[7:6] UART4TXP 01 UART4_RXD SC2_DAT P2.2 AUXR3[5:4] UART4RXP 01 Table 6.9-1 Smart Card or UART Pin Define And Enable Control Register MS51 SERIES DATASHEET Nov. 28, 2019 Page 43 of 80 Rev 1.00 MS51 2 6.10 Inter-Integrated Circuit (I C) 6.10.1 Overview 2 The MS51 provides two Inter-Integrated Circuit (I C) bus to serves as an serial interface between the 2 microcontrollers and the I C devices such as EEPROM, LCD module, temperature sensor, and so on. 2 The I C bus used two wires design (a serial data line I2C0_SDA and a serial clock line I2C0_SCL) to transfer information between devices. 2 The I C bus uses bi-directional data transfer between masters and slaves. There is no central master and the multi-master system is allowed by arbitration between simultaneously transmitting masters. The serial clock synchronization allows devices with different bit rates to communicate via one serial 2 bus. The I C bus supports four transfer modes including master transmitter, master receiver, slave 2 receiver, and slave transmitter. The I C interface only supports 7-bit addressing mode. A special mode 2 General Call is also available. The I C can meet both standard (up to 100kbps) and fast (up to 400k bps) speeds. MS51 SERIES DATASHEET Nov. 28, 2019 Page 44 of 80 Rev 1.00 MS51 6.11 Serial Peripheral Interface (SPI) 6.11.1 Overview The MS51 provides two Serial Peripheral Interface (SPI) block to support high-speed serial communication. SPI is a full-duplex, high-speed, synchronous communication bus between microcontrollers or other peripheral devices such as serial EEPROM, LCD driver, or D/A converter. It provides either Master or Slave mode, high-speed rate up to FSYS/2, transfer complete and write collision flag. For a multi-master system, SPI supports Master Mode Fault to protect a multi-master conflict. FSYS S M MSB MOSI CLOCK SPR0 SPR1 M S Write Data Buffer 8-bit Shift Register Read Data Buffer Select MISO LSB Pin Contorl Logic Divider /2, /4, /8, /16 Clock Logic SPCLK DISMODF SSOE MSTR SPIEN SS MSTR SPI Status Register SPI Interrupt SPR0 SPR1 CPOL CPHA LSBFE MSTR SSOE SPIEN SPIEN DISMODF SPIOVF MODF WCOL MS51 SERIES DATASHEET SPIF SPI Status Control Logic SPI Control Register Internal Data Bus Figure 6.11-1 SPI Block Diagram Figure15.1 SPI Block Diagram shows SPI block diagram. It provides an overview of SPI architecture in this device. The main blocks of SPI are the SPI control register logic, SPI status logic, clock rate control logic, and pin control logic. For a serial data transfer or receiving, The SPI block exists a write data buffer, a shift out register and a read data buffer. It is double buffered in the receiving and transmit directions. Transmit data can be written to the shifter until when the previous transfer is not complete. Receiving logic consists of parallel read data buffer so the shift register is free to accept a second data, as the first received data will be transferred to the read data buffer. The four pins of SPI interface are Master-In/Slave-Out (MISO), Master-Out/Slave-In (MOSI), Shift ̅̅̅̅). The MOSI pin is used to transfer a 8-bit data in series from the Clock (SPCLK), and Slave Select (SS Master to the Slave. Therefore, MOSI is an output pin for Master device and an input for Slave. Nov. 28, 2019 Page 45 of 80 Rev 1.00 MS51 Respectively, the MISO is used to receive a serial data from the Slave to the Master. The SPCLK pin is the clock output in Master mode, but is the clock input in Slave mode. The shift clock is used to synchronize the data movement both in and out of the devices through their MOSI and MISO pins. The shift clock is driven by the Master mode device for eight clock cycles. Eight clocks exchange one byte data on the serial lines. For the shift clock is always produced out of the Master device, the system should never exist more than one device in Master mode for avoiding device conflict. ̅̅̅̅). The signal should stay low for any Each Slave peripheral is selected by one Slave Select pin (SS ̅̅̅̅ Slave access. When SS is driven high, the Slave device will be inactivated. If the system is multislave, there should be only one Slave device selected at the same time. In the Master mode MCU, the ̅̅̅̅ SS pin does not function and it can be configured as a general purpose I/O. However, ̅̅̅̅ SS can be used as Master Mode Fault detection (see chapter 錯誤! 找不到參照來源。 錯誤! 找不到參照來源。) via software setting if multi-master environment exists. The MS51 also provides auto-activating function to ̅̅̅̅ between each byte-transfer. toggle SS Master/Slave MCU1 Master/Slave MCU2 MISO MISO MOSI MOSI SPCLK MS51 SERIES DATASHEET Slave device 1 Slave device 2 I/O PORT SO SI SCK SS SI SO SCK SS 0 1 2 3 SO 0 1 2 3 SI SS SCK SS SS I/O PORT SPCLK Slave device 3 Figure 6.11-2 SPI Multi-Master, Multi-Slave Interconnection Figure 6.11-2 shows a typical interconnection of SPI devices. The bus generally connects devices together through three signal wires, MOSI to MOSI, MISO to MISO, and SPCLK to SPCLK. The Master devices select the individual Slave devices by using four pins of a parallel port to control the four ̅̅̅̅ SS pins. MCU1 and MCU2 play either Master or Slave mode. The ̅̅̅̅ SS should be configured as Master Mode Fault detection to avoid multi-master conflict. MOSI MOSI MISO MISO SPI shift register 7 6 5 4 3 2 1 0 SPI shift register 7 6 5 4 3 2 1 0 SPCLK SPCLK SPI clock generator SS Master MCU * SS GND Slave MCU * SS configuration follows DISMODF and SSOE bits. Figure 6.11-3 SPI Single-Master, Single-Slave Interconnection Nov. 28, 2019 Page 46 of 80 Rev 1.00 MS51 Figure 6.11-3 shows the simplest SPI system interconnection, single-master and signal-slave. During a transfer, the Master shifts data out to the Slave via MOSI line. While simultaneously, the Master shifts data in from the Slave via MISO line. The two shift registers in the Master MCU and the Slave MCU can be considered as one 16-bit circular shift register. Therefore, while a transfer data pushed from Master into Slave, the data in Slave will also be pulled in Master device respectively. The transfer effectively exchanges the data, which was in the SPI shift registers of the two MCUs. By default, SPI data is transferred MSB first. If the LSBFE (SPCR.5) is set, SPI data shifts LSB first. This bit does not affect the position of the MSB and LSB in the data register. Note that all the following description and figures are under the condition of LSBFE logic 0. MSB is transmitted and received first. There are three SPI registers to support its operations, including SPI control register (SPCR), SPI status register (SPSR), and SPI data register (SPDR). These registers provide control, status, data storage functions, and clock rate selection. The following registers relate to SPI function. MS51 SERIES DATASHEET Nov. 28, 2019 Page 47 of 80 Rev 1.00 MS51 6.12 12-Bit Analog-To-Digital Converter (ADC) 6.12.1 Overview The HAG035 is embedded with a 12-bit SAR ADC. The ADC (analog-to-digital converter) allows conversion of an analog input signal to a 12-bit binary representation of that signal. The HAG035 is selected as 8-channel inputs in single end mode. The internal band-gap voltage 1.22 V also can be the internal ADC input. The analog input, multiplexed into one sample and hold circuit, charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation and stores the result in the result registers. The ADC controller also supports continuous conversion and storage result data into XRAM. MS51 SERIES DATASHEET Nov. 28, 2019 Page 48 of 80 Rev 1.00 MS51 7 APPLICATION CIRCUIT 7.1 Power supply scheme EXT_PWR 10uF+0.1uF MS51 Series as close to the EXT_PWR as possible VDD VSS EXT_VSS 0.1uF*N as close to VDD as possible ® Figure 7.1-1 NuMicro MS51 Power supply circuit MS51 SERIES DATASHEET Nov. 28, 2019 Page 49 of 80 Rev 1.00 MS51 7.2 Peripheral Application scheme DVCC SPI_SS SPI_CLK SPI_MISO SPI_MOSI DVCC ICE / ICP Interface CS VDD CLK MISO MOSI VSS SPI Device 100K 100K VDD ICE_DAT 100 * 100 * DVCC ICE_CLK nRESET DVCC VSS MS51 Series DVCC 4.7K 4.7K I2C_SCL CLK VDD I2C_SDA DIO VSS I2C Device 10K nRESET Reset Circuit 10 uF RS 232 Transceiver UART_RXD ROUT UART_TXD TIN RIN UART TOUT PC COM Port *ICE/ICP interface ICE_DAT/ICE_CLK pin 100ohm resister is selectable only for filter the disturb of noise on the circuit. ® Figure 7.2-1 NuMicro MS51 Peripheral interface circuit MS51 SERIES DATASHEET Nov. 28, 2019 Page 50 of 80 Rev 1.00 MS51 8 ELECTRICAL CHARACTERISTICS Please refer to the relative Datasheet for detailed information about the MS51 electrical characteristics. 8.1 General Operating Conditions (VDD-VSS = 2.4 ~ 5.5V, TA = 25C, Fsys = 16 MHz unless otherwise specified.) Symbol Parameter Min Typ Max Unit ℃ TA Temperature -40 - 105 VDD Operation voltage 2.4 - 5.5 AVDD[*1] VBG Analog operation voltage VDD 1.17 Band-gap voltage[2] Test Conditions V 1.30 TA = 25 °C 1.33 TA = -40°C ~105 °C, 1.22 1.14 Note: 1. It is recommended to power VDD and AVDD from the same source. A maximum difference of 0.3V between V DD and AVDD can be tolerated during power-on and power-off operation . 2. Based on characterization, tested in production. Table 8.1-1 General operating conditions MS51 SERIES DATASHEET Nov. 28, 2019 Page 51 of 80 Rev 1.00 MS51 8.2 DC Electrical Characteristics 8.2.1 Supply Current Characteristics The current consumption is a combination of internal and external parameters and factors such as operating frequencies, device software configuration, I/O pin loading, I/O pin switching rate, program location in memory and so on. The current consumption is measured as described in below condition and table to inform test characterization result.  All GPIO pins are in push pull mode and output high.  The maximum values are obtained for VDD = 2.4V ~ 5.5 V and maximum ambient temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.  VDD = AVDD  When the peripherals clock base is the system clock Fsys.  Program run “while (1);” in Flash. Typ [6] Symbol Conditions Fsys Unit TA = 25 °C IDD_RUN Normal run mode, executed from Flash, all peripherals disable Max[6][7] MS51 SERIES DATASHEET 24 MHz(HIRC)[1] @5.5V 3.6 24 MHz(HIRC)[1] @3.3V 3.2 24 MHz(HIRC)[1] @2.4V 2.9 16 MHz (HIRC) [1] @5.5V 3.3 16 MHz (HIRC) [1] @3.3V 3.1 16 MHz (HIRC) [1] @2.4V 2.8 10 kHz (LIRC)[2] 0.30 TA = -40 °C TA = 25 °C 4.2 4.6 TA = 105 °C 4.8 mA 3.4 3.9 4.6 0.32 0.46 2.33 Notes: 1. This value base on HIRC enable, LIRC enable 2. This value base on HIRC disable, LIRC enable 3. LVR17 enabled, POR enable and BOD enable. 4. Based on characterization, not tested in production unless otherwise specified. Table 8.2-1 Current consumption in Normal Run mode Nov. 28, 2019 Page 52 of 80 Rev 1.00 MS51 Typ [3] Symbol Conditions Max[3][4] Fsys Unit TA = 25 °C 24 MHz(HIRC)[1] @5.5V 24 MHz(HIRC)[1] @3.3V 24 MHz(HIRC)[1] @2.4V IDD_IDLE Idle mode, executed from Flash, all peripherals disable 16 MHz (HIRC)[1] @5.5V 16 MHz (HIRC)[1] @3.3V 16 MHz (HIRC)[1] @2.4V 10 kHz (LIRC)[2] TA = 25 °C TA = 85 °C TA = 105 °C 2.8 2.4 2.9 3.2 3.8 2.2 mA 2.2 1.9 2.5 2.6 3.2 0.5 0.9 2.3 1.8 0.3 Notes: 1. This value base on HIRC enable, LIRC enable 2. This value base on HIRC disable, LIRC enable 3. LVR17 enabled, POR enable and BOD enable. 4. Based on characterization, not tested in production unless otherwise specified. Table 8.2-2 Current consumption in Idle mode Typ[1] Symbol Max[2] Test Conditions Unit MS51 SERIES DATASHEET TA = 25 °C Power down mode, all peripherals disable@5.5V 6.5 Power down mode, all peripherals disable@3.3V 6 Power down mode, all peripherals disable@2.4V 5.8 TA = -40 °C TA = 25 °C TA = 105 °C 6.2 9 55 IDD_PD µA Power down mode, LVR enable all other peripherals disable 7.5 6.7 10 57 Power down mode, LVR enable BOD enable all other peripherals disable 180 165 197 292 [3] Notes: 1. AVDD = VDD = 3.3V unless otherwise specified, LVR17 disabled, POR disabled and BOD disabled. 2. Based on characterization, not tested in production unless otherwise specified. 3. Based on characterization, tested in production. Table 8.2-3 Chip Current Consumption in Power down mode Nov. 28, 2019 Page 53 of 80 Rev 1.00 MS51 8.2.2 Wakeup Time from Low-Power Modes Symbol tWU_IDLE[1] tWU_NPD[2][3] Parameter Typ Max Unit 5 6 cycles - 30 µs 30 µs Wakeup from IDLE mode Fsys = HIRC @16MHz Wakeup from Power down mode Fsys = HIRC @ 24MHz Notes: 1. Measured on a wakeup phase with a 16 MHz HIRC oscillator. 2. Based on test during characterization, not tested in production. 3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first. Table 8.2-4 Low-power mode wakeup timings MS51 SERIES DATASHEET Nov. 28, 2019 Page 54 of 80 Rev 1.00 MS51 8.2.3 8.2.3.1 I/O DC Characteristics PIN Input Characteristics Symbol Parameter VIL Input low voltage VIL1 Input low voltage (I/O with TTL input) VIH Input high voltage Min Typ Max Unit 0 - 0.3*VDD V VSS-0.3 - 0.2VDD-0.1 V 0.2VDD+0.9 - VDD+0.3 V 0.7*VDD - VDD V - 0.2*VDD - V Test Conditions Input high voltage VIH1 VHY[1] (I/O with Schmitt trigger input and Xin) Hysteresis voltage of schmitt input -1 ILK[2] 1 A Input leakage current -1 1 VSS < VIN < VDD, Open-drain or input only mode VDD < VIN < 5.5 V, Open-drain or input only mode Notes: 1. Guaranteed by characterization result, not tested in production. 2. Leakage could be higher than the maximum value, if abnormal injection happens. 3. To sustain a voltage higher than VDD +0.3 V, the internal pull-up resistors must be disabled. Leakage could be higher than the maximum value, if positive current is injected on adjacent pins Table 8.2-5 I/O input characteristics MS51 SERIES DATASHEET Nov. 28, 2019 Page 55 of 80 Rev 1.00 MS51 8.2.3.2 I/O Output Characteristics Symbol Parameter Min Source current for quasibidirectional mode and high level Typ Max Unit -7.4 - -7.5 µA -7.3 - -7.5 µA -7.3 - -7.5 µA -57.2 - -58.3 µA -9 - -9.6 mA -6 - -6.6 mA -4.2 - -4.9 mA -18 - -20 mA 18 - 20 mA 16 - 18 mA 9.7 - 11 mA - 5 - pF ISR[1] [2] Source current for push-pull mode and high level ISK[1] [2] MS51 SERIES DATASHEET CIO [1] Sink current for push-pull mode and low level I/O pin capacitance Test Conditions VDD = 5.5 V VIN =(VDD-0.4) V VDD = 3.3 V VIN =(VDD-0.4) V VDD = 2.4 V VIN =(VDD-0.4) V VDD = 5.5 V VIN = 2.4 V VDD = 5.5 V VIN =(VDD-0.4) V VDD = 3.3 V VIN =(VDD-0.4) V VDD = 2.7 V VIN =(VDD-0.4) V VDD = 5.5 V VIN = 2.4 V VDD = 5.5 V VIN = 0.4 V VDD = 3.3 V VIN = 0.4 V VDD = 2.4 V VIN = 0.4 V Notes: 1. Guaranteed by characterization result, not tested in production. 2. The ISR and ISK must always respect the abslute maximum current and the sum of I/O, CPU and peripheral must not exceed ΣIDD and ΣISS. Table 8.2-6 I/O output characteristics Nov. 28, 2019 Page 56 of 80 Rev 1.00 MS51 8.2.3.3 nRESET Input Characteristics Symbol Parameter Min Typ Max Unit VILR Negative going threshold, nRESET - - 0.3*VDD V VIHR Positive going threshold, nRESET 0.7*VDD - - V 45 - 60 RRST[1] Internal nRESET pull up resistor tFR[1] Test Conditions VDD = 5.5 V KΩ 45 - 65 - 1.5 - nRESET input response time VDD = 2.4 V Normal run and Idle mode µs 10 - 25 Power down mode Notes: 1. Guaranteed by characterization result, not tested in production. 2. It is recommended to add a 10 kΩ and 10uF capacitor at nRESET pin to keep reset signal stable. Table 8.2-7 nRESET Input Characteristics MS51 SERIES DATASHEET Nov. 28, 2019 Page 57 of 80 Rev 1.00 MS51 8.3 AC Electrical Characteristics 8.3.1 Internal High Speed RC Oscillator (HIRC) 8.3.1.1 16MHz RC Oscillator (HIRC) Symbol. VDD Parameter Operating voltage Oscillator frequnecy Min Typ Max Unit 2.4 - 5.5 V - 16[1] - MHz -1[3] - 1[3] % -2[4] - 2[4] % 4[4] % FHRC Frequency drift over temperarure and volatge -4[4] IHRC[2] Operating current - 490 550 µA TS[3] Stable time - 3 5 µs Test Conditions TA = 25 °C, VDD = 3.3 TA = 25 °C, VDD = 3.3V TA = -20 C ~ +105 °C, VDD = 2.4 ~ 5.5V TA = -40 C ~ -20 °C, VDD = 2.4 ~ 5.5V TA = -40C ~ +105 °C, VDD = 2.4 ~ 5.5V Notes: 1. Default setting value for the product 2. Based on reload value. 3. Based on characterization, tested in production. 4. Guaranteed by characterization result, not tested in production. 5. Guaranteed by design. MS51 SERIES DATASHEET Table 8.3-1 16 MHz Internal High Speed RC Oscillator(HIRC) characteristics Nov. 28, 2019 Page 58 of 80 Rev 1.00 MS51 8.3.1.2 24MHz RC Oscillator (HIRC) Symbol. VDD Parameter Operating voltage Oscillator frequnecy Min Typ Max Unit 2.4 - 5.5 V - 24[1] - MHz -1[3] - 1[3] % -2[4] - 2[4] % 4[4] % Test Conditions TA = 25 °C, VDD = 3.3 TA = 25 °C, VDD = 3.3V FHRC Frequency drift over temperarure and volatge -4[4] IHRC[2] Operating current - 490 550 µA TS[3] Stable time - 3 5 µs TA = -20C ~ +85 °C, VDD = 2.4 ~ 5.5V TA = -40C ~ +105 °C, VDD = 2.4 ~ 5.5V TA = -40C ~ +105 °C, VDD = 2.4 ~ 5.5V Notes: 1. Default setting value for the product 2. Based on reload value. 3. Based on characterization, tested in production. 4. Guaranteed by characterization result, not tested in production. 5. Guaranteed by design. Table 8.3-2 24MHz Internal High Speed RC Oscillator(HIRC) characteristics MS51 SERIES DATASHEET Nov. 28, 2019 Page 59 of 80 Rev 1.00 MS51 8.3.2 External 4~24 MHz High Speed Crystal/Ceramic Resonator (HXT) characteristics The high-speed external (HXT) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this secion are based on characterization results obtained with typical external components. In the application, the external components have to be placed as close as possible to the XT1_IN and XT1_Out pins and must not be connected to any other devices in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Min[1] Typ Max[1] Unit 1.8 - 5.5 V Internal feedback resister - 500 - kΩ Oscillator frequency 4 - 24 MHz - 80 180 4 MHz, Gain = L0 - 110 300 8 MHz, Gain = L1 - 180 500 - 230 650 16 Mhz, Gain = L3 - 360 975 24 MHz, Gain = L4 - 3500 3700 4 MHz, Gain = L0 - 950 1050 8 MHz, Gain = L1 - 700 850 - 450 550 16 Mhz, Gain = L3 - 400 570 24 MHz, Gain = L4 40 - 60 Symbol VDD Rf fHXT IHXT TS DuHXT Parameter Operating voltage Current consumption Stable time Duty cycle µA µs Test Conditions[2] 12 MHz, Gain = L2 12 MHz, Gain = L2 % MS51 SERIES DATASHEET Notes: 1. Guaranteed by characterization, not tested in production. 2. L0 ~ L4 defined by SFR XLTCON[6:4] HXSG Table 8.3-3 External 4~24 MHz High Speed Crystal (HXT) Oscillator Nov. 28, 2019 Page 60 of 80 Rev 1.00 MS51 8.3.3 External 4~24 MHz High Speed Clock Input Signal Characteristics For clock input mode the HXT oscillator is switched off and XT1_IN is a standard input pin to receive external clock. The external clock signal has to respect the below Table. The characteristics result from tests performed using a wavefrom generator. Symbol fHXT_ext Parameter External user clock source frequency Min [*1] Typ Max [*1] Unit 4 - 24 MHz Test Conditions tCHCX Clock high time 8 - - ns tCLCX Clock low time 8 - - ns tCLCH Clock rise time - - 10 ns Low (10%) to high level (90%) rise time tCHCL Clock fall time - - 10 ns High (90%) to low level (10%) fall time 40 - 60 % DuE_HXT Duty cycle VIH Input high voltage 0.7*VDD - VDD V VIL Input low voltage VSS - 0.3*VDD V External clock source XT1_IN tCLCL MS51 SERIES DATASHEET tCLCH VIH VIL 90% tCLCX 10% tCHCL tCHCX Notes: 1. Guaranteed by characterization, not tested in production. Table 8.3-4 External 4~24 MHz High Speed Clock Input Signal Nov. 28, 2019 Page 61 of 80 Rev 1.00 MS51 8.3.4 10 kHz Internal Low Speed RC Oscillator (LIRC) Symbol VDD Parameter Min Typ Max Unit 2.4 - 5.5 V - 10 - kHz -10[1] - 10[1] % TA = 25 °C, VDD = 5V -35[2] - 35[2] % TA=-40~105°C Without software calibration Operating current - 0.85 1 µA VDD = 3.3V Stable time - 500 - μs TA=-40~105°C Operating voltage Oscillator frequnecy FLRC ILRC[3] TS Frequency drift over temperarure and volatge Test Conditions Notes: 1. Guaranteed by characterization, tested in production. 2. Guaranteed by characterization, not tested in production. 3. Guaranteed by design. Table 8.3-5 10 kHz Internal Low Speed RC Oscillator(LIRC) characteristics MS51 SERIES DATASHEET Nov. 28, 2019 Page 62 of 80 Rev 1.00 MS51 8.3.5 I/O AC Characteristics Symbol tf(IO)out tf(IO)out tr(IO)out MS51 SERIES DATASHEET tr(IO)out fmax(IO)out[*3] Parameter Normal mode [4] output high (90%) to low level (10%) falling time High slew rate mode [5] output high (90%) to low level (10%) falling time Normal mode [4] output low (10%) to high level (90%) rising time High slew rate mode [5] output low (10%) to high level (90%) rising time Typ. Max[*1]. 4.6 5.1 CL = 30 pF, VDD >= 5.5 V 2.9 3.3 CL = 10 pF, VDD >= 5.5 V 6.6 8 Unit Test Conditions[*2] CL = 30 pF, VDD >= 3.3 V ns 4.3 5 CL = 10 pF, VDD >= 3.3 V 8.5 12.5 CL = 30 pF, VDD >= 2.4 V 8.0 10.7 CL = 10 pF, VDD >= 2.4 V 4.0 4.3 CL = 30 pF, VDD >= 5.5 V 2.1 2.5 CL = 10 pF, VDD >= 5.5 V 4.9 5.8 CL = 30 pF, VDD >= 3.3 V ns 3.0 3.7 CL = 10 pF, VDD >= 3.3 V 9.5 13.8 CL = 30 pF, VDD >= 2.4 V 5.4 7.4 CL = 10 pF, VDD >= 2.4 V 5.6 6.1 CL = 30 pF, VDD >= 5.5 V 3.4 3.7 CL = 10 pF, VDD >= 5.5 V 8.1 9.4 CL = 30 pF, VDD >= 3.3 V ns 5.1 5.8 CL = 10 pF, VDD >= 3.3 V 15.1 20.3 CL = 30 pF, VDD >= 2.4 V 9.6 12.4 CL = 10 pF, VDD >= 2.4 V 4.8 5.2 CL = 30 pF, VDD >= 5.5 V 2.1 2.5 CL = 10 pF, VDD >= 5.5 V 6.4 7.4 CL = 30 pF, VDD >= 3.3 V ns 3.0 3.7 CL = 10 pF, VDD >= 3.3 V 12.7 16.9 CL = 30 pF, VDD >= 2.4 V 5.4 7.4 CL = 10 pF, VDD >= 2.4 V 24 24 CL = 30 pF, VDD >= 2.4 V I/O maximum frequency MHz CL = 10 pF, VDD >= 2.4 V Notes: 1. Guaranteed by characterization result, not tested in production. 2. CL is a external capacitive load to simulate PCB and device loading. 3. The maximum frequency is defined by . 4. PxSR.n bit value = 0, Normal output slew rate 5. PxSR.n bit value = 1, high speed output slew rate Table 8.3-6 I/O AC characteristics Nov. 28, 2019 Page 63 of 80 Rev 1.00 MS51 8.4 Analog Characteristics 8.4.1 Reset and Power Control Block Characteristics The parameters in below table are derived from tests performed under ambient temperature. Symbol Parameter Min Typ Max Unit 20 µA Test Conditions IPOR[*1] POR operating current 10 ILVR[*1] LVR operating current 0.5 - 1 AVDD = 5.5V IBOD[*1] BOD operating current - 0.5 2.9 AVDD = 5.5V VPOR POR reset voltage 1 1.15 1.3 VLVR LVR reset voltage 1.7 2.0 2.4 - VBOD BOD brown-out detect voltage 4.25 4.4 4.55 BOV[1:0] = [0,0] 3.55 3.7 3.85 BOV[1:0] = [0,1] 2.60 2.7 2.80 BOV[1:0] = [1,0] 2.10 2.2 2.35 BOV[1:0] = [1,1] V AVDD = 5.5V - TLVR_SU[*1] LVR startup time 60 - 80 TLVR_RE[1] LVR respond time 0.4 - 4 180 - 350 Fsys = LIRC µs Fsys = HIRC@16MHz TBOD_SU[1] BOD startup time 180 - 320 Fsys = HIRC@16MHz TBOD_RE[1] BOD respond time 2.5 - 5 Fsys = HIRC@16MHz Notes: 1. Guaranteed by characterization, not tested in production. 2. Design for specified applcaiton. MS51 SERIES DATASHEET Table 8.4-1 Reset and power control unit VDD RVDDR RVDDF VBOD VLVR VPOR Time Nov. 28, 2019 Page 64 of 80 Rev 1.00 MS51 BODFLT (BODCON1.1) 0 BOD Operation Mode System Clock Source Normal mode (LPBOD[1:0] = [0,0]) Any clock source Typ. 1μs Low power mode 1 (LPBOD[1:0] = [0,1]) Any clock source 16 (1/FLIRC) Low power mode 2 (LPBOD[1:0] = [1,0]) Any clock source 64 (1/FLIRC) Low power mode 3 (LPBOD[1:0] = [1,1]) Any clock source 256 (1/ FLIRC) 1 Normal operation: 32 (1/FSYS) Idle mode: 32 (1/FSYS) Power-down mode: 2 (1/FLIRC) HIRC/ECLK Normal mode (LPBOD[1:0] = [0,0]) Minimum Brown-out Detect Pulse Width LIRC 2 (1/FLIRC) Low power mode 1 (LPBOD[1:0] = [0,1]) Any clock source 18 (1/FLIRC) Low power mode 2 (LPBOD[1:0] = [1,0]) Any clock source 66 (1/FLIRC) Low power mode 3 (LPBOD[1:0] = [1,1]) Any clock source 258 (1/ FLIRC) Table 8.4-2 Minimum Brown-out Detect Pulse Width 8.4.2 12-bit SAR ADC Symbol Min Typ Max Unit Temperature -40 - 105 ℃ AVDD Analog operating voltage 2.7 - 5.5 V AVDD = VDD VREF Reference voltage 2.7 - AVDD V VREF = AVDD 0 - VREF V TA MS51 SERIES DATASHEET VIN Parameter ADC channel input voltage Test Conditions AVDD = VDD = VREF = 5.5 V IADC[*1] Operating current (AVDD + VREF current) - - 418 µA FADC = 500 kHz TCONV = 17 * TADC NR FADC[1] TSMP TCONV TEN INL[*1] [*1] DNL Resolution ADC conversion rate 12 Bit FADC = 1/TADC - - 500 kHz 0.375 - 2.12 μs 0.417 - 1.54 μs - - 1.625 μs Enable to ready time 20 - - μs Integral Non-Linearity Error -3 - +3 LSB VREF = AVDD =VDD Differential Non-Linearity Error -2 - +4 LSB VREF = AVDD=VDD Sampling Time [2] Conversion time Nov. 28, 2019 Page 65 of 80 TADC = TSMP +TCONV Fsys = 16MHz; Fsys = 24MHz; For Min. ADCAQT = 1 [3] Rev 1.00 MS51 Symbol Parameter Min Typ Max Unit Test Conditions EG[*1] Gain error -3.5 - +0.4 LSB VREF = AVDD=VDD EO[*1]T Offset error -2 - +2.8 LSB VREF = AVDD=VDD EA[*1] Absolute Error -7 +7 LSB VREF = AVDD=VDD Notes: 1. Guaranteed by characterization result, not tested in production. 2. ADC sampling time =. 4 * ADCAQT  6 , FADCAQT is defined in ADCDIV (ADCCON2[3:1]). As default FADCAQT = FSYS FADCAQT (ADCDIV=0), 3. Since the minima sampling time must over 370ns that means when FADCAQT = 24MHz, ADCAQT should be defined as 1 at least. This value is defined by software. Table 8.4-3 ADC characteristics EF (Full scale error) = EO + EG Gain Error EG Offset Error EO 4095 4094 4093 4092 Ideal transfer curve 7 MS51 SERIES DATASHEET 6 ADC output code 5 Actual transfer curve 4 3 2 DNL 1 1 LSB Offset Error EO Analog input voltage (LSB) 4095 Note: The INL is the peak difference between the transition point of the steps of the calibrated transfer curve and the ideal transfer curve. A calibrated transfer curve means it has calibrated the offset and gain error from the actual transfer curve. Nov. 28, 2019 Page 66 of 80 Rev 1.00 MS51 8.5 Flash DC Electrical Characteristics The devices are shipped to customers with the Flash memory erased. Symbol Parameter Min Typ Max Unit 1.62 1.8 1.98 V Test Condition VFLA[1] Supply voltage TERASE Page erase time - 5 - ms TPROG Program time - 10 - µs IDD1 Read current - 4 - mA IDD2 Program current - 4 - mA IDD3 Erase current - 12 - mA 100,000 - 50 - - year 100 kcycle[3] TA = 55℃ 25 - - year 100 kcycle[3] TA = 85℃ 10 - - year 100 kcycle[3] TA = 105℃ NENDUR TRET Endurance Data retention cycles[2] TA = 25℃ TJ = -40℃~125℃ Notes: 1. VFLA is source from chip internal LDO output voltage. 2. Number of program/erase cycles. 3. Guaranteed by design. Table 8.5-1 Flash memory characteristics MS51 SERIES DATASHEET Nov. 28, 2019 Page 67 of 80 Rev 1.00 MS51 8.6 Absolute Maximum Ratings Volrage Stesses above the absolute maximum ratings may cause permanent damage to the device. The limiting values are stress ratings only and cannot be used to functional operation of the device. Exposure to the absolute maximum ratings may affect device reliability and proper operation is not guaranteed. 8.6.1 Voltage Characteristics Symbol VDD-VSS[*1] ΔVDD |VDD –AVDD| ΔVSS |VSS - AVSS| VIN Description Min Max Unit -0.3 6.5 V Variations between different power pins - 50 mV Allowed voltage difference for VDD and AVDD - 50 mV Variations between different ground pins - 50 mV Allowed voltage difference for VSS and AVSS - 50 mV VSS-0.3 5.5 V DC power supply Input voltage on I/O Notes: 1. All main power (VDD, AVDD) and ground (VSS, AVSS) pins must be connected to the external power supply. Table 8.6-1 Voltage characteristics 8.6.2 Current Characteristics Symbol ΣIDD[*1] ΣISS Description MS51 SERIES DATASHEET Min Max Maximum current into VDD - 200 Maximum current out of VSS - 200 Maximum current sunk by a I/O Pin - 22 Maximum current sourced by a I/O Pin - 10 - 100 - 100 Unit mA IIO Maximum current sunk by total I/O Pins[*2] Maximum current sourced by total I/O Pins [*2] Note: 1. Maximum allowable current is a function of device maximum power dissipation. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins. 3. A positive injection is caused by VIN>AVDD and a negative injection is caused by VIN 30 sec. Time with 5°C of actual peak temperature Peak temperature range 260°C Ramp-down rate 6°C/sec ax. Time 25°C to peak temperature 8 min. max Note: 1. Determined according to J-STD-020C Table 8.6-6 Soldering Profile Nov. 28, 2019 Page 72 of 80 Rev 1.00 MS51 9 9.1 PACKAGE DIMENSIONS QFN 33-pin (4.0 x 4.0 x 0.8 mm) MS51 SERIES DATASHEET Figure 9.1-1 QFN-33 Package Dimension Nov. 28, 2019 Page 73 of 80 Rev 1.00 MS51 9.2 LQFP 32-pin (7.0 x 7.0 x 1.4 mm) MS51 SERIES DATASHEET Figure 9.2-1 LQFP-32 Package Dimension Nov. 28, 2019 Page 74 of 80 Rev 1.00 MS51 9.3 TSSOP 28-pin (4.4 x 9.7 x 1.0 mm) MS51 SERIES DATASHEET Figure 9.3-1 TSSOP-28 Package Dimension Nov. 28, 2019 Page 75 of 80 Rev 1.00 MS51 9.4 TSSOP 20-pin (4.4 x 6.5 x 0.9 mm) MS51 SERIES DATASHEET Figure 9.4-1 TSSOP-20 Package Dimension Nov. 28, 2019 Page 76 of 80 Rev 1.00 MS51 9.5 QFN 20-pin (3.0 x 3.0 x 0.6mm) MS51 SERIES DATASHEET Figure 9.5-1 QFN-20 Package Dimension for MS51XC0BE Nov. 28, 2019 Page 77 of 80 Rev 1.00 MS51 10 ABBREVIATIONS 10.1 Abbreviations List MS51 SERIES DATASHEET Acronym Description ADC Analog-to-Digital Converter BOD Brown-out Detection GPIO General-Purpose Input/Output Fsys Frequency of system clock HIRC 12 MHz Internal High Speed RC Oscillator IAP In Application Programming ICP In Circuit Programming ISP In System Programming LDO Low Dropout Regulator LIRC 10 kHz internal low speed RC oscillator (LIRC) LVR Low Voltage $eset PDMA Peripheral Direct Memory Access POR Power On Reset PWM Pulse Width Modulation SPI Serial Peripheral Interface UART Universal Asynchronous Receiver/Transmitter UCID Unique Customer ID WKT Wakeup Timer WDT Watchdog Timer Table 10.1-1 List of Abbreviations Nov. 28, 2019 Page 78 of 80 Rev 1.00 MS51 11 REVISION HISTORY Date Revision Description 2019.11.28 1.00 Initial release MS51 SERIES DATASHEET Nov. 28, 2019 Page 79 of 80 Rev 1.00 MS51 MS51 SERIES DATASHEET Important Notice Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, “Insecure Usage”. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life. All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton. Nov. 28, 2019 Page 80 of 80 Rev 1.00
MS51FC0AE 价格&库存

很抱歉,暂时无法提供与“MS51FC0AE”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MS51FC0AE

库存:0