0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SCB33S128160AE-6BI

SCB33S128160AE-6BI

  • 厂商:

    UNIIC(紫光国芯)

  • 封装:

    P-TSOP54-II

  • 描述:

    P-TSOPII54 128Mb 90mA 3~3.6V 167MHz

  • 数据手册
  • 价格&库存
SCB33S128160AE-6BI 数据手册
May. 2022 S C B 3 3 S 1 2 8 3 20 A E SCB33S128160AE SCB33S128800AE 128 M b it Sy n c h r o n o u s DRAM EU Ro H S Co m p li a n t Pr o d u c t s D a t a She e t Re v . F Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Revision History Date Version Subjects(major changes since last revision) 2016-07 A Initial Release 2016-09 B Add the “I” , “A2” and “X” grade component 2016-11 C Update the “I” grade temperature and IDD specification 2017-03 D Redefine the operating temperature 2018-02 E Add timing diagram and IDD test condition Format review (2020-05) 2022-05 F Add Remark(P7) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: info@unisemicon.com UniIC_Techdoc, Rev. F 2022-05 2 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Contents Contents .................................................................................................................................................................................... 3 1 2 Overview ........................................................................................................................................................................... 4 1.1 Features ............................................................................................................................................................... 4 1.2 Description ........................................................................................................................................................... 5 Configuration ..................................................................................................................................................................... 7 2.1 3 4 Pin Description ..................................................................................................................................................... 7 Functional Description ..................................................................................................................................................... 12 3.1 Operation Definition ............................................................................................................................................ 12 3.2 Initialization......................................................................................................................................................... 13 3.3 Mode Register Definition .................................................................................................................................... 13 3.4 Burst Type .......................................................................................................................................................... 14 3.5 Commands ......................................................................................................................................................... 15 3.6 Operations .......................................................................................................................................................... 16 Electrical Characteristics ................................................................................................................................................. 17 4.1 Operating Conditions .......................................................................................................................................... 17 4.2 AC Characteristics .............................................................................................................................................. 20 5 Package Outlines ............................................................................................................................................................ 22 6 Product Nomenclature..................................................................................................................................................... 26 7 Timing Diagram and IDD Test Condition ......................................................................................................................... 27 7.1 Initialization......................................................................................................................................................... 27 7.2 Auto-refresh and Self-refresh ............................................................................................................................. 28 7.3 CAS Latency, tRCD and Basic Command .......................................................................................................... 29 7.4 READ TIMING DIAGRAM .................................................................................................................................. 31 7.5 Write Timing Diagram ......................................................................................................................................... 38 7.6 Clock Suspend ................................................................................................................................................... 42 7.7 Power Down ....................................................................................................................................................... 44 7.8 AUTO Precharge ................................................................................................................................................ 45 7.9 IDD Test Condition.............................................................................................................................................. 49 List of Figures .......................................................................................................................................................................... 50 List of Tables ........................................................................................................................................................................... 51 UniIC_Techdoc, Rev. F 2022-05 3 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 1 Overview This chapter gives an overview of the 128-Mbit Synchronous DRAM component product and describes its main characteristics. 1.1 Features • Fully Synchronous to Positive Clock Edge • Operating Temperature – Commercial temperature range 0 °C to 70 °C – Industrial temperature range -40 °C to 85 °C – Automotive grade 2 temperature range -40°C to 105°C –High-Rel, X (-55 °C to 125 °C) • Four Banks controlled by BA0 & BA1 • Programmable CAS Latency: 1 & 2 & 3 • Programmable Wrap Sequence: Sequential or Interleave • Programmable Burst Length: 1, 2, 4, 8 and full page • Multiple Burst Read with Single Write Operation • Automatic and Controlled Precharge Command • Data Mask for Read / Write control (x8, x16, x32) • Data Mask for Byte Control (x16,x32) • Auto Refresh (CBR) and Self Refresh • Power Down Mode • 8192 refresh cycles / 64 ms (7.8 µs) T≦105°C / 32 ms (3.9us) T>105°C • Random Column Address every CLK (1-N Rule) • Single 3.3 V ± 0.3 V Power Supply • LVTTL Interface versions • Available in 86/54 Pin TSOP II • Chipsize Packages: P–TSOPII–54 10.16mm width (x8, x16) P–TSOPII–86 10.16mm width (x32) Note: Self Refresh Mode available on temperature less than 105°C (Tcase) only. Table 1 - Performance Part Number Speed Code –6E –6 -75 Unit System Frequency (fCK) 167 167 133 MHz 6 6 7.5 ns 5.4 5.4 5.4 ns 7.5 10 10 ns 5.4 6 6 ns 20 20 20 ns 17 17 17 ns Max. Clock Frequency @CL3 @CL2 @CL1 UniIC_Techdoc, Rev. F 2022-05 tCK3 tAC3 tCK2 tAC2 tCK1 tAC1 4 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 1.2 Description The SCB33S128[320/160/800]AE-[6B/6EB/75B] are four bank Synchronous DRAMs organized as 4 banks x 1 MBit x32, 4 banks x 2 Mbit x16 and 4 banks x 4 MBit x8 respectively. These synchronous devices achieve high speed data transfer rates for CAS latencies by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to a system clock. The device is designed to comply with all industry standards set for synchronous DRAM products, both electrically and mechanically. All of the control, address, data input and output circuits are synchronized with the positive edge of an externally supplied clock. Operating the four memory banks in an interleave fashion allows random access operation to occur at a higher rate than is possible with standard DRAMs. A sequential and gapless data rate is possible depending on burst length, CAS latency and speed grade of the device. `Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single 3.3 V ± 0.3 V power supply. All 128-Mbit components are available in P–TSOPII–[86/54] packages. Table 2 - Ordering Information for RoHS Compliant Products Product Type1) X8 TSOP54 X16 TSOP54 Package Description SCB33S128800AE-6B P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6BI P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6BA2 P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6BX P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6EB P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6EBI P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6EBA2 P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-6EBX P-TSOPII54 167MHz 16M x 8 SDRAM SCB33S128800AE-75B P-TSOPII54 133MHz 16M x 8 SDRAM SCB33S128800AE-75BI P-TSOPII54 133MHz 16M x 8 SDRAM SCB33S128800AE-75BA2 P-TSOPII54 133MHz 16M x 8 SDRAM SCB33S128800AE-75BX P-TSOPII54 133MHz 16M x 8 SDRAM SCB33S128160AE-6B P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6BI P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6BA2 P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6BX P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6EB P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6EBI P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6EBA2 P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-6EBX P-TSOPII54 167MHz 8M x 16 SDRAM SCB33S128160AE-75B P-TSOPII54 133MHz 8M x 16 SDRAM SCB33S128160AE-75BI P-TSOPII54 133MHz 8M x 16 SDRAM SCB33S128160AE-75BA2 P-TSOPII54 133MHz 8M x 16 SDRAM SCB33S128160AE-75BX P-TSOPII54 133MHz 8M x 16 SDRAM UniIC_Techdoc, Rev. F 2022-05 5 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Product Type1) X32 TSOP86 Package Description SCB33S128320AE-6B P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6BI P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6BA2 P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6BX P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6EB P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6EBI P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6EBA2 P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-6EBX P-TSOPII86 167MHz 4M x 32 SDRAM SCB33S128320AE-75B P-TSOPII86 133MHz 4M x 32 SDRAM SCB33S128320AE-75BI P-TSOPII86 133MHz 4M x 32 SDRAM SCB33S128320AE-75BA2 P-TSOPII86 133MHz 4M x 32 SDRAM SCB33S128320AE-75BX P-TSOPII86 133MHz 4M x 32 SDRAM 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Remark:SCB33S128xx0AF-xxxA2 meets AEC-Q100 reliability requirements. Detail qualification information refer to qualification report; UniIC_Techdoc, Rev. F 2022-05 6 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 2 Configuration This chapter contains the pin configuration table, the TSOP package drawing, 2.1 Pin Description Listed below are the pin configurations sections for the various signals of the SDRAM Table 3 - Configuration TSOP-54/86 Name Pin Type Buffer Function Type I LVTTL Clock Signal CK LVTTL Note: The system clock input. All of the SDRAM inputs are sampled on the rising edge Clock Enable of the clock. Note: Activates the CLK signal when high and deactivates the CLK signal when low, thereby initiating either the Power Down mode, Suspend mode, or the Self Refresh mode. Clock Signals CLK CKE I Control Signals RAS I LVTTL Row Address Strobe CAS I LVTTL Column Address Strobe WE I LVTTL Write Enable CS I LVTTL Chip Select Address Signals BA0~BA1 I Note: Enables the command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored Bank Address Signals 1:0 continue. but previous operations LVTTL Note: Bank Select Inputs. Bank address inputs selects which of the four banks a command applies to. Address Signal 9:0, Address Signal 10/Auto precharge A0~A11 I Note: During a Bank Activate command cycle, A0-A11 define the row address (RA0RA11) when sampled at the rising clock edge. During a Read or Write command cycle, A0-An define the column address (CA0-CAn) when sampled at the rising clock edge. CAn depends upon the SDRAM organization: 32M x8SDRAM CAn = CA9 (Page Length = 1024 bits) 16M x16SDRAM CAn = CA8 (Page Length = 512 bits) LVTTL 8M x32SDRAM CAn = CA7 (Page Length = 256 bits) In addition to the column address, A10 (= AP) is used to invoke the auto pre charge operation at the end of the burst read or write cycle. If A10 is high, auto pre charge is selected and BA0, BA1 defines the bank to be precharged. If A10 is low, auto pre charge is disabled. During a Precharge command cycle, A10 (= AP) is used in conjunction with BA0 and BA1 to control which bank(s) to precharge. If A10 is high, all four banks will be precharged regardless of the state of BA0 and BA1. If A10 is low, then BA0 and BA1 are used to define which bank to precharge. UniIC_Techdoc, Rev. F 2022-05 7 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Pin Type Buffer Function Type DQ0~DQ31 I/O LVTTL Data Signal 31:0 DQM(x8)/ LDQM(x16)/ DQM0(x32) I LVTTL Data Mask for DQ0~DQ7 UDQM(x16)/ DQM1(x32) I LVTTL Data Mask for DQ8~DQ15 DQM2(x32) I LVTTL Data Mask for DQ16~DQ23 DQM3(x32) I LVTTL Data Mask for DQ24~DQ31 Name Data Signals Power Supplies VDDQ PWR – Power Supply for DQs VDD PWR – Power Supply VSSQ PWR – Note: Power for Ground the inputfor buffers Power Supply DQs and the core logic (3.3 V) PWR Not Connected – Note: supply and ground for the output buffers to provide improved PowerIsolated Supplypower Ground noise immunity. NC — Not Connected VSS NC Table 4 - Abbreviations for Ball Type Abbreviation Description I Standard input-only pin. Digital levels O Output. Digital levels I/O I/O is a bidirectional input/output signal AI Input. Analog levels PWR Power GND Ground NC Not Connected Table 5 - Abbreviations for Buffer Type Abbreviation Description LVTTL Low Voltage Transistor-Transistor Logic (LVTTL-3.3) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR UniIC_Techdoc, Rev. F 2022-05 8 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 1 - Configuration for x32 Organization, TSOP86, Top View UniIC_Techdoc, Rev. F 2022-05 9 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 2 - Configuration for x16 Organization, TSOP-54, Top View UniIC_Techdoc, Rev. F 2022-05 10 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 3 - Configuration for x8 Organization, TSOP-54, Top View UniIC_Techdoc, Rev. F 2022-05 11 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 3 3.1 Functional Description Operation Definition All of SDRAM operations are defined by states of control signals CS , RAS , CAS , WE , and DQM at the positive edge of the clock. The following list shows the truth table for the operation commands. Table 6 - Truth Table 1) V = Valid, x = Don’t Care, L = Low Level, H = High Level 2) CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock before the commands are Provided 3) This is the state of the banks designated by BA0, BA1 signals. 4) Power Down Mode can not be entered in a burst cycle. When this command asserted in the burst mode cycle device is in clock suspend mode. UniIC_Techdoc, Rev. F 2022-05 12 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 3.2 Initialization The default power on state of the mode register is supplier specific and may be undefined. The following power on and initialization sequence guarantees the device is preconditioned to each users specific needs. Like a conventional DRAM, the Synchronous DRAM must be powered up and initialized in a predefined manner. During power on, all VDD and VDDQ pins must be built up simultaneously to the specified voltage when the input signals are held in the “NOP” state. The power on voltage must not exceed VDD + 0.3 V on any of the input pins or VDD supplies. The CLK signal must be started at the same time. After power on, an initial pause of 200 µs is required followed by a precharge of all banks using the precharge command. To prevent data contention on the DQ bus during power on, it is required that the DQM and CKE pins be held high during the initial pause period. Once all banks have been precharged, the Mode Register Set Command must be issued to initialize the Mode Register. A minimum of eight Auto Refresh cycles (CBR) are also required. These may be done before or after programming the Mode Register. Failure to follow these steps may lead to unpredictable start-up modes. 3.3 Mode Register Definition The Mode register designates the operation mode at the read or write cycle. This register is divided into four fields. First, a Burst Length field which sets the length of the burst. Second, an Addressing Selection bit which programs the column access sequence in a burst cycle (interleaved or sequential). Third, a CAS Latency field to set the access time at clock cycle. Fourth, an Operation mode field to differentiate between normal operation (Burst read and burst Write) and special Burst Read and Single Write mode. After the initial power up, the mode set operation must be done before any activate command. Any content of the mode register can be altered by re-executing the mode set command. All banks must be in precharged state and CKE must be high at least one clock before the mode set operation. After the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing defines parameters to be set as shown in the previous table. BA0 BA1 0 0 A12 A11 reserved A10 A9 weak OCD wrbst A8 A7 A6 A5 reserved Table 7 - Mode Register Definition Field Bits Type1) Description BL [2:0] W Burst Length 000B1, 001B 2, 010B 4, 011B 8, 111B Full Page (Sequential burst type only), BT CL [3] Burst Type 0 Sequential 1 Interleaved [6:4] CAS Latency Note: All other bit combinations are RESERVED. 010B 2 011B 3 MODE [8:7] RESERVED wrbst Write Burst Mode [9] 0BProgrammed Burst Length, 1BSingle Location Access, UniIC_Techdoc, Rev. F 2022-05 13 / 52 A4 CL A3 BT A2 A1 BL A0 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Field Bits Weak OCD [10] Type1) Description Weak OCD Mode 0Bnormal OCD, 1Bweak OCD, MODE [12:11] RESERVED 1) W = write only register bit 3.4 Burst Type Accesses within a given burst may be programmed to be sequential or interleaved; as shown in Table 8. Table 8 - Burst Definition Burst Length Starting Column Address A2 A1 2 Full page A0 Type = Sequential Type = Interleaved 0 0-1 0-1 1 1-0 1-0 0 0 0-1-2-3 0-1-2-3 0 1 1-2-3-0 1-0-3-2 1 0 2-3-0-1 2-3-0-1 1 1 3-0-1-2 3-2-1-0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 Cn, Cn+1, Cn+2 not supported 4 8 Order of Accesses Within a Burst n Notes 1. 2. 3. 4. For a burst length of two, A1-Ai selects the two-data-element block; A0 selects the first access within the block. For a burst length of four, A2-Ai selects the four-data-element block; A0-A1 selects the first access within the block. For a burst length of eight, A3-Ai selects the eight-data- element block; A0-A2 selects the first access within the block. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. UniIC_Techdoc, Rev. F 2022-05 14 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 3.5 Commands Refresh Mode SDRAM has two refresh modes, Auto Refresh and Self Refresh. Auto Refresh is similar to the CAS -before-RAS refresh of conventional DRAMs. All banks must be precharged before applying any refresh mode. An on-chip address counter increments the word and the bank addresses and no bank information is required for both refresh modes. The chip enters the Auto Refresh mode, when RAS and CAS are held low and CKE and WE are held high at a clock timing. The mode restores word line after the refresh and no external precharge command is necessary. A minimum tRC time is required between two automatic refreshes in a burst refresh mode. The same rule applies to any access command after the automatic refresh operation. The chip has an on-chip timer and the Self Refresh mode is available. The mode restores the word lines after, RAS CAS and CKE are low and WE is high at a clock timing. All of external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one tRC delay is required prior to any access command. Auto Precharge Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS timing accepts one extra address, CA10, to determine whether the chip restores or not after the operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge function is initiated. If CA10 is high when a Write Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation a time delay equal to tWR (“write recovery time”) after the last data in. A burst operation with Auto-Precharge may only be interrupted by a burst start to another bank. It must not be interrupted by a precharge or a burst stop command. Precharge Command There is also a separate precharge command available. When RAS and WE are low and CAS is high at a clock timing, it triggers the precharge operation. Three address bits, BA0, BA1 and A10 are used to define banks as shown in the following list. The precharge command can be imposed one clock before the last data out for CAS latency = 2 and two clocks before the last data out for CAS latency = 3. Writes require a time delay tWR (“write recovery time”) of 2 clocks minimum from the last data out to apply the precharge command. Table 9 - Bank Selection by Address Bits A10 BA0 BA1 0 0 0 Bank 0 0 0 1 Bank 1 0 1 0 Bank 2 0 1 1 Bank 3 1 X X All Banks Burst Termination Once a burst read or write operation has been initiated, there are several methods in which to terminate the burst operation prematurely. These methods include using another Read or Write Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read or Write Command care must be taken to avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the easiest method to use when terminating a burst operation before it has been completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the burst write cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is registered will be written to the memory. UniIC_Techdoc, Rev. F 2022-05 15 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 3.6 Operations Read and Write When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle starts. According to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the wordline are set. A CAS cycle is triggered by RAS setting high and CAS low at a clock timing after a necessary delay, tRCD from the RAS timing. WE is used to define either a read(WE=H) or a write(WE=L) at this stage. SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or write operations are allowed at up to a 166 MHz data rate. The numbers of serial data bits are the burst length programmed at the mode set operation, i.e., one of 1, 2, 4 and 8 and full page. Column addresses are segmented by the burst length and serial data accesses are done within this boundary. The first column address to be accessed is supplied at the CAS timing and the subsequent addresses are generated automatically by the programmed burst length and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is ‘2’, then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5. Full page burst operation is only possible using the sequential burst type and page length is a function of the I/O organization and column addressing. Full page burst operation does not self terminate once the burst length has been reached. In other words, unlike burst lengths of 2, 4 and 8, full page burst continues until it is terminated using another command. Similar to the page mode of conventional DRAMs, burst read or write accesses on any column address are possible once the RAS cycle latches the sense amplifiers. The maximum tRAS or the refresh interval time limits the number of random column accesses. A new burst access can be done even before the previous burst ends. The interrupt operation at every clock cycle is supported. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. An interrupt which accompanies an operation change from a read to a write is possible by exploiting DQM to avoid bus contention. When two or more banks are activated sequentially, interleaved bank read or write operations are possible. With the programmed burst length, alternate access and precharge operations on two or more banks can realize fast serial data access modes among many different pages. Once two or more banks are activated, column to column interleave operation can be performed between different pages. DQM Function DQM has two functions for data I/O read and write operations. During reads, when it turns to “high“ at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM Data Disable Latency tDQZ). It also provides a data mask function for writes. When DQM is activated, the write operation at the next clock is prohibited (DQM Write Mask Latency tDQW = zero clocks). Power Down In order to reduce standby power consumption, a power down mode is available. All banks must be precharged and the necessary Precharge delay (tRP) must occur before the SDRAM can enter the Power Down mode. Once the Power Down mode is initiated by holding CKE low, all of the receiver circuits except CLK and CKE are gated off. The Power Down mode does not perform any refresh operations, therefore the device can’t remain in Power Down mode longer than the Refresh period (tREF) of the device. Exit from this mode is performed by taking CKE “high“. One clock delay is required for Power Down mode entry and exit. UniIC_Techdoc, Rev. F 2022-05 16 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 4 4.1 Electrical Characteristics Operating Conditions Table 10 - Absolute Maximum Ratings Limit Values Unit Note/ Test Condition +4.6 V – – 1.0 +4.6 V – – 1.0 +4.6 V – TSTG -55 +150 °C – PD IOUT – 1 W – – 50 mA – Parameter Symbol Min. Max. Input / Output voltage relative to VSS VIN, VOUT – 1.0 Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS VDD VDDQ Storage temperature range Power dissipation per SDRAM component Data out current (short circuit) Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Table 11 - Operating Temperature Symbol Toper Parameter Operating Parameter Rating Unit Note/ Test Condition 70 °C Commercial temperature – 40 85 °C Industrial temperature range – 40 105 °C Automotive grade 2 temperature range – 55 125 °C High-Rel temperature range Min Max 0 1) Operating Temperature is the operating ambient temperature surrounding the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. 3) When TCASE≥105℃ the Auto-Refresh command interval has to be reduced to tREFI= 3.9 μs. Table 12 - DC Characteristics Parameter Symbol Values Unit Note/ Test Condition Min. Max. Supply Voltage VDD 3.0 3.6 V 2) I/O Supply Voltage VDDQ 3.0 3.6 V 2) Input high voltage VIH 2.0 VDDQ+0.3 V 2)3) Input low voltage VIL – 0.3 +0.8 V 2)3) Output high voltage (IOUT = – 4.0 mA) VOH 2.4 – V 2) Output low voltage (IOUT = 4.0 mA) VOL – 0.4 V 2) Input leakage current, any input (0 V < VIN < VDD, all other inputs = 0 V) IIL – 10 +10 µA – Output leakage current (DQs are disabled, 0 V < VOUT < VDDQ) IOL – 10 +10 µA – 1) All voltages are referenced to VSS 2) VIH may overshoot to VDDQ + 2.0 V for pulse width of < 4ns with 3.3 V. VIL may undershoot to -2.0 V for pulse width < 4.0 ns with 3.3 V. Pulse width measured at 50% points with amplitude measured peak to DC reference. UniIC_Techdoc, Rev. F 2022-05 17 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Table 13 - Input and Output Capacitances Parameter Symbol Values2) Min. Max. Unit Input Capacitances: CK, CK CI1 2.5 3.5 pF Input Capacitance (A0-A12, BA0, BA1, RAS, CAS, WE, CS, CKE, DQM) CI2 2.5 3.8 pF Input/Output Capacitance (DQ) CI0 4.0 6.0 pF 1) VDD, VDDQ = 3.3 V ± 0.3 V, f = 1 MHz 2) Capacitance values are shown for TSOP-54 packages. Capacitance values for TFBGA packages are lower by 0.5 pF Table 14 - IDD Conditions Parameter Symbol Operating Current One bank active, Burst length = 1 IDD1 Precharge Standby Current in Power Down Mode tCK = min. IDD2P IDD2N Recharge Standby Current in Non-Power Down Mode tCK = min. No Operating Current Active state (max. 4 banks) IDD3N IDD3P Burst Operating Current Read command cycling IDD4 Auto Refresh Current Auto Refresh command cycling IDD5 Self Refresh Current Self Refresh Mode, CKE=0.2V, tCK=infinity IDD6 UniIC_Techdoc, Rev. F 2022-05 18 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Table 15 - X32/X16/X8 IDD Specifications Symbol IDD1 IDD2P IDD2N IDD3P Parameter &Test Condition Gread X32 X16 X8 –6/6E 90 90 90 -75 70 70 70 –6/6E 4 4 4 -75 4 4 4 –6/6E 15 15 15 -75 15 15 15 –6/6E 6 6 6 -75 6 6 6 –6/6E 20 20 20 -75 20 20 20 Burst Operating Current Read/Write command cycling tCK = min –6/6E 120 110 100 -75 100 90 80 tRC= tRC(min) –6/6E 190 190 190 -75 190 190 190 –6/6E 5 5 5 -75 5 5 5 tRC = tRCMIN., tRC = tCKMIN. 1 bank operation CS =VIH, CKE≤ VIL(max) tCK = min. CS =VIH, CKE≥ VIL(max) tCK = min. CS = VIH(min), CKE ≤ VIL(max.) tCK = min, IDD3N IDD4 IDD5 CS = VIH(min), CKE ≥VIH(min.) tCK = min, tCK = min IDD6 IDDmax Speed CKE≤ 0.2V Standard Unit Notes mA 1,3 mA 1,3 mA 3 mA 3 mA 3 mA 1,2,3 mA 1,3 mA 3 Notes: 1. These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of tCK and tRC. Input signals are changed one time during tCK. 2. These parameter depend on output loading. Specified values are obtained with output open. 3. The temperature from -55°C ~125°C UniIC_Techdoc, Rev. F 2022-05 19 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 4.2 AC Characteristics Table 16 - AC Timing-Absolute Speccifications-6E/-6/75 Parameter Symbol –6E –6 –75 Min. Max. Min. Max. Min. Max. Unit Notes Clock Frequency tCK –6 –7.5 –20 — — — –6 –10 –20 — — — –7.5 –10 –20 — — — ns ns ns CL3 CL2 CL1 Access Time from Clock tAC — — — 5.4 5.4 17 — — — 5.4 6 17 — — — 5.4 6 17 ns ns ns Clock High Pulse Width tCH 2 — 2.5 — 2.5 — ns CL3 CL2 CL1 3)4)5) Clock Low Pulse Width tCL 2 — 2.5 — 2.5 — ns Transition time tT 0.3 1.2 0.3 1.2 0.3 1.2 ns Input Setup Time tIS 1.5 — 1.5 — 1.5 — ns 6) Input Hold Time tIH 0.8 — 0.8 — 0.8 — ns 6) CKE Setup Time tCK 1.5 — 1.5 — 1.5 — ns 6) CKE Hold Time tCKH 0.8 — 0.8 — 0.8 — ns 6) Mode Register Set-up to Command delay tMRD 2 — 2 — 2 — tCK Power Down Exit Setup Time tDDE 7 0 6 0 7.5 0 ns Row to Column Delay Time tRCD 15 — 18 — 15 — ns 7) Row Precharge Time tRP 15 — 15 — 15 — ns 7) Row Active Time tRAS 42 100k 42 100k 44 120k ns 7) Row Cycle Time tRC 60 — 60 — 66 — ns 7) Row Cycle Time during Auto Refresh tRFC 67 — 60 — 66 — ns Activate(a) to Activate(b) Command period tRRD 14 — 12 — 15 — ns CAS(a) to CAS(b) Command period tCCD 1 — 1 — 1 — tCK Refresh Period (8192 cycles) tREF – 64 – 64 – 64 ms Self Refresh Exit Time tSREX 67 — 70 — 75 — ns Data Out Hold Time tOH 2.5 — 2.7 — 2.7 — ns Data Out to Low Impedance Time tLZ 1 — 1 — 1 — ns Data Out to High Impedance Time tHZ 5.4 6 17 ns DQM Data Out Disable Latency tDQZ — 2 — 2 — 2 tCK Last Data Input to Precharge (Write without Auto Precharge) Last Data Input to Activate (Write with Auto Precharge) DQM Write Mask Latency tWR 14 — 12 — 15 — ns 8) tDAL(min.) 29 ns 9) tDQW 0 5.4 6 17 5.4 6 17 30 — 0 30 — 0 — 7) 3)5) CL3 CL2 CL1 tCK 1) VSS = 0 V; VDD, VDDQ = 3.3 V ± 0.3 V, tT = 1 ns 2) For proper power-up see the operation section of this data sheet. 3) AC timing tests for LV-TTL versions have VIL = 0.4 V and VIH = 2.4 V with the timing referenced to the 1.4 V crossover point. The transition time is measured between VIH and VIL. All AC measurements assume tT = 1 ns with the AC output load circuit shown in figure below. Specified tAC and tOH parameters are measured with a 50 pF only, without any resistive termination and with an input signal of 1V / ns edge rate between 0.8 V and 2.0 V. 4) If clock rising time is longer than 1 ns, a time (tT/2 - 0.5) ns has to be added to this parameter. 5) Access time from clock tac is 4.6 ns for PC133 components with no termination and 0 pF load, Data out hold time toh is 1.8 ns for UniIC_Techdoc, Rev. F 2022-05 20 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM PC133 components with no termination and 0 pF load. 6) If tT is longer than 1 ns, a time (tT - 1) ns has to be added to this parameter. 7) These parameter account for the number of clock cycles and depend on the operating frequency of the clock, as follows: the number of clock cycles = specified value of timing period (counted in fractions as a whole number) 8) It is recommended to use two clock cycles between the last data-in and the precharge command in case of a write command without Auto-Precharge. One clock cycle between the last data-in and the precharge command is also supported, but restricted to cycle times tCK greater or equal the specified tWR value, where tck is equal to the actual system clock time. 9) When a Write command with Auto Precharge has been issued, a time of tDAL(min) has be fullfilled before the next Activate Command can be applied. For each of the terms, if not already an integer, round up to the next highest integer. tCK is equal to the actual system clock time. Figure 4 - AC Output Load Circuit Diagram / Timing Reference Load UniIC_Techdoc, Rev. F 2022-05 21 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 5 Package Outlines Figure 5 - Package Outline PG-TSOPII-54 UniIC_Techdoc, Rev. F 2022-05 22 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 6 - Package Outline PG-TSOPII-54 UniIC_Techdoc, Rev. F 2022-05 23 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 7 - Package Outline PG-TSOPII-86 UniIC_Techdoc, Rev. F 2022-05 24 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 8 - Package Outline PG-TSOPII-86 UniIC_Techdoc, Rev. F 2022-05 25 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 6 Product Nomenclature For reference the UniIC SDRAM component nomenclature is enclosed in this chapter. Table 17 - Examples for Nomenclature Fields Example for SDRAM Field Number 1 2 3 4 5 6 7 8 9 10 SCB 33 S 512 32/16/80 0 A E 6B I Table 18 - SDR Memory Components Field Description Values Coding 1 SCSemicon Component Prefix SCB Memory components 2 DRAM Volatge 33 33= 3.3V 3 DRAM generatio S S=SDRAM 4 Component Density [Mbit] 64 64 Mbit 128 128 Mbit 256 256 Mbit 512 512 Mbit 32 × 32 16 × 16 80 ×8 0 monolithic 2 2 die stack 4 4 die stack A First B Second C Third C FBGA black T TSOPII black E TSOPII green F FBGA green G TSOP stack green 75B SDR–133 3–3–3 6EB SDR–166 3–3–3 6B SDR–166 3–3–3 5B SDR–200 3–3–3 Blank Standard temperature range (0°C – +70 °C) I Industrial temperature range (-40°C – +85 °C) A2 Automotive grade 2(-40°C – +105°C) X High-Rel, temperature range (-55°C – +125 °C) 5 6 7 8 9 10 Number of I/Os Die numbers Die Revision Package, Lead-Free Status Speed Grade Operating Temperature UniIC_Techdoc, Rev. F 2022-05 26 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7 7.1 Timing Diagram and IDD Test Condition Initialization Figure 9 - Initialize and Load Mode Register UniIC_Techdoc, Rev. F 2022-05 27 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.2 Auto-refresh and Self-refresh Figure 10 - Auto Refresh Cycle Figure 11 - Self Refresh Cycle UniIC_Techdoc, Rev. F 2022-05 28 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.3 CAS Latency, tRCD and Basic Command Figure 12 - Cas Latency Figure 13 - tRCD UniIC_Techdoc, Rev. F 2022-05 29 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 14 - Command ACTIV READ WRITE UniIC_Techdoc, Rev. F 2022-05 PRECHARGE 30 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.4 READ TIMING DIAGRAM Figure 15 - Read to Write Read to Write CL=2 Read to Write CL=3 UniIC_Techdoc, Rev. F 2022-05 31 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 16 - Consecutive Read Bursts UniIC_Techdoc, Rev. F 2022-05 32 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 17 - Random Read Accesses UniIC_Techdoc, Rev. F 2022-05 33 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 18 - Read Burst Termination UniIC_Techdoc, Rev. F 2022-05 34 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 19 - Alternating Bank Read Accesses Figure 20 - Full Page Read Burst UniIC_Techdoc, Rev. F 2022-05 35 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 21 - Read with DQM UniIC_Techdoc, Rev. F 2022-05 36 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 22 - Read to Precharge UniIC_Techdoc, Rev. F 2022-05 37 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.5 Write Timing Diagram Figure 23 - Write Burst Figure 24 - Write to Write Figure 25 - Random Write Cycles UniIC_Techdoc, Rev. F 2022-05 38 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 26 - Write to Read Figure 27 - Write to Precharge Write to Precharge tRP=2 Write to Precharge tRP=3 UniIC_Techdoc, Rev. F 2022-05 39 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 28 - Write Burst Termination Figure 29 - Full Page Write Burst UniIC_Techdoc, Rev. F 2022-05 40 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 30 - Write with DQM Figure 31 - Alternating Bank Write Accesses UniIC_Techdoc, Rev. F 2022-05 41 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.6 Clock Suspend Figure 32 - Clock Suspend during Write Burst Figure 33 - Clock Suspend during Read Burst UniIC_Techdoc, Rev. F 2022-05 42 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 34 - Clock Suspend Mode UniIC_Techdoc, Rev. F 2022-05 43 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.7 Power Down Figure 35 - Power Down Figure 36 - Cycles in Power Down Mode UniIC_Techdoc, Rev. F 2022-05 44 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.8 AUTO Precharge Figure 37 - Read with Auto-precharge Interrupt by Read Figure 38 - Read with Auto-precharge Interrupt by Write UniIC_Techdoc, Rev. F 2022-05 45 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 39 - Write with Auto-precharge Interrupt by Read Figure 40 - Write with Auto-precharge Interrupt by Write UniIC_Techdoc, Rev. F 2022-05 46 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 41 - Read with Auto-precharge Figure 42 - Read with Precharge UniIC_Techdoc, Rev. F 2022-05 47 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Figure 43 - Write with Auto-precharge Figure 44 - Write with Precharge UniIC_Techdoc, Rev. F 2022-05 48 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM 7.9 IDD Test Condition Table 19 - IDD Test Conditions UniIC_Techdoc, Rev. F 2022-05 49 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM List of Figures Figure 1 - Configuration for x32 Organization, TSOP86, Top View ........................................................................................... 9 Figure 2 - Configuration for x16 Organization, TSOP-54, Top View ........................................................................................ 10 Figure 3 - Configuration for x8 Organization, TSOP-54, Top View .......................................................................................... 11 Figure 4 - AC Output Load Circuit Diagram / Timing Reference Load ..................................................................................... 21 Figure 5 - Package Outline PG-TSOPII-54 ............................................................................................................................. 22 Figure 6 - Package Outline PG-TSOPII-54 ............................................................................................................................. 23 Figure 7 - Package Outline PG-TSOPII-86 ............................................................................................................................. 24 Figure 8 - Package Outline PG-TSOPII-86 ............................................................................................................................. 25 Figure 9 - Initialize and Load Mode Register ........................................................................................................................... 27 Figure 10 - Auto Refresh Cycle ............................................................................................................................................... 28 Figure 11 - Self Refresh Cycle................................................................................................................................................. 28 Figure 12 - Cas Latency .......................................................................................................................................................... 29 Figure 13 - tRCD ..................................................................................................................................................................... 29 Figure 14 - Command ............................................................................................................................................................. 30 Figure 15 - Read to Write ........................................................................................................................................................ 31 Figure 16 - Consecutive Read Bursts...................................................................................................................................... 32 Figure 17 - Random Read Accesses ....................................................................................................................................... 33 Figure 18 - Read Burst Termination......................................................................................................................................... 34 Figure 19 - Alternating Bank Read Accesses .......................................................................................................................... 35 Figure 20 - Full Page Read Burst ............................................................................................................................................ 35 Figure 21 - Read with DQM..................................................................................................................................................... 36 Figure 22 - Read to Precharge ................................................................................................................................................ 37 Figure 23 - Write Burst ............................................................................................................................................................ 38 Figure 24 - Write to Write ........................................................................................................................................................ 38 Figure 25 - Random Write Cycles ........................................................................................................................................... 38 Figure 26 - Write to Read ........................................................................................................................................................ 39 Figure 27 - Write to Precharge ................................................................................................................................................ 39 Figure 28 - Write Burst Termination ......................................................................................................................................... 40 Figure 29 - Full Page Write Burst ............................................................................................................................................ 40 Figure 30 - Write with DQM ..................................................................................................................................................... 41 Figure 31 - Alternating Bank Write Accesses .......................................................................................................................... 41 Figure 32 - Clock Suspend during Write Burst ........................................................................................................................ 42 Figure 33 - Clock Suspend during Read Burst ........................................................................................................................ 42 Figure 34 - Clock Suspend Mode ............................................................................................................................................ 43 Figure 35 - Power Down .......................................................................................................................................................... 44 Figure 36 - Cycles in Power Down Mode ................................................................................................................................ 44 Figure 37 - Read with Auto-precharge Interrupt by Read ........................................................................................................ 45 Figure 38 - Read with Auto-precharge Interrupt by Write ........................................................................................................ 45 Figure 39 - Write with Auto-precharge Interrupt by Read ........................................................................................................ 46 Figure 40 - Write with Auto-precharge Interrupt by Write ........................................................................................................ 46 Figure 41 - Read with Auto-precharge..................................................................................................................................... 47 Figure 42 - Read with Precharge ............................................................................................................................................ 47 Figure 43 - Write with Auto-precharge ..................................................................................................................................... 48 Figure 44 - Write with Precharge ............................................................................................................................................. 48 UniIC_Techdoc, Rev. F 2022-05 50 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM List of Tables Table 1 - Performance ............................................................................................................................................................... 4 Table 2 - Ordering Information for RoHS Compliant Products ................................................................................................... 5 Table 3 - Configuration TSOP-54/86 ......................................................................................................................................... 7 Table 4 - Abbreviations for Ball Type ......................................................................................................................................... 8 Table 5 - Abbreviations for Buffer Type ...................................................................................................................................... 8 Table 6 - Truth Table ................................................................................................................................................................ 12 Table 7 - Mode Register Definition .......................................................................................................................................... 13 Table 8 - Burst Definition ......................................................................................................................................................... 14 Table 9 - Bank Selection by Address Bits ................................................................................................................................ 15 Table 10 - Absolute Maximum Ratings .................................................................................................................................... 17 Table 11 - Operating Temperature ........................................................................................................................................... 17 Table 12 - DC Characteristics .................................................................................................................................................. 17 Table 13 - Input and Output Capacitances .............................................................................................................................. 18 Table 14 - IDD Conditions ......................................................................................................................................................... 18 Table 15 - X32/X16/X8 IDD Specifications ................................................................................................................................ 19 Table 16 - AC Timing-Absolute Speccifications-6E/-6/75......................................................................................................... 20 Table 17 - Examples for Nomenclature Fields ......................................................................................................................... 26 Table 18 - SDR Memory Components ..................................................................................................................................... 26 Table 19 - IDD Test Conditions ................................................................................................................................................ 49 UniIC_Techdoc, Rev. F 2022-05 51 / 52 Data Sheet SCB33S128[32/16/80]0AE 128Mbit Synchronous DRAM Edition 2022-05 Published by Xi’an UniIC Semiconductors CO., Ltd. Xi’an: 4th Floor, Building A, No. 38 Gaoxin 6th Road, Xian High-tech Industries Development Zone Xi'an, Shaanxi 710075, P. R. China Tel: +86-29-88318000 Fax: +86-29-88453299 info@unisemicon.com © UniIC 2022. All Rights Reserved. Legal Disclaimer THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE, UNIIC HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY. Information For further information on technology, delivery terms and conditions and prices please contact your nearest UniIC Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest UniIC Office. UniIC Components may only be used in life-support devices or systems with the express written approval of UniIC, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.unisemicon.com UniIC_Techdoc, Rev. F 2022-05 52 / 52
SCB33S128160AE-6BI 价格&库存

很抱歉,暂时无法提供与“SCB33S128160AE-6BI”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SCB33S128160AE-6BI
  •  国内价格
  • 1+33.99999
  • 10+31.49999
  • 30+31.00000

库存:0