L3GD20
MEMS motion sensor:
three-axis digital output gyroscope
Features
■
Three selectable full scales (250/500/2000
dps)
■
I2C/SPI digital output interface
■
16 bit-rate value data output
■
8-bit temperature data output
■
Two digital output lines (interrupt and data
ready)
■
Integrated low- and high-pass filters with userselectable bandwidth
Description
■
Wide supply voltage: 2.4 V to 3.6 V
■
Low voltage-compatible IOs (1.8 V)
The L3GD20 is a low-power three-axis angular
rate sensor.
■
Embedded power-down and sleep mode
■
Embedded temperature sensor
■
Embedded FIFO
■
High shock survivability
■
Extended operating temperature range (-40 °C
to +85 °C)
■
ECOPACK® RoHS and “Green” compliant
LGA-16 (4x4x1 mm)
Applications
■
Gaming and virtual reality input devices
■
Motion control with MMI (man-machine
interface)
■
GPS navigation systems
■
Appliances and robotics
It includes a sensing element and an IC interface
capable of providing the measured angular rate to
the external world through a digital interface
(I2C/SPI).
The sensing element is manufactured using a
dedicated micro-machining process developed by
STMicroelectronics to produce inertial sensors
and actuators on silicon wafers.
The IC interface is manufactured using a CMOS
process that allows a high level of integration to
design a dedicated circuit which is trimmed to
better match the sensing element characteristics.
The L3GD20 has a full scale of ±250/±500/ ±2000
dps and is capable of measuring rates with a
user-selectable bandwidth.
The L3GD20 is available in a plastic land grid
array (LGA) package and can operate within a
temperature range of -40 °C to +85 °C.
Table 1. Device summary
Order code
Temperature range (°C)
Package
Packing
L3GD20
-40 to +85
LGA-16 (4x4x1 mm)
Tray
L3GD20TR
-40 to +85
LGA-16 (4x4x1 mm)
Tape and reel
August 2011
Doc ID 022116 Rev 1
1/44
www.st.com
44
Contents
L3GD20
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2
I2C - Inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7
2.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2
Zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
4.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4
Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.5
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.6
Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1
5.2
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1
2/44
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 022116 Rev 1
L3GD20
Contents
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6
Output register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2
CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3
CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4
CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5
CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.6
CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.7
REFERENCE/DATACAPTURE (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.8
OUT_TEMP (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.9
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.10
OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.11
OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.12
OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.13
FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.14
FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.15
INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.16
INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.17
INT1_THS_XH (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.18
INT1_THS_XL (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.19
INT1_THS_YH (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.20
INT1_THS_YL (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.21
INT1_THS_ZH (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.22
INT1_THS_ZL (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.23
INT1_DURATION (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 022116 Rev 1
3/44
List of tables
L3GD20
List of tables
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
4/44
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C slave timing values (TBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
I2C terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 24
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 24
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
High-pass filter cut off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
OUT_TEMP register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
INT1_THS_XH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_XH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Doc ID 022116 Rev 1
L3GD20
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
List of tables
INT1_THS_XL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_YH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_YH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_YL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_YL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
INT1_THS_ZH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT1_THS_ZH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT1_THS_ZL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT1_THS_ZL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 022116 Rev 1
5/44
List of figures
L3GD20
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
6/44
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
L3GD20 electrical connections and external component values . . . . . . . . . . . . . . . . . . . . 15
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Trigger stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LGA-16: mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Doc ID 022116 Rev 1
L3GD20
1
Block diagram and pin description
Block diagram and pin description
Figure 1.
Block diagram
+Ω
x,y,z
X+
CHARGE
AMP
Y+
Z+
MIXER
LOW-PASS
FILTER
M
U
X
Z-
F
I
L
T
E
R
I
N
G
D
I
G
I
T
A
L
A
D
C
1
YX-
DRIVING MASS
Feedback loop
REFERENCE
TRIMMING
CIRCUITS
FIFO
T
E
M
P
E
R
A
T
U
R
E
S
E
N
S
O
R
I2C
SPI
CS
SCL/SPC
SDA/SDO/SDI
SDO
A
D
C
2
CONTROL LOGIC
&
INTERRUPT GEN.
CLOCK
&
PHASE GENERATOR
INT1
DRDY/INT2
AM10126V1
Note:
The vibration of the structure is maintained by drive circuitry in a feedback loop. The sensing
signal is filtered and appears as a digital signal at the output.
1.1
Pin description
RES
1
BOTTOM
VIEW
RES
RES
(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ANGULAR RATES
Doc ID 022116 Rev 1
16
12
RES
+Ω
X
Vdd
RES
13
Y
9
SCL/SPC
SDA/SDI/SDO
4
8
Vdd_IO
SDO/SA0
5
CS
+Ω
DRDY/INT2
X
GND
Z
INT1
+Ω
RES
Pin connection
RES
Figure 2.
AM10127V1
7/44
Block diagram and pin description
Table 2.
L3GD20
Pin description
Pin#
Name
Function
1
Vdd_IO(1)
2
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
3
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
4
SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
5
CS
6
DRDY/INT2
7
INT1
8
Reserved
Connect to GND
9
Reserved
Connect to GND
10
Reserved
Connect to GND
11
Reserved
Connect to GND
12
Reserved
Connect to GND
13
GND
14
Reserved
Connect to GND with ceramic capacitor(2)
15
Reserved
Connect to Vdd
16
Vdd(3)
Power supply for I/O pins
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
Data ready/FIFO interrupt (Watermark/Overrun/Empty)
Programmable interrupt
0 V supply
Power supply
1. 100 nF filter capacitor recommended.
2. 1 nF min value must be guaranteed under 11 V bias condition.
3. 100 nF plus 10 µF capacitors recommended.
8/44
Doc ID 022116 Rev 1
L3GD20
Mechanical and electrical specifications
2
Mechanical and electrical specifications
2.1
Mechanical characteristics
@ Vdd = 3.0 V, T = 25 °C unless otherwise noted.
Table 3.
Symbol
Mechanical characteristics(1)
Parameter
Test condition
Min.
Typ.(2)
Max.
Unit
±250
FS
Measurement range
User-selectable
±500
dps
±2000
So
SoDr
DVoff
Sensitivity
Sensitivity change vs.
temperature
Digital zero-rate level
FS = 250 dps
8.75
FS = 500 dps
17.50
FS = 2000 dps
70
From -40 °C to +85 °C
±2
FS = 250 dps
±10
FS = 500 dps
±15
FS = 2000 dps
±75
mdps/digit
%
dps
Zero-rate level change
vs. temperature
FS = 250 dps
±0.03
dps/°C
FS = 2000 dps
±0.04
dps/°C
NL
Non linearity
Best fit straight line
0.2
% FS
Rn
Rate noise density
0.03
dps ⁄ ( Hz
95/190/
380/760
Hz
OffDr
ODR
Digital output data rate
Top
Operating temperature
range
-40
+85
°C
1. The product is factory calibrated at 3.0 V. The operational power supply range is specified in Table 4.
2. Typical specifications are not guaranteed.
Doc ID 022116 Rev 1
9/44
Mechanical and electrical specifications
2.2
L3GD20
Electrical characteristics
@ Vdd =3.0 V, T=25 °C unless otherwise noted.
Table 4.
Symbol
Vdd
Vdd_IO
Idd
Electrical characteristics (1)
Parameter
Test condition
Supply voltage
I/O pins supply voltage
(3)
Min.
Typ.(2)
Max.
Unit
2.4
3.0
3.6
V
Vdd+0.1
V
1.71
Supply current
6.1
mA
IddSL
Supply current
in sleep mode(4)
Selectable by digital
interface
2
mA
IddPdn
Supply current in
power-down mode
Selectable by digital
interface
5
µA
VIH
Digital high level input
voltage
VIL
Digital low level input
voltage
Top
Operating temperature
range
0.8*Vdd_I
O
V
-40
0.2*Vdd_I
O
V
+85
°C
1. The product is factory calibrated at 3.0 V.
2. Typical specifications are not guaranteed.
3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the
measurement chain is powered off.
4. Sleep mode introduces a faster turn-on time relative to power-down mode.
2.3
Temperature sensor characteristics
@ Vdd =3.0 V, T=25 °C unless otherwise noted.
Table 5.
Symbol
Electrical characteristics (1)
Parameter
TSDr
Temperature sensor
output change vs.
temperature
TODR
Temperature refresh rate
Top
Test condition
-
Operating temperature
range
-40
1. The product is factory calibrated at 3.0 V.
2. Typical specifications are not guaranteed.
10/44
Min.
Doc ID 022116 Rev 1
Typ.(2)
Max.
Unit
-1
°C/digit
1
Hz
+85
°C
L3GD20
Mechanical and electrical specifications
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6.
SPI slave timing values
Value(1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
Max
100
ns
10
MHz
ns
50
6
SDO output disable time
50
1. Values are guaranteed at a 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results; not
tested in production.
Figure 3.
&6
SPI slave timing diagram (a)
WF63&
WVX&6
WK&6
63&
WVX6,
6',
WK6,
/6%,1
06%,1
WY62
6'2
WGLV62
WK62
06%287
/6%287
!-V
a. Measurement points are at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output port.
Doc ID 022116 Rev 1
11/44
Mechanical and electrical specifications
L3GD20
I2C - Inter IC control interface
2.4.2
Subject to general operating conditions for Vdd and Top.
Table 7.
I2C slave timing values (TBC)
I2C standard mode(1)
Symbol
I2C fast mode (1)
Parameter
f(SCL)
Unit
SCL clock frequency
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
kHz
µs
0
ns
3.45
0
0.9
tr(SDA) tr(SCL)
SDA and SCL rise time
1000
20 + 0.1Cb (2)
300
tf(SDA) tf(SCL)
SDA and SCL fall time
300
20 + 0.1Cb (2)
300
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
µs
ns
µs
Bus free time between STOP
and START condition
tw(SP:SR)
1. Data based on standard I2C protocol requirement; not tested in production.
2. Cb = total capacitance of one bus line, in pF.
Figure 4.
I2C slave timing diagram (b)
5(3($7('
67$57
67$57
WVX65
WZ6365
6'$
WI6'$
WVX6'$
WU6'$
67$57
WK6'$
WVX63
6723
6&/
WK67
WZ6&//
WZ6&/+
WU6&/
WI6&/
b. Measurement points are at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
12/44
Doc ID 022116 Rev 1
!-V
L3GD20
2.5
Mechanical and electrical specifications
Absolute maximum ratings
Stresses above those listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8.
Absolute maximum ratings
Symbol
Maximum value
Unit
Vdd
Supply voltage
-0.3 to 4.8
V
TSTG
Storage temperature range
-40 to +125
°C
10,000
g
2 (HBM)
kV
1.5 (CDM)
kV
200 (MM)
V
-0.3 to Vdd_IO +0.3
V
Sg
ESD
Vin
Note:
Ratings
Acceleration g for 0.1 ms
Electrostatic discharge protection
Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
Supply voltage on any pin should never exceed 4.8 V
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part
This is an ESD sensitive device, improper handling can cause permanent damage to
the part
Doc ID 022116 Rev 1
13/44
Mechanical and electrical specifications
2.6
Terminology
2.6.1
Sensitivity
L3GD20
An angular rate gyroscope is a device that produces a positive-going digital output for
counter-clockwise rotation around the sensitive axis considered. Sensitivity describes the
gain of the sensor and can be determined by applying a defined angular velocity to it. This
value changes very little over temperature and time.
2.6.2
Zero-rate level
Zero-rate level describes the actual output signal if there is no angular rate present. Zerorate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and
therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit
board or after exposing it to extensive mechanical stress. This value changes very little over
temperature and time.
2.7
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
14/44
Doc ID 022116 Rev 1
L3GD20
Application hints
Figure 5.
L3GD20 electrical 9nF
connections and external component values
+Ω
Vdd GND
GND
Z
10nF(25V)*
100 nF
C1
10 µF
X
+Ω
Y
Vdd
GND
16
+Ω
(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ANGULA RATES
Vdd_IO
X
14
13
1
12
TOP
VIEW
SCL/SPC
SDA_SDI_SDO
4
SDO/SA0
9
8
5
GND
3
Application hints
CS
DR INT
Vdd I2C bus
Rpu
Rpu = 10kOhm
SCL/SPC
* C1 must guarantee 1 nF value under
11 V bias condition
SDA_SDI_SDO
Pull-up to be added when I2C interface is used
AM10128V1
Power supply decoupling capacitors (100 nF + 10 µF) should be placed as near as possible
to the device (common design practice).
If Vdd and Vdd_IO are not connected together, 100 nF and 10 µF decoupling capacitors
must be placed between Vdd and common ground, and 100 nF between Vdd_IO and
common ground. Capacitors should be placed as near as possible to the device (common
design practice).
Doc ID 022116 Rev 1
15/44
Digital main blocks
L3GD20
4
Digital main blocks
4.1
Block diagram
Figure 6.
Block diagram
Out_Sel
00
01
0
LPF2
ADC
LPF1
HPF
10
11
DataReg
FIFO
32x16x3
I2C
SPI
1
HPen
INT_Sel
10
11
01
Interrupt
generator
00
SCR REG
CONF REG
INT1
AM07230v1
4.2
FIFO
The L3GD20 embeds 32 slots of 16-bit data FIFO for each of the three output channels:
yaw, pitch and roll. This allows consistent power saving for the system, since the host
processor does not need to continuously poll data from the sensor, but can wake up only
when needed and burst the significant data out from the FIFO. This buffer can work
accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-toStream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in
the FIFO_CTRL_REG (2Eh). Programmable Watermark level, FIFO_empty or FIFO_Full
events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured
through CTRL_REG3 (22h) and event detection information is available in FIFO_SRC_REG
(2Fh). Watermark level can be configured to WTM4:0 in FIFO_CTRL_REG (2Eh).
16/44
Doc ID 022116 Rev 1
L3GD20
4.2.1
Digital main blocks
Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in Figure 7 below, for each channel only the first address is used. The remaining
FIFO slots are empty. When new data is available, the old data is overwritten.
Bypass mode
xi,yi,zi
empty
x0
y 0i
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
l
Figure 7.
z31
AM07231v1
4.2.2
FIFO mode
In FIFO mode, data from the yaw, pitch and roll channels is stored in the FIFO. A watermark
interrupt can be enabled (I2_WMK bit into CTRL_REG3 (22h)) in order to be raised when
the FIFO is filled to the level specified in the WTM 4:0 bits of FIFO_CTRL_REG (2Eh). The
FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full,
the FIFO stops collecting data from the input channels. To restart data collection, the
FIFO_CTRL_REG (2Eh) must be written back to Bypass mode.
FIFO mode is represented in Figure 8: FIFO mode.
Doc ID 022116 Rev 1
17/44
Digital main blocks
Figure 8.
L3GD20
FIFO mode
xi,yi,zi
x0
y 0i
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
AM07232v1
4.2.3
Stream mode
In Stream mode, data from yaw, pitch and roll measurement are stored in the FIFO. A
watermark interrupt can be enabled and set as in the FIFO mode.The FIFO continues filling
until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the
older data as the new data arrives. Programmable watermark level events can be enabled to
generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3
(22h).
Stream mode is represented in Figure 9: Stream mode.
18/44
Doc ID 022116 Rev 1
L3GD20
Digital main blocks
Figure 9.
Stream mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
AM07234v1
Doc ID 022116 Rev 1
19/44
Digital main blocks
4.2.4
L3GD20
Bypass-to-stream mode
In Bypass-to-stream mode, the FIFO begins operating in Bypass mode and once a trigger
event occurs (related to INT1_CFG (30h) register events), the FIFO starts operating in
Stream mode. Refer to Figure 10 below.
Figure 10. Bypass-to-stream mode
xi,yi,zi
Empty
x0
y 0i
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
z31
Bypass mode
Stream mode
Trigger event
4.2.5
AM07235v1
Stream-to-FIFO mode
In Stream-to-FIFO mode, data from yaw, pitch and roll measurement is stored in the FIFO. A
watermark interrupt can be enabled on pin DRDY/INT2 by setting the I2_WTM bit in
CTRL_REG3 (22h) in order to be raised when the FIFO is filled to the level specified in the
WTM4:0 bits of FIFO_CTRL_REG (2Eh). The FIFO continues filling until it is full (32 slots of
16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new
data arrives. Once a trigger event occurs (related to INT1_CFG (30h) register events), the
FIFO starts operating in FIFO mode. Refer to Figure 11 below.
Figure 11. Trigger stream mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
xi,yi,zi
Stream Mode
x0
y 0i
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
FIFO Mode
Trigger event
AM07236v1
20/44
Doc ID 022116 Rev 1
L3GD20
4.2.6
Digital main blocks
Retrieve data from FIFO
FIFO data is read through OUT_X (Addr reg 28h,29h), OUT_Y (Addr reg 2Ah,2Bh) and
OUT_Z (Addr reg 2Ch,2Dh). When the FIFO is in Stream, Trigger or FIFO mode, a read
operation of the OUT_X, OUT_Y or OUT_Z registers provides the data stored in the FIFO.
Each time data is read from the FIFO, the oldest pitch, roll and yaw data is placed in the
OUT_X, OUT_Y and OUT_Z registers and both single read and read_burst (X,Y & Z with
auto-incrementing address) operations can be used. When data included in OUT_Z_H
(2Dh) is read, the system restarts to read information from addr OUT_X_L (28h).
Doc ID 022116 Rev 1
21/44
Digital interfaces
5
L3GD20
Digital interfaces
The registers embedded in the L3GD20 may be accessed through both the I2C and SPI
serial interfaces. The latter may be SW-configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e connected to Vdd_IO).
Table 9.
Serial interface pin description
Pin name
Pin description
CS
I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI
communication mode / I2C disabled)
SCL/SPC
SDA/SDI/SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SPI serial data output (SDO)
I2C less significant bit of the device address
SDO
5.1
I2C serial clock (SCL)
SPI serial port clock (SPC)
I2C serial interface
The L3GD20 I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
Table 10.
I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both lines must be connected to Vdd_IO through external pull-up
resistors. When the bus is free, both lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal
mode.
22/44
Doc ID 022116 Rev 1
L3GD20
5.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the Master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the Master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the Master.
The Slave ADdress (SAD) associated with the L3GD20 is 110101xb. The SDO pin can be
used to modify the less significant bit of the device address. If the SDO pin is connected to
voltage supply, LSb is ‘1’ (address 1101011b). Otherwise, if the SDO pin is connected to
ground, the LSb value is ‘0’ (address 1101010b). This solution allows to connect and
address two different gyroscopes to the same I2C bus.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obligated to generate an acknowledge after each byte of data
received.
The I2C embedded in the L3GD20 behaves like a slave device and the following protocol
must be adhered to. After the start condition (ST) a slave address is sent, once a slave
acknowledge (SAK) has been returned, an 8-bit sub-address is transmitted: the 7 LSb
represent the actual register address while the MSb enables address auto-increment. If the
MSb of the SUB field is 1, the SUB (register address) will be automatically incremented to
allow multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 11 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 11.
SAD+read/write patterns
Command
SAD[6:1]
SAD[0] = SDO
R/W
Read
110101
0
1
11010101 (D1h)
Write
110101
0
0
11010100 (D0h)
Read
110101
1
1
11010111 (D3h)
Write
110101
1
0
11010110 (D2h)
Table 12.
Master
Slave
SAD+R/W
Transfer when master is writing one byte to slave
ST
SAD + W
SUB
SAK
Doc ID 022116 Rev 1
DATA
SAK
SP
SAK
23/44
Digital interfaces
L3GD20
Table 13.
Master
Transfer when master is writing multiple bytes to slave
ST
SAD + W
Slave
SAK
Table 14.
Master
ST
SAD + W
DATA
SAK
SUB
SAK
SAK
SP
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W
Slave
DATA
Transfer when master is receiving (reading) one byte of data from slave
Slave
Table 15.
SUB
SUB
SAK
SR SAD+R
SAK
MAK
SAK DATA
MAK
DATA
NMAK
SP
DATA
Data is transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of
bytes sent per transfer is unlimited. Data is transferred with the most significant bit (MSb)
first. If a receiver cannot receive another complete byte of data until it has performed some
other function, it can hold the clock line, SCL, LOW to force the transmitter into a wait state.
Data transfer only continues when the receiver is ready for another byte and releases the
data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to ‘1’ while SUB(6-0) represents the
address of the first register to be read.
In the communication format presented, MAK is Master Acknowledge and NMAK is No
Master Acknowledge.
5.2
SPI bus interface
The SPI is a bus slave. The SPI allows writing and reading the registers of the device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and
SDO.
24/44
Doc ID 022116 Rev 1
L3GD20
Digital interfaces
Figure 12. Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10129V1
CS is the Serial Port Enable and is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the Serial Port Clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the Serial Port Data Input and Output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the Read Register and Write Register commands are completed in 16 clock pulses or
in multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling
edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address will be auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written to the device (MSb
first).
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
In multiple read/write commands, further blocks of 8 clock periods will be added. When the
MS bit is 0, the address used to read/write data remains the same for every block. When the
MS bit is 1, the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.
Doc ID 022116 Rev 1
25/44
Digital interfaces
5.2.1
L3GD20
SPI read
Figure 13. SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10130V1
The SPI read command is performed with 16 clock pulses. The multiple byte read command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0 do not increment address; when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 14. Multiple byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
M S A D5 A D4 AD 3 A D2 A D1 A D0
SD O
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
AM10131V1
26/44
Doc ID 022116 Rev 1
L3GD20
5.2.2
Digital interfaces
SPI write
Figure 15. SPI write protocol
CS
SPC
SDI
D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0
RW
MS AD5 AD 4 AD 3 AD2 AD 1 AD0
AM10132V1
The SPI Write command is performed with 16 clock pulses. The multiple byte write
command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written to the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 16. Multiple byte SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4DI13 D I1 2DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD 0
AM10133V1
5.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting the bit SIM (SPI serial interface mode selection) to ‘1’ in
CTRL_REG2.
Doc ID 022116 Rev 1
27/44
Digital interfaces
L3GD20
Figure 17. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD 4 AD 3 AD2 AD1 AD 0
AM10134V1
The SPI Read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
Multiple read command is also available in 3-wire mode.
28/44
Doc ID 022116 Rev 1
L3GD20
6
Output register mapping
Output register mapping
The table below provides a listing of the 8-bit registers embedded in the device, and the
related addresses:
Table 16.
Register address map
Register address
Name
Type
Default
Hex
Binary
Reserved
-
00-0E
-
-
WHO_AM_I
r
0F
000 1111
11010100
Reserved
-
10-1F
-
-
CTRL_REG1
rw
20
010 0000
00000111
CTRL_REG2
rw
21
010 0001
00000000
CTRL_REG3
rw
22
010 0010
00000000
CTRL_REG4
rw
23
010 0011
00000000
CTRL_REG5
rw
24
010 0100
00000000
REFERENCE
rw
25
010 0101
00000000
OUT_TEMP
r
26
010 0110
output
STATUS_REG
r
27
010 0111
output
OUT_X_L
r
28
010 1000
output
OUT_X_H
r
29
010 1001
output
OUT_Y_L
r
2A
010 1010
output
OUT_Y_H
r
2B
010 1011
output
OUT_Z_L
r
2C
010 1100
output
OUT_Z_H
r
2D
010 1101
output
FIFO_CTRL_REG
rw
2E
010 1110
00000000
FIFO_SRC_REG
r
2F
010 1111
output
INT1_CFG
rw
30
011 0000
00000000
INT1_SRC
r
31
011 0001
output
INT1_TSH_XH
rw
32
011 0010
00000000
INT1_TSH_XL
rw
33
011 0011
00000000
INT1_TSH_YH
rw
34
011 0100
00000000
INT1_TSH_YL
rw
35
011 0101
00000000
INT1_TSH_ZH
rw
36
011 0110
00000000
INT1_TSH_ZL
rw
37
011 0111
00000000
INT1_DURATION
rw
38
011 1000
00000000
Doc ID 022116 Rev 1
29/44
Output register mapping
L3GD20
Registers marked as Reserved must not be changed. Writing to these registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
30/44
Doc ID 022116 Rev 1
L3GD20
7
Register description
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
angular rate data. The register address, consisting of 7 bits, is used to identify them and to
write the data through the serial interface.
7.1
WHO_AM_I (0Fh)
Table 17.
WHO_AM_I register
1
1
0
1
0
1
0
0
BW0
PD
Zen
Xen
Yen
Device identification register.
7.2
CTRL_REG1 (20h)
Table 18.
DR1
Table 19.
CTRL_REG1 register
DR0
BW1
CTRL_REG1 description
DR1-DR0
Output data rate selection. Refer to Table 20
BW1-BW0
Bandwidth selection. Refer to Table 20
PD
Power-down mode enable. Default value: 0
(0: power-down mode, 1: normal mode or sleep mode)
Zen
Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Yen
Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen
X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
DR is used for ODR selection. BW is used for Bandwidth selection.
In the Table 20 all frequencies resulting in combinations of DR / BW bits are reported.
Table 20.
DR and BW configuration setting
DR
BW
ODR [Hz]
Cut-Off
00
00
95
12.5
00
01
95
25
00
10
95
25
Doc ID 022116 Rev 1
31/44
Register description
Table 20.
L3GD20
DR and BW configuration setting (continued)
DR
BW
ODR [Hz]
Cut-Off
00
11
95
25
01
00
190
12.5
01
01
190
25
01
10
190
50
01
11
190
70
10
00
380
20
10
01
380
25
10
10
380
50
10
11
380
100
11
00
760
30
11
01
760
35
11
10
760
50
11
11
760
100
A combination of PD, Zen, Yen, Xen is used to set device to different modes (power-down /
normal / sleep mode) in accordance with Table 21 below.
Table 21.
Power mode selection configuration
Mode
7.3
PD
Zen
Yen
Power-down
0
-
-
-
Sleep
1
0
0
0
Normal
1
-
-
-
CTRL_REG2 (21h)
Table 22.
(1)
0
CTRL_REG2 register
0(1)
HPM1
HPM1
HPCF3
1. These bits must be set to ‘0’ to ensure proper operation of the device
Table 23.
32/44
Xen
CTRL_REG2 description
HPM1HPM0
High-pass filter mode selection. Default value: 00
Refer to Table 24
HPCF3HPCF0
High-pass filter cutoff frequency selection
Refer to Table 25
Doc ID 022116 Rev 1
HPCF2
HPCF1
HPCF0
L3GD20
Register description
Table 24.
High-pass filter mode configuration
HPM1
HPM0
0
0
Normal mode (reset reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
Table 25.
High-pass filter cut off frequency configuration [Hz]
HPCF3-0
7.4
High-pass filter mode
ODR=95 Hz
ODR=190 Hz
ODR=380 Hz
ODR=760 Hz
0000
7.2
13.5
27
51.4
0001
3.5
7.2
13.5
27
0010
1.8
3.5
7.2
13.5
0011
0.9
1.8
3.5
7.2
0100
0.45
0.9
1.8
3.5
0101
0.18
0.45
0.9
1.8
0110
0.09
0.18
0.45
0.9
0111
0.045
0.09
0.18
0.45
1000
0.018
0.045
0.09
0.18
1001
0.009
0.018
0.045
0.09
CTRL_REG3 (22h)
Table 26.
I1_Int1
Table 27.
CTRL_REG1 register
I1_Boot
H_Lactive
PP_OD
I2_DRDY
I2_WTM
I2_ORun
I2_Empty
CTRL_REG3 description
I1_Int1
Interrupt enable on INT1 pin. Default value 0. (0: disable; 1: enable)
I1_Boot
Boot status available on INT1. Default value 0. (0: disable; 1: enable)
H_Lactive
Interrupt active configuration on INT1. Default value 0. (0: high; 1:low)
PP_OD
Push-pull / Open drain. Default value: 0. (0: push- pull; 1: open drain)
I2_DRDY
Date-ready on DRDY/INT2. Default value 0. (0: disable; 1: enable)
I2_WTM
FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_ORun
FIFO overrun interrupt on DRDY/INT2 Default value: 0. (0: disable; 1: enable)
I2_Empty
FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
Doc ID 022116 Rev 1
33/44
Register description
7.5
L3GD20
CTRL_REG4 (23h)
Table 28.
BDU
CTRL_REG4 register
BLE
FS1
FS0
-
0(1)
0(1)
SIM
1. This value must not be changed.
Table 29.
7.6
BDU
Block data update. Default value: 0
(0: continuos update; 1: output registers not updated until MSb and LSb reading)
BLE
Big/little endian data selection. Default value 0.
(0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS1-FS0
Full scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM
SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
CTRL_REG5 (24h)
Table 30.
BOOT
Table 31.
34/44
CTRL_REG4 description
CTRL_REG5 register
FIFO_EN
--
HPen
INT1_Sel1 INT1_Sel0
CTRL_REG5 description
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
HPen
High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled See Figure 20)
INT1_Sel1INT1_Sel0
INT1 selection configuration. Default value: 0
(See Figure 20)
Out_Sel1Out_Sel1
Out selection configuration. Default value: 0
(See Figure 20)
Doc ID 022116 Rev 1
Out_Sel1
Out_Sel0
L3GD20
Register description
Figure 18. INT1_Sel and Out_Sel configuration block diagram
Out_Sel
00
01
0
LPF2
LPF1
ADC
10
11
DataReg
FIFO
32x16x3
1
HPF
INT1_Sel
HPen
10
11
01
Interrupt
generator
00
AM07949V2
7.7
REFERENCE/DATACAPTURE (25h)
Table 32.
Ref7
Table 33.
REFERENCE register
Ref6
Ref4
Ref3
Ref2
Ref1
Ref0
REFERENCE register description
Ref 7-Ref0
7.8
Ref5
Reference value for interrupt generation. Default value: 0
OUT_TEMP (26h)
Table 34.
Temp7
Table 35.
OUT_TEMP register
Temp6
Temp5
Temp4
Temp3
Temp2
Temp1
Temp0
OUT_TEMP register description
Temp7-Temp0
Temperature data
Temperature data (1LSB/deg - 8-bit resolution). The value is expressed as two's
complement.
Doc ID 022116 Rev 1
35/44
Register description
7.9
L3GD20
STATUS_REG (27h)
Table 36.
ZYXOR
STATUS_REG register
ZOR
Table 37.
YOR
XOR
ZYXDA
ZDA
YDA
XDA
STATUS_REG description
X, Y, Z -axis data overrun. Default value: 0
ZYXOR (0: no overrun has occurred; 1: new data has overwritten the previous data before it was
read)
ZOR
Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
YOR
Y axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data)
XOR
X axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data)
ZYXDA X, Y, Z -axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
7.10
ZDA
Z axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
YDA
Y axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available)
XDA
X axis new data available. Default value: 0
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)
OUT_X_L (28h), OUT_X_H (29h)
X-axis angular rate data. The value is expressed as two’s complement.
7.11
OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis angular rate data. The value is expressed as two’s complement.
7.12
OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis angular rate data. The value is expressed as two’s complement.
7.13
FIFO_CTRL_REG (2Eh)
Table 38.
FM2
36/44
REFERENCE register
FM1
FM0
WTM4
WTM3
Doc ID 022116 Rev 1
WTM2
WTM1
WTM0
L3GD20
Register description
Table 39.
REFERENCE register description
FM2-FM0
FIFO mode selection. Default value: 00 (see Table 40)
WTM4-WTM0
FIFO threshold. Watermark level setting
Table 40.
FIFO mode configuration
FM2
7.14
FM1
FIFO mode
0
0
0
Bypass mode
0
0
1
FIFO mode
0
1
0
Stream mode
0
1
1
Stream-to-FIFO mode
1
0
0
Bypass-to-Stream mode
FIFO_SRC_REG (2Fh)
Table 41.
WTM
FIFO_SRC register
OVRN
Table 42.
7.15
FM0
EMPTY
FSS4
FSS3
FSS2
FSS1
FSS0
FIFO_SRC register description
WTM
Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN
Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY
FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1
FIFO stored data level
INT1_CFG (30h)
Table 43.
AND/OR
INT1_CFG register
LIR
ZHIE
ZLIE
Doc ID 022116 Rev 1
YHIE
YLIE
XHIE
XLIE
37/44
Register description
Table 44.
7.16
L3GD20
INT1_CFG description
AND/OR
AND/OR combination of interrupt events. Default value: 0
(0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
Latch interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Cleared by reading INT1_SRC reg.
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
INT1_SRC (31h)
Interrupt source register. Read only register.
Table 45.
0
Table 46.
38/44
INT1_SRC register
IA
ZH
ZL
YH
YL
XH
XL
INT1_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0 (0: no interrupt, 1: X High event has occurred)
XL
X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
Doc ID 022116 Rev 1
L3GD20
Register description
Reading at this address clears INT1_SRC IA bit (and eventually the interrupt signal on the
INT1 pin) and allows the refresh of data in the INT1_SRC register if the latched option was
chosen.
7.17
INT1_THS_XH (32h)
Table 47.
-
Table 48.
INT1_THS_XH register
THSX14
THSX7
Table 50.
THSX10
THSX9
THSX8
THSX1
THSX0
THSY9
THSY8
THSY1
THSY0
Interrupt threshold. Default value: 0000 0000
INT1_THS_XL register
THSX6
THSX5
THSX4
THSX3
THSX2
INT1_THS_XL description
THSX7 - THSX0
Interrupt threshold. Default value: 0000 0000
INT1_THS_YH (34h)
Table 51.
-
Table 52.
INT1_THS_YH register
THSY14
THSY13
THSY12
THSY11
THSY10
INT1_THS_YH description
THSY14 - THSY9
7.20
THSX11
INT1_THS_XL (33h)
Table 49.
7.19
THSX12
INT1_THS_XH description
THSX14 - THSX9
7.18
THSX13
Interrupt threshold. Default value: 0000 0000
INT1_THS_YL (35h)
Table 53.
THSR7
Table 54.
INT1_THS_YL register
THSY6
THSY5
THSY4
THSY3
THSY2
INT1_THS_YL description
THSY7 - THSY0
Interrupt threshold. Default value: 0000 0000
Doc ID 022116 Rev 1
39/44
Register description
7.21
L3GD20
INT1_THS_ZH (36h)
Table 55.
-
Table 56.
INT1_THS_ZH register
THSZ14
THSZ11
THSZ10
THSZ9
THSZ8
THSZ1
THSZ0
D1
D0
Interrupt threshold. Default value: 0000 0000
INT1_THS_ZL (37h)
Table 57.
THSZ7
Table 58.
INT1_THS_ZL register
THSZ6
THSZ5
THSZ4
THSZ3
THSZ2
INT1_THS_ZL description
THSZ7 - THSZ0
7.23
THSZ12
INT1_THS_ZH description
THSZ14 - THSZ9
7.22
THSZ13
Interrupt threshold. Default value: 0000 0000
INT1_DURATION (38h)
Table 59.
WAIT
Table 60.
INT1_DURATION register
D6
D5
D4
D3
D2
INT1_DURATION description
WAIT
WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
The WAIT bit has the following definitions:
Wait = ‘0’: the interrupt falls immediately if the signal crosses the selected threshold
Wait = ‘1’: if the signal crosses the selected threshold, the interrupt falls only after the
duration has counted the number of samples at the selected data rate, written into the
duration counter register.
40/44
Doc ID 022116 Rev 1
L3GD20
Register description
Figure 19. Wait disabled
Figure 20. Wait enabled
Doc ID 022116 Rev 1
41/44
Package information
8
L3GD20
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 21. LGA-16: mechanical data and package dimensions
Dimensions
Ref.
mm
Min.
inch
Typ. Max.
A1
Min.
Typ.
1.000
Max.
Outline and
mechanical data
0.0394
A2
0.785
0.0309
A3
0.200
0.0079
d
0.300
0.0118
D1
3.850
4.000
4.150 0.1516 0.1575 0.1634
E1
3.850
4.000
4.150 0.1516 0.1575 0.1634
L2
1.950
0.0768
M
0.100
0.0039
N1
0.650
0.0256
N2
0.975
0.0384
P1
1.750
0.0689
P2
1.525
0.0600
T1
0.400
0.0157
T2
0.300
0.0118
k
0.050
0.0020
LGA-16 (4x4x1mm)
Land Grid Array Package
8125097_A
42/44
Doc ID 022116 Rev 1
L3GD20
9
Revision history
Revision history
Table 61.
Document revision history
Date
Revision
18-Aug-2011
1
Changes
Initial release.
Doc ID 022116 Rev 1
43/44
L3GD20
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
44/44
Doc ID 022116 Rev 1