0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IQS6210U9R

IQS6210U9R

  • 厂商:

    AZOTEQ

  • 封装:

    UFLGA9

  • 描述:

    IQS6210U9R

  • 数据手册
  • 价格&库存
IQS6210U9R 数据手册
IQ Switch ProxFusion® Series IQS621 Datasheet Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities The IQS621 ProxFusion® IC is a multifunctional, ambient light sensing (ALS), capacitive, Hall-effect & inductive sensor designed for applications where any or all of the technologies may be required. The IQS621 is an ultra-low power solution designed for short or long term activations through any of the sensing channels. The IQS621 is fully I2C compatible. Features    o o o o Capacitive sensing Ambient light sensing (ALS) Hall-effect sensing Inductive sensing o o Full auto-tuning with adjustable sensitivity  2pF to 200pF external capacitive load capability  Enhanced temperature stability    Capacitive sensing o  Ambient light sensing (ALS) o o o o  mobile platforms: Unique combination of sensing technologies: Absolute lux output  Human eye response compensated 4-bit ALS range output (0 - 10) Dual threshold detection for day/night indication with hysteresis Hall-effect sensing o o o o On-chip Hall-effect measurement plates Dual direction Hall switch sensor UI 2 level detection (widely variable) Detection range 10mT – 200mT o 2 Level detection and hysteresis for inductive   sensing Only external sense coil required (PCB trace) Inductive sensing o o o Proximity / Touch Proximity wake-up o o o o o o o o 75uA (100Hz response, 1ch inductive) 95uA (100Hz response, 2ch Hall) 75uA (100Hz response, 3ch capacitive) 60uA (100Hz response, ALS) 25uA (20Hz response, 1ch inductive) 25uA (20Hz response, 2ch Hall) 20uA (20Hz response, 3ch capacitive) 18uA (20Hz response, ALS) 2.5uA (4Hz response, 1ch cap. wake-up) Automatic Tuning Implementation (ATI) – performance enhancement (10bit) Minimal external UOLG 2.8 x 2.5 x 0.6 9-pin components 2 Representations only Standard I C interface Optional RDY indication for event mode operation Low power consumption: o Supply voltage: 1.8V to 3.3V Low profile UOLG - 2.8 x 2.5 x 0.6 - 9-pin package Multiple integrated UI options based on years of experience in sensing on fixed and Applications  Mobile electronics (phones/tablets)  Home automation & lighting control  White goods and appliances    Wearable devices Human Interface Devices Aftermarket automotive1 Available Packages 1 TA UOLG-2.8 x 2.5 x 0.6–9N -20°C to +85°C IQS621 The part is not automotive qualified. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 1 of 79 May 2018 IQ Switch ProxFusion® Series Table of Contents LIST OF ABBREVIATIONS ............................................................................................................................................. 4 1 INTRODUCTION .................................................................................................................................................. 5 PROXFUSION® ....................................................................................................................................................... 5 PACKAGING AND PIN-OUT ....................................................................................................................................... 6 REFERENCE SCHEMATIC ........................................................................................................................................... 7 SENSOR CHANNEL COMBINATIONS ............................................................................................................................. 8 PROXFUSION® SENSITIVITY ....................................................................................................................................... 9 2 CAPACITIVE SENSING ........................................................................................................................................10 INTRODUCTION TO PROXSENSE®.............................................................................................................................. 10 CHANNEL SPECIFICATIONS ...................................................................................................................................... 10 HARDWARE CONFIGURATION .................................................................................................................................. 11 SOFTWARE CONFIGURATION ................................................................................................................................... 12 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 13 3 INDUCTIVE SENSING ..........................................................................................................................................14 INTRODUCTION TO INDUCTIVE SENSING..................................................................................................................... 14 CHANNEL SPECIFICATIONS ...................................................................................................................................... 14 HARDWARE CONFIGURATION .................................................................................................................................. 15 SOFTWARE CONFIGURATION ................................................................................................................................... 15 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 17 4 AMBIENT LIGHT SENSING (ALS) .........................................................................................................................18 INTRODUCTION TO AMBIENT LIGHT SENSING .............................................................................................................. 18 CHANNEL SPECIFICATIONS ...................................................................................................................................... 18 HARDWARE CONFIGURATION .................................................................................................................................. 18 SOFTWARE CONFIGURATION ................................................................................................................................... 19 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 20 5 HALL-EFFECT SENSING .......................................................................................................................................21 INTRODUCTION TO HALL-EFFECT SENSING ................................................................................................................. 21 CHANNEL SPECIFICATIONS ...................................................................................................................................... 21 HARDWARE CONFIGURATION .................................................................................................................................. 22 SOFTWARE CONFIGURATION ................................................................................................................................... 23 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 24 6 TEMPERATURE MONITORING ...........................................................................................................................25 INTRODUCTION TO TEMPERATURE MONITORING ......................................................................................................... 25 CHANNEL SPECIFICATIONS ...................................................................................................................................... 25 HARDWARE CONFIGURATION .................................................................................................................................. 25 SOFTWARE CONFIGURATION ................................................................................................................................... 25 SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 26 7 DEVICE CLOCK, POWER MANAGEMENT AND MODE OPERATION ......................................................................27 DEVICE MAIN OSCILLATOR ...................................................................................................................................... 27 DEVICE MODES .................................................................................................................................................... 27 SYSTEM RESET ..................................................................................................................................................... 28 8 COMMUNICATION ............................................................................................................................................29 I2C MODULE SPECIFICATION.................................................................................................................................... 29 I2C READ ........................................................................................................................................................... 29 I2C WRITE .......................................................................................................................................................... 29 STOP-BIT DISABLE OPTION ...................................................................................................................................... 30 DEVICE ADDRESS AND SUB-ADDRESSES ..................................................................................................................... 31 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 2 of 79 May 2018 IQ Switch ProxFusion® Series ADDITIONAL OTP OPTIONS .................................................................................................................................... 31 RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM ................................................................................ 32 9 MEMORY MAP ..................................................................................................................................................33 DEVICE INFORMATION DATA .................................................................................................................................. 35 FLAGS AND USER INTERFACE DATA ........................................................................................................................... 36 CHANNEL COUNTS (RAW DATA)............................................................................................................................... 41 LTA VALUES (FILTERED DATA) ................................................................................................................................. 41 PROXFUSION SENSOR SETTINGS BLOCK 1................................................................................................................... 42 PROXFUSION UI SETTINGS ..................................................................................................................................... 48 HYSTERESIS UI SETTINGS........................................................................................................................................ 49 ALS SENSOR SETTINGS........................................................................................................................................... 51 ALS UI SETTINGS ................................................................................................................................................. 53 HALL-EFFECT SENSOR SETTINGS ............................................................................................................................... 54 HALL-EFFECT SWITCH UI SETTINGS ........................................................................................................................... 56 TEMPERATURE MONITORING UI SETTINGS ................................................................................................................. 57 DEVICE AND POWER MODE SETTINGS ....................................................................................................................... 59 10 ELECTRICAL CHARACTERISTICS ..........................................................................................................................64 ABSOLUTE MAXIMUM SPECIFICATIONS ..................................................................................................................... 64 VOLTAGE REGULATION SPECIFICATIONS ..................................................................................................................... 64 RESET CONDITIONS ............................................................................................................................................... 64 I2C MODULE OUTPUT LOGIC FALL TIME LIMITS ............................................................................................................ 65 I2C MODULE SLEW RATES ....................................................................................................................................... 66 I2C PINS (SCL & SDA) INPUT/OUTPUT LOGIC LEVELS .................................................................................................. 67 GENERAL PURPOSE DIGITAL OUTPUT PINS (GPIO0 & GPIO3) LOGIC LEVELS .................................................................... 67 CURRENT CONSUMPTIONS ..................................................................................................................................... 68 START-UP TIMING SPECIFICATIONS ........................................................................................................................... 70 ALS SPECIFICATIONS ......................................................................................................................................... 71 11 PACKAGE INFORMATION ..................................................................................................................................72 UOLG-2.8 X 2.5 X 0.6 – 9-PIN PACKAGE AND FOOTPRINT SPECIFICATIONS ..................................................................... 72 DEVICE MARKING AND ORDERING INFORMATION ........................................................................................................ 73 BULK PACKAGING SPECIFICATION ............................................................................................................................. 74 MSL LEVEL ......................................................................................................................................................... 76 12 DATASHEET REVISIONS .....................................................................................................................................77 REVISION HISTORY ................................................................................................................................................ 77 ERRATA .............................................................................................................................................................. 77 APPENDIX A. CONTACT INFORMATION .....................................................................................................................78 APPENDIX B: HALL ATI ...............................................................................................................................................79 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 3 of 79 May 2018 IQ Switch ProxFusion® Series List of abbreviations AC – Alternating Current ACK – I2C Acknowledge condition ALS – Ambient Light Sensing ATI – Automatic Tuning Implementation BOD – Brown Out Detection CS – Sampling Capacitor DSP – Digital Signal Processing ESD – Electrostatic Discharge FOSC – Main Clock Frequency Oscillator GND – Ground GPIO – General Purpose Input Output I2C – Inter-Integrated Circuit IC – Integrated Circuit LP – Low Power LPOSC – Low Power Oscillator LTA – Long Term Average LTX – Inductive Transmitting electrode MCU – Microcontroller unit MSL – Moisture Sensitive Level MOQ – Minimum Order Quantity NACK – I2C Not Acknowledge condition NC – Not Connect NP – Normal Power OTP – One Time Programmable PMU – Power Management Unit POR – Power On Reset PWM – Pulse Width Modulation QRD – Quick Release Detection RDY – Ready Interrupt Signal RX – Receiving electrode SAR – Specific Absorption Rate SCL – I2C Clock SDA – I2C Data SR – Slew rate THR – Threshold UI – User Interface ULP – Ultra Low Power Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 4 of 79 May 2018 IQ Switch ProxFusion® Series 1 Introduction ProxFusion® The ProxFusion® sensor series provide all the proven ProxSense® engine capabilities with additional sensors types. A combined sensor solution is available within a single platform. VREG VDDHI Temperature circuit VDDHI VDDHI VREG VDDHI 16 MHz MCU Analog ProxFusion Engine Capacitive,HALL,Inductive VREG RX0 Digital output GPIO / Inductive VDDHI Reset circuit VREG VSS HALL effect plates VDDHI Internal regulator (VREG) VREG VREG Nonvolatile memory VREG VDDHI Analog Photosensitive substrate, ALS SDA I2C HW SCL MCU (Master) RDY Analog - Capacitive offset calibration (ATI) IQS621 RX1 IQS621 functional block diagram IQS263 sleep Poll IQS263 IQS263 sleep NACK No ACK IQS263 Communication (RDY low) Poll IQS263 IQS263 conversions Slave Copyright © Azoteq 2018 All Rights Reserved NACK IQS263 calculations IQS263 Communication (RDY low) Event true? Poll IQS263 Poll IQS263 NACK ACK NACK MCU I2C Polling Master Poll IQS263 Yes Master Slave IQS621 Datasheet revision 1.15 Shortcut to memory map NACK IQS263 conversions MCU I2C Polling Poll IQS263 Poll IQS263 Poll IQS263 NACK IQS263 calculations Page 5 of 79 May 2018 IQ Switch ProxFusion® Series Packaging and Pin-Out RX1 VREG LTX RX0 IQS621 VDDHI SCL SDA VSS RDY IQS621 pin-out (UOLG-2.8x2.5x0.6–9-pin package top view; appearance may differ) Table 1.1 Pin Pin-out description IQS621 in UOLG-2.8 x 2.5 x 0.6 – 9-pin Type Function Name 1 RX0 Analogue receiving electrode Connect to conductive area intended for sensor receiving 2 RX1 Analogue receiving electrode Connect to conductive area intended for sensor receiving 3 VREG Voltage regulator output Regulates the system’s internal voltage Requires external capacitors to ground 4 LTX Transmitter electrode Connect to conductive area intended for sensor transmitting 5 RDY Digital Input / Output RDY (I2C Ready interrupt signal) 6 SDA Digital Input / Output SDA (I2C Data signal) 7 SCL Digital Input / Output SCL (I2C Clock signal) 8 VDDHI Supply Input Supply: 1.8V – 3.3V 9 VSS Signal GND Common ground reference Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 6 of 79 May 2018 IQ Switch ProxFusion® Series Reference schematic IQS621 reference schematic Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 7 of 79 May 2018 IQ Switch ProxFusion® Series Sensor channel combinations The table below summarizes the IQS621 sensor and channel associations. Table 1.2 CH0 CH1 CH2 ͦ ͦ ͦ Self capacitive Hysteresis UI Mutual inductive ALS Ambient light sensing Hall-effect Hall-effect switch UI Temperature trip and output CH3 CH4   CH5 CH6  Positive  Negative  ͦ Hysteresis UI Temperature Inductive Capacitive Sensor / UI type Sensor - channel allocation ͦ   Key: o - Optional implementation  - Fixed use for UI Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 8 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion® Sensitivity The measurement circuitry uses a temperature stable internal sample capacitor (C S) and internal regulated voltage (VREG). Internal regulation provides for more accurate measurements over temperature variation. The size CS can be decreased to increase sensitivity on the capacitive channels of the IQS621. ܵ݁݊‫ ן ݕݐ݅ݒ݅ݐ݅ݏ‬ ͳ ‫ܥ‬௦ The Automatic Tuning Implementation (ATI) is a sophisticated technology implemented on the ProxFusion® series devices. It allows for optimal performance of the devices for a wide range of sense electrode capacitances, without modification or addition of external components. The ATI functionality ensures that sensor sensitivity is not affected by external influences such as temperate, parasitic capacitance and ground reference changes. The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two parameters (ATI base and ATI target) as inputs. A 10-bit compensation value ensures that an accurate target is reached. The base value influences the overall sensitivity of the channel and establishes a base count from where the ATI algorithm starts executing. A rough estimation of sensitivity can be calculated as: ܶܽ‫ݐ݁݃ݎ‬ ‫݁ݏܽܤ‬ As seen from this equation, the sensitivity can be increased by either increasing the Target value or decreasing the Base value. A lower base value will typically result in lower multipliers and more compensation would be required. It should, however, be noted that a higher sensitivity will yield a higher noise susceptibility. Refer to Appendix B: Hall ATI for more information on Hall ATI. ܵ݁݊‫ ן ݕݐ݅ݒ݅ݐ݅ݏ‬ Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 9 of 79 May 2018 IQ Switch ProxFusion® Series 2 Capacitive sensing Introduction to ProxSense® Building on the previous successes from the ProxSense® range of capacitive sensors, the same fundamental sensor engine has been implemented in the ProxFusion® series. The capacitive sensing capabilities of the IQS621 include:     Self capacitive sensing. Maximum of 2 capacitive channels to be individually configured. o Prox and touch adjustable thresholds o Individual sensitivity setups o Alternative ATI modes Discreet button UI (always enabled): o Fully configurable 2 level threshold setups for prox & touch activation levels. o Customizable filter halt time. Hysteresis UI: o 4 Optional prox and touch activation hysteresis selections o Fully configurable 2 level threshold setups for prox & touch activation levels. o Configurable filter halt threshold. Channel specifications The IQS621 provides a maximum of 2 channels available to be configured for capacitive sensing. Each channel can be setup separately according to the channel’s associated settings registers. There are two distinct capacitive user interfaces available to be used. a) Discreet proximity/touch UI (always enabled) b) Hysteresis UI (fixed use of channel 1) Table 2.1 Capacitive sensing - channel allocation Sensor/UI type CH0 CH1 Self capacitive ͦ ͦ Hysteresis UI CH2 CH3 CH4 CH5 CH6  Key: o - Optional implementation  - Fixed use for UI Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 10 of 79 May 2018 IQ Switch ProxFusion® Series Hardware configuration In the table below are multiple options of configuring sensing (RX) and transmitting (LTX) electrodes to realize different implementations (combinations not shown). Table 2.2 Capacitive sensing hardware description Self capacitive 1 button IQS621 RX0 RX1 LTX 2 buttons IQS621 RX0 RX1 LTX Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 11 of 79 May 2018 IQ Switch ProxFusion® Series Software configuration Registers to configure for capacitive sensing: Table 2.3 Name Address Capacitive sensing settings registers Recommended setting Description ProxFusion Settings 0 Sensor mode and configuration of each channel. Sensor mode should be set to capacitive mode An appropriate RX and TX should be chosen ProxFusion Settings 1 Channel settings for the ProxSense sensors Full ATI is recommended for fully automated sensor tuning. ProxFusion Settings 2 ATI settings for ProxSense sensors ATI target should be more than ATI base to achieve an ATI 0x46 0x47 ProxFusion Settings 3 Additional Global settings for ProxSense sensors None 0x48 ProxFusion Settings 4 Filter settings Keep AC filter enabled 0x49 ProxFusion Settings 5 Advance sensor settings None Proximity threshold Proximity Thresholds for all capacitive channels (except for SAR active on channel 0) Preferably more than touch threshold Touch threshold Touch Thresholds for all capacitive channels None ProxFusion discrete UI halt time Halt timeout setting for all capacitive channels None 0x40 0x41 0x42 0x43 0x44 0x45 0x50 0x52 0x51 0x53 0x54 Registers to configure for the hysteresis UI: Table 2.4 Hysteresis UI settings registers Address Name Description 0x48 ProxFusion settings 4 Hysteresis UI enable command 0x60 Hysteresis UI Settings Hysteresis settings for the prox and touch thresholds 0x61 Hysteresis UI filter halt threshold Threshold setting to trigger a filter halt for on channel 1 0x62 Hysteresis UI proximity threshold Proximity threshold used for hysteresis UI detections on channel 1 0x63 Hysteresis UI touch threshold Touch threshold used for hysteresis UI detections on channel 1 Example code: Example code for an Arduino Uno can be downloaded at: www.azoteq.com//images/stories/software/IQS62x_Demo.zip Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 12 of 79 May 2018 IQ Switch ProxFusion® Series Sensor data output and flags The following registers should be monitored by the master to detect capacitive sensor activations: a) The Global events register (0x11) will show the IQS621’s main events. Bit0 is dedicated to the ProxFusion activations. Bit Number Data Access Name Global events (0x11) 7 6 5 4 3 2 1 0 - R R R R R R R - POWER MODE EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT ALS EVENT HALL EVENT PROX SENSE EVENT b) The ProxFusion UI flags (0x12) provide more detail regarding the capacitive sensor outputs. An individual prox and touch output bit for channel 0 and 1 is provided in the ProxFusion UI flags register. Bit Number Data Access Name ProxFusion UI flags (0x12) 7 6 5 4 3 2 1 0 - - R R - - R R - - CH1_T CH0_T - - CH1_P CH0_P c) The Hysteresis UI flags (0x12) provide more detail regarding the capacitive sensor outputs for the Hysteresis UI. An individual prox and touch output bit for channel 1 is provided in the Hysteresis UI flags register. Bit Number Data Access Name Hysteresis UI flags (0x13) 7 6 5 4 3 2 1 0 - - - - - R R R - - - - - Signed output TOUCH PROX a) The Hysteresis UI output (0x14 & 0x15) provide the exact Hysteresis UI output value. Bit Number Data Access Name Bit Number Data Access Name Hysteresis UI output (0x14/0x15) 7 6 5 4 3 2 1 0 R R R R R R R R Hysteresis UI output low byte 7 6 5 4 3 2 1 0 R R R R R R R R Copyright © Azoteq 2018 All Rights Reserved Hysteresis UI output high byte IQS621 Datasheet revision 1.15 Shortcut to memory map Page 13 of 79 May 2018 IQ Switch ProxFusion® Series 3 Inductive sensing Introduction to inductive sensing The IQS621 provides inductive sensing capabilities in order to detect the presence of metal/metaltype objects. Prox and touch thresholds are widely adjustable and individual hysteresis settings are definable for each using the Hysteresis UI. Channel specifications The IQS621 requires both Rx sensing pins as well as the Tx pin for mutual inductive sensing. Channel 1 is dedicated to the Hysteresis UI. There are two distinct inductive user interfaces available to be used.   Discreet button UI (always enabled): o Fully configurable 2 level threshold Prox & Touch activation. o Customizable UI halt time. Hysteresis UI: o Fully configurable 2 level threshold Prox & Touch activation. o 4 Hysteresis selection options o Customizable UI halt time. o Configurable filter halt threshold. Table 3.1 Mutual inductive sensor – channel allocation Mode CH0 CH1 Mutual inductive ͦ ͦ Hysteresis UI CH2 CH3 CH4 CH5 CH6  Key: o  - Optional implementation - Fixed use for UI Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 14 of 79 May 2018 IQ Switch ProxFusion® Series Hardware configuration Table 3.2 Mutual inductive hardware description Mutual inductive Software configuration Registers to configure for inductive sensing: Table 3.3 Name Address 0x45 0x47 0x48 Description Recommended setting ProxFusion Settings 0 Sensor mode and configuration of channel 1. Sensor mode should be set to inductive mode Both RX0 and RX1 should be active on channel 1 ProxFusion Settings 1 Channel 1 settings for the inductive sensor Full ATI is recommended for fully automated sensor tuning. ProxFusion Settings 2 ATI settings for the inductive sensor ATI target should be more than ATI base to achieve an ATI ProxFusion Settings 3 Additional settings for the inductive sensor None ProxFusion Settings 4 UI enable command and filter settings Enable the Hysteresis UI. Filter according to application. 0x41 0x43 Inductive sensing settings registers Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 15 of 79 May 2018 IQ Switch ProxFusion® Series Registers to configure for the hysteresis UI: Table 3.4 Hysteresis UI settings registers Address Name Description 0x48 ProxFusion settings 4 Hysteresis UI enable command 0x60 Hysteresis UI Settings Hysteresis settings for the prox and touch thresholds 0x61 Hysteresis UI filter halt threshold Threshold setting to trigger a filter halt for on channel 1 0x62 Hysteresis UI proximity threshold Proximity threshold used for hysteresis UI detections on channel 1 0x63 Hysteresis UI touch threshold Touch threshold used for hysteresis UI detections on channel 1 Example code: Example code for an Arduino Uno can be downloaded at: www.azoteq.com//images/stories/software/IQS62x_Demo.zip Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 16 of 79 May 2018 IQ Switch ProxFusion® Series Sensor data output and flags The following registers can be monitored by the master to detect inductive sensor related events. a) Global events (0x11) to prompt for inductive sensor activation. Bit3 denoted as HYSTERESIS UI EVENT will indicate the detection of a metal object using the inductive sensing. Bit Number Data Access Name Global events (0x11) 7 6 5 4 3 2 1 0 - R R R R R R R - POWER MODE EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT ALS EVENT HALL EVENT PROX SENSE EVENT b) The Hysteresis UI flags (0x13) register provides the classic prox/touch two level activation outputs as well as a signed output bit to distinguish between whether the counts have risen or fallen below the LTA (direction of counts). Bit Number Data Access Name Hysteresis UI flags (0x13) 7 6 5 4 3 2 1 0 - - - - - R R R - - - - - Signed output TOUCH PROX c) Hysteresis UI output (0x14 - 0x15) registers will provide a combined 16-bit value to acquire the magnitude of the inductive sensed object. Bit Number Data Access Name Bit Number Data Access Name Hysteresis UI output (0x14 - 0x15) 7 6 5 4 3 2 1 0 R R R R R R R R Hysteresis UI output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Copyright © Azoteq 2018 All Rights Reserved Hysteresis UI output high byte IQS621 Datasheet revision 1.15 Shortcut to memory map Page 17 of 79 May 2018 IQ Switch ProxFusion® Series 4 Ambient light sensing (ALS) Introduction to ambient light sensing The IQS621 employs two light sensitive semi-conductor areas on chip to realise an ambient light sensor. The sensor capabilities include:        Absolute Lux output value 4-bit ALS range output (0 – 10) Human eye response and IR compensated Dual threshold detection for day/night indication with hysteresis o 8-bit individual definable light and dark trigger thresholds o Dark threshold range: 0 – 1020 Lux in steps of 4 Lux. o Light threshold range: 0 – 4080 Lux in steps of 16 Lux. CS size, multipliers and charge frequency fully adjustable. Ch3 – ALS channel 1: o Assigned to Wide spectrum ALS. Ch4 – ALS channel 2: o Assigned to narrow spectrum ALS. Channel specifications The IQS621 provides 2 dedicated channels to ALS conversions. Table 4.1 Sensor/UI type CH0 Ambient light sensing - channel allocation CH1 ALS CH2 CH3 CH4   CH5 CH6 Key: o - Optional implementation  - Fixed use for UI Hardware configuration No external hardware required. Package placement and lens clearance required. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 18 of 79 May 2018 IQ Switch ProxFusion® Series Software configuration Registers to configure for ALS sensing: Table 4.2 Name Address 0x70 0x71 ALS sensing settings registers Description Recommended setting ALS Settings 0 ALS conversion settings and filter configuration settings None ALS Settings 1 ALS channel ATI target and multiplier calibration value None Registers to configure for the ALS UI: Table 4.3 ALS UI settings registers Address Name 0x80 ALS dark threshold Threshold setting value to detect a dark condition 0x81 ALS light threshold Threshold setting value to detect a light condition ALS to Lux divider Calibration value used to provide an absolute Lux output from ALS measurements ALS IR divider Calibration value used to compensate for the influence of IR spectrum radiation in ALS measurements 0x82 0x83 Description Example code: Example code for an Arduino Uno can be downloaded at: www.azoteq.com//images/stories/software/IQS62x_Demo.zip Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 19 of 79 May 2018 IQ Switch ProxFusion® Series Sensor data output and flags The following registers can be monitored by the master to detect ALS related events. a) The ALS EVENT (bit 2) in the Global events (0x11) register are dedicated to ALS related events. This bit will toggle when any change in ALS flags occurs and is automatically cleared after reading the registers. Bit Number Data Access Name Global events (0x11) 7 6 5 4 3 2 1 0 - R R R R R R R - POWER MODE EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT ALS EVENT HALL EVENT PROX SENSE EVENT b) The ALS UI flags (0x16) register provides a 4-bit ALS Range value to indicate the current ALS reading (ALS range value bit 0-3). An additional LIGHT/DARK bit (bit 7) is used to indicate the ALS sensor status measured against the two-configurable light/dark threshold values in registers 0x80 and 0x81. The user can thus setup his own triggering thresholds for light and dark perceived readings and incorporate a hysteresis using this UI. Bit Number Data Access Name ALS UI flags (0x16) 7 6 5 4 3 2 1 0 R - - - R R R R LIGHT/ DARK ALS range value Reserved c) The ALS UI output (0x17 - 0x18) registers provide a 16-bit value of the ALS amplitude in units of Lux as obtained by the current sensor measurement. Bit Number Data Access Name Bit Number Data Access Name ALS UI output (0x17 - 0x18) 7 6 5 4 3 2 1 0 R R R R R R R R ALS UI output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Copyright © Azoteq 2018 All Rights Reserved ALS UI output high byte IQS621 Datasheet revision 1.15 Shortcut to memory map Page 20 of 79 May 2018 IQ Switch ProxFusion® Series 5 Hall-effect sensing Introduction to Hall-effect sensing The IQS621 has two internal Hall-effect sensing plates (on chip). No external sensing hardware is required for Hall-effect sensing. The Hall-effect measurement is essentially a current measurement of the induced current through the Hall-effect-sensor plates produced by the magnetic field passing perpendicular through each plate. Advanced digital signal processing is performed to provide sensible output data.     Two threshold levels are provided (proximity & touch). Hall-effect output is linearized by inverting signals. North/South field direction indication provided. Differential Hall-effect sensing: o Removes common mode disturbances o North-South field indication Channel specifications Channels 5 and 6 are dedicated to Hall-effect sensing. Channel 5 performs the positive direction measurements and channel 6 will handle all measurements in the negative direction. These two channels are used in conjunction to acquire differential Hall-effect data and will always be used as input data to the Hall-effect UI’s. There is a dedicated Hall-effect user interface: a) Hall-effect switch UI Table 5.1 Sensor/UI type CH0 Hall-effect sensor – channel allocation CH1 CH2 CH3 Hall-effect switch UI CH4 CH5 CH6  Positive  Negative Key: o - Optional implementation  - Fixed use for UI Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 21 of 79 May 2018 IQ Switch ProxFusion® Series Hardware configuration Rudimentary hardware configurations. Axially polarized magnet (linear movement or magnet presence detection) Hall-effect push switch Smart cover Bar magnet (linear movement and magnet field detection) Slide switch Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 22 of 79 May 2018 IQ Switch ProxFusion® Series Software configuration Registers to configure for Hall-effect sensing: Table 5.2 Name Address Hall-effect sensing settings registers Description Recommended setting Hall-effect settings 0 Charge frequency divider and ATI mode settings Charge frequency adjusts the conversion rate of the Halleffect channels. Faster conversions consume less current. Full ATI is recommended for fully automated sensor tuning. Hall-effect settings 1 ATI base and target selections ATI target should be more than ATI base to achieve an ATI 0xA0 Hall-effect switch UI settings Various settings for the Hall-effect switch UI None 0xA1 Hall-effect switch UI proximity threshold Proximity Threshold for UI Less than touch threshold 0xA2 Hall-effect switch UI touch threshold Touch Threshold for UI None 0x90 0x91 Example code: Example code for an Arduino Uno can be downloaded at: www.azoteq.com//images/stories/software/IQS62x_Demo.zip Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 23 of 79 May 2018 IQ Switch ProxFusion® Series Sensor data output and flags The following registers can be monitored by the master to detect Hall-effect related events. d) The HALL_EVENT (bit 1) in the Global events (0x11) register are dedicated to Hall-effect related events. This bit will toggle when either one of the three Hall flags is set and is automatically cleared after reading the registers. Bit Number Data Access Name Global events (0x11) 7 6 5 4 3 2 1 0 - R R R R R R R - POWER MODE EVENT SYS EVENT TEMP EVENT HYSTEREISIS UI EVENT ALS EVENT HALL EVENT PROX SENSE EVENT e) The Hall UI flags (0x19) register provides the standard two level activation output (prox and touch) as well as a HALL_N/S bit to indicate the magnet polarity orientation. Bit Number Data Access Name f) Hall-effect UI flags (0x19) 7 6 5 4 3 2 1 0 - - - - - R R R - - - - - HALL TOUT HALL POUT HALL N/S The Hall UI output (0x1A - 0x1B) registers provide a 16-bit value of the Hall-effect amplitude detected by the sensor. Bit Number Data Access Name Bit Number Data Access Name Hall-effect UI output (0x1A - 0x1B) 7 6 5 4 3 2 1 0 R R R R R R R R Hall-effect UI output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Copyright © Azoteq 2018 All Rights Reserved Hall-effect UI output high byte IQS621 Datasheet revision 1.15 Shortcut to memory map Page 24 of 79 May 2018 IQ Switch ProxFusion® Series 6 Temperature monitoring Introduction to temperature monitoring The IQS621 provides temperature monitoring capabilities which can be used for temperature change detection in order to ensure the integrity of other sensing technology. The use of the temperature sensor is primarily to reseed other sensor channels to account for sudden changes in environmental conditions. The IQS621 uses a linearly proportional to absolute temperature sensor for temperature data. The temperature output data is given by, ܽǤ ʹଵଽ ܶൌ ൅ܿ ܾǤ ‫ܪܥ‬ଶ Where ܽǡ ܾ and ܿ are constants that can be determined to provide a required output data as a function of device temperature. Additionally, the channel setup must be calculated during a testing process. Table 6.1 Temperature calibration setting registers and ranges IQS621 Parameter Description Name ܽ ‫ݎ݈݁݅݌݅ݐ݈ݑܯ‬ ܾ ‫ݎ݁݀݅ݒ݅ܦ‬ ܿ ܱ݂݂‫ݐ݁ݏ‬ Register Higher nibble 0xC2 Lower nibble 0xC3 Range 1 – 16 1 – 16 0 – 255 Channel specifications The IQS621 requires only external passive components to do temperature monitoring (no additional circuitry/components required). The temperature UI will be executed using data from channel 2. Table 6.2 Sensor / UI type Temperature monitoring – channel allocation CH0 CH1 Temperature trip and output CH2 CH3 CH4 CH5 CH6  Key: o - Optional implementation  - Fixed use for UI Hardware configuration No additional hardware required. Temperature monitoring is realized on-chip. Software configuration Registers to configure for temperature sensing: Table 6.3 Temperature sensing settings registers Name Description Recommended setting Temperature UI settings Channel reseed settings Reseed enable should be set Multipliers channel 2 Temperature sensor channel multiplier selection Dependent on calibration step 0xC2 Temperature calibration data 0 4-bit Multiplier (ܽ+1) and divider (ܾ+1) calibration values Requires sample calibration 0xC3 Temperature calibration data 1 8-bit Offset (ܿ) calibration value Requires sample calibration Address 0xC0 0xC1 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 25 of 79 May 2018 IQ Switch ProxFusion® Series Sensor data output and flags The following registers can be monitored by the master to detect temperature sensor related events. a) Global events (0x11) to prompt for temperature sensor activation. Bit4 denoted as TEMP_EVENT will indicate the detection of a temperature threshold trigger using the temperature sensing. Bit Number Data Access Name Global events (0x11) 7 6 5 4 3 2 1 0 - R R R R R R R - POWER MODE EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT ALS EVENT HALL EVENT PROX SENSE EVENT b) The Temperature UI flags (0x1C) register provides a single bit for temperature trip indication. Bit Number Data Access Name Temperature UI flags (0x1C) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Temp Trip Reserved c) The Temperature UI output (0x1D - 0x1E) registers will provide a combined 16-bit value to acquire the magnitude of the temperature sensed. Bit Number Data Access Name Bit Number Data Access Name Temperature UI Output (0x1D - 0x1E) 7 6 5 4 3 2 1 0 R R R R R R R R Temperature UI output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Copyright © Azoteq 2018 All Rights Reserved Temperature UI output high byte IQS621 Datasheet revision 1.15 Shortcut to memory map Page 26 of 79 May 2018 IQ Switch ProxFusion® Series 7 Device clock, power management and mode operation Device main oscillator The IQS621 has a 16MHz main oscillator (default enabled) to clock all system functionality. An option exists to reduce the main oscillator to 8MHz. This will result in all system timings, charge transfers and sample rates to be slower by half of the default implementations. To set this option this: o o As a software setting – Set the System_settings: bit4 = 1, via an I2C command. As a permanent setting – Set the OTP option in OTP Bank 0: bit2 = 1, using Azoteq USBProg program. Device modes The IQS621 supports the following modes of operation;     Normal mode (Fixed report rate) Low power mode (Reduced report rate, no UI execution) Ultra-low power mode (Only channel 0 is sensed for a prox) Halt mode (Suspended/disabled) Note: Auto modes must be disabled to enter or exit halt mode. The device will automatically switch between the different operating modes by default. However, this Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit (Power_mode_settings 0xD2: bit5) to confine device operation to a specific power mode. The POWER_MODE bits (Power_mode_settings 0xD2: bit4-3) can then be used to specify the desired mode of operation. Normal mode Normal mode is the fully active sensing mode to function at a fixed report rate specified in the Normal mode report rate (0xD3) register. This 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms. Note: The device’s low power oscillator has an accuracy as specified in section 9. Low power mode Low power mode is a reduced sensing mode where all channels are sensed but at a reduced oscillator speed. The sample rate can be specified in the Low Power mode report rate (0xD4) register. The 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms. Reduced report rates also reduce the current consumed by the sensor. Note: The device’s low power oscillator has an accuracy as specified in section 9. Ultra-low power mode Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed and no other channels or UI code are executed. Set the EN_ULP_MDE bit (Power_mode_settings: bit6) to enable use of the ultra-low power mode. The sample rate can be specified in the Low Power mode report rate (0xD5) register. The 8-bit value is adjustable from 0ms – 4sec in intervals of 16ms. Wake up will occur on prox detection on channel 0. Halt mode Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The device requires an I2C command from a master to explicitly change the power mode out of the halt state before any sensor functionality can continue. Mode time The mode time is specified in the Auto mode timer (0xD6) register. The 8-bit value is adjustable from 0ms – 2 min in intervals of 500ms. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 27 of 79 May 2018 IQ Switch ProxFusion® Series System reset The IQS621 device monitor’s system resets and events. a) Every device power-on and reset event will set the Show Reset bit (System flags 0x10: bit7) and the master should explicitly clear this bit by writing it active to acknowledge a valid reset. b) The system events will also be indicated with the Global events register’s SYS_EVENT bit (Global events 0x11: bit4) if any system event occur such as a reset. This event will continuously trigger until the reset has been acknowledged. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 28 of 79 May 2018 IQ Switch ProxFusion® Series 8 Communication I2C module specification The device supports a standard two wire I2C interface with the addition of an RDY (ready interrupt) line. The communications interface of the IQS621 supports the following: Fast-mode (Fm) standard I2C up to 400kHz. Streaming data as well as event mode. The master may address the device at any time. If the IQS621 is not in a communication window, the device will return an ACK after which clock stretching may be induced until a communication window is entered. Additional communication checks are included in the main loop in order to reduce the average clock stretching time. The provided interrupt line (RDY) is an open-drain active low implementation and indicates a communication window.     I2C Read To read from the device a current address read can be performed. This assumes that the addresscommand is already setup as desired. Current Address Read Start Control byte S Addr + READ Data n Data n+1 ACK Stop ACK NACK S Current Address Read If the address-command must first be specified, then a random read must be performed. In this case, a WRITE is initially performed to setup the address-command, and then a repeated start is used to initiate the READ section. Random Read Start Control byte S Addr + WRITE Addresscommand ACK ACK Start Control byte S Addr + READ Data n ACK Stop NACK S Random Read I2C Write To write settings to the device a Data Write is performed. Here the Address-Command is always required, followed by the relevant data bytes to write to the device. Data Write Start Control byte S Addr + WRITE AddressCommand ACK Data n ACK Data n+1 ACK Stop ACK S I2C Data Write Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 29 of 79 May 2018 IQ Switch ProxFusion® Series Stop-bit disable option The IQS621 offer:  an additional I2C settings register (0xD9) specifically added for stop-bit disable functionality,  as well as a RDY timeout period register (0xD8) in order to set the required timeout period for termination of any communication windows (RDY = Low) if no I 2C activity is present on SDA and SCL pins. Customers using a MCU with a binary serial-encoder peripheral which is not fully I2C compatible (but provide some crude serial communication functions) can use this option to configure the IQS621 so that any auto generated stop command from the serial peripheral can be ignored by the IQS621 I2C hardware. This will restrict the IQS621 from immediately exiting a communication window during event mode (reduced communication only for events) until all required communication has been completed and a stop command can correctly be transmitted. Please refer to the figures below for serial data transmission examples. Please note: 1. Stop-bit disable and enable must be performed at the beginning and end of a communication window. The first and last I2C register to be written to ensure no unwanted communication window termination. 2. Leaving the Stop-bit disabled will result in successful reading of registers but will not execute any commands written over I2C in a communication window being terminated after a RDY timeout and with no IQS recognised stop command. 3. The default RDY timeout period for IQS621 is purposefully long (10.24ms) for slow responding MCU hardware architectures. Please set this register according to your requirements/preference. Stop-bit Disable Communication window open Start Control byte RDY = ↓LOW S Addr + WRITE AddressCommand ACK 0xD9 Disable stop-bit ACK 0x81 ACK Ignored stop Continue with reads / writes S … I2C Stop-bit Disable Stop-bit Enable Reads / Writes Finished Start Control byte … S Addr + WRITE AddressCommand ACK 0xD9 Enable stop-bit ACK 0x01 ACK Stop Communication window closed S RDY = ↑HIGH I2C Stop-bit Enable Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 30 of 79 May 2018 IQ Switch ProxFusion® Series Device address and sub-addresses The default device address is 0x44 = DEFAULT_ADDR. Alternative sub-address options are definable in the following one-time programmable bits: OTP Bank0 (bit3; 0; bit1; bit0) = SUB_ADDR_0 to SUB_ADDR_7 a) b) c) d) e) f) g) h) 0x44 = DEFAULT_ADDR (0x44) 0x45 = DEFAULT_ADDR (0x44) 0x46 = DEFAULT_ADDR (0x44) 0x47 = DEFAULT_ADDR (0x44) 0x4C = DEFAULT_ADDR (0x44) 0x4D = DEFAULT_ADDR (0x44) 0x4E = DEFAULT_ADDR (0x44) 0x4F = DEFAULT_ADDR (0x44) Default address: Sub-address: Sub-address: Sub-address: Sub-address: Sub-address: Sub-address: Sub-address: OR OR OR OR OR OR OR OR SUB_ADDR_0 (0000b) SUB_ADDR_1 (0001b) SUB_ADDR_2 (0010b) SUB_ADDR_3 (0011b) SUB_ADDR_4 (1000b) SUB_ADDR_5 (1001b) SUB_ADDR_6 (1010b) SUB_ADDR_7 (1011b) Additional OTP options All one-time-programmable device options are located in OTP bank 0. OTP Bank0 Bit Number 7 6 Name - COMMS ATI 5 4 Internal use 3 2 SUB ADR 2 8MHz 1 0 SUB ADR 0_1 Bit definitions:     Bit 6: Communication during ATI o 0: No streaming events are generated during ATI o 1: Communication continues as setup regardless of ATI state. Bit4-5: Internal use o Do not configure Bit 2: Main Clock frequency selection o 0: Run FOSC at 16MHz o 1: Run FOSC at 8MHz Bit 3,1,0: I2C sub-address o I2C address = 0x44 OR SUB_ADDR Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 31 of 79 May 2018 IQ Switch ProxFusion® Series Recommended communication and runtime flow diagram The following is a basic master program flow diagram to communicate and handle the device. It addresses possible device events such as output events, ATI and system events (resets). POR Clear Show_Reset Reset occured Show Reset? Setup & Initialization No Yes ATI IN ATI? Yes Runtime Global Event? No System Event? Yes Valid event? No Yes Retrieve event data Master command structure and runtime event handling flow diagram It is recommended that the master verifies the status of the System_Flags0 bits to identify events and resets. Detecting either one of these should prompt the master to the next steps of handling the IQS621. Streaming mode communication is used for detail sensor evaluation during prototyping and/or development phases. Event mode communication is recommended for runtime use of the IQS621. This reduce the communication on the I2C bus and report only triggered events. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 32 of 79 May 2018 IQ Switch ProxFusion® Series 9 Memory map The full memory map is summarized below. Register groups are explained in the latter subsections. Table 9.1 Full Address 0x00 0x01 0x02 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x30 0x31 0x32 0x33 0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D IQS621 Memory map index Group Name Device information data Flags and user interface data Channel counts (raw data) LTA values (filtered data) ProxFusion sensor settings Copyright © Azoteq 2018 All Rights Reserved Item Name Data Access Product number Software number Hardware number System flags Global events ProxFusion UI flags Hysteresis UI flags Hysteresis UI output 0 Hysteresis UI output 1 ALS flags ALS output low ALS output high Hall-effect UI flags Hall-effect UI output 0 Hall-effect UI output 1 Temperature UI flags Temperature output low Temperature output high Channel 0 counts low Channel 0 counts high Channel 1 counts low Channel 1 counts high Channel 2 counts low Channel 2 counts high Channel 3 counts low Channel 3 counts high Channel 4 counts low Channel 4 counts high Channel 5 counts low Channel 5 counts high Channel 6 counts low Channel 6 counts high Channel 0 LTA low Channel 0 LTA high Channel 1 LTA low Channel 1 LTA high ProxFusion settings 0_0 ProxFusion settings 0_1 ProxFusion settings 1_0 ProxFusion settings 1_1 ProxFusion settings 2_0 ProxFusion settings 2_1 ProxFusion settings 3_0 ProxFusion settings 3_1 ProxFusion settings 4 ProxFusion settings 5 Compensation Ch0 Compensation Ch1 Multipliers Ch0 Multipliers Ch1 Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Only Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write IQS621 Datasheet revision 1.15 Shortcut to memory map Page 33 of 79 May 2018 IQ Switch ProxFusion® Series 0x50 0x51 0x52 0x53 0x54 0x60 0x61 0x62 0x63 0x70 0x71 0x72 0x73 0x80 0x81 0x82 0x83 0x90 0x91 0x92 0x93 0xA0 0xA1 0xA2 0xC0 0xC1 0xC2 0xC3 0xD0 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 0xD7 0xD8 0xD9 ProxFusion UI settings Hysteresis UI settings ALS sensor settings ALS UI settings Hall sensor settings Hall switch UI settings Temperature UI settings Device and power mode settings Copyright © Azoteq 2018 All Rights Reserved Prox threshold Ch0 Touch threshold Ch0 Prox threshold Ch1 Touch threshold Ch1 ProxFusion UI halt time Hysteresis UI settings Hysteresis UI filter halt threshold Hysteresis UI prox threshold Hysteresis UI touch threshold ALS settings 0 ALS settings 1 ALS filter speed Multipliers Ch3 Ch4 ALS dark threshold ALS light threshold ALS to Lux divider ALS IR divider Hall-effect settings 0 Hall-effect settings 1 Compensation Ch4 and Ch5 Multipliers Ch4 and Ch5 Hall-effect switch UI settings Hall-effect switch UI prox threshold Hall-effect switch UI touch threshold Temperature UI settings Multipliers Ch2 Temperature calibration 0 Temperature calibration 1 System settings Active channels Power mode settings Normal power mode report rate Low power mode report rate Ultra-low power mode report rate Auto mode time Global event mask RDY timeout period I2C settings IQS621 Datasheet revision 1.15 Shortcut to memory map Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Read-Write Page 34 of 79 May 2018 IQ Switch ProxFusion® Series Device Information Data Product number Product number (0x00) Bit Number Data Access Name 7 6 5 4 3 2 1 0 R R R R R R R R Device product number Bit definitions:  Bit 7-0: Device product number o 0x46 = D’70’: IQS621 product number Software number Software number (0x01) Bit Number Data Access Name 7 6 5 4 3 2 1 0 R R R R R R R R Device software number Bit definitions:  Bit 7-0: Device software number o 0x09 = D’09’: IQS621 production software number Hardware number Hardware number (0x02) Bit Number Data Access Name 7 6 5 4 3 2 1 0 R R R R R R R R Device hardware number Bit definitions:  Bit 7-0: Device hardware number o 0x82 = D’130’: IQS621 hardware number Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 35 of 79 May 2018 IQ Switch ProxFusion® Series Flags and user interface data System flags Bit Number Data Access Name System flags (0x10) 7 6 5 4 3 2 1 0 R - - R R R R R SHOW RESET - - IN ATI EVENT NP SEG ACTIVE POWER MODE Bit definitions:  Bit 7: Reset indicator o 0: No reset event o 1: A device reset has occurred and needs to be acknowledged.  Bit 4-3: Current power-mode indicator o 00: Normal mode o 10: Ultra-low power mode o 01: Low power mode o 11: Halt Mode  Bit 2: ATI busy indicator o 0: No channels are in ATI o 1: One or more channels are in ATI  Bit 1: Global event indicator o 0: No new event to service o 1: An event has occurred and should be serviced  Bit 0: Normal power segment indicator o 0: Not performing a normal power update o 1: Busy performing a normal power update Global events Bit Number Data Access Name Global events (0x11) 7 6 5 4 3 2 1 0 - R R R R R R R - POWER MODE EVENT SYS EVENT TEMP EVENT HYSTERESIS UI EVENT ALS EVENT HALL EVENT PROX SENSE EVENT Bit definitions:  Bit 6: Power mode event flag o 0: No event to report o 1: A power mode event has occurred and should be handled  Bit 5: System event flag o 0: No event to report o 1: A System event has occurred and should be handled  Bit 4: Temperature event flag o 0: No event to report o 1: A Temperature event has occurred and should be handled  Bit 3: Hysteresis UI event flag o 0: No event to report o 1: A Hysteresis event has occurred and should be handled  Bit 2: ALS event flag Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 36 of 79 May 2018 IQ Switch ProxFusion® Series   o 0: No event to report o 1: An ALS event has occurred and should be handled Bit 1: Hall-effect event flag o 0: No event to report o 1: A Hall-effect event has occurred and should be handled Bit 0: ProxSense event flag o 0: No event to report o 1: A capacitive key event has occurred and should be handled ProxFusion UI flags Bit Number Data Access Name ProxFusion UI flags (0x12) 7 6 5 4 3 2 1 0 - - R R - - R R - - CH1_T CH0_T - - CH1_P CH0_P Bit definitions:  Bit 5: Ch1 touch indicator o 0: Delta below touch threshold o 1: Delta above touch threshold  Bit 4: Ch0 touch indicator o 0: Delta below touch threshold o 1: Delta above touch threshold  Bit 1: Ch1 proximity indicator o 0: Delta below proximity threshold o 1: Delta above proximity threshold  Bit 0: Ch0 proximity indicator o 0: Delta below proximity threshold o 1: Delta above proximity threshold. Hysteresis UI flags Bit Number Data Access Name Hysteresis UI flags (0x13) 7 6 5 4 3 2 1 0 - - - - - R R R - - - - - Signed output TOUCH PROX Bit definitions:  Bit 2: Delta direction signed output o 0: Counts rise above the LTA o 1: Counts fall below the LTA  Bit 1: Hysteresis UI touch indicator o 0: Delta below touch threshold o 1: Delta above touch threshold  Bit 0: Hysteresis proximity indicator o 0: Delta below prox threshold o 1: Delta above prox threshold Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 37 of 79 May 2018 IQ Switch ProxFusion® Series Hysteresis UI output Bit Number Data Access Name Bit Number Data Access Name Hysteresis UI output (0x14/0x15) 7 6 5 4 3 2 1 0 R R R R R R R R Hysteresis UI output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Hysteresis UI output high byte Bit definitions:  Bit 15-0: Hysteresis UI output o 0-65 535: Hysteresis UI output value ALS UI flags Bit Number Data Access Name ALS UI flags (0x16) 7 6 5 4 3 2 1 0 R - - - R R R R LIGHT / DARK Reserved ALS Range Value Bit definitions:  Bit 7: Light/Dark o 0: Light indication  Bit 3-0: ALS Range value o 0-10 range value of ALS measurement o 1: Dark indication ALS UI output Bit Number Data Access Name Bit Number Data Access Name ALS UI output (0x17/0x18) 7 6 5 4 3 2 1 0 R R R R R R R R ALS UI Output Low Byte 15 14 13 12 11 10 9 8 R R R R R R R R ALS UI Output High Byte Bit definitions:  Bit 15-0: ALS UI output o 0-65 535: ALS UI output value in Lux Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 38 of 79 May 2018 IQ Switch ProxFusion® Series Hall-effect UI flags Bit Number Data Access Name Hall-effect UI flags (0x19) 7 6 5 4 3 2 1 0 - - - - - R R R - - - - - TOUCH PROX HALL N/S Bit definitions:  Bit 2: Hall-effect touch indicator o 0: Field strength below touch level o 1: Field strength above touch level  Bit 1: Hall-effect proximity indicator o 0: Field strength below proximity level o 1: Field strength above proximity level  Bit 0: Hall-effect North South Field indication o 0: North field present o 1: South field present Hall-effect UI output Bit Number Data Access Name Bit Number Data Access Name Hall-effect UI output (0x1A/0x1B) 7 6 5 4 3 2 1 0 R R R R R R R R Hall-effect UI output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Hall-effect UI output high byte Bit definitions:  Bit 15-0: Hall-effect UI output o 0-65 535: Hall-effect UI output value Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 39 of 79 May 2018 IQ Switch ProxFusion® Series Temperature UI flags Bit Number Data Access Name Temperature UI flags (0x1C) 7 6 5 4 3 2 1 0 R - - - - - - - TEMP TRIP - - - - - - - Bit definitions:  Bit 7: Temperature trip indicator o 0: Temperature below trip level o 1: Temperature above trip level Temperature output Bit Number Data Access Name Bit Number Data Access Name Temperature output (0x1D/0x1E) 7 6 5 4 3 2 1 0 R R R R R R R R Temperature output low byte 15 14 13 12 11 10 9 8 R R R R R R R R Temperature output high byte Bit definitions:  Bit 15-0: Temperature output o 0-65 535: Temperature output value Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 40 of 79 May 2018 IQ Switch ProxFusion® Series Channel counts (raw data) Bit Number Data Access Name Bit Number Data Access Name Channel counts Ch0/1/2/3/4/5/6 (0x20/0x21-0x2C/0x2D) 7 6 5 4 3 2 1 0 R R R R R R R R Channel data low byte 15 14 13 12 11 10 9 8 R R R R R R R R Channel data high byte Bit definitions:  Bit 15-0: AC filter or raw count value LTA values (filtered data) Bit Number Data Access Name Bit Number Data Access Name LTA Ch0/1 (0x30/0x31-0x32/0x33) 7 6 5 4 3 2 1 0 R R R R R R R R LTA low byte 15 14 13 12 11 10 9 8 R R R R R R R R LTA high byte Bit definitions:  Bit 15-0: LTA filter value Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 41 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion sensor settings block 1 ProxFusion settings 0 9.6.1.1 Capacitive sensing Bit Number Data Access Name Fixed value ProxFusion settings 0_0/1 (0x40-0x41) 7 6 5 4 3 2 1 0 R/W R/W - - R/W R/W R/W R/W Internal use Internal use 0 0 Capacitive sensor mode 0 0 TX SELECT RX SELECT 0 0 Bit definitions:  Bit 6-7: Sensor mode o 00: Capacitive sensing mode  Bit 3-2: TX Select o 00: TX 0 and TX 1 is disabled  Bit 0-1: RX select o 00: RX 0 and RX 1 is disabled o 01: RX 0 is enabled 0 o o 1 10: RX 1 is enabled 11: RX 0 and RX 1 is enabled 9.6.1.2 Inductive sensing Bit Number Data Access Name Fixed value ProxFusion settings 0_1 (0x41) 7 6 5 4 3 2 1 0 R/W R/W - R/W R/W R/W R/W R/W Internal use Multiplier range Inductive sensor mode 1 0 0 TX SELECT RX SELECT 0 1 Bit definitions:  Bit 7-6: Sensor mode o 10: Inductive sensor mode  Bit 4: Multiplier range o 0: Large  Bit 3-2: TX Select o 00: TX 0 and TX 1 is disabled  Bit 1-0: RX Select o 11: RX 0 and RX 1 is enabled Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map 0 o 1 1: Small Page 42 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion settings 1 9.6.2.1 Capacitive sensing Bit Number Data Access Name Default ProxFusion settings 1_0/1 (0x42-0x43) 7 6 5 4 3 2 1 0 - R/W R/W R/W - - R/W R/W - CSz 0 1 CHARGE FREQ 0x67 1 0 Internal use 0 Bit definitions:  Bit 6: CS size o 0: Prox storage capacitor size is 15 pF o 1: Prox storage capacitor size is 60 pF  Bit 5-4: Charge frequency divider o 00: 1/2 o o 01: 1/4 o  Bit 1-0: Auto ATI Mode o 00: ATI disabled o 01: Partial ATI (all multipliers are fixed) o 10: Semi-partial ATI (coarse multipliers are fixed) o 11: Full-ATI 1 AUTO ATI MODE 1 1 10: 1/8 11: 1/16 9.6.2.2 Inductive sensing Bit Number Data Access Name Fixed use ProxFusion settings 1_1 (0x43) 7 6 5 4 3 2 1 0 - R/W R/W R/W R/W R/W R/W R/W - CSz 0 1 CHARGE FREQ 0x4F 0 0 PROJ BIAS 1 1 AUTO ATI MODE 1 1 Bit definitions:  Bit 6: CS size o 0: Prox storage capacitor size is 15pF o 1: Prox storage capacitor size is 60pF  Bit 5-4: Charge frequency divider o 00: 1/2 o 10: 1/8 o 01: 1/4 o 11: 1/16  Bit 3-2: Projected bias / Internal resistor (all modes except prox) o 00: 2.5µA / 88kΩ o 10: 10µA / 44kΩ o 01: 5µA / 66kΩ o 11: 20µA / 22kΩ  Bit 1-0: Auto ATI Mode o 00: ATI disabled o 01: Partial ATI (all multipliers are fixed) o 10: Semi-Partial ATI (coarse multipliers are fixed) o 11: Full-ATI Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 43 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion settings 2 9.6.3.1 Capacitive sensing Bit Number Data Access Name Default ProxFusion settings 2_0/1 (0x44 - 0x45) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 ATI BASE 1 1 0 ATI TARGET (x32) 0xD0 1 0 0 Bit definitions:  Bit 7-6: Auto ATI base value o 00: 75 o 01: 100  Bit 5-0: Auto ATI Target o ATI Target is 6-bit value x 32 o o 10: 150 11: 200 9.6.3.2 Inductive sensing Bit Number Data Access Name Default ProxFusion settings 2_1 (0x45) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 ATI BASE 1 1 0 ATI TARGET (x32) 0xD0 1 0 0 Bit definitions:  Bit 7-6: Auto ATI base value o 00: 75 o 01: 100  Bit 5-0: Auto ATI Target o ATI Target is 6-bit value x 32 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map o o 10: 150 11: 200 Page 44 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion settings 3 9.6.4.1 Capacitive sensing Bit Number Data Access Name Default ProxFusion settings 3_0/1 (0x46-0x47) 7 6 5 4 3 2 1 0 R/W R/W R/W - R/W R/W R/W - CS DIV Internal use PASS LENGTH - 0 0 UP LENGTH SELECT 0 0 UP LENGTH EN 0x06 0 1 1 0 Bit definitions:  Bit 7-6: Up Length Select (requires UP_LENGTH_EN = 1 for use) o 00: Up length = 0010 o 10: Up length = 1010 o 01: Up length = 0110 o 11: Up length = 1110  Bit 5: CS divider o 0: Normal CS cap size o 1: CS cap size 5 times smaller  Bit 3: Up length select enable o 0: Up length select is disabled o 1: Up length select is enabled (value in bit 7-6 is used)  Bit 2-1: Pass length select o 00: Pass length = 001 o 10: Pass length = 101 o 01: Pass length = 011 o 11: Pass length = 111 9.6.4.2 Inductive sensing Bit Number Data Access Name Fixed use ProxFusion settings 3_1 (0x47) 7 6 5 4 3 2 1 0 R/W R/W R/W - R/W R/W R/W - CS DIV Internal use PASS LENGTH - 1 1 UP LENGTH SELECT 0 0 UP LENGTH EN 0x36 0 1 1 0 Bit definitions:  Bit 7-6: Up length select (requires UP_LENGTH_EN = 1 for use) o 00: Up length = 0010 o 10: Up length = 1010 o 01: Up length = 0110 o 11: Up length = 1110  Bit 5: CS divider o 0: Normal CS cap size o 1: CS cap size 5 times smaller  Bit 3: Up length select enable o 0: Up length select is disabled o 1: Up length select is enabled (value in bit 7-6 is used)  Bit 2-1: Pass length select o 00: Pass length = 001 o 10: Pass length = 101 o 01: Pass length = 011 o 11: Pass length = 111 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 45 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion settings 4 9.6.5.1 Capacitive sensing Bit Number Data Access Name Default ProxFusion settings 4 (0x48) 7 6 5 4 3 2 1 0 - - R/W R/W R/W R/W R/W R/W - Internal use TWO SIDED EN ACF DISABLE 0 0 0 0 LTA BETA ACF BETA 0x00 0 Bit definitions:  Bit 5: Two-sided detection o 0: Bidirectional detection disabled  Bit 4: Disable AC Filter o 0: AC filter enabled  Bit 3-2: Long term average beta value o 00: 7 o 01: 8  Bit 1-0: AC filter beta value o 00: 1 o 01: 2 0 0 0 o 1: Bidirectional detection enabled o 1: AC filter disabled o 10: 9 o 11: 10 o 10: 3 o 11: 4 9.6.5.2 Inductive sensing Bit Number Data Access Name Default ProxFusion settings 4 (0x48) 7 6 5 4 3 2 1 0 - R/W R/W R/W R/W R/W R/W R/W - HYSTERESIS UI EN TWO SIDED EN ACF DISABLE 0 0 0 0 LTA BETA 0x00 0 Bit definitions:  Bit 6: Hysteresis UI enable o 0: Hysteresis UI is disabled  Bit 5: Two-sided detection o 0: Bidirectional detection disabled  Bit 4: Disable AC filter o 0: AC filter enabled  Bit 3-2: Long term average beta value o 00: 7 o 01: 8  Bit 1-0: AC filter beta value o 00: 1 o 01: 2 Copyright © Azoteq 2018 All Rights Reserved ACF BETA IQS621 Datasheet revision 1.15 Shortcut to memory map 0 0 0 o 1: Hysteresis UI is enabled o 1: Bidirectional detection enabled o 1: AC filter disabled o 10: 9 o 11: 10 o 10: 3 o 11: 4 Page 46 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion settings 5 Bit Number Data Access Name Default ProxFusion settings 5 (0x49) 7 6 5 4 3 2 1 0 - - - - - - - - 0 0 0 Internal use 0x01 0 0 0 0 1 Bit definitions:  Bit 7-0: Internal use Compensation Bit Number Data Access Name Compensation Ch0/1/2/3 (0x4A - 0x4B) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Compensation (0-7) Bit definitions:  Bit 7-0: Compensation (7-0) o 0-255: Lower 8-bits of the Compensation value. Multipliers Bit Number Data Access Name Multipliers Ch0/1/2/3 (0x4C-0x4D) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Compensation (8-9) Multiplier coarse Multiplier fine Bit definitions:  Bit 7-6: Compensation (8-9) o 0-3: Upper 2-bits of the Compensation value.  Bit 5-4: Multiplier coarse o 0-3: Coarse multiplier selection  Bit 3-0: Multiplier fine o 0-15: Fine multiplier selection Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 47 of 79 May 2018 IQ Switch ProxFusion® Series ProxFusion UI settings Prox threshold Ch0/1 Bit Number Data Access Name Default Prox Threshold Ch0/1 (0x50/0x52) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 1 1 0 0 0 0 Prox threshold value 0x16 = D’22 1 0 Bit definitions:  Bit 7-0: Prox threshold = Prox threshold value Touch threshold Ch0/1 Bit Number Data Access Name Default Touch Threshold Ch0/1 (0x51/0x53) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 1 Touch threshold value 0x20 = D’32 0 0 Bit definitions:  Bit 7-0: Touch threshold = Touch threshold value * LTA/256 ProxFusion discrete UI halt time Bit Number Data Access Name Default ProxFusion discrete UI halt time (0x54) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 Halt time 0x28 = D’40 * 500ms = 20sec 1 0 0 0 Bit definitions:  Bit 7-0: Halt time in 500ms increments (decimal value x 500ms) o 0 – 127sec: ProxFusion discrete UI halt time o 0xFF = 255: Always halt filters Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 48 of 79 May 2018 IQ Switch ProxFusion® Series Hysteresis UI settings Hysteresis UI settings Bit Number Data Access Name Default Hysteresis UI settings (0x60) 7 6 5 4 3 2 1 0 - - R/W R/W - - R/W R/W - - Hysteresis_T - - Hysteresis_P 0 0 0 0 0 0 0x00 0 Bit definitions:  Bit 5-4: Touch hysteresis o 00: Disabled o 01: 1/4 of threshold  Bit 1-0: Proximity hysteresis o 00: Disabled o 01: 1/4 of threshold o o 10: 1/8 of threshold 11: 1/16 of threshold o o 10: 1/8 of threshold 11: 1/16 of threshold 0 Hysteresis UI filter halt threshold Bit Number Data Access Name Default Hysteresis UI filter halt threshold (0x61) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 1 0 0 Hysteresis UI filter halt threshold value 0x01 = D’01 0 0 0 0 Bit definitions:  Bit 7-0: Hysteresis UI filter halt threshold o 0-255: Hysteresis UI filter halt threshold value Hysteresis UI proximity threshold Bit Number Data Access Name Default Hysteresis UI proximity threshold (0x62) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 1 1 0 0 0 0 Proximity threshold value 0x16 = D’22 1 0 Bit definitions:  Bit 7-0: Proximity threshold o 0-255: Proximity threshold value Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 49 of 79 May 2018 IQ Switch ProxFusion® Series Hysteresis UI touch threshold Bit Number Data Access Name Default Hysteresis UI touch threshold (0x63) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 1 Touch threshold value 0x20 = D’32 * 4 = 128 0 0 Bit definitions:  Bit 7-0: Touch threshold o 0-1020: Touch threshold value * 4 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 50 of 79 May 2018 IQ Switch ProxFusion® Series ALS sensor settings ALS settings 0 Bit Number Data Access Name Default ALS settings 0 (0x70) 7 6 5 4 3 2 1 0 - - R/W R/W R/W R/W - - - Internal use CSz - - 0 0 1 0 0 INC DELAY 0x04 0 0 CHARGE FREQ 0 Bit definitions:  Bit 5-4: Charge frequency divider o 00: 1/2 o 01: 1/4 o 10: 1/8 o 11: 1/16  Bit 3: Inc Delay o 0: Pre-charge delay is at default o 1: Increase pre-charge delay to improve low light performance  Bit 2: CS divider size o 0: CS capacitor size 15pF o 1: CS capacitor size 60pF ALS settings 1 Bit Number Data Access ALS settings 1 (0x71) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Name Default MULTIPLIER CALIBRATION ATI Target (x32) 0x80 1 0 0 0 0 0 0 0 Bit definitions:  Bit 7-2: ATI target for ALS Ch4 o 0-2016: ATI target Ch4 = ATI target value value x 32  Bit 1-0: Multiplier calibration o 0-3: Multiplier calibration size for ALS sensor calibration ALS settings filter speed Bit Number Data Access Name Default ALS settings filter speed (0x72) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 1 1 1 0 0 0 ALS settings filter speed 0x07 = D’7 0 0 Bit definitions:  Bit 7-0: ALS settings filter speed o 0: Both filter stages are disabled Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map o 1: Only the IIR filter is enabled Page 51 of 79 May 2018 IQ Switch ProxFusion® Series o 2-255: Windowed minima filter (with window length of 2-255) and the IIR is enabled Multipliers Ch3/4 Bit Number Data Access Multipliers Ch3/4 (0x73) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Name - MULTIPLIER COARSE MULIPLIER FINE Bit definitions:  Bit 5-4: Multiplier coarse o 0-3: Coarse multiplier selection  Bit 3-0: Multiplier fine o 0-15: Fine multiplier selection Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 52 of 79 May 2018 IQ Switch ProxFusion® Series ALS UI settings ALS dark threshold Bit Number Data Access Name Default ALS dark threshold (0x80) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 1 0 0 0 ALS dark threshold x4 (Lux) 0x0A = D’10 * 4 = 40 Lux 0 0 1 0 Bit definitions:  Bit 7-0: Dark threshold = Dark threshold value x4 ALS light threshold Bit Number Data Access Name Default ALS light threshold (0x81) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 1 0 0 0 ALS Light Threshold x16 (Lux) 0x0A = D’10 * 16 = 160 Lux 0 0 1 0 Bit definitions:  Bit 7-0: Light Threshold = Light Threshold value x16 ALS raw to Lux divider Bit Number Data Access Name ALS raw to Lux divider (0x82) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W ALS raw to Lux divider Bit definitions:  Bit 7-0: ALS raw to Lux divider = ALS raw to Lux divider value (The default value is loaded from OTP Bank 2, 0 disables divider) ALS IR compensation Bit Number Data Access Name ALS IR compensation (0x83) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W ALS IR compensation divider Bit definitions:  Bit 0-7: ALS IR compensation divider = ALS IR compensation divider value.  The default value is loaded from OTP: o For IQS621: a 6-bit value stored in OTP Bank 0 (bit 5 & 4) & OTP Bank 3 (bit 3 – 0) o A value equal to 0 disables the divider. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 53 of 79 May 2018 IQ Switch ProxFusion® Series Hall-effect sensor settings Hall-effect settings 0 Bit Number Data Access Name Default Hall-effect settings 0 (0x90) 7 6 5 4 3 2 1 0 - - R/W R/W - - R/W R/W - - CHARGE FREQ reserved AUTO ATI MODE 0x03 0 0 0 0 0 0 1 1 Bit definitions:  Bit 0-1: Auto ATI Mode o 00: ATI disabled o 01: Partial ATI (all multipliers are fixed) o 10: Semi-Partial ATI (only coarse multipliers are fixed) o 11: Full-ATI  Bit 4-5: Charge frequency divider o 00: 1/2 o 10: 1/8 o 01: 1/4 o 11: 1/16 Hall-effect settings 1 Bit Number Data Access Name Default Hall-effect settings 1 (0x91) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 ATI_BASE 0 1 0 ATI_TARGET (x32) 0x50 1 0 0 Bit definitions:  Bit 0-5: Auto ATI Target o 0-2016: ATI Target = ATI target 6-bit value x 32  Bit 6-7: Auto ATI base value o 00: 75 o o 01: 100 o 10: 150 11: 200 Compensation Ch4/5 Bit Number Data Access Name Compensation Ch5/6 (0x92) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Compensation (7-0) Bit definitions:  Bit 7-0: Compensation (7-0) o 7-0: Lower 8-bits of the Compensation value. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 54 of 79 May 2018 IQ Switch ProxFusion® Series Multipliers Ch4/5 Bit Number Data Access Name Multipliers Ch5/6 (0x93) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Compensation (9-8) Multipliers coarse Multipliers fine Bit definitions:  Bit 7-6: Compensation (9-8) o 0-3: Upper 2-bits of the Compensation value.  Bit 5-4: Multipliers coarse o 0-3: Coarse multiplier selection  Bit 3-0: Multipliers fine o 0-15: Fine multiplier selection Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 55 of 79 May 2018 IQ Switch ProxFusion® Series Hall-effect switch UI settings Hall-effect UI settings Bit Number Data Access Hall-effect UI settings (0xA0) 7 6 5 4 3 2 1 0 - R/W R/W R/W - R/W R/W R/W - Swap Direction 0 0 Name Default Lin Mode Hysteresis T 0x00 0 0 0 0 Bit definitions:  Bit 6: Linearize output o 0: Disabled  Bit 4-5: Touch hysteresis o 00: Disabled o 01: 1/4 of threshold  Bit 2: Swap field direction indication o 0: Disabled  Bit 0-1: Proximity hysteresis o 00: Disabled o 01: 1/4 of threshold Hysteresis P 0 o 1: Enabled o o 10: 1/8 of threshold 11: 1/16 of threshold o 1: Enabled o o 10: 1/8 of threshold 11: 1/16 of threshold 0 Hall-effect UI proximity threshold Bit Number Data Access Name Default Hall-effect UI proximity threshold (0xA1) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 1 0 0 0 Proximity threshold value 0x19 = D’25 1 1 Bit definitions:  Bit 0-7: Hall-effect UI proximity threshold o 0-255: Hall-effect UI Proximity Threshold = Proximity threshold value Hall-effect UI touch threshold Bit Number Data Access Name Default Hall-effect UI touch threshold (0xA2) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 1 0 0 0 Touch threshold value 0x19 = D’25 * 4 = 100 1 1 Bit definitions:  Bit 0-7: Hall-effect UI touch threshold o 0-1020: Hall-effect touch threshold = Touch threshold value * 4 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 56 of 79 May 2018 IQ Switch ProxFusion® Series Temperature monitoring UI settings Temperature UI settings Bit Number Data Access Name Default Temperature UI settings (0xC0) 7 6 5 4 3 2 1 0 - R/W R/W R/W R/W R/W R/W R/W reserved RESEED IN PROX RESEED EN 0 0 0 RESEED THRESHOLD 0x00 0 0 0 0 0 Bit definitions:  Bit 6: Allow temperature channel to reseed channel 0 and 1 while in proximity o 0: Reseed in prox disabled o 1: Reseed in prox enabled  Bit 5: Temperature reseed of channel 0 and 1 enable o 0: Reseed is disabled o 1: Reseed is enabled  Bit 4-0: Temperature reseed threshold = Temperature reseed threshold value Multiplier channel 2 Bit Number Data Access Name Default Multiplier Ch2 (0xC1) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W - - 0 0 Multiplier coarse Multiplier fine 0x00 0 0 0 0 0 0 Bit definitions:  Bit 5-4: Multiplier coarse o 0-3: Coarse multiplier selection  Bit 3-0: Multiplier fine o 0-15: Fine multiplier selection Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 57 of 79 May 2018 IQ Switch ProxFusion® Series Temperature calibration 0 Bit Number Data Access Name Default Temperature calibration 0 (0xC2) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Temperature multiplier Temperature divider 0x00 0 0 0 0 0 0 0 0 Bit definitions:  Bit 7-4: Temperature multiplier = Temperature multiplier value +1 o 1-16: Temperature multiplier  Bit 3-0: Temperature divider = Temperature divider value +1 o 1-16: Temperature divider Temperature calibration 1 Bit Number Data Access Name Default Temperature calibration 1 (0xC3) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 Temperature offset 0x00 0 0 Bit definitions:  Bit 7-0: Temperature offset = Temperature offset value o 0-255: Temperature offset Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 58 of 79 May 2018 IQ Switch ProxFusion® Series Device and power mode settings System settings Bit Number Data Access Name Default System settings (0xD0) 7 6 5 4 3 2 1 0 W=1 W=1 R/W R/W R/W R/W W=1 W=1 SOFT RESET ACK RESET EVENT MODE 8MHz ATI BAND REDO ATI RESEED 0 0 0 0 0 0 0 COMMS ATI 0x08 1 Bit definitions:  Bit 7: Software Reset (Set only, will clear when done) o 1: Causes the device to perform a WDT reset  Bit 6: ACK Reset (Set only, will clear when done) o 1: Acknowledge that a reset has occurred. This event will trigger until acknowledged.  Bit 5: Event mode enable o 0: Event mode disabled. Default streaming mode communication. o 1: Event mode communication enabled.  Bit 4: Main Clock frequency selection o 0: Run FOSC at 16MHz o 1: Run FOSC at 8MHz  Bit 3: Communications during ATI o 0: No communications are generated during ATI o 1: Communication continue as setup regardless of ATI state.  Bit 2: Re-ATI Band selection o 0: Re-ATI when outside 1/8 of ATI target o 1: Re-ATI when outside 1/16 of ATI target  Bit 1: Redo ATI on all channels (Set only, will clear when done) o 1: Redo the ATI on all channels  Bit 0: Reseed all Long-term filters (Set only, will clear when done) o 1: Reseed all channels Active channels Bit Number Data Access Name Default Active channels (0xD1) 7 6 5 4 3 2 1 0 - R/W R/W R/W R/W R/W R/W R/W - Ch6 Ch5 Ch4 Ch3 Ch2 Ch1 Ch0 0 1 1 1 1 1 1 1 0x7F Bit definitions:  Bit 6: Ch6 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be functional) o 0: Channel is disabled o 1: Channel is enabled Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 59 of 79 May 2018 IQ Switch ProxFusion® Series       Bit 5: Ch5 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be functional) o 0: Channel is disabled o 1: Channel is enabled Bit 4: Ch4 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional) o 0: Channel is disabled o 1: Channel is enabled Bit 3: Ch3 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional) o 0: Channel is disabled o 1: Channel is enabled Bit 2: Ch2 (note: Ch2 must be enabled for temperature UI to be functional) o 0: Channel is disabled o 1: Channel is enabled Bit 1: Ch1 o 0: Channel is disabled o 1: Channel is enabled Bit 0: Ch0 o 0: Channel is disabled o 1: Channel is enabled Power mode settings Bit Number Data Access Name Default Power mode settings (0xD2) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W NP SEG ALL EN ULP MODE DSBL AUTO MODE 0 0 0 POWER MODE NP SEG RATE 0x03 0 0 0 1 1 Bit definitions:  Bit 7: Normal Power Segment bounds check o 0: NP-segment check on PRX channels only o 1: NP-segment check on all channels  Bit 6: Allow auto ultra-low power mode switching o 0: ULP is disabled during auto-mode switching o 1: U LP is enabled during auto-mode switching  Bit 5: Disable auto mode switching o 0: Auto mode switching is enabled o 1: Auto mode switching is disabled  Bit 4-3: Manually select power mode (note: bit 5 must be set) o 00: Normal Power mode. The device runs at the normal power rate, all enabled channels and UIs will execute. o 01: Low Power mode. The device runs at the low power rate, all enabled channels and UIs will execute. o 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is run as wake-up channel. The other channels execute at the NP-segment rate. o 11: Halt Mode. No conversions are performed; the device must be removed from this mode using an I2C command.  Bit 2-0: Normal power segment update rate o 100: 1/32 ULP rate o 000: ½ ULP rate o 101: 1/64 ULP rate o 001: ¼ ULP rate o 110: 1/128 ULP rate o 010: 1/8 ULP rate o 011: 1/16 ULP rate o 111: 1/256 ULP rate Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 60 of 79 May 2018 IQ Switch ProxFusion® Series Normal power mode report rate Normal power mode report rate (0xD3) Bit 7 6 5 4 3 2 1 0 Number Data R/W R/W R/W R/W R/W R/W R/W R/W Access Name Normal power mode report rate in ms 0x0C = D’12 = 12ms Default 0 0 0 0 1 1 0 0 Bit definitions:  Bit 7-0: Normal mode report rate in ms (note: LPOSC timer has ± 4ms accuracy) o 0 – 255ms: Normal mode report rate Please note: Report rates faster than 4ms can be delayed due to channel setup and comm speed. Low power mode report rate Low power mode report rate (0xD4) Bit 7 6 5 4 3 2 1 0 Number Data R/W R/W R/W R/W R/W R/W R/W R/W Access Name Low power mode report rate in ms 0x30 = D’48 = 48ms Default 0 0 1 1 0 0 0 0 Bit definitions:  Bit 7-0: Low-power mode report rate in ms (note: LPOSC timer has ± 4ms accuracy) o 0 – 255ms: Low-power mode report rate Ultra-low power mode report rate Ultra-low power mode report rate (0xD5) Bit Number Data Access Name 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W Ultra-low power mode report rate in 16ms increments 0x08 = D’8 * 16 = 128ms 0 0 0 1 0 0 Default 0 0 Bit definitions:  Bit 7-0: Ultra-low power mode report rate in 16ms increments (decimal value x 16ms) o 0 – 4080ms: Ultra-low power mode report rate Auto mode timer Bit Number Data Access Name Default Auto mode timer (0xD6) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 Auto mode timer in 500ms increments 0x14 = D’20 * 500 = 10sec 0 1 0 1 Bit definitions:  Bit 7-0: Auto modes switching time in 500ms increments (decimal value x 500ms) o 0 – 127.5s: Auto mode switching time Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 61 of 79 May 2018 IQ Switch ProxFusion® Series Global event mask Bit Number Data Access Name Default Global event mask (0xD7) 7 6 5 4 3 2 1 0 - R/W R/W R/W R/W R/W R/W R/W - POWER MODE EVENT SYS EVENT TEMP EVENT ALS EVENT HALL EVENT PROX SENSE EVENT 0 0 0 0 0 0 0 HYSTERESIS UI EVENT 0x00 0 Bit definitions:  Bit 6: Power mode event mask o 0: Event is allowed  Bit 5: System event mask o 0: Event is allowed  Bit 4: Temperature event mask o 0: Event is allowed  Bit 3: Hysteresis UI event mask o 0: Event is allowed  Bit 2: ALS UI event mask o 0: Event is allowed  Bit 1: Hall-effect UI event mask o 0: Event is allowed  Bit 0: ProxSense event mask o 0: Event is allowed Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked o 1: Event is masked Page 62 of 79 May 2018 IQ Switch ProxFusion® Series RDY timeout period Bit Number Data Access Name Default RDY timeout period (0xD8) 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 RDY timeout period value 0x20 = D’32 * 0.32 = 10.24ms 1 0 0 0 Bit definitions:  Bit 7-0: RDY timeout period = RDY timeout period value * 0.32ms o 0 – 81.6ms: RDY timeout period I2C settings Bit Number Data Access Name Default I2C settings (0xD9) 7 6 5 4 3 2 1 0 R/W - - - - - - R/W STOP DISABLE 0 Reserved Reserve 0x01 0 0 0 0 0 0 1 Bit definitions:  Bit 7: Stop disable o 0: Stop enabled: Stop bit will exit the communication window. o 1: Stop disabled: Stop bit will not exit the communication window. No start within the RDY timeout period (0xD8) will exit the communication window.  Bit 6 – 1: Reserved o Do not configure, leave cleared.  Bit 0: Reserved o Must always be set (bit 0 = 1). Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 63 of 79 May 2018 IQ Switch ProxFusion® Series 10 Electrical characteristics Absolute Maximum Specifications The following absolute maximum parameters are specified for the device: Exceeding these maximum specifications may cause damage to the device. Table 10.1 Absolute maximum specification Absolute maximum Parameter Operating temperature -20°C to +85°C Supply Voltage (VDDHI – GND) 3.6V Maximum pin voltage VDDHI + 0.5V (may not exceed VDDHI max) Maximum continuous current (for specific pins) 10mA Minimum pin voltage GND - 0.5V Minimum power-on slope 100V/s ESD protection ±4kV (Human body model) Voltage regulation specifications Table 10.2 Internal voltage regulator operating conditions DESCRIPTION Supply voltage SYMBOL MIN TYPICAL MAX UNIT VDDHI 1.8 - 3.3 V Internal voltage regulator VREG 1.63 1.66 1.69 V Reset conditions Table 10.3 Device reset specifications Explanation SYMBOL MIN MAX Reset - VDDHI rising level VDDHI rising level to ensure active state startup RESETVDDHI↑ - 1.55 Reset - VDDHI falling level VDDHI falling level to ensure reset RESETVDDHI↓ 0.70 - Reset - VREG falling level VREG falling level for reset during LP & ULP modes RESETVREG↓ 0.65 1.41 DESCRIPTION Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map UNIT V Page 64 of 79 May 2018 IQ Switch ProxFusion® Series I2C module output logic fall time limits Table 10.4 DESCRIPTION VDDHI (V) I2C module output logic fall time specifications Temp (°C) -20 1.8 +25 +85 SDA & SCL minimum fall times -20 3.3 +25 +85 -20 1.8 +25 +85 SDA & SCL maximum fall times -20 3.3 +25 +85 Copyright © Azoteq 2018 All Rights Reserved Pull-up resistor (Ω) 7000 CLOAD (pF) 50 885 400 28.70 7000 50 11.80 885 400 30.70 7000 50 11.80 885 400 7000 50 885 400 18.60 7000 50 11.80 885 400 30.70 7000 50 11.80 885 400 33.80 420 50 42.50 420 400 65.10 420 50 43.40 420 400 69.70 420 50 45.30 420 400 770 50 770 400 32.80 770 50 19.90 885 400 34.30 770 50 20.00 770 400 36.80 SYMBOL MIN MAX UNIT 11.80 TF_min TF_max IQS621 Datasheet revision 1.15 Shortcut to memory map 33.80 7.90 ns 77.30 20.20 Page 65 of 79 May 2018 IQ Switch ProxFusion® Series I2C module slew rates Table 10.5 DESCRIPTION SDA & SCL slew rates for the minimum allowed bus capacitance SDA & SCL slew rates for the maximum allowed bus capacitance Table 10.6 DESCRIPTION SDA & SCL slew rates for the minimum allowed bus capacitance SDA & SCL slew rates for the maximum allowed bus capacitance Copyright © Azoteq 2018 All Rights Reserved I2C module fastest falling slew rates and matching rising slew rates VDDHI (V) Conditions Fall time (ns) 1.8 CBUS = 50pF RPU = 7kΩ TA = -20°C 11.80 3.3 CBUS = 50pF RPU = 7kΩ TA = -20°C 7.90 1.8 CBUS = 400pF RPU = 885Ω TA = -20°C 28.70 3.3 CBUS = 400pF RPU = 885Ω TA = -20°C 18.60 Rise time (ns) 296.55 296.55 299.94 299.94 SYMBOL SR UNIT SRFALL 61.02 SRRISE 2.43 SRFALL 167.09 SRRISE 4.45 SRFALL 25.09 SRRISE 2.40 SRFALL 70.97 SRRISE 4.40 ൗ ρ• I2C module slowest falling slew rates and matching rising slew rates VDDHI (V) Conditions Fall time (ns) 1.8 CBUS = 50pF RPU = 420Ω TA = +85°C 45.30 3.3 CBUS = 50pF RPU = 770Ω TA = -20°C 20.20 1.8 CBUS = 400pF RPU = 420Ω TA = +85°C 77.30 3.3 CBUS = 400pF RPU = 770Ω TA = +85°C 36.80 Rise time (ns) 17.79 32.62 142.34 260.96 IQS621 Datasheet revision 1.15 Shortcut to memory map SYMBOL SR UNIT SRFALL 15.89 SRRISE 40.47 SRFALL 65.35 SRRISE 40.47 SRFALL 9.31 SRRISE 5.06 SRFALL 35.87 SRRISE 5.06 ൗ ρ• Page 66 of 79 May 2018 IQ Switch ProxFusion® Series I2C pins (SCL & SDA) input/output logic levels Table 10.7 DESCRIPTION I2C pins (SCL & SDA) input and output logic level boundaries Conditions Input low level voltage SYMBOL Vin_LOW Input high level voltage 400kHz I2C clock frequency Vin_HIGH Temperature MIN -20°C 32.12 +25°C TYP MAX UNIT 34.84 +85°C 39.39 -20°C 71.51 +25°C +85°C % of VDDHI 68.18 66.06 Output low level voltage Vout_LOW -20°C – +85°C 0 Output high level voltage Vout_HIGH -20°C – +85°C 100 Calculated input buffer trigger levels for I2C pins at 400kHz clock frequency for 1.8V and 3.3V VDDHI power supplies General purpose digital output pins (GPIO0 & GPIO3) logic levels DESCRIPTION Output low level voltage SYMBOL Temperature Vout_LOW -20°C – +85°C 0 Output high level voltage Vout_HIGH -20°C – +85°C 100 Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map MIN TYP MAX UNIT % of VDDHI Page 67 of 79 May 2018 IQ Switch ProxFusion® Series Current consumptions IC subsystems Table 10.8 IC subsystem current consumption TYPICAL MAX Description Core active Core sleep 339 0.63 Table 10.9 Power mode NP mode LP mode ULP mode UNIT 377 1 µA µA IC subsystem typical timing Core active Core sleep TOTAL UNIT 5 5 1.75 5 43 128 10 48 129.75 ms ms ms Capacitive sensing alone Table 10.10 Capacitive sensing current consumption Power mode Conditions VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V NP mode LP mode ULP mode Report rate 10ms 48ms 128ms MIN TYPICAL MAX UNIT 72.54 73.09 20.94 19.96 4.95 4.34 73.40 73.53 21.38 20.71 5.54 4.88 74.08 73.97 21.79 21.20 6.01 5.24 µA µA µA µA µA µA -These measurements where done on the default setup of the IC Table 10.11 Single capacitive wake-up channel current consumption Power mode ULP mode Supply voltage VDD = 1.8V VDD = 3.3V Charging frequency 2MHz 2MHz ATI target 192 192 Report rate TYPICAL UNIT 256ms 256ms 2.51 2.76 A -These measurements where done with enhanced settings for minimum current consumption for a single touch channel Inductive sensing alone Table 10.12 Inductive sensing current consumption Power mode NP mode LP mode ULP mode Conditions VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V Report rate 10ms 48ms 128ms MIN TYPICAL MAX UNIT 75.31 76.45 21.14 21.68 N/A (1) N/A (1) 75.85 76.88 21.83 22.36 N/A (1) N/A (1) 76.48 77.53 30.91 23.46 N/A (1) N/A (1) µA µA µA µA µA µA -These measurements where done on the default setup of the IC (1) It is not advised to use the IQS621 in ULP without capacitive sensing. This is due to the inductive sensor being disabled in ULP. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 68 of 79 May 2018 IQ Switch ProxFusion® Series ALS sensing alone Table 10.13 Ambient light sensing current consumption Conditions Power mode Report rate VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V NP mode LP mode ULP mode 10ms 48ms 128ms MIN TYPICAL MAX UNIT 60.89 55.62 17.52 15.42 N/A (1) N/A (1) 61.56 57.79 18.03 16.52 N/A (1) N/A (1) 62.01 58.47 18.45 17.13 N/A (1) N/A (1) µA µA µA µA µA µA -These measurements where done on the default setup of the IC and in 300 Lux ambient light (2) It is not advised to use the IQS621 in ULP without capacitive sensing due to the ALS sensor disabled in ULP. Hall-effect sensing alone Table 10.14 Hall-effect current consumption Conditions Power mode Report rate VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V NP mode LP mode ULP mode 10ms 48ms 128ms MIN TYPICAL MAX UNIT 93.49 92.63 26.03 25.11 N/A (1) N/A (1) 93.73 92.97 26.71 25.88 N/A (1) N/A (1) 93.96 93.79 27.28 26.45 N/A (1) N/A (1) µA µA µA µA µA µA -These measurements where done on the default setup of the IC (1) It is not advised to use the IQS621 in ULP without capacitive sensing due to the Hall-effect sensor disabled in ULP. Temperature monitoring alone Table 10.15 Temperature monitoring current consumption Power mode NP mode LP mode ULP mode Conditions VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V VDD = 1.8V VDD = 3.3V Report rate 10ms 48ms 128ms MIN TYPICAL MAX UNIT 41.54 41.20 11.98 11.18 N/A (1) N/A (1) 42.02 41.62 12.25 11.55 N/A (1) N/A (1) 42.37 41.98 12.68 11.94 N/A (1) N/A (1) µA µA µA µA µA µA -These measurements where done on the default setup of the IC (1) It is not advised to use the IQS621 in ULP without capacitive sensing due to the temperature sensor disabled in ULP. Halt mode Table 10.16 Halt mode current consumption Power mode Halt mode Halt mode Copyright © Azoteq 2018 All Rights Reserved Conditions VDD = 1.8V VDD = 3.3V TYPICAL 1.6 1.9 IQS621 Datasheet revision 1.15 Shortcut to memory map UNIT µA µA Page 69 of 79 May 2018 IQ Switch ProxFusion® Series Start-up timing specifications VDDHI POR Internal reset I/O pins RDY Full sensing mode Cx0 tinit tATI ttest_mode tstabilize tcomms1 tcomms2 IQS621 start-up timing diagram Table 10.17 Timing values for IQS621 start-up timing diagram Timing Min Typical tinit 6ms ttest_mode 5ms Max tcomms1 (16MHz) until I2C stop bit 10ms (time-out) tcomms1 (8MHz) until I2C stop bit 20ms (time-out) tATI (16MHz) 110ms (default settings) tATI (8MHz) 220ms (default settings) tcomms2 (event mode enabled – system event) Time-out value defined in register 0xD8 (x2 for 8MHz mode) until I C stop bit 2 tstabilize (16MHz) 40ms 70ms (default settings) tstabilize (8MHz) 80ms 140ms (default settings) tfull_sensing_mode (16MHz) 201ms (from POR) tfull_sensing_mode (8MHz) 402ms (from POR) Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 70 of 79 May 2018 IQ Switch ProxFusion® Series ALS specifications Human eye response Lux calculation The spectral response of the human eye does not match that of typical silicone based light sensors. The human eye perceives a peak response in the “green” colour band centred at around 550nm. However, silicone based sensors has a maximum response to ambient light typically in the infrared band. To translate the sensor measurement to correlate with the human eye’s natural perceived ambient light sensitivity a dynamic mathematical function is applied. The follow parameter values are defined for explanatory purposes:  ࢇ ՜ ࡭ࡸࡿ࢓࢛࢒࢚࢏࢖࢒࢏ࢋ࢘: o A dynamic multiplier value calculated as in the table below for the specific ALS setup and current ALS value output.  ࢈ ՜ ࡭ࡸࡿሺ࢘ࢇ࢝ሻ࢚࢕ࡸ࢛࢞ࢊ࢏࢜࢏ࢊࢋ࢘: o 8-bit value loaded from OTP Bank 2 into register 0x82. This calibration value is determined during IC calibration.  ࢉ ՜ ࡭ࡸࡿࡵࡾࢉ࢕࢓࢖ࢋ࢔࢙ࢇ࢚࢏࢕࢔ࢊ࢏࢜࢏ࢊࢋ࢘: o For IQS621 a 6-bit value is loaded from OTP Bank 0 (bit 5 & 4) and OTP Bank 3 (bit3 - 0) into register 0x83. o This calibration value is determined during IC calibration and can be increased to an 8-bit value if calibration requires a higher value. The IQS621’s ALS multiplier (parameter ࢇ) is calculated as specified in the following table. Table 10.18 ALS multiplier calculation Inputs Output ALS multiplier ࢇ ALS value (0x16: bit3-0) 0 Coarse multiplier (0x75: bit5-4) Fine multiplier (0x75: bit3-0) Charge frequency divider (0x70: bit5-4) CS size (0x70: bit2) 0 MULTIPLIER_CALIBRATION 3 0 1 0 MULTIPLIER_CALIBRATION 2 0 2 0 MULTIPLIER_CALIBRATION 1 0 4 3 0 MULTIPLIER_CALIBRATION 0 0 8 4 0 MULTIPLIER_CALIBRATION 1 1 16 5 0 MULTIPLIER_CALIBRATION 0 1 32 6 0 (MULTIPLIER_CALIBRATION+1)*2-1 0 1 64 7 0 (MULTIPLIER_CALIBRATION+1)*4-1 0 1 128 8 1 (MULTIPLIER_CALIBRATION+1)*4-1 0 1 384 9 2 (MULTIPLIER_CALIBRATION+1)*4-1 0 1 1152 10 3 (MULTIPLIER_CALIBRATION+1)*4-1 0 1 3456 1 2 All the calculations performed on chip are simplified for fixed-point arithmetic. The ALS Lux output is calculated by the following equation: ࢇ ʹଶଵ ʹଶଵ ‫ ܵܮܣ‬؆ ቆ െ ቇ ࢈ ‫ܪܥ‬ସ ࢉǤ ‫ܪܥ‬ଷ ALS in units of Lux (as perceived by a human eye) is calculated using the measurement of channels 3 (IR-component) & 4 (ALS-component) as well as the three compensation parameters ࢇǡ ࢈Ƭࢉ as defined above. The output of this function is a 16-bit integer available in the ALS UI output register (0x17-0x18). Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 71 of 79 May 2018 IQ Switch ProxFusion® Series 11 Package information UOLG-2.8 x 2.5 x 0.6 – 9-pin package and footprint specifications Table 11.1 UOLG-2.8 x 2.5 x 0.6 – 9-pin package dimensions (bottom) Dimension A B C D E F G H Min. [mm] 2.40 2.70 0.35 0.45 0.05 0.05 Nom. [mm] 2.50 2.80 0.40 0.50 0.43 0.33 0.10 0.10 Max. [mm] 2.60 2.90 0.45 0.55 0.15 0.15 Table 11.2 UOLG-2.8 x 2.5 x 0.6 – 9-pin package dimensions (side) Dimension I J K L M N O P Min. [mm] 0.55 2.70 - Nom. [mm] 0.60 2.80 0.37 0.23 1.56 0.62 0.40 0.145 Max. [mm] 0.65 2.90 - UOLG-2.8 x 2.5 x 0.6-9N Package dimensions (bottom view). UOLG-2.8 x 2.5 x 0.6-9N Package dimensions (side view) Table 11.3 UOLG-2.8 x 2.5 x 0.6 – 9-pin landing pad dimensions Dimension Q R S T U V Min. [mm] 0.45 0.35 0.69 0.83 1.20 1.35 Nom. [mm] 0.50 0.40 0.74 0.88 1.25 1.40 Max. [mm] 0.55 0.45 0.79 0.93 1.30 1.45 UOLG-2.8 x 2.5 x 0.6-9N Landing pad dimensions (top view) Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 72 of 79 May 2018 IQ Switch ProxFusion® Series Device marking and ordering information Device marking: No device marking due to clear package. Pin 1 indication: UOLG-2.8 x 2.5 x 0.6-9N pin numbers as viewed from top Ordering Information: z– IQS621zppb Configuration 0: 44H sub-address 1: 45H sub-address pp – Package type U9: UOLG-2.8 x 2.5 x 0.6-9N b – Bulk packaging R: Reel (3k per reel, MOQ=1 Reel) Example: IQS6210U9R  0 - configuration is default (44H sub-address)  U9 - UOLG-2.8 x 2.5 x 0.6-9N package  R - packaged in reels of 3k (must be ordered in multiples of 3k) Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 73 of 79 May 2018 IQ Switch ProxFusion® Series Bulk packaging specification Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map 5 6 7 8 9 2 1 3 4 Tape specification Page 74 of 79 May 2018 IQ Switch ProxFusion® Series Reel specification Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 75 of 79 May 2018 IQ Switch ProxFusion® Series MSL Level Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some semiconductors. The MSL is an electronic standard for the period in which a moisture sensitive device can be exposed to ambient room conditions (approximately 30°C / 60% RH see J-STD033C for more info) before reflow occur. Package Level (duration) UOLG-2.8 x 2.5 x 0.6-9N MSL 4 (72 hours at ≤ 30°C / 60% RH) Reflow profile peak temperature < 260°C for < 30 seconds Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 76 of 79 May 2018 IQ Switch ProxFusion® Series 12 Datasheet revisions Revision history v1.00: – First release version v1.10: – Datasheet update  Table 6.1 added for temperature calibration value descriptions.  Default register values added (hex and binary representation) for all memory map registers.  Register 0xC2 and 0xC3 ranges corrected (offset of 1; hex value of 0 = 1 used in equations). v1.11: – Datasheet update  I2C stop-bit disable functionality explained. Section 8.4 added. v1.12: – Datasheet update  Voltage regulation specifications added (10.2). v1.13: – Datasheet update  Low power mode description corrected.  ProxFusion® updated to a registered trademark. v1.14: – Datasheet update      Hall-effect sensing operational range confirmed and updated to 10mT – 200mT. Section 1.5 ProxFusion® Sensitivity added for ATI algorithm explanation. Section 10.4 & 10.5 added: I2C module fall times and slew rates. Section 10.6 updated and illustrated in additional Figure 10.1. Appendix B. Hall ATI added. v1.15: – Datasheet update  Section 10.9 added: Start-up timing specifications.  Section 10.3 Reset conditions updated.  Appendix A. Contact information updated. Errata Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 77 of 79 May 2018 IQ Switch® ProxSense® Series Azoteq USA Asia South Africa Physical Address 11940 Jollyville Suite 120-S Austin TX 78750 USA Room 501A, Block A, T-Share International Centre, Taoyuan Road, Nanshan District, Shenzhen, Guangdong, PRC 1 Bergsig Avenue Paarl 7646 South Africa Postal Address 11940 Jollyville Suite 120-S Austin TX 78750 USA Room 501A, Block A, T-Share International Centre, Taoyuan Road, Nanshan District, Shenzhen, Guangdong, PRC PO Box 3534 Paarl 7620 South Africa Tel +1 512 538 1995 +86 755 8303 5294 ext 808 +27 21 863 0033 Email info@azoteq.com info@azoteq.com info@azoteq.com Visit www.azoteq.com for a list of distributors and worldwide representation. Patents as listed on www.azoteq.com/patents-trademarks/ may relate to the device or usage of the device. Azoteq®, Crystal Driver , IQ Switch®, ProxSense®, ProxFusion®, LightSense™, SwipeSwitch™, and the logo are trademarks of Azoteq. The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an “as is” basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or informat ion for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product o r caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmiss ion, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction o r otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply , it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without pr ior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com. Copyright © Azoteq (Pty) Ltd 2019. All Rights Reserved. info@azoteq.com IQS5xx-B000 Datasheet Revision 2.1 Page 1 of 1 March 2021 IQ Switch ProxFusion® Series Appendix B: Hall ATI Azoteq’s ProxFusion® Hall technology has ATI Functionality; which ensures stable sensor sensitivity. The ATI functionality is similar to the ATI functionality found in ProxSense ® technology. The difference is that the Hall ATI requires two channels for a single plate. Using two channels ensures that the ATI can still be used in the presence of the magnet. The two channels are the inverse of each other, this means that the one channel will sense North and the other South. The two channels being inverted allows the capability of calculating a reference value which will always be the same regardless of the presence of a magnet. Hall reference value: The equation used to calculate the reference value, per plate: ATI parameters: ܴ݂݁௡ ൌ ʹή ͳ ଵ ቀ ௉೙ ൅ ଵ ቁ ௉೙ᇲ The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two parameters per plate (ATI base and ATI target). The ATI process is used to ensure that the sensor’s sensitivity is not severely affected by external influences (Temperature, voltage supply change, etc.). Coarse and Fine multipliers: In the ATI process the compensation is set to 0 and the coarse and fine multipliers are adjusted such that the counts of the reference value ሺܴ݂݁ሻ are roughly the same as the ATI Base value. This means that if the base value is increased, the coarse and fine multipliers should also increase and vice versa. ATI-Compensation: After the coarse and fine multipliers are adjusted, the compensation is adjusted till the reference value ሺܴ݂݁ሻ reaches the ATI target. A higher target means more compensation and therefore more sensitivity on the sensor. The ATI process ensures that long term temperature changes, or bulk magnetic interference (e.g. the accidental placement of another magnet too close to the setup), do not affect the sensor’s ability to detect the intended magnetic change. Copyright © Azoteq 2018 All Rights Reserved IQS621 Datasheet revision 1.15 Shortcut to memory map Page 79 of 79 May 2018
IQS6210U9R 价格&库存

很抱歉,暂时无法提供与“IQS6210U9R”相匹配的价格&库存,您可以联系我们找货

免费人工找货