IQ Switch
ProxFusion® Series
IQS621 Datasheet
Combination sensor with ambient light sensing (ALS), capacitive proximity/touch, Halleffect sensor & inductive sensing capabilities
The IQS621 ProxFusion® IC is a multifunctional, ambient light sensing (ALS), capacitive, Hall-effect
& inductive sensor designed for applications where any or all of the technologies may be required.
The IQS621 is an ultra-low power solution designed for short or long term activations through any of
the sensing channels. The IQS621 is fully I2C compatible.
Features
o
o
o
o
Capacitive sensing
Ambient light sensing (ALS)
Hall-effect sensing
Inductive sensing
o
o
Full auto-tuning with adjustable sensitivity
2pF to 200pF external capacitive load
capability
Enhanced temperature stability
Capacitive sensing
o
Ambient light sensing (ALS)
o
o
o
o
mobile platforms:
Unique combination of sensing
technologies:
Absolute lux output
Human eye response compensated
4-bit ALS range output (0 - 10)
Dual threshold detection for day/night
indication with hysteresis
Hall-effect sensing
o
o
o
o
On-chip Hall-effect measurement plates
Dual direction Hall switch sensor UI
2 level detection (widely variable)
Detection range 10mT – 200mT
o
2 Level detection and hysteresis for inductive
sensing
Only external sense coil required (PCB trace)
Inductive sensing
o
o
o
Proximity / Touch
Proximity wake-up
o
o
o
o
o
o
o
o
75uA (100Hz response, 1ch inductive)
95uA (100Hz response, 2ch Hall)
75uA (100Hz response, 3ch capacitive)
60uA (100Hz response, ALS)
25uA (20Hz response, 1ch inductive)
25uA (20Hz response, 2ch Hall)
20uA (20Hz response, 3ch capacitive)
18uA (20Hz response, ALS)
2.5uA (4Hz response, 1ch cap. wake-up)
Automatic Tuning
Implementation (ATI) –
performance
enhancement (10bit)
Minimal
external
UOLG 2.8 x 2.5 x 0.6
9-pin
components
2
Representations only
Standard I C interface
Optional RDY indication for event mode
operation
Low power consumption:
o
Supply voltage: 1.8V to 3.3V
Low profile UOLG - 2.8 x 2.5 x 0.6 - 9-pin
package
Multiple integrated UI options based on
years of experience in sensing on fixed and
Applications
Mobile electronics (phones/tablets)
Home automation & lighting control
White goods and appliances
Wearable devices
Human Interface Devices
Aftermarket automotive1
Available Packages
1
TA
UOLG-2.8 x 2.5 x 0.6–9N
-20°C to +85°C
IQS621
The part is not automotive qualified.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 1 of 79
May 2018
IQ Switch
ProxFusion® Series
Table of Contents
LIST OF ABBREVIATIONS ............................................................................................................................................. 4
1
INTRODUCTION .................................................................................................................................................. 5
PROXFUSION® ....................................................................................................................................................... 5
PACKAGING AND PIN-OUT ....................................................................................................................................... 6
REFERENCE SCHEMATIC ........................................................................................................................................... 7
SENSOR CHANNEL COMBINATIONS ............................................................................................................................. 8
PROXFUSION® SENSITIVITY ....................................................................................................................................... 9
2
CAPACITIVE SENSING ........................................................................................................................................10
INTRODUCTION TO PROXSENSE®.............................................................................................................................. 10
CHANNEL SPECIFICATIONS ...................................................................................................................................... 10
HARDWARE CONFIGURATION .................................................................................................................................. 11
SOFTWARE CONFIGURATION ................................................................................................................................... 12
SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 13
3
INDUCTIVE SENSING ..........................................................................................................................................14
INTRODUCTION TO INDUCTIVE SENSING..................................................................................................................... 14
CHANNEL SPECIFICATIONS ...................................................................................................................................... 14
HARDWARE CONFIGURATION .................................................................................................................................. 15
SOFTWARE CONFIGURATION ................................................................................................................................... 15
SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 17
4
AMBIENT LIGHT SENSING (ALS) .........................................................................................................................18
INTRODUCTION TO AMBIENT LIGHT SENSING .............................................................................................................. 18
CHANNEL SPECIFICATIONS ...................................................................................................................................... 18
HARDWARE CONFIGURATION .................................................................................................................................. 18
SOFTWARE CONFIGURATION ................................................................................................................................... 19
SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 20
5
HALL-EFFECT SENSING .......................................................................................................................................21
INTRODUCTION TO HALL-EFFECT SENSING ................................................................................................................. 21
CHANNEL SPECIFICATIONS ...................................................................................................................................... 21
HARDWARE CONFIGURATION .................................................................................................................................. 22
SOFTWARE CONFIGURATION ................................................................................................................................... 23
SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 24
6
TEMPERATURE MONITORING ...........................................................................................................................25
INTRODUCTION TO TEMPERATURE MONITORING ......................................................................................................... 25
CHANNEL SPECIFICATIONS ...................................................................................................................................... 25
HARDWARE CONFIGURATION .................................................................................................................................. 25
SOFTWARE CONFIGURATION ................................................................................................................................... 25
SENSOR DATA OUTPUT AND FLAGS ........................................................................................................................... 26
7
DEVICE CLOCK, POWER MANAGEMENT AND MODE OPERATION ......................................................................27
DEVICE MAIN OSCILLATOR ...................................................................................................................................... 27
DEVICE MODES .................................................................................................................................................... 27
SYSTEM RESET ..................................................................................................................................................... 28
8
COMMUNICATION ............................................................................................................................................29
I2C MODULE SPECIFICATION.................................................................................................................................... 29
I2C READ ........................................................................................................................................................... 29
I2C WRITE .......................................................................................................................................................... 29
STOP-BIT DISABLE OPTION ...................................................................................................................................... 30
DEVICE ADDRESS AND SUB-ADDRESSES ..................................................................................................................... 31
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 2 of 79
May 2018
IQ Switch
ProxFusion® Series
ADDITIONAL OTP OPTIONS .................................................................................................................................... 31
RECOMMENDED COMMUNICATION AND RUNTIME FLOW DIAGRAM ................................................................................ 32
9
MEMORY MAP ..................................................................................................................................................33
DEVICE INFORMATION DATA .................................................................................................................................. 35
FLAGS AND USER INTERFACE DATA ........................................................................................................................... 36
CHANNEL COUNTS (RAW DATA)............................................................................................................................... 41
LTA VALUES (FILTERED DATA) ................................................................................................................................. 41
PROXFUSION SENSOR SETTINGS BLOCK 1................................................................................................................... 42
PROXFUSION UI SETTINGS ..................................................................................................................................... 48
HYSTERESIS UI SETTINGS........................................................................................................................................ 49
ALS SENSOR SETTINGS........................................................................................................................................... 51
ALS UI SETTINGS ................................................................................................................................................. 53
HALL-EFFECT SENSOR SETTINGS ............................................................................................................................... 54
HALL-EFFECT SWITCH UI SETTINGS ........................................................................................................................... 56
TEMPERATURE MONITORING UI SETTINGS ................................................................................................................. 57
DEVICE AND POWER MODE SETTINGS ....................................................................................................................... 59
10
ELECTRICAL CHARACTERISTICS ..........................................................................................................................64
ABSOLUTE MAXIMUM SPECIFICATIONS ..................................................................................................................... 64
VOLTAGE REGULATION SPECIFICATIONS ..................................................................................................................... 64
RESET CONDITIONS ............................................................................................................................................... 64
I2C MODULE OUTPUT LOGIC FALL TIME LIMITS ............................................................................................................ 65
I2C MODULE SLEW RATES ....................................................................................................................................... 66
I2C PINS (SCL & SDA) INPUT/OUTPUT LOGIC LEVELS .................................................................................................. 67
GENERAL PURPOSE DIGITAL OUTPUT PINS (GPIO0 & GPIO3) LOGIC LEVELS .................................................................... 67
CURRENT CONSUMPTIONS ..................................................................................................................................... 68
START-UP TIMING SPECIFICATIONS ........................................................................................................................... 70
ALS SPECIFICATIONS ......................................................................................................................................... 71
11
PACKAGE INFORMATION ..................................................................................................................................72
UOLG-2.8 X 2.5 X 0.6 – 9-PIN PACKAGE AND FOOTPRINT SPECIFICATIONS ..................................................................... 72
DEVICE MARKING AND ORDERING INFORMATION ........................................................................................................ 73
BULK PACKAGING SPECIFICATION ............................................................................................................................. 74
MSL LEVEL ......................................................................................................................................................... 76
12
DATASHEET REVISIONS .....................................................................................................................................77
REVISION HISTORY ................................................................................................................................................ 77
ERRATA .............................................................................................................................................................. 77
APPENDIX A. CONTACT INFORMATION .....................................................................................................................78
APPENDIX B: HALL ATI ...............................................................................................................................................79
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 3 of 79
May 2018
IQ Switch
ProxFusion® Series
List of abbreviations
AC
– Alternating Current
ACK
– I2C Acknowledge condition
ALS
– Ambient Light Sensing
ATI
– Automatic Tuning Implementation
BOD
– Brown Out Detection
CS
– Sampling Capacitor
DSP
– Digital Signal Processing
ESD
– Electrostatic Discharge
FOSC
– Main Clock Frequency Oscillator
GND
– Ground
GPIO
– General Purpose Input Output
I2C
– Inter-Integrated Circuit
IC
– Integrated Circuit
LP
– Low Power
LPOSC
– Low Power Oscillator
LTA
– Long Term Average
LTX
– Inductive Transmitting electrode
MCU
– Microcontroller unit
MSL
– Moisture Sensitive Level
MOQ
– Minimum Order Quantity
NACK
– I2C Not Acknowledge condition
NC
– Not Connect
NP
– Normal Power
OTP
– One Time Programmable
PMU
– Power Management Unit
POR
– Power On Reset
PWM
– Pulse Width Modulation
QRD
– Quick Release Detection
RDY
– Ready Interrupt Signal
RX
– Receiving electrode
SAR
– Specific Absorption Rate
SCL
– I2C Clock
SDA
– I2C Data
SR
– Slew rate
THR
– Threshold
UI
– User Interface
ULP
– Ultra Low Power
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 4 of 79
May 2018
IQ Switch
ProxFusion® Series
1 Introduction
ProxFusion®
The ProxFusion® sensor series provide all the proven ProxSense® engine capabilities with additional
sensors types. A combined sensor solution is available within a single platform.
VREG
VDDHI
Temperature
circuit
VDDHI
VDDHI
VREG
VDDHI
16 MHz MCU
Analog
ProxFusion Engine
Capacitive,HALL,Inductive
VREG
RX0
Digital output
GPIO / Inductive
VDDHI
Reset
circuit
VREG
VSS
HALL
effect
plates
VDDHI
Internal
regulator
(VREG)
VREG
VREG
Nonvolatile
memory
VREG
VDDHI
Analog
Photosensitive
substrate, ALS
SDA
I2C
HW
SCL
MCU
(Master)
RDY
Analog - Capacitive
offset calibration (ATI)
IQS621
RX1
IQS621 functional block diagram
IQS263 sleep
Poll IQS263
IQS263 sleep
NACK
No
ACK
IQS263
Communication
(RDY low)
Poll IQS263
IQS263
conversions
Slave
Copyright © Azoteq 2018
All Rights Reserved
NACK
IQS263
calculations
IQS263
Communication
(RDY low)
Event true?
Poll IQS263
Poll IQS263
NACK
ACK
NACK
MCU
I2C Polling
Master
Poll
IQS263
Yes
Master
Slave
IQS621 Datasheet revision 1.15
Shortcut to memory map
NACK
IQS263
conversions
MCU
I2C Polling
Poll IQS263
Poll IQS263
Poll IQS263
NACK
IQS263
calculations
Page 5 of 79
May 2018
IQ Switch
ProxFusion® Series
Packaging and Pin-Out
RX1 VREG LTX
RX0
IQS621
VDDHI SCL
SDA
VSS
RDY
IQS621 pin-out (UOLG-2.8x2.5x0.6–9-pin package top view; appearance may
differ)
Table 1.1
Pin
Pin-out description
IQS621 in UOLG-2.8 x 2.5 x 0.6 – 9-pin
Type
Function
Name
1
RX0
Analogue receiving electrode
Connect to conductive area intended for
sensor receiving
2
RX1
Analogue receiving electrode
Connect to conductive area intended for
sensor receiving
3
VREG
Voltage regulator output
Regulates the system’s internal voltage
Requires external capacitors to ground
4
LTX
Transmitter electrode
Connect to conductive area intended for
sensor transmitting
5
RDY
Digital Input / Output
RDY (I2C Ready interrupt signal)
6
SDA
Digital Input / Output
SDA (I2C Data signal)
7
SCL
Digital Input / Output
SCL (I2C Clock signal)
8
VDDHI
Supply Input
Supply: 1.8V – 3.3V
9
VSS
Signal GND
Common ground reference
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 6 of 79
May 2018
IQ Switch
ProxFusion® Series
Reference schematic
IQS621 reference schematic
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 7 of 79
May 2018
IQ Switch
ProxFusion® Series
Sensor channel combinations
The table below summarizes the IQS621 sensor and channel associations.
Table 1.2
CH0
CH1
CH2
ͦ
ͦ
ͦ
Self capacitive
Hysteresis UI
Mutual inductive
ALS
Ambient light
sensing
Hall-effect
Hall-effect
switch UI
Temperature
trip and output
CH3
CH4
CH5
CH6
Positive
Negative
ͦ
Hysteresis UI
Temperature
Inductive
Capacitive
Sensor / UI type
Sensor - channel allocation
ͦ
Key:
o - Optional implementation
- Fixed use for UI
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 8 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion® Sensitivity
The measurement circuitry uses a temperature stable internal sample capacitor (C S) and internal
regulated voltage (VREG). Internal regulation provides for more accurate measurements over
temperature variation. The size CS can be decreased to increase sensitivity on the capacitive
channels of the IQS621.
ܵ݁݊ ן ݕݐ݅ݒ݅ݐ݅ݏ
ͳ
ܥ௦
The Automatic Tuning Implementation (ATI) is a sophisticated technology implemented on the
ProxFusion® series devices. It allows for optimal performance of the devices for a wide range of
sense electrode capacitances, without modification or addition of external components. The ATI
functionality ensures that sensor sensitivity is not affected by external influences such as temperate,
parasitic capacitance and ground reference changes.
The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two
parameters (ATI base and ATI target) as inputs. A 10-bit compensation value ensures that an
accurate target is reached. The base value influences the overall sensitivity of the channel and
establishes a base count from where the ATI algorithm starts executing. A rough estimation of
sensitivity can be calculated as:
ܶܽݐ݁݃ݎ
݁ݏܽܤ
As seen from this equation, the sensitivity can be increased by either increasing the Target value or
decreasing the Base value. A lower base value will typically result in lower multipliers and more
compensation would be required. It should, however, be noted that a higher sensitivity will yield a
higher noise susceptibility. Refer to Appendix B: Hall ATI for more information on Hall ATI.
ܵ݁݊ ן ݕݐ݅ݒ݅ݐ݅ݏ
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 9 of 79
May 2018
IQ Switch
ProxFusion® Series
2 Capacitive sensing
Introduction to ProxSense®
Building on the previous successes from the ProxSense® range of capacitive sensors, the same
fundamental sensor engine has been implemented in the ProxFusion® series.
The capacitive sensing capabilities of the IQS621 include:
Self capacitive sensing.
Maximum of 2 capacitive channels to be individually configured.
o Prox and touch adjustable thresholds
o Individual sensitivity setups
o Alternative ATI modes
Discreet button UI (always enabled):
o Fully configurable 2 level threshold setups for prox & touch activation levels.
o Customizable filter halt time.
Hysteresis UI:
o 4 Optional prox and touch activation hysteresis selections
o Fully configurable 2 level threshold setups for prox & touch activation levels.
o Configurable filter halt threshold.
Channel specifications
The IQS621 provides a maximum of 2 channels available to be configured for capacitive sensing.
Each channel can be setup separately according to the channel’s associated settings registers.
There are two distinct capacitive user interfaces available to be used.
a) Discreet proximity/touch UI (always enabled)
b) Hysteresis UI (fixed use of channel 1)
Table 2.1
Capacitive sensing - channel allocation
Sensor/UI type
CH0
CH1
Self capacitive
ͦ
ͦ
Hysteresis UI
CH2
CH3
CH4
CH5
CH6
Key:
o - Optional implementation
- Fixed use for UI
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 10 of 79
May 2018
IQ Switch
ProxFusion® Series
Hardware configuration
In the table below are multiple options of configuring sensing (RX) and transmitting (LTX) electrodes
to realize different implementations (combinations not shown).
Table 2.2
Capacitive sensing hardware description
Self capacitive
1
button
IQS621
RX0
RX1
LTX
2
buttons
IQS621
RX0
RX1
LTX
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 11 of 79
May 2018
IQ Switch
ProxFusion® Series
Software configuration
Registers to configure for capacitive sensing:
Table 2.3
Name
Address
Capacitive sensing settings registers
Recommended setting
Description
ProxFusion Settings 0
Sensor mode and
configuration of each
channel.
Sensor mode should be set to
capacitive mode
An appropriate RX and TX
should be chosen
ProxFusion Settings 1
Channel settings for the
ProxSense sensors
Full ATI is recommended for
fully automated sensor tuning.
ProxFusion Settings 2
ATI settings for ProxSense
sensors
ATI target should be more
than ATI base to achieve an
ATI
0x46
0x47
ProxFusion Settings 3
Additional Global settings for
ProxSense sensors
None
0x48
ProxFusion Settings 4
Filter settings
Keep AC filter enabled
0x49
ProxFusion Settings 5
Advance sensor settings
None
Proximity threshold
Proximity Thresholds for all
capacitive channels (except
for SAR active on channel 0)
Preferably more than touch
threshold
Touch threshold
Touch Thresholds for all
capacitive channels
None
ProxFusion discrete
UI halt time
Halt timeout setting for all
capacitive channels
None
0x40
0x41
0x42
0x43
0x44
0x45
0x50
0x52
0x51
0x53
0x54
Registers to configure for the hysteresis UI:
Table 2.4
Hysteresis UI settings registers
Address
Name
Description
0x48
ProxFusion settings 4
Hysteresis UI enable command
0x60
Hysteresis UI Settings
Hysteresis settings for the prox and touch thresholds
0x61
Hysteresis UI filter
halt threshold
Threshold setting to trigger a filter halt for on channel 1
0x62
Hysteresis UI
proximity threshold
Proximity threshold used for hysteresis UI detections on
channel 1
0x63
Hysteresis UI touch
threshold
Touch threshold used for hysteresis UI detections on channel 1
Example code:
Example code for an Arduino Uno can be downloaded at:
www.azoteq.com//images/stories/software/IQS62x_Demo.zip
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 12 of 79
May 2018
IQ Switch
ProxFusion® Series
Sensor data output and flags
The following registers should be monitored by the master to detect capacitive sensor activations:
a) The Global events register (0x11) will show the IQS621’s main events. Bit0 is dedicated to
the ProxFusion activations.
Bit
Number
Data
Access
Name
Global events (0x11)
7
6
5
4
3
2
1
0
-
R
R
R
R
R
R
R
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
HYSTERESIS UI
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
b) The ProxFusion UI flags (0x12) provide more detail regarding the capacitive sensor outputs.
An individual prox and touch output bit for channel 0 and 1 is provided in the ProxFusion UI
flags register.
Bit
Number
Data
Access
Name
ProxFusion UI flags (0x12)
7
6
5
4
3
2
1
0
-
-
R
R
-
-
R
R
-
-
CH1_T
CH0_T
-
-
CH1_P
CH0_P
c) The Hysteresis UI flags (0x12) provide more detail regarding the capacitive sensor outputs
for the Hysteresis UI. An individual prox and touch output bit for channel 1 is provided in the
Hysteresis UI flags register.
Bit
Number
Data
Access
Name
Hysteresis UI flags (0x13)
7
6
5
4
3
2
1
0
-
-
-
-
-
R
R
R
-
-
-
-
-
Signed
output
TOUCH
PROX
a) The Hysteresis UI output (0x14 & 0x15) provide the exact Hysteresis UI output value.
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Hysteresis UI output (0x14/0x15)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Hysteresis UI output low byte
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Copyright © Azoteq 2018
All Rights Reserved
Hysteresis UI output high byte
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 13 of 79
May 2018
IQ Switch
ProxFusion® Series
3 Inductive sensing
Introduction to inductive sensing
The IQS621 provides inductive sensing capabilities in order to detect the presence of metal/metaltype objects. Prox and touch thresholds are widely adjustable and individual hysteresis settings are
definable for each using the Hysteresis UI.
Channel specifications
The IQS621 requires both Rx sensing pins as well as the Tx pin for mutual inductive sensing.
Channel 1 is dedicated to the Hysteresis UI.
There are two distinct inductive user interfaces available to be used.
Discreet button UI (always enabled):
o Fully configurable 2 level threshold Prox & Touch activation.
o Customizable UI halt time.
Hysteresis UI:
o Fully configurable 2 level threshold Prox & Touch activation.
o 4 Hysteresis selection options
o Customizable UI halt time.
o Configurable filter halt threshold.
Table 3.1
Mutual inductive sensor – channel allocation
Mode
CH0
CH1
Mutual
inductive
ͦ
ͦ
Hysteresis UI
CH2
CH3
CH4
CH5
CH6
Key:
o
- Optional implementation
- Fixed use for UI
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 14 of 79
May 2018
IQ Switch
ProxFusion® Series
Hardware configuration
Table 3.2
Mutual inductive hardware description
Mutual inductive
Software configuration
Registers to configure for inductive sensing:
Table 3.3
Name
Address
0x45
0x47
0x48
Description
Recommended setting
ProxFusion Settings 0
Sensor mode and
configuration of channel 1.
Sensor mode should be set to
inductive mode
Both RX0 and RX1 should be
active on channel 1
ProxFusion Settings 1
Channel 1 settings for the
inductive sensor
Full ATI is recommended for
fully automated sensor tuning.
ProxFusion Settings 2
ATI settings for the
inductive sensor
ATI target should be more than
ATI base to achieve an ATI
ProxFusion Settings 3
Additional settings for the
inductive sensor
None
ProxFusion Settings 4
UI enable command and
filter settings
Enable the Hysteresis UI.
Filter according to application.
0x41
0x43
Inductive sensing settings registers
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 15 of 79
May 2018
IQ Switch
ProxFusion® Series
Registers to configure for the hysteresis UI:
Table 3.4
Hysteresis UI settings registers
Address
Name
Description
0x48
ProxFusion settings 4
Hysteresis UI enable command
0x60
Hysteresis UI Settings
Hysteresis settings for the prox and touch thresholds
0x61
Hysteresis UI filter halt
threshold
Threshold setting to trigger a filter halt for on channel 1
0x62
Hysteresis UI proximity
threshold
Proximity threshold used for hysteresis UI detections on
channel 1
0x63
Hysteresis UI touch
threshold
Touch threshold used for hysteresis UI detections on
channel 1
Example code:
Example code for an Arduino Uno can be downloaded at:
www.azoteq.com//images/stories/software/IQS62x_Demo.zip
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 16 of 79
May 2018
IQ Switch
ProxFusion® Series
Sensor data output and flags
The following registers can be monitored by the master to detect inductive sensor related events.
a) Global events (0x11) to prompt for inductive sensor activation. Bit3 denoted as
HYSTERESIS UI EVENT will indicate the detection of a metal object using the inductive
sensing.
Bit
Number
Data
Access
Name
Global events (0x11)
7
6
5
4
3
2
1
0
-
R
R
R
R
R
R
R
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
HYSTERESIS UI
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
b) The Hysteresis UI flags (0x13) register provides the classic prox/touch two level activation
outputs as well as a signed output bit to distinguish between whether the counts have risen
or fallen below the LTA (direction of counts).
Bit
Number
Data
Access
Name
Hysteresis UI flags (0x13)
7
6
5
4
3
2
1
0
-
-
-
-
-
R
R
R
-
-
-
-
-
Signed
output
TOUCH
PROX
c) Hysteresis UI output (0x14 - 0x15) registers will provide a combined 16-bit value to acquire
the magnitude of the inductive sensed object.
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Hysteresis UI output (0x14 - 0x15)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Hysteresis UI output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Copyright © Azoteq 2018
All Rights Reserved
Hysteresis UI output high byte
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 17 of 79
May 2018
IQ Switch
ProxFusion® Series
4 Ambient light sensing (ALS)
Introduction to ambient light sensing
The IQS621 employs two light sensitive semi-conductor areas on chip to realise an ambient light
sensor. The sensor capabilities include:
Absolute Lux output value
4-bit ALS range output (0 – 10)
Human eye response and IR compensated
Dual threshold detection for day/night indication with hysteresis
o 8-bit individual definable light and dark trigger thresholds
o Dark threshold range: 0 – 1020 Lux in steps of 4 Lux.
o Light threshold range: 0 – 4080 Lux in steps of 16 Lux.
CS size, multipliers and charge frequency fully adjustable.
Ch3 – ALS channel 1:
o Assigned to Wide spectrum ALS.
Ch4 – ALS channel 2:
o Assigned to narrow spectrum ALS.
Channel specifications
The IQS621 provides 2 dedicated channels to ALS conversions.
Table 4.1
Sensor/UI type
CH0
Ambient light sensing - channel allocation
CH1
ALS
CH2
CH3
CH4
CH5
CH6
Key:
o - Optional implementation
- Fixed use for UI
Hardware configuration
No external hardware required. Package placement and lens clearance required.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 18 of 79
May 2018
IQ Switch
ProxFusion® Series
Software configuration
Registers to configure for ALS sensing:
Table 4.2
Name
Address
0x70
0x71
ALS sensing settings registers
Description
Recommended setting
ALS Settings 0
ALS conversion settings and
filter configuration settings
None
ALS Settings 1
ALS channel ATI target and
multiplier calibration value
None
Registers to configure for the ALS UI:
Table 4.3
ALS UI settings registers
Address
Name
0x80
ALS dark threshold
Threshold setting value to detect a dark condition
0x81
ALS light threshold
Threshold setting value to detect a light condition
ALS to Lux divider
Calibration value used to provide an absolute Lux output from
ALS measurements
ALS IR divider
Calibration value used to compensate for the influence of IR
spectrum radiation in ALS measurements
0x82
0x83
Description
Example code:
Example code for an Arduino Uno can be downloaded at:
www.azoteq.com//images/stories/software/IQS62x_Demo.zip
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 19 of 79
May 2018
IQ Switch
ProxFusion® Series
Sensor data output and flags
The following registers can be monitored by the master to detect ALS related events.
a) The ALS EVENT (bit 2) in the Global events (0x11) register are dedicated to ALS related
events. This bit will toggle when any change in ALS flags occurs and is automatically cleared
after reading the registers.
Bit
Number
Data
Access
Name
Global events (0x11)
7
6
5
4
3
2
1
0
-
R
R
R
R
R
R
R
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
HYSTERESIS UI
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
b) The ALS UI flags (0x16) register provides a 4-bit ALS Range value to indicate the current
ALS reading (ALS range value bit 0-3). An additional LIGHT/DARK bit (bit 7) is used to
indicate the ALS sensor status measured against the two-configurable light/dark threshold
values in registers 0x80 and 0x81. The user can thus setup his own triggering thresholds for
light and dark perceived readings and incorporate a hysteresis using this UI.
Bit
Number
Data
Access
Name
ALS UI flags (0x16)
7
6
5
4
3
2
1
0
R
-
-
-
R
R
R
R
LIGHT/
DARK
ALS range value
Reserved
c) The ALS UI output (0x17 - 0x18) registers provide a 16-bit value of the ALS amplitude in
units of Lux as obtained by the current sensor measurement.
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
ALS UI output (0x17 - 0x18)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
ALS UI output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Copyright © Azoteq 2018
All Rights Reserved
ALS UI output high byte
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 20 of 79
May 2018
IQ Switch
ProxFusion® Series
5 Hall-effect sensing
Introduction to Hall-effect sensing
The IQS621 has two internal Hall-effect sensing plates (on chip). No external sensing hardware is
required for Hall-effect sensing.
The Hall-effect measurement is essentially a current measurement of the induced current through
the Hall-effect-sensor plates produced by the magnetic field passing perpendicular through each
plate.
Advanced digital signal processing is performed to provide sensible output data.
Two threshold levels are provided (proximity & touch).
Hall-effect output is linearized by inverting signals.
North/South field direction indication provided.
Differential Hall-effect sensing:
o Removes common mode disturbances
o North-South field indication
Channel specifications
Channels 5 and 6 are dedicated to Hall-effect sensing. Channel 5 performs the positive direction
measurements and channel 6 will handle all measurements in the negative direction. These two
channels are used in conjunction to acquire differential Hall-effect data and will always be used as
input data to the Hall-effect UI’s.
There is a dedicated Hall-effect user interface:
a) Hall-effect switch UI
Table 5.1
Sensor/UI type
CH0
Hall-effect sensor – channel allocation
CH1
CH2
CH3
Hall-effect
switch UI
CH4
CH5
CH6
Positive
Negative
Key:
o - Optional implementation
- Fixed use for UI
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 21 of 79
May 2018
IQ Switch
ProxFusion® Series
Hardware configuration
Rudimentary hardware configurations.
Axially polarized magnet (linear movement or magnet presence detection)
Hall-effect
push
switch
Smart
cover
Bar magnet (linear movement and magnet field detection)
Slide
switch
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 22 of 79
May 2018
IQ Switch
ProxFusion® Series
Software configuration
Registers to configure for Hall-effect sensing:
Table 5.2
Name
Address
Hall-effect sensing settings registers
Description
Recommended setting
Hall-effect settings 0
Charge frequency divider
and ATI mode settings
Charge frequency adjusts the
conversion rate of the Halleffect channels. Faster
conversions consume less
current.
Full ATI is recommended for
fully automated sensor tuning.
Hall-effect settings 1
ATI base and target
selections
ATI target should be more than
ATI base to achieve an ATI
0xA0
Hall-effect switch UI
settings
Various settings for the
Hall-effect switch UI
None
0xA1
Hall-effect switch UI
proximity threshold
Proximity Threshold for UI
Less than touch threshold
0xA2
Hall-effect switch UI
touch threshold
Touch Threshold for UI
None
0x90
0x91
Example code:
Example code for an Arduino Uno can be downloaded at:
www.azoteq.com//images/stories/software/IQS62x_Demo.zip
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 23 of 79
May 2018
IQ Switch
ProxFusion® Series
Sensor data output and flags
The following registers can be monitored by the master to detect Hall-effect related events.
d) The HALL_EVENT (bit 1) in the Global events (0x11) register are dedicated to Hall-effect
related events. This bit will toggle when either one of the three Hall flags is set and is
automatically cleared after reading the registers.
Bit
Number
Data
Access
Name
Global events (0x11)
7
6
5
4
3
2
1
0
-
R
R
R
R
R
R
R
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
HYSTEREISIS UI
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
e) The Hall UI flags (0x19) register provides the standard two level activation output (prox and
touch) as well as a HALL_N/S bit to indicate the magnet polarity orientation.
Bit
Number
Data
Access
Name
f)
Hall-effect UI flags (0x19)
7
6
5
4
3
2
1
0
-
-
-
-
-
R
R
R
-
-
-
-
-
HALL
TOUT
HALL
POUT
HALL
N/S
The Hall UI output (0x1A - 0x1B) registers provide a 16-bit value of the Hall-effect amplitude
detected by the sensor.
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Hall-effect UI output (0x1A - 0x1B)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Hall-effect UI output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Copyright © Azoteq 2018
All Rights Reserved
Hall-effect UI output high byte
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 24 of 79
May 2018
IQ Switch
ProxFusion® Series
6 Temperature monitoring
Introduction to temperature monitoring
The IQS621 provides temperature monitoring capabilities which can be used for temperature change
detection in order to ensure the integrity of other sensing technology. The use of the temperature
sensor is primarily to reseed other sensor channels to account for sudden changes in environmental
conditions.
The IQS621 uses a linearly proportional to absolute temperature sensor for temperature data. The
temperature output data is given by,
ܽǤ ʹଵଽ
ܶൌ
ܿ
ܾǤ ܪܥଶ
Where ܽǡ ܾ and ܿ are constants that can be determined to provide a required output data as a function
of device temperature. Additionally, the channel setup must be calculated during a testing process.
Table 6.1
Temperature calibration setting registers and ranges
IQS621
Parameter
Description
Name
ܽ
ݎ݈݁݅݅ݐ݈ݑܯ
ܾ
ݎ݁݀݅ݒ݅ܦ
ܿ
ܱ݂݂ݐ݁ݏ
Register
Higher nibble
0xC2
Lower nibble
0xC3
Range
1 – 16
1 – 16
0 – 255
Channel specifications
The IQS621 requires only external passive components to do temperature monitoring (no additional
circuitry/components required). The temperature UI will be executed using data from channel 2.
Table 6.2
Sensor / UI type
Temperature monitoring – channel allocation
CH0
CH1
Temperature
trip and output
CH2
CH3
CH4
CH5
CH6
Key:
o - Optional implementation
- Fixed use for UI
Hardware configuration
No additional hardware required. Temperature monitoring is realized on-chip.
Software configuration
Registers to configure for temperature sensing:
Table 6.3
Temperature sensing settings registers
Name
Description
Recommended setting
Temperature UI settings
Channel reseed settings
Reseed enable should be
set
Multipliers channel 2
Temperature sensor channel
multiplier selection
Dependent on calibration
step
0xC2
Temperature calibration
data 0
4-bit Multiplier (ܽ+1) and
divider (ܾ+1) calibration
values
Requires sample
calibration
0xC3
Temperature calibration
data 1
8-bit Offset (ܿ) calibration
value
Requires sample
calibration
Address
0xC0
0xC1
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 25 of 79
May 2018
IQ Switch
ProxFusion® Series
Sensor data output and flags
The following registers can be monitored by the master to detect temperature sensor related events.
a) Global events (0x11) to prompt for temperature sensor activation. Bit4 denoted as
TEMP_EVENT will indicate the detection of a temperature threshold trigger using the
temperature sensing.
Bit
Number
Data
Access
Name
Global events (0x11)
7
6
5
4
3
2
1
0
-
R
R
R
R
R
R
R
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
HYSTERESIS UI
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
b) The Temperature UI flags (0x1C) register provides a single bit for temperature trip
indication.
Bit
Number
Data
Access
Name
Temperature UI flags (0x1C)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Temp
Trip
Reserved
c) The Temperature UI output (0x1D - 0x1E) registers will provide a combined 16-bit value to
acquire the magnitude of the temperature sensed.
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Temperature UI Output (0x1D - 0x1E)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Temperature UI output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Copyright © Azoteq 2018
All Rights Reserved
Temperature UI output high byte
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 26 of 79
May 2018
IQ Switch
ProxFusion® Series
7 Device clock, power management and mode operation
Device main oscillator
The IQS621 has a 16MHz main oscillator (default enabled) to clock all system functionality.
An option exists to reduce the main oscillator to 8MHz. This will result in all system timings, charge
transfers and sample rates to be slower by half of the default implementations.
To set this option this:
o
o
As a software setting – Set the System_settings: bit4 = 1, via an I2C command.
As a permanent setting – Set the OTP option in OTP Bank 0: bit2 = 1, using Azoteq USBProg
program.
Device modes
The IQS621 supports the following modes of operation;
Normal mode (Fixed report rate)
Low power mode (Reduced report rate, no UI execution)
Ultra-low power mode (Only channel 0 is sensed for a prox)
Halt mode (Suspended/disabled)
Note: Auto modes must be disabled to enter or exit halt mode.
The device will automatically switch between the different operating modes by default. However, this
Auto mode feature may be disabled by setting the DSBL_AUTO_MODE bit (Power_mode_settings
0xD2: bit5) to confine device operation to a specific power mode. The POWER_MODE bits
(Power_mode_settings 0xD2: bit4-3) can then be used to specify the desired mode of operation.
Normal mode
Normal mode is the fully active sensing mode to function at a fixed report rate specified in the Normal
mode report rate (0xD3) register. This 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms.
Note: The device’s low power oscillator has an accuracy as specified in section 9.
Low power mode
Low power mode is a reduced sensing mode where all channels are sensed but at a reduced
oscillator speed. The sample rate can be specified in the Low Power mode report rate (0xD4)
register. The 8-bit value is adjustable from 0ms – 255ms in intervals of 1ms. Reduced report rates
also reduce the current consumed by the sensor.
Note: The device’s low power oscillator has an accuracy as specified in section 9.
Ultra-low power mode
Ultra-low power mode is a reduced sensing mode where only channel 0 is sensed and no other
channels or UI code are executed. Set the EN_ULP_MDE bit (Power_mode_settings: bit6) to enable
use of the ultra-low power mode. The sample rate can be specified in the Low Power mode report
rate (0xD5) register. The 8-bit value is adjustable from 0ms – 4sec in intervals of 16ms.
Wake up will occur on prox detection on channel 0.
Halt mode
Halt mode will suspend all sensing and will place the device in a dormant or sleep state. The device
requires an I2C command from a master to explicitly change the power mode out of the halt state
before any sensor functionality can continue.
Mode time
The mode time is specified in the Auto mode timer (0xD6) register. The 8-bit value is adjustable from
0ms – 2 min in intervals of 500ms.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 27 of 79
May 2018
IQ Switch
ProxFusion® Series
System reset
The IQS621 device monitor’s system resets and events.
a) Every device power-on and reset event will set the Show Reset bit (System flags 0x10: bit7)
and the master should explicitly clear this bit by writing it active to acknowledge a valid reset.
b) The system events will also be indicated with the Global events register’s SYS_EVENT bit
(Global events 0x11: bit4) if any system event occur such as a reset. This event will
continuously trigger until the reset has been acknowledged.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 28 of 79
May 2018
IQ Switch
ProxFusion® Series
8 Communication
I2C module specification
The device supports a standard two wire I2C interface with the addition of an RDY (ready interrupt)
line. The communications interface of the IQS621 supports the following:
Fast-mode (Fm) standard I2C up to 400kHz.
Streaming data as well as event mode.
The master may address the device at any time. If the IQS621 is not in a communication
window, the device will return an ACK after which clock stretching may be induced until a
communication window is entered. Additional communication checks are included in the
main loop in order to reduce the average clock stretching time.
The provided interrupt line (RDY) is an open-drain active low implementation and indicates
a communication window.
I2C Read
To read from the device a current address read can be performed. This assumes that the addresscommand is already setup as desired.
Current Address Read
Start
Control byte
S
Addr + READ
Data n
Data n+1
ACK
Stop
ACK
NACK
S
Current Address Read
If the address-command must first be specified, then a random read must be performed. In this
case, a WRITE is initially performed to setup the address-command, and then a repeated start is
used to initiate the READ section.
Random Read
Start
Control byte
S
Addr + WRITE
Addresscommand
ACK
ACK
Start
Control byte
S
Addr + READ
Data n
ACK
Stop
NACK
S
Random Read
I2C Write
To write settings to the device a Data Write is performed. Here the Address-Command is always
required, followed by the relevant data bytes to write to the device.
Data Write
Start
Control byte
S
Addr + WRITE
AddressCommand
ACK
Data n
ACK
Data n+1
ACK
Stop
ACK
S
I2C Data Write
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 29 of 79
May 2018
IQ Switch
ProxFusion® Series
Stop-bit disable option
The IQS621 offer:
an additional I2C settings register (0xD9) specifically added for stop-bit disable functionality,
as well as a RDY timeout period register (0xD8) in order to set the required timeout period
for termination of any communication windows (RDY = Low) if no I 2C activity is present on
SDA and SCL pins.
Customers using a MCU with a binary serial-encoder peripheral which is not fully I2C compatible (but
provide some crude serial communication functions) can use this option to configure the IQS621 so
that any auto generated stop command from the serial peripheral can be ignored by the IQS621 I2C
hardware. This will restrict the IQS621 from immediately exiting a communication window during
event mode (reduced communication only for events) until all required communication has been
completed and a stop command can correctly be transmitted. Please refer to the figures below for
serial data transmission examples.
Please note:
1. Stop-bit disable and enable must be performed at the beginning and end of a communication
window. The first and last I2C register to be written to ensure no unwanted communication
window termination.
2. Leaving the Stop-bit disabled will result in successful reading of registers but will not execute
any commands written over I2C in a communication window being terminated after a RDY
timeout and with no IQS recognised stop command.
3. The default RDY timeout period for IQS621 is purposefully long (10.24ms) for slow
responding MCU hardware architectures. Please set this register according to your
requirements/preference.
Stop-bit Disable
Communication
window open
Start
Control byte
RDY = ↓LOW
S
Addr + WRITE
AddressCommand
ACK
0xD9
Disable
stop-bit
ACK
0x81
ACK
Ignored
stop
Continue with
reads / writes
S
…
I2C Stop-bit Disable
Stop-bit Enable
Reads / Writes
Finished
Start
Control byte
…
S
Addr + WRITE
AddressCommand
ACK
0xD9
Enable
stop-bit
ACK
0x01
ACK
Stop
Communication
window closed
S
RDY = ↑HIGH
I2C Stop-bit Enable
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 30 of 79
May 2018
IQ Switch
ProxFusion® Series
Device address and sub-addresses
The default device address is 0x44 = DEFAULT_ADDR.
Alternative sub-address options are definable in the following one-time programmable bits:
OTP Bank0 (bit3; 0; bit1; bit0) = SUB_ADDR_0 to SUB_ADDR_7
a)
b)
c)
d)
e)
f)
g)
h)
0x44 = DEFAULT_ADDR (0x44)
0x45 = DEFAULT_ADDR (0x44)
0x46 = DEFAULT_ADDR (0x44)
0x47 = DEFAULT_ADDR (0x44)
0x4C = DEFAULT_ADDR (0x44)
0x4D = DEFAULT_ADDR (0x44)
0x4E = DEFAULT_ADDR (0x44)
0x4F = DEFAULT_ADDR (0x44)
Default address:
Sub-address:
Sub-address:
Sub-address:
Sub-address:
Sub-address:
Sub-address:
Sub-address:
OR
OR
OR
OR
OR
OR
OR
OR
SUB_ADDR_0 (0000b)
SUB_ADDR_1 (0001b)
SUB_ADDR_2 (0010b)
SUB_ADDR_3 (0011b)
SUB_ADDR_4 (1000b)
SUB_ADDR_5 (1001b)
SUB_ADDR_6 (1010b)
SUB_ADDR_7 (1011b)
Additional OTP options
All one-time-programmable device options are located in OTP bank 0.
OTP Bank0
Bit
Number
7
6
Name
-
COMMS
ATI
5
4
Internal use
3
2
SUB
ADR 2
8MHz
1
0
SUB ADR 0_1
Bit definitions:
Bit 6: Communication during ATI
o 0: No streaming events are generated during ATI
o 1: Communication continues as setup regardless of ATI state.
Bit4-5: Internal use
o Do not configure
Bit 2: Main Clock frequency selection
o 0: Run FOSC at 16MHz
o 1: Run FOSC at 8MHz
Bit 3,1,0: I2C sub-address
o I2C address = 0x44 OR SUB_ADDR
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 31 of 79
May 2018
IQ Switch
ProxFusion® Series
Recommended communication and runtime flow diagram
The following is a basic master program flow diagram to communicate and handle the device. It
addresses possible device events such as output events, ATI and system events (resets).
POR
Clear
Show_Reset
Reset
occured
Show Reset?
Setup &
Initialization
No
Yes
ATI
IN ATI?
Yes
Runtime
Global Event?
No
System Event?
Yes
Valid event?
No
Yes
Retrieve
event data
Master command structure and runtime event handling flow diagram
It is recommended that the master verifies the status of the System_Flags0 bits to identify events
and resets. Detecting either one of these should prompt the master to the next steps of handling the
IQS621.
Streaming mode communication is used for detail sensor evaluation during prototyping and/or
development phases.
Event mode communication is recommended for runtime use of the IQS621. This reduce the
communication on the I2C bus and report only triggered events.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 32 of 79
May 2018
IQ Switch
ProxFusion® Series
9 Memory map
The full memory map is summarized below. Register groups are explained in the latter subsections.
Table 9.1
Full
Address
0x00
0x01
0x02
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x1C
0x1D
0x1E
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x30
0x31
0x32
0x33
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
0x4A
0x4B
0x4C
0x4D
IQS621 Memory map index
Group Name
Device information data
Flags and user interface data
Channel counts (raw data)
LTA values (filtered data)
ProxFusion sensor settings
Copyright © Azoteq 2018
All Rights Reserved
Item Name
Data Access
Product number
Software number
Hardware number
System flags
Global events
ProxFusion UI flags
Hysteresis UI flags
Hysteresis UI output 0
Hysteresis UI output 1
ALS flags
ALS output low
ALS output high
Hall-effect UI flags
Hall-effect UI output 0
Hall-effect UI output 1
Temperature UI flags
Temperature output low
Temperature output high
Channel 0 counts low
Channel 0 counts high
Channel 1 counts low
Channel 1 counts high
Channel 2 counts low
Channel 2 counts high
Channel 3 counts low
Channel 3 counts high
Channel 4 counts low
Channel 4 counts high
Channel 5 counts low
Channel 5 counts high
Channel 6 counts low
Channel 6 counts high
Channel 0 LTA low
Channel 0 LTA high
Channel 1 LTA low
Channel 1 LTA high
ProxFusion settings 0_0
ProxFusion settings 0_1
ProxFusion settings 1_0
ProxFusion settings 1_1
ProxFusion settings 2_0
ProxFusion settings 2_1
ProxFusion settings 3_0
ProxFusion settings 3_1
ProxFusion settings 4
ProxFusion settings 5
Compensation Ch0
Compensation Ch1
Multipliers Ch0
Multipliers Ch1
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Only
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 33 of 79
May 2018
IQ Switch
ProxFusion® Series
0x50
0x51
0x52
0x53
0x54
0x60
0x61
0x62
0x63
0x70
0x71
0x72
0x73
0x80
0x81
0x82
0x83
0x90
0x91
0x92
0x93
0xA0
0xA1
0xA2
0xC0
0xC1
0xC2
0xC3
0xD0
0xD1
0xD2
0xD3
0xD4
0xD5
0xD6
0xD7
0xD8
0xD9
ProxFusion UI settings
Hysteresis UI settings
ALS sensor settings
ALS UI settings
Hall sensor settings
Hall switch UI settings
Temperature UI settings
Device and power mode
settings
Copyright © Azoteq 2018
All Rights Reserved
Prox threshold Ch0
Touch threshold Ch0
Prox threshold Ch1
Touch threshold Ch1
ProxFusion UI halt time
Hysteresis UI settings
Hysteresis UI filter halt threshold
Hysteresis UI prox threshold
Hysteresis UI touch threshold
ALS settings 0
ALS settings 1
ALS filter speed
Multipliers Ch3 Ch4
ALS dark threshold
ALS light threshold
ALS to Lux divider
ALS IR divider
Hall-effect settings 0
Hall-effect settings 1
Compensation Ch4 and Ch5
Multipliers Ch4 and Ch5
Hall-effect switch UI settings
Hall-effect switch UI prox threshold
Hall-effect switch UI touch threshold
Temperature UI settings
Multipliers Ch2
Temperature calibration 0
Temperature calibration 1
System settings
Active channels
Power mode settings
Normal power mode report rate
Low power mode report rate
Ultra-low power mode report rate
Auto mode time
Global event mask
RDY timeout period
I2C settings
IQS621 Datasheet revision 1.15
Shortcut to memory map
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Read-Write
Page 34 of 79
May 2018
IQ Switch
ProxFusion® Series
Device Information Data
Product number
Product number (0x00)
Bit
Number
Data
Access
Name
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Device product number
Bit definitions:
Bit 7-0: Device product number
o
0x46 = D’70’: IQS621 product number
Software number
Software number (0x01)
Bit
Number
Data
Access
Name
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Device software number
Bit definitions:
Bit 7-0: Device software number
o
0x09 = D’09’: IQS621 production software number
Hardware number
Hardware number (0x02)
Bit
Number
Data
Access
Name
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Device hardware number
Bit definitions:
Bit 7-0: Device hardware number
o
0x82 = D’130’: IQS621 hardware number
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 35 of 79
May 2018
IQ Switch
ProxFusion® Series
Flags and user interface data
System flags
Bit
Number
Data
Access
Name
System flags (0x10)
7
6
5
4
3
2
1
0
R
-
-
R
R
R
R
R
SHOW
RESET
-
-
IN ATI
EVENT
NP SEG
ACTIVE
POWER MODE
Bit definitions:
Bit 7: Reset indicator
o 0: No reset event
o 1: A device reset has occurred and needs to be acknowledged.
Bit 4-3: Current power-mode indicator
o 00: Normal mode
o 10: Ultra-low power mode
o 01: Low power mode
o 11: Halt Mode
Bit 2: ATI busy indicator
o 0: No channels are in ATI
o 1: One or more channels are in ATI
Bit 1: Global event indicator
o 0: No new event to service
o 1: An event has occurred and should be serviced
Bit 0: Normal power segment indicator
o 0: Not performing a normal power update
o 1: Busy performing a normal power update
Global events
Bit
Number
Data
Access
Name
Global events (0x11)
7
6
5
4
3
2
1
0
-
R
R
R
R
R
R
R
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
HYSTERESIS UI
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
Bit definitions:
Bit 6: Power mode event flag
o 0: No event to report
o 1: A power mode event has occurred and should be handled
Bit 5: System event flag
o 0: No event to report
o 1: A System event has occurred and should be handled
Bit 4: Temperature event flag
o 0: No event to report
o 1: A Temperature event has occurred and should be handled
Bit 3: Hysteresis UI event flag
o 0: No event to report
o 1: A Hysteresis event has occurred and should be handled
Bit 2: ALS event flag
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 36 of 79
May 2018
IQ Switch
ProxFusion® Series
o 0: No event to report
o 1: An ALS event has occurred and should be handled
Bit 1: Hall-effect event flag
o 0: No event to report
o 1: A Hall-effect event has occurred and should be handled
Bit 0: ProxSense event flag
o 0: No event to report
o 1: A capacitive key event has occurred and should be handled
ProxFusion UI flags
Bit
Number
Data
Access
Name
ProxFusion UI flags (0x12)
7
6
5
4
3
2
1
0
-
-
R
R
-
-
R
R
-
-
CH1_T
CH0_T
-
-
CH1_P
CH0_P
Bit definitions:
Bit 5: Ch1 touch indicator
o 0: Delta below touch threshold
o 1: Delta above touch threshold
Bit 4: Ch0 touch indicator
o 0: Delta below touch threshold
o 1: Delta above touch threshold
Bit 1: Ch1 proximity indicator
o 0: Delta below proximity threshold
o 1: Delta above proximity threshold
Bit 0: Ch0 proximity indicator
o 0: Delta below proximity threshold
o 1: Delta above proximity threshold.
Hysteresis UI flags
Bit
Number
Data
Access
Name
Hysteresis UI flags (0x13)
7
6
5
4
3
2
1
0
-
-
-
-
-
R
R
R
-
-
-
-
-
Signed
output
TOUCH
PROX
Bit definitions:
Bit 2: Delta direction signed output
o 0: Counts rise above the LTA
o 1: Counts fall below the LTA
Bit 1: Hysteresis UI touch indicator
o 0: Delta below touch threshold
o 1: Delta above touch threshold
Bit 0: Hysteresis proximity indicator
o 0: Delta below prox threshold
o 1: Delta above prox threshold
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 37 of 79
May 2018
IQ Switch
ProxFusion® Series
Hysteresis UI output
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Hysteresis UI output (0x14/0x15)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Hysteresis UI output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Hysteresis UI output high byte
Bit definitions:
Bit 15-0: Hysteresis UI output
o 0-65 535: Hysteresis UI output value
ALS UI flags
Bit
Number
Data
Access
Name
ALS UI flags (0x16)
7
6
5
4
3
2
1
0
R
-
-
-
R
R
R
R
LIGHT /
DARK
Reserved
ALS Range Value
Bit definitions:
Bit 7: Light/Dark
o 0: Light indication
Bit 3-0: ALS Range value
o 0-10 range value of ALS measurement
o
1: Dark indication
ALS UI output
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
ALS UI output (0x17/0x18)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
ALS UI Output Low Byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
ALS UI Output High Byte
Bit definitions:
Bit 15-0: ALS UI output
o 0-65 535: ALS UI output value in Lux
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 38 of 79
May 2018
IQ Switch
ProxFusion® Series
Hall-effect UI flags
Bit
Number
Data
Access
Name
Hall-effect UI flags (0x19)
7
6
5
4
3
2
1
0
-
-
-
-
-
R
R
R
-
-
-
-
-
TOUCH
PROX
HALL
N/S
Bit definitions:
Bit 2: Hall-effect touch indicator
o 0: Field strength below touch level
o 1: Field strength above touch level
Bit 1: Hall-effect proximity indicator
o 0: Field strength below proximity level
o 1: Field strength above proximity level
Bit 0: Hall-effect North South Field indication
o 0: North field present
o
1: South field present
Hall-effect UI output
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Hall-effect UI output (0x1A/0x1B)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Hall-effect UI output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Hall-effect UI output high byte
Bit definitions:
Bit 15-0: Hall-effect UI output
o 0-65 535: Hall-effect UI output value
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 39 of 79
May 2018
IQ Switch
ProxFusion® Series
Temperature UI flags
Bit
Number
Data
Access
Name
Temperature UI flags (0x1C)
7
6
5
4
3
2
1
0
R
-
-
-
-
-
-
-
TEMP
TRIP
-
-
-
-
-
-
-
Bit definitions:
Bit 7: Temperature trip indicator
o 0: Temperature below trip level
o
1: Temperature above trip level
Temperature output
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Temperature output (0x1D/0x1E)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Temperature output low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Temperature output high byte
Bit definitions:
Bit 15-0: Temperature output
o 0-65 535: Temperature output value
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 40 of 79
May 2018
IQ Switch
ProxFusion® Series
Channel counts (raw data)
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
Channel counts Ch0/1/2/3/4/5/6 (0x20/0x21-0x2C/0x2D)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
Channel data low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
Channel data high byte
Bit definitions:
Bit 15-0: AC filter or raw count value
LTA values (filtered data)
Bit
Number
Data
Access
Name
Bit
Number
Data
Access
Name
LTA Ch0/1 (0x30/0x31-0x32/0x33)
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
LTA low byte
15
14
13
12
11
10
9
8
R
R
R
R
R
R
R
R
LTA high byte
Bit definitions:
Bit 15-0: LTA filter value
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 41 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion sensor settings block 1
ProxFusion settings 0
9.6.1.1 Capacitive sensing
Bit
Number
Data
Access
Name
Fixed
value
ProxFusion settings 0_0/1 (0x40-0x41)
7
6
5
4
3
2
1
0
R/W
R/W
-
-
R/W
R/W
R/W
R/W
Internal
use
Internal
use
0
0
Capacitive sensor
mode
0
0
TX SELECT
RX SELECT
0
0
Bit definitions:
Bit 6-7: Sensor mode
o 00: Capacitive sensing mode
Bit 3-2: TX Select
o 00: TX 0 and TX 1 is disabled
Bit 0-1: RX select
o 00: RX 0 and RX 1 is disabled
o 01: RX 0 is enabled
0
o
o
1
10: RX 1 is enabled
11: RX 0 and RX 1 is enabled
9.6.1.2 Inductive sensing
Bit
Number
Data
Access
Name
Fixed
value
ProxFusion settings 0_1 (0x41)
7
6
5
4
3
2
1
0
R/W
R/W
-
R/W
R/W
R/W
R/W
R/W
Internal
use
Multiplier
range
Inductive sensor
mode
1
0
0
TX SELECT
RX SELECT
0
1
Bit definitions:
Bit 7-6: Sensor mode
o 10: Inductive sensor mode
Bit 4: Multiplier range
o 0: Large
Bit 3-2: TX Select
o 00: TX 0 and TX 1 is disabled
Bit 1-0: RX Select
o 11: RX 0 and RX 1 is enabled
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
0
o
1
1: Small
Page 42 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion settings 1
9.6.2.1 Capacitive sensing
Bit
Number
Data
Access
Name
Default
ProxFusion settings 1_0/1 (0x42-0x43)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
-
-
R/W
R/W
-
CSz
0
1
CHARGE FREQ
0x67
1
0
Internal use
0
Bit definitions:
Bit 6: CS size
o 0: Prox storage capacitor size is 15 pF
o 1: Prox storage capacitor size is 60 pF
Bit 5-4: Charge frequency divider
o 00: 1/2
o
o 01: 1/4
o
Bit 1-0: Auto ATI Mode
o 00: ATI disabled
o 01: Partial ATI (all multipliers are fixed)
o 10: Semi-partial ATI (coarse multipliers are fixed)
o 11: Full-ATI
1
AUTO ATI MODE
1
1
10: 1/8
11: 1/16
9.6.2.2 Inductive sensing
Bit
Number
Data
Access
Name
Fixed
use
ProxFusion settings 1_1 (0x43)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
-
CSz
0
1
CHARGE FREQ
0x4F
0
0
PROJ BIAS
1
1
AUTO ATI MODE
1
1
Bit definitions:
Bit 6: CS size
o 0: Prox storage capacitor size is 15pF
o 1: Prox storage capacitor size is 60pF
Bit 5-4: Charge frequency divider
o 00: 1/2
o 10: 1/8
o 01: 1/4
o 11: 1/16
Bit 3-2: Projected bias / Internal resistor (all modes except prox)
o 00: 2.5µA / 88kΩ
o 10: 10µA / 44kΩ
o 01: 5µA / 66kΩ
o 11: 20µA / 22kΩ
Bit 1-0: Auto ATI Mode
o 00: ATI disabled
o 01: Partial ATI (all multipliers are fixed)
o 10: Semi-Partial ATI (coarse multipliers are fixed)
o 11: Full-ATI
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 43 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion settings 2
9.6.3.1 Capacitive sensing
Bit
Number
Data
Access
Name
Default
ProxFusion settings 2_0/1 (0x44 - 0x45)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
ATI BASE
1
1
0
ATI TARGET (x32)
0xD0
1
0
0
Bit definitions:
Bit 7-6: Auto ATI base value
o 00: 75
o 01: 100
Bit 5-0: Auto ATI Target
o ATI Target is 6-bit value x 32
o
o
10: 150
11: 200
9.6.3.2 Inductive sensing
Bit
Number
Data
Access
Name
Default
ProxFusion settings 2_1 (0x45)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
ATI BASE
1
1
0
ATI TARGET (x32)
0xD0
1
0
0
Bit definitions:
Bit 7-6: Auto ATI base value
o 00: 75
o 01: 100
Bit 5-0: Auto ATI Target
o ATI Target is 6-bit value x 32
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
o
o
10: 150
11: 200
Page 44 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion settings 3
9.6.4.1 Capacitive sensing
Bit
Number
Data
Access
Name
Default
ProxFusion settings 3_0/1 (0x46-0x47)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
-
R/W
R/W
R/W
-
CS DIV
Internal
use
PASS LENGTH
-
0
0
UP LENGTH
SELECT
0
0
UP
LENGTH
EN
0x06
0
1
1
0
Bit definitions:
Bit 7-6: Up Length Select (requires UP_LENGTH_EN = 1 for use)
o 00: Up length = 0010
o 10: Up length = 1010
o 01: Up length = 0110
o 11: Up length = 1110
Bit 5: CS divider
o 0: Normal CS cap size
o 1: CS cap size 5 times smaller
Bit 3: Up length select enable
o 0: Up length select is disabled
o 1: Up length select is enabled (value in bit 7-6 is used)
Bit 2-1: Pass length select
o 00: Pass length = 001
o 10: Pass length = 101
o 01: Pass length = 011
o 11: Pass length = 111
9.6.4.2 Inductive sensing
Bit
Number
Data
Access
Name
Fixed
use
ProxFusion settings 3_1 (0x47)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
-
R/W
R/W
R/W
-
CS DIV
Internal
use
PASS LENGTH
-
1
1
UP LENGTH
SELECT
0
0
UP
LENGTH
EN
0x36
0
1
1
0
Bit definitions:
Bit 7-6: Up length select (requires UP_LENGTH_EN = 1 for use)
o 00: Up length = 0010
o 10: Up length = 1010
o 01: Up length = 0110
o 11: Up length = 1110
Bit 5: CS divider
o 0: Normal CS cap size
o 1: CS cap size 5 times smaller
Bit 3: Up length select enable
o 0: Up length select is disabled
o 1: Up length select is enabled (value in bit 7-6 is used)
Bit 2-1: Pass length select
o 00: Pass length = 001
o 10: Pass length = 101
o 01: Pass length = 011
o 11: Pass length = 111
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 45 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion settings 4
9.6.5.1 Capacitive sensing
Bit
Number
Data
Access
Name
Default
ProxFusion settings 4 (0x48)
7
6
5
4
3
2
1
0
-
-
R/W
R/W
R/W
R/W
R/W
R/W
-
Internal
use
TWO
SIDED
EN
ACF
DISABLE
0
0
0
0
LTA BETA
ACF BETA
0x00
0
Bit definitions:
Bit 5: Two-sided detection
o 0: Bidirectional detection
disabled
Bit 4: Disable AC Filter
o 0: AC filter enabled
Bit 3-2: Long term average beta value
o 00: 7
o 01: 8
Bit 1-0: AC filter beta value
o 00: 1
o 01: 2
0
0
0
o
1: Bidirectional detection
enabled
o
1: AC filter disabled
o
10: 9
o
11: 10
o
10: 3
o
11: 4
9.6.5.2 Inductive sensing
Bit
Number
Data
Access
Name
Default
ProxFusion settings 4 (0x48)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
-
HYSTERESIS UI
EN
TWO
SIDED
EN
ACF
DISABLE
0
0
0
0
LTA BETA
0x00
0
Bit definitions:
Bit 6: Hysteresis UI enable
o 0: Hysteresis UI is disabled
Bit 5: Two-sided detection
o 0: Bidirectional detection
disabled
Bit 4: Disable AC filter
o 0: AC filter enabled
Bit 3-2: Long term average beta value
o 00: 7
o 01: 8
Bit 1-0: AC filter beta value
o 00: 1
o 01: 2
Copyright © Azoteq 2018
All Rights Reserved
ACF BETA
IQS621 Datasheet revision 1.15
Shortcut to memory map
0
0
0
o
1: Hysteresis UI is enabled
o
1: Bidirectional detection
enabled
o
1: AC filter disabled
o
10: 9
o
11: 10
o
10: 3
o
11: 4
Page 46 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion settings 5
Bit
Number
Data
Access
Name
Default
ProxFusion settings 5 (0x49)
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
0
0
0
Internal use
0x01
0
0
0
0
1
Bit definitions:
Bit 7-0: Internal use
Compensation
Bit
Number
Data
Access
Name
Compensation Ch0/1/2/3 (0x4A - 0x4B)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Compensation (0-7)
Bit definitions:
Bit 7-0: Compensation (7-0)
o 0-255: Lower 8-bits of the Compensation value.
Multipliers
Bit
Number
Data
Access
Name
Multipliers Ch0/1/2/3 (0x4C-0x4D)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Compensation (8-9)
Multiplier coarse
Multiplier fine
Bit definitions:
Bit 7-6: Compensation (8-9)
o 0-3: Upper 2-bits of the Compensation value.
Bit 5-4: Multiplier coarse
o 0-3: Coarse multiplier selection
Bit 3-0: Multiplier fine
o 0-15: Fine multiplier selection
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 47 of 79
May 2018
IQ Switch
ProxFusion® Series
ProxFusion UI settings
Prox threshold Ch0/1
Bit
Number
Data
Access
Name
Default
Prox Threshold Ch0/1 (0x50/0x52)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
1
0
0
0
0
Prox threshold value
0x16 = D’22
1
0
Bit definitions:
Bit 7-0: Prox threshold = Prox threshold value
Touch threshold Ch0/1
Bit
Number
Data
Access
Name
Default
Touch Threshold Ch0/1 (0x51/0x53)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
1
Touch threshold value
0x20 = D’32
0
0
Bit definitions:
Bit 7-0: Touch threshold = Touch threshold value * LTA/256
ProxFusion discrete UI halt time
Bit
Number
Data
Access
Name
Default
ProxFusion discrete UI halt time (0x54)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
Halt time
0x28 = D’40 * 500ms = 20sec
1
0
0
0
Bit definitions:
Bit 7-0: Halt time in 500ms increments (decimal value x 500ms)
o 0 – 127sec: ProxFusion discrete UI halt time
o 0xFF = 255: Always halt filters
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 48 of 79
May 2018
IQ Switch
ProxFusion® Series
Hysteresis UI settings
Hysteresis UI settings
Bit
Number
Data
Access
Name
Default
Hysteresis UI settings (0x60)
7
6
5
4
3
2
1
0
-
-
R/W
R/W
-
-
R/W
R/W
-
-
Hysteresis_T
-
-
Hysteresis_P
0
0
0
0
0
0
0x00
0
Bit definitions:
Bit 5-4: Touch hysteresis
o 00: Disabled
o 01: 1/4 of threshold
Bit 1-0: Proximity hysteresis
o 00: Disabled
o 01: 1/4 of threshold
o
o
10: 1/8 of threshold
11: 1/16 of threshold
o
o
10: 1/8 of threshold
11: 1/16 of threshold
0
Hysteresis UI filter halt threshold
Bit
Number
Data
Access
Name
Default
Hysteresis UI filter halt threshold (0x61)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
1
0
0
Hysteresis UI filter halt threshold value
0x01 = D’01
0
0
0
0
Bit definitions:
Bit 7-0: Hysteresis UI filter halt threshold
o 0-255: Hysteresis UI filter halt threshold value
Hysteresis UI proximity threshold
Bit
Number
Data
Access
Name
Default
Hysteresis UI proximity threshold (0x62)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
1
0
0
0
0
Proximity threshold value
0x16 = D’22
1
0
Bit definitions:
Bit 7-0: Proximity threshold
o 0-255: Proximity threshold value
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 49 of 79
May 2018
IQ Switch
ProxFusion® Series
Hysteresis UI touch threshold
Bit
Number
Data
Access
Name
Default
Hysteresis UI touch threshold (0x63)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
1
Touch threshold value
0x20 = D’32 * 4 = 128
0
0
Bit definitions:
Bit 7-0: Touch threshold
o 0-1020: Touch threshold value * 4
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 50 of 79
May 2018
IQ Switch
ProxFusion® Series
ALS sensor settings
ALS settings 0
Bit
Number
Data
Access
Name
Default
ALS settings 0 (0x70)
7
6
5
4
3
2
1
0
-
-
R/W
R/W
R/W
R/W
-
-
-
Internal
use
CSz
-
-
0
0
1
0
0
INC
DELAY
0x04
0
0
CHARGE FREQ
0
Bit definitions:
Bit 5-4: Charge frequency divider
o 00: 1/2
o 01: 1/4
o 10: 1/8
o 11: 1/16
Bit 3: Inc Delay
o 0: Pre-charge delay is at default
o 1: Increase pre-charge delay to improve low light performance
Bit 2: CS divider size
o 0: CS capacitor size 15pF
o 1: CS capacitor size 60pF
ALS settings 1
Bit
Number
Data
Access
ALS settings 1 (0x71)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Name
Default
MULTIPLIER
CALIBRATION
ATI Target (x32)
0x80
1
0
0
0
0
0
0
0
Bit definitions:
Bit 7-2: ATI target for ALS Ch4
o 0-2016: ATI target Ch4 = ATI target value value x 32
Bit 1-0: Multiplier calibration
o 0-3: Multiplier calibration size for ALS sensor calibration
ALS settings filter speed
Bit
Number
Data
Access
Name
Default
ALS settings filter speed (0x72)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
1
1
0
0
0
ALS settings filter speed
0x07 = D’7
0
0
Bit definitions:
Bit 7-0: ALS settings filter speed
o 0: Both filter stages are disabled
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
o
1: Only the IIR filter is enabled
Page 51 of 79
May 2018
IQ Switch
ProxFusion® Series
o
2-255: Windowed minima filter (with window length of 2-255) and the IIR is enabled
Multipliers Ch3/4
Bit
Number
Data
Access
Multipliers Ch3/4 (0x73)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Name
-
MULTIPLIER
COARSE
MULIPLIER FINE
Bit definitions:
Bit 5-4: Multiplier coarse
o 0-3: Coarse multiplier selection
Bit 3-0: Multiplier fine
o 0-15: Fine multiplier selection
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 52 of 79
May 2018
IQ Switch
ProxFusion® Series
ALS UI settings
ALS dark threshold
Bit
Number
Data
Access
Name
Default
ALS dark threshold (0x80)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
0
0
ALS dark threshold x4 (Lux)
0x0A = D’10 * 4 = 40 Lux
0
0
1
0
Bit definitions:
Bit 7-0: Dark threshold = Dark threshold value x4
ALS light threshold
Bit
Number
Data
Access
Name
Default
ALS light threshold (0x81)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
0
0
0
ALS Light Threshold x16 (Lux)
0x0A = D’10 * 16 = 160 Lux
0
0
1
0
Bit definitions:
Bit 7-0: Light Threshold = Light Threshold value x16
ALS raw to Lux divider
Bit
Number
Data
Access
Name
ALS raw to Lux divider (0x82)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
ALS raw to Lux divider
Bit definitions:
Bit 7-0: ALS raw to Lux divider = ALS raw to Lux divider value (The default value is loaded
from OTP Bank 2, 0 disables divider)
ALS IR compensation
Bit
Number
Data
Access
Name
ALS IR compensation (0x83)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
ALS IR compensation divider
Bit definitions:
Bit 0-7: ALS IR compensation divider = ALS IR compensation divider value.
The default value is loaded from OTP:
o For IQS621: a 6-bit value stored in OTP Bank 0 (bit 5 & 4) & OTP Bank 3 (bit 3 – 0)
o A value equal to 0 disables the divider.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 53 of 79
May 2018
IQ Switch
ProxFusion® Series
Hall-effect sensor settings
Hall-effect settings 0
Bit
Number
Data
Access
Name
Default
Hall-effect settings 0 (0x90)
7
6
5
4
3
2
1
0
-
-
R/W
R/W
-
-
R/W
R/W
-
-
CHARGE FREQ
reserved
AUTO ATI MODE
0x03
0
0
0
0
0
0
1
1
Bit definitions:
Bit 0-1: Auto ATI Mode
o 00: ATI disabled
o 01: Partial ATI (all multipliers are fixed)
o 10: Semi-Partial ATI (only coarse multipliers are fixed)
o 11: Full-ATI
Bit 4-5: Charge frequency divider
o 00: 1/2
o 10: 1/8
o 01: 1/4
o 11: 1/16
Hall-effect settings 1
Bit
Number
Data
Access
Name
Default
Hall-effect settings 1 (0x91)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
ATI_BASE
0
1
0
ATI_TARGET (x32)
0x50
1
0
0
Bit definitions:
Bit 0-5: Auto ATI Target
o 0-2016: ATI Target = ATI target 6-bit value x 32
Bit 6-7: Auto ATI base value
o 00: 75
o
o 01: 100
o
10: 150
11: 200
Compensation Ch4/5
Bit
Number
Data
Access
Name
Compensation Ch5/6 (0x92)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Compensation (7-0)
Bit definitions:
Bit 7-0: Compensation (7-0)
o 7-0: Lower 8-bits of the Compensation value.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 54 of 79
May 2018
IQ Switch
ProxFusion® Series
Multipliers Ch4/5
Bit
Number
Data
Access
Name
Multipliers Ch5/6 (0x93)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Compensation (9-8)
Multipliers coarse
Multipliers fine
Bit definitions:
Bit 7-6: Compensation (9-8)
o 0-3: Upper 2-bits of the Compensation value.
Bit 5-4: Multipliers coarse
o 0-3: Coarse multiplier selection
Bit 3-0: Multipliers fine
o 0-15: Fine multiplier selection
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 55 of 79
May 2018
IQ Switch
ProxFusion® Series
Hall-effect switch UI settings
Hall-effect UI settings
Bit
Number
Data
Access
Hall-effect UI settings (0xA0)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
-
R/W
R/W
R/W
-
Swap
Direction
0
0
Name
Default
Lin Mode
Hysteresis T
0x00
0
0
0
0
Bit definitions:
Bit 6: Linearize output
o 0: Disabled
Bit 4-5: Touch hysteresis
o 00: Disabled
o 01: 1/4 of threshold
Bit 2: Swap field direction indication
o 0: Disabled
Bit 0-1: Proximity hysteresis
o 00: Disabled
o 01: 1/4 of threshold
Hysteresis P
0
o
1: Enabled
o
o
10: 1/8 of threshold
11: 1/16 of threshold
o
1: Enabled
o
o
10: 1/8 of threshold
11: 1/16 of threshold
0
Hall-effect UI proximity threshold
Bit
Number
Data
Access
Name
Default
Hall-effect UI proximity threshold (0xA1)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
1
0
0
0
Proximity threshold value
0x19 = D’25
1
1
Bit definitions:
Bit 0-7: Hall-effect UI proximity threshold
o 0-255: Hall-effect UI Proximity Threshold = Proximity threshold value
Hall-effect UI touch threshold
Bit
Number
Data
Access
Name
Default
Hall-effect UI touch threshold (0xA2)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
1
0
0
0
Touch threshold value
0x19 = D’25 * 4 = 100
1
1
Bit definitions:
Bit 0-7: Hall-effect UI touch threshold
o 0-1020: Hall-effect touch threshold = Touch threshold value * 4
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 56 of 79
May 2018
IQ Switch
ProxFusion® Series
Temperature monitoring UI settings
Temperature UI settings
Bit
Number
Data
Access
Name
Default
Temperature UI settings (0xC0)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
reserved
RESEED
IN PROX
RESEED
EN
0
0
0
RESEED THRESHOLD
0x00
0
0
0
0
0
Bit definitions:
Bit 6: Allow temperature channel to reseed channel 0 and 1 while in proximity
o 0: Reseed in prox disabled
o 1: Reseed in prox enabled
Bit 5: Temperature reseed of channel 0 and 1 enable
o 0: Reseed is disabled
o 1: Reseed is enabled
Bit 4-0: Temperature reseed threshold = Temperature reseed threshold value
Multiplier channel 2
Bit
Number
Data
Access
Name
Default
Multiplier Ch2 (0xC1)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
-
-
0
0
Multiplier coarse
Multiplier fine
0x00
0
0
0
0
0
0
Bit definitions:
Bit 5-4: Multiplier coarse
o 0-3: Coarse multiplier selection
Bit 3-0: Multiplier fine
o 0-15: Fine multiplier selection
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 57 of 79
May 2018
IQ Switch
ProxFusion® Series
Temperature calibration 0
Bit
Number
Data
Access
Name
Default
Temperature calibration 0 (0xC2)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Temperature multiplier
Temperature divider
0x00
0
0
0
0
0
0
0
0
Bit definitions:
Bit 7-4: Temperature multiplier = Temperature multiplier value +1
o 1-16: Temperature multiplier
Bit 3-0: Temperature divider = Temperature divider value +1
o 1-16: Temperature divider
Temperature calibration 1
Bit
Number
Data
Access
Name
Default
Temperature calibration 1 (0xC3)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
0
Temperature offset
0x00
0
0
Bit definitions:
Bit 7-0: Temperature offset = Temperature offset value
o 0-255: Temperature offset
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 58 of 79
May 2018
IQ Switch
ProxFusion® Series
Device and power mode settings
System settings
Bit
Number
Data
Access
Name
Default
System settings (0xD0)
7
6
5
4
3
2
1
0
W=1
W=1
R/W
R/W
R/W
R/W
W=1
W=1
SOFT
RESET
ACK
RESET
EVENT
MODE
8MHz
ATI
BAND
REDO
ATI
RESEED
0
0
0
0
0
0
0
COMMS
ATI
0x08
1
Bit definitions:
Bit 7: Software Reset (Set only, will clear when done)
o 1: Causes the device to perform a WDT reset
Bit 6: ACK Reset (Set only, will clear when done)
o 1: Acknowledge that a reset has occurred. This event will trigger until
acknowledged.
Bit 5: Event mode enable
o 0: Event mode disabled. Default streaming mode communication.
o 1: Event mode communication enabled.
Bit 4: Main Clock frequency selection
o 0: Run FOSC at 16MHz
o 1: Run FOSC at 8MHz
Bit 3: Communications during ATI
o 0: No communications are generated during ATI
o 1: Communication continue as setup regardless of ATI state.
Bit 2: Re-ATI Band selection
o 0: Re-ATI when outside 1/8 of ATI target
o 1: Re-ATI when outside 1/16 of ATI target
Bit 1: Redo ATI on all channels (Set only, will clear when done)
o 1: Redo the ATI on all channels
Bit 0: Reseed all Long-term filters (Set only, will clear when done)
o 1: Reseed all channels
Active channels
Bit
Number
Data
Access
Name
Default
Active channels (0xD1)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
-
Ch6
Ch5
Ch4
Ch3
Ch2
Ch1
Ch0
0
1
1
1
1
1
1
1
0x7F
Bit definitions:
Bit 6: Ch6 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be
functional)
o 0: Channel is disabled
o 1: Channel is enabled
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 59 of 79
May 2018
IQ Switch
ProxFusion® Series
Bit 5: Ch5 (note: Ch5 and Ch6 must both be enabled for Hall-effect switch UI to be
functional)
o 0: Channel is disabled
o 1: Channel is enabled
Bit 4: Ch4 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional)
o 0: Channel is disabled
o 1: Channel is enabled
Bit 3: Ch3 (note: Ch3 and Ch4 must both be enabled for ALS UI to be functional)
o 0: Channel is disabled
o 1: Channel is enabled
Bit 2: Ch2 (note: Ch2 must be enabled for temperature UI to be functional)
o 0: Channel is disabled
o 1: Channel is enabled
Bit 1: Ch1
o 0: Channel is disabled
o 1: Channel is enabled
Bit 0: Ch0
o 0: Channel is disabled
o 1: Channel is enabled
Power mode settings
Bit
Number
Data
Access
Name
Default
Power mode settings (0xD2)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
NP SEG
ALL
EN ULP
MODE
DSBL
AUTO
MODE
0
0
0
POWER MODE
NP SEG RATE
0x03
0
0
0
1
1
Bit definitions:
Bit 7: Normal Power Segment bounds check
o 0: NP-segment check on PRX channels only
o 1: NP-segment check on all channels
Bit 6: Allow auto ultra-low power mode switching
o 0: ULP is disabled during auto-mode switching
o 1: U LP is enabled during auto-mode switching
Bit 5: Disable auto mode switching
o 0: Auto mode switching is enabled
o 1: Auto mode switching is disabled
Bit 4-3: Manually select power mode (note: bit 5 must be set)
o 00: Normal Power mode. The device runs at the normal power rate, all enabled
channels and UIs will execute.
o 01: Low Power mode. The device runs at the low power rate, all enabled channels
and UIs will execute.
o 10: Ultra-Low Power mode. The device runs at the ultra-low power rate, Ch0 is run
as wake-up channel. The other channels execute at the NP-segment rate.
o 11: Halt Mode. No conversions are performed; the device must be removed from
this mode using an I2C command.
Bit 2-0: Normal power segment update rate
o 100: 1/32 ULP rate
o 000: ½ ULP rate
o 101: 1/64 ULP rate
o 001: ¼ ULP rate
o 110: 1/128 ULP rate
o 010: 1/8 ULP rate
o 011: 1/16 ULP rate
o 111: 1/256 ULP rate
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 60 of 79
May 2018
IQ Switch
ProxFusion® Series
Normal power mode report rate
Normal power mode report rate (0xD3)
Bit
7
6
5
4
3
2
1
0
Number
Data
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Access
Name
Normal power mode report rate in ms
0x0C = D’12 = 12ms
Default
0
0
0
0
1
1
0
0
Bit definitions:
Bit 7-0: Normal mode report rate in ms (note: LPOSC timer has ± 4ms accuracy)
o 0 – 255ms: Normal mode report rate
Please note: Report rates faster than 4ms can be delayed due to channel setup and comm speed.
Low power mode report rate
Low power mode report rate (0xD4)
Bit
7
6
5
4
3
2
1
0
Number
Data
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Access
Name
Low power mode report rate in ms
0x30 = D’48 = 48ms
Default
0
0
1
1
0
0
0
0
Bit definitions:
Bit 7-0: Low-power mode report rate in ms (note: LPOSC timer has ± 4ms accuracy)
o 0 – 255ms: Low-power mode report rate
Ultra-low power mode report rate
Ultra-low power mode report rate (0xD5)
Bit
Number
Data
Access
Name
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Ultra-low power mode report rate in 16ms increments
0x08 = D’8 * 16 = 128ms
0
0
0
1
0
0
Default
0
0
Bit definitions:
Bit 7-0: Ultra-low power mode report rate in 16ms increments (decimal value x 16ms)
o 0 – 4080ms: Ultra-low power mode report rate
Auto mode timer
Bit
Number
Data
Access
Name
Default
Auto mode timer (0xD6)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
Auto mode timer in 500ms increments
0x14 = D’20 * 500 = 10sec
0
1
0
1
Bit definitions:
Bit 7-0: Auto modes switching time in 500ms increments (decimal value x 500ms)
o 0 – 127.5s: Auto mode switching time
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 61 of 79
May 2018
IQ Switch
ProxFusion® Series
Global event mask
Bit
Number
Data
Access
Name
Default
Global event mask (0xD7)
7
6
5
4
3
2
1
0
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
-
POWER
MODE
EVENT
SYS
EVENT
TEMP
EVENT
ALS
EVENT
HALL
EVENT
PROX
SENSE
EVENT
0
0
0
0
0
0
0
HYSTERESIS UI
EVENT
0x00
0
Bit definitions:
Bit 6: Power mode event mask
o 0: Event is allowed
Bit 5: System event mask
o 0: Event is allowed
Bit 4: Temperature event mask
o 0: Event is allowed
Bit 3: Hysteresis UI event mask
o 0: Event is allowed
Bit 2: ALS UI event mask
o 0: Event is allowed
Bit 1: Hall-effect UI event mask
o 0: Event is allowed
Bit 0: ProxSense event mask
o 0: Event is allowed
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
o
1: Event is masked
o
1: Event is masked
o
1: Event is masked
o
1: Event is masked
o
1: Event is masked
o
1: Event is masked
o
1: Event is masked
Page 62 of 79
May 2018
IQ Switch
ProxFusion® Series
RDY timeout period
Bit
Number
Data
Access
Name
Default
RDY timeout period (0xD8)
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
RDY timeout period value
0x20 = D’32 * 0.32 = 10.24ms
1
0
0
0
Bit definitions:
Bit 7-0: RDY timeout period = RDY timeout period value * 0.32ms
o 0 – 81.6ms: RDY timeout period
I2C settings
Bit
Number
Data
Access
Name
Default
I2C settings (0xD9)
7
6
5
4
3
2
1
0
R/W
-
-
-
-
-
-
R/W
STOP
DISABLE
0
Reserved
Reserve
0x01
0
0
0
0
0
0
1
Bit definitions:
Bit 7: Stop disable
o 0: Stop enabled: Stop bit will exit the communication window.
o 1: Stop disabled: Stop bit will not exit the communication window. No start within the
RDY timeout period (0xD8) will exit the communication window.
Bit 6 – 1: Reserved
o Do not configure, leave cleared.
Bit 0: Reserved
o Must always be set (bit 0 = 1).
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 63 of 79
May 2018
IQ Switch
ProxFusion® Series
10 Electrical characteristics
Absolute Maximum Specifications
The following absolute maximum parameters are specified for the device:
Exceeding these maximum specifications may cause damage to the device.
Table 10.1
Absolute maximum specification
Absolute maximum
Parameter
Operating temperature
-20°C to +85°C
Supply Voltage (VDDHI – GND)
3.6V
Maximum pin voltage
VDDHI + 0.5V (may not exceed VDDHI max)
Maximum continuous current (for specific pins)
10mA
Minimum pin voltage
GND - 0.5V
Minimum power-on slope
100V/s
ESD protection
±4kV (Human body model)
Voltage regulation specifications
Table 10.2
Internal voltage regulator operating conditions
DESCRIPTION
Supply voltage
SYMBOL
MIN
TYPICAL
MAX
UNIT
VDDHI
1.8
-
3.3
V
Internal voltage regulator
VREG
1.63
1.66
1.69
V
Reset conditions
Table 10.3
Device reset specifications
Explanation
SYMBOL
MIN
MAX
Reset - VDDHI rising level
VDDHI rising level to ensure
active state startup
RESETVDDHI↑
-
1.55
Reset - VDDHI falling level
VDDHI falling level to
ensure reset
RESETVDDHI↓
0.70
-
Reset - VREG falling level
VREG falling level for reset
during LP & ULP modes
RESETVREG↓
0.65
1.41
DESCRIPTION
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
UNIT
V
Page 64 of 79
May 2018
IQ Switch
ProxFusion® Series
I2C module output logic fall time limits
Table 10.4
DESCRIPTION
VDDHI
(V)
I2C module output logic fall time specifications
Temp
(°C)
-20
1.8
+25
+85
SDA & SCL
minimum fall
times
-20
3.3
+25
+85
-20
1.8
+25
+85
SDA & SCL
maximum fall
times
-20
3.3
+25
+85
Copyright © Azoteq 2018
All Rights Reserved
Pull-up
resistor (Ω)
7000
CLOAD
(pF)
50
885
400
28.70
7000
50
11.80
885
400
30.70
7000
50
11.80
885
400
7000
50
885
400
18.60
7000
50
11.80
885
400
30.70
7000
50
11.80
885
400
33.80
420
50
42.50
420
400
65.10
420
50
43.40
420
400
69.70
420
50
45.30
420
400
770
50
770
400
32.80
770
50
19.90
885
400
34.30
770
50
20.00
770
400
36.80
SYMBOL
MIN
MAX
UNIT
11.80
TF_min
TF_max
IQS621 Datasheet revision 1.15
Shortcut to memory map
33.80
7.90
ns
77.30
20.20
Page 65 of 79
May 2018
IQ Switch
ProxFusion® Series
I2C module slew rates
Table 10.5
DESCRIPTION
SDA & SCL
slew rates for
the minimum
allowed bus
capacitance
SDA & SCL
slew rates for
the maximum
allowed bus
capacitance
Table 10.6
DESCRIPTION
SDA & SCL
slew rates for
the minimum
allowed bus
capacitance
SDA & SCL
slew rates for
the maximum
allowed bus
capacitance
Copyright © Azoteq 2018
All Rights Reserved
I2C module fastest falling slew rates and matching rising slew rates
VDDHI
(V)
Conditions
Fall time
(ns)
1.8
CBUS = 50pF
RPU = 7kΩ
TA = -20°C
11.80
3.3
CBUS = 50pF
RPU = 7kΩ
TA = -20°C
7.90
1.8
CBUS = 400pF
RPU = 885Ω
TA = -20°C
28.70
3.3
CBUS = 400pF
RPU = 885Ω
TA = -20°C
18.60
Rise time
(ns)
296.55
296.55
299.94
299.94
SYMBOL
SR
UNIT
SRFALL
61.02
SRRISE
2.43
SRFALL
167.09
SRRISE
4.45
SRFALL
25.09
SRRISE
2.40
SRFALL
70.97
SRRISE
4.40
ൗ
ρ
I2C module slowest falling slew rates and matching rising slew rates
VDDHI
(V)
Conditions
Fall time
(ns)
1.8
CBUS = 50pF
RPU = 420Ω
TA = +85°C
45.30
3.3
CBUS = 50pF
RPU = 770Ω
TA = -20°C
20.20
1.8
CBUS = 400pF
RPU = 420Ω
TA = +85°C
77.30
3.3
CBUS = 400pF
RPU = 770Ω
TA = +85°C
36.80
Rise time
(ns)
17.79
32.62
142.34
260.96
IQS621 Datasheet revision 1.15
Shortcut to memory map
SYMBOL
SR
UNIT
SRFALL
15.89
SRRISE
40.47
SRFALL
65.35
SRRISE
40.47
SRFALL
9.31
SRRISE
5.06
SRFALL
35.87
SRRISE
5.06
ൗ
ρ
Page 66 of 79
May 2018
IQ Switch
ProxFusion® Series
I2C pins (SCL & SDA) input/output logic levels
Table 10.7
DESCRIPTION
I2C pins (SCL & SDA) input and output logic level boundaries
Conditions
Input low level
voltage
SYMBOL
Vin_LOW
Input high level
voltage
400kHz I2C
clock
frequency
Vin_HIGH
Temperature
MIN
-20°C
32.12
+25°C
TYP
MAX
UNIT
34.84
+85°C
39.39
-20°C
71.51
+25°C
+85°C
% of
VDDHI
68.18
66.06
Output low level
voltage
Vout_LOW
-20°C – +85°C
0
Output high
level voltage
Vout_HIGH
-20°C – +85°C
100
Calculated input buffer trigger levels for I2C pins at 400kHz clock frequency
for 1.8V and 3.3V VDDHI power supplies
General purpose digital output pins (GPIO0 & GPIO3) logic levels
DESCRIPTION
Output low level voltage
SYMBOL
Temperature
Vout_LOW
-20°C – +85°C
0
Output high level voltage
Vout_HIGH
-20°C – +85°C
100
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
MIN
TYP
MAX
UNIT
% of
VDDHI
Page 67 of 79
May 2018
IQ Switch
ProxFusion® Series
Current consumptions
IC subsystems
Table 10.8
IC subsystem current consumption
TYPICAL MAX
Description
Core active
Core sleep
339
0.63
Table 10.9
Power mode
NP mode
LP mode
ULP mode
UNIT
377
1
µA
µA
IC subsystem typical timing
Core active
Core sleep
TOTAL
UNIT
5
5
1.75
5
43
128
10
48
129.75
ms
ms
ms
Capacitive sensing alone
Table 10.10 Capacitive sensing current consumption
Power mode
Conditions
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
NP mode
LP mode
ULP mode
Report rate
10ms
48ms
128ms
MIN
TYPICAL
MAX
UNIT
72.54
73.09
20.94
19.96
4.95
4.34
73.40
73.53
21.38
20.71
5.54
4.88
74.08
73.97
21.79
21.20
6.01
5.24
µA
µA
µA
µA
µA
µA
-These measurements where done on the default setup of the IC
Table 10.11 Single capacitive wake-up channel current consumption
Power mode
ULP mode
Supply
voltage
VDD = 1.8V
VDD = 3.3V
Charging
frequency
2MHz
2MHz
ATI
target
192
192
Report rate
TYPICAL
UNIT
256ms
256ms
2.51
2.76
A
-These measurements where done with enhanced settings for minimum current consumption for a single touch channel
Inductive sensing alone
Table 10.12 Inductive sensing current consumption
Power mode
NP mode
LP mode
ULP mode
Conditions
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
Report rate
10ms
48ms
128ms
MIN
TYPICAL
MAX
UNIT
75.31
76.45
21.14
21.68
N/A (1)
N/A (1)
75.85
76.88
21.83
22.36
N/A (1)
N/A (1)
76.48
77.53
30.91
23.46
N/A (1)
N/A (1)
µA
µA
µA
µA
µA
µA
-These measurements where done on the default setup of the IC
(1) It is not advised to use the IQS621 in ULP without capacitive sensing. This is due to the inductive sensor being
disabled in ULP.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 68 of 79
May 2018
IQ Switch
ProxFusion® Series
ALS sensing alone
Table 10.13 Ambient light sensing current consumption
Conditions
Power mode
Report rate
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
NP mode
LP mode
ULP mode
10ms
48ms
128ms
MIN
TYPICAL
MAX
UNIT
60.89
55.62
17.52
15.42
N/A (1)
N/A (1)
61.56
57.79
18.03
16.52
N/A (1)
N/A (1)
62.01
58.47
18.45
17.13
N/A (1)
N/A (1)
µA
µA
µA
µA
µA
µA
-These measurements where done on the default setup of the IC and in 300 Lux ambient light
(2) It is not advised to use the IQS621 in ULP without capacitive sensing due to the ALS sensor disabled in ULP.
Hall-effect sensing alone
Table 10.14 Hall-effect current consumption
Conditions
Power mode
Report rate
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
NP mode
LP mode
ULP mode
10ms
48ms
128ms
MIN
TYPICAL
MAX
UNIT
93.49
92.63
26.03
25.11
N/A (1)
N/A (1)
93.73
92.97
26.71
25.88
N/A (1)
N/A (1)
93.96
93.79
27.28
26.45
N/A (1)
N/A (1)
µA
µA
µA
µA
µA
µA
-These measurements where done on the default setup of the IC
(1) It is not advised to use the IQS621 in ULP without capacitive sensing due to the Hall-effect sensor disabled in ULP.
Temperature monitoring alone
Table 10.15 Temperature monitoring current consumption
Power mode
NP mode
LP mode
ULP mode
Conditions
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
VDD = 1.8V
VDD = 3.3V
Report rate
10ms
48ms
128ms
MIN
TYPICAL
MAX
UNIT
41.54
41.20
11.98
11.18
N/A (1)
N/A (1)
42.02
41.62
12.25
11.55
N/A (1)
N/A (1)
42.37
41.98
12.68
11.94
N/A (1)
N/A (1)
µA
µA
µA
µA
µA
µA
-These measurements where done on the default setup of the IC
(1) It is not advised to use the IQS621 in ULP without capacitive sensing due to the temperature sensor disabled in ULP.
Halt mode
Table 10.16 Halt mode current consumption
Power mode
Halt mode
Halt mode
Copyright © Azoteq 2018
All Rights Reserved
Conditions
VDD = 1.8V
VDD = 3.3V
TYPICAL
1.6
1.9
IQS621 Datasheet revision 1.15
Shortcut to memory map
UNIT
µA
µA
Page 69 of 79
May 2018
IQ Switch
ProxFusion® Series
Start-up timing specifications
VDDHI
POR
Internal
reset
I/O
pins
RDY
Full
sensing
mode
Cx0
tinit
tATI
ttest_mode
tstabilize
tcomms1
tcomms2
IQS621 start-up timing diagram
Table 10.17 Timing values for IQS621 start-up timing diagram
Timing
Min
Typical
tinit
6ms
ttest_mode
5ms
Max
tcomms1 (16MHz)
until I2C stop bit
10ms (time-out)
tcomms1 (8MHz)
until I2C stop bit
20ms (time-out)
tATI (16MHz)
110ms (default settings)
tATI (8MHz)
220ms (default settings)
tcomms2
(event mode enabled
– system event)
Time-out value defined
in register 0xD8
(x2 for 8MHz mode)
until I C stop bit
2
tstabilize (16MHz)
40ms
70ms (default settings)
tstabilize (8MHz)
80ms
140ms (default settings)
tfull_sensing_mode (16MHz)
201ms (from POR)
tfull_sensing_mode (8MHz)
402ms (from POR)
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 70 of 79
May 2018
IQ Switch
ProxFusion® Series
ALS specifications
Human eye response Lux calculation
The spectral response of the human eye does not match that of typical silicone based light sensors.
The human eye perceives a peak response in the “green” colour band centred at around 550nm.
However, silicone based sensors has a maximum response to ambient light typically in the infrared
band. To translate the sensor measurement to correlate with the human eye’s natural perceived
ambient light sensitivity a dynamic mathematical function is applied.
The follow parameter values are defined for explanatory purposes:
ࢇ ՜ ࡸࡿ࢛࢚ࢋ࢘:
o A dynamic multiplier value calculated as in the table below for the specific ALS setup
and current ALS value output.
࢈ ՜ ࡸࡿሺ࢘ࢇ࢝ሻ࢚ࡸ࢛࢞ࢊ࢜ࢊࢋ࢘:
o 8-bit value loaded from OTP Bank 2 into register 0x82. This calibration value is
determined during IC calibration.
ࢉ ՜ ࡸࡿࡵࡾࢉࢋ࢙ࢇ࢚ࢊ࢜ࢊࢋ࢘:
o For IQS621 a 6-bit value is loaded from OTP Bank 0 (bit 5 & 4) and OTP Bank 3 (bit3
- 0) into register 0x83.
o This calibration value is determined during IC calibration and can be increased to an
8-bit value if calibration requires a higher value.
The IQS621’s ALS multiplier (parameter ࢇ) is calculated as specified in the following table.
Table 10.18 ALS multiplier calculation
Inputs
Output
ALS
multiplier
ࢇ
ALS
value
(0x16:
bit3-0)
0
Coarse
multiplier
(0x75:
bit5-4)
Fine multiplier
(0x75: bit3-0)
Charge
frequency
divider
(0x70: bit5-4)
CS
size
(0x70:
bit2)
0
MULTIPLIER_CALIBRATION
3
0
1
0
MULTIPLIER_CALIBRATION
2
0
2
0
MULTIPLIER_CALIBRATION
1
0
4
3
0
MULTIPLIER_CALIBRATION
0
0
8
4
0
MULTIPLIER_CALIBRATION
1
1
16
5
0
MULTIPLIER_CALIBRATION
0
1
32
6
0
(MULTIPLIER_CALIBRATION+1)*2-1
0
1
64
7
0
(MULTIPLIER_CALIBRATION+1)*4-1
0
1
128
8
1
(MULTIPLIER_CALIBRATION+1)*4-1
0
1
384
9
2
(MULTIPLIER_CALIBRATION+1)*4-1
0
1
1152
10
3
(MULTIPLIER_CALIBRATION+1)*4-1
0
1
3456
1
2
All the calculations performed on chip are simplified for fixed-point arithmetic. The ALS Lux output is
calculated by the following equation:
ࢇ ʹଶଵ
ʹଶଵ
ܵܮܣ؆ ቆ
െ
ቇ
࢈ ܪܥସ ࢉǤ ܪܥଷ
ALS in units of Lux (as perceived by a human eye) is calculated using the measurement of channels
3 (IR-component) & 4 (ALS-component) as well as the three compensation parameters ࢇǡ ࢈Ƭࢉ as
defined above. The output of this function is a 16-bit integer available in the ALS UI output register
(0x17-0x18).
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 71 of 79
May 2018
IQ Switch
ProxFusion® Series
11 Package information
UOLG-2.8 x 2.5 x 0.6 – 9-pin package and footprint specifications
Table 11.1
UOLG-2.8 x 2.5 x 0.6 – 9-pin
package dimensions (bottom)
Dimension
A
B
C
D
E
F
G
H
Min.
[mm]
2.40
2.70
0.35
0.45
0.05
0.05
Nom.
[mm]
2.50
2.80
0.40
0.50
0.43
0.33
0.10
0.10
Max.
[mm]
2.60
2.90
0.45
0.55
0.15
0.15
Table 11.2
UOLG-2.8 x 2.5 x 0.6 – 9-pin
package dimensions (side)
Dimension
I
J
K
L
M
N
O
P
Min.
[mm]
0.55
2.70
-
Nom.
[mm]
0.60
2.80
0.37
0.23
1.56
0.62
0.40
0.145
Max.
[mm]
0.65
2.90
-
UOLG-2.8 x 2.5 x 0.6-9N
Package dimensions (bottom view).
UOLG-2.8 x 2.5 x 0.6-9N
Package dimensions (side view)
Table 11.3
UOLG-2.8 x 2.5 x 0.6 – 9-pin
landing pad dimensions
Dimension
Q
R
S
T
U
V
Min.
[mm]
0.45
0.35
0.69
0.83
1.20
1.35
Nom.
[mm]
0.50
0.40
0.74
0.88
1.25
1.40
Max.
[mm]
0.55
0.45
0.79
0.93
1.30
1.45
UOLG-2.8 x 2.5 x 0.6-9N
Landing pad dimensions (top view)
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 72 of 79
May 2018
IQ Switch
ProxFusion® Series
Device marking and ordering information
Device marking:
No device marking due to clear package.
Pin 1 indication:
UOLG-2.8 x 2.5 x 0.6-9N pin numbers as viewed from top
Ordering Information:
z–
IQS621zppb
Configuration
0: 44H sub-address
1: 45H sub-address
pp – Package type
U9: UOLG-2.8 x 2.5 x 0.6-9N
b – Bulk packaging
R: Reel (3k per reel, MOQ=1 Reel)
Example:
IQS6210U9R
0
- configuration is default (44H sub-address)
U9
- UOLG-2.8 x 2.5 x 0.6-9N package
R
- packaged in reels of 3k (must be ordered in multiples of 3k)
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 73 of 79
May 2018
IQ Switch
ProxFusion® Series
Bulk packaging specification
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
5
6
7
8
9
2
1
3
4
Tape specification
Page 74 of 79
May 2018
IQ Switch
ProxFusion® Series
Reel specification
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 75 of 79
May 2018
IQ Switch
ProxFusion® Series
MSL Level
Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for some
semiconductors. The MSL is an electronic standard for the period in which a moisture sensitive
device can be exposed to ambient room conditions (approximately 30°C / 60% RH see J-STD033C
for more info) before reflow occur.
Package
Level (duration)
UOLG-2.8 x 2.5 x 0.6-9N
MSL 4 (72 hours at ≤ 30°C / 60% RH)
Reflow profile peak temperature < 260°C for < 30 seconds
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 76 of 79
May 2018
IQ Switch
ProxFusion® Series
12 Datasheet revisions
Revision history
v1.00: – First release version
v1.10: – Datasheet update
Table 6.1 added for temperature calibration value descriptions.
Default register values added (hex and binary representation) for all memory map registers.
Register 0xC2 and 0xC3 ranges corrected (offset of 1; hex value of 0 = 1 used in equations).
v1.11: – Datasheet update
I2C stop-bit disable functionality explained. Section 8.4 added.
v1.12: – Datasheet update
Voltage regulation specifications added (10.2).
v1.13: – Datasheet update
Low power mode description corrected.
ProxFusion® updated to a registered trademark.
v1.14: – Datasheet update
Hall-effect sensing operational range confirmed and updated to 10mT – 200mT.
Section 1.5 ProxFusion® Sensitivity added for ATI algorithm explanation.
Section 10.4 & 10.5 added: I2C module fall times and slew rates.
Section 10.6 updated and illustrated in additional Figure 10.1.
Appendix B. Hall ATI added.
v1.15: – Datasheet update
Section 10.9 added: Start-up timing specifications.
Section 10.3 Reset conditions updated.
Appendix A. Contact information updated.
Errata
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 77 of 79
May 2018
IQ Switch®
ProxSense® Series
Azoteq
USA
Asia
South Africa
Physical
Address
11940 Jollyville
Suite 120-S
Austin
TX 78750
USA
Room 501A, Block A,
T-Share International Centre,
Taoyuan Road, Nanshan District,
Shenzhen, Guangdong, PRC
1 Bergsig Avenue
Paarl
7646
South Africa
Postal
Address
11940 Jollyville
Suite 120-S
Austin
TX 78750
USA
Room 501A, Block A,
T-Share International Centre,
Taoyuan Road, Nanshan District,
Shenzhen, Guangdong, PRC
PO Box 3534
Paarl
7620
South Africa
Tel
+1 512 538 1995
+86 755 8303 5294
ext 808
+27 21 863 0033
Email
info@azoteq.com
info@azoteq.com
info@azoteq.com
Visit www.azoteq.com
for a list of distributors and worldwide representation.
Patents as listed on www.azoteq.com/patents-trademarks/ may relate to the device or usage of the device.
Azoteq®, Crystal Driver , IQ Switch®, ProxSense®, ProxFusion®, LightSense™, SwipeSwitch™, and the
logo are trademarks of Azoteq.
The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does
not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an “as is” basis only, without any representations
or warranties, express or implied, of any kind, including representations about the suitability of these products or informat ion for any purpose. Azoteq disclaims all warranties and
conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title
and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product o r
caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmiss ion, even if Azoteq has been advised of the possibility of
such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be
suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction o r otherwise. Azoteq products
are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise,
under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply , it is agreed that Azoteq’s total liability for all losses,
damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products.
Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its
products, programs and services at any time or to move or discontinue any contents, products, programs or services without pr ior notification. For the most up-to-date information
and binding Terms and Conditions please refer to www.azoteq.com.
Copyright © Azoteq (Pty) Ltd 2019.
All Rights Reserved.
info@azoteq.com
IQS5xx-B000 Datasheet
Revision 2.1
Page 1 of 1
March 2021
IQ Switch
ProxFusion® Series
Appendix B: Hall ATI
Azoteq’s ProxFusion® Hall technology has ATI Functionality; which ensures stable sensor sensitivity.
The ATI functionality is similar to the ATI functionality found in ProxSense ® technology. The
difference is that the Hall ATI requires two channels for a single plate.
Using two channels ensures that the ATI can still be used in the presence of the magnet. The two
channels are the inverse of each other, this means that the one channel will sense North and the
other South. The two channels being inverted allows the capability of calculating a reference value
which will always be the same regardless of the presence of a magnet.
Hall reference value:
The equation used to calculate the reference value, per plate:
ATI parameters:
ܴ݂݁ ൌ
ʹή
ͳ
ଵ
ቀ
ଵ
ቁ
ᇲ
The ATI process adjusts three values (Coarse multiplier, Fine multiplier, Compensation) using two
parameters per plate (ATI base and ATI target). The ATI process is used to ensure that the sensor’s
sensitivity is not severely affected by external influences (Temperature, voltage supply change, etc.).
Coarse and Fine multipliers:
In the ATI process the compensation is set to 0 and the coarse and fine multipliers are adjusted such
that the counts of the reference value ሺܴ݂݁ሻ are roughly the same as the ATI Base value. This means
that if the base value is increased, the coarse and fine multipliers should also increase and vice
versa.
ATI-Compensation:
After the coarse and fine multipliers are adjusted, the compensation is adjusted till the reference
value ሺܴ݂݁ሻ reaches the ATI target. A higher target means more compensation and therefore more
sensitivity on the sensor.
The ATI process ensures that long term temperature changes, or bulk magnetic interference (e.g.
the accidental placement of another magnet too close to the setup), do not affect the sensor’s ability
to detect the intended magnetic change.
Copyright © Azoteq 2018
All Rights Reserved
IQS621 Datasheet revision 1.15
Shortcut to memory map
Page 79 of 79
May 2018