74LVC1T45; 74LVCH1T45
Dual supply translating transceiver; 3-state
Rev. 7 — 19 March 2019
Product data sheet
1. General description
The 74LVC1T45; 74LVCH1T45 are single bit, dual supply transceivers with 3-state outputs
that enable bidirectional level translation. They feature two 1-bit input-output ports (A and B), a
direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can
be supplied at any voltage between 1.2 V and 5.5 V making the device suitable for translating
between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins A and DIR
are referenced to VCC(A) and pin B is referenced to VCC(B). A HIGH on DIR allows transmission
from A to B and a LOW on DIR allows transmission from B to A.
The devices are fully specified for partial power-down applications using IOFF. The IOFF
circuitry disables the output, preventing any damaging backflow current through the device
when it is powered down. In suspend mode when either VCC(A) or VCC(B) are at GND level,
both A port and B port are in the high-impedance OFF-state.
Active bus hold circuitry in the 74LVCH1T45 holds unused or floating data inputs at a valid logic
level.
2. Features and benefits
•
•
•
•
•
•
•
•
•
•
•
•
•
Wide supply voltage range:
• VCC(A): 1.2 V to 5.5 V
• VCC(B): 1.2 V to 5.5 V
High noise immunity
Complies with JEDEC standards:
• JESD8-7 (1.2 V to 1.95 V)
• JESD8-5 (1.8 V to 2.7 V)
• JESD8C (2.7 V to 3.6 V)
• JESD36 (4.5 V to 5.5 V)
ESD protection:
• HBM JESD22-A114F Class 3A exceeds 4000 V
• CDM JESD22-C101E exceeds 1000 V
Maximum data rates:
• 420 Mbps (3.3 V to 5.0 V translation)
• 210 Mbps (translate to 3.3 V))
• 140 Mbps (translate to 2.5 V)
• 75 Mbps (translate to 1.8 V)
• 60 Mbps (translate to 1.5 V)
Suspend mode
Latch-up performance exceeds 100 mA per JESD 78 Class II
±24 mA output drive (VCC = 3.0 V)
Inputs accept voltages up to 5.5 V
Low power consumption: 16 μA maximum ICC
IOFF circuitry provides partial Power-down mode operation
Multiple package options
Specified from -40 °C to +85 °C and -40 °C to +125 °C
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
3. Ordering information
Table 1. Ordering information
Type number
Package
74LVC1T45GW
Temperature range
Name
Description
Version
-40 °C to +125 °C
SC-88
plastic surface-mounted package; 6 leads
SOT363
-40 °C to +125 °C
XSON6
plastic extremely thin small outline package;
no leads; 6 terminals; body 1 × 1.45 × 0.5 mm
SOT886
-40 °C to +125 °C
XSON6
plastic extremely thin small outline package;
no leads; 6 terminals; body 1 × 1 × 0.5 mm
SOT891
-40 °C to +125 °C
XSON6
extremely thin small outline package; no leads;
6 terminals; body 0.9 × 1.0 × 0.35 mm
SOT1115
-40 °C to +125 °C
XSON6
extremely thin small outline package; no leads;
6 terminals; body 1.0 × 1.0 × 0.35 mm
SOT1202
74LVCH1T45GW
74LVC1T45GM
74LVCH1T45GM
74LVC1T45GF
74LVCH1T45GF
74LVC1T45GN
74LVCH1T45GN
74LVC1T45GS
74LVCH1T45GS
4. Marking
Table 2. Marking
Type number
Marking code [1]
74LVC1T45GW
V5
74LVCH1T45GW
X5
74LVC1T45GM
V5
74LVCH1T45GM
X5
74LVC1T45GF
V5
74LVCH1T45GF
X5
74LVC1T45GN
V5
74LVCH1T45GN
X5
74LVC1T45GS
V5
74LVCH1T45GS
X5
[1]
The pin 1 indicator is located on the lower left corner of the device, below the marking code.
5. Functional diagram
DIR
A
5
DIR
3
A
4
VCC(A)
B
B
VCC(B)
VCC(A)
VCC(B)
001aag885
Fig. 1.
Logic symbol
74LVC_LVCH1T45
Product data sheet
001aag886
Fig. 2.
Logic diagram
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
2 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
6. Pinning information
6.1. Pinning
74LVC1T45
74LVCH1T45
74LVC1T45
74LVCH1T45
VCC(A)
VCC(A)
1
6
VCC(B)
GND
2
5
DIR
A
3
4
6
VCC(B)
GND
2
5
DIR
A
3
4
B
B
Transparent top view
Pin configuration SOT363
(SC-88)
VCC(A)
1
6
VCC(B)
GND
2
5
DIR
A
3
4
B
001aaj993
001aaj992
001aaj991
Fig. 3.
1
74LVC1T45
74LVCH1T45
Fig. 4.
Pin configuration SOT886
(XSON6)
Transparent top view
Fig. 5.
Pin configuration SOT891,
SOT1115 and SOT1202
(XSON6)
6.2. Pin description
Table 3. Pin description
Symbol
Pin
Description
VCC(A)
1
supply voltage port A and DIR
GND
2
ground (0 V)
A
3
data input or output
B
4
data input or output
DIR
5
direction control
VCC(B)
6
supply voltage port B
7. Functional description
Table 4. Function table
H = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high-impedance OFF-state.
Supply voltage
Input
Input/output [1]
VCC(A), VCC(B)
DIR
A
B
1.2 V to 5.5 V
L
A=B
input
1.2 V to 5.5 V
H
input
B=A
GND [2]
X
Z
Z
[1]
[2]
The input circuit of the data I/O is always active.
When either VCC(A) or VCC(B) is at GND level, the device goes into suspend mode.
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
3 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
8. Limiting values
Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol Parameter
Conditions
Min
Max
Unit
VCC(A)
supply voltage A
-0.5
+6.5
V
VCC(B)
supply voltage B
-0.5
+6.5
V
IIK
input clamping current
VI
input voltage
IOK
output clamping current
VO < 0 V
VO
output voltage
Active mode
VI < 0 V
[1]
-50
-
-0.5
+6.5
-50
-
[1][2][3]
-0.5
Suspend or 3-state mode
[1]
-0.5
[2]
mA
V
mA
VCCO + 0.5 V
+6.5
V
-
±50
mA
-
100
mA
IO
output current
VO = 0 V to VCCO
ICC
supply current
ICC(A) or ICC(B)
IGND
ground current
-100
-
mA
Tstg
storage temperature
-65
+150
°C
Ptot
total power dissipation
-
250
mW
[1]
[2]
[3]
[4]
Tamb = -40 °C to +125 °C
[4]
The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.
VCCO is the supply voltage associated with the output port.
VCCO + 0.5 V should not exceed 6.5 V.
For SC-88 package: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.
For XSON6 package: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.
9. Recommended operating conditions
Table 6. Recommended operating conditions
Symbol Parameter
Conditions
Min
Max
Unit
VCC(A)
supply voltage A
1.2
5.5
V
VCC(B)
supply voltage B
1.2
5.5
V
VI
input voltage
0
5.5
V
VO
output voltage
0
VCCO
V
0
5.5
V
-40
+125
°C
-
20
ns/V
VCCI = 1.4 V to 1.95 V
-
20
ns/V
VCCI = 2.3 V to 2.7 V
-
20
ns/V
VCCI = 3 V to 3.6 V
-
10
ns/V
VCCI = 4.5 V to 5.5 V
-
5
ns/V
Active mode
[1]
Suspend or 3-state mode
Tamb
ambient temperature
Δt/ΔV
input transition rise and fall rate
[1]
[2]
VCCI = 1.2 V
[2]
VCCO is the supply voltage associated with the output port.
VCCI is the supply voltage associated with the input port.
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
4 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
10. Static characteristics
Table 7. Typical static characteristics at Tamb = 25 °C
At recommended operating conditions; voltages are referenced to GND (ground = 0 V). [1][2]
Symbol Parameter
Conditions
Min
Typ
Max
VOH
HIGH-level output voltage
VOL
Unit
VI = VIH or VIL; IO = -3 mA; VCCO = 1.2 V
-
1.09
-
V
LOW-level output voltage
VI = VIH or VIL; IO = 3 mA; VCCO = 1.2 V
-
0.07
-
V
II
input leakage current
DIR input; VI = 0 V to 5.5 V;
VCCI = 1.2 V to 5.5 V
-
-
±1
μA
IBHL
bus hold LOW current
A or B port; VI = 0.42 V; VCCI = 1.2 V
-
19
-
μA
IBHH
bus hold HIGH current
A or B port; VI = 0.78 V; VCCI = 1.2 V
-
-19
-
μA
IBHLO
bus hold LOW overdrive
current
A or B port; VCCI = 1.2 V
[3]
-
19
-
μA
IBHHO
bus hold HIGH overdrive
current
A or B port; VCCI = 1.2 V
[3]
-
-19
-
μA
IOZ
OFF-state output current
A or B port; VO = 0 V or VCCO;
VCCO = 1.2 V to 5.5 V
-
-
±1
μA
IOFF
power-off leakage current
A port; VI or VO = 0 V to 5.5 V; VCC(A) = 0 V;
VCC(B) = 1.2 V to 5.5 V
-
-
±1
μA
B port; VI or VO = 0 V to 5.5 V; VCC(B) = 0 V;
VCC(A) = 1.2 V to 5.5 V
-
-
±1
μA
CI
input capacitance
DIR input; VI = 0 V or 3.3 V;
VCC(A) = VCC(B) = 3.3 V
-
2.2
-
pF
CI/O
input/output capacitance
A and B port; suspend mode;
VO = 3.3 V or 0 V; VCC(A) = VCC(B) = 3.3 V
-
6.0
-
pF
[1]
[2]
[3]
VCCI is the supply voltage associated with the data input port.
VCCO is the supply voltage associated with the output port.
To guarantee the node switches, an external driver must source/sink at least IBHLO/IBHHO when the input is in the range VIL to VIH.
Table 8. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V). [1][2]
Symbol Parameter
VIH
HIGH-level
input voltage
Conditions
-40 °C to +85 °C
Min
Max
VCCI = 1.2 V
0.8VCCI
VCCI = 1.4 V to 1.95 V
0.65VCCI
VCCI = 2.3 V to 2.7 V
-40 °C to +125 °C
Unit
Min
Max
-
0.8VCCI
-
V
-
0.65VCCI
-
V
1.7
-
1.7
-
V
VCCI = 3.0 V to 3.6 V
2.0
-
2.0
-
V
VCCI = 4.5 V to 5.5 V
0.7VCCI
-
0.7VCCI
-
V
VCCI = 1.2 V
0.8VCC(A)
-
0.8VCC(A)
-
V
VCCI = 1.4 V to 1.95 V
0.65VCC(A)
-
0.65VCC(A)
-
V
VCCI = 2.3 V to 2.7 V
1.7
-
1.7
-
V
VCCI = 3.0 V to 3.6 V
2.0
-
2.0
-
V
VCCI = 4.5 V to 5.5 V
0.7VCC(A)
-
0.7VCC(A)
-
V
data input
DIR input
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
5 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Symbol Parameter
Conditions
-40 °C to +85 °C
Min
VIL
LOW-level
input voltage
-40 °C to +125 °C
Max
Min
Unit
Max
data input
VCCI = 1.2 V
-
0.2VCCI
-
0.2VCCI
VCCI = 1.4 V to 1.95 V
-
0.35VCCI
-
0.35VCCI V
V
VCCI = 2.3 V to 2.7 V
-
0.7
-
0.7
V
VCCI = 3.0 V to 3.6 V
-
0.8
-
0.8
V
VCCI = 4.5 V to 5.5 V
-
0.3VCCI
-
0.3VCCI
V
VCCI = 1.2 V
-
0.2VCC(A)
-
0.2VCC(A) V
VCCI = 1.4 V to 1.95 V
-
0.35VCC(A)
-
0.35VCC(A) V
VCCI = 2.3 V to 2.7 V
-
0.7
-
0.7
V
VCCI = 3.0 V to 3.6 V
-
0.8
-
0.8
V
VCCI = 4.5 V to 5.5 V
-
0.3VCC(A)
-
VCCO - 0.1
-
VCCO - 0.1
-
V
IO = -6 mA; VCCO = 1.4 V
1.0
-
1.0
-
V
IO = -8 mA; VCCO = 1.65 V
1.2
-
1.2
-
V
IO = -12 mA; VCCO = 2.3 V
1.9
-
1.9
-
V
IO = -24 mA; VCCO = 3.0 V
2.4
-
2.4
-
V
IO = -32 mA; VCCO = 4.5 V
3.8
-
3.8
-
V
IO = 100 μA; VCCO = 1.2 V to 4.5 V
-
0.1
-
0.1
V
IO = 6 mA; VCCO = 1.4 V
-
0.3
-
0.3
V
IO = 8 mA; VCCO = 1.65 V
-
0.45
-
0.45
V
IO = 12 mA; VCCO = 2.3 V
-
0.3
-
0.3
V
IO = 24 mA; VCCO = 3.0 V
-
0.55
-
0.55
V
IO = 32 mA; VCCO = 4.5 V
-
0.55
-
0.55
V
-
±2
-
±10
μA
VI = 0.49 V; VCCI = 1.4 V
15
-
10
-
μA
VI = 0.58 V; VCCI = 1.65 V
25
-
20
-
μA
VI = 0.70 V; VCCI = 2.3 V
45
-
45
-
μA
VI = 0.80 V; VCCI = 3.0 V
100
-
80
-
μA
VI = 1.35 V; VCCI = 4.5 V
100
-
100
-
μA
bus hold HIGH A or B port
current
VI = 0.91 V; VCCI = 1.4 V
-15
-
-10
-
μA
VI = 1.07 V; VCCI = 1.65 V
-25
-
-20
-
μA
VI = 1.60 V; VCCI = 2.3 V
-45
-
-45
-
μA
VI = 2.00 V; VCCI = 3.0 V
-100
-
-80
-
μA
VI = 3.15 V; VCCI = 4.5 V
-100
-
-100
-
μA
DIR input
VOH
VOL
HIGH-level
output voltage
LOW-level
output voltage
IO = -100 μA; VCCO = 1.2 V to 4.5 V
VI = VIL
II
input leakage
current
DIR input; VI = 0 V to 5.5 V;
VCCI = 1.2 V to 5.5 V
IBHL
bus hold LOW
current
A or B port
IBHH
74LVC_LVCH1T45
Product data sheet
0.3VCC(A) V
VI = VIH
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
6 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Symbol Parameter
IBHLO
IBHHO
bus hold LOW
overdrive
current
Conditions
-40 °C to +85 °C
-40 °C to +125 °C
Unit
Min
Max
Min
Max
VCCI = 1.6 V
125
-
125
-
μA
VCCI = 1.95 V
200
-
200
-
μA
VCCI = 2.7 V
300
-
300
-
μA
VCCI = 3.6 V
500
-
500
-
μA
VCCI = 5.5 V
900
-
900
-
μA
-125
-
-125
-
μA
-200
-
-200
-
μA
VCCI = 2.7 V
-300
-
-300
-
μA
VCCI = 3.6 V
-500
-
-500
-
μA
VCCI = 5.5 V
A or B port
[3]
bus hold HIGH A or B port
overdrive
VCCI = 1.6 V
current
VCCI = 1.95 V
[3]
-900
-
-900
-
μA
IOZ
OFF-state
output current
A or B port; VO = 0 V or VCCO;
VCCO = 1.2 V to 5.5 V
-
±2
-
±10
μA
IOFF
power-off
leakage
current
A port; VI or VO = 0 V to 5.5 V;
VCC(A) = 0 V; VCC(B) = 1.2 V to 5.5 V
-
±2
-
±10
μA
B port; VI or VO = 0 V to 5.5 V;
VCC(B) = 0 V; VCC(A) = 1.2 V to 5.5 V
-
±2
-
±10
μA
supply current
A port; VI = 0 V or VCCI; IO = 0 A
VCC(A), VCC(B) = 1.2 V to 5.5 V
-
8
-
8
μA
VCC(A), VCC(B) = 1.65 V to 5.5 V
-
3
-
3
μA
VCC(A) = 5.5 V; VCC(B) = 0 V
-
2
-
2
μA
VCC(A) = 0 V; VCC(B) = 5.5 V
-2
-
-2
-
μA
VCC(A), VCC(B) = 1.2 V to 5.5 V
-
8
-
8
μA
VCC(A), VCC(B) = 1.65 V to 5.5 V
-
3
-
3
μA
VCC(B) = 5.5 V; VCC(A) = 0 V
-
2
-
2
μA
VCC(B) = 0 V; VCC(A) = 5.5 V
-2
-
-2
-
μA
VCC(A), VCC(B) = 1.2 V to 5.5 V
-
16
-
16
μA
VCC(A), VCC(B) = 1.65 V to 5.5 V
-
4
-
4
μA
-
50
-
75
μA
-
50
-
75
μA
-
50
-
75
μA
ICC
B port; VI = 0 V or VCCI; IO = 0 A
A plus B port (ICC(A) + ICC(B)); IO = 0 A;
VI = 0 V or VCCI
ΔICC
additional
supply current
VCC(A), VCC(B) = 3.0 V to 5.5 V
A port; A port at VCC(A) - 0.6 V;
DIR at VCC(A); B port = open
[4]
DIR input; DIR at VCC(A) - 0.6 V;
A port at VCC(A) or GND;
B port = open
B port; B port at VCC(B) - 0.6 V;
DIR at GND; A port = open
[1]
[2]
[3]
[4]
[4]
VCCI is the supply voltage associated with the data input port.
VCCO is the supply voltage associated with the output port.
To guarantee the node switches, an external driver must source/sink at least IBHLO/IBHHO when the input is in the range VIL to VIH.
For non bus hold parts only (74LVC1T45).
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
7 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
11. Dynamic characteristics
Table 9. Typical dynamic characteristics at VCC(A) = 1.2 V and Tamb = 25 °C
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for waveforms see Fig. 6 and Fig. 7
Symbol Parameter
Conditions
VCC(B)
Unit
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
5.0 V
tPLH
LOW to HIGH
propagation delay
A to B
10.6
8.1
7.0
5.8
5.3
5.1
ns
B to A
10.6
9.5
9.0
8.5
8.3
8.2
ns
tPHL
HIGH to LOW
propagation delay
A to B
10.1
7.1
6.0
5.3
5.2
5.4
ns
B to A
10.1
8.6
8.1
7.8
7.6
7.6
ns
HIGH to OFF-state
propagation delay
DIR to A
9.4
9.4
9.4
9.4
9.4
9.4
ns
DIR to B
12.0
9.4
9.0
7.8
8.4
7.9
ns
LOW to OFF-state
propagation delay
DIR to A
7.1
7.1
7.1
7.1
7.1
7.1
ns
DIR to B
9.5
7.8
7.7
6.9
7.6
7.0
ns
OFF-state to HIGH
propagation delay
DIR to A
[1]
20.1
17.3
16.7
15.4
15.9
15.2
ns
DIR to B
[1]
17.7
15.2
14.1
12.9
12.4
12.2
ns
OFF-state to LOW
propagation delay
DIR to A
[1]
22.1
18.0
17.1
15.6
16.0
15.5
ns
DIR to B
[1]
19.5
16.5
15.4
14.7
14.6
14.8
ns
tPHZ
tPLZ
tPZH
tPZL
[1]
tPZH and tPZL are calculated values using the formula shown in Section 13.4
Table 10. Typical dynamic characteristics at VCC(B) = 1.2 V and Tamb = 25 °C
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for waveforms see Fig. 6 and Fig. 7.
Symbol Parameter
Conditions
VCC(A)
Unit
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
5.0 V
LOW to HIGH
propagation delay
A to B
10.6
9.5
9.0
8.5
8.3
8.2
ns
B to A
10.6
8.1
7.0
5.8
5.3
5.1
ns
tPHL
HIGH to LOW
propagation delay
A to B
10.1
8.6
8.1
7.8
7.6
7.6
ns
B to A
10.1
7.1
6.0
5.3
5.2
5.4
ns
tPHZ
HIGH to OFF-state
propagation delay
DIR to A
9.4
6.5
5.7
4.1
4.1
3.0
ns
DIR to B
12.0
6.1
5.4
4.6
4.3
4.0
ns
LOW to OFF-state
propagation delay
DIR to A
7.1
4.9
4.5
3.2
3.4
2.5
ns
DIR to B
9.5
7.3
6.6
5.9
5.7
5.6
ns
OFF-state to HIGH
propagation delay
DIR to A
[1]
20.1
15.4
13.6
11.7
11.0
10.7
ns
DIR to B
[1]
17.7
14.4
13.5
11.7
11.7
10.7
ns
OFF-state to LOW
propagation delay
DIR to A
[1]
22.1
13.2
11.4
9.9
9.5
9.4
ns
DIR to B
[1]
19.5
15.1
13.8
11.9
11.7
10.6
ns
tPLH
tPLZ
tPZH
tPZL
[1]
tPZH and tPZL are calculated values using the formula shown in Section 13.4
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
8 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Table 11. Typical power dissipation capacitance at VCC(A) = VCC(B) and Tamb = 25 °C
Voltages are referenced to GND (ground = 0 V). [1] [2]
Symbol Parameter
Conditions
1.8 V
2.5 V
3.3 V
5.5 V
CPD
A port: (direction A to B);
B port: (direction B to A)
2
3
3
4
pF
A port: (direction B to A);
B port: (direction A to B)
15
16
16
18
pF
[1]
[2]
power dissipation
capacitance
VCC(A) and VCC(B)
Unit
CPD is used to determine the dynamic power dissipation (PD in μW).
2
2
PD = CPD × VCC × fi × N + Σ(CL × VCC × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
2
Σ(CL × VCC × fo) = sum of the outputs.
fi = 10 MHz; VI = GND to VCC; tr = tf = 1 ns; CL = 0 pF; RL = ∞ Ω.
Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for wave forms see Fig. 6 and Fig. 7
Symbol Parameter
Conditions
VCC(B)
1.5 V
± 0.1 V
1.8 V
± 0.15 V
2.5 V
± 0.2 V
Unit
3.3 V
± 0.3 V
5.0 V
± 0.5 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
VCC(A) = 1.4 V to 1.6 V
tPLH
tPHL
tPHZ
tPLZ
LOW to HIGH
propagation delay
A to B
2.8
21.3
2.4
17.6
2.0
13.5
1.7
11.8
1.6
10.5 ns
B to A
2.8
21.3
2.6
19.1
2.3
14.9
2.3
12.4
2.2
12.0 ns
HIGH to LOW
propagation delay
A to B
2.6
19.3
2.2
15.3
1.8
11.8
1.7
10.9
1.7
10.8 ns
B to A
2.6
19.3
2.4
17.3
2.3
13.2
2.2
11.3
2.3
11.0 ns
HIGH to OFF-state DIR to A
propagation delay DIR to B
3.0
18.7
3.0
18.7
3.0
18.7
3.0
18.7
3.0
18.7 ns
3.5
24.8
3.5
23.6
3.0
11.0
3.3
11.3
2.8
10.3 ns
LOW to OFF-state DIR to A
propagation delay DIR to B
2.4
11.4
2.4
11.4
2.4
11.4
2.4
11.4
2.4
11.4 ns
2.8
18.3
3.0
17.2
2.5
9.4
3.0
10.1
2.5
9.4
ns
tPZH
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
39.6
-
36.3
-
24.3
-
22.5
-
21.4 ns
[1]
-
32.7
-
29.0
-
24.9
-
23.2
-
21.9 ns
tPZL
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
44.1
-
40.9
-
24.2
-
22.6
-
21.3 ns
[1]
-
38.0
-
34.0
-
30.5
-
29.6
-
29.5 ns
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
9 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Symbol Parameter
Conditions
VCC(B)
1.5 V
± 0.1 V
1.8 V
± 0.15 V
2.5 V
± 0.2 V
Unit
3.3 V
± 0.3 V
5.0 V
± 0.5 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
VCC(A) = 1.65 V to 1.95 V
LOW to HIGH
propagation delay
A to B
2.6
19.1
2.2
17.7
2.2
9.3
1.7
7.2
1.4
6.8
B to A
2.4
17.6
2.2
17.7
2.3
16.0
2.1
15.5
1.9
15.1 ns
tPHL
HIGH to LOW
propagation delay
A to B
2.4
17.3
2.0
14.3
1.6
8.5
1.8
7.1
1.7
7.0
B to A
2.2
15.3
2.0
14.3
2.1
12.9
2.0
12.6
1.8
12.2 ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
2.9
17.1
2.9
17.1
2.9
17.1
2.9
17.1
2.9
17.1 ns
3.2
24.1
3.2
21.9
2.7
11.5
3.0
10.3
2.5
8.2
LOW to OFF-state DIR to A
propagation delay DIR to B
2.4
10.5
2.4
10.5
2.4
10.5
2.4
10.5
2.4
10.5 ns
2.5
17.6
2.6
16.0
2.2
9.2
2.7
8.4
2.4
6.4
tPLH
tPLZ
tPZH
tPZL
ns
ns
ns
ns
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
35.2
-
33.7
-
25.2
-
23.9
-
21.8 ns
[1]
-
29.6
-
28.2
-
19.8
-
17.7
-
17.3 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
39.4
-
36.2
-
24.4
-
22.9
-
20.4 ns
[1]
-
34.4
-
31.4
-
25.6
-
24.2
-
24.1 ns
VCC(A) = 2.3 V to 2.7 V
tPLH
tPHL
LOW to HIGH
propagation delay
A to B
2.3
17.9
2.3
16.0
1.5
8.5
1.3
6.2
1.1
4.8
ns
B to A
2.0
13.5
2.2
9.3
1.5
8.5
1.4
8.0
1.0
7.5
ns
HIGH to LOW
propagation delay
A to B
2.3
15.8
2.1
12.9
1.4
7.5
1.3
5.4
0.9
4.6
ns
B to A
1.8
11.8
1.9
8.5
1.4
7.5
1.3
7.0
0.9
6.2
ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
2.1
8.1
2.1
8.1
2.1
8.1
2.1
8.1
2.1
8.1
ns
3.0
22.5
3.0
21.4
2.5
11.0
2.8
9.3
2.3
6.9
ns
tPLZ
LOW to OFF-state DIR to A
propagation delay DIR to B
1.7
5.8
1.7
5.8
1.7
5.8
1.7
5.8
1.7
5.8
ns
2.3
14.6
2.5
13.2
2.0
9.0
2.5
8.4
1.8
5.3
ns
tPZH
tPZL
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
28.1
-
22.5
-
17.5
-
16.4
-
12.8 ns
[1]
-
23.7
-
21.8
-
14.3
-
12.0
-
10.6 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
34.3
-
29.9
-
18.5
-
16.3
-
13.1 ns
[1]
-
23.9
-
21.0
-
15.6
-
13.5
-
12.7 ns
VCC(A) = 3.0 V to 3.6 V
LOW to HIGH
propagation delay
A to B
2.3
17.1
2.1
15.5
1.4
8.0
0.8
5.6
0.7
4.4
ns
B to A
1.7
11.8
1.7
7.2
1.3
6.2
0.7
5.6
0.6
5.4
ns
HIGH to LOW
propagation delay
A to B
2.2
15.6
2.0
12.6
1.3
7.0
0.8
5.0
0.7
4.0
ns
B to A
1.7
10.9
1.8
7.1
1.3
5.4
0.8
5.0
0.7
4.5
ns
HIGH to OFF-state DIR to A
propagation delay DIR to B
2.3
7.3
2.3
7.3
2.3
7.3
2.3
7.3
2.7
7.3
ns
2.9
18.0
2.9
16.5
2.3
10.1
2.7
8.6
2.2
6.3
ns
tPLZ
LOW to OFF-state DIR to A
propagation delay DIR to B
2.0
5.6
2.0
5.6
2.0
5.6
2.0
5.6
2.0
5.6
ns
2.3
13.6
2.4
12.5
1.9
7.8
2.3
7.1
1.7
4.9
ns
tPZH
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
25.4
-
19.7
-
14.0
-
12.7
-
10.3 ns
[1]
-
22.7
-
21.1
-
13.6
-
11.2
-
10.0 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
28.9
-
23.6
-
15.5
-
13.6
-
10.8 ns
[1]
-
22.9
-
19.9
-
14.3
-
12.3
-
11.3 ns
tPLH
tPHL
tPHZ
tPZL
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
10 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Symbol Parameter
Conditions
VCC(B)
1.5 V
± 0.1 V
1.8 V
± 0.15 V
2.5 V
± 0.2 V
Unit
3.3 V
± 0.3 V
5.0 V
± 0.5 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
VCC(A) = 4.5 V to 5.5 V
LOW to HIGH
propagation delay
A to B
2.2
16.6
1.9
15.1
1.0
7.5
0.7
5.4
0.5
3.9
ns
B to A
1.6
10.5
1.4
6.8
1.0
4.8
0.7
4.4
0.5
3.9
ns
tPHL
HIGH to LOW
propagation delay
A to B
2.3
15.3
1.8
12.2
1.0
6.2
0.7
4.5
0.5
3.5
ns
B to A
1.7
10.8
1.7
7.0
0.9
4.6
0.7
4.0
0.5
3.5
ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
1.7
5.4
1.7
5.4
1.7
5.4
1.7
5.4
1.7
5.4
ns
2.9
17.3
2.9
16.1
2.3
9.7
2.7
8.0
2.5
5.7
ns
LOW to OFF-state DIR to A
propagation delay DIR to B
1.4
3.7
1.4
3.7
1.3
3.7
1.0
3.7
0.9
3.7
ns
2.3
13.1
2.4
12.1
1.9
7.4
2.3
7.0
1.8
4.5
ns
tPLH
tPLZ
tPZH
tPZL
[1]
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
23.6
-
18.9
-
12.2
-
11.4
-
8.4
ns
[1]
-
20.3
-
18.8
-
11.2
-
9.1
-
7.6
ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
28.1
-
23.1
-
14.3
-
12.0
-
9.2
ns
[1]
-
20.7
-
17.6
-
11.6
-
9.9
-
8.9
ns
tPZH and tPZL are calculated values using the formula shown in Section 13.4
Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for wave forms see Fig. 6 and Fig. 7
Symbol Parameter
Conditions
VCC(B)
1.5 V
± 0.1 V
1.8 V
± 0.15 V
2.5 V
± 0.2 V
Unit
3.3 V
± 0.3 V
5.0 V
± 0.5 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
VCC(A) = 1.4 V to 1.6 V
tPLH
tPHL
LOW to HIGH
propagation delay
A to B
2.5
23.5
2.1
19.4
1.8
14.9
1.5
13.0
1.4
11.6 ns
B to A
2.5
23.5
2.3
21.1
2.0
16.4
2.0
13.7
1.9
13.2 ns
HIGH to LOW
propagation delay
A to B
2.3
21.3
1.9
16.9
1.6
13.0
1.5
12.0
1.5
11.9 ns
B to A
2.3
21.3
2.1
19.1
2.0
14.6
1.9
12.5
2.0
12.1 ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
2.7
20.6
2.7
20.6
2.7
20.6
2.7
20.6
2.7
20.6 ns
3.1
27.3
3.1
26.0
2.7
12.1
2.9
12.5
2.5
11.4 ns
tPLZ
LOW to OFF-state DIR to A
propagation delay DIR to B
2.1
12.6
2.1
12.6
2.1
12.6
2.1
12.6
2.1
12.6 ns
2.5
20.2
2.7
19.0
2.2
10.4
2.7
11.2
2.2
10.4 ns
tPZH
tPZL
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
43.7
-
40.1
-
26.8
-
24.9
-
23.6 ns
[1]
-
36.1
-
32.0
-
27.5
-
25.6
-
24.2 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
48.6
-
45.1
-
26.7
-
25.0
-
23.5 ns
[1]
-
41.9
-
37.5
-
33.6
-
32.6
-
32.5 ns
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
11 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Symbol Parameter
Conditions
VCC(B)
1.5 V
± 0.1 V
1.8 V
± 0.15 V
2.5 V
± 0.2 V
Unit
3.3 V
± 0.3 V
5.0 V
± 0.5 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
VCC(A) = 1.65 V to 1.95 V
LOW to HIGH
propagation delay
A to B
2.3
21.1
1.9
19.5
1.9
10.3
1.5
8.0
1.2
7.5
B to A
2.1
19.4
1.9
19.5
2.0
17.6
1.8
17.1
1.7
16.7 ns
tPHL
HIGH to LOW
propagation delay
A to B
2.1
19.1
1.8
15.8
1.4
9.4
1.6
7.9
1.5
7.7
B to A
1.9
16.9
1.8
15.8
1.8
14.2
1.8
13.9
1.6
13.5 ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
2.6
18.9
2.6
18.9
2.6
18.9
2.6
18.9
2.6
18.9 ns
2.8
26.6
2.8
24.1
2.4
12.7
2.7
11.4
2.2
9.1
LOW to OFF-state DIR to A
propagation delay DIR to B
2.1
11.6
2.1
11.6
2.1
11.6
2.1
11.6
2.1
11.6 ns
2.2
19.4
2.3
17.6
1.9
10.2
2.4
9.3
2.1
7.4
tPLH
tPLZ
tPZH
tPZL
ns
ns
ns
ns
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
38.8
-
37.1
-
27.8
-
26.4
-
24.1 ns
[1]
-
32.7
-
31.1
-
21.9
-
19.6
-
19.1 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
43.5
-
39.9
-
26.9
-
25.3
-
22.6 ns
[1]
-
38.0
-
34.7
-
28.3
-
26.8
-
26.6 ns
VCC(A) = 2.3 V to 2.7 V
tPLH
tPHL
LOW to HIGH
propagation delay
A to B
2.0
19.7
2.0
17.6
1.3
9.4
1.1
6.9
0.9
5.3
ns
B to A
1.8
14.9
1.9
10.3
1.3
9.4
1.2
8.8
0.9
8.3
ns
HIGH to LOW
propagation delay
A to B
2.0
17.4
1.8
14.2
1.2
8.3
1.1
6.0
0.8
5.1
ns
B to A
1.6
13.0
1.7
9.4
1.2
8.3
1.1
7.7
0.8
6.9
ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
1.8
9.0
1.8
9.0
1.8
9.0
1.8
9.0
1.8
9.0
ns
2.7
24.8
2.7
23.6
2.2
12.1
2.5
10.3
2.0
7.6
ns
tPLZ
LOW to OFF-state DIR to A
propagation delay DIR to B
1.5
6.4
1.5
6.4
1.5
6.4
1.5
6.4
1.5
6.4
ns
2.0
16.1
2.2
14.6
1.8
9.9
2.2
9.3
1.6
5.9
ns
tPZH
tPZL
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
31.0
-
24.9
-
19.3
-
18.1
-
14.2 ns
[1]
-
26.1
-
24.0
-
15.8
-
13.3
-
11.7 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
37.8
-
33.0
-
20.4
-
18.0
-
14.5 ns
[1]
-
26.4
-
23.2
-
17.3
-
15.0
-
14.1 ns
VCC(A) = 3.0 V to 3.6 V
LOW to HIGH
propagation delay
A to B
2.0
18.9
1.8
17.1
1.2
8.8
0.7
6.2
0.6
4.9
ns
B to A
1.5
13.0
1.5
8.0
1.1
6.9
0.6
6.2
0.5
6.0
ns
HIGH to LOW
propagation delay
A to B
1.9
17.2
1.8
13.9
1.1
7.7
0.7
5.5
0.6
4.4
ns
B to A
1.5
12.0
1.6
7.9
1.1
6.0
0.7
5.5
0.6
5.0
ns
HIGH to OFF-state DIR to A
propagation delay DIR to B
2.0
8.1
2.0
8.1
2.0
8.1
2.0
8.1
2.4
8.1
ns
2.6
19.8
2.6
18.2
2.0
11.2
2.4
9.5
1.9
7.0
ns
tPLZ
LOW to OFF-state DIR to A
propagation delay DIR to B
1.8
6.2
1.8
6.2
1.8
6.2
1.8
6.2
1.8
6.2
ns
2.0
15.0
2.1
13.8
1.7
8.6
2.0
7.9
1.5
5.4
ns
tPZH
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
28.0
-
21.8
-
15.5
-
14.1
-
11.4 ns
[1]
-
25.1
-
23.3
-
15.0
-
12.4
-
11.1 ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
31.8
-
26.1
-
17.2
-
15.0
-
12.0 ns
[1]
-
25.3
-
22.0
-
15.8
-
13.6
-
12.5 ns
tPLH
tPHL
tPHZ
tPZL
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
12 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Symbol Parameter
Conditions
VCC(B)
1.5 V
± 0.1 V
1.8 V
± 0.15 V
2.5 V
± 0.2 V
Unit
3.3 V
± 0.3 V
5.0 V
± 0.5 V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
VCC(A) = 4.5 V to 5.5 V
LOW to HIGH
propagation delay
A to B
1.9
18.3
1.7
16.7
0.9
8.3
0.6
6.0
0.4
4.3
ns
B to A
1.4
11.6
1.2
7.5
0.9
5.3
0.6
4.9
0.4
4.3
ns
tPHL
HIGH to LOW
propagation delay
A to B
2.0
16.9
1.6
13.5
0.9
6.9
0.6
5.0
0.4
3.9
ns
B to A
1.5
11.9
1.5
7.7
0.8
5.1
0.6
4.4
0.4
3.9
ns
tPHZ
HIGH to OFF-state DIR to A
propagation delay DIR to B
1.5
6.0
1.5
6.0
1.5
6.0
1.5
6.0
1.5
6.0
ns
2.6
19.1
2.6
17.8
2.0
10.7
2.4
8.8
2.2
6.3
ns
LOW to OFF-state DIR to A
propagation delay DIR to B
1.2
4.1
1.2
4.1
1.1
4.1
0.9
4.1
0.8
4.1
ns
2.0
14.5
2.1
13.4
1.7
8.2
2.0
7.7
1.6
5.0
ns
tPLH
tPLZ
tPZH
tPZL
[1]
OFF-state to HIGH DIR to A
propagation delay DIR to B
[1]
-
26.1
-
20.9
-
13.5
-
12.6
-
9.3
ns
[1]
-
22.4
-
20.8
-
12.4
-
10.1
-
8.4
ns
OFF-state to LOW DIR to A
propagation delay DIR to B
[1]
-
31.0
-
25.5
-
15.8
-
13.2
-
10.2 ns
[1]
-
22.9
-
19.5
-
12.9
-
11.0
-
9.9
ns
tPZH and tPZL are calculated values using the formula shown in Section 13.4
11.1. Waveforms and test circuit
VI
VM
A, B input
GND
tPHL
tPLH
VOH
B, A output
VM
001aae967
VOL
Measurement points are given in Table 14.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig. 6.
The data input (A, B) to output (B, A) propagation delay times
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
13 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
VI
DIR input
VM
GND
t PLZ
output
LOW-to-OFF
OFF-to-LOW
t PZL
VCCO
VM
VX
VOL
t PHZ
output
HIGH-to-OFF
OFF-to-HIGH
VOH
t PZH
VY
VM
GND
outputs
enabled
outputs
disabled
outputs
enabled
001aae968
Measurement points are given in Table 14.
VOL and VOH are typical output voltage levels that occur with the output load.
Fig. 7.
Enable and disable times
Table 14. Measurement points
Supply voltage
Input [1]
Output [2]
VCC(A), VCC(B)
VM
VM
VX
VY
1.2 V to 1.6 V
0.5VCCI
0.5VCCO
VOL + 0.1 V
VOH - 0.1 V
1.65 V to 2.7 V
0.5VCCI
0.5VCCO
VOL + 0.15 V
VOH - 0.15 V
3.0 V to 5.5 V
0.5VCCI
0.5VCCO
VOL + 0.3 V
VOH - 0.3 V
[1]
[2]
VCCI is the supply voltage associated with the data input port.
VCCO is the supply voltage associated with the output port.
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
14 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
VI
negative
pulse
tW
90 %
VM
0V
VI
positive
pulse
0V
VM
10 %
tf
tr
tr
tf
90 %
VM
VM
10 %
tW
VEXT
VCC
G
VI
RL
VO
DUT
RT
CL
RL
001aae331
Test data is given in Table 15.
RL = Load resistance.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance.
VEXT = External voltage for measuring switching times.
Fig. 8.
Test circuit for measuring switching times
Table 15. Test data
Supply voltage
Input
VCC(A), VCC(B)
VI [1]
Δt/ΔV [2]
CL
RL
tPLH, tPHL
tPZH, tPHZ
tPZL, tPLZ [3]
1.2 V to 5.5 V
VCCI
≤ 1.0 ns/V
15 pF
2 kΩ
open
GND
2VCCO
[1]
[2]
[3]
Load
VEXT
VCCI is the supply voltage associated with the data input port.
dV/dt ≥ 1.0 V/ns
VCCO is the supply voltage associated with the output port.
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
15 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
12. Typical propagation delay characteristics
001aai907
14
tPHL
(ns)
12
(1)
10
001aai908
14
tPLH
(ns)
12
(1)
10
(2)
8
(2)
8
(3)
6
(3)
(4)
(5)
(6)
6
(4)
(5)
(6)
4
4
2
2
0
0
5
10
15
20
25
30
35
CL (pF)
a. HIGH to LOW propagation delay (A to B)
001aai909
14
tPHL
(ns)
12
(1)
0
10
8
(4)
(5)
(6)
8
6
6
4
4
2
2
5
10
15
20
25
30
35
CL (pF)
c. HIGH to LOW propagation delay (B to A)
10
15
20
25
30
35
CL (pF)
001aai910
14
tPLH
(ns)
12
(2)
(3)
0
5
b. LOW to HIGH propagation delay (A to B)
10
0
0
0
(1)
(2)
(3)
(4)
(5)
(6)
0
5
10
15
20
25
30
35
CL (pF)
d. LOW to HIGH propagation delay (B to A)
(1) VCC(B) = 1.2 V.
(2) VCC(B) = 1.5 V.
(3) VCC(B) = 1.8 V.
(4) VCC(B) = 2.5 V.
(5) VCC(B) = 3.3 V.
(6) VCC(B) = 5.0 V.
Fig. 9.
Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.2 V
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
16 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
001aai911
14
tPHL
(ns)
12
001aai912
14
tPLH
(ns)
12
(1)
10
10
(1)
8
8
(2)
(2)
6
(3)
6
(3)
(4)
(5)
(6)
(4)
4
4
(5)
2
0
2
(6)
0
5
10
15
20
25
30
35
CL (pF)
a. HIGH to LOW propagation delay (A to B)
001aai913
14
tPHL
(ns)
12
10
0
0
5
10
15
20
25
30
35
CL (pF)
b. LOW to HIGH propagation delay (A to B)
001aai914
14
tPLH
(ns)
12
10
(1)
8
(1)
8
6
(2)
(3)
(4)
6
(2)
(3)
(4)
(5)
(5)
(6)
4
2
0
(6)
4
2
0
5
10
15
20
25
30
35
CL (pF)
c. HIGH to LOW propagation delay (B to A)
0
0
5
10
15
20
25
30
35
CL (pF)
d. LOW to HIGH propagation delay (B to A)
(1) VCC(B) = 1.2 V.
(2) VCC(B) = 1.5 V.
(3) VCC(B) = 1.8 V.
(4) VCC(B) = 2.5 V.
(5) VCC(B) = 3.3 V.
(6) VCC(B) = 5.0 V.
Fig. 10. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.5 V
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
17 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
001aai915
14
tPHL
(ns)
12
10
(1)
10
(1)
8
8
(2)
6
(3)
(4)
4
(5)
(6)
2
0
001aai916
14
tPLH
(ns)
12
0
5
10
15
20
25
6
(3)
4
(4)
(5)
(6)
2
30
35
CL (pF)
a. HIGH to LOW propagation delay (A to B)
001aai917
14
tPHL
(ns)
12
(2)
10
0
0
5
10
15
20
25
b. LOW to HIGH propagation delay (A to B)
001aai918
14
tPLH
(ns)
12
10
8
8
(1)
(1)
6
(2)
(3)
(4)
(5)
(6)
6
(2)
(3)
(4)
(5)
(6)
4
4
2
0
30
35
CL (pF)
2
0
5
10
15
20
25
30
35
CL (pF)
c. HIGH to LOW propagation delay (B to A)
0
0
5
10
15
20
25
30
35
CL (pF)
d. LOW to HIGH propagation delay (B to A)
(1) VCC(B) = 1.2 V.
(2) VCC(B) = 1.5 V.
(3) VCC(B) = 1.8 V.
(4) VCC(B) = 2.5 V.
(5) VCC(B) = 3.3 V.
(6) VCC(B) = 5.0 V.
Fig. 11. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.8 V
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
18 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
001aai919
14
tPHL
(ns)
12
10
001aai920
14
tPLH
(ns)
12
(1)
10
(1)
8
8
(2)
(2)
6
6
(3)
(3)
4
2
0
0
5
10
15
20
25
2
30
35
CL (pF)
a. HIGH to LOW propagation delay (A to B)
001aai921
14
tPHL
(ns)
12
0
8
8
0
(2)
(3)
(4)
(5)
(6)
0
5
10
15
20
25
10
15
20
25
(1)
(2)
(3)
(4)
(5)
(6)
4
2
30
35
CL (pF)
c. HIGH to LOW propagation delay (B to A)
30
35
CL (pF)
001aai922
6
(1)
2
5
14
tPLH
(ns)
12
10
4
0
b. LOW to HIGH propagation delay (A to B)
10
6
(4)
(5)
(6)
4
(4)
(5)
(6)
0
0
5
10
15
20
25
30
35
CL (pF)
d. LOW to HIGH propagation delay (B to A)
(1) VCC(B) = 1.2 V.
(2) VCC(B) = 1.5 V.
(3) VCC(B) = 1.8 V.
(4) VCC(B) = 2.5 V.
(5) VCC(B) = 3.3 V.
(6) VCC(B) = 5.0 V.
Fig. 12. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 2.5 V
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
19 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
001aai923
14
tPHL
(ns)
12
10
001aai924
14
tPLH
(ns)
12
10
(1)
(1)
8
8
(2)
6
(2)
6
(3)
(3)
4
2
0
4
(4)
(5)
(6)
0
5
10
15
20
25
2
30
35
CL (pF)
a. HIGH to LOW propagation delay (A to B)
001aai925
14
tPHL
(ns)
12
0
8
8
(2)
(3)
(4)
(5)
(6)
4
2
0
0
5
10
15
20
25
30
35
CL (pF)
c. HIGH to LOW propagation delay (B to A)
5
10
15
20
25
30
35
CL (pF)
001aai926
14
tPLH
(ns)
12
10
(1)
0
b. LOW to HIGH propagation delay (A to B)
10
6
(4)
(5)
(6)
6
(1)
4
(2)
(3)
2
(4)
(5)
(6)
0
0
5
10
15
20
25
30
35
CL (pF)
d. LOW to HIGH propagation delay (B to A)
(1) VCC(B) = 1.2 V.
(2) VCC(B) = 1.5 V.
(3) VCC(B) = 1.8 V.
(4) VCC(B) = 2.5 V.
(5) VCC(B) = 3.3 V.
(6) VCC(B) = 5.0 V.
Fig. 13. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 3.3 V
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
20 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
001aai927
14
tPHL
(ns)
12
10
001aai928
14
tPLH
(ns)
12
10
(1)
(1)
8
8
(2)
6
(2)
6
(3)
(3)
4
2
0
4
(4)
(5)
(6)
0
5
10
15
20
25
2
30
35
CL (pF)
a. HIGH to LOW propagation delay (A to B)
001aai929
14
tPHL
(ns)
12
(4)
(5)
(6)
0
0
5
10
15
20
25
30
35
CL (pF)
b. LOW to HIGH propagation delay (A to B)
001aai930
14
tPLH
(ns)
12
10
10
8
8
6
(1)
6
4
(2)
(3)
4
(2)
(3)
2
(4)
(5)
(6)
2
(4)
(5)
(6)
0
0
5
10
15
20
25
30
35
CL (pF)
c. HIGH to LOW propagation delay (B to A)
0
(1)
0
5
10
15
20
25
30
35
CL (pF)
d. LOW to HIGH propagation delay (B to A)
(1) VCC(B) = 1.2 V.
(2) VCC(B) = 1.5 V.
(3) VCC(B) = 1.8 V.
(4) VCC(B) = 2.5 V.
(5) VCC(B) = 3.3 V.
(6) VCC(B) = 5.0 V.
Fig. 14. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 5.0 V
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
21 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
13. Application information
13.1. Unidirectional logic level-shifting application
The circuit given in Fig. 15 is an example of the 74LVC1T45; 74LVCH1T45 being used in a
unidirectional logic level-shifting application.
74LVC1T45
74LVCH1T45
VCC1
VCC1
VCC(A)
GND
A
1
6
2
5
3
4
VCC(B)
DIR
VCC2
VCC2
B
system-1
system-2
001aaj994
Fig. 15. Unidirectional logic level-shifting application
Table 16. Description unidirectional logic level-shifting application
Pin
Name
Function Description
1
VCC(A)
VCC1
supply voltage of system-1 (1.2 V to 5.5 V)
2
GND
GND
device GND
3
A
OUT
output level depends on VCC1 voltage
4
B
IN
input threshold value depends on VCC2 voltage
5
DIR
DIR
the GND (LOW level) determines B port to A port direction
6
VCC(B)
VCC2
supply voltage of system-2 (1.2 V to 5.5 V)
13.2. Bidirectional logic level-shifting application
Fig. 16 shows the 74LVC1T45; 74LVCH1T45 being used in a bidirectional logic level-shifting
application. Since the device does not have an output enable pin, the system designer should take
precautions to avoid bus contention between system-1 and system-2 when changing directions.
74LVC1T45
74LVCH1T45
VCC1
VCC1
I/O-1
PULL-UP/DOWN
VCC(A)
GND
A
1
6
2
5
3
4
VCC(B)
DIR
VCC2
VCC2
I/O-2
PULL-UP/DOWN
B
DIR CTRL
system-1
system-2
001aaj995
Pull-up or pull-down only needed for 74LVC1T45.
Fig. 16. Bidirectional logic level-shifting application
74LVC_LVCH1T45
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 7 — 19 March 2019
©
Nexperia B.V. 2019. All rights reserved
22 / 31
74LVC1T45; 74LVCH1T45
Nexperia
Dual supply translating transceiver; 3-state
Table 17 provides a sequence that illustrates data transmission from system-1 to system-2 and
then from system-2 to system-1.
Table 17. Description bidirectional logic level-shifting application
H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.
State
DIR CTRL I/O-1
I/O-2
Description
1
H
output
input
system-1 data to system-2
2
H
Z
Z
system-2 is getting ready to send data to
system-1. I/O-1 and I/O-2 are disabled. The
bus-line state depends on bus hold.
3
L
Z
Z
DIR bit is set LOW. I/O-1 and I/O-2 are still
disabled. The bus-line state depends on bus
hold.
4
L
input
output
system-2 data to system-1
13.3. Power-up considerations
The device is designed such that no special power-up sequence is required other than GND being
applied first.
Table 18. Typical total supply current (ICC(A) + ICC(B))
VCC(A)
VCC(B)
Unit
0V
1.8 V
2.5 V
3.3 V
5.0 V
0V
0
很抱歉,暂时无法提供与“74LVC1T45GN,132”相匹配的价格&库存,您可以联系我们找货
免费人工找货