ESP8685 Series
Datasheet
UltraLowPower SoC with RISCV SingleCore CPU
Supporting IEEE 802.11b/g/n (2.4 GHz WiFi) and Bluetooth® 5 (LE)
2 MB or 4 MB flash in the 4×4 mm QFN package
Including:
ESP8685H2
ESP8685H4
Version 1.0
Espressif Systems
Copyright © 2022
www.espressif.com
Product Overview
ESP8685 is an ultra-low-power and highly-integrated MCU-based SoC solution that supports 2.4 GHz Wi-Fi and
Bluetooth® Low Energy (Bluetooth LE). The block diagram of ESP8685 is shown below.
Espressif’s ESP8685 Wi-Fi + Bluetooth® Low Energy SoC
Wireless MAC and
Baseband
Core System
RISC-V
32-bit
Microprocessor
RF
2.4 GHz Balun + Switch
Wi-Fi
Baseband
Wi-Fi MAC
2.4 GHz Transmitter
Cache
SRAM
Bluetooth LE
Link Controller
2.4 GHz Receiver
JTAG
ROM
Bluetooth LE
Baseband
RF Synthesizer
RTC
Peripherals
SPI0/1
SPI2
Flash
GPIO
RTC GPIO
I2C
UART
eFuse
Controller
I2S
RMT
RWDT
⚙
TWAI®
⚙
GDMA
LED PWM
RTC
Memory
Temperature
Sensor
RTC Super WDT
DIG ADC
Controller
MWDT
General-purpose Timers
USB Serial/
JTAG
PMU
Brownout Detector
Security
SHA
⚙
RSA
AES
⚙
RNG
HMAC ⚙
Secure ⚙
Boot
System Timer
⚙
Digital ⚙
Signature
Flash
Encryption
Modules having power in specific power modes:
Active
Active and Modem-sleep
Active, Modem-sleep, and Light-sleep;
All modes
⚙
optional in Light-sleep
Figure 1: Block Diagram
Solution Highlights
• A complete WiFi subsystem that complies
• Storage capacities ensured by 400 KB of
with IEEE 802.11b/g/n protocol and supports
SRAM (16 KB for cache) and 384 KB of ROM on
Station mode, SoftAP mode, SoftAP + Station
the chip
mode, and promiscuous mode
• Reliable security features ensured by
• A Bluetooth LE subsystem that supports
– Cryptographic hardware accelerators that
features of Bluetooth 5 and Bluetooth mesh
support AES-128/256, Hash, RSA, HMAC,
• Stateoftheart power and RF performance
digital signature and secure boot
• 32bit RISCV singlecore processor with a
– Random number generator
four-stage pipeline that operates at up to 160
– Permission control on accessing internal
MHz
Espressif Systems
memory, external memory, and peripherals
2
Submit Documentation Feedback
ESP8685 Datasheet v1.0
– External memory encryption and decryption
ideal for various scenarios and complex
applications
• Rich set of peripheral interfaces and GPIOs,
Features
WiFi
CPU and Memory
• 32-bit RISC-V single-core processor, up to 160
• IEEE 802.11 b/g/n-compliant
MHz
• Supports 20 MHz, 40 MHz bandwidth in 2.4
• CoreMark® score:
GHz band
– 1 core at 160 MHz: 407.22 CoreMark; 2.55
• 1T1R mode with data rate up to 150 Mbps
CoreMark/MHz
• Wi-Fi Multimedia (WMM)
• 384 KB ROM
• TX/RX A-MPDU, TX/RX A-MSDU
• 400 KB SRAM (16 KB for cache)
• Immediate Block ACK
• 8 KB SRAM in RTC
• Fragmentation and defragmentation
• SiP flash (see details in Chapter 1 ESP8685
• Transmit opportunity (TXOP)
Series Comparison)
• Automatic Beacon monitoring (hardware TSF)
• Access to flash accelerated by cache
• 4 × virtual Wi-Fi interfaces
• Supports flash in-Circuit Programming (ICP)
• Simultaneous support for Infrastructure BSS in
Station mode, SoftAP mode, Station + SoftAP
Advanced Peripheral Interfaces
mode, and promiscuous mode
• 15 × programmable GPIOs
Note that when ESP8685 scans in Station mode,
• Digital interfaces:
the SoftAP channel will change along with the
Station channel
– 3 × SPI (SPI0 and SPI1 are used to connect
the SiP flash. Only SPI2 is available)
• Antenna diversity
• 802.11mc FTM
– 2 × UART
• Supports external power amplifier
– 1 × I2C
– 1 × I2S
– Remote control peripheral, with 2 transmit
channels and 2 receive channels
Bluetooth
– LED PWM controller, with up to 6 channels
• Bluetooth LE: Bluetooth 5, Bluetooth mesh
– Full-speed USB Serial/JTAG controller
• High power mode (18 dBm)
– General DMA controller (GDMA), with 3
• Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
transmit channels and 3 receive channels
– 1 × TWAI® controller compatible with ISO
• Advertising extensions
11898-1 (CAN Specification 2.0)
• Multiple advertisement sets
• Analog interfaces:
• Channel selection algorithm #2
– 2 × 12-bit SAR ADCs, up to 6 channels
• Internal co-existence mechanism between Wi-Fi
– 1 × temperature sensor
and Bluetooth to share the same antenna
Espressif Systems
3
Submit Documentation Feedback
ESP8685 Datasheet v1.0
• Timers:
• Flash encryption
– 2 × 54-bit general-purpose timers
• 4096-bit OTP, up to 1792 bits for use
– 3 × watchdog timers
• Cryptographic hardware acceleration:
– 1 × 52-bit system timer
– AES-128/256 (FIPS PUB 197)
• Permission Control
Low Power Management
• SHA Accelerator (FIPS PUB 180-4)
• RSA Accelerator
• Power Management Unit with four power modes
• Random Number Generator (RNG)
Security
• HMAC
• Digital signature
• Secure boot
Applications (A Nonexhaustive List)
With ultra-low power consumption, ESP8685 is an ideal choice for IoT devices in the following areas:
– Wi-Fi speaker
• Smart Home
– Light control
– Logger toys and proximity sensing toys
– Smart button
• Smart Agriculture
– Smart plug
– Smart greenhouse
– Indoor positioning
– Smart irrigation
– Agriculture robot
• Industrial Automation
– Industrial robot
• Retail and Catering
– Mesh network
– POS machines
– Human machine interface (HMI)
– Service robot
– Industrial field bus
• Audio Device
– Internet music players
• Health Care
– Health monitor
– Live streaming devices
– Baby monitor
– Internet radio players
• Consumer Electronics
• Generic Low-power IoT Sensor Hubs
– Smart watch and bracelet
• Generic Low-power IoT Data Loggers
– Over-the-top (OTT) devices
Espressif Systems
4
Submit Documentation Feedback
ESP8685 Datasheet v1.0
Contents
Contents
Product Overview
2
Solution Highlights
2
Features
3
Applications
4
1 ESP8685 Series Comparison
9
1.1
ESP8685 Series Nomenclature
9
1.2
Comparison
9
2 Pin Definition
10
2.1
Pin Layout
10
2.2
Pin Description
11
2.3
Power Scheme
14
2.4
Strapping Pins
15
3 Functional Description
17
3.1
17
3.2
3.3
3.4
CPU and Memory
3.1.1 CPU
17
3.1.2 Internal Memory
17
3.1.3 Address Mapping Structure
18
3.1.4 Cache
18
System Clocks
19
3.2.1 CPU Clock
19
3.2.2 RTC Clock
19
Analog Peripherals
19
3.3.1 Analog-to-Digital Converter (ADC)
19
3.3.2 Temperature Sensor
19
Digital Peripherals
20
3.4.1 General Purpose Input / Output Interface (GPIO)
20
3.4.2 Serial Peripheral Interface (SPI)
27
3.4.3 Universal Asynchronous Receiver Transmitter (UART)
27
3.4.4 I2C Interface
27
3.4.5 I2S Interface
27
3.4.6 Remote Control Peripheral
28
3.4.7 LED PWM Controller
28
3.4.8 General DMA Controller
28
3.4.9 USB Serial/JTAG Controller
28
®
3.4.10 TWAI Controller
3.5
28
Radio and Wi-Fi
29
3.5.1 2.4 GHz Receiver
29
3.5.2 2.4 GHz Transmitter
29
3.5.3 Clock Generator
29
3.5.4 Wi-Fi Radio and Baseband
30
Espressif Systems
5
Submit Documentation Feedback
ESP8685 Datasheet v1.0
Contents
3.6
3.5.5 Wi-Fi MAC
30
3.5.6 Networking Features
30
Bluetooth LE
30
3.6.1 Bluetooth LE Radio and PHY
31
3.6.2 Bluetooth LE Link Layer Controller
31
3.7
Low Power Management
31
3.8
Timers
32
3.9
3.8.1 General Purpose Timers
32
3.8.2 System Timer
32
3.8.3 Watchdog Timers
32
Cryptographic Hardware Accelerators
33
3.10 Physical Security Features
33
3.11 Peripheral Pin Configurations
33
4 Electrical Characteristics
35
4.1
Absolute Maximum Ratings
35
4.2
Recommended Operating Conditions
35
4.3
DC Characteristics (3.3 V, 25 °C)
35
4.4
ADC Characteristics
36
4.5
Current Consumption
36
4.6
Reliability
37
4.7
Wi-Fi Radio
37
4.8
4.7.1 Wi-Fi RF Transmitter (TX) Specifications
38
4.7.2 Wi-Fi RF Receiver (RX) Specifications
38
Bluetooth LE Radio
40
4.8.1 Bluetooth LE RF Transmitter (TX) Specifications
40
4.8.2 Bluetooth LE RF Receiver (RX) Specifications
41
5 Package Information
44
6 Related Documentation and Resources
45
Revision History
46
Espressif Systems
6
Submit Documentation Feedback
ESP8685 Datasheet v1.0
List of Tables
List of Tables
1
ESP8685 Series Member Comparison
2
ESP8685H2 Pin Description
11
3
ESP8685H4 Pin Description
12
4
Description of ESP8685 Power-up and Reset Timing Parameters
15
5
Strapping Pins
16
6
Parameter Descriptions of Setup and Hold Times for the Strapping Pins
16
7
IO MUX Pin Functions
20
8
Power-Up Glitches on Pins
21
9
Peripheral Signals via GPIO Matrix
22
10
Peripheral Pin Configurations
33
11
Absolute Maximum Ratings
35
12
Recommended Operating Conditions
35
13
DC Characteristics (3.3 V, 25 °C)
35
14
ADC Characteristics
36
15
Current Consumption Depending on RF Modes
36
16
Current Consumption Depending on Work Modes
36
17
Reliability Qualifications
37
18
Wi-Fi Frequency
37
19
TX Power with Spectral Mask and EVM Meeting 802.11 Standards
38
20
TX EVM Test
38
21
RX Sensitivity
38
22
Maximum RX Level
39
23
RX Adjacent Channel Rejection
39
24
Bluetooth LE Frequency
40
25
Transmitter Characteristics - Bluetooth LE 1 Mbps
40
26
Transmitter Characteristics - Bluetooth LE 2 Mbps
40
27
Transmitter Characteristics - Bluetooth LE 125 Kbps
41
28
Transmitter Characteristics - Bluetooth LE 500 Kbps
41
29
Receiver Characteristics - Bluetooth LE 1 Mbps
42
30
Receiver Characteristics - Bluetooth LE 2 Mbps
42
31
Receiver Characteristics - Bluetooth LE 125 Kbps
43
32
Receiver Characteristics - Bluetooth LE 500 Kbps
43
Espressif Systems
9
7
Submit Documentation Feedback
ESP8685 Datasheet v1.0
List of Figures
List of Figures
1
Block Diagram
2
2
ESP8685 Series Nomenclature
9
3
ESP8685H2 Pin Layout (Top View)
10
4
ESP8685H4 Pin Layout (Top View)
11
5
ESP8685 Power Scheme
14
6
ESP8685 Power-up and Reset Timing
15
7
Setup and Hold Times for the Strapping Pins
16
8
Address Mapping Structure
18
9
QFN28 (4×4 mm) Package
44
Espressif Systems
8
Submit Documentation Feedback
ESP8685 Datasheet v1.0
1 ESP8685 Series Comparison
1. ESP8685 Series Comparison
1.1 ESP8685 Series Nomenclature
ESP8685
H
x
Flash
Flash temperature
H: High temperature
Chip series
Figure 2: ESP8685 Series Nomenclature
1.2 Comparison
Table 1: ESP8685 Series Member Comparison
Ordering Code
SiP Flash
Ambient Temperature (°C)
Package (mm)
ESP8685H2
2 MB
–40 ∼ 105
QFN28 (4*4)
ESP8685H4
4 MB
–40 ∼ 105
QFN28 (4*4)
1
SiP refers to flash integrated into the package.
Espressif Systems
9
Submit Documentation Feedback
ESP8685 Datasheet v1.0
2 Pin Definition
2. Pin Definition
22 GPIO19
23 U0RXD
24 U0TXD
25 XTAL_N
26 XTAL_P
27 VDDA
28 VDDA
2.1 Pin Layout
LNA_IN
1
21 GPIO18
VDD3P3
2
20 NC
VDD3P3
3
19 NC
XTAL_32K_P
4
18 NC
XTAL_32K_N
5
GPIO2
6
CHIP_EN
7
ESP8685
17 VDD3P3_CPU
16 GPIO10
15 GPIO9
GPIO8 14
MTDO 13
MTCK 12
VDD3P3_RTC 11
MTDI 10
9
MTMS
GPIO3
8
29 GND
Figure 3: ESP8685H2 Pin Layout (Top View)
Espressif Systems
10
Submit Documentation Feedback
ESP8685 Datasheet v1.0
22 GPIO19
23 U0RXD
24 U0TXD
25 XTAL_N
26 XTAL_P
28 VDDA
27 VDDA
2 Pin Definition
LNA_IN
1
21 GPIO18
VDD3P3
2
20 NC
VDD3P3
3
19 NC
XTAL_32K_P
4
18 VDD_SPI
XTAL_32K_N
5
GPIO2
6
CHIP_EN
7
ESP8685H4
17 VDD3P3_CPU
16 GPIO10
15 GPIO9
GPIO8 14
MTDO 13
MTCK 12
VDD3P3_RTC 11
MTDI 10
9
GPIO3
MTMS
8
29 GND
Figure 4: ESP8685H4 Pin Layout (Top View)
2.2 Pin Description
Table 2: ESP8685H2 Pin Description
Name
No.
Type
Power Domain
Function
LNA_IN
1
I/O
—
RF input and output
VDD3P3
2
PA
—
Analog power supply
VDD3P3
3
PA
—
Analog power supply
XTAL_32K_P
4
I/O/T
VDD3P3_RTC
GPIO0,
ADC1_CH0, XTAL_32K_P
XTAL_32K_N
5
I/O/T
VDD3P3_RTC
GPIO1,
ADC1_CH1, XTAL_32K_N
GPIO2
6
I/O/T
VDD3P3_RTC
GPIO2,
ADC1_CH2, FSPIQ
High: on, enables the chip.
CHIP_EN
7
I
VDD3P3_RTC
Low: off, the chip powers off.
Note: Do not leave the CHIP_EN pin floating.
Espressif Systems
11
Submit Documentation Feedback
ESP8685 Datasheet v1.0
2 Pin Definition
Name
No.
Type
Power Domain
Function
GPIO3
8
I/O/T
VDD3P3_RTC
GPIO3,
ADC1_CH3
MTMS
9
I/O/T
VDD3P3_RTC
GPIO4,
ADC1_CH4, FSPIHD,
MTMS
MTDI
10
I/O/T
VDD3P3_RTC
GPIO5,
ADC2_CH0, FSPIWP
MTDI
VDD3P3_RTC
11
PD
—
MTCK
12
I/O/T
VDD3P3_CPU
GPIO6,
FSPICLK,
MTCK
MTDO
13
I/O/T
VDD3P3_CPU
GPIO7,
FSPID,
MTDO
GPIO8
14
I/O/T
VDD3P3_CPU
GPIO8
GPIO9
15
I/O/T
VDD3P3_CPU
GPIO9
GPIO10
16
I/O/T
VDD3P3_CPU
GPIO10,
VDD3P3_CPU
17
PD
—
Input power supply for CPU IO
NC
18
—
—
NC
NC
19
—
—
NC
NC
20
—
—
NC
GPIO18
21
I/O/T
VDD3P3_CPU
GPIO18, USB_D-
GPIO19
22
I/O/T
VDD3P3_CPU
GPIO19, USB_D+
U0RXD
23
I/O/T
VDD3P3_CPU
GPIO20, U0RXD
U0TXD
24
I/O/T
VDD3P3_CPU
GPIO21, U0TXD
XTAL_N
25
—
—
External crystal output
XTAL_P
26
—
—
External crystal input
VDDA
27
PA
—
Analog power supply
VDDA
28
PA
—
Analog power supply
GND
29
G
—
Ground
Input power supply for RTC
FSPICS0
1
PA : analog power supply; PD : power supply for RTC IO; I: input; O: output; T: high impedance.
2
The pin function in this table refers only to some fixed settings and do not cover all cases for signals that
can be input and output through the GPIO matrix. For more information on the GPIO matrix, please
refer to Table 9.
Table 3: ESP8685H4 Pin Description
Name
No.
Type
Power Domain
Function
LNA_IN
1
I/O
—
RF input and output
VDD3P3
2
PA
—
Analog power supply
VDD3P3
3
PA
—
Analog power supply
XTAL_32K_P
4
I/O/T
VDD3P3_RTC
GPIO0,
ADC1_CH0, XTAL_32K_P
XTAL_32K_N
5
I/O/T
VDD3P3_RTC
GPIO1,
ADC1_CH1, XTAL_32K_N
GPIO2
6
I/O/T
VDD3P3_RTC
GPIO2,
ADC1_CH2, FSPIQ
High: on, enables the chip.
CHIP_EN
7
I
VDD3P3_RTC
Low: off, the chip powers off.
Note: Do not leave the CHIP_EN pin floating.
GPIO3
8
I/O/T
VDD3P3_RTC
GPIO3,
ADC1_CH3
MTMS
9
I/O/T
VDD3P3_RTC
GPIO4,
ADC1_CH4, FSPIHD,
MTMS
MTDI
10
I/O/T
VDD3P3_RTC
GPIO5,
ADC2_CH0, FSPIWP
MTDI
VDD3P3_RTC
11
PD
—
MTCK
12
I/O/T
VDD3P3_CPU
Espressif Systems
Input power supply for RTC
GPIO6,
12
Submit Documentation Feedback
FSPICLK,
MTCK
ESP8685 Datasheet v1.0
2 Pin Definition
Name
No.
Type
Power Domain
Function
MTDO
13
I/O/T
VDD3P3_CPU
GPIO7,
GPIO8
14
I/O/T
VDD3P3_CPU
GPIO8
GPIO9
15
I/O/T
VDD3P3_CPU
GPIO9
GPIO10
16
I/O/T
VDD3P3_CPU
GPIO10,
VDD3P3_CPU
17
PD
—
Input power supply for CPU IO
VDD_SPI
18
PD
—
For internal use only
NC
19
—
—
NC
NC
20
—
—
NC
GPIO18
21
I/O/T
VDD3P3_CPU
GPIO18, USB_D-
GPIO19
22
I/O/T
VDD3P3_CPU
GPIO19, USB_D+
U0RXD
23
I/O/T
VDD3P3_CPU
GPIO20, U0RXD
U0TXD
24
I/O/T
VDD3P3_CPU
GPIO21, U0TXD
XTAL_N
25
—
—
External crystal output
XTAL_P
26
—
—
External crystal input
VDDA
27
PA
—
Analog power supply
VDDA
28
PA
—
Analog power supply
GND
29
G
—
Ground
FSPID,
MTDO
FSPICS0
1
PA : analog power supply; PD : power supply for RTC IO; I: input; O: output; T: high impedance.
2
The pin function in this table refers only to some fixed settings and do not cover all cases for signals that
can be input and output through the GPIO matrix. For more information on the GPIO matrix, please
refer to Table 9.
Espressif Systems
13
Submit Documentation Feedback
ESP8685 Datasheet v1.0
2 Pin Definition
2.3 Power Scheme
ESP8685 has four input power pins:
• VDDA1
• VDDA2
• VDD3P3_RTC
• VDD3P3_CPU
VDDA1 and VDDA2 are the input power supply for the analog domain.
RTC IO is powered from VDD3P3_RTC.
The RTC domain is powered from Low Power Voltage Regulator, which is powered from VDD3P3_RTC.
The Digital System domain is powered from Digital System Voltage Regulator, which is powered from
VDD3P3_CPU and VDD3P3_RTC at the same time.
Digital IO is powered from VDD3P3_CPU.
The power scheme diagram is shown in Figure 5.
Figure 5: ESP8685 Power Scheme
Notes on CHIP_EN:
Figure 6 shows the power-up and reset timing of ESP8685. Details about the parameters are listed in Table
4.
Espressif Systems
14
Submit Documentation Feedback
ESP8685 Datasheet v1.0
2 Pin Definition
t0
t1
2.8 V
VDDA,
VDD3P3,
VDD3P3_RTC,
VDD3P3_CPU
VIL_nRST
CHIP_EN
Figure 6: ESP8685 Powerup and Reset Timing
Table 4: Description of ESP8685 Powerup and Reset Timing Parameters
Parameter
t0
t1
Min
Description
(µs)
Time between bringing up the VDDA, VDD3P3, VDD3P3_RTC, and
VDD3P3_CPU rails, and activating CHIP_EN
Duration of CHIP_EN signal level < VIL_nRST (refer to its value in
50
50
Table 13) to reset the chip
2.4 Strapping Pins
ESP8685 series has three strapping pins:
• GPIO2
• GPIO8
• GPIO9
Software can read the values of GPIO2, GPIO8 and GPIO9 from GPIO_STRAPPING field in GPIO_STRAP_REG
register.
During the chip’s system reset, the latches of the strapping pins sample the voltage level as strapping bits of ”0”
or ”1”, and hold these bits until the chip is powered down or shut down.
Types of system reset include:
• power-on reset
• RTC watchdog reset
• brownout reset
• analog super watchdog reset
• crystal clock glitch detection reset
By default, GPIO9 is connected to the internal weak pull-up resistor. If GPIO9 is not connected or connected to
an external high-impedance circuit, the latched bit value will be ”1”
To change the strapping bit values, you can apply the external pull-down/pull-up resistances, or use the host
MCU’s GPIOs to control the voltage level of these pins when powering on ESP8685 series.
After reset, the strapping pins work as normal-function pins.
Espressif Systems
15
Submit Documentation Feedback
ESP8685 Datasheet v1.0
2 Pin Definition
Table 5 lists detailed booting configurations of the strapping pins.
Table 5: Strapping Pins
Booting Mode 1
Pin
Default
SPI Boot
Download Boot
GPIO2
N/A
1
1
GPIO8
N/A
Don’t care
1
1
0
GPIO9
Internal weak
pull-up
Enabling/Disabling ROM Messages Print During Booting
Pin
Default
Functionality
When the value of eFuse field EFUSE_UART_PRINT_CONTROL is
0 (default), print is enabled and not controlled by GPIO8.
GPIO8
N/A
1, if GPIO8 is 0, print is enabled; if GPIO8 is 1, it is disabled.
2, if GPIO8 is 0, print is disabled; if GPIO8 is 1, it is enabled.
3, print is disabled and not controlled by GPIO8.
1
The strapping combination of GPIO8 = 0 and GPIO9 = 0 is invalid and will trigger unexpected behavior.
Figure 7 shows the setup and hold times for the strapping pins before and after the CHIP_EN signal goes high.
Details about the parameters are listed in Table 6.
t0
CHIP_EN
t1
VIL_nRST
VIH
Strapping pin
Figure 7: Setup and Hold Times for the Strapping Pins
Table 6: Parameter Descriptions of Setup and Hold Times for the Strapping Pins
Min
Parameter
Description
t0
Setup time before CHIP_EN goes from low to high
0
t1
Hold time after CHIP_EN goes high
3
Espressif Systems
(ms)
16
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3. Functional Description
This chapter describes the functions of ESP8685.
3.1 CPU and Memory
3.1.1 CPU
ESP8685 has a low-power 32-bit RISC-V single-core microprocessor with the following features:
• four-stage pipeline that supports a clock frequency of up to 160 MHz
• RV32IMC ISA
• 32-bit multiplier and 32-bit divider
• up to 32 vectored interrupts at seven priority levels
• up to 8 hardware breakpoints/watchpoints
• up to 16 PMP regions
• JTAG for debugging
3.1.2 Internal Memory
ESP8685’s internal memory includes:
• 384 KB of ROM: for booting and core functions.
• 400 KB of onchip SRAM: for data and instructions, running at a configurable frequency of up to 160
MHz. Of the 400 KB SRAM, 16 KB is configured for cache.
• RTC FAST memory: 8 KB of SRAM that can be accessed by the main CPU. It can retain data in
Deep-sleep mode.
• 4 Kbit of eFuse: 1792 bits are reserved for your data, such as encryption key and device ID.
• SiP flash : See details in Chapter 1 ESP8685 Series Comparison.
Espressif Systems
17
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.1.3 Address Mapping Structure
Figure 8: Address Mapping Structure
Note:
The memory space with gray background is not available for use.
3.1.4 Cache
ESP8685 has an eight-way set associative cache. This cache is read-only and has the following features:
• size: 16 KB
• block size: 32 bytes
• pre-load function
• lock function
• critical word first and early restart
Espressif Systems
18
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.2 System Clocks
3.2.1 CPU Clock
The CPU clock has three possible sources:
• external main crystal clock
• fast RC oscillator (typically about 17.5 MHz, and adjustable)
• PLL clock
The application can select the clock source from the three clocks above. The selected clock source drives the
CPU clock directly, or after division, depending on the application. Once the CPU is reset, the default clock
source would be the external main crystal clock divided by 2.
Note:
ESP32-C3 is unable to operate without an external main crystal clock.
3.2.2 RTC Clock
The RTC slow clock is used for RTC counter, RTC watchdog and low-power controller. It has three possible
sources:
• external low-speed (32 kHz) crystal clock
• internal slow RC oscillator (typically about 136 kHz, and adjustable)
• internal fast RC oscillator divided clock (derived from the fast RC oscillator divided by 256)
The RTC fast clock is used for RTC peripherals and sensor controllers. It has two possible sources:
• external main crystal clock divided by 2
• internal fast RC oscillator divide-by-N clock (typically about 17.5 MHz, and adjustable)
3.3 Analog Peripherals
3.3.1 AnalogtoDigital Converter (ADC)
ESP8685 integrates two 12-bit SAR ADCs.
• ADC1 supports measurements on 5 channels, and is factory-calibrated.
• ADC2 supports measurements on 1 channel, and is not factory-calibrated.
For ADC characteristics, please refer to Table 14.
3.3.2 Temperature Sensor
The temperature sensor generates a voltage that varies with temperature. The voltage is internally converted via
an ADC into a digital value.
The temperature sensor has a range of –40 °C to 125 °C. It is designed primarily to sense the temperature
changes inside the chip. The temperature value depends on factors like microcontroller clock frequency or I/O
load. Generally, the chip’s internal temperature is higher than the operating ambient temperature.
Espressif Systems
19
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.4 Digital Peripherals
3.4.1 General Purpose Input / Output Interface (GPIO)
ESP8685 has 15 GPIO pins which can be assigned various functions by configuring corresponding registers.
Besides digital signals, some GPIOs can be also used for analog functions, such as ADC.
All GPIOs have selectable internal pull-up or pull-down, or can be set to high impedance. When these GPIOs are
configured as an input, the input value can be read by software through the register. Input GPIOs can also be set
to generate edge-triggered or level-triggered CPU interrupts. All digital IO pins are bi-directional, non-inverting
and tristate, including input and output buffers with tristate control. These pins can be multiplexed with other
functions, such as the UART, etc. For low-power operations, the GPIOs can be set to holding state.
The IO MUX and the GPIO matrix are used to route signals from peripherals to GPIO pins. Together they provide
highly configurable I/O. Using GPIO Matrix, peripheral input signals can be configured from any IO pins while
peripheral output signals can be configured to any IO pins.
Table 7 shows the IO MUX functions of each pin.
Table 7: IO MUX Pin Functions
Name
No.
Function 0
Function 1
Function 2
Reset
Notes
XTAL_32K_P
4
GPIO0
GPIO0
—
0
R
XTAL_32K_N
5
GPIO1
GPIO1
—
0
R
GPIO2
6
GPIO2
GPIO2
FSPIQ
1
R
GPIO3
8
GPIO3
GPIO3
—
1
R
MTMS
9
MTMS
GPIO4
FSPIHD
1
R
MTDI
10
MTDI
GPIO5
FSPIWP
1
R
MTCK
12
MTCK
GPIO6
FSPICLK
1*
G
MTDO
13
MTDO
GPIO7
FSPID
1
G
GPIO8
14
GPIO8
GPIO8
—
1
—
GPIO9
15
GPIO9
GPIO9
—
3
—
GPIO10
16
GPIO10
GPIO10
FSPICS0
1
G
GPIO18
21
GPIO18
GPIO18
—
0
USB, G
GPIO19
22
GPIO19
GPIO19
—
0*
USB
U0RXD
23
U0RXD
GPIO20
—
3
G
U0TXD
24
U0TXD
GPIO21
—
4
—
Reset
The default configuration of each pin after reset:
• 0 - input disabled, in high impedance state (IE = 0)
• 1 - input enabled, in high impedance state (IE = 1)
• 2 - input enabled, pull-down resistor enabled (IE = 1, WPD = 1)
• 3 - input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
• 4 - output enabled, pull-up resistor enabled (OE = 1, WPU = 1)
• 0* - input disabled, pull-up resistor enabled (IE = 0, WPU = 0, USB_WPU = 1). See details in Notes
• 1* - When the value of eFuse bit EFUSE_DIS_PAD_JTAG is
Espressif Systems
20
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
0, input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
1, input enabled, in high impedance state (IE = 1)
We recommend pulling high or low GPIO pins in high impedance state to avoid unnecessary power
consumption. You may add pull-up and pull-down resistors in your PCB design referring to Table 13, or enable
internal pull-up and pull-down resistors during software initialization.
Notes
• R - These pins have analog functions.
• USB - GPIO18 and GPIO19 are USB pins. The pull-up value of a USB pin is controlled by the pin’s pull-up
value together with USB pull-up value. If any of the two pull-up values is 1, the pin’s pull-up resistor will be
enabled. The pull-up resistors of USB pins are controlled by USB_SERIAL_JTAG_DP_PULLUP bit.
• G - These pins have glitches during power-up. See details in Table 8.
Table 8: PowerUp Glitches on Pins
Typical Time Period
Pin
Glitch1
MTCK
Low-level glitch
5
MTDO
Low-level glitch
5
GPIO10
Low-level glitch
5
U0RXD
Low-level glitch
5
GPIO18
Pull-up glitch
1
(ns)
50000
Low-level glitch: the pin is at a low level during the time period;
High-level glitch: the pin is at a high level during the time period;
Pull-up glitch: the pin is pulled up during the time period;
Pull-down glitch: the pin is pulled down during the time period.
Table 9 shows the peripheral input/output signals via GPIO matrix.
Please pay attention to the configuration of the bit GPIO_FUNCn_OEN_SEL:
• GPIO_FUNCn_OEN_SEL = 1: the output enable is controlled by the corresponding bit n of
GPIO_ENABLE_REG:
– GPIO_ENABLE_REG = 0: output is disabled;
– GPIO_ENABLE_REG = 1: output is enabled;
• GPIO_FUNCn_OEN_SEL = 0: use the output enable signal from peripheral, for example SPIQ_oe in the
column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” of Table 9. Note that the signals such as
SPIQ_oe can be 1 (1’d1) or 0 (1’d0), depending on the configuration of corresponding peripherals. If it is
1’d1 in the “Output enable signal when GPIO_FUNCn_OEN_SEL = 0”, it indicates that once the register
GPIO_FUNCn_OEN_SEL is cleared, the output signal is always enabled by default.
Note:
Signals are numbered consecutively, but not all signals are valid.
• For input signals, only 6 ~ 11, 45, 53, 54, 63 ~ 68, 97 ~ 100 are valid.
• For output signals, only 6 ~ 11, 45 ~ 50, 53 ~ 58, 63 ~ 73, 97 ~ 100, 123 ~ 125 are valid.
Espressif Systems
21
Submit Documentation Feedback
ESP8685 Datasheet v1.0
Signal
No.
Input Signal
Default
value
Direct Input
through IO
Output Signal
MUX
Output enable signal when
GPIO_FUNCn_OEN_SEL= 0
Direct Output
through
IO_MUX
22
Submit Documentation Feedback
ESP8685 Datasheet v1.0
0
-
-
-
-
1’d1
no
1
-
-
-
-
1’d1
no
2
-
-
-
-
1’d1
no
3
-
-
-
-
1’d1
no
4
-
-
-
-
1’d1
no
5
-
-
-
-
1’d1
no
6
U0RXD_in
0
yes
U0TXD_out
1’d1
yes
7
U0CTS_in
0
no
U0RTS_out
1’d1
no
8
U0DSR_in
0
no
U0DTR_out
1’d1
no
9
U1RXD_in
0
no
U1TXD_out
1’d1
no
10
U1CTS_in
0
no
U1RTS_out
1’d1
no
11
U1DSR_in
0
no
U1DTR_out
1’d1
no
12
I2S_MCLK_in
0
no
I2S_MCLK_out
1’d1
no
13
I2SO_BCK_in
0
no
I2SO_BCK_out
1’d1
no
14
I2SO_WS_in
0
no
I2SO_WS_out
1’d1
no
15
I2SI_SD_in
0
no
I2SO_SD_out
1’d1
no
16
I2SI_BCK_in
0
no
I2SI_BCK_out
1’d1
no
17
I2SI_WS_in
0
no
I2SI_WS_out
1’d1
no
18
gpio_bt_priority
0
no
gpio_wlan_prio
1’d1
no
19
gpio_bt_active
0
no
gpio_wlan_active
1’d1
no
20
-
-
-
-
1’d1
no
21
-
-
-
-
1’d1
no
22
-
-
-
-
1’d1
no
23
-
-
-
-
1’d1
no
24
-
-
-
-
1’d1
no
3 Functional Description
Espressif Systems
Table 9: Peripheral Signals via GPIO Matrix
No.
Input Signal
Default
value
Direct Input
through IO
Output Signal
MUX
Output enable signal when
GPIO_FUNCn_OEN_SEL= 0
Direct Output
through
IO_MUX
23
Submit Documentation Feedback
ESP8685 Datasheet v1.0
25
-
-
-
-
1’d1
no
26
-
-
-
-
1’d1
no
27
-
-
-
-
1’d1
no
28
cpu_gpio_in0
0
no
cpu_gpio_out0
cpu_gpio_out_oen0
no
29
cpu_gpio_in1
0
no
cpu_gpio_out1
cpu_gpio_out_oen1
no
30
cpu_gpio_in2
0
no
cpu_gpio_out2
cpu_gpio_out_oen2
no
31
cpu_gpio_in3
0
no
cpu_gpio_out3
cpu_gpio_out_oen3
no
32
cpu_gpio_in4
0
no
cpu_gpio_out4
cpu_gpio_out_oen4
no
33
cpu_gpio_in5
0
no
cpu_gpio_out5
cpu_gpio_out_oen5
no
34
cpu_gpio_in6
0
no
cpu_gpio_out6
cpu_gpio_out_oen6
no
35
cpu_gpio_in7
0
no
cpu_gpio_out7
cpu_gpio_out_oen7
no
36
-
-
-
usb_jtag_tck
1’d1
no
37
-
-
-
usb_jtag_tms
1’d1
no
38
-
-
-
usb_jtag_tdi
1’d1
no
39
-
-
-
usb_jtag_tdo
1’d1
no
40
-
-
-
-
1’d1
no
41
-
-
-
-
1’d1
no
42
-
-
-
-
1’d1
no
43
-
-
-
-
1’d1
no
44
-
-
-
-
1’d1
no
45
ext_adc_start
0
no
ledc_ls_sig_out0
1’d1
no
46
-
-
-
ledc_ls_sig_out1
1’d1
no
47
-
-
-
ledc_ls_sig_out2
1’d1
no
48
-
-
-
ledc_ls_sig_out3
1’d1
no
49
-
-
-
ledc_ls_sig_out4
1’d1
no
50
-
-
-
ledc_ls_sig_out5
1’d1
no
51
rmt_sig_in0
0
no
rmt_sig_out0
1’d1
no
3 Functional Description
Espressif Systems
Signal
No.
Input Signal
Default
value
Direct Input
through IO
Output Signal
MUX
Output enable signal when
GPIO_FUNCn_OEN_SEL= 0
Direct Output
through
IO_MUX
24
Submit Documentation Feedback
ESP8685 Datasheet v1.0
52
rmt_sig_in1
0
no
rmt_sig_out1
1’d1
no
53
I2CEXT0_SCL_in
1
no
I2CEXT0_SCL_out
I2CEXT0_SCL_oe
no
54
I2CEXT0_SDA_in
1
no
I2CEXT0_SDA_out
I2CEXT0_SDA_oe
no
55
-
-
-
gpio_sd0_out
1’d1
no
56
-
-
-
gpio_sd1_out
1’d1
no
57
-
-
-
gpio_sd2_out
1’d1
no
58
-
-
-
gpio_sd3_out
1’d1
no
59
-
-
-
I2SO_SD1_out
1’d1
no
60
-
-
-
-
1’d1
no
61
-
-
-
-
1’d1
no
62
-
-
-
-
1’d1
no
63
FSPICLK_in
0
yes
FSPICLK_out_mux
FSPICLK_oe
yes
64
FSPIQ_in
0
yes
FSPIQ_out
FSPIQ_oe
yes
65
FSPID_in
0
yes
FSPID_out
FSPID_oe
yes
66
FSPIHD_in
0
yes
FSPIHD_out
FSPIHD_oe
yes
67
FSPIWP_in
0
yes
FSPIWP_out
FSPIWP_oe
yes
68
FSPICS0_in
0
yes
FSPICS0_out
FSPICS0_oe
yes
69
-
-
-
FSPICS1_out
FSPICS1_oe
no
70
-
-
-
FSPICS2_out
FSPICS2_oe
no
71
-
-
-
FSPICS3_out
FSPICS3_oe
no
72
-
-
-
FSPICS4_out
FSPICS4_oe
no
73
-
-
-
FSPICS5_out
FSPICS5_oe
no
74
twai_rx
1
no
twai_tx
1’d1
no
75
-
-
-
twai_bus_off_on
1’d1
no
76
-
-
-
twai_clkout
1’d1
no
77
-
-
-
-
1’d1
no
78
-
-
-
-
1’d1
no
3 Functional Description
Espressif Systems
Signal
No.
Input Signal
Default
value
Direct Input
through IO
Output Signal
MUX
Output enable signal when
GPIO_FUNCn_OEN_SEL= 0
Direct Output
through
IO_MUX
25
Submit Documentation Feedback
ESP8685 Datasheet v1.0
79
-
-
-
-
1’d1
no
80
-
-
-
-
1’d1
no
81
-
-
-
-
1’d1
no
82
-
-
-
-
1’d1
no
83
-
-
-
-
1’d1
no
84
-
-
-
-
1’d1
no
85
-
-
-
-
1’d1
no
86
-
-
-
-
1’d1
no
87
-
-
-
-
1’d1
no
88
-
-
-
-
1’d1
no
89
-
-
-
ant_sel0
1’d1
no
90
-
-
-
ant_sel1
1’d1
no
91
-
-
-
ant_sel2
1’d1
no
92
-
-
-
ant_sel3
1’d1
no
93
-
-
-
ant_sel4
1’d1
no
94
-
-
-
ant_sel5
1’d1
no
95
-
-
-
ant_sel6
1’d1
no
96
-
-
-
ant_sel7
1’d1
no
97
sig_in_func_97
0
no
sig_in_func97
1’d1
no
98
sig_in_func_98
0
no
sig_in_func98
1’d1
no
99
sig_in_func_99
0
no
sig_in_func99
1’d1
no
100
sig_in_func_100
0
no
sig_in_func100
1’d1
no
101
-
-
-
-
1’d1
no
102
-
-
-
-
1’d1
no
103
-
-
-
-
1’d1
no
104
-
-
-
-
1’d1
no
105
-
-
-
-
1’d1
no
3 Functional Description
Espressif Systems
Signal
No.
Input Signal
Default
value
Direct Input
through IO
Output Signal
MUX
Output enable signal when
GPIO_FUNCn_OEN_SEL= 0
Direct Output
through
IO_MUX
26
Submit Documentation Feedback
ESP8685 Datasheet v1.0
106
-
-
-
-
1’d1
no
107
-
-
-
-
1’d1
no
108
-
-
-
-
1’d1
no
109
-
-
-
-
1’d1
no
110
-
-
-
-
1’d1
no
111
-
-
-
-
1’d1
no
112
-
-
-
-
1’d1
no
113
-
-
-
-
1’d1
no
114
-
-
-
-
1’d1
no
115
-
-
-
-
1’d1
no
116
-
-
-
-
1’d1
no
117
-
-
-
-
1’d1
no
118
-
-
-
-
1’d1
no
119
-
-
-
-
1’d1
no
120
-
-
-
-
1’d1
no
121
-
-
-
-
1’d1
no
122
-
-
-
-
1’d1
no
123
-
-
-
CLK_OUT_out1
1’d1
no
124
-
-
-
CLK_OUT_out2
1’d1
no
125
-
-
-
CLK_OUT_out3
1’d1
no
126
-
-
-
-
1’d1
no
127
-
-
-
usb_jtag_trst
1’d1
no
3 Functional Description
Espressif Systems
Signal
3 Functional Description
3.4.2 Serial Peripheral Interface (SPI)
ESP8685 features three SPI interfaces (SPI0, SPI1, and SPI2). SPI0 and SPI1 can be configured to operate in
SPI memory mode, while SPI2 can be configured to operate in general-purpose SPI modes.
• SPI Memory mode
In SPI memory mode, SPI0 and SPI1 are used to connect the SiP flash in chip package. Data is transferred
in bytes. Up to four-line SDR reads and writes are supported. The clock frequency is configurable to a
maximum of 120 MHz.
• SPI2 Generalpurpose SPI (GPSPI) mode
When SPI2 acts as a general-purpose SPI, it can operate in master and slave modes. SPI2 supports
two-line full-duplex communication and single-/two-/four-line half-duplex communication in both master
and slave modes. The host’s clock frequency is configurable. Data is transferred in bytes. The clock
polarity (CPOL) and phase (CPHA) are also configurable. The SPI2 interface can connect to GDMA.
– In master mode, the clock frequency is 80 MHz at most, and the four modes of SPI transfer format are
supported.
– In slave mode, the clock frequency is 60 MHz at most, and the four modes of SPI transfer format are
also supported.
3.4.3 Universal Asynchronous Receiver Transmitter (UART)
ESP8685 has two UART interfaces, i.e. UART0 and UART1, which support IrDA and asynchronous
communication (RS232 and RS485) at a speed of up to 5 Mbps. The UART controller provides hardware flow
control (CTS and RTS signals) and software flow control (XON and XOFF). Both UART interfaces connect to
GDMA via UHCI0, and can be accessed by the GDMA controller or directly by the CPU.
3.4.4 I2C Interface
ESP8685 has an I2C bus interface which is used for I2C master mode or slave mode, depending on your
configuration. The I2C interface supports:
• standard mode (100 Kbit/s)
• fast mode (400 Kbit/s)
• up to 800 Kbit/s (constrained by SCL and SDA pull-up strength)
• 7-bit and 10-bit addressing mode
• double addressing mode
• 7-bit broadcast address
You can configure instruction registers to control the I2C interface for more flexibility.
3.4.5 I2S Interface
ESP8685 includes a standard I2S interface. This interface can operate as a master or a slave in full-duplex mode
or half-duplex mode, and can be configured for 8-bit, 16-bit, 24-bit, or 32-bit serial communication. BCK clock
frequency, from 10 kHz up to 40 MHz, is supported.
The I2S interface supports TDM PCM, TDM MSB alignment, TDM LSB alignment, TDM Phillips, and PDM TX
interface. It connects to the GDMA controller.
Espressif Systems
27
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.4.6 Remote Control Peripheral
The Remote Control Peripheral (RMT) supports two channels of infrared remote transmission and two channels
of infrared remote reception. By controlling pulse waveform through software, it supports various infrared and
other single wire protocols. All four channels share a 192 × 32-bit memory block to store transmit or receive
waveform.
3.4.7 LED PWM Controller
The LED PWM controller can generate independent digital waveform on six channels. The LED PWM
controller:
• can generate digital waveform with configurable periods and duty cycle. The accuracy of duty cycle can be
up to 18 bits.
• has multiple clock sources, including APB clock and external main crystal clock.
• can operate when the CPU is in Light-sleep mode.
• supports gradual increase or decrease of duty cycle, which is useful for the LED RGB color-gradient
generator.
3.4.8 General DMA Controller
ESP8685 has a general DMA controller (GDMA) with six independent channels, i.e. three transmit channels and
three receive channels. These six channels are shared by peripherals with DMA feature. The GDMA controller
implements a fixed-priority scheme among these channels, whose priority can be configured.
The GDMA controller controls data transfer using linked lists. It allows peripheral-to-memory and
memory-to-memory data transfer at a high speed. All channels can access internal RAM.
Peripherals on ESP8685 with DMA feature are SPI2, UHCI0, I2S, AES, SHA, and ADC.
3.4.9 USB Serial/JTAG Controller
ESP8685 integrates a USB Serial/JTAG controller. This controller has the following features:
• CDC-ACM virtual serial port and JTAG adapter functionality
• USB 2.0 full speed compliant, capable of up to 12 Mbit/s transfer speed (Note that this controller does not
support the faster 480 Mbit/s high-speed transfer mode)
• programming SiP flash
• CPU debugging with compact JTAG instructions
• a full-speed USB PHY integrated in the chip
3.4.10 TWAI® Controller
ESP8685 has a TWAI® controller with the following features:
• compatible with ISO 11898-1 protocol (CAN Specification 2.0)
• standard frame format (11-bit ID) and extended frame format (29-bit ID)
• bit rates from 1 Kbit/s to 1 Mbit/s
• multiple modes of operation: Normal, Listen Only, and Self-Test (no acknowledgment required)
• 64-byte receive FIFO
Espressif Systems
28
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
• acceptance filter (single and dual filter modes)
• error detection and handling: error counters, configurable error interrupt threshold, error code capture,
arbitration lost capture
3.5 Radio and WiFi
ESP8685 radio consists of the following blocks:
• 2.4 GHz receiver
• 2.4 GHz transmitter
• bias and regulators
• balun and transmit-receive switch
• clock generator
3.5.1 2.4 GHz Receiver
The 2.4 GHz receiver demodulates the 2.4 GHz RF signal to quadrature baseband signals and converts them to
the digital domain with two high-resolution, high-speed ADCs. To adapt to varying signal channel conditions,
ESP8685 integrates RF filters, Automatic Gain Control (AGC), DC offset cancelation circuits, and baseband
filters.
3.5.2 2.4 GHz Transmitter
The 2.4 GHz transmitter modulates the quadrature baseband signals to the 2.4 GHz RF signal, and drives the
antenna with a high-powered CMOS power amplifier. The use of digital calibration further improves the linearity of
the power amplifier.
Additional calibrations are integrated to cancel any radio imperfections, such as:
• carrier leakage
• I/Q amplitude/phase matching
• baseband nonlinearities
• RF nonlinearities
• antenna matching
These built-in calibration routines reduce the cost, time, and specialized equipment required for product
testing.
3.5.3 Clock Generator
The clock generator produces quadrature clock signals of 2.4 GHz for both the receiver and the transmitter. All
components of the clock generator are integrated into the chip, including inductors, varactors, filters, regulators
and dividers.
The clock generator has built-in calibration and self-test circuits. Quadrature clock phases and phase noise are
optimized on chip with patented calibration algorithms which ensure the best performance of the receiver and the
transmitter.
Espressif Systems
29
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.5.4 WiFi Radio and Baseband
ESP8685 Wi-Fi radio and baseband support the following features:
• 802.11b/g/n
• 802.11n MCS0-7 that supports 20 MHz and 40 MHz bandwidth
• 802.11n MCS32
• 802.11n 0.4 µs guard interval
• data rate up to 150 Mbps
• RX STBC (single spatial stream)
• adjustable transmitting power
• antenna diversity
ESP8685 supports antenna diversity with an external RF switch. This switch is controlled by one or more
GPIOs, and used to select the best antenna to minimize the effects of channel imperfections.
3.5.5 WiFi MAC
ESP8685 implements the full 802.11 b/g/n Wi-Fi MAC protocol. It supports the Basic Service Set (BSS) STA and
SoftAP operations under the Distributed Control Function (DCF). Power management is handled automatically
with minimal host interaction to minimize the active duty period.
ESP8685 Wi-Fi MAC applies the following low-level protocol functions automatically:
• 4 × virtual Wi-Fi interfaces
• infrastructure BSS in Station mode, SoftAP mode, Station + SoftAP mode, and promiscuous mode
• RTS protection, CTS protection, Immediate Block ACK
• fragmentation and defragmentation
• TX/RX A-MPDU, TX/RX A-MSDU
• transmit opportunity (TXOP)
• Wi-Fi multimedia (WMM)
• GCMP, CCMP, TKIP, WAPI, WEP, BIP, WPA2-PSK/WPA2-Enterprise, and WPA3-PSK/WPA3-Enterprise
• automatic beacon monitoring (hardware TSF)
• 802.11mc FTM
3.5.6 Networking Features
Espressif provides libraries for TCP/IP networking, ESP-WIFI-MESH networking, and other networking protocols
over Wi-Fi. TLS 1.0, 1.1 and 1.2 is also supported.
3.6 Bluetooth LE
ESP8685 includes a Bluetooth Low Energy subsystem that integrates a hardware link layer controller, an
RF/modem block and a feature-rich software protocol stack. It supports the core features of Bluetooth 5 and
Bluetooth mesh.
Espressif Systems
30
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.6.1 Bluetooth LE Radio and PHY
Bluetooth Low Energy radio and PHY in ESP8685 support:
• 1 Mbps PHY
• 2 Mbps PHY for higher data rates
• coded PHY for longer range (125 Kbps and 500 Kbps)
• listen before talk (LBT), implemented in hardware
• antenna diversity with an external RF switch
This switch is controlled by one or more GPIOs, and used to select the best antenna to minimize the effects
of channel imperfections.
3.6.2 Bluetooth LE Link Layer Controller
Bluetooth Low Energy Link Layer Controller in ESP8685 supports:
• LE advertising extensions, to enhance broadcasting capacity and broadcast more intelligent data
• multiple advertisement sets
• simultaneous advertising and scanning
• multiple connections in simultaneous central and peripheral roles
• adaptive frequency hopping and channel assessment
• LE channel selection algorithm #2
• connection parameter update
• high duty cycle non-connectable advertising
• LE privacy 1.2
• LE data packet length extension
• link layer extended scanner filter policies
• low duty cycle directed advertising
• link layer encryption
• LE Ping
3.7 Low Power Management
With the use of advanced power-management technologies, ESP8685 can switch between different power
modes:
• Active mode: CPU and chip radio are powered on. The chip can receive, transmit, or listen.
• Modem-sleep mode: The CPU is operational and the clock speed can be reduced. Wi-Fi base band,
Bluetooth LE base band, and radio are disabled, but Wi-Fi and Bluetooth LE connection can remain active.
• Light-sleep mode: The CPU is paused. Any wake-up events (MAC, host, RTC timer, or external interrupts)
will wake up the chip. Wi-Fi and Bluetooth LE connection can remain active.
• Deep-sleep mode: CPU and most peripherals are powered down. Only the RTC memory is powered on.
Wi-Fi connection data are stored in the RTC memory. The RTC timer or the RTC GPIOs can wake up the
chip from the Deep-sleep mode.
Espressif Systems
31
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
For power consumption in different power modes, please refer to Table 16.
3.8 Timers
3.8.1 General Purpose Timers
ESP8685 is embedded with two 54-bit general-purpose timers, which are based on 16-bit prescalers and 54-bit
auto-reload-capable up/down-timers.
The timers’ features are summarized as follows:
• a 16-bit clock prescaler, from 1 to 65536
• a 54-bit time-base counter programmable to be incrementing or decrementing
• able to read real-time value of the time-base counter
• halting and resuming the time-base counter
• programmable alarm generation
• level interrupt generation
3.8.2 System Timer
ESP8685 integrates a 52-bit system timer, which has two 52-bit counters and three comparators. The system
timer has the following features:
• counters with a fixed clock frequency of 16 MHz
• three types of independent interrupts generated according to alarm value
• two alarm modes: target mode and period mode
• 52-bit target alarm value and 26-bit periodic alarm value
• automatic reload of counter value
• counters can be stalled if the CPU is stalled or in OCD mode
3.8.3 Watchdog Timers
ESP8685 contains three watchdog timers: one in each of the two timer groups (called Main System Watchdog
Timers, or MWDT) and one in the RTC module (called the RTC Watchdog Timer, or RWDT).
During the flash boot process, RWDT and the MWDT in timer group 0 (TIMG0) are enabled automatically in order
to detect and recover from booting errors.
Watchdog timers have the following features:
• four stages, each with a programmable timeout value. Each stage can be configured, enabled and
disabled separately
• interrupt, CPU reset, or core reset for MWDT upon expiry of each stage; interrupt, CPU reset, core reset, or
system reset for RWDT upon expiry of each stage
• 32-bit expiry counter
• write protection, to prevent RWDT and MWDT configuration from being altered inadvertently
• flash boot protection
If the boot process from an SPI flash does not complete within a predetermined period of time, the
watchdog will reboot the entire main system.
Espressif Systems
32
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
3.9 Cryptographic Hardware Accelerators
ESP8685 is equipped with hardware accelerators of general algorithms, such as AES-128/AES-256 (FIPS PUB
197), ECB/CBC/OFB/CFB/CTR (NIST SP 800-38A), SHA1/SHA224/SHA256 (FIPS PUB 180-4), and RSA3072.
The chip also supports independent arithmetic, such as Big Integer Multiplication and Big Integer Modular
Multiplication. The maximum operation length for RSA and Big Integer Modular Multiplication is 3072 bits. The
maximum factor length for Big Integer Multiplication is 1536 bits.
3.10
Physical Security Features
• Transparent flash encryption (AES-XTS algorithm) with software inaccessible key prevents unauthorized
readout of your application code or data.
• Secure boot feature uses a hardware root of trust to ensure only signed firmware (with RSA-PSS signature)
can be booted.
• HMAC module can use a software inaccessible MAC key to generate MAC signatures for identity
verification and other purposes.
• Digital Signature module can use a software inaccessible secure key to generate RSA signatures for identity
verification.
• World Controller provides two running environments for software. All hardware and software resources are
sorted to two groups, and placed in either secure or general world. The secure world cannot be accessed
by hardware in the general world, thus establishing a security boundary.
3.11
Peripheral Pin Configurations
Table 10: Peripheral Pin Configurations
Interface
Signal
Pin
Function
ADC
ADC1_CH0
XTAL_32K_P
Two 12-bit SAR ADCs
ADC1_CH1
XTAL_32K_N
ADC1_CH2
GPIO2
ADC1_CH3
GPIO3
ADC1_CH4
MTMS
ADC2_CH0
MTDI
MTDI
MTDI
MTCK
MTCK
MTMS
MTMS
MTDO
MTDO
U0RXD_in
Any GPIO pins
JTAG
UART
JTAG for software debugging
U0CTS_in
Two UART channels with hardware flow control
and GDMA
U0DSR_in
U0TXD_out
U0RTS_out
U0DTR_out
U1RXD_in
U1CTS_in
U1DSR_in
Espressif Systems
33
Submit Documentation Feedback
ESP8685 Datasheet v1.0
3 Functional Description
Interface
Signal
Pin
Function
Any GPIO pins
One I2C channel in slave or master mode
U1TXD_out
U1RTS_out
U1DTR_out
I2C
I2CEXT0_SCL_in
I2CEXT0_SDA_in
I2CEXT1_SCL_in
I2CEXT1_SDA_in
I2CEXT0_SCL_out
I2CEXT0_SDA_out
I2CEXT1_SCL_out
I2CEXT1_SDA_out
LED PWM
ledc_ls_sig_out0~5
Any GPIO pins
Six independent PWM channels
I2S
I2S0O_BCK_in
Any GPIO pins
Stereo input and output from/to the audiocodec
I2S_MCLK_in
I2SO_WS_in
I2SI_SD_in
I2SI_BCK_in
I2SI_WS_in
I2SO_BCK_out
I2S_MCLK_out
I2SO_WS_out
I2SO_SD_out
I2SI_BCK_out
I2SI_WS_out
I2SO_SD1_out
SPI2
FSPICLK_in/_out_mux
Any GPIO pins
FSPICS0_in/_out
• Master mode and slave mode of SPI, Dual
SPI, Quad SPI, and QPI
FSPICS1~5_out
• Four modes of SPI transfer format
FSPID_in/_out
• Configurable SPI frequency
FSPIQ_in/_out
• 64-byte FIFO or GDMA buffer
FSPIWP_in/_out
FSPIHD_in/_out
Remote Control
RMT_SIG_IN0~1
Peripheral
RMT_SIG_OUT0~1
USB Serial/JTAG
USB_D+
GPIO19
USB-to-serial converter, and USB-to-JTAG
USB_D-
GPIO18
converter
twai_rx
Any GPIO pins
Compatible with ISO 11898-1 protocol
TWAI
Any GPIO pins
Two channels for an IR transceiver of various
waveforms
twai_tx
twai_bus_off_on
twai_clkout
Espressif Systems
34
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
4. Electrical Characteristics
4.1 Absolute Maximum Ratings
Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the
device. These are stress ratings only, and do not refer to the functional operation of the device.
Table 11: Absolute Maximum Ratings
Symbol
VDDA,
Parameter
VDD3P3,
VDD3P3_RTC,
Min
Voltage applied to power supply pins
VDD3P3_CPU
per power domain
TST ORE
Storage temperature
Max
Unit
–0.3
3.6
V
–40
150
°C
Max
Unit
4.2 Recommended Operating Conditions
Table 12: Recommended Operating Conditions
Symbol
Parameter
VDDA, VDD3P3
Voltage applied to power supply
VDD3P3_RTC
pins per power domain
VDD3P3_CPU2
Voltage applied to power supply pin
IV DD
3
TA
Min
Typ
3.0
3.3
3.6
V
3.0
3.3
3.6
V
Current delivered by external power supply
0.5
—
—
A
Operating ambient temperature
–40
—
105
°C
1
For more information, please refer to Section 2.3 Power Scheme.
2
To write eFuse, VDD3P3_CPU should not be higher than 3.3 V.
3
If you use a single power supply, the recommended output current is 500 mA or more.
4.3 DC Characteristics (3.3 V, 25 °C)
Table 13: DC Characteristics (3.3 V, 25 °C)
Symbol
Parameter
CIN
Pin capacitance
VIH
Min
Typ
—
High-level input voltage
0.75 × VDD
1
Max
2
—
Unit
—
pF
1
VDD + 0.3
V
1
VIL
Low-level input voltage
–0.3
—
0.25 × VDD
IIH
High-level input current
—
—
50
nA
Low-level input current
—
—
50
nA
—
—
V
IIL
VOH
VOL
2
2
High-level output voltage
0.8 × VDD
Low-level output voltage
1
1
V
—
—
0.1 × VDD
V
—
40
—
mA
—
28
—
mA
1
IOH
IOL
High-level source current (VDD = 3.3 V,
VOH >= 2.64 V, PAD_DRIVER = 3)
Low-level sink current (VDD1= 3.3 V, VOL =
0.495 V, PAD_DRIVER = 3)
RP U
Pull-up resistor
—
45
—
kΩ
RP D
Pull-down resistor
—
45
—
kΩ
Cont’d on next page
Espressif Systems
35
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Table 13 – cont’d from previous page
Symbol
VIH_nRST
VIL_nRST
Parameter
Min
Chip reset release voltage
Typ
0.75 × VDD
Chip reset voltage
1
–0.3
1
VDD is the I/O voltage for a particular power domain of pins.
2
VOH and VOL are measured using high-impedance load.
Max
Unit
1
—
VDD + 0.3
—
0.25 × VDD
V
1
V
4.4 ADC Characteristics
Table 14: ADC Characteristics
Symbol
Parameter
Min
ADC connected to an external
DNL (Differential nonlinearity)1
7
LSB
–12
12
LSB
—
100
kSPS 2
ATTEN0
0
750
mV
ATTEN1
0
1050
mV
ATTEN2
0
1300
mV
ATTEN3
0
2500
mV
ambient temperature at 25 °C;
Wi-Fi off
Sampling rate
—
Effective Range
Unit
–7
100 nF capacitor; DC signal input;
INL (Integral nonlinearity)
Max
1
To get better DNL results, you can sample multiple times and apply a filter, or calculate the average value.
2
kSPS means kilo samples-per-second.
4.5 Current Consumption
The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF
port. All transmitters’ measurements are based on a 100% duty cycle.
Table 15: Current Consumption Depending on RF Modes
Work mode
Peak
Description
(mA)
TX
Active (RF working)
RX
802.11b, 1 Mbps, @21 dBm
335
802.11g, 54 Mbps, @19 dBm
285
802.11n, HT20, MCS7, @18.5 dBm
276
802.11n, HT40, MCS7, @18.5 dBm
278
802.11b/g/n, HT20
84
802.11n, HT40
87
Table 16: Current Consumption Depending on Work Modes
Work mode
Modem-sleep1, 2
Light-sleep
Espressif Systems
Description
The CPU is
powered on
3
Typ
Unit
160 MHz
20
mA
80 MHz
15
mA
130
µA
—
36
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Deep-sleep
RTC timer + RTC memory
5
µA
Power off
CHIP_PU is set to low level, the chip is powered off
1
µA
1
The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and
the cache idle.
2
When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current
consumption changes accordingly.
3
In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU
load and the peripherals used.
4.6 Reliability
Table 17: Reliability Qualifications
Test Item
Test Conditions
Test Standard
125 °C, 1000 hours
JESD22-A108
ESD (Electro-Static
HBM (Human Body Mode)1± 2000 V
JS-001
Discharge Sensitivity)
CDM (Charge Device Mode)2± 1000 V
JS-002
HTOL (High Temperature
Operating Life)
Current trigger ± 200 mA
Latch up
JESD78
Voltage trigger 1.5 × VDDmax
Bake 24 hours @125 °C
Preconditioning
J-STD-020, JESD47,
Moisture soak (level 3: 192 hours @30 °C, 60% RH)
IR reflow solder: 260 + 0 °C, 20 seconds, three times
TCT (Temperature Cycling
Test)
JESD22-A113
–65 °C / 150 °C, 500 cycles
JESD22-A104
130 °C, 85% RH, 96 hours
JESD22-A118
150 °C, 1000 hours
JESD22-A103
– 40 °C, 1000 hours
JESD22-A119
uHAST (Highly
Accelerated Stress Test,
unbiased)
HTSL (High Temperature
Storage Life)
LTSL (Low Temperature
Storage Life)
1
JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
2
JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.
4.7 WiFi Radio
Table 18: WiFi Frequency
Parameter
Center frequency of operating channel
Espressif Systems
Min
Typ
Max
(MHz)
(MHz)
(MHz)
2412
—
2484
37
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
4.7.1 WiFi RF Transmitter (TX) Specifications
Table 19: TX Power with Spectral Mask and EVM Meeting 802.11 Standards
Min
Typ
Max
(dBm)
(dBm)
(dBm)
802.11b, 1 Mbps
—
21.0
—
802.11b, 11 Mbps
—
21.0
—
802.11g, 6 Mbps
—
21.0
—
802.11g, 54 Mbps
—
19.0
—
802.11n, HT20, MCS0
—
20.0
—
802.11n, HT20, MCS7
—
18.5
—
802.11n, HT40, MCS0
—
20.0
—
802.11n, HT40, MCS7
—
18.5
—
Rate
Table 20: TX EVM Test
Rate
Min
Typ
SL1
(dB)
(dB)
(dB)
802.11b, 1 Mbps, @21 dBm
—
–24.5
–10
802.11b, 11 Mbps, @21 dBm
—
–24.5
–10
802.11g, 6 Mbps, @21 dBm
—
–21.0
–5
802.11g, 54 Mbps, @19 dBm
—
–27.0
–25
802.11n, HT20, MCS0, @20 dBm
—
–22.5
–5
802.11n, HT20, MCS7, @18.5 dBm
—
–28.5
–27
802.11n, HT40, MCS0, @20 dBm
—
–22.5
–5
802.11n, HT40, MCS7, @18.5 dBm
—
–28.5
–27
1
SL stands for standard limit value.
4.7.2 WiFi RF Receiver (RX) Specifications
Table 21: RX Sensitivity
Min
Typ
Max
(dBm)
(dBm)
(dBm)
802.11b, 1 Mbps
—
–98.4
—
802.11b, 2 Mbps
—
–96.0
—
802.11b, 5.5 Mbps
—
–93.0
—
802.11b, 11 Mbps
—
–88.6
—
802.11g, 6 Mbps
—
–93.8
—
802.11g, 9 Mbps
—
–92.2
—
802.11g, 12 Mbps
—
–91.0
—
802.11g, 18 Mbps
—
–88.4
—
802.11g, 24 Mbps
—
–85.8
—
802.11g, 36 Mbps
—
–82.0
—
Rate
Cont’d on next page
Espressif Systems
38
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Table 21 – cont’d from previous page
Min
Typ
Max
(dBm)
(dBm)
(dBm)
802.11g, 48 Mbps
—
–78.0
—
802.11g, 54 Mbps
—
–76.6
—
802.11n, HT20, MCS0
—
–93.6
—
802.11n, HT20, MCS1
—
–90.8
—
802.11n, HT20, MCS2
—
–88.4
—
802.11n, HT20, MCS3
—
–85.0
—
802.11n, HT20, MCS4
—
–81.8
—
802.11n, HT20, MCS5
—
–77.8
—
802.11n, HT20, MCS6
—
–76.0
—
802.11n, HT20, MCS7
—
–74.8
—
802.11n, HT40, MCS0
—
–90.0
—
802.11n, HT40, MCS1
—
–88.0
—
802.11n, HT40, MCS2
—
–85.2
—
802.11n, HT40, MCS3
—
–82.0
—
802.11n, HT40, MCS4
—
–78.8
—
802.11n, HT40, MCS5
—
–74.6
—
802.11n, HT40, MCS6
—
–73.0
—
802.11n, HT40, MCS7
—
–71.4
—
Rate
Table 22: Maximum RX Level
Min
Typ
Max
(dBm)
(dBm)
(dBm)
802.11b, 1 Mbps
—
5
—
802.11b, 11 Mbps
—
5
—
802.11g, 6 Mbps
—
5
—
802.11g, 54 Mbps
—
0
—
802.11n, HT20, MCS0
—
5
—
802.11n, HT20, MCS7
—
0
—
802.11n, HT40, MCS0
—
5
—
802.11n, HT40, MCS7
—
0
—
Rate
Table 23: RX Adjacent Channel Rejection
Rate
Min
Typ
Max
(dB)
(dB)
(dB)
802.11b, 1 Mbps
—
35
—
802.11b, 11 Mbps
—
35
—
802.11g, 6 Mbps
—
31
—
802.11g, 54 Mbps
—
20
—
802.11n, HT20, MCS0
—
31
—
Cont’d on next page
Espressif Systems
39
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Table 23 – cont’d from previous page
Rate
Min
Typ
Max
(dB)
(dB)
(dB)
802.11n, HT20, MCS7
—
16
—
802.11n, HT40, MCS0
—
25
—
802.11n, HT40, MCS7
—
11
—
4.8 Bluetooth LE Radio
Table 24: Bluetooth LE Frequency
Parameter
Min
Typ
Max
(MHz)
(MHz)
(MHz)
2402
—
2480
Center frequency of operating channel
4.8.1 Bluetooth LE RF Transmitter (TX) Specifications
Table 25: Transmitter Characteristics Bluetooth LE 1 Mbps
Parameter
Description
Min
RF power control range
RF transmit power
Carrier frequency offset and drift
Modulation characteristics
In-band spurious emissions
Typ
Max
Unit
–27.00
0
18.00
Gain control step
—
3.00
—
dB
Max |fn |n=0, 1, 2, ..k
—
17.00
—
kHz
Max |f0 − fn |
—
1.75
—
kHz
Max |fn − fn−5 |
—
1.46
—
kHz
|f1 − f0 |
—
0.80
—
kHz
∆ f 1avg
—
250.00
—
kHz
—
190.00
—
kHz
∆ f 2avg /∆ f 1avg
—
0.83
—
—
± 2 MHz offset
—
–37.62
—
dBm
± 3 MHz offset
—
–41.95
—
dBm
> ± 3 MHz offset
—
–44.48
—
dBm
Min ∆ f 2max (for at least
99.9% of all ∆ f 2max )
dBm
Table 26: Transmitter Characteristics Bluetooth LE 2 Mbps
Parameter
RF transmit power
Carrier frequency offset and drift
Description
Min
RF power control range
Max
Unit
–27.00
0
18.00
Gain control step
—
3.00
—
dB
Max |fn |n=0, 1, 2, ..k
—
20.80
—
kHz
Max |f0 − fn |
—
1.30
—
kHz
Max |fn − fn−5 |
—
1.33
—
kHz
|f1 − f0 |
—
0.70
—
kHz
∆ f 1avg
—
498.00
—
kHz
dBm
Cont’d on next page
Modulation characteristics
Espressif Systems
Typ
40
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Table 26 – cont’d from previous page
Parameter
Description
Min
Min ∆ f 2max (for at least
Max
Unit
—
430.00
—
kHz
∆ f 2avg /∆ f 1avg
—
0.93
—
—
± 4 MHz offset
—
–43.55
—
dBm
± 5 MHz offset
—
–45.26
—
dBm
> ± 5 MHz offset
—
–45.26
—
dBm
99.9% of all ∆ f 2max )
In-band spurious emissions
Typ
Table 27: Transmitter Characteristics Bluetooth LE 125 Kbps
Parameter
Description
Min
RF power control range
RF transmit power
Carrier frequency offset and drift
Modulation characteristics
Max
Unit
–27.00
0
18.00
Gain control step
—
3.00
—
dB
Max |fn |n=0, 1, 2, ..k
—
17.50
—
kHz
Max |f0 − fn |
—
0.45
—
kHz
|fn − fn−3 |
—
0.70
—
kHz
|f0 − f3 |
—
0.30
—
kHz
∆ f 1avg
—
250.00
—
kHz
—
235.00
—
kHz
± 2 MHz offset
—
–37.90
—
dBm
± 3 MHz offset
—
–41.00
—
dBm
> ± 3 MHz offset
—
–42.50
—
dBm
Min ∆ f 1max (for at least
99.9% of all∆ f 2max )
In-band spurious emissions
Typ
dBm
Table 28: Transmitter Characteristics Bluetooth LE 500 Kbps
Parameter
RF transmit power
Carrier frequency offset and drift
Modulation characteristics
Description
Min
RF power control range
Max
Unit
–27.00
0
18.00
Gain control step
—
3.00
—
dB
Max |fn |n=0, 1, 2, ..k
—
17.00
—
kHz
Max |f0 − fn |
—
0.88
—
kHz
|fn − fn−3 |
—
1.00
—
kHz
|f0 − f3 |
—
0.20
—
kHz
∆ f 2avg
—
208.00
—
kHz
—
190.00
—
kHz
± 2 MHz offset
—
–37.90
—
dBm
± 3 MHz offset
—
–41.30
—
dBm
> ± 3 MHz offset
—
–42.80
—
dBm
Min ∆ f 2max (for at least
99.9% of all ∆ f 2max )
In-band spurious emissions
Typ
dBm
4.8.2 Bluetooth LE RF Receiver (RX) Specifications
Espressif Systems
41
Submit Documentation Feedback
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Table 29: Receiver Characteristics Bluetooth LE 1 Mbps
Parameter
Description
Sensitivity @30.8% PER
—
—
–97
—
dBm
Maximum received signal @30.8% PER
—
—
5
—
dBm
Co-channel C/I
—
—
8
—
dB
F = F0 + 1 MHz
—
–3
—
dB
F = F0 – 1 MHz
—
–4
—
dB
F = F0 + 2 MHz
—
–29
—
dB
F = F0 – 2 MHz
—
–31
—
dB
F = F0 + 3 MHz
—
–33
—
dB
F = F0 – 3 MHz
—
–27
—
dB
F ≥ F0 + 4 MHz
—
–29
—
dB
F ≤ F0 – 4 MHz
—
–38
—
dB
—
—
–29
—
dB
F = Fimage + 1 MHz
—
–41
—
dB
F = Fimage – 1 MHz
—
–33
—
dB
30 MHz ~ 2000 MHz
—
–5
—
dBm
2003 MHz ~ 2399 MHz
—
–18
—
dBm
2484 MHz ~ 2997 MHz
—
–15
—
dBm
3000 MHz ~ 12.75 GHz
—
–5
—
dBm
—
—
–30
—
dBm
Adjacent channel selectivity C/I
Image frequency
Adjacent channel to image frequency
Out-of-band blocking performance
Intermodulation
Min
Typ
Max
Unit
Table 30: Receiver Characteristics Bluetooth LE 2 Mbps
Parameter
Description
Sensitivity @30.8% PER
—
—
–93
—
dBm
Maximum received signal @30.8% PER
—
—
3
—
dBm
Co-channel C/I
—
—
10
—
dB
F = F0 + 2 MHz
—
–7
—
dB
F = F0 – 2 MHz
—
–7
—
dB
F = F0 + 4 MHz
—
–28
—
dB
F = F0 – 4 MHz
—
–26
—
dB
F = F0 + 6 MHz
—
–26
—
dB
F = F0 – 6 MHz
—
–27
—
dB
F ≥ F0 + 8 MHz
—
–29
—
dB
F ≤ F0 – 8 MHz
—
–28
—
dB
—
—
–28
—
dB
F = Fimage + 2 MHz
—
–26
—
dB
F = Fimage – 2 MHz
—
–7
—
dB
30 MHz ~ 2000 MHz
—
–5
—
dBm
2003 MHz ~ 2399 MHz
—
–19
—
dBm
2484 MHz ~ 2997 MHz
—
–16
—
dBm
3000 MHz ~ 12.75 GHz
—
–5
—
dBm
—
—
–29
—
dBm
Adjacent channel selectivity C/I
Image frequency
Adjacent channel to image frequency
Out-of-band blocking performance
Intermodulation
Espressif Systems
42
Submit Documentation Feedback
Min
Typ
Max
Unit
ESP8685 Datasheet v1.0
4 Electrical Characteristics
Table 31: Receiver Characteristics Bluetooth LE 125 Kbps
Parameter
Description
Sensitivity @30.8% PER
—
—
–105
—
dBm
Maximum received signal @30.8% PER
—
—
5
—
dBm
Co-channel C/I
—
—
3
—
dB
F = F0 + 1 MHz
—
–6
—
dB
F = F0 – 1 MHz
—
–6
—
dB
F = F0 + 2 MHz
—
–33
—
dB
F = F0 – 2 MHz
—
–43
—
dB
F = F0 + 3 MHz
—
–37
—
dB
F = F0 – 3 MHz
—
–47
—
dB
F ≥ F0 + 4 MHz
—
–40
—
dB
F ≤ F0 – 4 MHz
—
–50
—
dB
—
—
–40
—
dB
F = Fimage + 1 MHz
—
–50
—
dB
F = Fimage – 1 MHz
—
–37
—
dB
Adjacent channel selectivity C/I
Image frequency
Adjacent channel to image frequency
Min
Typ
Max
Unit
Table 32: Receiver Characteristics Bluetooth LE 500 Kbps
Parameter
Description
Sensitivity @30.8% PER
—
—
–100
—
dBm
Maximum received signal @30.8% PER
—
—
5
—
dBm
Co-channel C/I
—
—
3
—
dB
F = F0 + 1 MHz
—
–2
—
dB
F = F0 – 1 MHz
—
–3
—
dB
F = F0 + 2 MHz
—
–32
—
dB
F = F0 – 2 MHz
—
–33
—
dB
F = F0 + 3 MHz
—
–23
—
dB
F = F0 – 3 MHz
—
–40
—
dB
F ≥ F0 + 4 MHz
—
–34
—
dB
F ≤ F0 – 4 MHz
—
–44
—
dB
—
—
–34
—
dB
F = Fimage + 1 MHz
—
–46
—
dB
F = Fimage – 1 MHz
—
–23
—
dB
Adjacent channel selectivity C/I
Image frequency
Adjacent channel to image frequency
Espressif Systems
43
Submit Documentation Feedback
Min
Typ
Max
Unit
ESP8685 Datasheet v1.0
5 Package Information
5. Package Information
·
Figure 9: QFN28 (4×4 mm) Package
Note:
• All dimensions are in millimeters.
• For information about tape, reel, and product marking, please refer to Espressif Chip Packaging Information.
Espressif Systems
44
Submit Documentation Feedback
ESP8685 Datasheet v1.0
6 Related Documentation and Resources
6. Related Documentation and Resources
Related Documentation
• Certificates
https://espressif.com/en/support/documents/certificates
• Documentation Updates and Update Notification Subscription
https://espressif.com/en/support/download/documents
Developer Zone
• ESP-IDF and other development frameworks on GitHub.
https://github.com/espressif
• ESP32 BBS Forum – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions,
share knowledge, explore ideas, and help solve problems with fellow engineers.
https://esp32.com/
• The ESP Journal – Best Practices, Articles, and Notes from Espressif folks.
https://blog.espressif.com/
• See the tabs SDKs and Demos, Apps, Tools, AT Firmware.
https://espressif.com/en/support/download/sdks-demos
Products
• ESP8685 Series SoCs – Browse through all ESP8685 SoCs.
https://espressif.com/en/products/socs?id=ESP8685
• ESP8685 Series Modules – Browse through all ESP8685-based modules.
https://espressif.com/en/products/modules?id=ESP8685
• ESP8685 Series DevKits – Browse through all ESP8685-based devkits.
https://espressif.com/en/products/devkits?id=ESP8685
• ESP Product Selector – Find an Espressif hardware product suitable for your needs by comparing or applying filters.
https://products.espressif.com/#/product-selector?language=en
Contact Us
• See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples
(Online stores), Become Our Supplier, Comments & Suggestions.
https://espressif.com/en/contact-us/sales-questions
Espressif Systems
45
Submit Documentation Feedback
ESP8685 Datasheet v1.0
Revision History
Revision History
Date
Version
Release Notes
• Added a new variant ESP8685H4;
• Updated Figure Block Diagram to show power modes;
• Added CoreMark score in Features;
2022-04-08
v1.0
• Updated Figure ESP8685 Power Scheme and related descriptions;
• Updated Table Peripheral Signals via GPIO Matrix;
• Added note 2 to Table Recommended Operating Conditions;
• Other updates to wording.
2021-07-30
v0.5
Espressif Systems
Preliminary release
46
Submit Documentation Feedback
ESP8685 Datasheet v1.0
Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.
ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.
NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.
www.espressif.com
All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.
Copyright © 2022 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.