0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GD32F305VET6

GD32F305VET6

  • 厂商:

    GIGADEVICE(兆易创新)

  • 封装:

    LQFP100_14X14MM

  • 描述:

    GD32F305VET6

  • 数据手册
  • 价格&库存
GD32F305VET6 数据手册
GigaDevice Semiconductor Inc. GD32F305xx Arm® Cortex®-M4 32-bit MCU Datasheet GD32F305xx Datasheet Table of Contents Table of Contents................................................................................................................. 1 List of Figures ...................................................................................................................... 4 List of Tables ........................................................................................................................ 5 1. General description ...................................................................................................... 7 2. Device overview ............................................................................................................ 8 2.1. Device information .................................................................................................... 8 2.2. Block diagram ........................................................................................................... 9 2.3. Pinouts and pin assignment ................................................................................... 10 2.4. Memory map............................................................................................................ 13 2.5. Clock tree ................................................................................................................ 17 2.6. Pin 2.6.1. 2.6.2. 2.6.3. definitions ......................................................................................................... 18 GD32F305Zx LQFP144 pin definitions ................................................................ 18 GD32F305Vx LQFP100 pin definitions ................................................................ 27 GD32F305Rx LQFP64 pin definitions.................................................................. 34 3. Functional description ............................................................................................... 38 3.1. Arm® Cortex®-M4 core............................................................................................. 38 3.2. On-chip memory...................................................................................................... 38 3.3. Clock, reset and supply management .................................................................... 39 3.4. Boot modes ............................................................................................................. 39 3.5. Power saving modes............................................................................................... 40 3.6. Analog to digital converter (ADC)........................................................................... 40 3.7. Digital to analog converter (DAC) ........................................................................... 41 3.8. DMA ......................................................................................................................... 41 3.9. General-purpose inputs/outputs (GPIOs) ............................................................... 41 3.10. Timers and PWM generation ............................................................................... 42 3.11. Real time clock (RTC) .......................................................................................... 43 3.12. Inter-integrated circuit (I2C)................................................................................. 43 3.13. Serial peripheral interface (SPI)........................................................................... 43 3.14. Universal synchronous asynchronous receiver transmitter (USART) ............... 44 3.15. Inter-IC sound (I2S) .............................................................................................. 44 1 GD32F305xx Datasheet 3.16. Universal serial bus full-speed interface (USBFS) .............................................. 44 3.17. Controller area network (CAN) ............................................................................ 45 3.18. External memory controller (EXMC).................................................................... 45 3.19. Debug mode......................................................................................................... 45 3.20. Package and operation temperature ................................................................... 46 4. Electrical characteristics ........................................................................................... 47 4.1. Absolute maximum ratings ..................................................................................... 47 4.2. Operating conditions characteristics ..................................................................... 47 4.3. Power consumption ................................................................................................ 49 4.4. EMC characteristics ................................................................................................ 56 4.5. Power supply supervisor characteristics ............................................................... 57 4.6. Electrical sensitivity................................................................................................ 57 4.7. External clock characteristics ................................................................................ 58 4.8. Internal clock characteristics ................................................................................. 60 4.9. PLL characteristics ................................................................................................. 62 4.10. Memory characteristics ....................................................................................... 63 4.11. NRST pin characteristics ..................................................................................... 64 4.12. GPIO characteristics ............................................................................................ 64 4.13. ADC characteristics ............................................................................................. 66 4.14. Temperature sensor characteristics ................................................................... 67 4.15. DAC characteristics ............................................................................................. 68 4.16. I2C characteristics ............................................................................................... 69 4.17. SPI characteristics ............................................................................................... 70 4.18. I2S characteristics ............................................................................................... 72 4.19. USART characteristics......................................................................................... 74 4.20. CAN characteristics ............................................................................................. 74 4.21. USBFS characteristics ......................................................................................... 74 4.22. EXMC characteristics .......................................................................................... 75 4.23. TIMER characteristics.......................................................................................... 79 4.24. WDGT characteristics .......................................................................................... 79 4.25. Parameter conditions .......................................................................................... 79 5. Package information................................................................................................... 80 2 GD32F305xx Datasheet 5.1. LQFP144 package outline dimensions ................................................................... 80 5.2. LQFP100 package outline dimensions ................................................................... 82 5.3. LQFP64 package outline dimensions ..................................................................... 84 5.4. Thermal characteristics .......................................................................................... 86 6. Ordering information .................................................................................................. 88 7. Revision history .......................................................................................................... 89 3 GD32F305xx Datasheet List of Figures Figure 2-1. GD32F305xx block diagram .................................................................................................................... 9 Figure 2-2. GD32F305Zx LQFP144 pinouts............................................................................................................ 10 Figure 2-3. GD32F305Vx LQFP100 pinouts............................................................................................................ 11 Figure 2-4. GD32F305Rx LQFP64 pinouts.............................................................................................................. 12 Figure 2-5. GD32F305xx clock tree........................................................................................................................... 17 Figure 4-1. Recommended power supply decoupling capacitors (1)(2)........................................................... 48 Figure 4-2. Typical supply current consumption in Run mode ...................................................................... 54 Figure 4-3. Typical supply current consumption in Sleep mode ................................................................... 54 Figure 4-4. Recommended external NRST pin circuit........................................................................................ 64 Figure 4-5. I/O port AC characteristics definition ................................................................................................ 65 Figure 4-6. I2C bus timing diagram .......................................................................................................................... 70 Figure 4-7. SPI timing diagram - master mode..................................................................................................... 71 Figure 4-8. SPI timing diagram - slave mode ........................................................................................................ 71 Figure 4-9. I2S timing diagram - master mode...................................................................................................... 73 Figure 4-10. I2S timing diagram - slave mode ...................................................................................................... 73 Figure 4-11. USBFS timings: definition of data signal rise and fall time..................................................... 75 Figure 5-1. LQFP144 package outline...................................................................................................................... 80 Figure 5-2. LQFP144 recommended footprint ...................................................................................................... 81 Figure 5-3. LQFP100 package outline...................................................................................................................... 82 Figure 5-4. LQFP100 recommended footprint ...................................................................................................... 83 Figure 5-5. LQFP64 package outline........................................................................................................................ 84 Figure 5-6. LQFP64 recommended footprint......................................................................................................... 85 4 GD32F305xx Datasheet List of Tables Table 2-1. GD32F305xx devices features and peripheral list ............................................................................ 8 Table 2-2. GD32F305xx memory map ...................................................................................................................... 13 Table 2-3. GD32F305Zx LQFP144 pin definitions ................................................................................................ 18 Table 2-4. GD32F305Vx LQFP100 pin definitions................................................................................................ 27 Table 2-5. GD32F305Rx LQFP64 pin definitions.................................................................................................. 34 Table 4-1. Absolute maximum ratings (1)(4) ............................................................................................................. 47 Table 4-2. DC operating conditions.......................................................................................................................... 47 Table 4-3. Clock frequency(1)....................................................................................................................................... 48 Table 4-4. Operating conditions at Power up/ Power down(1) ......................................................................... 48 Table 4-5. Start-up timings of Operating conditions(1)(2)(3) ................................................................................ 48 Table 4-6. Power saving mode wakeup timings characteristics (1)(2).............................................................. 48 Table 4-7. Power consumption characteristics(2)(3)(4)(5)....................................................................................... 49 Table 4-8. Peripheral current consumption characteristics(1) ......................................................................... 55 Table 4-9. EMS characteristics(1) ............................................................................................................................... 56 Table 4-10. EMI characteristics(1)............................................................................................................................... 56 Table 4-11. Power supply supervisor characteristics........................................................................................ 57 Table 4-12. ESD characteristics(1).............................................................................................................................. 58 Table 4-13. Static latch-up characteristics(1) ......................................................................................................... 58 Table 4-14. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics.. 58 Table 4-15. High speed external clock characteristics (HXTAL in bypass mode).................................... 58 Table 4-16. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics... 59 Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode) ........................... 60 Table 4-18. High speed internal clock (IRC8M) characteristics ...................................................................... 60 Table 4-19. Low speed internal clock (IRC40K) characteristics ..................................................................... 61 Table 4-20. High speed internal clock (IRC48M) characteristics.................................................................... 61 Table 4-21. PLL characteristics.................................................................................................................................. 62 Table 4-22. PLL1 characteristics ............................................................................................................................... 62 Table 4-23. PLL2 characteristics ............................................................................................................................... 63 Table 4-24. Flash memory characteristics............................................................................................................. 63 Table 4-25. NRST pin characteristics....................................................................................................................... 64 Table 4-26. I/O port DC characteristics(1)(3) ............................................................................................................. 64 Table 4-27. I/O port AC characteristics(1)(2) ............................................................................................................. 65 Table 4-28. ADC characteristics ................................................................................................................................ 66 Table 4-29. ADC RAIN max for fADC = 40 MHz .............................................................................................................. 67 Table 4-30. ADC dynamic accuracy at fADC = 14 MHz (1)...................................................................................... 67 Table 4-31. ADC dynamic accuracy at fADC = 40 MHz (1)...................................................................................... 67 Table 4-32. ADC static accuracy at fADC = 14 MHz (1)............................................................................................ 67 Table 4-33. Temperature sensor characteristics(1).............................................................................................. 67 Table 4-34. DAC characteristics ................................................................................................................................ 68 Table 4-35. I2C characteristics(1)(2) ............................................................................................................................ 69 5 GD32F305xx Datasheet Table 4-36. Standard SPI characteristics(1) ............................................................................................................ 70 Table 4-37. I2S characteristics(1)(2)............................................................................................................................. 72 Table 4-38. USART characteristics(1)........................................................................................................................ 74 Table 4-39. USBFS start up time................................................................................................................................ 74 Table 4-40. USBFS DC electrical characteristics................................................................................................. 74 Table 4-41. USBFS full speed-electrical characteristics(1)................................................................................ 74 Table 4-42. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)(3).............................. 75 Table 4-43. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)(3)............................. 75 Table 4-44. Asynchronous multiplexed PSRAM/NOR read timings (1)(2)(3) .................................................... 76 Table 4-45. Asynchronous multiplexed PSRAM/NOR write timings (1)(2)(3) ................................................... 76 Table 4-46. Synchronous multiplexed PSRAM/NOR read timings(1)(2)(3)....................................................... 77 Table 4-47. Synchronous multiplexed PSRAM write timings(1)(2)(3) ................................................................ 77 Table 4-48. Synchronous non-multiplexed PSRAM/NOR read timings(1)(2)(3).............................................. 78 Table 4-49. Synchronous non-multiplexed PSRAM write timings(1)(2)(3) ....................................................... 78 Table 4-50. TIMER characteristics(1) ......................................................................................................................... 79 Table 4-51. FWDGT min/max timeout period at 40 kHz (IRC40K) (1) ............................................................... 79 Table 4-52. WWDGT min-max timeout value at 60 MHz (fPCLK1)(1) ................................................................... 79 Table 5-1. LQFP144 package dimensions.............................................................................................................. 80 Table 5-2. LQFP100 package dimensions.............................................................................................................. 82 Table 5-3. LQFP64 package dimensions ................................................................................................................ 84 Table 5-4. Package thermal characteristics(1)...................................................................................................... 86 Table 6-1. Part ordering code for GD32F305xx devices.................................................................................... 88 Table 7-1. Revision history.......................................................................................................................................... 89 6 GD32F305xx Datasheet 1. General description The GD32F305xx device belongs to the mainstream line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the Arm® Cortex ®-M4 RISC core with best cost-performance ratio in terms of enhanced processing capacity, reduced power consumption and peripheral set. The Cortex ®-M4 core features implements a full set of DSP instructions to address digital signal control markets that demand an ef f icient, easy -to-use blend of control and signal processing capabilities. It also provides a Memory Protection Unit (MPU) and powerful trace technology for enhanced application security and advanced debug support. The GD32F305xx device incorporates the Arm® Cortex®-M4 32-bit processor core operating at 120 MHz f requency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 1024 KB on-chip Flash memory and 96 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to two 12-bit 2.6 MSPS ADCs, two 12-bit DACs, up to ten general 16-bit timers, two 16-bit PWM advanced timers, and two 16-bit basic timers, as well as standard and advanced communication interfaces: up to three SPIs, two I2Cs, three USARTs and two UARTs, two I2Ss, two CANs and a USBFS. The device operates f rom a 2.6 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the f lexibility f or maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above f eatures make GD32F305xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, communication networks, embedded modules, human machine interf ace, security and alarm systems, graphic display, automotive navigation, IoT and so on. 7 GD32F305xx Datasheet 2. Device overview 2.1. Device information Table 2-1. GD32F305xx devices features and peripheral list GD32F305xx Part Number Code area Flash (KB) Data area (KB) Total (KB) Timers SRAM (KB) RC RE RG VC VE VG ZC ZE ZG 128 256 256 256 256 256 256 256 256 256 0 0 256 768 0 256 768 0 256 768 128 256 512 1024 256 512 1024 256 512 1024 64 96 96 96 96 96 96 96 96 96 General 4 4 4 10 4 4 10 4 4 10 timer(16-bit) (1-4) (1-4) (1-4) (1-4,8-13) (1-4) (1-4) (1-4,8-13) (1-4) (1-4) (1-4,8-13) Advanced 1 1 2 2 1 2 2 2 2 2 timer(16-bit) (0) (0) (0,7) (0,7) (0) (0,7) (0,7) (0,7) (0,7) (0,7) Basic 2 2 2 2 2 2 2 2 2 2 timer(16-bit) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) (5-6) SysTick 1 1 1 1 1 1 1 1 1 1 Watchdog 2 2 2 2 2 2 2 2 2 2 RTC 1 1 1 1 1 1 1 1 1 1 USART Connectivity RB UART I2C 3 3 3 3 3 3 3 3 3 3 (0-2) (0-2) (0-2) (0-2) (0-2) (0-2) (0-2) (0-2) (0-2) (0-2) 2 2 2 2 2 2 2 2 2 2 (3-4) (3-4) (3-4) (3-4) (3-4) (3-4) (3-4) (3-4) (3-4) (3-4) 2 2 2 2 2 2 2 2 2 2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) (0-2)/(1-2) CAN 2 2 2 2 2 2 2 2 2 2 USBFS 1 1 1 1 1 1 1 1 1 1 GPIO 51 51 51 51 80 80 80 112 112 112 EXMC 0 0 0 0 1 1 1 1 1 1 EXTI 16 16 16 16 16 16 16 16 16 16 ADC Unit (CHs) 2(16) 2(16) 2(16) 2(16) 2(16) 2(16) 2(16) 2(16) 2(16) 2(16) DAC 2 2 2 2 2 2 2 2 2 2 SPI/I2S Package LQFP64 LQFP100 LQFP144 8 GD32F305xx Datasheet 2.2. Block diagram Figure 2-1. GD32F305xx block diagram SW/JTAG TPIU Flash Memory Controller IBus Flash Memory PLL F max : 120MHz DBus FMC Master DMA0 7chs Master DMA1 5chs Master EXMC AHB: Fmax = 120MHz NVIC ICode DCode System ARM Cortex-M4 Processor Fmax:120MHz POR/ PDR Slave CRC LDO 1.2V RCU AHB Peripherals Slave Slave USBFS SRAM Controller AHB to APB Bridge2 IRC 8MHz SRAM HXTAL 4-32MHz AHB to APB Bridge1 LVD Slave Interrput request CAN0 USART0 Slave 12-bit SAR ADC Slave SPI0 WWDGT ADC0~1 TIMER1~3 EXTI SPI1~2\ I2S1~2 GPIOA USART1~2 GPIOB I2C0 Powered By V DDA GPIOE APB1: Fmax = 60MHz GPIOD APB2: Fmax = 120MHz GPIOC Powered By VDDA I2C1 FWDGT RTC GPIOF DAC GPIOG TIMER4~6 TIMER0 UART3~4 TIMER7 CAN1 TIMER8~10 TIMER 11~13 CTC 9 GD32F305xx Datasheet 2.3. Pinouts and pin assignment Figure 2-2. GD32F305Zx LQFP144 pinouts PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 VSS_10 VDD_10 PD6 PD7 PG9 PG10 PG11 PG12 PG13 PG14 VSS_11 VDD_11 PG15 PB4 PB3 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 144143142141140139138137136135134133 132131130129128127126125124123122121120 119118117116115114113112111110109 PE2 1 108 PE3 PE4 2 107 VSS_2 3 106 NC PE5 PE6 4 105 PA13 5 104 PA12 VBAT 6 103 PA11 PC13-TAMPER-RTC PC14-OSC32IN 7 102 PA10 8 101 PA9 PC15-OSC32OUT 9 100 PA8 PF0 10 99 PC9 PF1 11 98 PC8 PF2 12 97 PC7 PF3 PF4 13 96 PC6 14 95 VDD_9 PF5 15 94 VSS_9 VSS_5 16 93 PG8 92 PG7 91 PG6 90 PG5 89 PG4 88 PG3 VDD_2 VDD_5 17 PF6 18 PF7 19 PF8 20 PF9 21 PF10 22 87 PG2 OSCIN 23 86 PD15 OSCOUT 24 85 PD14 NRST 25 84 VDD_8 PC0 26 83 VSS_8 PC1 27 82 PD13 PC2 28 81 PD12 PC3 VSSA 29 80 PD11 30 79 PD10 VREFVREF+ 31 78 PD9 32 77 PD8 VDDA 33 76 PB15 PA0_WKUP 34 75 PB14 PA1 35 74 PB13 PA2 36 73 PB12 GigaDevice GD32F305Zx LQFP144 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VDD_1 VSS_1 PB11 PB10 PE15 PE13 PE14 PE12 PE11 VDD_7 PE10 VSS_7 PE8 PE9 PE7 PG1 PG0 PF15 PF14 VDD_6 PF13 VSS_6 PF12 PB2 PF11 PB1 PC5 PB0 PA7 PC4 PA6 PA5 VDD_4 PA4 VSS_4 PA3 10 GD32F305xx Datasheet Figure 2-3. GD32F305Vx LQFP100 pinouts PA14 PA15 PC10 PC11 PC12 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 PE0 PE1 VSS_3 VDD_3 PE2 1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 PE3 PE4 2 74 VSS_2 3 73 NC PE5 PE6 4 72 PA13 5 71 PA12 VBAT 6 PC13-TAMPER-RTC PC14-OSC32IN 7 70 69 PA10 8 68 PA9 PC15-OSC32OUT 9 67 PA8 VSS_5 10 66 PC9 VDD_5 11 65 PC8 64 PC7 63 PC6 14 62 PD15 OSCIN 12 GigaDevice GD32F305Vx LQFP100 VDD_2 PA11 OSCOUT NRST PC0 13 15 61 PD14 PC1 16 60 PD13 PC2 PC3 17 59 PD12 18 58 PD11 VSSA 19 57 PD10 VREFVREF+ 20 56 PD9 21 55 PD8 VDDA 22 54 PB15 PA0-WKUP 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS_1 VDD_1 PB11 PB10 PE15 PE14 PE13 PE11 PE12 PE10 PE9 PE8 PE7 PB2 PB1 PC5 PB0 PA7 PC4 PA6 PA5 PA4 VDD_4 PA3 VSS_4 11 GD32F305xx Datasheet Figure 2-4. GD32F305Rx LQFP64 pinouts PA14 PA15 PC10 PC11 PC12 PD2 PB3 PB4 PB5 PB6 PB7 BOOT0 PB8 PB9 VSS_3 VDD_3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VBAT 1 48 VDD_2 PC13-TAMPER-RTC 2 47 VSS_2 PC14-OSC32IN 3 46 PA13 PC15-OSC32OUT PD0-OSCIN 4 45 PA12 5 44 PA11 PD1-OSCOUT 6 43 PA10 7 42 PA9 41 PA8 NRST PC0 GigaDevice GD32F305Rx LQFP64 8 PC1 9 40 PC9 PC2 PC3 VSSA 10 39 PC8 11 38 PC7 12 37 PC6 VDDA 13 36 PB15 PA0-WKUP 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_1 VSS_1 PB11 PB10 PB2 PB1 PB0 PC5 PC4 PA7 PA6 PA5 PA4 VDD_4 PA3 VSS_4 12 GD32F305xx Datasheet 2.4. Memory map Table 2-2. GD32F305xx memory map Pre-defined Regions Bus External device External RAM AHB3 AHB1 Peripheral APB2 Address Peripherals 0xA000 0000 - 0xA000 0FFF EXMC - SWREG 0x9000 0000 - 0x9FFF FFFF EXMC - PC CARD 0x7000 0000 - 0x8FFF FFFF EXMC - NAND 0x6000 0000 - 0x6FFF FFFF EXMC - NOR/PSRAM/SRAM 0x5000 0000 - 0x5003 FFFF USBFS 0x4008 0000 - 0x4FFF FFFF Reserved 0x4004 0000 - 0x4007 FFFF Reserved 0x4002 BC00 - 0x4003 FFFF Reserved 0x4002 B000 - 0x4002 BBFF Reserved 0x4002 A000 - 0x4002 AFFF Reserved 0x4002 8000 - 0x4002 9FFF Reserved 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF Reserved 0x4002 6000 - 0x4002 63FF Reserved 0x4002 5000 - 0x4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF Reserved 0x4002 3C00 - 0x4002 3FFF Reserved 0x4002 3800 - 0x4002 3BFF Reserved 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2C00 - 0x4002 2FFF Reserved 0x4002 2800 - 0x4002 2BFF Reserved 0x4002 2400 - 0x4002 27FF Reserved 0x4002 2000 - 0x4002 23FF FMC 0x4002 1C00 - 0x4002 1FFF Reserved 0x4002 1800 - 0x4002 1BFF Reserved 0x4002 1400 - 0x4002 17FF Reserved 0x4002 1000 - 0x4002 13FF RCU 0x4002 0C00 - 0x4002 0FFF Reserved 0x4002 0800 - 0x4002 0BFF Reserved 0x4002 0400 - 0x4002 07FF DMA1 0x4002 0000 - 0x4002 03FF DMA0 0x4001 8400 - 0x4001 FFFF Reserved 0x4001 8000 - 0x4001 83FF Reserved 0x4001 7C00 - 0x4001 7FFF Reserved 0x4001 7800 - 0x4001 7BFF Reserved 0x4001 7400 - 0x4001 77FF Reserved 13 GD32F305xx Datasheet Pre-defined Regions Bus APB1 Address Peripherals 0x4001 7000 - 0x4001 73FF Reserved 0x4001 6C00 - 0x4001 6FFF Reserved 0x4001 6800 - 0x4001 6BFF Reserved 0x4001 5C00 - 0x4001 67FF Reserved 0x4001 5800 - 0x4001 5BFF Reserved 0x4001 5400 - 0x4001 57FF TIMER10 0x4001 5000 - 0x4001 53FF TIMER9 0x4001 4C00 - 0x4001 4FFF TIMER8 0x4001 4800 - 0x4001 4BFF Reserved 0x4001 4400 - 0x4001 47FF Reserved 0x4001 4000 - 0x4001 43FF Reserved 0x4001 3C00 - 0x4001 3FFF Reserved 0x4001 3800 - 0x4001 3BFF USART0 0x4001 3400 - 0x4001 37FF TIMER7 0x4001 3000 - 0x4001 33FF SPI0 0x4001 2C00 - 0x4001 2FFF TIMER0 0x4001 2800 - 0x4001 2BFF ADC1 0x4001 2400 - 0x4001 27FF ADC0 0x4001 2000 - 0x4001 23FF GPIOG 0x4001 1C00 - 0x4001 1FFF GPIOF 0x4001 1800 - 0x4001 1BFF GPIOE 0x4001 1400 - 0x4001 17FF GPIOD 0x4001 1000 - 0x4001 13FF GPIOC 0x4001 0C00 - 0x4001 0FFF GPIOB 0x4001 0800 - 0x4001 0BFF GPIOA 0x4001 0400 - 0x4001 07FF EXTI 0x4001 0000 - 0x4001 03FF AFIO 0x4000 CC00 - 0x4000 FFFF Reserved 0x4000 C800 - 0x4000 CBFF CTC 0x4000 C400 - 0x4000 C7FF Reserved 0x4000 C000 - 0x4000 C3FF Reserved 0x4000 8000 - 0x4000 BFFF Reserved 0x4000 7C00 - 0x4000 7FFF Reserved 0x4000 7800 - 0x4000 7BFF Reserved 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PMU 0x4000 6C00 - 0x4000 6FFF BKP 0x4000 6800 - 0x4000 6BFF CAN1 0x4000 6400 - 0x4000 67FF CAN0 0x4000 6000 - 0x4000 63FF CAN SRAM 512 bytes 14 GD32F305xx Datasheet Pre-defined Regions SRAM Bus AHB Address Peripherals 0x4000 5C00 - 0x4000 5FFF Reserved 0x4000 5800 - 0x4000 5BFF I2C1 0x4000 5400 - 0x4000 57FF I2C0 0x4000 5000 - 0x4000 53FF UART4 0x4000 4C00 - 0x4000 4FFF UART3 0x4000 4800 - 0x4000 4BFF USART2 0x4000 4400 - 0x4000 47FF USART1 0x4000 4000 - 0x4000 43FF Reserved 0x4000 3C00 - 0x4000 3FFF SPI2/I2S2 0x4000 3800 - 0x4000 3BFF SPI1/I2S1 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF FWDGT 0x4000 2C00 - 0x4000 2FFF WWDGT 0x4000 2800 - 0x4000 2BFF RTC 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIMER13 0x4000 1C00 - 0x4000 1FFF TIMER12 0x4000 1800 - 0x4000 1BFF TIMER11 0x4000 1400 - 0x4000 17FF TIMER6 0x4000 1000 - 0x4000 13FF TIMER5 0x4000 0C00 - 0x4000 0FFF TIMER4 0x4000 0800 - 0x4000 0BFF TIMER3 0x4000 0400 - 0x4000 07FF TIMER2 0x4000 0000 - 0x4000 03FF TIMER1 0x2007 0000 - 0x3FFF FFFF Reserved 0x2006 0000 - 0x2006 FFFF Reserved 0x2003 0000 - 0x2005 FFFF Reserved 0x2001 8000 - 0x2002 FFFF Reserved 0x2000 0000 - 0x2001 7FFF SRAM 0x1FFF F810 - 0x1FFF FFFF Reserved 0x1FFF F800 - 0x1FFF F80F Option Bytes 0x1FFF F000 - 0x1FFF F7FF 0x1FFF C010 - 0x1FFF EFFF 0x1FFF C000 - 0x1FFF C00F Code AHB Boot loader 0x1FFF B000 - 0x1FFF BFFF 0x1FFF 7A10 - 0x1FFF AFFF Reserved 0x1FFF 7800 - 0x1FFF 7A0F Reserved 0x1FFF 0000 - 0x1FFF 77FF Reserved 0x1FFE C010 - 0x1FFE FFFF Reserved 0x1FFE C000 - 0x1FFE C00F Reserved 15 GD32F305xx Datasheet Pre-defined Regions Bus Address Peripherals 0x1001 0000 - 0x1FFE BFFF Reserved 0x1000 0000 - 0x1000 FFFF Reserved 0x083C 0000 - 0x0FFF FFFF Reserved 0x0830 0000 - 0x083B FFFF Reserved 0x0810 0000 - 0x082F FFFF Reserved 0x0800 0000 - 0x080F FFFF Main Flash 0x0030 0000 - 0x07FF FFFF Reserved 0x0010 0000 - 0x002F FFFF 0x0002 0000 - 0x000F FFFF Aliased to Main Flash or Boot loader 0x0000 0000 - 0x0001 FFFF 16 GD32F305xx Datasheet 2.5. Clock tree Figure 2-5. GD32F305xx clock tree CTC CK_IRC48M CK_CTC 48 MHz IRC48M 48 MHz CK48MSEL USB OTG Prescaler 1,1.5,2,2.5 3,3.5,4 1 SCS[1:0] CK_IRC8M 8 MHz IRC8M 0 1 PLLSEL PREDV0 0 4-32 MHz HXTAL 0 1 CK_USBFS 0 (to USBFS) 00 /2 PLLPRESEL CK_IRC48M 1 1 ×2,3,4 …,63 PLL CK_PLL PLLMF /1,2,3… 15,16 10 AHB Prescaler ÷1,2...512 CK_SYS 120 MHz max CK_AHB 120 MHz max CK_EXMC EXMC enable (by hardware) (to EXMC) HCLK 01 AHB enable (to AHB bus,Cortex-M4,SRAM,DMA,FMC) CK_CST Clock Monitor ÷8 (to Cortex-M4 SysTick) FCLK PREDV0SEL EXT1 to CK_OUT (free running clock) CK_HXTAL APB1 Prescaler ÷1,2,4,8,16 CK_APB1 PCLK1 to APB1 peripherals 60 MHz max Peripheral enable ×8,9,10…, 14,16,20 PLL1 TIMER1,2,3,4,5,6, 11,12,13 if(APB1 prescale =1)x1 else x 2 CK_PLL1 ×8..14,16, 18..32,40 PLL2 PREDV1 0 CK_PLL2 x2 CK_I2S 1 APB2 Prescaler ÷1,2,4,8,16 CK_RTC 01 (to RTC) 10 RTCSRC[1:0] 40 KHz IRC40K CK_OUT0 00xx 0100 0101 0110 0111 1000 1001 1010 1011 TIMER0,7,8,9,10 if(APB2 prescale =1)x1 else x 2 ADC Prescaler ÷2,4,6,8,12,1 6 CK_FWDGT (to FWDGT) CK_APB2 PCLK2 to APB2 peripherals 120 MHz max Peripheral enable I2S1/2SEL PLL2MF 11 32.768 KHz LXTAL to TIMER1,2,3,4, 5,6,11,12,13 PLL1MF /1,2,3… 15,16 /128 CK_TIMERx TIMERx enable ADC Prescaler ÷5,6,10,20 CK_TIMERx TIMERx enable to TIMER0,7,8,9,10 ADCPSC[3] 0 1 CK_ADCx to ADC0,1 40 MHz max NO CLK CK_SYS CK_IRC8M CK_HXTAL /2 CK_PLL CK_PLL1 /2 CK_PLL2 EXT1 CK_PLL2 CKOUT0SEL[3:0] Legend: HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillators IRC40K: Internal 40K RC oscillator IRC48M: Internal 48M RC oscillators 17 GD32F305xx Datasheet 2.6. Pin definitions 2.6.1. GD32F305Zx LQFP144 pin definitions Table 2-3. GD32F305Zx LQFP144 pin definitions Pin I/O Type(1) Level(2) 1 I/O 5VT PE3 2 I/O 5VT PE4 3 I/O 5VT Pin Name Pins PE2 Functions description Default: PE2 Alternate: TRACECK, EXMC_A23 Default: PE3 Alternate: TRACED0, EXMC_A19 Default: PE4 Alternate:TRACED1, EXMC_A20 Default: PE5 PE5 4 I/O 5VT Alternate:TRACED2, EXMC_A21 Remap: TIMER8_CH0(3) Default: PE6 PE6 5 I/O 5VT Alternate:TRACED3, EXMC_A22 Remap: TIMER8_CH1(3) VBAT 6 P 7 I/O 8 I/O 9 I/O 10 I/O Default: VBAT PC13TAMPER- Default: PC13 Alternate: TAMPER-RTC RTC PC14OSC32IN PC15OSC32OUT Default: PC14 Alternate: OSC32IN Default: PC15 Alternate: OSC32OUT Default: PF0 PF0 5VT Alternate: EXMC_A0 Remap: CTC_SYNC Default: PF1 PF1 11 I/O 5VT PF2 12 I/O 5VT PF3 13 I/O 5VT PF4 14 I/O 5VT PF5 15 I/O 5VT VSS_5 16 P Default: VSS_5 VDD_5 17 P Default: VDD_5 Alternate: EXMC_A1 Default: PF2 Alternate: EXMC_A2 Default: PF3 Alternate: EXMC_A3 Default: PF4 Alternate: EXMC_A4 Default: PF5 Alternate: EXMC_A5 18 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Default: PF6 PF6 18 I/O Alternate: EXMC_NIORD Remap: TIMER9_CH0(3) Default: PF7 PF7 19 I/O Alternate: EXMC_NREG Remap: TIMER10_CH0(3) Default: PF8 PF8 20 I/O Alternate: EXMC_NIOWR Remap: TIMER12_CH0(3) Default: PF9 PF9 21 I/O Alternate: EXMC_CD Remap: TIMER13_CH0(3) Default: PF10 PF10 22 I/O OSCIN 23 I OSCOUT 24 O NRST 25 I/O PC0 26 I/O PC1 27 I/O PC2 28 I/O PC3 29 I/O VSSA 30 P Default: VSSA VREF- 31 P Default: VREF- VREF+ 32 P Default: VREF+ VDDA 33 P Default: VDDA Alternate: EXMC_INTR Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PC0 Alternate: ADC01_IN10 Default: PC1 Alternate: ADC01_IN11 Default: PC2 Alternate: ADC01_IN12 Default: PC3 Alternate: ADC01_IN13 Default: PA0 PA0-WKUP 34 I/O Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI Default: PA1 PA1 35 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1 Default: PA2 PA2 36 I/O Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2, TIMER8_CH0(3) , SPI0_IO2 PA3 37 I/O Default: PA3 19 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3, TIMER8_CH1(3) , SPI0_IO3 VSS_4 38 P Default: VSS_4 VDD_4 39 P Default: VDD_4 Default: PA4 PA4 40 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, I/O DAC_OUT0 Remap:SPI2_NSS, I2S2_WS PA5 41 Default: PA5 I/O Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 42 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, I/O TIMER7_BRKIN, TIMER12_CH0(3) Remap: TIMER0_BRKIN Default: PA7 PA7 43 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, I/O TIMER7_CH0_ON, TIMER13_CH0(3) Remap: TIMER0_CH0_ON PC4 44 I/O PC5 45 I/O Default: PC4 Alternate: ADC01_IN14 Default: PC5 Alternate: ADC01_IN15 Default: PB0 PB0 46 Alternate: ADC01_IN8, TIMER2_CH2, I/O TIMER7_CH1_ON Remap: TIMER0_CH1_ON Default: PB1 PB1 47 Alternate: ADC01_IN9, TIMER2_CH3, I/O TIMER7_CH2_ON Remap: TIMER0_CH2_ON PB2 48 I/O 5VT Default: PB2, BOOT1 PF11 49 I/O 5VT PF12 50 I/O 5VT VSS_6 51 P Default: VSS_6 VDD_6 52 P Default: VDD_6 PF13 53 I/O 5VT PF14 54 I/O 5VT Default: PF11 Alternate: EXMC_NIOS16 Default: PF12 Alternate: EXMC_A6 Default: PF13 Alternate: EXMC_A7 Default: PF14 Alternate: EXMC_A8 20 GD32F305xx Datasheet Pin I/O Pin Name Pins PF15 55 I/O 5VT PG0 56 I/O 5VT PG1 57 I/O 5VT (1) Type Functions description Level(2) Default: PF15 Alternate: EXMC_A9 Default: PG0 Alternate: EXMC_A10 Default: PG1 Alternate: EXMC_A11 Default: PE7 PE7 58 I/O 5VT Alternate: EXMC_D4 Remap: TIMER0_ETI Default: PE8 PE8 59 I/O 5VT Alternate: EXMC_D5 Remap: TIMER0_CH0_ON Default: PE9 PE9 60 I/O 5VT Alternate: EXMC_D6 VSS_7 61 P Default: VSS_7 VDD_7 62 P Default: VDD_7 Remap: TIMER0_CH0 Default: PE10 PE10 63 I/O 5VT Alternate: EXMC_D7 Remap: TIMER0_CH1_ON Default: PE11 PE11 64 I/O 5VT Alternate: EXMC_D8 Remap: TIMER0_CH1 Default: PE12 PE12 65 I/O 5VT Alternate: EXMC_D9 Remap: TIMER0_CH2_ON Default: PE13 PE13 66 I/O 5VT Alternate: EXMC_D10 Remap: TIMER0_CH2 Default: PE14 PE14 67 I/O 5VT Alternate: EXMC_D11 Remap: TIMER0_CH3 Default: PE15 PE15 68 I/O 5VT Alternate: EXMC_D12 Remap: TIMER0_BRKIN Default: PB10 PB10 69 I/O 5VT Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2 Default: PB11 PB11 70 I/O 5VT Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3 VSS_1 71 P Default: VSS_1 VDD_1 72 P Default: VDD_1 21 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Default: PB12 PB12 73 I/O 5VT Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX Default: PB13 PB13 74 I/O 5VT Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX Default: PB14 PB14 75 I/O 5VT Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0(3) Default: PB15 PB15 76 I/O 5VT Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1(3) Default: PD8 PD8 77 I/O 5VT Alternate: EXMC_D13 Remap: USART2_TX Default: PD9 PD9 78 I/O 5VT Alternate: EXMC_D14 Remap: USART2_RX Default: PD10 PD10 79 I/O 5VT Alternate: EXMC_D15 Remap: USART2_CK Default: PD11 PD11 80 I/O 5VT Alternate: EXMC_A16 Remap: USART2_CTS Default: PD12 PD12 81 I/O 5VT Alternate: EXMC_A17 Remap: TIMER3_CH0, USART2_RTS Default: PD13 PD13 82 I/O 5VT Alternate: EXMC_A18 VSS_8 83 P Default: VSS_8 VDD_8 84 P Default: VDD_8 Remap: TIMER3_CH1 Default: PD14 PD14 85 I/O 5VT Alternate: EXMC_D0 Remap: TIMER3_CH2 Default: PD15 PD15 86 I/O 5VT Alternate: EXMC_D1 Remap: TIMER3_CH3, CTC_SYNC PG2 87 I/O 5VT PG3 88 I/O 5VT PG4 89 I/O 5VT Default: PG2 Alternate: EXMC_A12 Default: PG3 Alternate: EXMC_A13 Default: PG4 22 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Alternate: EXMC_A14 Default: PG5 PG5 90 I/O 5VT PG6 91 I/O 5VT PG7 92 I/O 5VT PG8 93 I/O 5VT VSS_9 94 P Default: VSS_9 VDD_9 95 P Default: VDD_9 PC6 96 I/O Alternate: EXMC_A15 Default: PG6 Alternate: EXMC_INT1 Default: PG7 Alternate: EXMC_INT2 Default: PG8 Default: PC6 5VT Alternate: I2S1_MCK, TIMER7_CH0 Remap: TIMER2_CH0 Default: PC7 PC7 97 I/O 5VT Alternate: I2S2_MCK, TIMER7_CH1 Remap: TIMER2_CH1 Default: PC8 PC8 98 I/O 5VT Alternate: TIMER7_CH2 Remap: TIMER2_CH2 Default: PC9 PC9 99 I/O 5VT Alternate: TIMER7_CH3 Remap: TIMER2_CH3 Default: PA8 PA8 100 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF, CTC_SYNC Default: PA9 PA9 101 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS PA10 102 I/O 5VT PA11 103 I/O 5VT Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3 Default: PA12 PA12 104 I/O 5VT Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI 5VT Default: JTMS, SWDIO PA13 105 I/O NC 106 - - VSS_2 107 P Default: VSS_2 VDD_2 108 P Default: VDD_2 PA14 109 I/O 5VT Remap: PA13 Default: JTCK, SWCLK 23 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Remap: PA14 Default: JTDI PA15 110 I/O 5VT Alternate: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS Default: PC10 PC10 111 I/O 5VT Alternate: UART3_TX Remap: USART2_TX, SPI2_SCK, I2S2_CK Default: PC11 PC11 112 I/O 5VT Alternate: UART3_RX Remap: USART2_RX, SPI2_MISO Default: PC12 PC12 113 I/O 5VT Alternate: UART4_TX Remap: USART2_CK, SPI2_MOSI, I2S2_SD Default: PD0 PD0 114 I/O 5VT Alternate: EXMC_D2 Remap: CAN0_RX, OSCIN Default: PD1 PD1 115 I/O 5VT Alternate: EXMC_D3 Remap: CAN0_TX, OSCOUT PD2 116 I/O 5VT Default: PD2 Alternate: TIMER2_ETI, UART4_RX Default: PD3 PD3 117 I/O 5VT Alternate: EXMC_CLK Remap: USART1_CTS Default: PD4 PD4 118 I/O 5VT Alternate: EXMC_NOE Remap: USART1_RTS Default: PD5 PD5 119 I/O 5VT Alternate: EXMC_NWE Remap: USART1_TX VSS_10 120 P Default: VSS_10 VDD_10 121 P Default: VDD_10 PD6 122 I/O Default: PD6 5VT Alternate: EXMC_NWAIT Remap: USART1_RX Default: PD7 PD7 123 I/O 5VT Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK PG9 124 I/O 5VT PG10 125 I/O 5VT Default: PG9 Alternate: EXMC_NE1, EXMC_NCE2 Default: PG10 Alternate: EXMC_NCE3_0, EXMC_NE2 24 GD32F305xx Datasheet Pin I/O Pin Name Pins PG11 126 I/O 5VT PG12 127 I/O 5VT PG13 128 I/O 5VT PG14 129 I/O 5VT VSS_11 130 P VDD_11 131 P PG15 132 I/O (1) Type Functions description Level(2) Default: PG11 Alternate: EXMC_NCE3_1 Default: PG12 Alternate: EXMC_NE3 Default: PG13 Alternate: EXMC_A24 Default: PG14 Alternate: EXMC_A25 Default: VSS_11 Default: VDD_11 5VT Default: PG15 Default: JTDO PB3 133 I/O 5VT Alternate:SPI2_SCK, I2S2_CK Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK Default: NJTRST PB4 134 I/O 5VT Alternate: SPI2_MISO Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 135 I/O Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX Default: PB6 PB6 136 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2 Default: PB7 PB7 137 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV Remap: USART0_RX, SPI0_IO3 BOOT0 138 I PB8 139 I/O Default: BOOT0 Default: PB8 5VT Alternate: TIMER3_CH2, TIMER9_CH0(3) Remap: I2C0_SCL, CAN0_RX Default: PB9 PB9 140 I/O 5VT Alternate: TIMER3_CH3, TIMER10_CH0(3) Remap: I2C0_SDA, CAN0_TX Default: PE0 PE0 141 I/O 5VT PE1 142 I/O 5VT VSS_3 143 P Default: VSS_3 VDD_3 144 P Default: VDD_3 Alternate: TIMER3_ETI, EXMC_NBL0 Default: PE1 Alternate: EXMC_NBL1 Notes: (1)Type: I = input, O = output, P = power. 25 GD32F305xx Datasheet (2)I/O Level: 5VT = 5 V tolerant. (3)Functions are available in GD32F305ZG devices. 26 GD32F305xx Datasheet 2.6.2. GD32F305Vx LQFP100 pin definitions Table 2-4. GD32F305Vx LQFP100 pin definitions Pin I/O Type(1) Level(2) 1 I/O 5VT PE3 2 I/O 5VT PE4 3 I/O 5VT Pin Name Pins PE2 Functions description Default: PE2 Alternate: TRACECK, EXMC_A23 Default: PE3 Alternate: TRACED0, EXMC_A19 Default: PE4 Alternate:TRACED1, EXMC_A20 Default: PE5 PE5 4 I/O 5VT Alternate:TRACED2, EXMC_A21 Remap: TIMER8_CH0(3) Default: PE6 PE6 5 I/O 5VT Alternate:TRACED3, EXMC_A22 Remap: TIMER8_CH1(3) VBAT 6 P Default: VBAT 7 I/O 8 I/O 9 I/O VSS_5 10 P Default: VSS_5 VDD_5 11 P Default: VDD_5 OSCIN 12 I OSCOUT 13 O NRST 14 I/O PC0 15 I/O PC1 16 I/O PC2 17 I/O PC3 18 I/O VSSA 19 P Default: VSSA VREF- 20 P Default: VREF- VREF+ 21 P Default: VREF+ PC13TAMPERRTC PC14OSC32IN PC15OSC32OUT Default: PC13 Alternate: TAMPER-RTC Default: PC14 Alternate: OSC32IN Default: PC15 Alternate: OSC32OUT Default: OSCIN Remap: PD0 Default: OSCOUT Remap: PD1 Default: NRST Default: PC0 Alternate: ADC01_IN10 Default: PC1 Alternate: ADC01_IN11 Default: PC2 Alternate: ADC01_IN12 Default: PC3 Alternate: ADC01_IN13 27 GD32F305xx Datasheet Pin Name Pins VDDA 22 Pin I/O (1) Type Functions description Level(2) P Default: VDDA Default: PA0 PA0-WKUP 23 Alternate: WKUP, USART1_CTS, ADC01_IN0, I/O TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI(4) Default: PA1 PA1 24 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1 Default: PA2 PA2 25 I/O Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2, TIMER8_CH0(3) , SPI0_IO2 Default: PA3 PA3 26 I/O Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3, VSS_4 27 P Default: VSS_4 VDD_4 28 P Default: VDD_4 TIMER8_CH1(3) , SPI0_IO3 Default: PA4 PA4 29 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, I/O DAC_OUT0 Remap:SPI2_NSS, I2S2_WS PA5 30 Default: PA5 I/O Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 31 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, I/O TIMER7_BRKIN(4) , TIMER12_CH0(3) Remap: TIMER0_BRKIN Default: PA7 PA7 32 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, I/O TIMER7_CH0_ON(4) , TIMER13_CH0(3) Remap: TIMER0_CH0_ON PC4 33 I/O PC5 34 I/O Default: PC4 Alternate: ADC01_IN14 Default: PC5 Alternate: ADC01_IN15 Default: PB0 PB0 35 Alternate: ADC01_IN8, TIMER2_CH2, I/O TIMER7_CH1_ON(4) Remap: TIMER0_CH1_ON Default: PB1 PB1 36 Alternate: ADC01_IN9, TIMER2_CH3, I/O TIMER7_CH2_ON(4) Remap: TIMER0_CH2_ON PB2 37 I/O 5VT Default: PB2, BOOT1 28 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Default: PE7 PE7 38 I/O 5VT Alternate: EXMC_D4 Remap: TIMER0_ETI Default: PE8 PE8 39 I/O 5VT Alternate: EXMC_D5 Remap: TIMER0_CH0_ON Default: PE9 PE9 40 I/O 5VT Alternate: EXMC_D6 Remap: TIMER0_CH0 Default: PE10 PE10 41 I/O 5VT Alternate: EXMC_D7 Remap: TIMER0_CH1_ON Default: PE11 PE11 42 I/O 5VT Alternate: EXMC_D8 Remap: TIMER0_CH1 Default: PE12 PE12 43 I/O 5VT Alternate: EXMC_D9 Remap: TIMER0_CH2_ON Default: PE13 PE13 44 I/O 5VT Alternate: EXMC_D10 Remap: TIMER0_CH2 Default: PE14 PE14 45 I/O 5VT Alternate: EXMC_D11 Remap: TIMER0_CH3 Default: PE15 PE15 46 I/O 5VT Alternate: EXMC_D12 Remap: TIMER0_BRKIN Default: PB10 PB10 47 I/O 5VT Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2 Default: PB11 PB11 48 I/O 5VT Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3 VSS_1 49 P Default: VSS_1 VDD_1 50 P Default: VDD_1 PB12 51 I/O Default: PB12 5VT Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX Default: PB13 PB13 52 I/O 5VT Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX PB14 53 I/O 5VT Default: PB14 Alternate: SPI1_MISO, USART2_RTS, 29 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) TIMER0_CH1_ON, TIMER11_CH0(3) Default: PB15 PB15 54 I/O 5VT Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1(3) Default: PD8 PD8 55 I/O 5VT Alternate: EXMC_D13 Remap: USART2_TX Default: PD9 PD9 56 I/O 5VT Alternate: EXMC_D14 Remap: USART2_RX Default: PD10 PD10 57 I/O 5VT Alternate: EXMC_D15 Remap: USART2_CK Default: PD11 PD11 58 I/O 5VT Alternate: EXMC_A16 Remap: USART2_CTS Default: PD12 PD12 59 I/O 5VT Alternate: EXMC_A17 Remap: TIMER3_CH0, USART2_RTS Default: PD13 PD13 60 I/O 5VT Alternate: EXMC_A18 Remap: TIMER3_CH1 Default: PD14 PD14 61 I/O 5VT Alternate: EXMC_D0 Remap: TIMER3_CH2 Default: PD15 PD15 62 I/O 5VT Alternate: EXMC_D1 Remap: TIMER3_CH3, CTC_SYNC Default: PC6 PC6 63 I/O 5VT Alternate: I2S1_MCK, TIMER7_CH0(4) Remap: TIMER2_CH0 Default: PC7 PC7 64 I/O 5VT Alternate: I2S2_MCK, TIMER7_CH1(4) Remap: TIMER2_CH1 Default: PC8 PC8 65 I/O 5VT Alternate: TIMER7_CH2(4) Remap: TIMER2_CH2 Default: PC9 PC9 66 I/O 5VT Alternate: TIMER7_CH3(4) Remap: TIMER2_CH3 Default: PA8 PA8 67 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF, CTC_SYNC 30 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Default: PA9 PA9 68 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS PA10 69 I/O 5VT PA11 70 I/O 5VT Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3 Default: PA12 PA12 71 I/O 5VT Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI 5VT Default: JTMS, SWDIO PA13 72 I/O NC 73 - - VSS_2 74 P Default: VSS_2 VDD_2 75 P Default: VDD_2 PA14 76 I/O 5VT Remap: PA13 Default: JTCK, SWCLK Remap: PA14 Default: JTDI PA15 77 I/O 5VT Alternate: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS Default: PC10 PC10 78 I/O 5VT Alternate: UART3_TX Remap: USART2_TX, SPI2_SCK, I2S2_CK Default: PC11 PC11 79 I/O 5VT Alternate: UART3_RX Remap: USART2_RX, SPI2_MISO Default: PC12 PC12 80 I/O 5VT Alternate: UART4_TX Remap: USART2_CK, SPI2_MOSI, I2S2_SD Default: PD0 PD0 81 I/O 5VT Alternate: EXMC_D2 Remap: CAN0_RX, OSCIN Default: PD1 PD1 82 I/O 5VT Alternate: EXMC_D3 Remap: CAN0_TX, OSCOUT PD2 83 I/O 5VT Default: PD2 Alternate: TIMER2_ETI, UART4_RX Default: PD3 PD3 84 I/O 5VT Alternate: EXMC_CLK Remap: USART1_CTS PD4 85 I/O 5VT Default: PD4 31 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Alternate: EXMC_NOE Remap: USART1_RTS Default: PD5 PD5 86 I/O 5VT Alternate: EXMC_NWE Remap: USART1_TX Default: PD6 PD6 87 I/O 5VT Alternate: EXMC_NWAIT Remap: USART1_RX Default: PD7 PD7 88 I/O 5VT Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK Default: JTDO PB3 89 I/O 5VT Alternate:SPI2_SCK, I2S2_CK Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK Default: NJTRST PB4 90 I/O 5VT Alternate: SPI2_MISO Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 91 I/O Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX Default: PB6 PB6 92 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2 Default: PB7 PB7 93 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NADV Remap: USART0_RX, SPI0_IO3 BOOT0 94 I PB8 95 I/O Default: BOOT0 Default: PB8 5VT Alternate: TIMER3_CH2, TIMER9_CH0(3) Remap: I2C0_SCL, CAN0_RX Default: PB9 PB9 96 I/O 5VT Alternate: TIMER3_CH3, TIMER10_CH0(3) Remap: I2C0_SDA, CAN0_TX Default: PE0 PE0 97 I/O 5VT PE1 98 I/O 5VT VSS_3 99 P Default: VSS_3 VDD_3 100 P Default: VDD_3 Alternate: TIMER3_ETI, EXMC_NBL0 Default: PE1 Alternate: EXMC_NBL1 Notes: (1)Type: I = input, O = output, P = power. 32 GD32F305xx Datasheet (2)I/O Level: 5VT = 5 V tolerant. (3)Functions are available in GD32F305VG devices. (4)Functions are available in GD32F305VE/G devices. 33 GD32F305xx Datasheet 2.6.3. GD32F305Rx LQFP64 pin definitions Table 2-5. GD32F305Rx LQFP64 pin definitions Pin I/O Type(1) Level(2) Pin Name Pins Functions description VBAT 1 P 2 I/O 3 I/O 4 I/O OSCIN 5 I OSCOUT 6 O NRST 7 I/O PC0 8 I/O PC1 9 I/O PC2 10 I/O PC3 11 I/O VSSA 12 P Default: VSSA VDDA 13 P Default: VDDA Default: VBAT PC13TAMPERRTC PC14OSC32IN PC15OSC32OUT Default: PC13 Alternate: TAMPER-RTC Default: PC14 Alternate: OSC32IN Default: PC15 Alternate: OSC32OUT Default: OSCIN Remap: PD0(5) Default: OSCOUT Remap: PD1(5) Default: NRST Default: PC0 Alternate: ADC01_IN10 Default: PC1 Alternate: ADC01_IN11 Default: PC2 Alternate: ADC01_IN12 Default: PC3 Alternate: ADC01_IN13 Default: PA0 PA0-WKUP 14 I/O Alternate: WKUP, USART1_CTS, ADC01_IN0, TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI(4) Default: PA1 PA1 15 I/O Alternate: USART1_RTS, ADC01_IN1, TIMER1_CH1, TIMER4_CH1 Default: PA2 PA2 16 I/O Alternate: USART1_TX, ADC01_IN2, TIMER1_CH2, TIMER4_CH2, TIMER8_CH0(3) , SPI0_IO2 Default: PA3 PA3 17 I/O Alternate: USART1_RX, ADC01_IN3, TIMER1_CH3, TIMER4_CH3, VSS_4 18 P Default: VSS_4 VDD_4 19 P Default: VDD_4 TIMER8_CH1(3) , SPI0_IO3 34 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Default: PA4 PA4 20 Alternate: SPI0_NSS, USART1_CK, ADC01_IN4, I/O DAC_OUT0 Remap:SPI2_NSS, I2S2_WS PA5 21 Default: PA5 I/O Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1 Default: PA6 PA6 22 Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0, I/O TIMER7_BRKIN(4) , TIMER12_CH0(3) Remap: TIMER0_BRKIN Default: PA7 PA7 23 Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1, I/O TIMER7_CH0_ON(4) , TIMER13_CH0(3) Remap: TIMER0_CH0_ON PC4 24 I/O PC5 25 I/O Default: PC4 Alternate: ADC01_IN14 Default: PC5 Alternate: ADC01_IN15 Default: PB0 PB0 26 Alternate: ADC01_IN8, TIMER2_CH2, I/O TIMER7_CH1_ON(4) Remap: TIMER0_CH1_ON Default: PB1 PB1 27 Alternate: ADC01_IN9, TIMER2_CH3, I/O TIMER7_CH2_ON(4) Remap: TIMER0_CH2_ON PB2 28 I/O 5VT PB10 29 I/O 5VT Default: PB2, BOOT1 Default: PB10 Alternate: I2C1_SCL, USART2_TX Remap: TIMER1_CH2 Default: PB11 PB11 30 I/O 5VT VSS_1 31 P Default: VSS_1 VDD_1 32 P Default: VDD_1 PB12 33 I/O Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3 Default: PB12 5VT Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX Default: PB13 PB13 34 I/O 5VT Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON, I2S1_CK, CAN1_TX PB14 35 I/O 5VT Default: PB14 Alternate: SPI1_MISO, USART2_RTS, 35 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) TIMER0_CH1_ON, TIMER11_CH0(3) Default: PB15 PB15 36 I/O 5VT Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1(3) Default: PC6 PC6 37 I/O 5VT Alternate: I2S1_MCK, TIMER7_CH0(4) Remap: TIMER2_CH0 Default: PC7 PC7 38 I/O 5VT Alternate: I2S2_MCK, TIMER7_CH1(4) Remap: TIMER2_CH1 Default: PC8 PC8 39 I/O 5VT Alternate: TIMER7_CH2(4) Remap: TIMER2_CH2 Default: PC9 PC9 40 I/O 5VT Alternate: TIMER7_CH3(4) Remap: TIMER2_CH3 Default: PA8 PA8 41 I/O 5VT Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, USBFS_SOF, CTC_SYNC Default: PA9 PA9 42 I/O 5VT Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS PA10 43 I/O 5VT Default: PA10 Alternate: USART0_RX, TIMER0_CH2, USBFS_ID Default: PA11 PA11 44 I/O 5VT Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3 Default: PA12 PA12 45 I/O 5VT Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI 5VT Default: JTMS, SWDIO PA13 46 I/O VSS_2 47 P Default: VSS_2 VDD_2 48 P Default: VDD_2 PA14 49 I/O 5VT Remap: PA13 Default: JTCK, SWCLK Remap: PA14 Default: JTDI PA15 50 I/O 5VT Alternate: SPI2_NSS, I2S2_WS Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS Default: PC10 PC10 51 I/O 5VT Alternate: UART3_TX Remap: USART2_TX, SPI2_SCK, I2S2_CK 36 GD32F305xx Datasheet Pin Name Pins Pin I/O (1) Type Functions description Level(2) Default: PC11 PC11 52 I/O 5VT Alternate: UART3_RX Remap: USART2_RX, SPI2_MISO Default: PC12 PC12 53 I/O 5VT Alternate: UART4_TX Remap: USART2_CK, SPI2_MOSI, I2S2_SD PD2 54 I/O 5VT Default: PD2 Alternate: TIMER2_ETI, UART4_RX Default: JTDO PB3 55 I/O 5VT Alternate:SPI2_SCK, I2S2_CK Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK Default: NJTRST PB4 56 I/O 5VT Alternate: SPI2_MISO Remap: TIMER2_CH0, PB4, SPI0_MISO Default: PB5 PB5 57 I/O Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX Default: PB6 PB6 58 I/O 5VT Alternate: I2C0_SCL, TIMER3_CH0 Remap: USART0_TX, CAN1_TX, SPI0_IO2 Default: PB7 PB7 59 I/O 5VT Alternate: I2C0_SDA , TIMER3_CH1 Remap: USART0_RX, SPI0_IO3 BOOT0 60 I PB8 61 I/O Default: BOOT0 Default: PB8 5VT Alternate: TIMER3_CH2, TIMER9_CH0(3) Remap: I2C0_SCL, CAN0_RX Default: PB9 5VT Alternate: TIMER3_CH3, TIMER10_CH0(3) PB9 62 I/O VSS_3 63 P Default: VSS_3 VDD_3 64 P Default: VDD_3 Remap: I2C0_SDA, CAN0_TX Notes: (1)Type: I = input, O = output, P = power. (2)I/O Level: 5VT = 5 V tolerant. (3)Functions are available in GD32F305RG devices. (4)Functions are available in GD32F305RE/G devices. (5)PD0/PD1 cannot be used for EXTI in this package. 37 GD32F305xx Datasheet 3. Functional description 3.1. Arm® Cortex®-M4 core The Arm® Cortex ®-M4 processor is a high perf ormance embedded processor with DSP instructions which allow efficient signal processing and complex algorithm execution. It brings an ef f icient, easy-to-use blend of control and signal processing capabilities to meet the digital signal control markets demand. The processor is highly configurable enabling a wide range of implementations f rom those requiring f loating point operations, memory protection and powerf ul trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts. 32-bit Arm® Cortex®-M4 processor core ◼ Up to 120 MHz operation frequency ◼ Single-cycle multiplication and hardware divider ◼ ◼ Integrated DSP instructions Integrated Nested Vectored Interrupt Controller (NVIC) ◼ 24-bit SysTick timer The Cortex ®-M4 processor is based on the Armv7-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex ®-M4: 3.2. ◼ Internal Bus Matrix connected with ICode bus, DCode bus, System bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP) ◼ ◼ Nested Vectored Interrupt Controller (NVIC) Flash Patch and Breakpoint (FPB) ◼ ◼ Data Watchpoint and Trace (DWT) Instrument Trace Macrocell (ITM) ◼ ◼ Memory Protection Unit (MPU) Serial Wire JTAG Debug Port (SWJ-DP) ◼ ◼ Trace Port Interf ace Unit (TPIU) Floating Point Unit (FPU) On-chip memory ◼ Up to 1024 Kbytes of Flash memory, including code Flash and data Flash ◼ Up to 96 KB of SRAM The Arm® Cortex ®-M4 processor is structured in Harvard architecture which can use separate buses to f etch instructions and load/store data. 1024 Kbytes of inner f lash at most, which includes code Flash that available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. An extra data Flash is also included for storing data mainly. Table 2-2. GD32F305xx memory map shows the memory of the GD32F305xx series of 38 GD32F305xx Datasheet devices, including Flash, SRAM, peripheral, and other pre-defined regions. 3.3. Clock, reset and supply management ◼ Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator ◼ Internal 48 MHz RC oscillator ◼ Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator ◼ 2.6 to 3.6 V application supply and I/Os ◼ Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD) The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the f requency configuration of the AHB and two APB domains. The maximum frequency of the two AHB domains are 120 MHz The maximum frequency of the two APB domains including APB1 is 60 MHz and APB2 is 120 MHz See Figure 2-5. GD32F305xx clock tree for details on the clock tree. The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when V DD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security. Power supply schemes: ◼ VDD range: 2.6 to 3.6 V, external power supply f or I/Os and the internal regulator. ◼ Provided externally through V DD pins. VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies f or ADC, reset blocks, ◼ RCs and PLL. VDDA and VSSA must be connected to V DD and V SS, respectively. VBAT range: 1.8 to 3.6 V, power supply f or RTC, external clock 32 KHz oscillator and backup registers (through power switch) when V DD is not present. 3.4. Boot modes At startup, boot pins are used to select one of three boot options: ◼ Boot from main flash memory (default) ◼ ◼ Boot from system memory Boot from on-chip SRAM The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PD5 and PD6) and USBFS (PA9, PA11 and PA12) is also available for boot functions. It also can be used to transfer and update the Flash memory code, the data and the vector table sections. In default 39 GD32F305xx Datasheet condition, boot from bank0 of Flash memory is selected. It also supports to boot from bank1 of Flash memory by setting a bit in option bytes. 3.5. Power saving modes The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption. ◼ Sleep mode In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system. ◼ Deep-sleep mode In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event f rom EXTI lines can wake up the system f rom the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected ◼ as the system clock. Standby mode In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are f our wakeup sources f or the standby mode, including the external reset f rom NRST pin, the RTC, the FWDG reset, and the rising edge on WKUP pin. 3.6. Analog to digital converter (ADC) ◼ 12-bit SAR ADC's conversion rate is up to 2.6 MSPS ◼ 12-bit, 10-bit, 8-bit or 6-bit configurable resolution ◼ Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit ◼ Input voltage range: V SSA to VDDA (2.6 to 3.6 V) ◼ Temperature sensor Up to two 12-bit 2.6 MSPS multi-channel ADCs are integrated in the device. It has a total of 18 multiplexed channels: 16 external channels, 1 channel for internal temperature sensor (VSENSE), and 1 channel for internal reference voltage (V REFINT). The input voltage range is between 2.6 V and 3.6 V. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use. 40 GD32F305xx Datasheet The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value. 3.7. Digital to analog converter (DAC) ◼ Two 12-bit DACs with independent output channels ◼ 8-bit or 12-bit mode in conjunction with the DMA controller The two 12-bit buffered DACs are used to generate variable analog outputs. The DAC channels can be triggered by the timer or EXTI with DMA support. In dual DAC channel operation, conversions could be done independently or simultaneously. The maximum output value of the DAC is V REF+. 3.8. DMA ◼ 7 channel DMA0 controller and 5 channel DMA1 controller ◼ Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable. 3.9. General-purpose inputs/outputs (GPIOs) ◼ Up to 112 fast GPIOs, all mappable on 16 external interrupt lines ◼ ◼ Analog input/output configurable Alternate f unction input/output configurable There are up to 112 general purpose I/O pins (GPIO) in GD32F305xx, named PA0 ~ PA15 and PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0-PF15, PG0-PG15 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull41 GD32F305xx Datasheet up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs. 3.10. Timers and PWM generation ◼ Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6) ◼ Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input ◼ 16-bit, motor control PWM advanced timer with programmable dead-time generation for output match ◼ Encoder interface controller with two inputs using quadrature decoder ◼ 24-bit SysTick timer down counter ◼ 2 watchdog timers (Free watchdog timer and window watchdog timer) The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used f or input capture, output compare, PWM generation (edge-aligned or center-aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features. The general timer, can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 ~ TIMER4 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER8 ~ TIMER13 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder. The basic timer, known as TIMER5 & TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base. The GD32F305xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy. The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler, It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in 42 GD32F305xx Datasheet debug mode. The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below: 3.11. ◼ ◼ A 24-bit down counter Auto reload capability ◼ ◼ Maskable system interrupt generation when the counter reaches 0 Programmable clock source Real time clock (RTC) ◼ 32-bit up-counter with a programmable 20-bit prescaler ◼ ◼ Alarm f unction Interrupt and wakeup event The real time clock is an independent timer which provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and an expected interrupt. The RTC f eatures a 32-bit programmable counter f or long-term measurement using the compare register to generate an alarm. A 20-bit prescaler is used f or the time base clock and is by def ault configured to generate a time base of 1 second from a clock at 32.768 KHz f rom external crystal oscillator. 3.12. Inter-integrated circuit (I2C) ◼ Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus) ◼ Provide arbitration function, optional PEC (packet error checking) generation and checking ◼ Supports 7-bit and 10-bit addressing mode and general call addressing mode The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides several data transfer rates of up to 100 KHz in standard mode, up to 400 KHz in fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data. 3.13. Serial peripheral interface (SPI) ◼ ◼ Up to three SPI interfaces with a frequency of up to 30 MHz Support both master and slave mode 43 GD32F305xx Datasheet ◼ ◼ Hardware CRC calculation and transmit automatic CRC error checking Quad-SPI configuration available in master mode (only in SPI0) The SPI interf ace uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transf ers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0. 3.14. Universal synchronous asynchronous receiver transmitter (USART) ◼ Up to three USARTs and two UARTs with operating frequency up to 7.5M Bits/s ◼ ◼ Supports both asynchronous and clocked synchronous serial communication modes IrDA SIR encoder and decoder support ◼ ◼ LIN break generation and detection USARTs support ISO 7816-3 compliant smart card interface The USART (USART0, USART1 and USART2) and UART (UART3 & UART4) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication except UART4. 3.15. Inter-IC sound (I2S) ◼ Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz ◼ Support either master or slave mode The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F305xx contain two I2S-bus interfaces that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1 and SPI2. The audio sampling frequency from 8 KHz to 192 KHz is supported. 3.16. Universal serial bus full-speed interface (USBFS) ◼ One USB device/host/full-speed Interface with frequency up to 12 Mbit/s ◼ Internal 48 MHz oscillator (IRC48M) support crystal-less operation ◼ Internal main PLL for USB CLK compliantly ◼ Internal USBFS PHY support 44 GD32F305xx Datasheet The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers. Transaction formatting is performed by the hardware, including CRC generation and checking. It supports both host and device modes, as well as OTG mode with Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The controller contains a full-speed USB PHY internal. For full-speed or low-speed operation, no more external PHY chip is needed. It supports all the four types of transfer (control, bulk, Interrupt and isochronous) defined in USB 2.0 protocol. The required precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HXTAL crystal oscillator) or by the internal 48 MHz oscillator (IRC48M) in automatic trimming mode that allows crystal-less operation. 3.17. Controller area network (CAN) ◼ Two CAN2.0B interface with communication frequency up to 1 Mbit/s ◼ Internal main PLL for CAN CLK compliantly Controller area network (CAN) is a method for enabling serial communication in f ield bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep f or reception. It also provides 28 scalable/configurable identifier f ilter banks f or selecting the incoming messages needed and discarding the others. 3.18. External memory controller (EXMC) ◼ Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and ◼ PC card Provide ECC calculating hardware module for NAND Flash memory block ◼ ◼ Up to 16-bit data bus Support to interface with Motorola 6800 and Intel 8080 type LCD directly External memory controller (EXMC) is an abbreviation of external memory controller. It is divided in to several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and PC card. The EXMC also can be conf igured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity. 3.19. Debug mode ◼ Serial wire JTAG debug port (SWJ-DP) The Arm® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug 45 GD32F305xx Datasheet port that enables either a serial wire debug or a JTAG probe to be connected to the target. 3.20. Package and operation temperature ◼ ◼ LQFP144 (GD32F305Zx), LQFP100 (GD32F305Vx) and LQFP64 (GD32F305Rx) Operation temperature range: -40°C to +85°C (industrial level) 46 GD32F305xx Datasheet 4. Electrical characteristics 4.1. Absolute maximum ratings The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Table 4-1. Absolute maximum ratings (1)(4) Symbol VDD External voltage range (2) Min Max Unit VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5V tolerant pin (3) VSS - 0.3 VDD + 3.6 V Input voltage on other I/O VSS - 0.3 3.6 V |ΔVDDX| Variations between different VDD power pins — 50 mV |VSSX −VSS| Variations between different ground pins — 50 mV IIO Maximum current for GPIO pins — ±25 mA TA Operating temperature range -40 +85 °C Power dissipation at T A = 85°C of LQFP144 — 820 Power dissipation at T A = 85°C of LQFP100 — 848 Power dissipation at T A = 85°C of LQFP64 — 647 TSTG Storage temperature range -65 +150 °C TJ Maximum junction temperature — 125 °C VIN PD 4.2. Parameter mW (1) Guaranteed by design, not tested in production. (2) (3) All main power and ground pins should be connected to an external power source within the allowable range. V IN maximum value cannot exceed 5.5 V. (4) It is recommended that V DD and V DDA are powered by the same source. The maximum difference between V DD and V DDA does not exceed 300 mV during power-up and operation. Operating conditions characteristics Table 4-2. DC operating conditions Min(1) Typ Max(1) Unit Symbol Parameter Conditions VDD Supply voltage — 2.6 3.3 3.6 V VDDA Analog supply voltage Same as VDD 2.6 3.3 3.6 V VBAT Battery supply voltage — 1.8 — 3.6 V (1) Based on characterization, not tested in production. 47 GD32F305xx Datasheet Figure 4-1. Recommended power supply decoupling capacitors(1)(2) VBAT 100 nF VSS N * VDD 4.7 μF + N * 100 nF VSS VDDA 1 μF VSSA 10 nF VREF+ 1 μF VREF- 10 nF (1) The V REF+ and V REF- pins are only available on no less than 100-pin packages, or else the V REF+ and V REF- pins are not available and internally connected to V DDA and V SSA pins. (2) All decoupling capacitors need to be as close as possible to the pins on the PCB board. Table 4-3. Clock frequency(1) Symbol Parameter Conditions Min Max Unit fHCLK AHB clock frequency — — 120 MHz fAPB1 APB1 clock frequency — — 60 MHz fAPB2 APB2 clock frequency — — 120 MHz Min Max Unit 0 ∞ 20 ∞ (1) Guaranteed by design, not tested in production. Table 4-4. Operating conditions at Power up/ Power down (1) Symbol tVDD (1) Parameter Conditions VDD rise time rate — VDD fall time rate μs/ V Guaranteed by design, not tested in production. Table 4-5. Start-up timings of Operating conditions(1)(2)(3) Symbol Parameter tstart-up Start-up time Conditions Typ Clock source from HXTAL 154 Clock source from IRC8M 154 Unit ms (1) (2) Based on characterization, not tested in production. After power-up, the start-up time is the time between the rising edge of NRST high and the main function. (3) PLL is off. Table 4-6. Power saving mode wakeup timings characteristics(1)(2) Symbol Parameter Typ tSleep Wakeup from Sleep mode 3.4 tDeep-sleep Wakeup from Deep-sleep mode(LDO On) 5.8 Unit μs 48 GD32F305xx Datasheet Symbol Parameter Typ Wakeup from Deep-sleep mode(LDO in low power mode) 5.8 Wakeup from Standby mode 154 tStandby 4.3. Unit ms (1) Based on characterization, not tested in production. (2) The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: V DD = V DDA = 3.3 V, IRC8M = System clock = 8 MHz. Power consumption The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications. Table 4-7. Power consumption characteristics(2)(3)(4)(5) Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 120 MHz, All peripherals — 45.1 — mA — 25.5 — mA — 40.7 — mA — 23.2 — mA — 36.4 — mA — 20.8 — mA — 27.9 — mA — 16.1 — mA — 19.3 — mA — 11.4 — mA enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 120 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 108 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals IDD+IDDA Supply current enabled (Run mode) VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 96 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 72 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 48 MHz, All peripherals disabled 49 GD32F305xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals — 15.0 — mA — 9.1 — mA — 10.6 — mA — 6.7 — mA — 7.8 — mA — 5.2 — mA — 4.9 — mA — 3.6 — mA — 1.4 — mA — 0.9 — mA — 0.8 — mA — 0.6 — mA — 31.4 — mA — 10.5 — mA enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 36 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 24 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 16 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 16 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System clock = 8 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System clock = 4 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System clock = 4 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System clock = 2 MHz, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 120 MHz, CPU clock off, Supply current (Sleep mode) All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 120 MHz, CPU clock off, All peripherals disabled 50 GD32F305xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, — 28.4 — mA — 9.6 — mA — 25.5 — mA — 8.8 — mA — 19.7 — mA — 7.1 — mA — 13.8 — mA — 5.4 — mA — 10.8 — mA — 4.5 — mA — 7.9 — mA — 3.7 — mA — 5.9 — mA — 3.2 — mA All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 108 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 96 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 72 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 48 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 36 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 24 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 16 MHz, CPU clock off, All peripherals disabled 51 GD32F305xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All — 4.0 — mA — 2.6 — mA — 1.0 — mA — 0.5 — mA — 0.6 — mA — 0.3 — mA peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 25 MHz, System Clock = 8 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System Clock = 4 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 4 MHz, System Clock = 4 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, CPU clock off, All peripherals enabled VDD = VDDA = 3.3 V, HXTAL = 2 MHz, System Clock = 2 MHz, CPU clock off, All peripherals disabled VDD = VDDA = 3.3 V, LDO in normal power and normal driver mode, IRC40K off, RTC — 137.8 1100 — 109.1 — μA — 124.2 — μA — 94.9 — μA — 5.2 — μA — 4.9 — μA — 4.3 22 μA — 1.7 — μA — 1.5 — μA μA off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in normal power Supply current (Deep-Sleep mode) and low driver mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in low power and normal driver mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LDO in low power and low driver mode, IRC40K off, RTC off, All GPIOs analog mode VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, RTC on Supply current VDD = VDDA = 3.3 V, LXTAL off, IRC40K on, (Standby mode) RTC off VDD = VDDA = 3.3 V, LXTAL off, IRC40K off, RTC off VDD off, VDDA off, VBAT = 3.6 V, LXTAL on Battery supply IBAT current (Backup mode) with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL High driving 52 GD32F305xx Datasheet Symbol Parameter Conditions Min Typ(1) Max Unit VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL High — 1.3 — μA — 1.2 — μA — 1.4 — μA — 1.2 — μA — 1.1 — μA — 1.0 — μA — 1.1 — μA — 0.9 — μA — 0.8 — μA — 0.7 — μA — 1.0 — μA — 0.9 — μA — 0.7 — μA — 0.6 — μA driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL High driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL Medium High driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL Medium Low driving VDD off, VDDA off, VBAT = 3.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 3.3 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 2.6 V, LXTAL on with external crystal, RTC on, LXTAL Low driving VDD off, VDDA off, VBAT = 1.8 V, LXTAL on with external crystal, RTC on, LXTAL Low driving (1) Based on characterization, not tested in production. (2) Unless otherwise specified, all values given for T A = 25 ℃ and test result is mean value. 53 GD32F305xx Datasheet (3) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, (4) no PLL. When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed, (5) using PLL. When analog peripheral blocks such as ADCs, DACs, HXTAL , LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered. Figure 4-2. Typical supply current consumption in Run mode Figure 4-3. Typical supply current consumption in Sleep mode 54 GD32F305xx Datasheet Table 4-8. Peripheral current consumption characteristics(1) Peripherials(4) APB1 ADDAPB1 APB2 Typical consumption at TA = 25 ℃ (TYP) DAC(2) 0.81 PMU 1.41 BKPI 1.93 CAN1 1.39 CAN0 1.41 I2C1 1.23 I2C0 1.21 UART4 1.24 UART3 1.25 USART2 1.23 USART1 1.24 SPI2 1.17 SPI1 1.23 WWDGT 1.13 TIMER13 1.47 TIMER12 1.44 TIMER11 1.47 TIMER6 1.14 TIMER5 1.12 TIMER4 1.52 TIMER3 2.25 TIMER2 2.23 TIMER1 2.25 CTC 1.13 TIMER10 2.25 TIMER9 2.23 TIMER8 2.24 USART0 2.15 TIMER7 2.66 SPI0 1.87 TIMER0 2.63 ADC1(3) 0.80 ADC0(3) 0.80 GPIOG 1.99 GPIOF 2.00 GPIOE 1.99 GPIOD 2.00 GPIOC 2.00 GPIOB 2.00 Unit mA 55 GD32F305xx Datasheet Typical consumption at TA = 25 ℃ Peripherials(4) AHB 4.4. (TYP) GPIOA 1.29 USBFS 3.58 EXMC 2.59 CRC 1.81 DMA1 1.48 DMA0 1.61 Unit (1) Based on characterization, not tested in production. (2) (3) DEN0 and DEN1 bits in the DAC_CTL register are set to 1, and the converted value set to 0x800. System clock = f HCLK = 120 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit is set to 1. (4) If there is no other description, then HXTAL = 25 MHz, system clock = fHCLK = 120 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK. EMC characteristics EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the Table 4-9. EMS characteristics(1), based on the EMS levels and classes compliant with IEC 61000 series standard. Table 4-9. EMS characteristics(1) Symbol VESD VFTB (1) Parameter Conditions Voltage applied to all device pins to induce a functional disturbance Level/Class VDD = 3.3 V, T A = 25 °C LQFP144, fHCLK = 120 MHz 3A conforms to IEC 61000-4-2 Fast transient voltage burst applied to VDD = 3.3 V, T A = 25 °C induce a functional disturbance through LQFP144, fHCLK = 120 MHz 100 pF on VDD and VSS pins conforms to IEC 61000-4-4 4A Based on characterization, not tested in production. EMI (Electromagnetic Interference) emission test result is given in the Table 4-10. EMI characteristics(1), The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J1752-3:2017 standard which specifies the test board and the pin loading. Table 4-10. EMI characteristics(1) Max vs. Symbol Parameter Conditions VDD = 3.6 V, TA = +23 °C, SEMI Peak level LQFP144, fHCLK = 120 frequency band [f HXTAL/fHCLK] Unit 8/120 MHz 0.15 MHz to 30 MHz — 30 MHz to 130 MHz — 130 MHz to 1 GHz — MHz, conforms to SAE J1752-3:2017 (1) Tested dBμV Based on characterization, not tested in production. 56 GD32F305xx Datasheet 4.5. Power supply supervisor characteristics Table 4-11. Power supply supervisor characteristics Symbol VLVD(1) Conditions Min Typ Max LVDT = 000(rising edge) — 2.15 — LVDT = 000(falling edge) — 2.04 — LVDT = 001(rising edge) — 2.29 — LVDT = 001(falling edge) — 2.19 — LVDT = 010(rising edge) — 2.43 — LVDT = 010(falling edge) — 2.33 — LVDT = 011(rising edge) — 2.57 — Low voltage LVDT = 011(falling edge) — 2.47 — Detector level selection LVDT = 100(rising edge) — 2.71 — LVDT = 100(falling edge) — 2.6 — LVDT = 101(rising edge) — 2.85 — LVDT = 101(falling edge) — 2.74 — LVDT = 110(rising edge) — 2.99 — LVDT = 110(falling edge) — 2.89 — LVDT = 111(rising edge) — 3.13 — LVDT = 111(falling edge) — 3.03 — — — 100 — mV — 2.34 — V — 1.82 — V VLVDhyst(2) LVD hystersis VPOR(1) Power on reset threshold VPDR(1) Unit V Power down reset threshold — VPDRhyst(2) PDR hysteresis — 600 — mV tRSTTEMPO(2) Reset temporization — 2 — ms (1) (2) 4.6. Parameter Based on characterization, not tested in production. Guaranteed by design, not tested in production. Electrical sensitivity The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up 57 GD32F305xx Datasheet (LU) test is based on the two measurement methods. Table 4-12. ESD characteristics(1) Symbol VESD(HBM) VESD(CDM) (1) Parameter Conditions Electrostatic discharge TA = 25 °C; voltage (human body model) JS-001-2017 Electrostatic discharge TA = 25 °C; voltage (charge device model) JS-002-2018 Min Typ Max2 Unit — — 4000 V — — 750 V Min Typ Max2 Unit — — ±200 mA — — 5.4 V Based on characterization, not tested in production. Table 4-13. Static latch-up characteristics(1) Symbol Parameter Conditions I-test LU TA = 25 °C; JESD78 Vsupply over voltage (1) 4.7. Based on characterization, not tested in production. External clock characteristics Table 4-14. High speed external clock (HXTAL) generated from a crystal/ceramic characteristics Symbol Parameter Conditions Min Typ Max Unit fHXTAL(1) Crystal or ceramic frequency 2.6 V ≤ VDD ≤ 3.6 V 4 8 32 MHz Feedback resistor VDD = 3.3 V — 400 — kΩ — — 20 30 pF — 30 50 70 % Startup — 25 — mA/V — 1.25 — mA — 1.8 — ms RF (2) Recommended matching CHXTAL(2) (3) capacitance on OSCIN and OSCOUT Ducy (HXTAL) (2) Crystal or ceramic duty cycle gm (2) IDDHXTAL(1) Oscillator transconductance Crystal or ceramic operating current VDD = 3.3 V, fHCLK = fIRC8M = 8 MHz TA = 25 °C VDD = 3.3 V, fHCLK = tSUHXTAL(1) Crystal or ceramic startup time fIRC8M = 8 MHz TA = 25 °C (1) Based on characterization, not tested in production. (2) (3) Guaranteed by design, not tested in production. CHXTAL1 = CHXTAL2 = 2*(CLOAD - CS), For CHXTAL1 and CHXTAL2, it is recommended matching capacitance on OSCIN and OSCOUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. Table 4-15. High speed external clock characteristics (HXTAL in bypass mode) Symbol fHXTAL_ext(1) Parameter External clock source or oscillator frequency Conditions Min Typ Max Unit 2.6 V ≤ VDD ≤ 3.6 V 1 — 50 MHz 58 GD32F305xx Datasheet Symbol Parameter OSCIN input pin high level VHXTALH(2) voltage OSCIN input pin low level VHXTALL(2) CIN Ducy (HXTAL) (1) (2) Typ Max Unit 0.7 VDD — VDD V VSS — 0.3 VDD V OSCIN high or low time — 5 — — ns OSCIN rise or fall time — — — 10 ns OSCIN input capacitance — — 5 — pF Duty cycle — 40 — 60 % (2) (2) Min VDD = 3.3 V voltage tH/L(HXTAL) (2) tR/F(HXTAL) Conditions (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. Table 4-16. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics Symbol fLXTAL(1) Parameter Conditions Min Typ Max Unit VDD = 3.3 V — 32.768 — kHz — — 10 — pF — 30 — 70 % — 4 — — 6 — — 12 — — 18 — LXTALDRI[1:0] = 00 — 0.7 — Crystal or ceramic operating LXTALDRI[1:0] = 01 — 0.8 — current LXTALDRI[1:0] = 10 — 1.0 — LXTALDRI[1:0] = 11 — 1.3 — — — 1.8 — Crystal or ceramic frequency Recommended matching CLXTAL(2)(3) capacitance on OSC32IN and OSC32OUT Ducy (LXTAL) (2) Crystal or ceramic duty cycle Lower driving capability Medium low driving gm (2) Oscillator transconductance capability Medium high driving capability Higher driving capability IDDLXTAL(1) tSULXTAL(1)(4) Crystal or ceramic startup time μA/V μA s (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. (3) CLXTAL1 = CLXTAL2 = 2*(CLOAD - CS), For CLXTAL1 and CLXTAL2, it is recommended matching capacitance on OSC32IN and OSC32OUT. For CLOAD, it is crystal/ceramic load capacitance, provided by the crystal or (4) ceramic manufacturer. For CS, it is PCB and MCU pin stray capacitance. tSULXTAL is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer. 59 GD32F305xx Datasheet Table 4-17. Low speed external user clock characteristics (LXTAL in bypass mode) Symbol Parameter Min Typ Max Unit VDD = 3.3 V — 32.768 1000 kHz — 0.7 VDD — VDD External clock source or fLXTAL_ext(1) oscillator frequency OSC32IN input pin high level VLXTALH(2) voltage V OSC32IN input pin low level VLXTALL(2) voltage — VSS — 0.3 VDD t H/L(LXTAL) (2) OSC32IN high or low time — 450 — — t R/F(LXTAL) (2) OSC32IN rise or fall time — — — 50 CIN(2) OSC32IN input capacitance — — 5 — pF Duty cycle — 30 50 70 % Ducy (LXTAL) (1) (2) 4.8. Conditions (2) ns Based on characterization, not tested in production. Guaranteed by design, not tested in production. Internal clock characteristics Table 4-18. High speed internal clock (IRC8M) characteristics Symbol Parameter Conditions Min Typ Max Unit VDD = VDDA = 3.3 V — 8 — MHz -2.5 — +2.5 % -1.8 — +1.8 % VDD = VDDA = 3.3 V, TA = 25 °C -1.0 — +1.0 % — — 0.5 — % VDD = VDDA = 3.3 V 45 50 55 % — 66 — μA — 5 — μs High Speed Internal fIRC8M Oscillator (IRC8M) frequency VDD = VDDA = 3.3 V, IRC8M oscillator Frequency accuracy, Factory-trimmed ACCIRC8M TA = -40 °C ~ +85 °C(1) VDD = VDDA = 3.3 V, TA = 0 °C ~ +85 °C(1) IRC8M oscillator Frequency accuracy, User trimming step(1) Ducy IRC8M (2) IRC8M oscillator duty cycle IDDAIRC8M (1) tSUIRC8M (1) IRC8M oscillator operating VDD = VDDA = 3.3 V, current fHCLK = fHXTAL_PLL = 120 MHz IRC8M oscillator startup VDD = VDDA = 3.3 V, time fHCLK = fHXTAL_PLL = 120 MHz (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. 60 GD32F305xx Datasheet Table 4-19. Low speed internal clock (IRC40K) characteristics Symbol fIRC40K(1) IDDAIRC40K(2) tSUIRC40K(2) Parameter Conditions Low Speed Internal oscillator VDD = VDDA = 3.3 V, (IRC40K) frequency TA = -40°C ~ +85 °C IRC40K oscillator operating current Typ Max Unit 20 40 45 kHz — 0.4 — μA — 110 — μs VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 120 MHz TA = 25 °C IRC40K oscillator startup time Min VDD = VDDA = 3.3 V, fHCLK = fHXTAL_PLL = 120 MHz TA = 25 °C (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production. Table 4-20. High speed internal clock (IRC48M) characteristics Symbol Parameter Conditions Min Typ Max Unit High Speed Internal fIRC48M Oscillator (IRC48M) VDD = 3.3 V — 48 — MHz -4.0 — +5.0 % -3.0 — +3.0 % -2.0 — +2.0 % — — 0.12 — % VDD = VDDA = 3.3 V 45 50 55 % — 356 — μA — 2.7 — μs frequency VDD = VDDA = 3.3 V, IRC48M oscillator Frequency accuracy, ACCIRC48M Factory-trimmed TA = -40°C ~+85 °C(1) VDD = VDDA = 3.3 V, TA = 0 °C ~ +85 °C (1) VDD = VDDA = 3.3 V, TA = 25 °C IRC48M oscillator Frequency accuracy, User trimming DIRC48M (2) step(1) IRC48M oscillator duty cycle IDDAIRC48M ( IRC48M oscillator VDD = VDDA = 3.3 V, 1) operating current fHCLK = fHXTAL_PLL = 120 MHz IRC48M oscillator VDD = VDDA = 3.3 V, startup time fHCLK = fHXTAL_PLL = 120 MHz tSUIRC48M (1) (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. 61 GD32F305xx Datasheet 4.9. PLL characteristics Table 4-21. PLL characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) tLOCK(2) IDDA(1)(3) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 1 — 25 MHz PLL output clock frequency — 16 — 120 MHz — 32 — 240 MHz — — — 300 μs VCO freq = 240 MHz — 680 — μA — 35 — PLL VCO output clock frequency PLL lock time Current consumption on VDDA Cycle to cycle Jitter Jitter PLL(1)(4) (rms) Cycle to cycle Jitter System clock ps — (peak to peak) — 371 (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. (3) (4) System clock = IRC8M = 8 MHz, PLL clock source = IRC8M/2 = 4 MHz, fPLLOUT = 120 MHz. Value given with main PLL running. Table 4-22. PLL1 characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLIN(1) PLL input clock frequency — 1 — 25 MHz fPLLOUT(2) PLL output clock frequency — 16 — 120 MHz — 32 — 200 MHz — — — 300 μs VCO freq = 200 MHz — 520 — μA — 35 — fVCO(2) tLOCK(2) IDDA(1)(3) PLL VCO output clock frequency PLL lock time Current consumption on VDDA Cycle to cycle Jitter Jitter PLL(1)(4) (rms) Cycle to cycle Jitter System clock (peak to peak) ps — 371 (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. (3) (4) System clock = IRC8M = 8 MHz, PLL1 clock source = IRC48M = 48 MHz, fPLLOUT = 120 MHz. Value given with main PLL running. — 62 GD32F305xx Datasheet Table 4-23. PLL2 characteristics Symbol fPLLIN (1) fPLLOUT (2) fVCO(2) tLOCK(2) IDDA(1)(3) Parameter Conditions Min Typ Max Unit PLL input clock frequency — 1 — 25 MHz PLL output clock frequency — 16 — 120 MHz — 32 — 200 MHz — — — 300 μs VCO freq = 200 MHz — 520 — μA — 35 — PLL VCO output clock frequency PLL lock time Current consumption on VDDA Cycle to cycle Jitter Jitter PLL(1)(4) (rms) System clock Cycle to cycle Jitter ps — (peak to peak) 4.10. — 371 (1) Based on characterization, not tested in production. (2) (3) Guaranteed by design, not tested in production. System clock = IRC8M = 8 MHz, PLL2 clock source = IRC48M = 48 MHz, fPLLOUT = 120 MHz. (4) Value given with main PLL running. Memory characteristics Table 4-24. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ (1) Max(2) Number of guaranteed PECYC program /erase cycles TA = -40 °C ~ +85 °C 100 — — before failure (Endurance) Unit kcycle s tRET Data retention time — — 20 — years tPROG Word programming time TA = -40°C ~ +85 °C — 47.5 215 μs tERASE Page erase time TA = -40°C ~ +85 °C — 45 800 ms tMERASE(256K) Mass erase time TA = -40°C ~ +85 °C — 2 24 s tMERASE(512K) Mass erase time TA = -40°C ~ +85 °C — 4 48 s tMERASE(1MB) Mass erase time TA = -40°C ~ +85 °C — 6 72 s (1) (2) Based on characterization, not tested in production. Guaranteed by design, not tested in production. 63 GD32F305xx Datasheet 4.11. NRST pin characteristics Table 4-25. NRST pin characteristics Symbol VIL(NRST) Parameter Conditions (1) NRST Input low level voltage (1) NRST Input high level voltage VIH(NRST) Min Typ Max -0.3 — 0.3 VDD VDD = VDDA = 2.6 V 0.7 VDD — VDD + 0.3 Vhyst(1) Schmidt trigger Voltage hysteresis — 390 — VIL(NRST) (1) NRST Input low level voltage -0.3 — 0.3 VDD VIH(NRST) (1) NRST Input high level voltage Vhyst(1) VIL(NRST) VDD = VDDA = 3.3 V 0.7 VDD — VDD + 0.3 Schmidt trigger Voltage hysteresis — 410 — (1) NRST Input low level voltage -0.3 — 0.3 VDD (1) NRST Input high level voltage VIH(NRST) VDD = VDDA = 3.6 V 0.7 VDD — Vhyst(1) Schmidt trigger Voltage hysteresis Rpu(2) Pull-up equivalent resistor — (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. VDD + 0.3 Unit V mV V mV V — 430 — mV — 40 — kΩ Figure 4-4. Recommended external NRST pin circuit VDD VDD External reset circuit 10 kΩ RPU NRST K 100 nF GND 4.12. GPIO characteristics Table 4-26. I/O port DC characteristics(1)(3) Symbol Parameter Standard IO Low level input VIL voltage 5V-tolerant IO Low level input voltage Standard IO Low level input VIH voltage 5V-tolerant IO Low level input voltage Conditions Min Typ Max Unit 2.6 V ≤ VDD = VDDA ≤ 3.6 V — — 0.3 VDD V 2.6 V ≤ VDD = VDDA ≤ 3.6 V — — 0.3 VDD V 2.6 V ≤ VDD = VDDA ≤ 3.6 V 0.7 VDD — — V 2.6 V ≤ VDD = VDDA ≤ 3.6 V 0.7 VDD — — V 64 GD32F305xx Datasheet VOL VOL VOH VOH RPU(2) RPD(2) Low level output voltage VDD = 2.6 V — — 0.17 for an IO Pin VDD = 3.3 V — — 0.16 (IIO = +8mA) VDD = 3.6 V — — 0.15 Low level output voltage VDD = 2.6 V — — 0.49 for an IO Pin VDD = 3.3 V — — 0.4 (IIO = +20mA) VDD = 3.6 V — — 0.34 High level output voltage VDD = 2.6 V 2.4 — — for an IO Pin VDD = 3.3 V 3.15 — — (IIO = +8mA) VDD = 3.6 V 3.44 — — High level output voltage VDD = 2.6 V 2.02 — — for an IO Pin VDD = 3.3 V 2.8 — — (IIO = +20mA) VDD = 3.6 V 3.15 — — V V V V Internal pull-up All pins VIN = VSS 30 40 50 resistor PA10 — 7.5 10 13.5 Internal pull- All pins VIN = VDD 30 40 50 down resistor PA10 — 7.5 10 13.5 kΩ kΩ (1) Based on characterization, not tested in production. (2) (3) Guaranteed by design, not tested in production. All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF). Table 4-27. I/O port AC characteristics(1)(2) GPIOx_MDy[1:0] bit value(3) Parameter GPIOx_CTL->MDy[1:0]=10 Maximum (IO_Speed = 2MHz) frequency (4) Conditions Max Unit 2.6 ≤ VDD ≤ 3.6 V, CL = 10 pF 15 2.6 ≤ VDD ≤ 3.6 V, CL = 30 pF 10 2.6 ≤ VDD ≤ 3.6 V, CL = 50 pF MHz 8 2.6 ≤ VDD ≤ 3.6 V, CL = 10 pF 50 GPIOx_CTL->MDy[1:0] = 01 Maximum (IO_Speed = 10MHz) frequency (4) GPIOx_CTL->MDy[1:0]=11 Maximum (IO_Speed = 50MHz) frequency (4) GPIOx_CTL->MDy[1:0]=11 and GPIOx_SPDy=1 (IO_Speed = MAX) Maximum frequency (4) 2.6 ≤ VDD ≤ 3.6 V, CL = 30 pF 25 MHz 2.6 ≤ VDD ≤ 3.6 V, CL = 50 pF 15 2.6 ≤ VDD ≤ 3.6 V, CL = 10 pF 100 2.6 ≤ VDD ≤ 3.6 V, CL = 30 pF 70 MHz 2.6 ≤ VDD ≤ 3.6 V, CL = 50 pF 50 2.6 ≤ VDD ≤ 3.6 V, CL = 10 pF 120 2.6 ≤ VDD ≤ 3.6 V, CL = 30 pF 100 MHz 2.6 ≤ VDD ≤ 3.6 V, CL = 50 pF 60 (1) Based on characterization, not tested in production. (2) (3) Unless otherwise specified, all test results given for T A = 25 ℃. The I/O speed is configured using the GPIOx_CTL -> MDy[1:0] bits. Refer to the GD32F30x user manual (4) which is selected to set the GPIO port output speed. The maximum frequency is defined in Figure 4-5, and maximum frequency cannot exceed 120 MHz. Figure 4-5. I/O port AC characteristics definition 65 GD32F305xx Datasheet 90% EXTERNAL OUTPU T ON 50pF 90% 50% 50% 10% tr(IO)out 10% tf(IO)out T If (tr + tf) ≤ 2/3 T, then maximum frequency is achieved . The duty cycle is (45%-55%)when loaded by 50 pF 4.13. ADC characteristics Table 4-28. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.6 3.3 3.6 V ADC input voltage range — 0 — VREF+ V Positive Reference Voltage — 2.6 — VDDA V — — VSSA — V — 0.1 — 40 MHz 12-bit 0.007 — 2.86 10-bit 0.008 — 3.33 MSP 8-bit 0.01 — 4 S 6-bit 0.012 — 5 VIN (1) VREF+ (2) VREF- (2) fADC(1) fS(1) Negative Reference Voltage ADC clock Sampling rate VAIN (1) Analog input voltage 16 external; 2 internal 0 — VDDA V RAIN (2) External input impedance See Equation 1 — — 32.9 kΩ — — — 0.55 kΩ — — 5.5 pF RADC(2) Input sampling switch resistance No pin/pad capacitance CADC(2) Input sampling capacitance tCAL(2) Calibration time fADC = 40 MHz — 3.275 — μs Sampling time fADC = 40 MHz 0.0375 — 5.99 μs 12-bit — 14 — 10-bit — 12 — 1/ 8-bit — 10 — fADC 6-bit — 8 — — — — 1 (2) ts included Total conversion tCONV(2) time(including sampling time) tSU (2) Startup time (1) Based on characterization, not tested in production. (2) Guaranteed by design, not tested in production. Equation 1: RAIN max formula R AIN < Ts fADC∗C ADC∗ln (2N+2) μs − R ADC The formula above (Equation 1) is used to determine the maximum external impedance allowed for an 66 GD32F305xx Datasheet error below 1/4 of LSB. Here N=12 (from 12-bit resolution). Table 4-29. ADC RAIN max for fADC = 40 MHz Ts (cycles) t s (μs) RAIN max (kΩ) 1.5 0.0375 0.15 7.5 0.1875 2.96 13.5 0.3375 5.77 28.5 0.7125 12.8 41.5 1.0375 18.9 55.5 1.3875 25.4 71.5 1.7875 32.9 239.5 5.9875 N/A Table 4-30. ADC dynamic accuracy at fADC = 14 MHz (1) Symbol Parameter Test conditions Min Typ Max Unit ENOB Effective number of bits fADC = 14 MHz — 10.8 — bits SNDR Signal-to-noise and distortion ratio VDDA = VREF+ = 3.3 V — 66.7 — Signal-to-noise ratio Input Frequency = 20 — 67.4 — — -76.3 — SNR THD (1) kHz Total harmonic distortion Temperature = 25℃ dB Based on characterization, not tested in production. Table 4-31. ADC dynamic accuracy at fADC = 40 MHz (1) Symbol Parameter Test conditions Min Typ ENOB Effective number of bits fADC = 40 MHz — 10 — SNDR Signal-to-noise and distortion ratio VDDA = VREF+ = 3.3 V — 62 — SNR Signal-to-noise ratio Input Frequency = 20 kHz — 62.2 — THD Total harmonic distortion Temperature = 25 ℃ — -68.6 — Typ Max ±1 — ±0.9 — ±1 — (1) Max Unit bits dB Based on characterization, not tested in production. Table 4-32. ADC static accuracy at fADC = 14 MHz (1) Symbol Parameter Offset Offset error DNL Differential linearity error INL Integral linearity error (1) 4.14. Test conditions fADC = 14 MHz VDDA = VREF+ = 3.3 V Unit LSB Based on characterization, not tested in production. Temperature sensor characteristics Table 4-33. Temperature sensor characteristics(1) Symbol Parameter Min Typ Max Unit TL VSENSE linearity with temperature — ±1.5 — ℃ Avg_Slope Average slope — 4.1 — mV/℃ V25 Voltage at 25 °C — 1.45 — V ADC sampling time when reading the temperature — 17.1 — μs tS_temp (2) 67 GD32F305xx Datasheet 4.15. (1) Based on characterization, not tested in production. (2) Shortest sampling time can be determined in the application by multiple iterations. DAC characteristics Table 4-34. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA(1) Operating voltage — 2.6 3.3 3.6 V Positive Reference Voltage — 2.6 — VDDA V — — VSSA — V 5 — — kΩ — — 15 kΩ — — 50 pF — 0.2 — — V — — — — — 0.5 — — — — 470 — uA — 500 — uA — 86 — uA — 298 — uA DAC in 12-bit mode — — ±5 LSB Integral non-linearity DAC in 12-bit mode — — ±4 LSB Offset Offset error DAC in 12-bit mode — — ±12 LSB GE(1) Gain error DAC in 12-bit mode — — ±0.5 % Tsetting(1) Settling time CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — 0.3 1 μs VREF+ (2) VREF- (2) RLOAD(2) Ro(2) Negative Reference Voltage Load resistance Impedance output with buffer OFF CLOAD(2) Load capacitance DAC_OUT Lower DAC_OUT voltage min(2) with buffer ON DAC_OUT Higher DAC_OUT voltage max (2) with buffer ON DAC_OUT Lower DAC_OUT voltage min(2) with buffer OFF DAC_OUT Higher DAC_OUT voltage max (2) with buffer OFF Resistive load with buffer ON — No pin/pad capacitance included VDDA0.2 — VDDA1LSB V mV V With no load, middle code(0x800) on the input, VREF+ IDDA(1) DAC current consumption = 3.6 V in quiescent mode With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V With no load, middle code(0x800) on the input, VREF+ IDDVREF+ (1) DAC current consumption = 3.6 V in quiescent mode With no load, worst code(0xF1C) on the input, VREF+ = 3.6 V DNL(1) INL(1) (1) Differential non-linearity error 68 GD32F305xx Datasheet Symbol (2) wakeup T Update rate(2) PSRR(2) (1) (2) 4.16. Parameter Conditions Min Typ Max Unit Wakeup from off state — — 5 10 μs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ — — 4 MS/ s — 55 80 — dB Max frequency for a correct DAC_OUT change from code i to i±1LSBs Power supply rejection ratio (to VDDA) Based on characterization, not tested in production. Guaranteed by design, not tested in production. I2C characteristics Table 4-35. I2C characteristics(1)(2) Standard Symbol tSCL(H) Parameter SCL clock high time tSCL(L) SCL clock low time tsu(SDA) SDA setup time th(SDA) SDA data hold time tr(SDA/SCL) tf(SDA/SCL) th(STA) SDA and SCL rise time SDA and SCL fall time Start condition hold time Conditions mode Fast mode Fast mode plus Unit Min Max Min Max Min Max — 4.0 — 0.6 — 0.2 — μs — 4.7 — 1.3 — 0.5 — μs 250 — 100 — 50 — ns 0(3) 3450 0 900 0 450 ns — — 1000 — 300 — 120 ns — — 300 — 300 — 120 ns — 4.0 — 0.6 — 0.26 — μs — 4.7 — 0.6 — 0.26 — μs — 4.0 — 0.6 — 0.26 — μs — 4.7 — 1.3 — 0.5 — μs — — Repeated Start ts(STA) condition setup time ts(STO) Stop condition setup time Stop to Start tbuff condition time (bus free) (1) (2) Guaranteed by design, not tested in production. To ensure the standard mode I2C frequency, f PCLK1 must be at least 2 MHz. To ensure the fast mode I2C frequency, f PCLK1 must be at least 4 MHz. To ensure the fast mode plus I2C frequency, f PCLK1 must be at least a multiple of 10 MHz. (3) The device should provide a data hold time of 300 ns a t least in order to bridge the undefined region of the falling edge of SCL. 69 GD32F305xx Datasheet Figure 4-6. I2C bus timing diagram tsu(STA) SDA 70% 30% tf(SDA) tr(SDA) tSCL(H) th(STA) SCL tbuff th(SDA) tsu(SDA) 70% 30% tSCL(L) 4.17. tr(SCL) tf(SCL) tsu(STO) SPI characteristics Table 4-36. Standard SPI characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — 30 MHz tSCK(H) SCK clock high time tSCK(L) SCK clock low time Master mode, fPCLKx = 120 MHz, presc = 8 Master mode, fPCLKx = 120 MHz, presc = 8 31.83 33.33 34.83 ns 31.83 33.33 34.83 ns SPI master mode tV(MO) Data output valid time — — 5 6 ns tH(MO) Data output hold time — 3 — — ns tSU(MI) Data input setup time — 1 — — ns tH(MI) Data input hold time — 0 — — ns SPI slave mode tSU(NSS) NSS enable setup time — 0 — — ns tH(NSS) NSS enable hold time — 1 — — ns tA(SO) Data output access time — 5 — 9 ns tDIS(SO) Data output disable time — 6 — 10 ns tV(SO) Data output valid time — — 10 12 ns tH(SO) Data output hold time — 8 — — ns tSU(SI) Data input setup time — 0 — — ns tH(SI) Data input hold time — 1 — — ns (1) Based on characterization, not tested in production. 70 GD32F305xx Datasheet Figure 4-7. SPI timing diagram - master mode tSCK SCK (CKPH=0 CKPL=0) SCK (CKPH=0 CKPL=1) SCK (CKPH=1 CKPL=0) tSCK(H) tSCK(L) SCK (CKPH=1 CKPL=1) tSU(MI) MISO D[0] LF=1,FF16=0 D[7] tH(MI) D[0] MOSI D[7] tH(MO) tV(MO) Figure 4-8. SPI timing diagram - slave mode NSS tSCK tSU(NSS) SCK (CKPH=0 CKPL=0) tSCK(H) SCK (CKPH=0 CKPL=1) tSCK(L) tH(NSS) tH(SO) tDIS(SO) tV(SO) tA(SO) MISO D[0] D[7] tSU(SI) MOSI D[0] D[7] tH(SI) 71 GD32F305xx Datasheet 4.18. I2S characteristics Table 4-37. I2S characteristics(1)(2) Symbol Parameter Conditions Master mode (data: 16 bits, fCK Clock frequency Audio frequency = 96 kHz) Slave mode Min 3.075 Typ Max 3.077 3.079 Unit MHz 0 — 10 162 — — ns 163 — — ns tH Clock high time tL Clock low time tV(WS) WS valid time Master mode 0 — — ns tH(WS) WS hold time Master mode 0 — — ns tSU(WS) WS setup time Slave mode 0 — — ns tH(WS) WS hold time Slave mode 2 — — ns Slave mode — 50 — % Ducy (SCK) — I2S slave input clock duty cycle tSU(SD_MR) Data input setup time Master mode 1 — — ns tsu(SD_SR) Data input setup time Slave mode 0 — — ns Master receiver 0 — — ns Slave receiver 1 — — ns — — 12 ns 7 — — ns — — 6 ns 2 — — ns tH(SD_MR) tH(SD_SR) Data input hold time tV(SD_ST) Data output valid time tH(SD_ST) Data output hold time tV(SD_MT) Data output valid time tH(SD_MT) Data output hold time Slave transmitter (after enable edge) Slave transmitter (after enable edge) Master transmitter (after enable edge) Master transmitter (after enable edge) (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production. 72 GD32F305xx Datasheet Figure 4-9. I2S timing diagram - master mode tCK CPOL=0 tL CPOL=1 tV(WS) tH tH(WS) WS output tH(SD_MT) tV(SD_MT) SD transmit D[0] SD receive D[0] tSU(SD_MR) tH(SD_MR) Figure 4-10. I2S timing diagram - slave mode tCK CPOL=0 tL CPOL=1 tH tH(WS) WS input tSU(WS) SD transmit SD receive tV(SD_ST) tH(SD_ST) D[0] D[0] tSU(SD_SR) tH(SD_SR) 73 GD32F305xx Datasheet 4.19. USART characteristics Table 4-38. USART characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency fPCLKx = 120 MHz — — 60 MHz tSCK(H) SCK clock high time fPCLKx = 120 MHz 7.5 — — ns tSCK(L) SCK clock low time fPCLKx = 120 MHz 7.5 — — ns (1) 4.20. Guaranteed by design, not tested in production. CAN characteristics Ref er to Table 4-26. I/O port DC characteristics(1) f or more details on the input/output alternate f unction characteristics (CANTX and CANRX). 4.21. USBFS characteristics Table 4-39. USBFS start up time Symbol Parameter Max Unit tSTARTUP(1) USBFS startup time 1 μs (1) Guaranteed by design, not tested in production. Table 4-40. USBFS DC electrical characteristics Symbol Parameter Conditions Min Typ USBFS operating voltage — 3 — 3.6 VDI Differential input sensitivity — 0.2 — — Includes VDI range 0.8 — 2.5 — 1.3 — 2.0 VDD Input levels (1) VCM VSE Output levels (2) range Single ended receiver threshold VOL Static output level low RL of 1.0 kΩ to 3.6 V — 0.064 0.3 VOH Static output level high RL of 15 kΩ to VSS 2.8 3.3 3.6 17 20.574 24 0.65 — 2.0 1.5 1.585 2.1 0.25 0.326 0.55 RPD(2) RPU Differential common mode Max Unit (2) PA11, PA12(USB_DM/DP) PA9(USB_VBUS) PA11, PA12(USB_DM/DP) PA9(USB_VBUS) (1) Guaranteed by design, not tested in production. (2) Based on characterization, not tested in production. VIN = VDD VIN = VSS V V kΩ Table 4-41. USBFS full speed-electrical characteristics(1) Symbol Parameter Conditions Min Typ Max Unit tR Rise time CL = 50 pF 4 — 20 ns tF Fall time CL = 50 pF 4 — 20 ns tRFM Rise / fall time matching tR / tF 90 — 110 % 74 GD32F305xx Datasheet v CRS (1) Output signal crossover voltage — 1.3 — 2.0 V Guaranteed by design, not tested in production. Figure 4-11. USBFS timings: definition of data signal rise and fall time Crossover points Differential data lines VCRS VSS tf 4.22. tr EXMC characteristics Table 4-42. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)(3) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 40.5 42.5 ns tV(NOE_NE) EXMC_NEx low to EXMC_NOE low 0 — ns tw(NOE) EXMC_NOE low time 40.5 42.5 ns th(NE_NOE) EXMC_NOE high to EXMC_NE high hold time 0 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns tsu(DATA_NE) Data to EXMC_NEx high setup time 32.2 — ns tsu(DATA_NOE) Data to EXMC_NOEx high setup time 32.2 — ns th(DATA_NOE) Data hold time after EXMC_NOE high 0 — ns th(DATA_NE) Data hold time after EXMC_NEx high 0 — ns tv(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 7.3 9.3 ns (1) (2) CL = 30 pF. Guaranteed by design, not tested in production. (3) Based on configure: fHCLK = 120 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1; Table 4-43. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)(3) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 23.9 25.9 ns tV(NWE_NE) EXMC_NEx low to EXMC_NWE low 7.3 — ns tw(NWE) EXMC_NWE low time 7.3 9.3 ns th(NE_NWE) EXMC_NWE high to EXMC_NE high hold time 7.3 9.3 ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tV(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 7.3 9.3 ns 15.6 — ns th(AD_NADV) EXMC_AD(address) valid hold time after EXMC_NADV high th(A_NWE) Address hold time after EXMC_NWE high 7.3 — ns th(BL_NWE) EXMC_BL hold time after EXMC_NWE high 7.3 — ns 75 GD32F305xx Datasheet tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns tv(DATA_NADV) EXMC_NADV high to DATA valid 0 — ns th(DATA_NWE) Data hold time after EXMC_NWE high 7.3 — ns (1) CL = 30 pF. (2) (3) Guaranteed by design, not tested in production. Based on configure: fHCLK = 120 MHz, AddressSetupTime = 0, AddressHoldTime= 1, DataSetupTime = 1. Table 4-44. Asynchronous multiplexed PSRAM/NOR read timings (1)(2)(3) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 57.1 59.1 ns tV(NOE_NE) EXMC_NEx low to EXMC_NOE low 23.9 — ns tw(NOE) EXMC_NOE low time 32.2 34.2 ns th(NE_NOE) EXMC_NOE high to EXMC_NE high hold time 0 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tv(A_NOE) Address hold time after EXMC_NOE high 0 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns th(BL_NOE) EXMC_BL hold time after EXMC_NOE high 0 — ns tsu(DATA_NE) Data to EXMC_NEx high setup time 33.2 — ns tsu(DATA_NOE) Data to EXMC_NOEx high setup time 33.2 — ns th(DATA_NOE) Data hold time after EXMC_NOE high 0 — ns th(DATA_NE) Data hold time after EXMC_NEx high 0 — ns tv(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 7.3 9.3 ns 7.3 9.3 ns Th(AD_NADV) EXMC_AD(adress) valid hold time after EXMC_NADV high (1) (2) CL = 30 pF. Guaranteed by design, not tested in production. (3) Based on configure: f HCLK = 120 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime = 1. Table 4-45. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)(3) Symbol Parameter Min Max Unit tw(NE) EXMC_NE low time 40.5 42.5 ns tV(NWE_NE) EXMC_NEx low to EXMC_NWE low 7.3 — ns tw(NWE) EXMC_NWE low time 23.9 25.9 ns th(NE_NWE) EXMC_NWE high to EXMC_NE high hold time 7.3 — ns tv(A_NE) EXMC_NEx low to EXMC_A valid 0 — ns tV(NADV_NE) EXMC_NEx low to EXMC_NADV low 0 — ns tw(NADV) EXMC_NADV low time 7.3 9.3 ns 7.3 — ns th(AD_NADV) EXMC_AD(address) valid hold time after EXMC_NADV high th(A_NWE) Address hold time after EXMC_NWE high 7.3 — ns th(BL_NWE) EXMC_BL hold time after EXMC_NWE high 7.3 — ns tv(BL_NE) EXMC_NEx low to EXMC_BL valid 0 — ns tv(DATA_NADV) EXMC_NADV high to DATA valid 7.3 — ns th(DATA_NWE) Data hold time after EXMC_NWE high 7.3 — ns 76 GD32F305xx Datasheet (1) CL = 30 pF. (2) (3) Guaranteed by design, not tested in production. Based on configure: f HCLK = 120 MHz, AddressSetupTime = 0, AddressHoldTime = 1, DataSetupTime =1. Table 4-46. Synchronous multiplexed PSRAM/NOR read timings(1)(2)(3) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 33.2 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 15.6 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 15.6 — ns td(CLKL-NOEL) EXMC_CLK low to EXMC_NOE low 0 — ns td(CLKH-NOEH) EXMC_CLK high to EXMC_NOE high 15.6 — ns td(CLKL-ADV) EXMC_CLK low to EXMC_AD valid 0 — ns td(CLKL-ADIV) EXMC_CLK low to EXMC_AD invalid 0 — ns (1) (2) CL = 30 pF. Guaranteed by design, not tested in production. (3) Based on configure: fHCLK = 120 MHz, BurstAccessMode = Enable; Memory Type = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); Data Latency = 1. Table 4-47. Synchronous multiplexed PSRAM write timings(1)(2)(3) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 33.2 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 15.6 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 15.6 — ns td(CLKL-NWEL) EXMC_CLK low to EXMC_NWE low 0 — ns td(CLKH-NWEH) EXMC_CLK high to EXMC_NWE high 15.6 — ns td(CLKL-ADIV) EXMC_CLK low to EXMC_AD invalid 0 — ns td(CLKL-DATA) EXMC_A/D valid data after EXMC_CLK low 0 — ns th(CLKL-NBLH) EXMC_CLK low to EXMC_NBL high 0 — ns (1) (2) CL = 30 pF. Guaranteed by design, not tested in production. (3) Based on configure: f HCLK = 120 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1. 77 GD32F305xx Datasheet Table 4-48. Synchronous non-multiplexed PSRAM/NOR read timings(1)(2)(3) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 33.2 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 15.6 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 15.6 — ns td(CLKL-NOEL) EXMC_CLK low to EXMC_NOE low 0 — ns td(CLKH-NOEH) EXMC_CLK high to EXMC_NOE high 15.6 — ns (1) CL = 30 pF. (2) (3) Guaranteed by design, not tested in production. Based on configure: fHCLK = 120 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1. Table 4-49. Synchronous non-multiplexed PSRAM write timings(1)(2)(3) Symbol Parameter Min Max Unit tw(CLK) EXMC_CLK period 33.2 — ns td(CLKL-NExL) EXMC_CLK low to EXMC_NEx low 0 — ns td(CLKH-NExH) EXMC_CLK high to EXMC_NEx high 15.6 — ns td(CLKL-NADVL) EXMC_CLK low to EXMC_NADV low 0 — ns td(CLKL-NADVH) EXMC_CLK low to EXMC_NADV high 0 — ns td(CLKL-AV) EXMC_CLK low to EXMC_Ax valid 0 — ns td(CLKH-AIV) EXMC_CLK high to EXMC_Ax invalid 15.6 — ns td(CLKL-NWEL) EXMC_CLK low to EXMC_NWE low 0 — ns td(CLKH-NWEH) EXMC_CLK high to EXMC_NWE high 15.6 — ns td(CLKL-DATA) EXMC_A/D valid data after EXMC_CLK low 0 — ns th(CLKL-NBLH) EXMC_CLK low to EXMC_NBL high 0 — ns (1) CL = 30 pF. (2) (3) Guaranteed by design, not tested in production. Based on configure: fHCLK = 120 MHz, BurstAccessMode = Enable; MemoryType = PSRAM; WriteBurst = Enable; CLKDivision = 3 (EXMC_CLK is 4 divided by HCLK); DataLatency = 1. 78 GD32F305xx Datasheet 4.23. TIMER characteristics Table 4-50. TIMER characteristics(1) Symbol Parameter tres Timer resolution time fEXT Timer external clock frequency RES Timer resolution tCOUNTER 4.24. Min Max Unit — 1 — tTIMERxCLK fTIMERxCLK = 120 MHz 8.4 — ns — 0 fTIMERxCLK/2 MHz fTIMERxCLK = 120 MHz 0 60 MHz — — 16 bit — 1 65536 tTIMERxCLK 546 μs 16-bit counter clock period when internal clock is selected tMAX_COUNT (1) Conditions Maximum possible count fTIMERxCLK = 120 MHz 0.0084 — — fTIMERxCLK = 120 MHz — 65536x65536 tTIMERxCLK 35.7 s Guaranteed by design, not tested in production. WDGT characteristics Table 4-51. FWDGT min/max timeout period at 40 kHz (IRC40K)(1) Prescaler divider PSC[2:0] bits 1/4 (1) Min timeout RLD[11:0] = Max timeout RLD[11:0] 0x000 = 0xFFF 000 0.025 409.525 1/8 001 0.025 819.025 1/16 010 0.025 1638.025 1/32 011 0.025 3276.025 1/64 100 0.025 6552.025 1/128 101 0.025 13104.025 1/256 110 or 111 0.025 26208.025 Unit ms Guaranteed by design, not tested in production. Table 4-52. WWDGT min-max timeout value at 60 MHz (fPCLK1)(1) PSC[1:0] 1/1 00 68.2 1/2 01 136.4 1/4 10 272.8 1/8 11 545.6 (1) 4.25. Min timeout value Prescaler divider CNT[6:0] = 0x40 Unit Max timeout value CNT[6:0] = 0x7F Unit 4.3 μs 8.6 17.2 ms 34.4 Guaranteed by design, not tested in production. Parameter conditions Unless otherwise specified, all values given for V DD = VDDA = 3.3 V, TA = 25 ℃. 79 GD32F305xx Datasheet 5. Package information 5.1. LQFP144 package outline dimensions Figure 5-1. LQFP144 package outline A3 c F θ A2A A1 D D1 108 73 109 72 0.25 L L1 DETAIL: F E1 E b b1 c1 c 37 144 BASE METAL WITH PLATING 1 e b BB SECTION B-B 36 Table 5-1. LQFP144 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 21.80 22.00 22.20 D1 19.90 20.00 20.10 E 21.80 22.00 22.20 E1 19.90 20.00 20.10 e — 0.50 — L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 80 GD32F305xx Datasheet Figure 5-2. LQFP144 recommended footprint 22.70 109 144 20.30 108 36 73 72 37 17.80 22.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 81 GD32F305xx Datasheet 5.2. LQFP100 package outline dimensions Figure 5-3. LQFP100 package outline A3 A2 A c θ A1 F eB D D1 51 75 0.25 50 76 L L1 DETAIL: F E1 E b b1 100 c1 c 26 BASE METAL 1 25 b e WITH PLATING B B SECTION B-B Table 5-2. LQFP100 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 15.80 16.00 16.20 D1 13.90 14.00 14.10 E 15.80 16.00 16.20 E1 13.90 14.00 14.10 e — 0.50 — eB 15.05 — 15.35 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 82 GD32F305xx Datasheet Figure 5-4. LQFP100 recommended footprint 16.70 76 100 14.30 75 25 51 50 26 12.30 16.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 83 GD32F305xx Datasheet 5.3. LQFP64 package outline dimensions Figure 5-5. LQFP64 package outline A3 A2 A θ c A1 F eB D D1 33 48 0.25 32 49 L L1 DETAIL: F E1 E b b1 c1 c BASE METAL 64 17 WITH PLATING 1 e b SECTION B-B 16 B B Table 5-3. LQFP64 package dimensions Symbol Min Typ Max A — — 1.60 A1 0.05 — 0.15 A2 1.35 1.40 1.45 A3 0.59 0.64 0.69 b 0.18 — 0.26 b1 0.17 0.20 0.23 c 0.13 — 0.17 c1 0.12 0.13 0.14 D 11.80 12.00 12.20 D1 9.90 10.00 10.10 E 11.80 12.00 12.20 E1 9.90 10.00 10.10 e — 0.50 — eB 11.25 — 11.45 L 0.45 — 0.75 L1 — 1.00 — θ 0° — 7° (Original dimensions are in millimeters) 84 GD32F305xx Datasheet Figure 5-6. LQFP64 recommended footprint 12.70 64 49 10.30 48 16 33 17 32 7.80 12.70 0.30 1 1.20 0.50 (Original dimensions are in millimeters) 85 GD32F305xx Datasheet 5.4. Thermal characteristics Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter “θ”. For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface. θJA: Thermal resistance, junction-to-ambient. θJB: Thermal resistance, junction-to-board. θJC: Thermal resistance, junction-to-case. ᴪJB: Thermal characterization parameter, junction-to-board. ᴪJT: Thermal characterization parameter, junction-to-top center. θJA =(TJ -TA )/PD (5-1) θJB =(TJ -TB )/PD (5-2) θJC =(TJ -TC )/PD (5-3) Where, TJ = Junction temperature. TA = Ambient temperature TB = Board temperature TC = Case temperature which is monitoring on package surface PD = Total power dissipation θJA represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θJA can be considerate as better overall thermal performance. θJA is generally used to estimate junction temperature. θJB is used to measure the heat flow resistance between the chip surface and the PCB board. θJC represents the thermal resistance between the chip surface and the package top case. θJC is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package). Table 5-4. Package thermal characteristics(1) Symbol θJA θJB Condition Natural convection, 2S2P PCB Cold plate, 2S2P PCB Package Value LQFP144 48.76 LQFP100 47.19 LQFP64 61.80 LQFP144 35.00 LQFP100 27.43 LQFP64 42.83 Unit °C/W °C/W 86 GD32F305xx Datasheet Symbol θJC ᴪJB ᴪJT (1) Condition Cold plate, 2S2P PCB Natural convection, 2S2P PCB Natural convection, 2S2P PCB Package Value LQFP144 12.03 LQFP100 8.57 LQFP64 21.98 LQFP144 35.32 LQFP100 31.42 LQFP64 43.05 LQFP144 1.86 LQFP100 1.00 LQFP64 1.58 Unit °C/W °C/W °C/W Thermal characteristics are based on simulation, and meet JEDEC specification. 87 GD32F305xx Datasheet 6. Ordering information Table 6-1. Part ordering code for GD32F305xx devices Ordering code Flash (KB) Package Package type GD32F305ZGT6 1024 LQFP144 Green GD32F305ZET6 512 LQFP144 Green GD32F305ZCT6 256 LQFP144 Green GD32F305VGT6 1024 LQFP100 Green GD32F305VET6 512 LQFP100 Green GD32F305VCT6 256 LQFP100 Green GD32F305RGT6 1024 LQFP64 Green GD32F305RET6 512 LQFP64 Green GD32F305RCT6 256 LQFP64 Green GD32F305RBT6 128 LQFP64 Green Temperature operating range Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C Industrial -40 °C to +85 °C 88 GD32F305xx Datasheet 7. Revision history Table 7-1. Revision history Revision No. Description Date 1.0 Initial Release Mar.20, 2017 1.1 Repair history accumulation error Jan.24, 2018 1.2 Repair history accumulation error Dec.16, 2018 Add functional description of PD0 and PD1 to the packages 1.3 below 100pin. Update electrical characteristics and package Mar.6, 2020 information. Correct the total number of ADC channel in features and 1.4 peripheral list. refer to Table 2-1. GD32F305xx devices Jun.30, 2021 features and peripheral list 1.5 Parameter modify in the chapter of Electrical characteristics May.25, 2022 89 GD32F305xx Datasheet Important Notice This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only. The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but no t limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assu me any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, p rogram, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has be en expressly identified in the applicable agreement, the Products are designed, developed, and/o r manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as c omponents in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal in struments, life-support devices or systems, other medical devices or systems (including re suscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal inj ury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppli ers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products. Information in this document is provided solely in connection with the Products. The Company reserves t he right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without n otice. © 2022 GigaDevice – All rights reserved 90
GD32F305VET6 价格&库存

很抱歉,暂时无法提供与“GD32F305VET6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
GD32F305VET6
    •  国内价格
    • 1+24.48360
    • 10+21.56760
    • 30+19.83960

    库存:39

    GD32F305VET6
    •  国内价格
    • 90+12.30570

    库存:1