0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
74LV4066D,112

74LV4066D,112

  • 厂商:

    NEXPERIA(安世)

  • 封装:

    SOIC14_150MIL

  • 描述:

    四双边开关

  • 数据手册
  • 价格&库存
74LV4066D,112 数据手册
74LV4066 Quad bilateral switches Rev. 4 — 9 December 2015 Product data sheet 1. General description The 74LV4066 is a low-voltage Si-gate CMOS device that is pin and function compatible with the 74HC4066 and 74HCT4066. The 74LV4066 has four independent switches. Each switch has two input/output pins (nY, nZ) and an active HIGH enable input pin (nE). When nE is LOW the corresponding analog switch is turned off. The 74LV4066 has a ON-resistance which is reduced in comparison with the 74HCT4066. 2. Features and benefits     Optimized for low-voltage applications: 1.0 V to 3.6 V Typical VOLP (output ground bounce): < 0.8 V at VCC = 3.3 V and Tamb = 25 C Accepts TTL input levels between VCC = 2.7 V and VCC = 3.6 V Very low ON-resistance:  60  (typical) at VCC = 2.0 V  35  (typical) at VCC = 3.0 V  25  (typical) at VCC = 4.5 V  ESD protection:  HBM JESD22-A114F exceeds 2000 V  MM JESD22-A115-A exceeds 200 V  Specified from 40 C to +80 C and from 40 C to +125 C 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description 74LV4066D 40 C to +125 C SO14 plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 74LV4066DB 40 C to +125 C SSOP14 plastic shrink small outline package; 14 leads; body width 5.3 mm 74LV4066PW 40 C to +125 C TSSOP14 plastic thin shrink small outline package; 14 leads; body width 4.4 mm Version SOT337-1 SOT402-1 74LV4066 Nexperia Quad bilateral switches 4. Functional diagram         < =     (  < =     ( < =        ( <     =          ;    ;    ;    ; ( D E DDG DDG Fig 1.   Logic symbol Fig 2. IEC logic diagram Q< Q( 9&& 9&& *1' Q= DDG Fig 3. Logic diagram (one switch) 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 2 of 22 74LV4066 Nexperia Quad bilateral switches 5. Pinning information 5.1 Pinning <   9&& =   ( =   ( <  (  (  *1'    <  =  =  < DDG Fig 4. Pin configuration 5.2 Pin description Table 2. Pin description Symbol Pin Description 1Y, 2Y, 3Y, 4Y 1, 4, 8, 11 independent input or output 1Z, 2Z, 3Z, 4Z 2, 3, 9, 10 independent output or input GND 7 ground (0 V) 1E, 2E, 3E, 4E 13, 5, 6, 12 enable input VCC 14 supply voltage 6. Functional description 6.1 Function table Table 3. Function table Input nE Switch LOW off HIGH on 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 3 of 22 74LV4066 Nexperia Quad bilateral switches 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC supply voltage IIK input clamping current VI < 0.5 V or VI > VCC + 0.5 V - 20 mA IOK output clamping current VO < 0.5 V or VO > VCC + 0.5 V - 50 mA ISW switch current VO = 0.5 V to (VCC + 0.5 V) - 25 mA Tstg storage temperature 65 +150 C Ptot total power dissipation - 500 mW 400 mW [1] Conditions Min Max Unit 0.5 +7.0 V [1] Tamb = 40 C to +125 C SO14 package [2] (T)SSOP14 package [3] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] SO14 package: Ptot derates linearly with 8 mW/K above 70 C. [3] (T)SSOP14 package: Ptot derates linearly with 5.5 mW/K above 60 C. 8. Recommended operating conditions Table 5. Symbol Recommended operating conditions Parameter VCC supply voltage Conditions [1] Min Typ Max Unit 1.0 3.3 6 V VI input voltage 0 - VCC V VO output voltage 0 - VCC V Tamb ambient temperature 40 - +125 C t/V input transition rise and fall rate VCC = 1.0 V to 2.0 V - - 500 ns/V VCC = 2.0 V to 2.7 V - - 200 ns/V VCC = 2.7 V to 3.6 V - - 100 ns/V VCC = 3.6 V to 5.5 V - - 50 ns/V [1] in free air The static characteristics are guaranteed from VCC = 1.2 V to VCC = 5.5 V, but LV devices are guaranteed to function down to VCC = 1.0 V (with input levels GND or VCC). 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 4 of 22 74LV4066 Nexperia Quad bilateral switches 9. Static characteristics Table 6. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit VCC = 1.2 V 0.90 - - V VCC = 2.0 V 1.40 - - V VCC = 2.7 V to 3.6 V 2.00 - - V VCC = 4.5 V 3.15 - - V Tamb = 40 C to +85 C VIH VIL II IS(OFF) IS(ON) ICC HIGH-level input voltage LOW-level input voltage input leakage current OFF-state leakage current ON-state leakage current supply current ICC additional supply current CI input capacitance VCC = 6.0 V 4.20 - - V VCC = 1.2 V - - 0.30 V VCC = 2.0 V - - 0.60 V VCC = 2.7 V to 3.6 V - - 0.80 V VCC = 4.5 V - - 1.35 V VCC = 6.0 V - - 1.80 V VCC = 3.6 V - - 1.0 A VCC = 6.0 V - - 2.0 A VCC = 3.6 V - - 1.0 A VCC = 6.0 V - - 2.0 A VCC = 3.6 V - - 1.0 A VCC = 6.0 V - - 2.0 A VCC = 3.6 V - - 20 A VCC = 6.0 V - - 40 A - - 500 A - 3.5 - pF VCC = 1.2 V 0.90 - - V VCC = 2.0 V 1.40 - - V VCC = 2.7 V to 3.6 V 2.00 - - V VCC = 4.5 V 3.15 - - V VCC = 6.0 V 4.20 VCC = 1.2 V - VI = VCC or GND VI = VIH or VIL; see Figure 5 VI = VIH or VIL; see Figure 6 VI = VCC or GND; IO = 0 A per input; VI = VCC  0.6 V; VCC = 2.7 V to 3.6 V Tamb = 40 C to +125 C VIH VIL HIGH-level input voltage LOW-level input voltage 74LV4066 Product data sheet V - 0.30 V VCC = 2.0 V - - 0.60 V VCC = 2.7 V to 3.6 V - - 0.80 V VCC = 4.5 V - - 1.35 V VCC = 6.0 V - - 1.80 V All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 5 of 22 74LV4066 Nexperia Quad bilateral switches Table 6. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions II input leakage current VI = VCC or GND IS(OFF) IS(ON) ICC ICC OFF-state leakage current Typ Max Unit VCC = 3.6 V - - 1.0 A VCC = 6.0 V - - 2.0 A VCC = 3.6 V - - 1.0 A VCC = 6.0 V - - 2.0 A VCC = 3.6 V - - 1.0 A VCC = 6.0 V - - 2.0 A VCC = 3.6 V - - 40 A VCC = 6.0 V - - 80 A - - 850 A VI = VIH or VIL; see Figure 5 ON-state leakage current VI = VIH or VIL; see Figure 6 supply current VI = VCC or GND; IO = 0 A per input; VI = VCC  0.6 V; VCC = 2.7 V to 3.6 V additional supply current 9,/ Min Q( 9,+ Q< Q( Q= Q< $ $ 9, 9&&RU*1' 92 *1'RU9&& Q= $ $ 9, 9&&RU*1' 92 RSHQFLUFXLW *1' *1' DDG DDG Fig 5. Test circuit for measuring OFF-state leakage current 74LV4066 Product data sheet Fig 6. Test circuit for measuring ON-state leakage current All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 6 of 22 74LV4066 Nexperia Quad bilateral switches Table 7. ON-resistance At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Symbol Parameter Conditions Min Typ[1] Max - 300 -  - 60 130  Unit Tamb = 40 C to +85 C; see Figure 8 RON(peak) ON resistance (peak) VI = VIH or VIL VCC = 1.2 V [2] VCC = 2.0 V RON(rail) ON resistance (rail) VCC = 2.7 V - 41 60  VCC = 3.0 V to 3.6 V - 37 72  VCC = 4.5 V - 25 52  VCC = 6.0 V - 23 47  - 75 -  VCC = 2.0 V - 35 98  VCC = 2.7 V - 26 60  VI = VIH or VIL; Vis = GND VCC = 1.2 V [2] VCC = 3.0 V to 3.6 V - 24 52  VCC = 4.5 V - 15 40  VCC = 6.0 V - 13 35  VI = VIH or VIL; Vis = VCC - 75 -  VCC = 2.0 V - 40 110  VCC = 2.7 V - 35 72  VCC = 3.0 V to 3.6 V - 30 65  VCC = 4.5 V - 22 47  VCC = 6.0 V - 20 40  - 5 -  VCC = 1.2 V RON(flat) ON resistance (flatness) [2] VI = VIH or VIL; Vis = VCC VCC = 2.0 V VCC = 2.7 V - 4 -  VCC = 3.0 V to 3.6 V - 4 -  VCC = 4.5 V - 3 -  VCC = 6.0 V - 2 -  VCC = 2.0 V - - 150  VCC = 2.7 V - - 90  Tamb = 40 C to +125 C RON(peak) ON resistance (peak) 74LV4066 Product data sheet VI = VIH or VIL VCC = 3.0 V to 3.6 V - - 83  VCC = 4.5 V - - 60  VCC = 6.0 V - - 54  All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 7 of 22 74LV4066 Nexperia Quad bilateral switches Table 7. ON-resistance …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Min Typ[1] Max Unit VCC = 2.0 V - - 115  VCC = 2.7 V - - 68  VCC = 3.0 V to 3.6 V - - 60  VCC = 4.5 V - - 45  VCC = 6.0 V - - 40  VCC = 2.0 V - - 130  VCC = 2.7 V - - 85  VCC = 3.0 V to 3.6 V - - 75  VCC = 4.5 V - - 55  VCC = 6.0 V - - 47  Symbol Parameter Conditions RON(rail) ON resistance (rail) VI = VIH or VIL; Vis = GND VI = VIH or VIL; Vis = VCC [1] All typical values are measured at Tamb = 25 C. [2] At supply voltage approaching 1.2 V, the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages. DDG  521 ȍ  9&& 9  9,+ 9 Q( 9 9  Q< 9LV 9WR 9&& *1' Q= , LV  *1'     Fig 7. Test circuit for measuring ON resistance 74LV4066 Product data sheet  9LV 9 DDG Fig 8. ON resistance as a function of input voltage All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 8 of 22 74LV4066 Nexperia Quad bilateral switches 10. Dynamic characteristics Table 8. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11. Symbol Parameter Min Typ[1] Max VCC = 1.2 V - 8 - ns VCC = 2.0 V - 5 26 ns VCC = 2.7 V to 3.6 V - 3 15 ns VCC = 4.5 V - 2 13 ns VCC = 6.0 V - 2 10 ns VCC = 1.2 V - 40 - ns VCC = 2.0 V - 22 43 ns VCC = 2.7 V to 3.6 V - 12 25 ns VCC = 3.3 V; CL = 15 pF - 10 - ns VCC = 4.5 V - 10 21 ns - 8 16 ns VCC = 1.2 V - 50 - ns VCC = 2.0 V - 27 65 ns Conditions Unit Tamb = 40 C to +85 C tpd ton propagation delay Vis to Vos; see Figure 9 turn-on time nE to Vos; see Figure 9 [2] [3] VCC = 6.0 V toff turn-off time nE to Vos; see Figure 9 [4] VCC = 2.7 V to 3.6 V - 15 38 ns VCC = 3.3 V; CL = 15 pF - 13 - ns VCC = 4.5 V - 13 32 ns - 12 28 ns - 11 - pF VCC = 6.0 V CPD power dissipation capacitance per switch; VCC = 3.3 V; VI = GND to VCC; CL = 15 pF [5] Vis to Vos; see Figure 9 [2] Tamb = 40 C to +125 C tpd propagation delay VCC = 2.0 V - - 31 ns VCC = 2.7 V to 3.6 V - - 18 ns VCC = 4.5 V - - 15 ns - - 12 ns VCC = 2.0 V - - 51 ns VCC = 2.7 V to 3.6 V - - 30 ns VCC = 4.5 V - - 26 ns VCC = 6.0 V - - 20 ns VCC = 6.0 V ton turn-on time 74LV4066 Product data sheet nE to Vos; see Figure 9 All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 [3] © Nexperia B.V. 2017. All rights reserved 9 of 22 74LV4066 Nexperia Quad bilateral switches Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11. Symbol toff Parameter Conditions turn-off time nE to Vos; see Figure 9 VCC = 2.0 V [1] Min Typ[1] Max - - 81 Unit [4] ns VCC = 2.7 V to 3.6 V - - 47 ns VCC = 4.5 V - - 40 ns VCC = 6.0 V - - 34 ns Typical values are measured at nominal VCC and Tamb = 25 C. [2] tpd is the same as tPLH and tPHL. [3] ton is the same as tPZH and tPZL. [4] toff is the same as tPHZ and tPLZ. [5] CPD is used to determine the dynamic power dissipation (PD in W). PD = CPD  VCC2  fi  N + [(CL + CS)  VCC2  fo] where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; CS = maximum switch capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; [(CL + CS)  VCC2  fo] = sum of the outputs. 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 10 of 22 74LV4066 Nexperia Quad bilateral switches 11. Waveforms 9, 9LV 90 90 *1' W 3/+ W 3+/ 92+ 9RV 90 90 92/ DDG Measurement points are given in Table 9. VOL and VOH are typical voltage output levels that occur with the output load. Fig 9. Input to output propagation delays 9, Q(LQSXW 90 *1' W 3/= RXWSXW /2:WR2)) 2))WR/2: W 3=/ 9&& 90 9; 92/ W 3+= RXWSXW +,*+WR2)) 2))WR+,*+ 92+ W 3=+ 9< 90 *1' RXWSXWV HQDEOHG RXWSXWV GLVDEOHG RXWSXWV HQDEOHG DDG Measurement points are given in Table 9. VOL and VOH are typical voltage output levels that occur with the output load. Fig 10. Turn-on and turn-off times for the inputs to the output Table 9. Measurement points Supply voltage Input Output VCC VM VM VX VY  2.7 V 1.5 V 1.5 V VOL + 0.3 VOH  0.3 V < 2.7 V 0.5  VCC 0.5  VCC VOL + 0.15 VOH  0.15 V 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 11 of 22 74LV4066 Nexperia Quad bilateral switches W: 9,   QHJDWLYH SXOVH 90 90  9 9, WI WU WU WI  SRVLWLYH SXOVH 90 90  9  W: DDF a. Input pulse definition 9(;7 9&& * 9, 5/ 92 '87 57 &/ 5/ PQD Test data is given in Table 10. Definitions test circuit: RL = Load resistance. CL = Load capacitance includes jig and probe capacitance. RT = Termination resistance should be equal to Zo of the pulse generator. VEXT = Test voltage for switching times. b. Test circuit Fig 11. Test circuit for measuring switching times Table 10. Test data Supply voltage VCC Input VI Load tr, tf CL VEXT RL [1] tPHZ, tPZH tPLZ, tPZL tPLH, tPHL < 2.7 V VCC  2.5 ns 50 pF 1 k GND 2  VCC open 2.7 V to 3.6 V 2.7 V  2.5 ns 50 pF 1 k GND 2  VCC open  4.5 V VCC  2.5 ns 50 pF 1 k GND 2  VCC open [1] RL =   for measuring the propagation delays tPLH and tPHL. 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 © Nexperia B.V. 2017. All rights reserved 12 of 22 74LV4066 Nexperia Quad bilateral switches 12. Additional dynamic characteristics Table 11. Additional dynamic characteristics Voltages are referenced to GND (ground = 0 V); Vis is the input voltage at pin nY or nZ, whichever is assigned as an input; Vos is the output voltage at pin nY or nZ, whichever is assigned as an output. Symbol Parameter Conditions Min Typ Max dsin sine-wave distortion RL = 10 k; f = 1 kHz; CL = 50 pF; see Figure 12 Unit VCC = 3.0 V; Vis = 2.75 V (p-p) - 0.04 - % VCC = 6.0 V; Vis = 5.50 V (p-p) - 0.02 - % - 0.12 - % - 0.06 - % - 50 - dB - 50 - dB - 60 - dB - 60 - dB - 110 - mV - 220 - mV VCC = 3.0 V - 180 - MHz VCC = 6.0 V - 200 - MHz - 8 - pF RL = 10 k; f = 10 kHz; CL = 50 pF; see Figure 12 VCC = 3.0 V; Vis = 2.75 V (p-p) VCC = 6.0 V; Vis = 5.50 V (p-p) OFF(feedthru) switch OFF-state signal feed-through attenuation RL = 600 k; f = 1 MHz; CL = 50 pF; see Figure 13 and Figure 14 [1] VCC = 3.0 V VCC = 6.0 V ct(S) crosstalk between switches RL = 600 k; f = 1 MHz; CL = 50 pF; see Figure 15 [1] VCC = 3.0 V VCC = 6.0 V Vct(pp) crosstalk voltage between enable input to any switch (peak-to-peak value) RL = 600 k; f = 1 MHz; CL = 50 pF; see Figure 16 and Figure 17 [2] VCC = 3.0 V VCC = 6.0 V minimum frequency response (3 dB) fmax RL = 50 k; CL = 50 pF; see Figure 18 and Figure 19 maximum switch capacitance CS [1] Adjust input voltage Vis is 0 dBm level (0 dBm = 1 mW into 600 ). [2] Pin nE: square wave between VCC and GND, tr = tf = 6 ns. [3] Adjust input voltage Vis is 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 ). 74LV4066 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 4 — 9 December 2015 [3] © Nexperia B.V. 2017. All rights reserved 13 of 22 74LV4066 Nexperia Quad bilateral switches 9&& —) 9LV 5/ Q
74LV4066D,112 价格&库存

很抱歉,暂时无法提供与“74LV4066D,112”相匹配的价格&库存,您可以联系我们找货

免费人工找货
74LV4066D,112

    库存:0