0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RTL8367N-VB-CG

RTL8367N-VB-CG

  • 厂商:

    REALTEK(瑞昱)

  • 封装:

    QFN88_10X10MM_EP

  • 描述:

    单芯片5端口10/100/100m开关控制器

  • 数据手册
  • 价格&库存
RTL8367N-VB-CG 数据手册
RTL8367N-VB-CG SINGLE-CHIP 5-PORT 10/100/1000M SWITCH CONTROLLER DATASHEET (CONFIDENTIAL: Development Partners Only) Rev. Pre-0.9 20 February 2014 Track ID: xxxx-xxxx-xx Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan Tel.: +886-3-578-0211 Fax: +886-3-577-6047 www.realtek.com RTL8367N-VB Datasheet COPYRIGHT ©2014 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp. DISCLAIMER Realtek provides this document ‘as is’, without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors. TRADEMARKS Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners. USING THIS DOCUMENT This document is intended for the hardware and software engineer’s general information on the Realtek RTL8367N-VB IC. Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide. REVISION HISTORY Revision Pre-0.9 Release Date 2014/02/20 Summary First Release. Single-Chip 5-Port 10/100/1000M Switch Controller ii Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet Table of Contents 1. GENERAL DESCRIPTION ..............................................................................................................................................1 2. FEATURES .........................................................................................................................................................................3 3. SYSTEM APPLICATIONS...............................................................................................................................................5 4. APPLICATION EXAMPLE .............................................................................................................................................6 4.1. 5-PORT 1000BASE-T SWITCH ......................................................................................................................................6 5. BLOCK DIAGRAM ...........................................................................................................................................................7 6. PIN ASSIGNMENTS .........................................................................................................................................................8 6.1. 6.2. 7. PACKAGE IDENTIFICATION ...........................................................................................................................................8 PIN ASSIGNMENTS TABLE ............................................................................................................................................9 PIN DESCRIPTIONS.......................................................................................................................................................11 7.1. MEDIA DEPENDENT INTERFACE PINS .........................................................................................................................11 7.2. LED PINS ...................................................................................................................................................................12 7.3. CONFIGURATION STRAPPING PINS .............................................................................................................................13 7.3.1. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) ......................................................14 7.4. MICROPROCESSOR PINS .............................................................................................................................................14 7.5. TEST PINS ..................................................................................................................................................................15 7.6. MISCELLANEOUS PINS ...............................................................................................................................................15 7.7. POWER AND GND PINS ..............................................................................................................................................16 8. PHYSICAL LAYER FUNCTIONAL OVERVIEW......................................................................................................17 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. 8.9. 8.10. 9. MDI INTERFACE ........................................................................................................................................................17 1000BASE-T TRANSMIT FUNCTION ...........................................................................................................................17 1000BASE-T RECEIVE FUNCTION ..............................................................................................................................17 100BASE-TX TRANSMIT FUNCTION...........................................................................................................................17 100BASE-TX RECEIVE FUNCTION .............................................................................................................................18 10BASE-T TRANSMIT FUNCTION ...............................................................................................................................18 10BASE-T RECEIVE FUNCTION ..................................................................................................................................18 AUTO-NEGOTIATION FOR UTP ..................................................................................................................................18 CROSSOVER DETECTION AND AUTO CORRECTION .....................................................................................................19 POLARITY CORRECTION .............................................................................................................................................19 GENERAL FUNCTION DESCRIPTION......................................................................................................................20 9.1. RESET ........................................................................................................................................................................20 9.1.1. Hardware Reset ....................................................................................................................................................20 9.1.2. Software Reset ......................................................................................................................................................20 9.2. IEEE 802.3X FULL DUPLEX FLOW CONTROL ............................................................................................................21 9.3. HALF DUPLEX FLOW CONTROL .................................................................................................................................21 9.3.1. Back-Pressure Mode ............................................................................................................................................21 9.4. SEARCH AND LEARNING ............................................................................................................................................22 9.5. SVL AND IVL/SVL ...................................................................................................................................................22 9.6. ILLEGAL FRAME FILTERING .......................................................................................................................................22 9.7. IEEE 802.3 RESERVED GROUP ADDRESSES FILTERING CONTROL .............................................................................22 9.8. BROADCAST/MULTICAST/UNKNOWN DA STORM CONTROL .....................................................................................24 9.9. PORT SECURITY FUNCTION ........................................................................................................................................24 9.10. MIB COUNTERS .........................................................................................................................................................24 9.11. PORT MIRRORING ......................................................................................................................................................24 9.12. VLAN FUNCTION ......................................................................................................................................................25 Single-Chip 5-Port 10/100/1000M Switch Controller iii Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.12.1. Port-Based VLAN ............................................................................................................................................25 9.12.2. IEEE 802.1Q Tag-Based VLAN.......................................................................................................................25 9.12.3. Protocol-Based VLAN .....................................................................................................................................26 9.12.4. Port VID ..........................................................................................................................................................26 9.13. QOS FUNCTION ..........................................................................................................................................................27 9.13.1. Input Bandwidth Control .................................................................................................................................27 9.13.2. Priority Assignment .........................................................................................................................................27 9.13.3. Priority Queue Scheduling...............................................................................................................................27 9.13.4. IEEE 802.1p/Q and DSCP Remarking ............................................................................................................28 9.13.5. ACL-Based Priority .........................................................................................................................................28 9.14. IGMP & MLD SNOOPING FUNCTION.........................................................................................................................29 9.15. IEEE 802.1X FUNCTION .............................................................................................................................................30 9.15.1. Port-Based Access Control..............................................................................................................................30 9.15.2. Authorized Port-Based Access Control ...........................................................................................................30 9.15.3. Port-Based Access Control Direction..............................................................................................................30 9.15.4. MAC-Based Access Control.............................................................................................................................30 9.15.5. MAC-Based Access Control Direction ............................................................................................................30 9.15.6. Optional Unauthorized Behavior.....................................................................................................................31 9.15.7. Guest VLAN .....................................................................................................................................................31 9.16. IEEE 802.1D FUNCTION ............................................................................................................................................31 9.17. EMBEDDED 8051........................................................................................................................................................31 9.18. REALTEK CABLE TEST (RTCT) .................................................................................................................................32 9.19. LED INDICATORS.......................................................................................................................................................32 9.20. GREEN ETHERNET ......................................................................................................................................................34 9.20.1. Link-On and Cable Length Power Saving .......................................................................................................34 9.20.2. Link-Down Power Saving ................................................................................................................................34 9.21. IEEE 802.3AZ ENERGY EFFICIENT ETHERNET (EEE) FUNCTION ...............................................................................34 10. INTERFACE DESCRIPTIONS .................................................................................................................................35 10.1. 10.2. 11. EEPROM SMI HOST TO EEPROM ...........................................................................................................................35 EEPROM SMI SLAVE FOR EXTERNAL CPU..............................................................................................................36 REGISTER DESCRIPTIONS ....................................................................................................................................37 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7. 11.8. 11.9. 11.10. 11.11. 11.12. 11.13. 12. PCS REGISTER (PHY 0~4).........................................................................................................................................37 REGISTER 0: CONTROL ...............................................................................................................................................38 REGISTER 1: STATUS ..................................................................................................................................................39 REGISTER 2: PHY IDENTIFIER 1 .................................................................................................................................40 REGISTER 3: PHY IDENTIFIER 2 .................................................................................................................................40 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT .................................................................................................40 REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY.......................................................................................41 REGISTER 6: AUTO-NEGOTIATION EXPANSION ..........................................................................................................42 REGISTER 7: AUTO-NEGOTIATION PAGE TRANSMIT REGISTER ..................................................................................42 REGISTER 8: AUTO-NEGOTIATION LINK PARTNER NEXT PAGE REGISTER ............................................................43 REGISTER 9: 1000BASE-T CONTROL REGISTER ....................................................................................................43 REGISTER 10: 1000BASE-T STATUS REGISTER .....................................................................................................44 REGISTER 15: EXTENDED STATUS .........................................................................................................................44 ELECTRICAL CHARACTERISTICS......................................................................................................................45 12.1. ABSOLUTE MAXIMUM RATINGS ................................................................................................................................45 12.2. RECOMMENDED OPERATING RANGE..........................................................................................................................45 12.3. THERMAL CHARACTERISTICS.....................................................................................................................................46 12.3.1. Assembly Description ......................................................................................................................................46 12.3.2. Material Properties .........................................................................................................................................46 12.3.3. Simulation Conditions .....................................................................................................................................46 12.3.4. Thermal Performance of QFN-88 on PCB Under Still Air Convection ..........................................................46 Single-Chip 5-Port 10/100/1000M Switch Controller iv Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12.3.5. Thermal Performance of QFN-88 on PCB Under Forced Convection............................................................47 12.4. DC CHARACTERISTICS ...............................................................................................................................................47 12.5. AC CHARACTERISTICS ...............................................................................................................................................48 12.5.1. EEPROM SMI Host Mode Timing Characteristics .........................................................................................48 12.5.2. EEPROM SMI Slave Mode Timing Characteristics ........................................................................................49 12.5.3. MDIO Slave Mode Timing Characteristics .....................................................................................................50 12.6. POWER AND RESET CHARACTERISTICS ......................................................................................................................51 13. 13.1. 14. MECHANICAL DIMENSIONS.................................................................................................................................52 MECHANICAL DIMENSIONS NOTES ............................................................................................................................53 ORDERING INFORMATION ...................................................................................................................................54 Single-Chip 5-Port 10/100/1000M Switch Controller v Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet List of Tables TABLE 1. PIN ASSIGNMENTS TABLE ..............................................................................................................................................9 TABLE 2. MEDIA DEPENDENT INTERFACE PINS ...........................................................................................................................11 TABLE 3. LED PINS .....................................................................................................................................................................12 TABLE 4. CONFIGURATION STRAPPING PINS................................................................................................................................13 TABLE 5. CONFIGURATION STRAPPING PINS (DISAUTOLOAD, DIS_8051, AND EN_SPIF).....................................................14 TABLE 6. MICROPROCESSOR PINS ...............................................................................................................................................14 TABLE 7. TEST PINS.....................................................................................................................................................................15 TABLE 8. MISCELLANEOUS PINS .................................................................................................................................................15 TABLE 9. POWER AND GND PINS ................................................................................................................................................16 TABLE 10. MEDIA DEPENDENT INTERFACE PIN MAPPING ...........................................................................................................19 TABLE 11. RESERVED MULTICAST ADDRESS CONFIGURATION TABLE .........................................................................................23 TABLE 12. IPV4/IPV6 MULTICAST ROUTING PROTOCOLS .............................................................................................................29 TABLE 13. LED DEFINITIONS........................................................................................................................................................32 TABLE 14. PCS REGISTER (PHY 0~4)...........................................................................................................................................37 TABLE 15. REGISTER 0: CONTROL ................................................................................................................................................38 TABLE 16. REGISTER 1: STATUS....................................................................................................................................................39 TABLE 17. REGISTER 2: PHY IDENTIFIER 1...................................................................................................................................40 TABLE 18. REGISTER 3: PHY IDENTIFIER 2...................................................................................................................................40 TABLE 19. REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ...................................................................................................40 TABLE 20. REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY ........................................................................................41 TABLE 21. REGISTER 6: AUTO-NEGOTIATION EXPANSION ............................................................................................................42 TABLE 22. REGISTER 7: AUTO-NEGOTIATION PAGE TRANSMIT REGISTER....................................................................................42 TABLE 23. REGISTER 8: AUTO-NEGOTIATION LINK PARTNER NEXT PAGE REGISTER ...................................................................43 TABLE 24. REGISTER 9: 1000BASE-T CONTROL REGISTER ...........................................................................................................43 TABLE 25. REGISTER 10: 1000BASE-T STATUS REGISTER ............................................................................................................44 TABLE 26. REGISTER 15: EXTENDED STATUS ...............................................................................................................................44 TABLE 27. ABSOLUTE MAXIMUM RATINGS ..................................................................................................................................45 TABLE 28. RECOMMENDED OPERATING RANGE ...........................................................................................................................45 TABLE 29. ASSEMBLY DESCRIPTION .............................................................................................................................................46 TABLE 30. MATERIAL PROPERTIES ...............................................................................................................................................46 TABLE 31. SIMULATION CONDITIONS ...........................................................................................................................................46 TABLE 32. THERMAL PERFORMANCE OF QN-88 ON PCB UNDER STILL AIR CONVECTION...........................................................46 TABLE 33. THERMAL PERFORMANCE OF QFN-88 ON PCB UNDER FORCED CONVECTION ...........................................................47 TABLE 34. DC CHARACTERISTICS .................................................................................................................................................47 TABLE 35. EEPROM SMI HOST MODE TIMING CHARACTERISTICS .............................................................................................49 TABLE 36. EEPROM SMI SLAVE MODE TIMING CHARACTERISTICS ...........................................................................................49 TABLE 37. MDIO TIMING CHARACTERISTICS AND REQUIREMENTS .............................................................................................50 TABLE 38. POWER AND RESET CHARACTERISTICS ........................................................................................................................51 TABLE 39. ORDERING INFORMATION ............................................................................................................................................54 Single-Chip 5-Port 10/100/1000M Switch Controller vi Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet List of Figures FIGURE 1. 5-PORT 1000BASE-T SWITCH .......................................................................................................................................6 FIGURE 2. BLOCK DIAGRAM ..........................................................................................................................................................7 FIGURE 3. PIN ASSIGNMENTS ........................................................................................................................................................8 FIGURE 4. CONCEPTUAL EXAMPLE OF POLARITY CORRECTION ..................................................................................................19 FIGURE 5. PROTOCOL-BASED VLAN FRAME FORMAT AND FLOW CHART ..................................................................................26 FIGURE 6. MAX-MIN SCHEDULING DIAGRAM ...........................................................................................................................28 FIGURE 7. PULL-UP AND PULL-DOWN OF LED PINS FOR SINGLE-COLOR LED...........................................................................33 FIGURE 8. PULL-UP AND PULL-DOWN OF LED PINS FOR BI-COLOR LED...................................................................................33 FIGURE 9. SMI START AND STOP COMMAND ..............................................................................................................................35 FIGURE 10. EEPROM SMI HOST TO EEPROM............................................................................................................................35 FIGURE 11. EEPROM SMI HOST MODE FRAME...........................................................................................................................35 FIGURE 12. EEPROM SMI WRITE COMMAND FOR SLAVE MODE ................................................................................................36 FIGURE 13. EEPROM SMI READ COMMAND FOR SLAVE MODE ..................................................................................................36 FIGURE 14. EEPROM SMI HOST MODE TIMING CHARACTERISTICS ............................................................................................48 FIGURE 15. SCK/SDA POWER ON TIMING ....................................................................................................................................48 FIGURE 16. EEPROM AUTO-LOAD TIMING..................................................................................................................................48 FIGURE 17. EEPROM SMI SLAVE MODE TIMING CHARACTERISTICS ..........................................................................................49 FIGURE 18. MDIO SOURCED BY MASTER (RTL8367N-VB LINK PARTNER CPU) .......................................................................50 FIGURE 19. MDIO SOURCED BY SLAVE (RTL8367N-VB) ...........................................................................................................50 FIGURE 20. POWER AND RESET CHARACTERISTICS .......................................................................................................................51 Single-Chip 5-Port 10/100/1000M Switch Controller vii Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 1. General Description The RTL8367N-VB-CG is a QFN88, high-performance 5-port 10/100/1000M Ethernet switch with an integrated low-power 5-port Giga-PHY that supports 1000Base-T, 100Base-TX, and 10Base-T. The RTL8367N-VB integrates all the functions of a high-speed switch system; including SRAM for packet buffering, non-blocking switch fabric, and internal register management into a single CMOS device. Only a 25MHz crystal is required; an optional EEPROM is offered for internal register configuration. The embedded packet storage SRAM in the RTL8367N-VB features superior memory management technology to efficiently utilize memory space. The RTL8367N-VB integrates a 2K-entry look-up table with a 4-way XOR Hashing algorithm for address searching and learning. The table provides read/write access from the EEPROM Serial Management Interface (SMI), and each of the entries can be configured as a static entry. The entry aging time is between 200 and 400 seconds. Eight Filtering Databases are used to provide Independent VLAN Learning and Shared VLAN Learning (IVL/SVL) functions. The RTL8367N-VB supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on egress. When using this function, VID information carried in the VLAN tag will be changed to PVID. The RTL8367N-VB supports standard 802.3x flow control frames for full duplex, and optional backpressure for half duplex. It determines when to invoke the flow control mechanism by checking the availability of system resources, including the packet buffers and transmitting queues. The RTL8367NVB supports broadcast/multicast output dropping, and will forward broadcast/multicast packets to nonblocked ports only. For IP multicast applications, the RTL8367N-VB supports IPv4 IGMPv1/v2/v3 and IPv6 MLDv1/v2 snooping. In order to support flexible traffic classification, the RTL8367N-VB supports 96-entry ACL rule check and multiple action options. Each port can optionally enable or disable the ACL rule check function. The ACL rule key can be based on packet physical port, Layer2, Layer3, and Layer4 information. When an ACL rule matches, the action taken is configurable to Drop/Permit/Redirect/Mirror, change priority value in 802.1q/Q tag, force output tag format and rate policing. The rate policing mechanism supports from 8Kbps to 1Gbps (in 8Kbps steps). In Bridge operation the RTL8367N-VB supports 16 sets of port configurations: disable, block, learning, and forwarding for Spanning Tree Protocol and Multiple Spanning Tree Protocol. To meet security and management application requirements, the RTL8367N-VB supports IEEE 802.1x Port-based/MAC-based Access Control. For those ports that do not pass IEEE 802.1x authentication, the RTL8367N-VB provides a Port-based/MAC-based Guest VLAN function for them to access limited network resources. A 1-set Port Mirroring function is configured to mirror traffic (RX, TX, or both) appearing on one of the switch’s ports. Support is provided on each port for multiple RFC MIB Counters, for easy debug and diagnostics. To improve real-time or multimedia networking applications, the RTL8367N-VB supports eight priority assignments for each received packet. These are based on (1) Port-based priority; (2) 802.1p/Q VLAN tag priority; (3) DSCP field in IPv4/IPv6 header; and (4) ACL-assigned priority. Each output port supports a weighted ratio of eight priority queues to fit bandwidth requirements in different applications. The input bandwidth control function helps limit per-port traffic utilization. There is one leaky bucket for average packet rate control for each queue of all ports. Queue scheduling algorithm can use Strict Priority (SP) or Weighted Fair Queue (WFQ) or mixed. Single-Chip 5-Port 10/100/1000M Switch Controller 1 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet The RTL8367N-VB provides a 4K-entry VLAN table for 802.1Q port-based, tag-based, and protocolbased VLAN operation to separate logical connectivity from physical connectivity. The RTL8367N-VB supports four Protocol-based VLAN configurations that can optionally select EtherType, LLC, and RFC1042 as the search key. Each port may be set to any topology via EEPROM upon reset, or EEPROM SMI Slave after reset. In router applications, the router may want to know the input port of the incoming packet. The RTL8367N-VB supports an option to insert a VLAN tag with VID=Port VID (PVID) on each egress port. The RTL8367N-VB also provides an option to admit VLAN tagged packets with a specific PVID only. If this function is enabled, the RTL8367N-VB will drop all non-tagged packets and packets with an incorrect PVID. Single-Chip 5-Port 10/100/1000M Switch Controller 2 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 2. Features „ Single-chip 5-port 10/100/1000M nonblocking switch architecture „ Embedded 5-port 10/100/1000Base-T PHY „ Each port supports full duplex 10/100/1000M connectivity (half duplex only supported in 10/100M mode) „ „ Full-duplex and half-duplex operation with IEEE 802.3x flow control and backpressure Supports 9216-byte jumbo packet length forwarding at wire speed „ Realtek Cable Test (RTCT) function „ Supports 96-entry ACL Rules ‹ Search keys support physical port, Layer2, Layer3, and Layer4 information ‹ Actions include mirror, redirect, dropping, priority adjustment, traffic policing, CVLAN decision, SVLAN assignment, force output tag format, interrupt and logging counter ‹ „ „ Supports five types of user defined ACL rule format for 96 ACL rules ‹ Optional per-port enable/disable of ACL function ‹ Optional setting of per-port action to take when ACL mismatch „ „ Supports 4K VLANs and 32 Extra Enhanced VLANs ‹ Supports Un-tag definition in each VLAN ‹ Supports VLAN policing and VLAN forwarding decision Single-Chip 5-Port 10/100/1000M Switch Controller Port-based, Tag-based, and Protocolbased VLAN ‹ Up to 4 Protocol-based VLAN entries ‹ Per-port and per-VLAN egress VLAN tagging and un-tagging Supports IVL, SVL, and IVL/SVL ‹ 2K-entry MAC address table with 4-way hash algorithm ‹ Up to 2K-entry L2/L3 Filtering Database ‹ Per-port MAC learning limitation ‹ System base MAC learning limitation Spanning Tree port behavior configuration ‹ IEEE 802.1w Rapid Spanning Tree ‹ IEEE 802.1s Multiple Spanning Tree with up to 16 Spanning Tree instances IEEE 802.1x Access Control Protocol ‹ Port-Based Access Control ‹ MAC-Based Access Control ‹ Guest VLAN „ Supports Auto protection from Denial-ofService attacks „ H/W IGMP/MLD Snooping IEEE 802.1Q VLAN ‹ ‹ „ 3 ‹ IGMPv1/v2/v3 and MLD v1/v2 ‹ Supports ‘Fast Leave’ ‹ Static router port configuration ‹ Dynamic router port learning and aging Quality of Service (QoS) ‹ Supports per-port Input Bandwidth Control ‹ Eight Priority Queues per port Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet „ „ ‹ Per queue flow control ‹ Traffic classification based on IEEE 802.1p/Q priority definition, physical Port, IP DSCP field, ACL definition, VLAN based priority, MAC based priority, and SVLAN based priority ‹ Min-Max Scheduling ‹ Strict Priority and Weighted Fair Queue (WFQ) to provide minimum bandwidth ‹ One leaky bucket to constrain the average packet rate of each queue Supports rate limiting (32 shared meters, with 8kbps granulation or packets per second configuration) „ Port Mirror function for one monitor port for multiple mirroring ports „ OAM and EEE LLDP (Energy Efficient Ethernet Link Layer Discovery Protocol „ Loop Detection „ Security Filtering ‹ Disable learning for each port ‹ Disable learning-table aging for each port ‹ Drop unknown DA for each port „ Broadcast/Multicast/Unknown DA storm control protects system from attack by hackers „ Supports IEEE 802.3az Energy Efficient Ethernet (EEE) „ Supports Realtek Green Ethernet features RFC MIB Counter ‹ MIB-II (RFC 1213) ‹ Ethernet-Like MIB (RFC 3635) ‹ Interface Group MIB (RFC 2863) ‹ RMON (RFC 2819) ‹ Link-On Cable Length Power Saving ‹ Bridge MIB (RFC 1493) ‹ Link-Down Power Saving ‹ Bridge MIB Extension (RFC 2674) „ Each port supports 2 LED outputs „ Stacking VLAN and Port Isolation with eight Enhanced Filtering Databases „ Supports EEPROM SMI Slave interface to access configuration register „ IEEE 802.1ad Stacking VLAN „ Supports 32K-byte EEPROM space for configuration „ ‹ Supports 64 SVLANs ‹ Supports 32 L2/IPv4 Multicast mappings to SVLAN „ Integrated 8051 microprocessor ‹ Supports MAC-based 1:N VLAN „ Supports Flash Interface „ 25MHz crystal or 3.3V OSC input „ QFN 88-pin package Supports two IEEE 802.3ad Link aggregation port groups Single-Chip 5-Port 10/100/1000M Switch Controller 4 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 3. „ System Applications 5-Port 1000Base-T Switch Single-Chip 5-Port 10/100/1000M Switch Controller 5 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 4. 4.1. Application Example 5-Port 1000Base-T Switch Figure 1. 5-Port 1000Base-T Switch Single-Chip 5-Port 10/100/1000M Switch Controller 6 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 5. Block Diagram Figure 2. Block Diagram Single-Chip 5-Port 10/100/1000M Switch Controller 7 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 6. Pin Assignments Figure 3. Pin Assignments 6.1. Package Identification Green package is indicated by the ‘G’ and Version B is indicated by the ‘B’ in GXXXB (Figure 3). Single-Chip 5-Port 10/100/1000M Switch Controller 8 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 6.2. Pin Assignments Table Upon Reset: Defined as a short time after the end of a hardware reset. After Reset: Defined as the time after the specified ‘Upon Reset’ time. I: Input Pin AI: Analog Input Pin O: Output Pin AO: Analog Output Pin I/O: Bi-Directional Input/Output Pin AI/O: Analog Bi-Directional Input/Output Pin P: Digital Power Pin AP: Analog Power Pin G: Digital Ground Pin AG: Analog Ground Pin IPU: Input Pin With Pull-Up Resistor; OPU: Output Pin With Pull-Up Resistor; (Typical Value = 75K Ohm) (Typical Value = 75K Ohm) IS: Input Pin With Schmitt Trigger Name P0MDICP P0MDICPN P0MDIDP P0MDIDN AVDDH P1MDIAP P1MDIAN P1MDIBP P1MDIBN AVDDL P1MDICP P1MDICN P1MDIDP P1MDIDN PLLVDDL P2MDIAP P2MDIAN P2MDIBP P2MDIBN AVDDL P2MDICP P2MDICN Table 1. Pin Assignments Table Pin No. Type Name 1 AI/O P2MDIDP 2 AI/O P2MDIDN 3 AI/O AVDDH 4 AI/O P3MDIAP 5 AP P3MDIAN 6 AI/O P3MDIBP 7 AI/O P3MDIBN 8 AI/O AVDDL 9 AI/O P3MDICP 10 AP P3MDICN 11 AI/O P3MDIDP 12 AI/O P3MDIDN 13 AI/O AVDDH 14 AP AGND 15 AP MDIREF 16 AI/O AVDDL 17 AI/O RTT1 18 AI/O AVDDH 19 AI/O DVDDL 20 AP AVDDH 21 AI/O P4MDIAP 22 AI/O P4MDIAN Single-Chip 5-Port 10/100/1000M Switch Controller 9 Pin No. 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Type AI/O AI/O AP AI/O AI/O AI/O AI/O AP AI/O AI/O AI/O AI/O AP AG AO AP AO AP P AP AI/O AI/O Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet Name P4MDIBP P4MDIBN AVDDL P4MDICP P4MDICN P4MDIDP P4MDIDN AVDDH AVDDL GPIO01/UART_RX GPIO02/UART_TX GPIO04/SPIF_CLK GPIO05/SPIF_D0 GPIO09/SPIF_D1 GPIO10/SPIF_CS DVDDL RESERVED RESERVED DVDDIO DVDDL GP O39/P4LED0/EEPROM_MOD GPIO40/P4LED1 GPIO41/P3LED1 Pin No. 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 Type AI/O AI/O AP AI/O AI/O AI/O AI/O AP AP I/O I/O I/O I/O I/O I/O P P P P P I/OPU I/OPU I/OPU Single-Chip 5-Port 10/100/1000M Switch Controller Name GP O43/P3LED0/EN_SPIF GP O44/DIS_8051 GP O45/P2LED0/DISAUTOLOAD GPIO46/P2LED1 GP O48/P1LED0/RESERVED GPIO49/P1LED1 GPIO51/P0LED1/LED_DA GP O52/P0LED0/LED_CK/ SMI_SEL NC AVDDH XTALO XTALI nRESET SCK/EN_EEE SDA AVDDH P0MDIAP P0MDIAN P0MDIBP P0MDIBN AVDDL GND 10 Pin No. 68 69 70 71 72 73 74 75 Type I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU I/OPU 76 77 78 79 80 81 82 83 84 85 86 87 88 EPAD N/A AP AO AI IPU I/OPU I/O AP AI/O AI/O AI/O AI/O AP G Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 7. Pin Descriptions 7.1. Media Dependent Interface Pins Pin Name P0MDIAP/N P0MDIBP/N P0MDICP/N P0MDIDP/N P1MDIAP/N P1MDIBP/N P1MDICP/N P1MDIDP/N P2MDIAP/N P2MDIBP/N P2MDICP/N P2MDIDP/N P3MDIAP/N P3MDIBP/N P3MDICP/N P3MDIDP/N P4MDIAP/N P4MDIBP/N P4MDICP/N P4MDIDP/N Pin No. 84 85 86 87 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 24 26 27 28 29 31 32 33 34 43 44 45 46 48 49 50 51 Table 2. Media Dependent Interface Pins Type Drive Description AI/O (mA) 10 Port 0 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-TX and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 1 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-TX and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 2 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-TX and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Port 3 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-TX and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. AI/O 10 Single-Chip 5-Port 10/100/1000M Switch Controller Port 4 Media Dependent Interface A~D. For 1000Base-T operation, differential data from the media is transmitted and received on all four pairs. For 100Base-TX and 10Base-T operation, only MDIAP/N and MDIBP/N are used. Auto MDIX can reverse the pairs MDIAP/N and MDIBP/N. Each of the differential pairs has an internal 100-ohm termination resistor. 11 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 7.2. LED Pins LED0 and LED1 of Port n indicate information that can be defined via register or EEPROM. When the LED pin is pulled low, the LED output polarity will be high active. When the LED pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19 LED Indicators, page 32 for more details. Pin Name Pin No. Type Table 3. LED Pins Drive Description P4LED1 /GPIO40 66 I/OPU (mA) - P4LED0 /GP O39 /EEPROM_MOD P3LED1 /GPIO41 65 I/OPU - 67 I/OPU - P3LED0 /GP O43 /EN_SPIF P2LED1 /GPIO46 68 I/OPU - 71 I/OPU - P2LED0 /GP O45 /DISAUTOLOAD P1LED1 /GPIO49 70 I/OPU - 73 I/OPU - P1LED0 /GP O48 /RESERVED P0LED1 /GPIO51 /LED_DA P0LED0 /GP O52 /LED_CK /SMI_SEL 72 I/OPU - 74 I/OPU - 75 I/OPU - Single-Chip 5-Port 10/100/1000M Switch Controller Port 4 LED1 Output Signal. P4LED1 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 4 LED0 Output Signal. P4LED0 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 3 LED1 Output Signal. P3LED1 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 3 LED0 Output Signal. P3LED0 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 2 LED1 Output Signal. P2LED1 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 2 LED0 Output Signal. P2LED0 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 1 LED1 Output Signal. P1LED1 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 1 LED0 Output Signal. P1LED0 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 0 LED1 Output Signal. P0LED1 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. Port 0 LED0 Output Signal. P0LED0 indicates information is defined by register or EEPROM. See section 9.19 LED Indicators, page 32 for more details. 12 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 7.3. Configuration Strapping Pins Pin Name EEPROM_MOD /GP O39 /P4LED0 EN_SPIF /GP O43 /P3LED0 DIS_8051 /GP O44 DISAUTOLOAD /GP O45 /P2LED0 RESERVED /GP O48 /P1LED0 Table 4. Configuration Strapping Pins Pin No. Type Description 65 I/OPU EEPROM Mode Selection. Pull Up: EEPROM 24Cxx Size great than 16Kbits (24C32~24C256) Pull Down: EEPROM 24Cxx Size less than or equal to 16Kbit (24C02~24C16). Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19 LED Indicators, page 32 for more details. 68 I/OPU Enable SPI FLASH Interface. Pull Up: Enable FLASH interface Pull Down: Disable FLASH interface Note 1: The strapping pin DISAUTOLOAD, DIS_8051, and EN_SPIF are for power on or reset initial stage configuration. Refer to Table 5 Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF), page 14 for details. Note 2: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19LED Indicators, page 32 for more details. 69 I/OPU Disable Embedded 8051. Pull Up: Disable embedded 8051 upon power on or reset Pull Down: Enable embedded 8051 upon power on or reset Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. 70 I/OPU Disable EEPROM Autoload. Pull Up: Disable EEPROM autoload upon power on or reset Pull Down: Enable EEPROM autoload upon power on or reset Note 1: When DIS_8051 = 1 and DISAUTOLOAD =0, the EEPROM data will be treat as register configuration data upon power on or reset initial stage. When DIS_8051 =0 and DISAUTOLOAD =0, the EEPROM data will be loaded to embedded 8051 instruction memory upon power on or reset. Note 2: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When this pin is pulled low, the LED output polarity will be high active. When this pin is pulled high, the LED output polarity will change from high active to low active. See section 9.19 LED Indicators, page 32 for more details. 72 I/OPU Single-Chip 5-Port 10/100/1000M Switch Controller Internal Use/Reserved. Note: For normal operation, this pin must be pulled low via an external 4.7k ohm resistor upon power on or reset. When pulled low, the LED output polarity will be high active. See section 9.19 LED Indicators, page 32 for more details. 13 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet Pin Name SMI_SEL /GP O52 /P0LED0 /LED_CK Pin No. 75 Type I/OPU EN_EEE /SCK 75 I/OPU 7.3.1. Description EEPROM SMI/MII Management Interface Selection. Pull Up: EEPROM SMI interface Pull Down: MII Management Interface Note: This pin must be kept floating, or pulled high or low via an external 4.7k ohm resistor upon power on or reset. When pulled high, the LED output polarity will be low active. See section 9.19 LED Indicators, page 32 for more details. Enable IEEE 802.3az Energy Efficient Ethernet (EEE). Pull Up: Enable Energy Efficient Ethernet (EEE) function Pull Down: Disable Energy Efficient Ethernet (EEE) function Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) Table 5. Configuration Strapping Pins (DISAUTOLOAD, DIS_8051, and EN_SPIF) DISAUTOLOAD 1 Initial Stage (Power On or Reset) Loading Data To 0 EEPROM Embedded 8051 Instruction Memory 1 FLASH Embedded 8051 Instruction Memory 1 0 EEPROM Register Irrelevant Irrelevant Do Nothing Do Nothing Microprocessor Pins Pin Name SCK/MMD_MDC/ EN_EEE SDA/MMD_MDIO UART_RX UART_TX SPIF_CLK SPIF_D0 SPIF_D1 SPIF_CS EN_SPIF From 0 0 7.4. DIS_8051 Pin No. 81 82 54 55 56 57 58 59 Table 6. Microprocessor Pins Type Description O EEPROM SMI Interface Clock/MII Management Interface Clock (selected via the hardware strapping pin 89, SMI_SEL). I/O EEPROM SMI Interface Data/MII Management Interface Data (selected via the hardware strapping pin 89, SMI_SEL). I Universal Asynchronous Receiver Pin. O Universal Asynchronous Transmitter Pin. O Serial Clock Output (FLASH Interface). I/O Serial Data I/O 0 (FLASH Interface). I/O Serial Data I/O 1 (FLASH Interface). O Chip Selection (FLASH Interface). Single-Chip 5-Port 10/100/1000M Switch Controller 14 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 7.5. Test Pins Table 7. Test Pins Pin No. Type Description 39 AO Reserved for Internal Use. Must be left floating. Pin Name RTT1 7.6. Miscellaneous Pins Pin No. 79 Type AI XTALO 78 AO MDIREF 37 AO nRESET 80 IPU RESERVED 61 I RESERVED 62 I GPIO01 /UART_RX GPIO02 /UART_TX GPIO04 /SPIF_CLK GPIO05 /SPIF_D0 GPIO09 /SPIF_D1 GPIO10 /SPIF_CS GP O39 /P4LED0 /EEPROM_MOD GPIO40 /P4LED1 GPIO41 /P3LED1 54 I/O Table 8. Miscellaneous Pins Description 25MHz Crystal Clock Input and Feedback Pin. 25MHz +/-50ppm tolerance crystal reference or oscillator input. When using a crystal, connect a loading capacitor from each pad to ground. When either using an oscillator or driving an external 25MHz clock from another device, XTALO should be kept floating. The maximum XTALI input voltage is 3.3V. 25MHz Crystal Clock Output Pin. 25MHz +/-50ppm tolerance crystal output. Reference Resistor. A 2.49K ohm (1%) resistor must be connected between MDIREF and GND. System Reset Input Pin. When low active will reset the RTL8367N-VB. Reserved. Note: This pin must be pulled low via an external 1k~10 k ohm resistor upon power on or reset. Reserved. Note: This pin must be pulled low via an external 1k~10 k ohm resistor upon power on or reset. General Purpose Input / Output Interface IO01. 55 I/O General Purpose Input / Output Interface IO02. 56 I/O General Purpose Input / Output Interface IO04. 57 I/O General Purpose Input / Output Interface IO05. 58 I/O General Purpose Input / Output Interface IO09. 59 I/O General Purpose Input / Output Interface IO10. 65 OPU General Purpose Output Interface O39. 66 I/OPU General Purpose Input / Output Interface IO40. 67 I/OPU General Purpose Input / Output Interface IO41. Pin Name XTALI Single-Chip 5-Port 10/100/1000M Switch Controller 15 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet Pin Name GP O43 /P3LED0 /EN_SPIF GPIO44 /DIS_8051 GPIO45 /P2LED0 /DISAUTOLOAD GPIO46 /P2LED1 GP O48 /P1LED0 /RESERVED GPIO49 /P1LED1 GPIO51 /P0LED1 /LED_DA GP O52 /P0LED0 /LED_CK /SMI_SEL 7.7. Pin Name DVDDIO DVDDL AVDDH AVDDL PLLVDDL GND AGND Pin No. 68 Type OPU Description General Purpose Output Interface O43. 69 OPU General Purpose Output Interface O44. 70 OPU General Purpose Output Interface O45. 70 I/OPU 72 OPU 73 I/OPU General Purpose Input / Output Interface IO49. 74 I/OPU General Purpose Input / Output Interface IO51. 75 OPU General Purpose Input / Output Interface IO46. General Purpose Output Interface O48. General Purpose Output Interface O52. Power and GND Pins Table 9. Power and GND Pins Pin No. Type Description 63 P Digital I/O High Voltage Power for LED, SMI, nRESET. 41, 60, 64, 76 P Digital Low Voltage Power. AP Analog High Voltage Power. 5, 25, 35, 40, 42, 52, 77, 83 AP Analog Low Voltage Power. 10, 20, 30, 38, 47, 53, 88, 15 AP PLL Low Voltage Power. EPAD G GND. 36 AG Analog GND. Single-Chip 5-Port 10/100/1000M Switch Controller 16 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 8. 8.1. Physical Layer Functional Overview MDI Interface The RTL8367N-VB embeds five 10/100/1000M Ethernet PHYs in one chip. Each port uses a single common MDI interface to support 1000Base-T, 100Base-TX, and 10Base-T. This interface consists of four signal pairs-A, B, C, and D. Each signal pair consists of two bi-directional pins that can transmit and receive at the same time. The MDI interface has internal termination resistors, and therefore reduces BOM cost and PCB complexity. For 1000Base-T, all four pairs are used in both directions at the same time. For 10/100 links and during auto-negotiation, only pairs A and B are used. 8.2. 1000Base-T Transmit Function The 1000Base-TX transmit function performs 8B/10B coding, scrambling, and 4D-PAM5 encoding. These code groups are passed through a waveform-shaping filter to minimize EMI effects, and are transmitted onto 4-pair CAT5 cable at 125MBaud/s through a D/A converter. 8.3. 1000Base-T Receive Function Input signals from the media pass through the sophisticated on-chip hybrid circuit to subtract the transmitted signal from the input signal for effective reduction of near-end echo. The received signal is then processed with state-of-the-art technology, e.g., adaptive equalization, BLW (Baseline Wander) correction, cross-talk cancellation, echo cancellation, timing recovery, error correction, and 4D-PAM5 decoding. The 8-bit-wide data is recovered and is sent to the GMII interface at a clock speed of 125MHz. The RX MAC retrieves the packet data from the internal receive MII/GMII interface and sends it to the packet buffer manager. 8.4. 100Base-TX Transmit Function The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly. The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven onto the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also reduces EMI emissions. Single-Chip 5-Port 10/100/1000M Switch Controller 17 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 8.5. 100Base-TX Receive Function The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate. A de-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit. Finally, the converted parallel data is fed into the MAC. 8.6. 10Base-T Transmit Function The output 10Base-T waveform is Manchester-encoded before it is driven onto the network media. The internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter. 8.7. 10Base-T Receive Function The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is above squelch level. 8.8. Auto-Negotiation for UTP The RTL8367N-VB obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the auto-negotiation mechanism defined in the IEEE 802.3 specifications. During autonegotiation, each port advertises its ability to its link partner and compares its ability with advertisements received from its link partner. By default, the RTL8367N-VB advertises full capabilities (1000Full, 100Full, 100Half, 10Full, 10Half) together with flow control ability. Single-Chip 5-Port 10/100/1000M Switch Controller 18 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 8.9. Crossover Detection and Auto Correction The RTL8367N-VB automatically determines whether or not it needs to crossover between pairs (see Table 10) so that an external crossover cable is not required. When connecting to another device that does not perform MDI crossover, when necessary, the RTL8367N-VB automatically switches its pin pairs to communicate with the remote device. When connecting to another device that does have MDI crossover capability, an algorithm determines which end performs the crossover function. The crossover detection and auto correction function can be disabled via register configuration. The pin mapping in MDI and MDI Crossover mode is given below. Pairs A B C D 8.10. Table 10. Media Dependent Interface Pin Mapping MDI MDI Crossover 1000Base-T 100Base-TX 10Base-T 1000Base-T 100Base-TX A TX TX B RX B RX RX A TX C Unused Unused D Unused D Unused Unused C Unused 10Base-T RX TX Unused Unused Polarity Correction The RTL8367N-VB automatically corrects polarity errors on the receiver pairs in 1000Base-T and 10Base-T modes. In 100Base-TX mode, the polarity is irrelevant. In 1000Base-T mode, receive polarity errors are automatically corrected based on the sequence of idle symbols. Once the de-scrambler is locked, the polarity is also locked on all pairs. The polarity becomes unlocked only when the receiver loses lock. In 10Base-T mode, polarity errors are corrected based on the detection of valid spaced link pulses. The detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The polarity becomes unlocked when the link is down. RTL8367N-VB Link Partner RX + _ + TX _ TX + _ _ + + RX _ Figure 4. Conceptual Example of Polarity Correction Single-Chip 5-Port 10/100/1000M Switch Controller 19 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9. General Function Description 9.1. Reset 9.1.1. Hardware Reset In a power-on reset, an internal power-on reset pulse is generated and the RTL8367N-VB will start the reset initialization procedures. These are: • • • • • Determine various default settings via the hardware strap pins at the end of the nRESET signal Autoload the configuration from EEPROM if EEPROM is detected Complete the embedded SRAM BIST process Initialize the packet buffer descriptor allocation Initialize the internal registers and prepare them to be accessed by the external CPU 9.1.2. Software Reset The RTL8367N-VB supports two software resets; a chip reset and a soft reset. 9.1.2.1 CHIP_RESET When CHIP_RESET is set to 0b1 (write and self-clear), the chip will take the following steps: 1. Download configuration from strap pin and EEPROM 2. Start embedded SRAM BIST (Built-In Self Test) 3. Clear all the Lookup and VLAN tables 4. Reset all registers to default values 5. Restart the auto-negotiation process 9.1.2.2 SOFT_RESET When SOFT_RESET is set to 0b1 (write and self-clear), the chip will take the following steps: 1. Clear the FIFO and re-start the packet buffer link list 2. Restart the auto-negotiation process Single-Chip 5-Port 10/100/1000M Switch Controller 20 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.2. IEEE 802.3x Full Duplex Flow Control The RTL8367N-VB supports IEEE 802.3x flow control in 10/100/1000M modes. Flow control can be decided in two ways: • • When Auto-Negotiation is enabled, flow control depends on the result of NWay When Auto-Negotiation is disabled, flow control depends on register definition 9.3. Half Duplex Flow Control In half duplex mode, the CSMA/CD media access method is the means by which two or more stations share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If the message collides with that of another station, then each transmitting station intentionally transmits for an additional predefined period to ensure propagation of the collision throughout the system. The station remains silent for a random amount of time (backoff) before attempting to transmit again. When a transmission attempt has terminated due to a collision, it is retried until it is successful. The scheduling of the retransmissions is determined by a controlled randomization process called “Truncated Binary Exponential Backoff”. At the end of enforcing a collision (jamming), the switch delays before attempting to retransmit the frame. The delay is an integer multiple of slot time (512 bit times). The number of slot times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer ‘r’ in the range: 0 ≤ r < 2k where: k = min (n, backoffLimit). The backoffLimit for the RTL8367N-VB is 9. The half duplex back-off algorithm in the RTL8367N-VB does not have the maximum retry count limitation of 16 (as defined in IEEE 802.3). This means packets in the switch will not be dropped if the back-off retry count is over 16. 9.3.1. Back-Pressure Mode In Back-Pressure mode, the RTL8367N-VB sends a 4-byte jam pattern (data=0xAA) to collide with incoming packets when congestion control is activated. The Jam pattern collides at the fourth byte counted from the preamble. The RTL8367N-VB supports 48PASS1, which receives one packet after 48 consecutive jam collisions (data collisions are not included in the 48). Enable this function to prevent port partition after 63 consecutive collisions (data collisions + consecutive jam collisions). Single-Chip 5-Port 10/100/1000M Switch Controller 21 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.4. Search and Learning Search When a packet is received, the RTL8367N-VB uses the destination MAC address, Filtering Identifier (FID) and Enhanced Filtering Identifier (EFID) to search the 2K-entry look-up table. The 48-bit MAC address, 4-bit FID, and 3-bit EFID use a hash algorithm to calculate an 9-bit index value. The RTL8367N-VB uses the index to compare the packet MAC address with the entries (MAC addresses) in the look-up table. This is the ‘Address Search’. If the destination MAC address is not found, the switch will broadcast the packet according to VLAN configuration. Learning The RTL8367N-VB uses the source MAC address, FID, and EFID of the incoming packet to hash into a 9-bit index. It then compares the source MAC address with the data (MAC addresses) in this index. If there is a match with one of the entries, the RTL8367N-VB will update the entry with new information. If there is no match and the 2K entries are not all occupied by other MAC addresses, the RTL8367N-VB will record the source MAC address and ingress port number into an empty entry. This process is called ‘Learning’. Address aging is used to keep the contents of the address table correct in a dynamic network topology. The look-up engine will update the time stamp information of an entry whenever the corresponding source MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed by the address learning process during the aging time period. The aging time of the RTL8367NVB is between 200 and 400 seconds (typical is 300 seconds). 9.5. SVL and IVL/SVL The RTL8367N-VB supports a 16-group Filtering Identifier (FID) for L2 search and learning. In default operation, all VLAN entries belong to the same FID. This is called Shared VLAN Learning (SVL). If VLAN entries are configured to different FIDs, then the same source MAC address with multiple FIDs can be learned into different look-up table entries. This is called Independent VLAN Learning and Shared VLAN Learning (IVL/SVL). 9.6. Illegal Frame Filtering Illegal frames such as CRC error packets, runt packets (length maximum length) will be discarded by the RTL8367N-VB. The maximum packet length may be set from 1518 bytes to 16K bytes. 9.7. IEEE 802.3 Reserved Group Addresses Filtering Control The RTL8367N-VB supports the ability to drop/forward IEEE 802.3 specified reserved group MAC addresses: 01-80-C2-00-00-00 to 01-80-C2-00-00-2F. The default setting enables forwarding of these Single-Chip 5-Port 10/100/1000M Switch Controller 22 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet reserved group MAC address control frames. Frames with group MAC address 01-80-C2-00-00-01 (802.3x Pause) and 01-80-C2-00-00-02 (802.3ad LACP) will always be filtered. Table 11 shows the Reserved Multicast Address (RMA) configuration mode from 01-80-C2-00-00-00 to 01-80-C2-00-00-2F. Table 11. Reserved Multicast Address Configuration Table Assignment Bridge Group Address IEEE Std 802.3, 1988 Edition, Full Duplex PAUSE Operation IEEE Std 802.3ad Slow Protocols-Multicast Address IEEE Std 802.1X PAE Address Provider Bridge Group Address Undefined 802.1 Address Value 01-80-C2-00-00-00 01-80-C2-00-00-01 01-80-C2-00-00-02 01-80-C2-00-00-03 01-80-C2-00-00-08 01-80-C2-00-00-04 ~ 01-80-C2-00-00-07 & 01-80-C2-00-00-09 ~ 01-80-C2-00-00-0C & 01-80-C2-00-00-0F 01-80-C2-00-00-0D 01-80-C2-00-00-0E 01-80-C2-00-00-10 01-80-C2-00-00-11 01-80-C2-00-00-12 01-80-C2-00-00-13 ~ 01-80-C2-00-00-17 & 01-80-C2-00-00-19 & 01-80-C2-00-00-1B ~ 01-80-C2-00-00-1F 01-80-C2-00-00-18 01-80-C2-00-00-1a 01-80-C2-00-00-20 01-80-C2-00-00-21 01-80-C2-00-00-22 | 01-80-C2-00-00-2F 01-00-0C-CC-CC-CC 01-00-0C-CC-CC-CD (01:80:c2:00:00:0e or 01:80:c2:00:00:03 or 01:80:c2:00:00:00) && ethertype = 0x88CC Provider Bridge MVRP Address IEEE Std 802.1AB Link Layer Discovery Protocol Address All LANs Bridge Management Group Address Load Server Generic Address Loadable Device Generic Address Undefined 802.1 Address Generic Address for All Manager Stations Generic Address for All Agent Stations GMRP Address GVRP Address Undefined GARP Address CDP(Cisco Discovery Protocol) CSSTP(Cisco Shared Spanning Tree Protocol) LLDP Single-Chip 5-Port 10/100/1000M Switch Controller 23 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.8. Broadcast/Multicast/Unknown DA Storm Control The RTL8367N-VB enables or disables per-port broadcast/multicast/unknown DA storm control by setting registers (default is disabled). After the receiving rate of broadcast/multicast/unknown DA packets exceeds a reference rate (number of Kbps per second or number of packets per second), all other broadcast/multicast/unknown DA packets will be dropped. The reference rate is set via register configuration. 9.9. Port Security Function The RTL8367N-VB supports three types of security function to prevent malicious attacks. • • • Per-port enable/disable SA auto-learning for an ingress packet Per-port enable/disable look-up table aging update function for an ingress packet Per-port enable/disable drop all unknown DA packets 9.10. MIB Counters The RTL8367N-VB supports a set of counters to support management functions. • • • • • • MIB-II (RFC 1213) Ethernet-Like MIB (RFC 3635) Interface Group MIB (RFC 2863) RMON (RFC 2819) Bridge MIB (RFC 1493) Bridge MIB Extension (RFC 2674) 9.11. Port Mirroring The RTL8367N-VB supports one set of port mirroring functions for all ports. The TX, or RX, or both TX/RX packets from multiple mirrored port can be mirrored to one monitor port. Single-Chip 5-Port 10/100/1000M Switch Controller 24 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.12. VLAN Function The RTL8367N-VB supports 4K VLAN groups. These can be configured as port-based VLANs, IEEE 802.1Q tag-based VLANs, and Protocol-based VLANs. Two ingress-filtering and egress-filtering options provide flexible VLAN configuration: Ingress Filtering • The acceptable frame type of the ingress process can be set to ‘Admit All’ , ‘Admit only Untagged’ or ‘Admit only Tagged’ • ‘Admit’ or ‘Discard’ frames associated with a VLAN for which that port is not in the member set Egress Filtering • ‘Forward’ or ‘Discard’ Leaky VLAN frames between different VLAN domains • ‘Forward’ or ‘Discard’ Multicast VLAN frames between different VLAN domains The VLAN tag can be inserted or removed at the output port. The RTL8367N-VB will insert a Port VID (PVID) for untagged frames, or remove the tag from tagged frames. The RTL8367N-VB also supports a special insert VLAN tag function to separate traffic from the WAN and LAN sides in Router and Gateway applications. In router applications, the router may want to know which input port this packet came from. The RTL8367N-VB supports Port VID (PVID) for each port and can insert a PVID in the VLAN tag on egress. Using this function, VID information carried in the VLAN tag will be changed to PVID. The RTL8367N-VB also provides an option to admit VLAN tagged packets with a specific PVID only. If this function is enabled, it will drop non-tagged packets and packets with an incorrect PVID. 9.12.1. Port-Based VLAN This default configuration of the VLAN function can be modified via an attached serial EEPROM or EEPROM SMI Slave interface. The 4K-entry VLAN Table designed into the RTL8367N-VB provides full flexibility for users to configure the input ports to associate with different VLAN groups. Each input port can join with more than one VLAN group. Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to determine their VLAN association. All the packets received on a given input port will be forwarded to this port’s VLAN members. 9.12.2. IEEE 802.1Q Tag-Based VLAN The RTL8367N-VB supports 4K VLAN entries to perform 802.1Q tag-based VLAN mapping. In 802.1Q VLAN mapping, the RTL8367N-VB uses a 12-bit explicit identifier in the VLAN tag to associate received packets with a VLAN. The RTL8367N-VB compares the explicit identifier in the VLAN tag with the 4K VLAN Table to determine the VLAN association of this packet, and then forwards this packet to the member set of that VLAN. Two VIDs are reserved for special purposes. One of them is all 1’s, which is reserved and currently unused. The other is all 0’s, which indicates a priority tag. A prioritytagged frame should be treated as an untagged frame. Single-Chip 5-Port 10/100/1000M Switch Controller 25 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet When ‘802.1Q tag aware VLAN’ is enabled, the RTL8367N-VB performs 802.1Q tag-based VLAN mapping for tagged frames, but still performs port-based VLAN mapping for untagged frames. If ‘802.1Q tag aware VLAN’ is disabled, the RTL8367N-VB performs only port-based VLAN mapping both on non-tagged and tagged frames. The processing flow when ‘802.1Q tag aware VLAN’ is enabled is illustrated below. Two VLAN ingress filtering functions are supported in registers by the RTL8367N-VB. One is the ‘VLAN tag admit control’, which provides the ability to receive VLAN-tagged frames only. Untagged or priority tagged (VID=0) frames will be dropped. The other is ‘VLAN member set ingress filtering’, which will drop frames if the ingress port is not in the member set. 9.12.3. Protocol-Based VLAN The RTL8367N-VB supports a 4-group Protocol-based VLAN configuration. The packet format can be RFC 1042, LLC, or Ethernet, as shown in Figure 5. There are 4 configuration tables to assign the frame type and corresponding field value. Taking IP packet configuration as an example, the user can configure the frame type to be ‘Ethernet’, and value to be ‘0x0800’. Each table will index to one of the entries in the 4K-entry VLAN table. The packet stream will match the protocol type and the value will follow the VLAN member configuration of the indexed entry to forward the packets. Figure 5. Protocol-Based VLAN Frame Format and Flow Chart 9.12.4. Port VID In a router application, the router may want to know which input port this packet came from. The RTL8367N-VB supports Port VID (PVID) for each port to insert a PVID in the VLAN tag for untagged or priority tagged packets on egress. When 802.1Q tag-aware VLAN is enabled, VLAN tag admit control Single-Chip 5-Port 10/100/1000M Switch Controller 26 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet is enabled, and non-PVID Discard is enabled at the same time. When these functions are enabled, the RTL8367N-VB will drop non-tagged packets and packets with an incorrect PVID. 9.13. QoS Function The RTL8367N-VB supports 8 priority queues and input bandwidth control. Packet priority selection can depend on Port-based priority, 802.1p/Q Tag-based priority, IPv4/IPv6 DSCP-based priority, and ACLbased priority. When multiple priorities are enabled in the RTL8367N-VB, the packet’s priority will be assigned based on the priority selection table. Each queue has one leaky bucket for Average Packet Rate. Per-queue in each output port can be set as Strict Priority (SP) or Weighted Fair Queue (WFQ) for packet scheduling algorithm. 9.13.1. Input Bandwidth Control Input bandwidth control limits the input bandwidth. When input traffic is more than the RX Bandwidth parameter, this port will either send out a ‘pause ON’ frame, or drop the input packet depending on register setup. Per-port input bandwidth control rates can be set from 8Kbps to 1Gbps (in 8Kbps steps). 9.13.2. Priority Assignment Priority assignment specifies the priority of a received packet according to various rules. The RTL8367NVB can recognize the QoS priority information of incoming packets to give a different egress service priority. The RTL8367N-VB identifies the priority of packets based on several types of QoS priority information: • • • • • • • Port-based priority 802.1p/Q-based priority IPv4/IPv6 DSCP-based priority ACL-based priority VLAN-based priority MAC-based priority SVLAN-based priority 9.13.3. Priority Queue Scheduling The RTL8367N-VB supports MAX-MIN packet scheduling. Packet scheduling offers two modes: • • Average Packet Rate (APR) leaky bucket, which specifies the average rate of one queue Weighted Fair Queue (WFQ), which decides which queue is selected in one slot time to guarantee the minimal packet rate of one queue Single-Chip 5-Port 10/100/1000M Switch Controller 27 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet In addition, each queue of each port can select Strict Priority or WFQ packet scheduling according to packet scheduling mode. Figure 6 shows the RTL8367N-VB packet-scheduling diagram. Figure 6. MAX-MIN Scheduling Diagram 9.13.4. IEEE 802.1p/Q and DSCP Remarking The RTL8367N-VB supports the IEEE 802.1p/Q and IP DSCP (Differentiated Services Code Point) remarking function. When packets egress from one of the 8 queues, the packet’s 802.1p/Q priority and IP DSCP can optionally be remarked to a configured value. 802.1p/Q priority & IP DSCP value can be remarked based on internal priority or original 802.1p/Q priority & IP DSCP value in packets. 9.13.5. ACL-Based Priority The RTL8367N-VB supports 96-entry ACL (Access Control List) rules. When a packet is received, its physical port, Layer2, Layer3, and Layer4 information are recorded and compared to ACL entries. If a received packet matches multiple entries, the entry with the lowest address is valid. If the entry is valid, the action bit and priority bit will be applied. • • • • If the action bit is ‘Drop’, the packet will be dropped. If the action bit is ‘CPU’, the packet will be trapped to the CPU instead of forwarded to non-CPU ports (except where it will be dropped by rules other than the ACL rule) If the action bit is ‘Permit’, ACL rules will override other rules If the action bit is ‘Mirror’, the packet will be forwarded to the mirror port and the L2 lookup result destination port. The mirror port indicates the port configured in the port mirror mechanism The priority bit will take effect only if the action bit is ‘CPU’, ‘Permit’, and ‘Mirror’. The Priority bit is used to determine the packet queue ID according to the priority assignment mechanism Single-Chip 5-Port 10/100/1000M Switch Controller 28 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.14. IGMP & MLD Snooping Function The RTL8367N-VB supports hardware IGMPv1/v2/v3 and MLDv1/v2 snooping with a maximum of 256 groups (maximum 255 groups per port). These multicast groups are learned and deleted/aged out automatically. For data packets of a known multicast group, the RTL8367N-VB forwards them according to the learned group membership. The RTL8367N-VB checks group membership every 125 seconds (default). If a specified port of the RTL8367N-VB does not receive a report message after 3 (default) consecutive checks, the port is removed from the multicast group. The 125 second interval and the number of consecutive checks before ageing are user configurable default values. IPv4 multicast data packets are forwarded per group IP. IPv6 multicast data packets are forwarded per destination MAC. That is, IPv6 multicast groups that share the same destination MAC are treated as the same group. This is called address ambiguity. Some reserved range IP addresses will always be flooded to all ports. If IGMP or MLD report message requests to join these groups, this request will be ignored silently. These reserved IP addresses could be the following IP addresses and they are configurable. IPv4: 224.0.0.0 ~ 224.0.0.255 IPv4: 224.0.0.0 ~ 224.0.1.255 IPv4: 239.255.255.0 ~ 239.255.255.255 IPv6: 33:33:00:00:00:00 ~ 33:33:00:00:00:FF (forwarded per destination MAC) Due to address ambiguity, some IPv6 multicast addresses that are not reserved for network protocols will be flooded, as the corresponding destination MAC address is inside the reserved IP address range (Corresponding MAC address). The RTL8367N-VB learns the ‘Dynamic Router Port’ automatically by monitoring Query messages (both IGMP & MLD) and multicast routing protocol packets. Table 12 gives the multicast routing protocols that the RTL8367N-VB recognizes. PIMv1 is confirmed by the IGMP header type and the other multicast routing protocols are recognized by the destination IP in the IP header (in both IPv4 and IPv6). IPv4 N/A 224.0.0.13 224.0.0.4 224.0.0.5 224.0.0.6 IPv6 N/A FF02::D FF02::4 FF02::5 FF02::6 Table 12. IPv4/IPv6 Multicast Routing Protocols Multicast Routing Protocol Check IGMP Header Type=0x14 (PIMv1) PIMv2 DVMRP MOSPF MOSPF Users can specify ‘Static Router Ports’ via API. This forces the ports to act as true router ports. All reports and Leave/Done messages will be forwarded to the specified Static Router ports. The RTL8367N-VB supports a ‘Fast Leave’ feature. When enabled, group membership will be removed immediately the RTL8367N-VB receives an IGMPv2 Leave message or MLDv1 Done message. Normally this feature is only enabled when there is only one host. Single-Chip 5-Port 10/100/1000M Switch Controller 29 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet The IGMP/MLD snooping feature is disabled by default. IGMP & MLD messages will be flooded to all ports without any further processing. This feature can be enabled and configured via API. Contact your Realtek support team for configuration details. 9.15. IEEE 802.1x Function The RTL8367N-VB supports IEEE 802.1x Port-based/MAC-based Access Control. • • • • • • • Port-Based Access Control for each port Authorized Port-Based Access Control for each port Port-Based Access Control Direction for each port MAC-Based Access Control for each port MAC-Based Access Control Direction Optional Unauthorized Behavior Guest VLAN 9.15.1. Port-Based Access Control Each port of the RTL8367N-VB can be set to 802.1x port-based authenticated checking function usage and authorized status. Ports with 802.1X unauthorized status will drop received/transmitted frames. 9.15.2. Authorized Port-Based Access Control If a dedicated port is set to 802.1x port-based access control, and passes the 802.1x authorization, then its port authorization status can be set to authorized. 9.15.3. Port-Based Access Control Direction Ports with 802.1X unauthorized status will drop received/transmitted frames only when port authorization direction is ‘BOTH’. If the authorization direction of an 802.1X unauthorized port is IN, incoming frames to that port will be dropped, but outgoing frames will be transmitted. 9.15.4. MAC-Based Access Control MAC-Based Access Control provides authentication for multiple logical ports. Each logical port represents a source MAC address. There are multiple logical ports for a physical port. When a logical port or a MAC address is authenticated, the relevant source MAC address has the authorization to access the network. A frame with a source MAC address that is not authenticated by the 802.1x function will be dropped or trapped to the CPU. 9.15.5. MAC-Based Access Control Direction Unidirectional and bi-directional control are two methods used to process frames in 802.1x. As the system cannot predict which port the DA is on, a system-wide MAC-based access control direction setup is provided for determining whether receiving or bi-directional should be authorized. If MAC-based access control direction is BOTH, then received frames with unauthenticated SA or unauthenticated DA will be dropped. When MAC-based access control direction is IN, only received frames with unauthenticated SA will be dropped. Single-Chip 5-Port 10/100/1000M Switch Controller 30 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.15.6. Optional Unauthorized Behavior Both in Port-Based Network Access Control and MAC-Based Access Control, a whole system control setup is provided to determine unauthorized frame dropping, trapping to CPU, or tagging as belonging to a Guest VLAN (see the following ‘Guest VLAN’ section). 9.15.7. Guest VLAN When the RTL8367N-VB enables the Port-based or MAC-based 802.1x function, and the connected PC does not support the 802.1x function or does not pass the authentication procedure, the RTL8367N-VB will drop all packets from this port. The RTL8367N-VB also supports one Guest VLAN to allow unauthorized ports or packets to be forwarded to a limited VLAN domain. The user can configure one VLAN ID and member set for these unauthorized packets. 9.16. IEEE 802.1D Function When using IEEE 802.1D, the RTL8367N-VB supports 16 sets and four status’ for each port for CPU implementation 802.1D (STP) and 802.1s (MSTP) function: • • • • Disabled: The port will not transmit/receive packets, and will not perform learning Blocking: The port will only receive BPDU spanning tree protocol packets, but will not transmit any packets, and will not perform learning Learning: The port will receive any packet, including BPDU spanning tree protocol packets, and will perform learning, but will only transmit BPDU spanning tree protocol packets Forwarding: The port will transmit/receive all packets, and will perform learning The RTL8367N-VB also supports a per-port transmission/reception enable/disable function. Users can control the port state via register. 9.17. Embedded 8051 An 8051 MCU is embedded in the RTL8367N-VB to support management functions. The 8051 MCU can access all of the registers in the RTL8367N-VB through the internal bus. With the Network Interface Circuit (NIC) acting as the data path, the 8051 MCU connects to the switch core and can transmit frames to or receive frames from the Ethernet network. The features of the 8051 MCU are listed below: • • • • • • 256 Bytes fast internal RAM On-chip 48K data memory On-chip 16K code memory Supports code-banking 12 KBytes NIC buffer EEPROM read/write ability Single-Chip 5-Port 10/100/1000M Switch Controller 31 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.18. Realtek Cable Test (RTCT) The RTL8367N-VB physical layer transceivers use DSP technology to implement the Realtek Cable Test (RTCT) feature. The RTCT function can be used to detect short, open, or impedance mismatch in each differential pair. The RTL8367N-VB also provides LED support to indicate test status and results. 9.19. LED Indicators The RTL8367N-VB supports parallel LEDs for each port. Each port has two LED indicator pins, LED0 and LED1. Each pin may have different indicator information (defined in Table 13). Refer to section 7.2 LED Pins, page 12 for pin details. Upon reset, the RTL8367N-VB supports chip diagnostics and LED operation test by blinking all LEDs once. LED Statuses LED_Off Dup/Col Link/Act Spd1000 Spd100 Spd10 Spd1000/Act Spd100/Act Spd10/Act Spd100 (10)/Act Act Table 13. LED Definitions Description LED Pin Output Disable. Duplex/Collision Indicator. Blinking when collision occurs. Low for full duplex, and high for half duplex mode. Link, Activity Indicator. Low for link established. Link/Act Blinking when the corresponding port is transmitting or receiving. 1000Mbps Speed Indicator. Low for 1000Mbps. 100Mbps Speed Indicator. Low for 100Mbps. 10Mbps Speed Indicator. Low for 10Mbps. 1000Mbps Speed/Activity Indicator. Low for 1000Mbps. Blinking when the corresponding port is transmitting or receiving. 100Mbps Speed/Activity Indicator. Low for 100Mbps. Blinking when the corresponding port is transmitting or receiving. 10Mbps Speed/Activity Indicator. Low for 10Mbps. Blinking when the corresponding port is transmitting or receiving. 10/100Mbps Speed/Activity Indicator. Low for 10/100Mbps. Blinking when the corresponding port is transmitting or receiving. Activity Indicator. Act blinking when the corresponding port is transmitting or receiving. The LED pin also supports pin strapping configuration functions. The PnLED0 and PnLED1 pins are dual-function pins: input operation for configuration upon reset, and output operation for LED after reset. If the pin input is pulled high upon reset, the pin output is active low after reset. If the pin input is pulled down upon reset, the pin output is active high after reset. For details refer to Figure 7, page 33, and Figure 8, page 33. Typical values for pull-up/pull-down resistors are 4.7KΩ. The PnLED1 can be combined with PnLED0 as a Bi-color LED. LED_PnLED1 should operate with the same polarity as other Bi-color LED pins. For example: • P0LED1 should pull up upon reset if P0LED1 is combined with P0LED0 as a Bi-color LED, and P0LED0 input is pulled high upon reset. In this configuration, the output of these pins is active low after reset Single-Chip 5-Port 10/100/1000M Switch Controller 32 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet • P0LED1 should be pulled down upon reset if P0LED1 is combined with P0LED0 as a Bi-color LED, and P0LED0 input is pulled down upon reset. In this configuration, the output of these pins is active high after reset Figure 7. Pull-Up and Pull-Down of LED Pins for Single-Color LED Figure 8. Pull-Up and Pull-Down of LED Pins for Bi-Color LED Single-Chip 5-Port 10/100/1000M Switch Controller 33 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 9.20. Green Ethernet 9.20.1. Link-On and Cable Length Power Saving The RTL8367N-VB provides link-on and dynamic detection of cable length and dynamic adjustment of power required for the detected cable length. This feature provides high performance with minimum power consumption. 9.20.2. Link-Down Power Saving The RTL8367N-VB implements link-down power saving on a per-port basis, greatly cutting power consumption when the network cable is disconnected. After it detects an incoming signal, it wakes up from link-down power saving and operates in normal mode. 9.21. IEEE 802.3az Energy Efficient Ethernet (EEE) Function The RTL8367N-VB supports IEEE 802.3az Energy Efficient Ethernet ability for 1000Base-T and 100Base-TX in full duplex operation. The Energy Efficient Ethernet (EEE) optional operational mode combines the IEEE 802.3 Media Access Control (MAC) sub-layer with 100Base-TX and 1000Base-T Physical Layers defined to support operation in Low Power Idle mode. When Low Power Idle mode is enabled, systems on both sides of the link can disable portions of the functionality and save power during periods of low link utilization. • • For 1000Base-T PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle For 100Base-TX PHY: Supports Energy Efficient Ethernet with the optional function of Low Power Idle The RTL8367N-VB MAC uses Low Power Idle signaling to indicate to the PHY, and to the link partner, that a break in the data stream is expected, and components may use this information to enter power saving modes that require additional time to resume normal operation. Similarly, it informs the LPI Client that the link partner has sent such an indication. Single-Chip 5-Port 10/100/1000M Switch Controller 34 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 10. Interface Descriptions 10.1. EEPROM SMI Host to EEPROM The EEPROM interface of the RTL8367N-VB uses the serial bus EEPROM Serial Management Interface (SMI) to read the EEPROM space up to 256K-bits. When the RTL8367N-VB is powered up, it drives SCK and SDA to read the registers from the EEPROM. SCK SDA START STOP Figure 9. SMI Start and Stop Command SCK 1 8 9 DATA IN DATA OUT ACKNOWLEDGE START Figure 10. EEPROM SMI Host to EEPROM Figure 11. EEPROM SMI Host Mode Frame Single-Chip 5-Port 10/100/1000M Switch Controller 35 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 10.2. EEPROM SMI Slave for External CPU When EEPROM auto-load is complete, the RTL8367N-VB registers can be accessed via SCK and SDA by an external CPU. The device address of the RTL8367N-VB is 0x4. For the start and end of a write/read command, SCK needs one extra clock before/after the start/stop signals. Figure 12. EEPROM SMI Write Command for Slave Mode Figure 13. EEPROM SMI Read Command for Slave Mode Single-Chip 5-Port 10/100/1000M Switch Controller 36 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11. Register Descriptions In this section the following abbreviations are used: RO: Read Only LH: Latch High until clear RW: Read/Write SC: Self Clearing LL: Latch Low until clear 11.1. Register 0 1 2 3 4 5 6 7 8 9 10 11~14 15 16~31 PCS Register (PHY 0~4) Table 14. PCS Register (PHY 0~4) Register Description Control Register Status Register PHY Identifier 1 PHY Identifier 2 Auto-Negotiation Advertisement Register Auto-Negotiation Link Partner Ability Register Auto-Negotiation Expansion Register Auto-Negotiation Page Transmit Register Auto-Negotiation Link Partner Next Page Register 1000Base-T Control Register 1000Base-T Status Register Reserved Extended Status ASIC Control Register Single-Chip 5-Port 10/100/1000M Switch Controller 37 Default 0x1140 0x7949 0x001C 0xC980 0x0DE1 0x0000 0x0004 0x2001 0x0000 0x0E00 0x0000 0x0000 0x2000 - Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11.2. Reg.bit 0.15 0.14 0.13 0.12 0.11 0.10 0.9 0.8 0.7 0.6 0.[5:0] Register 0: Control Table 15. Register 0: Control Mode Description RW/SC 1: PHY reset 0: Normal operation This bit is self-clearing. Loopback RW 1: Enable loopback. This will loopback TXD to RXD and ignore all activity on the cable media (Digital Loopback) 0: Normal operation This function is usable only when this PHY is operated in 10Base-T full duplex, 100Base-TX full duplex, or 1000Base-T full duplex. Speed Selection[0] RW [0.6, 0.13] Speed Selection[1:0] 11: Reserved 10: 1000Mbps 01: 100Mbps 00: 10Mbps This bit can be set through SMI (Read/Write). RW 1: Enable auto-negotiation process Auto Negotiation Enable 0: Disable auto-negotiation process This bit can be set through SMI (Read/Write). Power Down RW 1: Power down. All functions will be disabled except SMI function 0: Normal operation Isolate RW 1: Electrically isolates the PHY from GMII. The PHY is still able to respond to MDC/MDIO 0: Normal operation RW/SC 1: Restart Auto-Negotiation process Restart Auto Negotiation 0: Normal operation Duplex Mode RW 1: Full duplex operation 0: Half duplex operation This bit can be set through SMI (Read/Write). Collision Test RO 1: Collision test enabled 0: Normal operation When set, this bit will cause the COL signal to be asserted in response to the assertion of TXEN within 512-bit times. The COL signal will be de-asserted within 4-bit times in response to the deassertion of TXEN. Speed Selection[1] RW See bit 13 Reserved RO Reserved Name Reset Single-Chip 5-Port 10/100/1000M Switch Controller 38 Default 0 0 0 1 0 0 0 1 0 1 000000 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11.3. Reg.bit 1.15 Register 1: Status Name 100Base-T4 Mode RO 1.14 100Base-TX-FD RO 1.13 100Base-TX-HD RO 1.12 10Base-T-FD RO 1.11 10Base-T-HD RO 1.10 100Base-T2-FD RO 1.9 100Base-T2-HD RO 1.8 Extended Status RO 1.7 1.6 Reserved MF Preamble Suppression Auto-negotiate Complete Remote Fault RO RO 1.5 1.4 1.3 1.2 Auto-Negotiation Ability Link Status 1.1 Jabber Detect 1.0 Extended Capability RO RO/LH RO Table 16. Register 1: Status Description 0: No 100Base-T4 capability The RTL8367N-VB does not support 100Base-T4 mode and this bit should always be 0. 1: 100Base-TX full duplex capable 0: Not 100Base-TX full duplex capable 1: 100Base-TX half duplex capable 0: Not 100Base-TX half duplex capable 1: 10Base-T full duplex capable 0: Not 10Base-T full duplex capable 1: 10Base-T half duplex capable 0: Not 10Base-T half duplex capable 0: Not 100Base-T2 full duplex capable The RTL8367N-VB does not support 100Base-T2 mode and this bit should always be 0. 0: Not 100Base-T2 half duplex capable The RTL8367N-VB does not support 100Base-T2 mode and this bit should always be 0. 1: Extended status information in Register 15 The RTL8367N-VB always supports Extended Status Register. Reserved The RTL8367N-VB will accept management frames with preamble suppressed. 1: Auto-negotiation process completed 0: Auto-negotiation process not completed 1: Remote fault condition detected 0: No remote fault detected This bit will remain set until it is cleared by reading register 1 via the management interface. 1: Auto-negotiation capable (permanently =1) RO/LL 1: Link is established. If the link fails, this bit will be 0 until after reading this bit again 0: Link has failed since previous read If the link fails, this bit will be set to 0 until bit is read. RO/LH 1: Jabber detected 0: No Jabber detected Jabber is supported only in 10Base-T mode. RO 1: Extended register capable (permanently =1) Single-Chip 5-Port 10/100/1000M Switch Controller 39 Default 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 1 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11.4. Register 2: PHY Identifier 1 The PHY Identifier Registers #1 and #2 together form a unique identifier for the PHY section of this device. The Identifier consists of a concatenation of the Organizationally Unique Identifier (OUI), the vendor’s model number, and the model revision number. A PHY may return a value of zero in each of the 32 bits of the PHY Identifier if desired. The PHY Identifier is intended to support network management. Reg.bit 2.[15:0] 11.5. Reg.bit 3.[15:10] 3.[9:4] 3.[3:0] 11.6. Name OUI Table 17. Register 2: PHY Identifier 1 Mode Description RO Composed of the 3rd to 18th bits of the Organizationally Unique Identifier (OUI), respectively. Default 0x001C Register 3: PHY Identifier 2 Name OUI Model Number Revision Number Table 18. Register 3: PHY Identifier 2 Mode Description RO Assigned to the 19th through 24th bits of the OUI RO Manufacturer’s model number RO Manufacturer’s revision number Default 110010 011000 0000 Register 4: Auto-Negotiation Advertisement This register contains the advertisement abilities of this device as they will be transmitted to its Link Partner during Auto-negotiation. Note: Each time the link ability of the RTL8367N-VB is reconfigured, the auto-negotiation process should be executed to allow the configuration to take effect. Reg.bit 4.15 4.14 4.13 4.12 4.11 4.10 4.9 4.8 4.7 Table 19. Register 4: Auto-Negotiation Advertisement Name Mode Description Next Page RO 1: Additional next pages exchange desired 0: No additional next pages exchange desired Acknowledge RO Permanently=0 Remote Fault RW 1: Advertises that the RTL8367N-VB has detected a remote fault 0: No remote fault detected Reserved RO Reserved Reserved RW Reserved Pause RW 1: Advertises that the RTL8367N-VB has flow control capability 0: No flow control capability 100Base-T4 RO 1: 100Base-T4 capable 0: Not 100Base-T4 capable (Permanently =0) 100Base-TX-FD RW 1: 100Base-TX full duplex capable 0: Not 100Base-TX full duplex capable 100Base-TX RW 1: 100Base-TX half duplex capable 0: Not 100Base-TX half duplex capable Single-Chip 5-Port 10/100/1000M Switch Controller 40 Default 0 0 0 0 0 1 0 1 1 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet Reg.bit 4.6 Description 1: 10Base-T full duplex capable 0: Not 10Base-T full duplex capable 4.5 10Base-T RW 1: 10Base-T half duplex capable 0: Not 10Base-T half duplex capable 4.[4:0] Selector Field RO [00001]=IEEE 802.3 Note 1: The setting of Register 4 has no effect unless auto-negotiation is restarted or the link goes down. Note 2: If 1000Base-T is advertised, then the required next pages are automatically transmitted. 11.7. Name 10Base-T-FD Mode RW Default 1 1 00001 Register 5: Auto-Negotiation Link Partner Ability This register contains the advertised abilities of the Link Partner as received during Auto-negotiation. The content changes after a successful Auto-negotiation. Reg.bit 5.15 5.14 5.13 5.12 5.11 5.10 5.9 5.8 5.7 5.6 5.5 5.[4:0] Table 20. Register 5: Auto-Negotiation Link Partner Ability Mode Description RO 1: Link partner desires Next Page transfer 0: Link partner does not desire Next Page transfer Acknowledge RO 1: Link Partner acknowledges reception of Fast Link Pulse (FLP) words 0: Not acknowledged by Link Partner Remote Fault RO 1: Remote Fault indicated by Link Partner 0: No remote fault indicated by Link Partner Reserved RO Reserved Asymmetric Pause RO 1: Asymmetric Flow control supported by Link Partner 0: No Asymmetric flow control supported by Link Partner. When auto-negotiation is enabled, this bit reflects Link Partner ability Pause RO 1: Flow control supported by Link Partner. 0: No flow control supported by Link Partner. When auto-negotiation is enabled, this bit reflects Link Partner ability 100Base-T4 RO 1: 100Base-T4 supported by Link Partner 0: 100Base-T4 not supported by Link Partner 100Base-TX-FD RO 1: 100Base-TX full duplex supported by Link Partner 0: 100Base-TX full duplex not supported by Link Partner 100Base-TX RO 1: 100Base-TX half duplex supported by Link Partner 0: 100Base-TX half duplex not supported by Link Partner 10Base-T-FD RO 1: 10Base-T full duplex supported by Link Partner 0: 10Base-T full duplex not supported by Link Partner 10Base-T RO 1: 10Base-T half duplex supported by Link Partner 0: 10Base-T half duplex not supported by Link Partner Selector Field RO [00001]=IEEE 802.3 Name Next Page Single-Chip 5-Port 10/100/1000M Switch Controller 41 Default 0 0 0 0 0 0 0 0 0 0 0 00000 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11.8. Reg.bit 6.[15:5] 6.4 6.3 6.2 6.1 6.0 11.9. Reg.bit 7.15 7.14 7.13 7.12 7.11 7.[10:0] Register 6: Auto-Negotiation Expansion Table 21. Register 6: Auto-Negotiation Expansion Name Mode Description Reserved RO Ignore on read RO 1: A fault has been detected via the Parallel Detection function Parallel Detection Fault /LH 0: No fault has been detected via the Parallel Detection function RO 1: Link Partner is Next Page able Link Partner Next Page Ability 0: Link Partner is not Next Page able RO Not supported. Permanently =0 Local Next Page Ability Page Received RO 1: A New Page has been received /LH 0: A New Page has not been received RO If Auto-Negotiation is enabled, this bit means: Link Partner AutoNegotiation 1: Link Partner is Auto-Negotiation able Ability 0: Link Partner is not Auto-Negotiation able Default 0 0 0 1 0 0 Register 7: Auto-Negotiation Page Transmit Register Table 22. Register 7: Auto-Negotiation Page Transmit Register Name Mode Description Next Page RW 1: Link partner desires Next Page transfer 0: Link partner does not desire Next Page transfer Reserved RO 1: A fault has been detected via the Parallel Detection function 0: No fault has been detected via the Parallel Detection function Message Page RW 1: Message page 0: No Message page ability Acknowledge 2 RW 1: Local device has the ability to comply with the message received 0: Local device has no ability to comply with the message received Toggle RO Toggle bit RW Content of message/unformatted page Message/ Unformatted Field Single-Chip 5-Port 10/100/1000M Switch Controller 42 Default 0 0 1 0 0 1 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11.10. Register 8: Auto-Negotiation Link Partner Next Page Register Reg.bit 8.15 8.14 8.13 8.12 8.11 8.[10:0] Table 23. Register 8: Auto-Negotiation Link Partner Next Page Register Name Mode Description Next Page RO Received Link Code Word Bit 15 Acknowledge RO Received Link Code Word Bit 14 Message Page RO Received Link Code Word Bit 13 Acknowledge 2 RO Received Link Code Word Bit 12 Toggle RO Received Link Code Word Bit 11 RO Received Link Code Word Bit 10:0 Message/ Unformatted Field Default 0 0 0 0 0 0 11.11. Register 9: 1000Base-T Control Register Table 24. Register 9: 1000Base-T Control Register Reg.bit Name Mode Description 9.[15:13] Test Mode RW Test Mode Select. 000: Normal mode 001: Test mode 1 – Transmit waveform test 010: Test mode 2 – Transmit jitter test in MASTER mode 011: Test mode 3 – Transmit jitter test in SLAVE mode 100: Test mode 4 – Transmitter distortion test 101, 110, 111: Reserved 9.12 RW 1: Enable MASTER/SLAVE manual configuration MASTER/SLAVE Manual Configuration 0: Disable MASTER/SLAVE manual configuration Enable 9.11 RW MASTER/SLAVE 1: Configure PHY as MASTER during MASTER/SLAVE Configuration Value negotiation, only when bit 9.12 is set to logical one 0: Configure PHY as SLAVE during MASTER/SLAVE negotiation, only when bit 9.12 is set to logical one 9.10 Port Type RW 1: Multi-port device 0: Single-port device 9.9 1000Base-T Full Duplex RW 1: Advertise PHY is 1000Base-T full duplex capable 0: Advertise PHY is not 1000Base-T full duplex capable 9.8 1000Base-T Half Duplex RW 1: Advertise PHY is 1000Base-T half duplex capable 0: Advertise PHY is not 1000Base-T half duplex capable 9.[7:0] Reserved RW Reserved Single-Chip 5-Port 10/100/1000M Switch Controller 43 Default 000 0 1 1 1 0 0 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 11.12. Register 10: 1000Base-T Status Register Reg.bit 10.15 10.14 10.13 10.12 10.11 10.10 10.[9:8] 10.[7:0] Table 25. Register 10: 1000Base-T Status Register Name Mode Description MASTER/SLAVE RO/LH/ 1: MASTER/SLAVE configuration fault detected Configuration Fault SC 0: No MASTER/SLAVE configuration fault detected RO 1: Local PHY configuration resolved to MASTER MASTER/SLAVE Configuration Resolution 0: Local PHY configuration resolved to SLAVE Local Receiver Status RO 1: Local receiver OK 0: Local receiver not OK Remote Receiver Status RO 1: Remote receiver OK 0: Remote receiver not OK RO 1: Link partner is capable of 1000Base-T full duplex Link Partner 1000Base-T Full Duplex 0: Link partner is not capable of 1000Base-T full duplex 1000Base-T Half Duplex RO 1: Link partner is capable of 1000Base-T half duplex 0: Link partner is not capable of 1000Base-T half duplex Reserved RO Reserved Idle Error Count RO/SC Idle Error Counter. The counter stops automatically when it reaches 0xFF Default 0 0 0 0 0 0 0 0 11.13. Register 15: Extended Status Table 26. Register 15: Extended Status Reg.bit Name Mode Description 15.15 1000Base-X Full Duplex RO 1: 1000Base-X full duplex capable 0: Not 1000Base-X full duplex capable 15.14 1000Base-X Half Duplex RO 1: 1000Base-X half duplex capable 0: Not 1000Base-X half duplex capable 15.13 1000Base-T Full Duplex RO 1: 1000Base-T full duplex capable 0: Not 1000Base-T full duplex capable 15.12 1000Base-T Half Duplex RO 1: 1000Base-T half duplex capable 0: Not 1000Base-T half duplex capable 15.[11:0] Reserved RO Reserved Single-Chip 5-Port 10/100/1000M Switch Controller 44 Default 0 0 1 0 0 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12. Electrical Characteristics 12.1. Absolute Maximum Ratings WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified. Table 27. Absolute Maximum Ratings Parameter Min Junction Temperature (Tj) Storage Temperature -45 DVDDIO and AVDDH Supply Referenced to GND and AGND GND-0.3 DVDDL, AVDDL, PLLVDDL, Supply Referenced to GND and GND-0.3 AGND Digital Input Voltage GND-0.3 12.2. Max +125 +125 +3.63 Units °C °C V +1.21 V VDDIO+0.3 V Recommended Operating Range Table 28. Recommended Operating Range Parameter Min Typical Ambient Operating Temperature (Ta) 0 DVDDIO and AVDDH Supply Voltage Range 3.135 3.3 DVDDL, AVDDL, PLLVDDL, Supply Voltage Range 1.045 1.1 Single-Chip 5-Port 10/100/1000M Switch Controller 45 Max 70 3.465 1.155 Units °C V V Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12.3. Thermal Characteristics 12.3.1. Assembly Description Package PCB Table 29. Assembly Description Type QFN88 Dimension (L×W) 10×10mm Thickness 0.65mm PCB Dimension (L×W) TBD PCB Thickness TBD Number of Cu Layer-PCB TBD 12.3.2. Material Properties Item Package Die Silver Paste Lead Frame Mold Compound PCB Table 30. Material Properties Material Thermal Conductivity K (W/m-k) Si 147 1033BF 2.5 CDA7025 168 7372 0.88 Cu 400 FR4 0.2 12.3.3. Simulation Conditions Table 31. Simulation Conditions 1.8W 2L (2S)/4L (2S2P) Air Flow = 0, 1, 2, m/s Input Power Test Board (PCB) Control Condition 12.3.4. Thermal Performance of QFN-88 on PCB Under Still Air Convection Table 32. Thermal Performance of QN-88 on PCB Under Still Air Convection θJA θJC ΨJT TBD TBD TBD TBD TBD TBD 4L PCB 2L PCB Note: θJA: Junction to ambient thermal resistance θJC: Junction to case thermal resistance ΨJT: Junction to top center of package thermal characterization Single-Chip 5-Port 10/100/1000M Switch Controller 46 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12.3.5. Thermal Performance of QFN-88 on PCB Under Forced Convection Table 33. Thermal Performance of QFN-88 on PCB Under Forced Convection Air Flow (m/s) 0 1 2 4L PCB θJA TBD TBD TBD 2L PCB θJA TBD TBD TBD Note: θJA: Junction to ambient thermal resistance 12.4. DC Characteristics Table 34. DC Characteristics Parameter SYM Min Typical System Idle (All UTP Port Link Down, without Extension Ports and LEDs) Power Supply Current for VDDH IDVDDIO, IAVDDH TBD Power Supply Current for VDDL IDVDDL, IAVDDL, IPLLVDDL TBD 1000M Active (All UTP Ports Link/Active, without Extension Ports and LEDs) Power Supply Current for VDDH IDVDDIO, IAVDDH TBD Power Supply Current for VDDL IDVDDL, IAVDDL, IPLLVDDL TBD VDDIO=3.3V TTL Input High Voltage Vih 1.9 TTL Input Low Voltage Vil Output High Voltage Voh 2.7 Output Low Voltage Vol VDDIO=2.5V TTL Input High Voltage Vih 1.7 TTL Input Low Voltage Vil Output High Voltage Voh 2.25 Output Low Voltage Vol Note: DVDDIO=AVDDH=3.3V, DVDDL=AVDDL=PLLVDDL=1.1V. Single-Chip 5-Port 10/100/1000M Switch Controller 47 Max Units - mA mA - mA mA 0.7 0.6 V V V V 0.7 0.4 V V V V Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12.5. AC Characteristics 12.5.1. EEPROM SMI Host Mode Timing Characteristics t1 t2 t3 SCK t4 SDA t5 t7 t6 t8 Data Valid Data Valid Figure 14. EEPROM SMI Host Mode Timing Characteristics t9 nRESET SCK SDA Figure 15. SCK/SDA Power on Timing t10 SCK Data Valid SDA Start Condition Stop Condition Figure 16. EEPROM Auto-Load Timing Single-Chip 5-Port 10/100/1000M Switch Controller 48 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet Table 35. EEPROM SMI Host Mode Timing Characteristics Symbol Description Type Min Typical t1 SCK Clock Period O TBD TBD t2 SCK High Time O TBD TBD t3 SCK Low Time O TBD TBD t4 START Condition Setup Time O TBD TBD t5 START Condition Hold Time O TBD TBD t6 Data Hold Time O TBD TBD t7 Data Setup Time O TBD TBD t8 STOP Condition Setup Time O TBD TBD t9 SCK/SDA Active from Reset Ready O TBD TBD t10 8K-Bits EEPROM Auto-Load Time O TBD TBD SCK Rise Time (10% to 90%) O TBD SCK Fall Time (90% to 10%) O TBD Duty Cycle O TBD TBD Note: t6, t7, and t10 are measured with ATMEL AT24C08 EEPROM. Max TBD TBD TBD Units µs µs µs µs µs µs µs µs ms ms ns ns % Max - Units µs µs µs µs µs ns ns µs 12.5.2. EEPROM SMI Slave Mode Timing Characteristics Figure 17. EEPROM SMI Slave Mode Timing Characteristics Symbol t1 t2 t3 t4 t5 t6 t7 t8 Table 36. EEPROM SMI Slave Mode Timing Characteristics Description Type Min Typical SCK High Time I TBD SCK Low Time I TBD START Condition Setup Time I TBD START Condition Hold Time I TBD Data Hold Time I TBD Data Setup Time I TBD Clock to Data Output Delay O TBD STOP Condition Setup Time I TBD - Single-Chip 5-Port 10/100/1000M Switch Controller 49 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12.5.3. MDIO Slave Mode Timing Characteristics The RTL8367N-VB supports MDIO slave mode. The Master (the RTL8367N-VB link partner CPU) can access the Slave (RTL8367N-VB) registers via the MDIO interface. The MDIO is a bi-directional signal that can be sourced by the Master or the Slave. In a write command, the Master sources the MDIO signal. In a read command, the Slave sources the MDIO signal. • • The timing characteristics (t1, t2, and t3 in Table 37) of the Master (the RTL8367N-VB link partner CPU) are provided by the Master when the Master sources the MDIO signal (Write command) The timing characteristics (t4 in Table 37) of the Slave (RTL8367N-VB) are provided by the RTL8367N-VB when the RTL8367N-VB sources the MDIO signal (Read command) Figure 18. MDIO Sourced by Master (RTL8367N-VB Link Partner CPU) Figure 19. MDIO Sourced by Slave (RTL8367N-VB) Table 37. MDIO Timing Characteristics and Requirements Parameter SYM Description/Condition Type Min Typical MDC Clock Period t1 Clock Period I TBD t2 Input Setup Time I TBD MDIO to MDC Rising Setup Time (Write Data) t3 Input Hold Time I TBD MDIO to MDC Rising Hold Time (Write Data) t4 O TBD MDC to MDIO Delay Time Clock (Falling Edge) to Data Delay (Read Data) Time Single-Chip 5-Port 10/100/1000M Switch Controller 50 Max - Units ns ns - ns TBD ns Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 12.6. Power and Reset Characteristics Figure 20. Power and Reset Characteristics Parameter Reset Delay Time Reset Low Time VDDL Power Rising Settling Time Table 38. Power and Reset Characteristics SYM Description/Condition Type Min Typical t1 The duration from all powers steady to I TBD the reset signal released to high. t2 The duration of reset signal remain low time for issuing a reset to RTL8367NI TBD VB. t3 DVDDL and AVDDL power rising I TBD settling time. Single-Chip 5-Port 10/100/1000M Switch Controller 51 Max Units - ms - ms - ms Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 13. Mechanical Dimensions Thermally Enhanced Quad Flat Package (QFN) 88 Leads 10×10mm Outline. Single-Chip 5-Port 10/100/1000M Switch Controller 52 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 13.1. Mechanical Dimensions Notes Dimension in mm Min Nom A 0.80 0.85 A1 0.00 0.02 A2 --0.65 A3 0.20 REF b 0.15 0.20 D/E 10.00BSC D1/E1 9.75BSC D2/E2 6.65 6.90 e 0.40BSC L 0.30 0.40 CONTROLLING DIMENSION: MILLIMETER (mm). REFERENCE DOCUMENT: JEDEC MO-220. Symbol Single-Chip 5-Port 10/100/1000M Switch Controller Max 0.90 0.05 0.70 Min 0.031 0.000 --- 0.25 0.006 7.15 0.262 0.50 0.012 53 Dimension in inch Nom 0.033 0.001 0.026 0.008 REF 0.008 0.394BSC 0.384BSC 0.272 0.016BSC 0.016 Max 0.035 0.002 0.028 0.010 0.282 0.020 Track ID: xxxx-xxxx-xx Rev. Pre-0.9 RTL8367N-VB Datasheet 14. Ordering Information Table 39. Ordering Information Part Number Package RTL8367N-VB-CG QFN 88-Pin ‘Green’ Package Note: See page 8 for package identification. Status - Realtek Semiconductor Corp. Headquarters No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C. Tel: 886-3-5780211 Fax: 886-3-5776047 www.realtek.com Single-Chip 5-Port 10/100/1000M Switch Controller 54 Track ID: xxxx-xxxx-xx Rev. Pre-0.9
RTL8367N-VB-CG 价格&库存

很抱歉,暂时无法提供与“RTL8367N-VB-CG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
RTL8367N-VB-CG
    •  国内价格
    • 1+20.59370
    • 10+17.81010
    • 30+16.07760
    • 168+12.88980
    • 504+12.08130
    • 1008+11.73480

    库存:2229

    RTL8367N-VB-CG
      •  国内价格
      • 1+12.80400
      • 100+11.08800
      • 840+10.98240
      • 1680+10.87900

      库存:25

      RTL8367N-VB-CG
      •  国内价格
      • 1+14.82680
      • 10+13.68630
      • 100+12.54570
      • 1000+11.40520

      库存:1680

      RTL8367N-VB-CG
        •  国内价格
        • 1+19.25640
        • 10+16.65360
        • 30+15.03360
        • 168+12.05280
        • 504+11.29680
        • 1008+10.97280

        库存:2210

        RTL8367N-VB-CG
          •  国内价格 香港价格
          • 16+22.0650416+2.65000
          • 31+19.4172431+2.33200
          • 69+17.6520369+2.12000
          • 151+16.32813151+1.96100
          • 325+14.56293325+1.74900
          • 607+13.23903607+1.59000

          库存:3187

          RTL8367N-VB-CG
            •  国内价格
            • 1+35.89500

            库存:5

            RTL8367N-VB-CG
            •  国内价格
            • 1+14.06064
            • 10+13.52948
            • 100+11.93601
            • 500+11.61731

            库存:97