NSi1306
High Reliability Reinforced
Isolated Sigma-Delta Modulator
Datasheet (EN) 1.6
Product Overview
Input common-mode overvoltage detection
The NSI1306 is a high performance Σ-Δ modulator with
output separated from input based on the NOVOSENSE
capacitive isolation technology. The device has a linear
differential input signal range of ±50mV (±64mV full-scale)
or ±250mV (±320mV full-scale). The differential input is
ideally suited to shunt resistor-based current sensing in
high voltage applications where isolation is required.
The analog input is amplified and continuously sampled
by a second-order Σ-Δ modulator and converted to a high
speed, single bit data stream. The output data is
synchronous to the external clock with a frequency range
from 5MHz to 21MHz. By using an appropriate digital
filter (such as sinc3 filter) to decimate the bitstream, the
device can achieve 16 bits resolution and an
86dB/82.5dB signal to noise ratio (SNR) at 78.125kSPS
with a 20MHz master clock.
The fail-safe functions including input common-mode
overvoltage detection and missing AVDD detection
simplify system-level design and diagnostics.
Operation Temperature: -40℃~125℃
Key Features
Automotive onboard chargers
Up to 5000VRMS Insulation Voltage
Device Information
Clock frequency: 5MHz to 21MHz
Part Number
NSI1306x-DSWVR
Package
SOP8(300mil)
Body Size
5.85mm × 7.50mm
NSI1306x-DSWR
SOP16(300mil)
10.30mm × 7.50mm
±50mV or ±250mV Linear Input Voltage Range
Excellent DC Performance:
Offset Error: ±50μV or ±100μV (Max)
Offset Drift: -0.5~1.5μV/℃ (Max)
Gain Error: ±0.2% (Max)
Gain Drift: ±40ppm/℃ (Max)
RoHS-Compliant Packages:
SOP8(300mil)
SOP16(300mil)
Safety Regulatory Approvals
UL recognition: up to 5000Vrms for 1 minute per UL1577
CQC certification per GB4943.1-2011
CSA component notice 5A approval IEC60950-1 standard
DIN VDE V 0884-11:2017-01
Applications
Shunt current monitoring
AC motor controls
Power and solar inverters
Uninterruptible Power Suppliers
Functional Block Diagrams
SNR: 82.5dB or 86dB (Typ)
High CMTI: 150kV/μs (Typ)
System-Level Diagnostic Features:
AVDD monitoring
Copyright © 2020, NOVOSENSE
Figure 1. NSi1306 Block Diagram
Page 1
NSi1306
Datasheet (EN) 1.6
INDEX
1. PIN CONFIGURATION AND FUNCTIONS.......................................................................................................................................3
2. ABSOLUTE MAXIMUM RATINGS.................................................................................................................................................. 5
3. RECOMMENDED OPERATING CONDITIONS.................................................................................................................................5
4. THERMAL INFORMATION............................................................................................................................................................. 5
5. SPECIFICATIONS............................................................................................................................................................................ 6
5.1. ELECTRICAL CHARACTERISTICS: NSI1306M05................................................................................................................................6
5.2. ELECTRICAL CHARACTERISTICS: NSI1306M25................................................................................................................................8
5.3. TYPICAL PERFORMANCE CHARACTERISTICS................................................................................................................................... 10
6. HIGH VOLTAGE FEATURE DESCRIPTION..................................................................................................................................... 14
6.1. INSULATION AND SAFETY RELATED SPECIFICATIONS........................................................................................................................ 14
6.2. INSULATION CHARACTERISTICS.................................................................................................................................................... 14
6.3. REGULATORY INFORMATION....................................................................................................................................................... 15
7. FUNCTION DESCRIPTION............................................................................................................................................................ 16
7.1. OVERVIEW...............................................................................................................................................................................16
7.2. ANALOG INPUT........................................................................................................................................................................ 16
7.3. DIGITAL INPUT..........................................................................................................................................................................16
7.4. DIGITAL OUTPUT...................................................................................................................................................................... 16
7.5. FAIL-SAFE OUTPUT....................................................................................................................................................................17
8. APPLICATION NOTE.....................................................................................................................................................................19
8.1. TYPICAL APPLICATION CIRCUIT....................................................................................................................................................19
8.2. SHUNT RESISTOR SELECTION.......................................................................................................................................................19
8.3. DIGITAL FILTER......................................................................................................................................................................... 19
8.4. PCB LAYOUT............................................................................................................................................................................20
9. PACKAGE INFORMATION............................................................................................................................................................ 21
10. ORDERING INFORMATION....................................................................................................................................................... 24
11. DOCUMENTATION SUPPORT.................................................................................................................................................... 24
12. TAPE AND REEL INFORMATION................................................................................................................................................25
13. REVISION HISTORY....................................................................................................................................................................27
Copyright © 2020, NOVOSENSE
Page 2
NSi1306
Datasheet (EN) 1.6
1. Pin Configuration and Functions
Figure 1.1 NSi1306 Package (SOP8(300mil))
Table 1.1 NSi1306 Pin Configuration and Description
NSi1306 PIN
NO.
SYMBOL
FUNCTION
1
AVDD
Power supply for analog side (3.0V to 5.5V)
2
INP
3
INN
Negative analog input
4
AGND
Analog ground reference
5
DGND
Digital ground reference
6
DOUT
Modulator data output
7
CLKIN
Modulator clock input: 5~21MHz
8
DVDD
Power supply for digital side (3.0V to 5.5V)
Copyright © 2020, NOVOSENSE
Positive analog input
(±250mV recommended for NSI1306M25 and ±50mV recommended for NSI1306M05)
Page 3
NSi1306
Datasheet (EN) 1.6
Figure 1.2 NSi1306 Package (SOP16(300mil))
Table 1.2 NSi1306 Pin Configuration and Description
NSi1306 PIN
NO.
SYMBOL
FUNCTION
1
NC
Internally connected to AVDD, this pin can be left floating or tied to AVDD
2
INP
3
INN
Negative analog input
4
AGND/NC
Not internally connected. This pin can be tied to AGND, or leave floating.
5
NC
Not internally connected, this pin can be left floating or tied to AVDD, AGND
6
NC
Not internally connected, this pin can be left floating or tied to AVDD, AGND
7
AVDD
Power supply for analog side (3.0V to 5.5V)
8
AGND
Analog ground reference
9
DGND
Digital ground reference
10
NC
Not internally connected, this pin can be left floating or tied to DVDD, DGND
11
DOUT
Modulator data output
12
NC
Not internally connected, this pin can be left floating or tied to DVDD, DGND
13
CLKIN
Modulator clock input: 5~21MHz
14
DVDD
Power supply for digital side (3.0V to 5.5V)
15
NC
Not internally connected, this pin can be left floating or tied to DVDD, DGND
16
DGND
Digital ground reference
Copyright © 2020, NOVOSENSE
Positive analog input
(±250mV recommended for NSI1306M25 and ±50mV recommended for NSI1306M05)
Page 4
NSi1306
Datasheet (EN) 1.6
2. Absolute Maximum Ratings
Parameters
Symbol
Min
Power Supply Voltage
AVDD, DVDD
-0.3
6.5
V
Analog Input Voltage
INP, INN
AGND-6
AVDD+0.5
V
Digital Input Voltage
CLKIN
DGND-0.5
DVDD+0.5
V
Digital Output Voltage
DOUT
DGND-0.5
DVDD+0.5
V
Io
-10
10
mA
TOPR
-40
125
℃
Junction Temperature
TJ
-40
150
℃
Storage Temperature
TSTG
-55
150
℃
HBM (1)
±2000
V
CDM (2)
±1000
V
Output current per Output Pin
Operating Temperature
Electrostatic discharge
Typ
Max
Unit
(1) Human body model (HBM), per AEC-Q100-002-RevD
(2) Charged device model (CDM), per AEC-Q100-011-RevB
3. Recommended Operating Conditions
Parameters
Symbol
Min
Typ
Max
Analog Side Power Supply
AVDD
3.0
5.0
5.5
V
Digital Side Power Supply
DVDD
3.0
3.3
5.5
V
NSI1306M05
NSI1306M25
Unit
Differential input voltage before
clipping output
VClipping
Linear differential input full scale
voltage
VFSR
-50
50
mV
Operating common-mode input
voltage
VCM
-0.032
0.8
V
Differential input voltage before
clipping output
VClipping
Linear differential input full scale
voltage
VFSR
-250
250
mV
Operating common-mode input
voltage
VCM
-0.16
0.8
V
TA
-40
125
℃
Operating Ambient Temperature
±64
mV
±320
mV
4. Thermal Information
Parameters
Junction–to-ambient thermal resistance
Copyright © 2020, NOVOSENSE
Symbol
SOP8(300mil)
SOP16(300mil)
Unit
RθJA
86
82
℃/W
Page 5
NSi1306
Datasheet (EN) 1.6
Parameters
Symbol
SOP8(300mil)
SOP16(300mil)
Unit
Junction-to-case (top) thermal resistance
RθJC(top)
28
42
℃/W
Junction-to-board thermal resistance
RθJB
42
46
℃/W
Junction–to-top characterization parameter
ΨJT
4
12
℃/W
Junction-to-board characterization parameter
ΨJB
42
46
℃/W
5. Specifications
5.1. Electrical Characteristics: NSI1306M05
(AVDD = 3.0V ~ 5.5V, DVDD = 3.0V ~ 5.5V, INP = -50mV to +50mV, and INN = AGND = 0V, TA = -40℃ to 125℃ and sinc3 filter with
OSR=256. Unless otherwise noted, Typical values are at CLKIN=20MHz, AVDD = 5V, DVDD = 3.3V, TA = 25℃)
Parameters
Symbol
Min
Typ
Max
Unit
Comments
Analog Side Supply Voltage
AVDD
3.0
5.0
5.5
V
Digital Side Supply Voltage
DVDD
3.0
3.3
5.5
V
Analog Side Supply Current
IAVDD
11.5
15
mA
Digital Side Supply Current
IDVDD
2
2.5
mA
AVDD undervoltage detection
threshold voltage
AVDDUV
2
2.5
3
V
AVDD falling
VCMov
0.9
V
Detection level has a typical
hysteresis of 96 mV
Power Supply
Analog Input
Common-mode overvoltage
detection level
CMRRdc
-95
dB
INP = INN, fIN = 0 Hz, VCM min ≤
VIN ≤ VCM max
CMRRac
-99
dB
INP = INN, fIN = 10 kHz, VCM min
≤ VIN ≤ VCM max
Single-ended input resistance
RIN
4.75
kΩ
INN = AGND
Differential input resistance
RIND
4.9
kΩ
Input capacitance
CI
2
pF
Input bias current
IIB
Common-mode rejection ratio
-24
Input bias current drift
TCIIB
Common-mode transient
immunity
CMTI
100
Differential nonlinearity
DNL
-0.99
Integral nonlinearity
INL
-4
-23
-20
µA
±2
nA/°C
150
kV/μs
INP = INN = AGND, IIB = (IIBP +
IIBN) / 2
Common-mode transient
immunity
DC Accuracy
Copyright © 2020, NOVOSENSE
±1
0.99
LSB
4
LSB
Page 6
NSi1306
Parameters
Offset error
Offset error thermal drift
Gain error
Gain error thermal drift
Power supply rejection ratio
Datasheet (EN) 1.6
Symbol
Min
Typ
Max
EO
-50
±2.5
50
µV
TCEO
-0.5
±0.15
0.5
µV/°C
EG
-0.2%
±0.005%
0.2%
TCEG
-30
±10
30
PSRR
Unit
Comments
INP = INN = AGND
ppm/°
C
-106
dB
PSRR vs AVDD, at DC
-104
dB
PSRR vs AVDD, 100mV and
10kHz ripple
AC Accuracy
Signal to noise ratio
Signal to noise and distortion
SNR
78
82.5
dB
fIN = 1kHz
SINAD
77
82.5
dB
fIN = 1kHz
dB
fIN = 1kHz
dB
fIN = 1kHz
µA
DGND ≤ VIN ≤ DVDD
Total harmonic distortion
THD
-96
-84
Spurious-free dynamic range
SFDR
86
Input current
IIN
0
Input capacitance
CIN
5
pF
Output load capacitance
CLOAD
30
pF
High-level input voltage
VIH
0.7×DVDD
DVDD+0.3
V
Low-level input voltage
VIL
-0.3
0.3×DVDD
V
High-level output voltage
VOH
Low-level output voltage
VOL
100
Digital Input / Output
7
DVDD-0.1
V
IOH = -20µA
DVDD-0.4
V
IOH = -4mA
0.1
V
IOL = 20µA
0.4
V
IOL = 4mA
Timing
CLKIN clock frequency
fCLKIN
5
21
MHz
CLKIN clock period
tCLKIN
47.6
200
ns
CLKIN clock high time
tHIGH
20
25
120
ns
CLKIN clock low time
tLOW
20
25
120
ns
DOUT rising time
tr
5
ns
CLOAD = 15pF
DOUT falling time
tf
5
ns
CLOAD = 15pF
DOUT hold time after rising
edge of CLKIN
tH
ns
CLOAD = 15pF
Rising edge of CLKIN to DOUT
valid delay
tD
ns
CLOAD = 15pF
Copyright © 2020, NOVOSENSE
3.5
15
Page 7
NSi1306
Parameters
Analog setting time
Datasheet (EN) 1.6
Symbol
Min
tAS
Typ
Max
0.5
Unit
Comments
ms
AVDD step to 3.0 V with
DVDD ≥ 3.0 V, to DOUT valid,
0.1% settling
5.2. Electrical Characteristics: NSI1306M25
(AVDD = 3.0V ~ 5.5V, DVDD = 3.0V ~ 5.5V, INP = -250mV to +250mV, and INN = AGND = 0V, TA = -40℃ to 125℃ and sinc3 filter with
OSR=256. Unless otherwise noted, Typical values are at CLKIN=20MHz, AVDD = 5V, DVDD = 3.3V, TA = 25℃)
Parameters
Symbol
Min
Typ
Max
Unit
Comments
Analog Side Supply Voltage
AVDD
3.0
5.0
5.5
V
Digital Side Supply Voltage
DVDD
3.0
3.3
5.5
V
Analog Side Supply Current
IAVDD
11.4
15.1
mA
Digital Side Supply Current
IDVDD
1.78
2.5
mA
AVDD undervoltage detection
threshold voltage
AVDDUV
1.8
2.3
2.7
V
AVDD falling
VCMov
0.9
V
Detection level has a typical
hysteresis of 96 mV
Power Supply
Analog Input
Common-mode overvoltage
detection level
CMRRdc
-106
dB
INP = INN, fIN = 0 Hz, VCM min ≤
VIN ≤ VCM max
CMRRac
-104
dB
INP = INN, fIN = 10 kHz, VCM
min ≤ VIN ≤ VCM max
Single-ended input resistance
RIN
19
kΩ
INN = AGND
Differential input resistance
RIND
22
kΩ
Input capacitance
CI
2
pF
Input bias current
IIB
Common-mode rejection ratio
-24
Input bias current drift
TCIIB
Common-mode transient
immunity
CMTI
100
Differential nonlinearity
DNL
-0.99
Integral nonlinearity
INL
-4
Offset error
EO
-18
-12
µA
±1
nA/℃
150
kV/μs
INP = INN = AGND, IIB = (IIBP +
IIBN) / 2
Common-mode transient
immunity
DC Accuracy
Offset error thermal drift
Gain error
Gain error thermal drift
Copyright © 2020, NOVOSENSE
0.99
LSB
±1
4
LSB
-100
±4.5
100
µV
TCEO
-0.5
±0.15
1.5
µV/℃
EG
-0.2%
±0.005%
0.2%
TCEG
-40
±20
40
INP = INN = AGND
ppm/
Page 8
NSi1306
Parameters
Datasheet (EN) 1.6
Symbol
Min
Typ
Max
Unit
Comments
℃
Power supply rejection ratio
PSRR
-100
dB
PSRR vs AVDD, at DC
-90
dB
PSRR vs AVDD, 100mV and
10kHz ripple
AC Accuracy
Signal to noise ratio
Signal to noise and distortion
SNR
82
86
dB
fIN = 1kHz
SINAD
82
86
dB
fIN = 1kHz
dB
fIN = 1kHz
dB
fIN = 1kHz
µA
DGND ≤ VIN ≤ DVDD
Total harmonic distortion
THD
-95
-85
Spurious-free dynamic range
SFDR
83
Input current
IIN
0
Input capacitance
CIN
5
pF
Output load capacitance
CLOAD
30
pF
High-level input voltage
VIH
0.7×DVDD
DVDD+0.3
V
Low-level input voltage
VIL
-0.3
0.3×DVDD
V
High-level output voltage
VOH
Low-level output voltage
VOL
100
Digital Input / Output
7
DVDD-0.1
V
IOH = -20µA
DVDD-0.4
V
IOH = -4mA
0.1
V
IOL = 20µA
0.4
V
IOL = 4mA
Timing
CLKIN clock frequency
fCLKIN
5
21
MHz
CLKIN clock period
tCLKIN
47.6
200
ns
CLKIN clock high time
tHIGH
20
25
120
ns
CLKIN clock low time
tLOW
20
25
120
ns
DOUT rising time
tr
5
ns
CLOAD = 15pF
DOUT falling time
tf
5
ns
CLOAD = 15pF
DOUT hold time after rising
edge of CLKIN
tH
ns
CLOAD = 15pF
Rising edge of CLKIN to DOUT
valid delay
tD
ns
CLOAD = 15pF
Analog setting time
tAS
ms
AVDD step to 3.0 V with
DVDD ≥ 3.0 V, to DOUT valid,
0.1% settling
Copyright © 2020, NOVOSENSE
3.5
15
0.5
Page 9
NSi1306
Datasheet (EN) 1.6
5.3. Typical Performance Characteristics
Unless otherwise noted, test at AVDD = 5V, DVDD = 3.3V, Vin = -250mV to 250mV (NSI1306M25) or -50mV to 50mV (NSI1306M05),
CLKIN=20MHz, and sinc3 filter with OSR=256.
Figure 5.1 Common-Mode Overvoltage Detection Level vs
Temperature
Figure 5.5 Input Offset Voltage vs Clock Frequency
Figure 5.6 Gain Error vs Temperature
Figure 5.2 Input Bias Current vs Temperature
Figure 5.7 Gain Error vs Clock Frequency
Figure 5.3 Common-Mode Rejection Ratio vs Temperature
Figure 5.4 Input Offset Voltage vs Temperature
Copyright © 2020, NOVOSENSE
Figure 5.8 Signal-to-Noise Ratio vs Analog Side Supply Voltage
Page 10
NSi1306
Datasheet (EN) 1.6
Figure 5.9 Signal-to-Noise Ratio vs Clock Frequency
Figure 5.13 Total Harmonic Distortion vs Temperature
Figure 5.10 Signal-to-Noise Ratio vs Temperature
Figure 5.14 Signal-to-Noise + Distortion vs Analog Side Supply
Voltage
Figure 5.11 Total Harmonic Distortion vs Analog Side Supply
Voltage
Figure 5.12 Total Harmonic Distortion vs Clock Frequency
Copyright © 2020, NOVOSENSE
Figure 5.15 Signal-to-Noise + Distortion vs Clock Frequency
Figure 5.16 Signal-to-Noise + Distortion vs Temperature
Page 11
NSi1306
Figure 5.17 Spurious-Free Dynamic Range vs Analog Side
Supply Voltage
Figure 5.18 Spurious-Free Dynamic Range vs Clock Frequency
Datasheet (EN) 1.6
Figure 5.21 Analog Side Supply Current vs Supply Voltage
Figure 5.22 Analog Side Supply Current vs Clock Frequency
Figure 5.19 Spurious-Free Dynamic Range vs Temperature
Figure 5.23 Digital Side Supply Current vs Supply Voltage
Figure 5.20 Analog Side Under-Voltage Detection Level vs
Temperature
Figure 5.24 Digital Side Supply Current vs Clock Frequency
Copyright © 2020, NOVOSENSE
Page 12
NSi1306
Figure 5.25 Supply Current vs Temperature
Datasheet (EN) 1.6
Figure 5.27 Typical Integral Nonlinearity
Figure 5.26 Typical Differential Nonlinearity
Copyright © 2020, NOVOSENSE
Page 13
NSi1306
Datasheet (EN) 1.6
6. High Voltage Feature Description
6.1. Insulation and Safety Related Specifications
Parameters
Symbol
Value
Unit
Comments
Minimum External Air Gap
(Clearance)
CLR
8
mm
Shortest terminal-to-terminal distance
through air
Minimum External Tracking
(Creepage)
CPG
8
mm
Shortest terminal-to-terminal distance
across the package surface
Minimum internal gap
DTI
32
μm
Distance through insulation
Tracking Resistance (Comparative
Tracking Index)
CTI
>600
V
Material Group
I
DIN EN 60112 (VDE 0303-11); IEC
60112
IEC 60664-1
6.2. Insulation Characteristics
Description
Test Condition
Symbol
DIN VDE 0110
Value
Unit
SOW8
SOW16
For Rated Mains Voltage ≤ 150Vrms
I to IV
I to IV
I to IV
I to IV
For Rated Mains Voltage ≤ 400Vrms
I to IV
I to IV
40/125/21
40/125/21
2
2
2121
2121
VPEAK
1500
1500
VRMS
2121
2121
VDC
V pd (m)
3977
3977
VPEAK
VIORM × 1.6 = Vpd (m), tini = 60
sec, tm = 10 sec, partial
discharge < 5 pC
V pd (m)
3394
3394
VPEAK
VIORM × 1.2= Vpd (m), tini = 60
sec, tm = 10 sec, partial
discharge < 5 pC
V pd (m)
2545
2545
VPEAK
t = 60 sec
VIOTM
8000
8000
VPEAK
Installation Classification per DIN VDE 0110
For Rated Mains Voltage ≤ 300Vrms
Climatic Classification
Pollution Degree per DIN VDE 0110,
Table 1
Maximum repetitive isolation voltage
Maximum working isolation voltage
Input to Output Test Voltage, Method B1
VIORM
AC Voltage
DC Voltage
VIORM × 1.875 = Vpd (m), 100%
production test,
tini = tm = 1 sec, partial
discharge < 5 pC
VIOWM
Input to Output Test Voltage, Method A
After Environmental Tests Subgroup 1
After Input and /or Safety Test Subgroup 2
and Subgroup 3
Maximum transient isolation voltage
Copyright © 2020, NOVOSENSE
Page 14
NSi1306
Datasheet (EN) 1.6
Description
Maximum Surge Isolation Voltage
Isolation resistance
Isolation capacitance
Safety input, output, or total power
Safety input, output, or supply current
Test Condition
Symbol
Test method per
IEC60065,1.2/50us
waveform, VTEST=VIOSM × 1.6
VIOSM
6250
6250
VPEAK
VIO =500V, Tamb=Ts
RIO
>109
>109
Ω
VIO =500V, 100℃ ≤ Tamb ≤
125℃
RIO
>1011
>1011
Ω
f = 1MHz
CIO
0.8
0.8
pF
VI = 5.5V, TJ = 150 ℃, TA =
25 ℃
Ps
1430
1524
mW
θJA = 86℃/W for SOP8, VI =
5.5V, TJ = 150 ℃, TA = 25 ℃
Value
260
Unit
/
mA
Is
θJA = 82℃/W for SOP16, VI =
5.5V, TJ = 150 ℃, TA = 25 ℃
/
277
mA
Ts
150
150
℃
VISO
5000
5000
VRMS
Maximum safety temperature
UL1577
VTEST = VISO, t = 60 s
(qualification),
Insulation voltage per UL
VTEST = 1.2 × VISO, t = 1 s (100%
production test)
Figure 6.1 NSi1306 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11
6.3. Regulatory Information
The NSi1306 are approved or pending approval by the organizations listed in table.
UL
VDE
CQC
Certified by CQC11-4715432012
UL 1577 Component
Recognition Program
Approved under CSA
Component Acceptance
Notice 5A
DIN VDE V 0884-11(VDE V
0884-11):2017-01
Single Protection, 5000Vrms
Isolation voltage
Single Protection, 5000Vrms
Isolation voltage
Reinforce Insulation
2121Vpeak, VIOSM=6250Vpeak
Reinforced insulation
Certificate No.E500602
Certificate No.E500602 for
Certificate No.40052820
CQC20001264939
Copyright © 2020, NOVOSENSE
GB4943.1-2011
Page 15
NSi1306
Datasheet (EN) 1.6
UL
VDE
CQC
SOW8 package
File pending for SOW16
package
7. Function Description
7.1. Overview
The NSI1306 is a high performance isolated modulator that accept fully-differential input. The fully-differential input is ideally suited
to shunt current monitoring in high voltage applications where isolation is required. The analog input is continuously sampled by a
second-order Σ-Δ modulator in the device, which is driven by a pre-stage fully-differential amplifier in the device. With the internal
voltage reference and clock generator, the modulator convert the analog input signal to a digital bitstream. The drivers (called TX in
the Functional Block Diagram) transfer the output of the modulator across the isolation barrier that separate external clock, as
shown in the Functional Block Diagram.
Figure 7.1 Function Block Diagram
7.2. Analog Input
There are two restrictions on the analog input signals (VINP and VINN).
If the input voltage exceeds the range AGND – 6 V to AVDD + 0.5 V, the input current must be limited to 10 mA because the
device input electrostatic discharge (ESD) diodes turn on.
The linearity and noise performance of the device are ensured only when the analog input voltage remains within the specified
linear full-scale range (FSR) and within the specified common-mode input voltage range.
7.3. Digital Input
The digital input refers to clock signal which provides the clock for modulator conversion and output data frame clock. The clock
signal should be supplied by an external source with a frequency range from 5MHz to 21MHz.
7.4. Digital Output
The digital output provides a stream of ones and zeros that can accurately represents the analog input voltage. Within the linear
input range, the density of ones in the bitstream is proportional to the input voltage.
Ideally for a 0V input signal, the modulator outputs a bitstream with 50% high time. For a 250mV input signal (for the NSI1306M25),
the modulator outputs a bitstream with 89.06% high time. For a -250mV input signal (for the NSI1306M25), the modulator outputs a
bitstream with 10.94% high time.
If the input signal is greater than or equal to 320mV (64 mV for the NSI1306x05), the modulator clips with a steam of all ones. If the
input signal is less than or equal to -320mV (–64 mV for the NSI1306x05), the output of the modulator clips with a stream of all zeros.
In this case, however, the NSI1306 generates a single 0 (if the input is at positive full-scale) or 1 every 128 clock cycles to indicate
proper device function (see section7.5 for more details).
Due to quantization noise of internal Σ-Δ modulator, the digital output frequency is not fixed, but the density of high time is fixed as
below.
Copyright © 2020, NOVOSENSE
Page 16
NSi1306
Datasheet (EN) 1.6
Table 8.1 Input voltage with ideal corresponding density of high time at modulator data output, and ADC code
Analog input
Input voltage
Density of high time
Digital output code(16-bit
unsigned decimation)
+Differential input voltage before
clipping output
+320mV
99.22%
65024
(+64mV for NSI1306x05)
+Linear differential input full scale
voltage
89.06%
58366
(+50mV for NSI1306x05)
Zero
0mV
50%
32768
+250mV
Ideal density of 1s in the output bitstream for any input voltage(except for full-scale input, as described in section7.5 ) at modulator
data output can be calculated with:
VIN VCLIPPING
2 VCLIPPING
Similarly, the ADC code can be calculated, assuming a 16-bit unsigned decimation filter.
7.5. Fail-safe Output
NSI1306 integrates some diagnostic measures and offers a fail-safe output to simplify system-level design. The fail-safe function will
be activated in following conditions:
When the undervoltage of AVDD is detected (AVDD< AVDDUV), DOUT pin output a bitstream of all logic zeros, as shown in
Figure 7.2.
When the overvoltage of common-mode input voltage is detected (VCM>VCMov), DOUT pin output a bitstream of all logic ones, as
shown in Figure 7.2.
NOTE: If both of the faults above occur at the same time, DOUT pin output a bitstream of all logic zeros. (AVDD missing has a higher
priority).
Figure 7.2 Fail-safe output
If an overrange input signal is applied to the NSI1306 (VIN ≥ VClipping), the output generates a single 0 or 1 every 128 clock cycles, as
shown in Figure 7.3.
Copyright © 2020, NOVOSENSE
Page 17
NSi1306
Datasheet (EN) 1.6
Figure 7.3 Overrange output
Copyright © 2020, NOVOSENSE
Page 18
NSi1306
Datasheet (EN) 1.6
8. Application Note
8.1. Typical Application Circuit
NSI1306 is ideally suited to shunt resistor-based current sensing in high voltage applications such as frequency inverters. The typical
application circuit is shown in Figure 8.1.
The voltage across the shunt resistor Rsense is applied to the differential input of NSI1306 through a RC filter. The internal secondorder sigma-delta modulator converts the analog input to a single-bit output stream. The external digital system provides a clock
source for the modulator and a digital filter for decimation and quantization noise filtering.
Figure 8.1 Typical application circuit in phase current sensing
8.2. Shunt Resistor Selection
Choosing a particular shunt resistor is usually a compromise between minimizing power dissipation and maximizing accuracy.
Smaller sense resistor decreases power dissipation, while larger sense resistor can improve measure accuracy by utilizing the full
input range of isolated amplifier.
There are two other factors should be considered when selecting the shunt resistor:
The voltage-drop caused by the rated current range must not exceed the recommended linear input voltage range: VSHUNT ≤ FSR.
The voltage-drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes a clipping output:
VSHUNT ≤ VClipping.
8.3. Digital Filter
The Σ-Δ modulator a characteristics of noise shaping. Most of the quantization noise is pushed from a low frequency to a higher
frequency.
In order to reduce higher-frequency quantization noise, the modulator output is fed to the digital low-pass filter. Subsequently, the
signal of interest passes through to the output of the digital filter, while much of the higher-frequency quantization noise is filtered
out.
The digital filter serves another function – decimation. It creates a digital output code from the bitstream that the modulator
outputs. The ratio of the modulator rate (fMOD) of the delta-sigma modulator to its output data rate (fDR) is the oversampling ratio
(OSR). The relationship between fDR and fMOD is:
fDR = fMOD / OSR
Equation 8.1
A sinc3 filter is recommended since it’s simple and requires less hardware resources. Equation 8.2 describes the transfer function of
a sinc filter.
Equation 8.2
where:
DR is the decimation rate;
Copyright © 2020, NOVOSENSE
Page 19
NSi1306
Datasheet (EN) 1.6
N is the sinc filter order.
The filter can be implemented in an FPGA or DSP. The sinc filter creates a digital output code by taking a multi-order moving average
of the modulator output over a certain number of modulator clock periods.
The higher the decimation rate, the higher the conversion accuracy, and the lower the output data rate. So, there is a trade-off
between accuracy and data rate. All the characterization in this datasheet is tested with a sinc3 filter with an oversampling ratio
(OSR) of 256.
The output data size is expressed in Equation 8.3. The 16 most significant bits are used to return a 16-bit result.
蠀╮蠀 esu
Equation 8.3
log
The filter characteristics for a third-order sinc filter are summarized in Table 8.2.
Table 8.2 Sinc3 Filter Characteristics for 20 MHz CLKIN
Decimation Rate (DR)
Data Output Rate (kHz)
Data Size (bits)
Filter Response (kHz)
32
625
15
163.7
64
312.5
18
81.8
128
156.2
21
40.9
256
78.1
24
20.4
512
39.1
27
10.2
8.4. PCB Layout
There are some key guidelines or considerations for optimizing performance in PCB layout:
NSI1306 requires a 0.1µF bypass capacitor between AVDD and AGND, DVDD and DGND. The capacitor should be placed as
close as possible to the VDD pin. If better filtering is required, an additional 1~10µF capacitor may be used.
Kelvin rules is recommended for the connection between shunt resistor to NSI1306. Because of the Kelvin connection, any
voltage drops across the trace and leads should have no impact on the measured voltage.
Place the shunt resistor close to the INP and INN inputs and keep the layout of both connections symmetrical and run very
close to each other to the input of the NSI1306. This minimizes the loop area of the connection and reduces the possibility of
stray magnetic fields from interfering with the measured signal.
Copyright © 2020, NOVOSENSE
Page 20
NSi1306
Datasheet (EN) 1.6
9. Package Information
Figure 9.1 SOW8 Package Shape and Dimension in millimeters
Copyright © 2020, NOVOSENSE
Page 21
NSi1306
Datasheet (EN) 1.6
Figure 9.2 SOW8 Package Board Layout Example
Copyright © 2020, NOVOSENSE
Page 22
NSi1306
Datasheet (EN) 1.6
Figure 9.3 SOW16 package shape and dimension in millimeters
Figure 9.4 SOW16 Package Board Layout Example
Copyright © 2020, NOVOSENSE
Page 23
NSi1306
Datasheet (EN) 1.6
10. Ordering Information
Part No.
NSI1306M05
-DSWVR
NSI1306M25
-DSWVR
NSI1306M05
-DSWR
NSI1306M25
-DSWR
NSI1306M05
-Q1SWVR
NSI1306M25
-Q1SWVR
NSI1306M05
-Q1SWR
NSI1306M25
-Q1SWR
Isolation
Rating(kV)
Linear
Input
Range(mV)
Moisture
Sensitivity
Level
Temperature
Automotive
5
-50 ~ 50
Level-3
-40 to 125℃
NO
5
-250 ~ 250
Level-3
-40 to 125℃
NO
5
-50 ~ 50
Level-2
-40 to 125℃
NO
5
-250 ~ 250
Level-2
-40 to 125℃
NO
5
-50 ~ 50
Level-3
-40 to 125℃
Yes
5
-250 ~ 250
Level-3
-40 to 125℃
Yes
5
-50 ~ 50
Level-2
-40 to 125℃
Yes
5
-250 ~ 250
Level-2
-40 to 125℃
Yes
Package
Type
SOP8
(300mil)
SOP8
(300mil)
SOP16
(300mil)
SOP16
(300mil)
SOP8
(300mil)
SOP8
(300mil)
SOP16
(300mil)
SOP16
(300mil)
Package
Drawing
SPQ
SOW8
1000
SOW8
1000
SOW16
1000
SOW16
1000
SOW8
1000
SOW8
1000
SOW16
1000
SOW16
1000
11. Documentation Support
Part Number
Product Folder
Datasheet
Technical Documents
Isolator selection guide
NSi1306
Click here
Click here
Click here
Click here
Copyright © 2020, NOVOSENSE
Page 24
NSi1306
Datasheet (EN) 1.6
12. Tape and Reel Information
Figure 12.1 Tape Information
Copyright © 2020, NOVOSENSE
Page 25
NSi1306
Datasheet (EN) 1.6
Figure 12.2 Reel Information of SOP8(300mil)
Copyright © 2020, NOVOSENSE
Page 26
NSi1306
Datasheet (EN) 1.6
Figure 12.3 Reel Information of SOP16(300mil)
13. Revision History
Revision
1.0
1.1
1.2
1.3
1.4
1.5
1.6
Description
Initial Release
Update VDE Certificate number in 6.3, tape and reel information, and typical
application circuit in 8.1
Update moisture sensitivity level of NSI1306M05/25 -DSWR
Update NSI1306M05 electrical characteristics, add VIH and VIL spec
Update description in 7.1 , add SOW8 and SOW16 package layout example
Update insulation information in 6.1 and 6.2
Update pin 4 description of NSi1306-DSWR in Figure and table 1.2
Update reel information of SOP16 in Figure 12.3 and add digital output
description in 7.3
Copyright © 2020, NOVOSENSE
Date
2020/8/29
2020/12/28
2021/6/9
2021/7/8
2021/7/17
2021/9/14
2022/3/10
Page 27