NST235
1.5 °C High Precision Ultra-low Current
Analog Temperature Sensor
Datasheet (EN) 1.2
Product Overview
Applications
The NST235 is a high precision CMOS analog output
temperature sensor. The device offers a maximum
accuracy of ±0.5°C at 25°C and a maximum of ±2.5°C
over the full temperature range. The device is specified
at the full temperature range of -40°C to 150°C and the
power supply operating range is 2.3V to 5.5V.
Smartphones
The NST235 device provides a positive slope output of
Thermal Protection
10.0mV/°C over -40°C to 100°C. it is highly linear and
does not require complex calculations or lookup tables
to derive temperature.
Environmental Monitoring and HVAC
The NST235 is a low power device, and the typical
operating current is 20μA. Therefore, self-heating is
negligible. The NST235 is available in SC70(5) and SOT23(3) package, making it suitable for on-board and offline applications in the industrial, and consumer
markets applications in the IoT.
Device Information
Portable Medical Instruments
Notebook Computers
Industrial Internet of Things (IoT)
Power Supply Modules
Power-system Monitors
Disk Drives
Part Number
NST235
Package
SC70(5)
Body Size
2.00mm × 1.25mm
SOT-23(3)
2.92mm × 1.30mm
Functional Block Diagrams
Key Features
High Accuracy Over –40 °C to 150 °C Temperature Range
-
0 °C ~ 70°C: 0.5 °C (Typical)
-
0 °C ~ 70°C: 1.5 °C (Maximum)
-
-40 °C ~ 150°C: 2.5 °C (Maximum)
VDD
VOUT
Operating Voltage Range: 2.3V to 5.5V
Average Sensor Gain o: 10mV/°C
Output Impedance: 1Ω (Typical)
Operating Current: 20μA (Typical)
Push-Pull Output Current Drain: 500µA (Maximum)
Predictable Curvature Error
Output Short Protection
GND
Figure 1 NST235 Functional Block Diagram
Suitable for Remote Applications
Package: SOT-23(3) and SC70(5)
Copyright © 2019, NOVOSENSE
Page 1
NST235
Datasheet (EN) 1.2
Index
1 PIN CONFIGURATION AND FUNCTIONS .................................................................................................................................... 3
2 SPECIFICATIONS ......................................................................................................................................................................... 3
2.1 ABSOLUTE MAXIMUM RATINGS ............................................................................................................................................. 3
2.2 ELECTRICAL CHARACTERISTICS ............................................................................................................................................ 4
2.3 TYPICAL CHARACTERISTICS .................................................................................................................................................. 5
3 FUNCTION DESCRIPTION ........................................................................................................................................................... 5
3.1 OVERVIEW .............................................................................................................................................................................. 5
3.2 FUNCTIONAL BLOCK DIAGRAM ............................................................................................................................................. 5
3.3 FEATURE DESCRIPTION ......................................................................................................................................................... 6
3.3.1 NST235 TRANSFER FUNCTION ....................................................................................................................................... 6
3.3.2 APPLICATION CURVE ...................................................................................................................................................... 8
4 APPLICATION INFORMATION ..................................................................................................................................................... 8
4.1 CAPACITIVE LOADS ................................................................................................................................................................ 8
4.2 TYPICAL APPLICATION........................................................................................................................................................... 9
4.3 SYSTEM EXAMPLES ................................................................................................................................................................ 9
4.3.1 CONSERVING POWER DISSIPATION WITH SHUTDOWN ................................................................................................. 9
4.3.2 ANALOG-TO-DIGITAL CONVERTER INPUT STAGE ......................................................................................................... 10
5 PACKAGE INFORMATION .......................................................................................................................................................... 11
5.1 SOT-23(3) PACKAGE ............................................................................................................................................................ 11
5.2 SC70(5) PACKAGE ................................................................................................................................................................ 13
6 ORDER INFORMATION .............................................................................................................................................................. 15
7 REVISION HISTORY ................................................................................................................................................................... 16
Copyright © 2019, NOVOSENSE
Page 2
NST235
Datasheet (EN) 1.2
1 Pin Configuration and Functions
(Top View)
(Top View)
Package:5-Pin SC70
Package:3-Pin SOT-23
NC
1
GND
2
VOUT
3
NC
5
VDD
1
3
VDD
4
VOUT
GND
2
Figure 1.1 NST235 Pin Configuration
Table 1.1 NST235 Pin Function Description
Pinout
Name
Type
Description
SOT-23
SC70
NC
-
1
-
GND
3
2
GND
VOUT
2
3
Analog output
Analog voltage output
VDD
1
4
Power
Power supply input pin
NC
-
5
-
No Connection
Ground pin, connect to power supply negative terminal. This pin must
be grounded for optimum thermal conductivity.
No Connection, must be floating or connect to grounded
2 Specifications
2.1 Absolute Maximum Ratings
Parameters
Symbol
Min
Supply Voltage Pin (VDD)
VDD
Output Volatge
Vout
Storage Temperature
Operation Temperature
TBoperation
Max
Unit
-0.3
6.5
V
-0.3
VDD+0.3
V
-60
155
°C
-40
150
°C
155
°C
Maximum Junction Temperature
ESD susceptibility
Copyright © 2019, NOVOSENSE
Typ
HBM
±4.5
KV
CDM
±500
V
Comments
Page 3
NST235
Datasheet (EN) 1.2
2.2 Electrical Characteristics
at TA = +25°C and VDD = +2.3V to +5.5 V, unless otherwise noted
Parameters
Symbol
Min
VDD
2.3
Typ
Max
Unit
5.5
V
Comments
Supply
Supply Voltage Range
Supply Sensitivity
0.1
°C /V
Operation Current
Iconv
20
μA
Shutdown Current
ISD
0.1
μA
VDD≤0.6V
Temperature Range
Temperature Range
Accuracy (Using equation 3-2)
-40
150
°C
±0.5
±1.5
°C
from 0°C to 70°C
±0.5
±2.5
°C
from -40°C to 150°C
Output Voltage at 0°C
0.5
V
Vout Drive Capability
500
μA
Sensor Gain
10
mV/°C
Output Impedance
1
Ω
Load Regulation
0.5
mV
Temperature Coefficient of Quiescent Current
-44
nA/°C
0.418
s
±0.2
°C
Source ≤50uA
Thermal response
Stirred Oil Thermal Response Time to 63% of Final
Value (Package Only)
Drift
Drift1
Notes: 1. Drift data is based on a 1000-hour stress test at +130°C with VDD = 5.5V.
Copyright © 2019, NOVOSENSE
Page 4
NST235
Datasheet (EN) 1.2
2.3 Typical Characteristics
at VDD = 3.3 V, unless otherwise noted.
Temperature Error(℃)
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100 110 120 130 140 150
Temperature (℃)
Figure 2.1 Temperature Error vs Temperature
3 Function Description
3.1 Overview
The NST235 is a high precision CMOS analog output temperature sensor. The device offers a maximum accuracy of ± 0.5°C
at 25°C and a maximum of ±2.5°C over the full temperature range. The device is specified at the full temperature range of 40°C to 150°C and the power supply operating range is 2.3V to 5.5V.
The NST235 device provides a positive slope output of 10.0mV/°C over -40°C to 100°C. it is highly linear and does not require
complex calculations or lookup tables to derive temperature.
The NST235 is a low power device, and the typical operating current is 20μA. Therefore, self-heating is negligible. The
NST235 is available in SC70(5) and SOT-23(3) package, making it suitable for on-board and off-line applications in the
industrial, and consumer markets applications in the IoT.
3.2 Functional Block Diagram
VDD
VOUT
GND
Figure 3.1 NST235 Functional Block Diagram
Copyright © 2019, NOVOSENSE
Page 5
NST235
Datasheet (EN) 1.2
3.3 Feature Description
3.3.1 NST235 Transfer Function
The NST235 device is linear. However, the output voltage will shift a little when the temperature is greater than 100°C. In
order to achieve the highest accuracy performence of the device, we use piecewise linear function to describe the
conversion relationship between temperature and output voltage. In the whole working temperature range, the conversion
relationship of NST235 is shown in Table 3.2. The parameters of the piecewise linear function used in the three temperature
ranges are shown in Table 3.1, and the output voltage is calculated by Equation 3-1:
(3-1)
VO = TC × (TA − TI ) + VOF
Where, VO is the output voltage at a given temperature.
TA is the ambient temperature in °C.
TI is the temperature inflection point for a piecewise segment in °C.
TC is the temperature coefficient or gain of NST235.
VOF is the voltage offset of NST235.
Therefore, in a certain output voltage range (VR), given the output voltage value, the corresponding TA can be calculated
using Equation 3-2. For accuracy insensitive applications, the parameters in the first row of Table 3.1 can be used directly.
TA =
(VO − VOF )
+ TI
TC
(3-2)
Table 3.1 NST235 Piecewise Linear Function Summary
TA (°C)
VR (mV)
TI (°C)
TC (mV/°C)
VOF (mV)
–40 to 100
< 1500
0
10
500
100 to 125
1500 to 1752.5
100
10.1
1500
125 to 150
> 1752.5
125
10.6
1752.5
Table 3.2 NST235 Transfer Table
TEMPERATURE (°C)
VOUT (mV)
IDEAL LINEAR VALUES
VOUT (mV)
PIECEWISE LINEAR VALUES
–40
100
100
–35
150
150
–30
200
200
–25
250
250
–20
300
300
–15
350
350
–10
400
400
–5
450
450
0
500
500
5
550
550
10
600
600
15
650
650
20
700
700
Copyright © 2019, NOVOSENSE
Page 6
NST235
Datasheet (EN) 1.2
Table 3.2 NST235 Transfer Table(Continued)
TEMPERATURE (°C)
VOUT (mV)
IDEAL LINEAR VALUES
VOUT (mV)
PIECEWISE LINEAR VALUES
25
750
750
30
800
800
35
850
850
40
900
900
45
950
950
50
1000
1000
55
1050
1050
60
1100
1100
65
1150
1150
70
1200
1200
75
1250
1250
80
1300
1300
85
1350
1350
90
1400
1400
95
1450
1450
100
1500
1500
105
1550
1550.5
110
1600
1601
115
1650
1651.5
120
1700
1702
125
1750
1752.5
130
1800
1805.5
135
1850
1858.5
140
1900
1911.5
145
1950
1964.5
150
2000
2017.5
Copyright © 2019, NOVOSENSE
Page 7
NST235
Datasheet (EN) 1.2
3.3.2 Application Curve
2500
Output Voltage(mV)
2000
1500
1000
500
0
-50 -40 -30 -20 -10 0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Temperature(℃)
Figure 3.2 Output Voltage vs Temperature
4 Application Information
4.1 Capacitive Loads
As shown in the structure diagram, the output stage of NST235 is an amplifier. Generally, the output of the amplifier directly
connected to the capacitive load is unstable. However, NST235 uses a special design, which makes it have 1000pF capacitive load
capacity as shown in the Figure 4.1. If a larger capacitor is connected to filter the noise, an isolation resistance should be added
between the output of NST235 and the capacitor as shown in the Table 4.1.
When the equipment is in an extremely noisy environment, it may be necessary to add an RC low-pass filter network to the output
of NST235, such as a 1µF capacitor and a 800Ω series resistor. This low-pass filter will improve the thermal response time of
NST235 and has the function of filtering high-frequency noise as shown in the Figure 4.2.
VDD
NST235
Vo
C
GND
Figure 4.1 NST235 No Decoupling Required for Capacitive Loads Less Than 1000pF
Copyright © 2019, NOVOSENSE
Page 8
NST235
Datasheet (EN) 1.2
Table 4.1 Capacitive Loading Isolation
C (μF)
Minimum R(Ω)
1
800
0.1 to 0.999
1500
0.01 to 0.099
3000
VDD
Vo
NST235
R
C
GND
Figure 4.2 NST235 with RC Filter
4.2 Typical Application
As shown in Figure 4.3, the NST235 has an extremely low supply current and a wide supply range, therefore, it can be easily driven
by a battery. In order to reduce the noise in the output voltage, it is recommended to add a 0.1µF capacitor between the power
and the ground.
V+(+2.3V to +5.5V)
VDD
VO
NST235
GND
NC
Figure 4.3 Typical Connections of the NST235
4.3 System Examples
4.3.1 Conserving Power Dissipation with Shutdown
Although NST235 has extremely low power consumption, for power-sensitive applications it can simply be shutdown by driving its
supply pin with the output of a logic gate as shown in Figure 4.4.
VDD
Shutdown
NST235
Vo
Any logic
device output
GND
Figure 4.4 Conserving Power Dissipation with Shutdown
Copyright © 2019, NOVOSENSE
Page 9
NST235
Datasheet (EN) 1.2
4.3.2 Analog-to-Digital Converter Input Stage
The input structure of most CMOS ADCs is sample and hold structure. When ADC charges the sampling capacitor, it needs to draw
instantaneous current from the signal source (such as NST235 temperature sensor and many operational amplifiers). By adding
RC filter to the output stage of NST235, this requirement can be met. At this time, the instantaneous current is provided by the
output capacitor. This ADC is shown as an example only, in Figure 4.5.
VDD
VDD
R
0.1μF Bypass
Optional
Vin
NST235
ADC
C
GND
GND
Figure 4.5 Suggested Connection to a Sampling Analog to Digital Converter Input Stage
Copyright © 2019, NOVOSENSE
Page 10
NST235
Datasheet (EN) 1.2
5 PACKAGE INFORMATION
5.1 SOT-23(3) Package
Copyright © 2019, NOVOSENSE
Page 11
NST235
Datasheet (EN) 1.2
The Small Circle Corresponds to Pin 1 of the Chip
Tape and Reel Information of SOT-23(3)
Copyright © 2019, NOVOSENSE
Page 12
NST235
Datasheet (EN) 1.2
5.2 SC70(5) Package
Copyright © 2019, NOVOSENSE
Page 13
NST235
Datasheet (EN) 1.2
The Small Circle Corresponds to Pin 1 of the Chip
Tape and Reel Information of SC70(5)
Copyright © 2019, NOVOSENSE
Page 14
NST235
Datasheet (EN) 1.2
6 Order Information
NST235 Type -DSCR
Unit
MSL
Marking
Description
NST235-DSTR
3000ea/Reel
1
235XXX
SOT-23(3) package, Reel
NST235-DSCR
3000ea/Reel
1
23XX
SC70(5) package, Reel
NOTE: All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry
standard classifications and peak solder temperatures (Reflow profile: J-STD-020E).
Copyright © 2019, NOVOSENSE
Page 15
NST235
Datasheet (EN) 1.2
7 Revision History
Revision
1.0
1.1
1.2
Description
Initial Version
Revise information. Optimize text presentation
Update Functional Description. Update Pin Configuration Diagram. Update
Load Regulation of Electrical Characteristics.Revise Application Information.
Optimize Text Presentation.Tape and reel show 1 pin.
Copyright © 2019, NOVOSENSE
Date
2020/11/28
2022/03/30
2022/08/04
Page 16
NST235
Datasheet (EN) 1.2
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as any warranty or authorization of, express or implied,
including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third
party’s intellectual property rights.
You are solely responsible for your use of Novosense’ products and applications, and for the safety thereof. You shall comply with
all laws, regulations and requirements related to Novosense’s products and applications, although information or support related
to any application may still be provided by Novosense.
The resources are intended only for skilled developers designing with Novosense’ products. Novosense reserves the rights to
make corrections, modifications, enhancements, improvements or other changes to the products and services provided.
Novosense authorizes you to use these resources exclusively for the development of relevant applications designed to integrate
Novosense’s products. Using these resources for any other purpose, or any unauthorized reproduction or display of these
resources is strictly prohibited. Novosense shall not be liable for any claims, damages, costs, losses or liabilities arising out of the
use of these resources.
For further information on applications, products and technologies, please contact Novosense(www.novosns.com ).
Suzhou Novosense Microelectronics Co., Ltd
Copyright © 2019, NOVOSENSE
Page 17