Single Supply Dual Operational Amplifiers
Utilizing the circuit designs perfected for Quad Operational
Amplifiers, these dual operational amplifiers feature low power drain,
acommon mode input voltage range extending to ground/VEE, and
single supply or split supply operation.
These amplifiers have several distinct advantages over standard
operational amplifier types in single supply applications. They can
operate at supply voltages as low as 3.0 V or as high as 32 V, with
quiescent currents about one−fifth of those associated with the
MC1741 (on a per amplifier basis). The common mode input range
includes the negative supply, thereby eliminating the necessity for
external biasing components in many applications. The output voltage
range also includes the negative power supply voltage.
Features
•
•
•
•
•
•
•
•
Short Circuit Protected Outputs
True Differential Input Stage
Single Supply Operation: 3.0 V to 32 V
Low Input Bias Currents
Internally Compensated
Common Mode Range Extends to Negative Supply
Single and Split Supply Operation
ESD Clamps on the Inputs Increase Ruggedness of the Device
without Affecting Operation
PIN CONNECTIONS
Output A
Inputs A
1
2
3
VEE/Gnd
4
8
7
−
+
6
−
+ 5
VCC
Output B
Inputs B
(Top View)
1
www.xinluda.com
258 358 2904
3.0 V to VCC(max)
VCC
VCC
1.5 V to VCC(max)
1
1
2
2
1.5 V to VEE(max)
VEE
VEE/Gnd
Single Supply
Split Supplies
Figure 1.
Output
Bias Circuitry
Common to Both
Amplifiers
VCC
Q15
Q16
Q22
Q14
Q13
40 k
Q19
5.0 pF
Q12
Q24
25
Q23
Q20
Q18
Inputs
Q11
Q9
Q21
Q17
Q6
Q2
Q25
Q7
Q5
Q1
Q8
Q3
Q4
Q10
Q26
2.4 k
2.0 k
VEE/Gnd
Figure 2. Representative Schematic Diagram
(One−Half of Circuit Shown)
2
www.xinluda.com
258 358 2904
MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.)
Symbol
Value
VCC
VCC, VEE
32
±16
Input Differential Voltage Range (Note 1)
VIDR
±32
Vdc
Input Common Mode Voltage Range (Note 2)
VICR
−0.3 to 32
Vdc
Output Short Circuit Duration
tSC
Continuous
Junction Temperature
TJ
150
°C
RJA
238
212
161
°C/W
Storage Temperature Range
Tstg
−65 to +150
°C
ESD Protection at any Pin
Human Body Model
Machine Model
Vesd
Rating
Power Supply Voltages
Single Supply
Split Supplies
Thermal Resistance, Junction−to−Air (Note 3)
Unit
Vdc
Case 846A
Case 751
Case 626
Operating Ambient Temperature Range
V
2000
200
TA
258
358
2904
°C
-40 to +85
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Split Power Supplies.
2. For supply voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage.
3. All RJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.
3
www.xinluda.com
258 358 2904
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.)
258
358
Min
Typ
Max
Min
Typ
Max
−
−
−
2.0
−
−
5.0
7.0
7.0
−
−
−
2.0
−
−
7.0
9.0
9.0
VIO/T
−
7.0
−
−
7.0
−
IIO
−
−
−
−
3.0
−
−45
−50
30
100
−150
−300
−
−
−
−
5.0
−
−45
−50
50
150
−250
−500
IIO/T
−
10
−
−
10
−
Input Common Mode Voltage Range (Note 6),
VCC = 30 V
VCC = 30 V, TA = Thigh to Tlow
VICR
0
−
28.3
0
−
28.3
0
−
28
0
−
28
Differential Input Voltage Range
VIDR
−
−
VCC
−
−
VCC
Large Signal Open Loop Voltage Gain
RL = 2.0 k, VCC = 15 V, For Large VO Swing,
TA = Thigh to Tlow (Note 5)
AVOL
50
25
100
−
−
−
25
15
100
−
−
−
CS
−
−120
−
−
−120
−
Common Mode Rejection
RS ≤ 10 k
CMR
70
85
−
65
70
−
Power Supply Rejection
PSR
65
100
−
65
100
−
Output Voltage−High Limit
TA = Thigh to Tlow (Note 5)
VCC = 5.0 V, RL = 2.0 k, TA = 25°C
VCC = 30 V, RL = 2.0 k
VCC = 30 V, RL = 10 k
VOH
3.3
26
27
3.5
−
28
−
−
−
3.3
26
27
3.5
−
28
−
−
−
Output Voltage−Low Limit
VCC = 5.0 V, RL = 10 k,
TA = Thigh to Tlow (Note 5)
VOL
−
5.0
20
−
5.0
20
Output Source Current
VID = +1.0 V, VCC = 15 V
TA = Thigh to Tlow (LM358A Only)
IO+
20
40
−
20
40
−
Output Sink Current
VID = −1.0 V, VCC = 15 V
TA = Thigh to Tlow (LM358A Only)
VID = −1.0 V, VO = 200 mV
IO−
10
20
−
10
20
−
12
50
−
12
50
−
Output Short Circuit to Ground (Note 7)
ISC
−
40
60
−
40
60
Power Supply Current (Total Device)
TA = Thigh to Tlow (Note 5)
VCC = 30 V, VO = 0 V, RL = ∞
VCC = 5 V, VO = 0 V, RL = ∞
ICC
−
−
1.5
0.7
3.0
1.2
−
−
1.5
0.7
3.0
1.2
Characteristic
Input Offset Voltage
VCC = 5.0 V to 30 V, VIC = 0 V to VCC −1.7 V,
VO ] 1.4 V, RS = 0
TA = 25°C
TA = Thigh (Note 5)
TA = Tlow (Note 5)
Average Temperature Coefficient of Input Offset
Voltage
TA = Thigh to Tlow (Note 5)
Input Offset Current
TA = Thigh to Tlow (Note 5)
Input Bias Current
TA = Thigh to Tlow (Note 5)
Average Temperature Coefficient of Input Offset
Current
TA = Thigh to Tlow (Note 5)
Channel Separation
1.0 kHz ≤ f ≤ 20 kHz, Input Referenced
Symbol
VIO
IIB
4. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is VCC − 1.7 V.
5. Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from
simultaneous shorts on all amplifiers.
4
www.xinluda.com
258 358 2904
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = Gnd, TA = 25°C, unless otherwise noted.)
2904
Min
Typ
Max
−
−
−
2.0
−
−
7.0
10
10
VIO/T
−
7.0
−
IIO
−
−
−
−
5.0
45
−45
−50
50
200
−250
−500
IIO/T
−
10
−
Input Common Mode Voltage Range (Note 9),
VCC = 30 V
VCC = 30 V, TA = Thigh to Tlow
VICR
0
−
28.3
0
−
28
Differential Input Voltage Range
VIDR
−
−
VCC
Large Signal Open Loop Voltage Gain
RL = 2.0 k, VCC = 15 V, For Large VO Swing,
TA = Thigh to Tlow (Note 8)
AVOL
25
15
100
−
−
−
CS
−
−120
−
Common Mode Rejection
RS ≤ 10 k
CMR
50
70
−
Power Supply Rejection
PSR
50
100
−
Output Voltage−High Limit
TA = Thigh to Tlow (Note 8)
VCC = 5.0 V, RL = 2.0 k, TA = 25°C
VCC = 30 V, RL = 2.0 k
VCC = 30 V, RL = 10 k
VOH
3.3
26
27
3.5
−
28
−
−
−
Output Voltage−Low Limit
VCC = 5.0 V, RL = 10 k,
TA = Thigh to Tlow (Note 8)
VOL
−
5.0
20
Output Source Current
VID = +1.0 V, VCC = 15 V
IO+
20
40
−
Output Sink Current
VID = −1.0 V, VCC = 15 V
VID = −1.0 V, VO = 200 mV
IO−
10
−
20
−
−
−
Output Short Circuit to Ground (Note 10)
ISC
−
40
60
Power Supply Current (Total Device)
TA = Thigh to Tlow (Note 8)
VCC = 30 V, VO = 0 V, RL = ∞
VCC = 5 V, VO = 0 V, RL = ∞
ICC
−
−
1.5
0.7
3.0
1.2
Characteristic
Input Offset Voltage
VCC = 5.0 V to 30 V, VIC = 0 V to VCC −1.7 V,
VO ] 1.4 V, RS = 0
TA = 25°C
TA = Thigh (Note 8)
TA = Tlow (Note 8)
Average Temperature Coefficient of Input Offset
Voltage
TA = Thigh to Tlow (Note 8)
Input Offset Current
TA = Thigh to Tlow (Note 8)
Input Bias Current
TA = Thigh to Tlow (Note 8)
Average Temperature Coefficient of Input Offset
Current
TA = Thigh to Tlow (Note 8)
Channel Separation
1.0 kHz ≤ f ≤ 20 kHz, Input Referenced
Symbol
VIO
IIB
7. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is VCC − 1.7 V.
8. Short circuits from the output to VCC can cause excessive heating and eventual destruction. Destructive dissipation can result from
simultaneous shorts on all amplifiers.
5
www.xinluda.com
258 358 2904
CIRCUIT DESCRIPTION
The 358 series is made using two internally
compensated, two−stage operational amplifiers. The first
stage of each consists of differential input devices Q20 and
Q18 with input buffer transistors Q21 and Q17 and the
differential to single ended converter Q3 and Q4. The first
stage performs not only the first stage gain function but also
performs the level shifting and transconductance reduction
functions. By reducing the transconductance, a smaller
compensation capacitor (only 5.0 pF) can be employed, thus
saving chip area. The transconductance reduction is
accomplished by splitting the collectors of Q20 and Q18.
Another feature of this input stage is that the input common
mode range can include the negative supply or ground, in
single supply operation, without saturating either the input
devices or the differential to single−ended converter. The
second stage consists of a standard current source load
amplifier stage.
Each amplifier is biased from an internal−voltage
regulator which has a low temperature coefficient thus
giving each amplifier good temperature characteristics as
well as excellent power supply rejection.
1.0 V/DIV
VCC = 15 Vdc
RL = 2.0 k
TA = 25°C
5.0 s/DIV
Figure 3. Large Signal Voltage
Follower Response
AVOL, OPEN LOOP VOLTAGE GAIN (dB)
20
VI , INPUT VOLTAGE (V)
18
16
14
12
10
Negative
8.0
Positive
6.0
4.0
2.0
0
120
VCC = 15 V
VEE = Gnd
TA = 25°C
100
80
60
40
20
0
-20
0
2.0
4.0
6.0 8.0
10
12
14 16
VCC/VEE, POWER SUPPLY VOLTAGES (V)
18
1.0
20
10
100
1.0 k
10 k
100 k
1.0 M
f, FREQUENCY (Hz)
Figure 4. Input Voltage Range
Figure 5. Large−Signal Open Loop Voltage Gain
6
www.xinluda.com
258 358 2904
550
RL = 2.0 k
VCC = 15 V
VEE = Gnd
Gain = -100
RI = 1.0 k
RF = 100 k
12
10
8.
VO , OUTPUT VOLTAGE (mV)
VOR , OUTPUT VOLTAGE RANGE (V pp )
14
06.
04.
02.
VCC = 30 V
VEE = Gnd
TA = 25°C
CL = 50 pF
500
Input
450
400
Output
350
300
250
200
0
0
1.0
0
10
100
f, FREQUENCY (kHz)
1000
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
t, TIME (ms)
Figure 6. Large−Signal Frequency Response
Figure 7. Small Signal Voltage Follower
Pulse Response (Noninverting)
TA = 25°C
RL = R
2.1
I IB , INPUT BIAS CURRENT (nA)
I CC , POWER SUPPLY CURRENT (mA)
2.4
1.8
1.5
1.2
0.9
0.6
0.3
0
0
5.0
10
15
20
25
VCC, POWER SUPPLY VOLTAGE (V)
30
90
80
70
35
Figure 8. Power Supply Current versus
Power Supply Voltage
0
2.0
4.0
6.0 8.0
10
12
14 16
VCC, POWER SUPPLY VOLTAGE (V)
18
20
Figure 9. Input Bias Current versus
Supply Voltage
7
www.xinluda.com
258 358 2904
50 k
R1
VCC
VCC
R2
5.0 k
-
10 k
1/2
XL1403
2.5 V
VCC
-
Vref
VO
358
1/2
VO
358
+
+
fo =
1
Vref = VCC
2
VO = 2.5 V (1 +
R1
)
R2
R
1
CR
+
1/2
C
For: fo = 1.0 kHz
R = 16 k
C = 0.01 F
C
Figure 11. Wien Bridge Oscillator
Figure 10. Voltage Reference
e1
R
R
Hysteresis
R2
358
VOH
R1
-
a R1
R1
1/2
eo
358
+
358
Vin
-
1
CR
1/2
+
R
eo = C (1 + a + b) (e2 - e1)
H=
Figure 12. High Impedance Differential Amplifier
R2
-
-
100 k
1/2
+
358
+
-
R3 = TN R2
1/2
C1 = 10 C
Vref =
1
V
2 CC
358
+
Vref
Bandpass
Output
Vref
1
2
RC
R1 = QR
R2 = R1
TBP
C
C
R
Vref
fo =
100 k
358
VinH
R1
(VOH - VOL)
R1 + R2
R
1/2
R2
VinL
Figure 13. Comparator with Hysteresis
R
C1
VOL
R1
(V - V ) + Vref
R1 + R2 OH ref
VinH =
Vin
VO
R1
(V - V )+ Vref
VinL =
R1 + R2 OL ref
358
e2
VO
+
Vref
1/2
b R1
1
2 RC
For: fo
Q
TBP
TN
Vref
R3
R1
-
C1
1/2
Notch Output
358
+
Vref
= 1.0 kHz
= 10
=1
=1
Where: TBP = Center Frequency Gain
TN = Passband Notch Gain
R
C
R1
R2
R3
= 160 k
= 0.001 F
= 1.6 M
= 1.6 M
= 1.6 M
Figure 14. Bi−Quad Filter
8
www.xinluda.com
258 358 2904
VCC
C
Vin
R1
R3
C
-
1/2
358
+
R2
Vref
Given:
VO
CO
CO = 10 C
1
Vref = 2 VCC
fo = center frequency
A(fo) = gain at center frequency
Choose value fo, C
Vref =
Vref
1
V
2 CC
Triangle Wave
Output
+
300 k
R3
1/2
358
-
75 k
R1
100 k
358
-
Square
Wave
Output
R1 + RC
4 CRf R1
Q
fo C
R1 =
R3
2 A(fo)
R2 =
R1 R3
4Q2 R1 -R3
For less than 10% error from operational amplifier.
Qo fo
< 0.1
BW
Where fo and BW are expressed in Hz.
Rf
f =
R3 =
+
1/2
Vref
C
Then:
R2
if, R3 =
R2 R1
R2 + R1
If source impedance varies, filter may be preceded with voltage
follower buffer to stabilize filter parameters.
Figure 16. Multiple Feedback Bandpass Filter
Figure 15. Function Generator
9
www.xinluda.com
SOP8封装尺寸图
10
www.xinluda.com
DIP8封装尺寸图
11
www.xinluda.com
VSSOP8封装尺寸图
Xinluda reserves the right to change the above information without prior notice.
12
www.xinluda.com