0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SCB13H4G160AF-11MI

SCB13H4G160AF-11MI

  • 厂商:

    UNIIC(紫光国芯)

  • 封装:

    TFBGA-96_7.5X13.5MM

  • 描述:

    4Gbit DDR3L SDRAM

  • 数据手册
  • 价格&库存
SCB13H4G160AF-11MI 数据手册
Sep. 2020 S CB13 H 4G xx0AF 4Gbit DDR3L SDRAM E U R oH S Co mp lia n t Pr odu ct s Dat a S hee t Re v . G Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Revision History Date Revision Subjects (major changes since last revision) 2017-12 A Initial Release 2019-04 B Add the product of 2133 M 2019-10 C 2020-06 D 2020-07 E Update the pictures for Figure 1 and Figure 2 2020-07 F Add the product of industrial grade 2020-09 G Update the picture for Figure 6: Package Outline for 4Gbit Components x8 Configuration Modify Row Address Format review (2020-05) Modify Figure 1 - Ball out for 512 Mb ×8 Components (PG-TFBGA-78) Modify Figure 2 - Ball out for 256 Mb ×16 Components (PG-TFBGA-96) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: info@unisemicon.com UniIC_Techdoc, Rev. G 2020-09 2 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Contents Contents ........................................................................................................................................................................................ 3 1 Overview ............................................................................................................................................................................... 4 1.1 Features ................................................................................................................................................................... 4 1.2 Product List............................................................................................................................................................... 5 1.3 DDR3L SDRAM Addressing...................................................................................................................................... 6 1.4 Package Ball out ...................................................................................................................................................... 7 1.5 2 3 4 1.4.1 Ball out for 512 Mb × 8 Components ................................................................................................................ 7 1.4.2 Ball out for 256 Mb ×16 Components ................................................................................................................. 8 Input / Output Signal Functional Description ............................................................................................................. 9 Functional Description ......................................................................................................................................................... 11 2.1 Truth Tables ............................................................................................................................................................ 11 2.2 Mode Register 0 (MR0)........................................................................................................................................... 14 2.3 Mode Register 1 (MR1)........................................................................................................................................... 16 2.4 Mode Register 2 (MR2)........................................................................................................................................... 18 2.5 Mode Register 3 (MR3)........................................................................................................................................... 20 2.6 Burst Order ............................................................................................................................................................. 21 Operating Conditions and Interface Specification ................................................................................................................. 22 3.1 Absolute Maximum Ratings .................................................................................................................................... 22 3.2 Operating Conditions .............................................................................................................................................. 23 3.3 Interface Test Conditions ........................................................................................................................................ 24 3.4 Voltage Levels ........................................................................................................................................................ 25 3.4.1 DC and AC Logic Input Levels ........................................................................................................................ 25 3.4.2 DC and AC Output Measurements Levels ...................................................................................................... 27 3.5 Output Slew Rates .................................................................................................................................................. 28 3.6 ODT DC Impedance and Mid-Level Characteristics ................................................................................................ 29 3.7 ODT DC Impedance Sensitivity on Temperature and Voltage Drifts ........................................................................ 29 3.8 Interface Capacitance ............................................................................................................................................. 30 3.9 Overshoot and Undershoot Specification ................................................................................................................ 31 Speed Bins, AC Timing and IDD ........................................................................................................................................... 33 4.1 Speed Bins ............................................................................................................................................................. 33 4.2 AC Timing Characteristics ( VDD = 1.283V to 1.45V; VDDQ =1.283V to 1.45V ) ................................................... 37 4.3 IDD Specification (IDD Maximum Limits Die for 1.35/1.5V Operation) ................................................................... 43 5 Package Outlines................................................................................................................................................................. 45 6 Product Type Nomenclature................................................................................................................................................. 47 List of Figures .............................................................................................................................................................................. 48 List of Tables................................................................................................................................................................................ 49 UniIC_Techdoc, Rev. G 2020-09 3 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 1 Overview This chapter gives an overview of the 4Gbit DDR3L SDRAM component product and describes its main characteristics. 1.1 Features The 4Gbit DDR3L SDRAM offers the following key features: • VDD,=VDDQ=1.35V(1.283V-1.45V) 。 Backward compatible to VDD=VDDQ=1.5 V ± 0.075V) -Supports DDR3L devices to be backward compatible in 1.5V applications 。Data rate :1600Mbps/1866Mbps/2133Mbps Options • Configuration – 512 Meg x 8 – 256 Meg x 16 。Differential bidirectional data strobe • FBGA package (Pb-free) – x16 – 96-ball (13.5mm x 7.5mm) 。 8n-bit prefetcharchitecture 。Differential clock inputs (CK, CKB) 。8 internal banks 。Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals 。Programmable CAS (READ) latency (CL) • Programmable posted CAS additive latency (AL) • Programmable CAS (WRITE) latency (CWL) • Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set [MRS]) • Selectable BC4 or BL8 on-the-fly (OTF) • Self-refresh mode • TC of 0°C to + 95°C – 64ms, 8192-cycle refresh at 0°C to +85°C – 32ms at +85°C to +95°C • Self refresh temperature (SRT) • Automatic self refresh (ASR) • Write leveling • Multi-purpose register • Output driver calibration UniIC_Techdoc, Rev. G 2020-09 • FBGA package (Pb-free) – x8 – 78-ball (10.6mm x 7.5mm) • Timing – cycle time – 938ps @ CL = 14 (DDR3-2133) – 1.07ns @ CL = 13 (DDR3-1866) – 1.25ns @ CL = 11 (DDR3-1600) • Operating temperature – Commercial, (0°C ≤TC ≤ +95°C) – Industrial, (-40°C ≤TC ≤ +95°C) 4 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 1.2 Product List Table 1 shows all possible products within the 4Gbit DDR3L SDRAM component generation. Availability depends on application needs. For UniIC part number nomenclature see Chapter 6. Table 1 - Ordering Information for4Gbit DDR3L Components UniIC Part Number Max. Clock frequency Org CAS-RCD-RP latencies Speed Sort Name Package Commercial Temperature Range(0°C ~ +95°C) SCB13H4G800AF-13K 800 MHz ×8 11-11-11 DDR3L–1600K PG-TFBGA-78 SCB13H4G800AF-11M 933 MHz ×8 13-13-13 DDR3L–1866M PG-TFBGA-78 SCB13H4G800AF-09N 1067 MHz SCB13H4G160AF-13K 800 MHz SCB13H4G160AF-11M 933 MHz SCB13H4G160AF-09N 1067 MHz Industrial Temperature Range(-40°C ~ +95°C) SCB13H4G800AF-13KI 800 MHz ×8 × 16 × 16 × 16 14-14-14 11-11-11 13-13-13 14-14-14 DDR3L–2133N DDR3L–1600K DDR3L–1866M DDR3L–2133N PG-TFBGA-78 PG-TFBGA-96 PG-TFBGA-96 PG-TFBGA-96 ×8 11-11-11 DDR3L–1600K PG-TFBGA-78 SCB13H4G800AF-11MI 933 MHz ×8 13-13-13 DDR3L–1866M PG-TFBGA-78 SCB13H4G800AF-09NI SCB13H4G160AF-13KI SCB13H4G160AF-11MI SCB13H4G160AF-09NI 1067 MHz 800 MHz 933 MHz 1067 MHz ×8 × 16 × 16 × 16 14-14-14 11-11-11 13-13-13 14-14-14 DDR3L–2133N DDR3L–1600K DDR3L–1866M DDR3L–2133N PG-TFBGA-78 PG-TFBGA-96 PG-TFBGA-96 PG-TFBGA-96 UniIC_Techdoc, Rev. G 2020-09 5 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 1.3 DDR3L SDRAM Addressing Table 2 - 4Gbit DDR3L SDRAM Addressing Configuration 512Mb × 8 256Mb × 16 Internal Organization 8 banks × 64M words × 8bits 8 banks × 32M words × 16bits Refresh count 8K 8K Bank Address 8(BA[2:0]) 8(BA[2:0]) Row Address 64K (A[15:0]) 32K (A[14:0]) Column Address 1K(A[9:0]) 1K(A[9:0]) Page Size 1KB 2KB UniIC_Techdoc, Rev. G 2020-09 6 / 50 Note Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 1.4 Package Ball out Figure 1 show the ball outs for DDR3L SDRAM components. See Chapter 5 for package outlines. 1.4.1 Ball out for 512 Mb × 8 Components Figure 1 - Ball out for 512 Mb ×8 Components (PG-TFBGA-78) UniIC_Techdoc, Rev. G 2020-09 7 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 1.4.2 Ball out for 256 Mb × 16 Components Figure 2 - Ball out for 256 Mb ×16 Components (PG-TFBGA-96) UniIC_Techdoc, Rev. G 2020-09 8 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 1.5 Input / Output Signal Functional Description Table 3 - Input / Output Signal Functional Description Symbol Type Function CK, /CK Input Clock: CK and /CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of /CK. CKE Input Clock Enable: CKE High activates, and CKE Low deactivates internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down ( active row in any bank). CKE is asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained High throughout read and write accesses. Input buffers, excluding CK, /CK, ODT, CKE and /RESET are disabled during Power-down. Input buffers, excluding CKE and RESET are disabled during self refresh. /CS Input Chip Select: All commands are masked when /CS is registered High. /CS provides for external Rank selection on systems with multiple ranks. /CS is considered part of the command code. /RAS, /CAS, /WE Input Command Inputs: /RAS, /CAS and /WE (along with /CS) define the command being entered. ODT Input On-Die Termination: ODT (registered High) enables termination resistance internal to the DDR3L SDRAM. When enabled, ODT is only applied to each DQ, DQS, /DQS and DM signal for×8 configurations. The ODT signal will be ignored if the Mode Register MR1 is programmed to disable ODT and during Self Refresh. DM Input Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a Write access. DM is sampled on both edges of DQS. BA0 - BA2 Input Bank Address Inputs: Define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a mode register set cycle. Input Address Inputs: Provides the row address for Active commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. (A10/AP and A12 | /BC have additional functions, see below). The address inputs also provide the op-code during Mode Register Set commands. A10 | AP Input Auto-Precharge: A10 | AP is sampled during Read/Write commands to determine whether Auto-Precharge should be performed to the accessed bank after the Read/Write operation. (High: Auto-Precharge, Low: no Auto-Precharge). A10 | AP is sampled during Precharge command to determine whether the Precharge applies to one bank (A10 Low) or all banks (A10 High). If only one bank is to be precharged, the bank is selected by bank addresses. A12 | /BC Input Burst Chop: A12 | /BC is sampled during Read and Write commands to determine if burst chop (on-the-fly) will be performed. (High: no burst chop, Low: burst chopped). See “Command Truth Table” on Page 11 for details. DQ Input/ Output Data Input/Output: Bi-directional data bus. DQS /DQS Input/ Output Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. The data strobes DQS are paired with differential signals /DQS, to provide differential pair signaling to the system during both read and write. DDR3L A0 – A15 UniIC_Techdoc, Rev. G 2020-09 9 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Symbol Type Function /RESET CMOS Input Active Low Asynchronous Reset: Reset is active when /RESET is Low, and inactive when /RESET is High. /RESET must be High during normal operation. /RESET is a CMOS rail to rail signal with DC High and Low are 80% and 20% of VDD, /RESET active is destructive to data contents. NC — No Connect: no internal electrical connection is present VDDQ Supply DQ Power Supply: 1.283V to 1.45V or 1.5 V ± 0.075V VSSQ Supply DQ Ground VDD Supply Power Supply: 1.283V to 1.45V or 1.5 V ± 0.075V VSS Supply Ground VREFDQ Supply Reference Voltage for DQ VREFCA Supply Reference Voltage for Command and Address inputs ZQ Supply Reference ball for ZQ calibration Note: Input only pins (BA0-BA2, A0-A15, /RAS, /CAS, /WE, /CS, CKE, ODT, and /RESET) do not supply termination. UniIC_Techdoc, Rev. G 2020-09 10 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 2 Functional Description 2.1 Truth Tables The truth tables list the input signal values at a given clock edge which represent a command or state transition expected to be executed by the DDR3L SDRAM. Table 4 lists all valid commands to the DDR3L SDRAM. For a detailed description of the various power mode entries and exits please refer to Table 5. In addition, the DM functionality is described in Table 6. Table 4 - Command Truth Table Function Abbr. CKE Prev. Curr. Cycle Cycle /CS /RAS /CAS /WE BA2 A13- A12| A10| A11, Note A15 /BC AP A9-A0 BA0 1)2)3)4)5) Mode Register Set MRS H H L L L L BA OP Code Refresh REF H H L L L H V V V V V 1)2)3)4)5) Self-Refresh Entry SRE H L L L L H V V V V V 1)2)3)4)5)6)7)8) Self-Refresh Exit SRX L H H V V V V V V V V 1)2)3)4)5)6)7)8)9) L H H H Single Bank Precharge PRE H H L L H L BA V V L V 1)2)3)4)5) Precharge all Banks PREA H H L L H L V V V H V 1)2)3)4)5) Active ACT H H L L H H BA RA (Row Address) Write (BL8MRS or BC4MRS) WR H H L H L L BA V V L CA 1)2)3)4)5)10) Write (BC4OTF) WRS4 H H L H L L BA V L L CA 1)2)3)4)5)10) Write (BL8OTF) WRS8 H H L H L L BA V H L CA 1)2)3)4)5)10) Write w/AP (BL8MRS or BC4MRS) WRA H H L H L L BA v V H CA 1)2)3)4)5)10) Write w/AP (BC4OTF) WRAS4 H H L H L L BA V L H CA 1)2)3)4)5)10) Write w/AP (BL8OTF) WRAS8 H H L H L L BA V H H CA 1)2)3)4)5)10) Read (BL8MRS or BC4MRS) RD H H L H L H BA V V L CA 1)2)3)4)5)10) Read (BC4OTF) RDS4 H H L H L H BA V L L CA 1)2)3)4)5)10) Read (BL8OTF) RDS8 H H L H L H BA V H L CA 1)2)3)4)5)10) Read w/AP (BL8MRS or BC4MRS) RDA H H L H L H BA V V H CA 1)2)3)4)5)10) Read w/AP (BC4OTF) RDAS4 H H L H L H BA V L H CA 1)2)3)4)5)10) Read w/AP (BL8OTF) RDAS8 H H L H L H BA V H H CA 1)2)3)4)5)10) No Operation NOP H H L H H H V V V V V 1)2)3)4)5)11) UniIC_Techdoc, Rev. G 2020-09 11 / 50 1)2)3)4)5) Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Function Abbr. CKE Prev. Curr. Cycle Cycle CS RAS CAS WE BA2 A13 A12| A10/ A11, Note A14 /BC AP A9-A0 BA0 A15 Device Deselect DES H H H X X X X X X X X 1)2)3)4)5)12) Power Down Entry PDE H L L H H H V V V V V 1)2)3)4)5)8)13) H V V V Power Down Exit PDX L H L H H H V V V V V 1)2)3)4)5)8)13) H V V V ZQ Calibration Short ZQCS H H L H H L X X X L X 1)2)3)4)5) ZQ Calibration Long ZQCL H H L H H L X X X H X 1)2)3)4)5) 1) BA = Bank Address, RA = Row Address, CA = Column Address, BC = Burst Chop, AP = Auto Precharge, X = Don’t care, V = valid 2) All DDR3L SDRAM commands are defined by states of /CS, /RAS, /CAS, /WE and CKE at the rising edge of the clock. The higher order address bits of BA, RA and CA are device density and IO configuration (×4, ×8, ×16) dependent. 3) /RESET is a low active signal which will be used only for asynchronous reset. It must be maintained High during any function. 4) Bank addresses (BA) determine which bank is to be operated upon. For MRS, BA selects a Mode Register. 5) V means H or L (but a defined logic level) and X means either “defined or undefined (like floating) logic level”. 6) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh 7) VREF (both VREFCA and VREFDQ) must be maintained during Self Refresh operation. 8) Refer to “Clock Enable (CKE) Truth Table for Synchronous Transitions” on Page 13 for more detail with CKE transition. 9) Self refresh exit is asynchronous. 10) Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly BL will be defined by MRS. 11) The No Operation (NOP) command should be used in cases when the DDR3L SDRAM is in an idle or a wait state. The purpose of the NOP command is to prevent the DDR3L SDRAM from registering any unwanted commands between operations. A NOP command will not terminate a previous operation that is still executing, such as a read or write burst. 12) The Deselect command (DES) performs the same function as a No Operation command. 13) The Power Down Mode does not perform any refresh operation. UniIC_Techdoc, Rev. G 2020-09 12 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Table 5 - Clock Enable (CKE) Truth Table for Synchronous Transitions Current State 1) CKE(N-1)2) CKE(N)2) Command (N)3) Action (N)3) Note /RAS, /CAS, /WE, /CS Previous Cycle Current Cycle L L X Maintain Power Down 4)5)6)7)8)9) L H DES or NOP Power Down Exit 4)5)6)7)8)10) L L X Maintain Self Refresh 4)5)6)7)9)11) L H DES or NOP Self Refresh Exit 4)5)6)7)11)12)13) Bank(s) Active H L DES or NOP Active Power Down Entry 4)5)6)7)8)10)14) Reading H L DES or NOP Power Down Entry 4)5)6)7)8)10)14)15) Writing H L DES or NOP Power Down Entry 4)5)6)7)8)10)14)15) Precharging H L DES or NOP Power Down Entry 4)5)6)7)8)10)14)15) Refreshing H L DES or NOP Precharge Power Down Entry 4)5)6)7)10) All Banks Idle H L DES or NOP Precharge Power Down Entry 4)5)6)7)10)8)14)16) H L REF Self Refresh Entry 4)5)6)7)14)16)17) Power Down Self Refresh Any other state Refer to “Command Truth Table” on Page 11 for more detail with all command signals 4)5)6)7)18) Current state is defined as the state of the DDR3L SDRAM immediately prior to clock edge N. CKE(N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N),ODT is not included here. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. CKE must be registered with the same value on tCKE.MIN consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the tCKE.MIN clocks of registeration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + tCKE.MIN + tIH. 7) DES and NOP are defined in “Command Truth Table” on Page 11. 8) The Power Down does not perform any refresh operations 9) X means Don’t care (including floating around VREFCA) in Self Refresh and Power Down. It also applies to address pins. 10) Valid commands for Power Down Entry and Exit are NOP and DES only 11) VREF (both VREFCA and VREFDQ) must be maintained during Self Refresh operation. 12) On Self Refresh Exit DES or NOP commands must be issued on every clock edge occurring during the tXS period. Read, or ODT commands may be issued only after tXSDLL is satisfied. 13) Valid commands for Self Refresh Exit are NOP and DES only. 14) Self Refresh can not be entered while Read or Write operations are in progress. 15) If all banks are closed at the conclusion of a read, write or precharge command then Precharge Power-down is entered, otherwise Active Power-down is entered. 16) ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is High, and all timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQ.INIT, tZQ.OPER, tZQCS, etc.) as well as all Self-Refresh exit and Power-Down Exit parameters are satisfied (tXS, tXP, tXPDLL, etc.). 17) Self Refresh mode can only be entered from the All Banks Idle state. 18) Must be a legal command as defined in “Command Truth Table” on Page 11. 1) 2) 3) 4) 5) 6) Table 6 - Data Mask (DM) Truth Table Name (Function) DM DQs Write Enable L Valid Write Inhibit H X UniIC_Techdoc, Rev. G 2020-09 13 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 2.2 Mode Register 0 (MR0) The mode register MR0 stores the data for controlling various operating modes of DDR3L SDRAM. It controls burst length, read burst type, CAS latency, test mode, DLL reset, WR (write recovery time for auto-precharge) and DLL control for precharge Power-Down, which includes various vendor specific options to make DDR3L SDRAM useful for various applications. The mode register is written by asserting Low on /CS, /RAS, /CAS, /WE, BA0, BA1, and BA2, while controlling the states of address pins according to Table 7. BA2 0 BA1 BA0 A15-A13 0 0 01) A12 A11 PPD A10 A9 WR A8 DLL A7 TM A6 A5 CL A4 A3 A2 RBT CL A1 A0 BL Table 7 - MR0 Mode register Definition (BA[2:0]=000B) Field Bits1) Description BL A[1:0] Burst Length (BL) and Control Method Number of sequential bits per DQ related to one Read/Write command. 00B BL8MRS mode with fixed burst length of 8. A12 | /BC at Read or Write command time is Don’t care at read or write command time. 01B BLOTF on-the-fly (OTF) enabled using A12 | /BC at Read or Write command time. When A12 | /BC is High during Read or Write command time a burst length of 8 is selected (BL8OTF mode). When A12 | /BC is Low, a burst chop of 4 is selected (BC4OTF mode). Auto-Precharge can be enabled or disabled. 10B BC4MRS mode with fixed burst chop of 4 with tCCD = 4 × nCK. A12 | /BC is Don’t care at Read or Write command time. 11B TBD Reserved RBT A3 Read Burst Type 0B Nibble Sequential 1B Interleaved CL A[6:4,2] CAS Latency (CL) CAS Latency is the delay, in clock cycles, between the internal Read command and the availability of the first bit of output data. Note: For more information on the supported CL and AL settings based on the operating clock frequency, refer to “Speed Bins” on Page 33. Note: All other bit combinations are reserved. 0000B RESERVED 0010B 5 0100B 6 0110B 7 1000B 8 1010B 9 1100B 10 1110B 11 UniIC_Techdoc, Rev. G 2020-09 14 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Field Bits1) Description TM A7 Test Mode The normal operating mode is selected by MR0(bit A7 = 0) and all other bits set to the desired values shown in this table. Programming bit A7 to a 1 places the DDR3L SDRAM into a test mode that is only used by the SDRAM manufacturer and should NOT be used. No operations or functionality is guaranteed if A7 = 1. 0B Normal Mode 1B Vendor specific test mode DLLres A8 DLL Reset The internal DLL Reset bit is self-clearing, meaning it returns back to the value of 0 after the DLL reset function has been issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Any time the DLL reset function is used, tDLLK must be met before any functions that require the DLL can be used (i.e. Read commands or synchronous ODT operations). 0B No DLL Reset 1B DLL Reset triggered WR A[11:9] Write Recovery for Auto-Precharge Number of clock cycles for write recovery during Auto-Precharge. WRMIN in clock cycles is calculated by dividing tWR.MIN (in ns) by the actual tCK.AVG (in ns) and rounding up to the next integer: WR.MIN [nCK] = Roundup(tWR.MIN[ns] / tCK.AVG[ns]). The WR value in the mode register must be programmed to be equal or larger than WR.MIN. The resulting WR value is also used with tRP to determine tDAL. Since WR of 9 and 11 is not implemented in DDR3L and the above formula results in these values, higher values have to be programmed. 000B Reserved 001B 5 010B 6 011B 7 100B 8 101B 10 110B 12 111B Reserved PPD A12 Precharge Power-Down DLL Control Active Power-Down will always be with DLL-on. Bit A12 will have no effect in this case. For Precharge Power-Down, bit A12 in MR0 is used to select the DLL usage as shown below. 0B Slow Exit. DLL is frozen during precharge Power-down.Read and synchronous ODT commands are only allowed after tXPDLL. 1B Fast Exit. DLL remains on during precharge Power-down.Any command can be applied after tXP, provided that other timing parameters are satisfied. 1) A13, A14 and A15 - even if not available on a specific device - must be programmed to 0B. UniIC_Techdoc, Rev. G 2020-09 15 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 2.3 Mode Register 1 (MR1) The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength, RTT_Nom impedance, additive latency (AL), Write leveling enable and Qoff (output disable). The Mode Register MR1 is written by asserting Low on CS, RAS, CAS, WE, High on BA0 and Low on BA1and BA2, while controlling the states of address pins according to Table 8. BA2 0 BA1 BA0 A15-A13 A12 0 1 01) Qoff A11 A10 A9 A8 A7 A6 A5 0 0 RTT_ nom 0 Level RTT_ nom DIC A4 A3 AL A2 A1 RTT_ nom DIC A0 DLL Table 8 - MR1 Mode Register Definition (BA[2:0]=001B) Field Bits1) Description DLLdis A0 DLL Disable The DLL must be enabled for normal operation. DLL enable is required during power up initialization, after reset and upon returning to normal operation after having the DLL disabled. During normal operation (DLL-on) with MR1(A0 = 0), the DLL is automatically disabled when entering Self-Refresh operation and is automatically re-enabled and reset upon exit of Self-Refresh operation. Any time the DLL is enabled, a DLL reset must be issued afterwards. Any time the DLL is reset, tDLLK clock cycles must occur before a Read or synchronous ODT command can be issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the tDQSCK, tAON, tAOF or tADC parameters. During tDLLK, CKE must continuously be registered high. DDR3L SDRAM does not require DLL for any Write operation. 0B DLL is enabled 1B DLL is disabled DIC A[5, 1] Output Driver Impedance Control Note: All other bit combinations are reserved. 00: 01B RTT_NOM RZQ/6 Nominal Drive Strength RON34 = RQZ/7 (nominal 34.3 Ω, with nominal RZQ = 240 Ω) A[9, 6, 2] Nominal Termination Resistance of ODT Notes 1. If RTT_NOM is used during Writes, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed. 2. In Write leveling Mode (MR1[bit7] = 1) with MR1[bit12] = 1, all RTT_Nom settings are allowed; in Write Leveling Mode (MR1[bit7] = 1) with MR1[bit12] = 0, only RTT_NOM settings of RZQ/2, RZQ/4 and RZQ/6 are allowed. 3. All other bit combinations are reserved. 000B ODT disabled, RTT_NOM = off, Dynamic ODT mode disabled 001B RTT60 = RZQ / 4 (nominal 60 Ω with nominal RZQ = 240 Ω) 010B RTT120 = RZQ / 2 (nominal 120 Ω with nominal RZQ = 240 Ω 011B RTT40 = RZQ / 6 (nominal 40 Ω with nominal RZQ = 240 Ω) 100B RTT20 = RZQ / 12 (nominal 20 Ω with nominal RZQ = 240 Ω) 101B RTT30 = RZQ / 8 (nominal 30 Ω with nominal RZQ = 240 Ω) UniIC_Techdoc, Rev. G 2020-09 16 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Field Bits1) Description AL A[4, 3] Additive Latency (AL) Any read or write command is held for the time of Additive Latency (AL) before it is issued as internal read or write command. Notes 1. AL has a value of CL - 1 or CL - 2 as per the CL value programmed in the MR0 register. 00B AL = 0 (AL disabled) 01B AL = CL - 1 10B AL = CL - 2 11B Reserved Write Leveling enable A7 Write Leveling Mode 0B Write Leveling Mode Disabled, Normal operation mode 1B Write Leveling Mode Enabled TDQS enable A11 0: Disabled 1: Enabled Qoff A12 Output Disable Under normal operation, the SDRAM outputs are enabled during read operation and write leveling for driving data (Qoff bit in the MR1 is set to 0B). When the Qoff bit is set to 1B, the SDRAM outputs (DQ, DQS, /DQS) will be disabled - also during write leveling. Disabling the SDRAM outputs allows users to run write leveling on multiple ranks and to measure IDD currents during Read operations, without including the output. oB Output buffer enabled 1B Output buffer disabled 1) A13, A14, A15 - even if not available on a specific device - must be programmed to 0B. UniIC_Techdoc, Rev. G 2020-09 17 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 2.4 Mode Register 2 (MR2) The Mode Register MR2 stores the data for controlling refresh related features, RTT_WR impedance, and CAS write latency. The Mode Register MR2 is written by asserting Low on CS, RAS, CAS, WE, High on BA1 and Low on BA0 and BA2, while controlling the states of address signals according to Table 9. BA2 0 BA1 BA0 A15-A13 A12 1 0 01) 0 A11 0 A10 A9 Rtt_WR A8 A7 A6 0 SRT ASR A5 A4 CWL A3 A2 A1 A0 PASR Table 9 - MR2 Mode Register Definition (BA[2:0]=010B) Field Bits1) Description PASR A[2:0] Partial Array Self Refresh (PASR) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified self refresh location may get lost if self refresh is entered. During non-self-refresh operation, data integrity will be maintained if tREFI conditions are met. 000B Full array (Banks 000B - 111B) 001B Half Array(Banks 000B - 011B) 010B Quarter Array(Banks 000B - 001B) 011B 1/8th array (Banks 000B ) 100B 3/4 array(Banks 010B - 111B) 101B Half array(Banks 100B - 111B) 110B Quarter array(Banks 110B - 111B) 111B 1/8th array(Banks 111B ) CWL A[5:3] CAS Write Latency (CWL) Number of clock cycles from internal write command to first write data in. Note: All other bit combinations are reserved. 000B 001B 010B 011B Note: RFU A6 5 (3.3 ns ≥ tCK.AVG ≥ 2.5 ns) 6 (2.5 ns > tCK.AVG ≥ 1.875 ns) 7 (1.875 ns > tCK.AVG ≥ 1.5 ns) 8 (1.5 ns > tCK.AVG ≥ 1.25 ns) Besides CWL limitations on tCK.AVG, there are also tAA.MIN/MAX restrictions that need to be observed. For details, please refer to Chapter 4.1, Speed Bins. 0: Manual SR reference (SRT) 1: ASR enable (Optional). UniIC_Techdoc, Rev. G 2020-09 18 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Field Bits1) Description SRT A7 Self-Refresh Temperature Range (SRT) The SRT bit must be programmed to indicate TOPER during subsequent self refresh operation. 0B Normal operating temperature range 1B Extended operating temperature range RTT_WR A[10:9] Dynamic ODT mode and RTT_WR Pre-selection Notes 1. All other bit combinations are reserved. 2. The RTT_WR value can be applied during writes even when RTT_NOM is disabled. During write leveling, Dynamic ODT is not available. 00B Dynamic ODT mode disabled 01B Dynamic ODT mode enabled with RTT_WR = RZQ/4 = 60 Ω 10B Dynamic ODT mode enabled with RTT_WR = RZQ/2 = 120Ω 1) A13, A14, A15 - even if not available on a specific device - must be programmed to 0B. UniIC_Techdoc, Rev. G 2020-09 19 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 2.5 Mode Register 3 (MR3) The Mode Register MR3 controls Multi purpose registers and optional On-die thermal sensor (ODTS) feature. The Mode Register MR3 is written by asserting Low on CS, RAS, CAS, WE, High on BA1 and BA0, and Low on BA2 while controlling the states of address signals according to Table 10 BA2 0 BA1 BA0 1 A15-A13 A12 1 01) A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 0 0 0 0 0 0 0 0 0 MPR 0 Table 10 - MR3 Mode Register Definition (BA[2:0]=011B) Field Bits1) Description MPR loc A[1:0] Multi Purpose Register Location 00B Pre-defined data pattern for read synchronization 01B RFU 10B RFU 11B ODTS On-Die Thermal sensor readout (optional) MPR A2 Multi Purpose Register Enable Note: When MPR is disabled, MR3 A[1:0] will be ignored. 0B 1B MPR disabled, normal memory operation Dataflow from the Multi Purpose register MPR 1) A13, A14 and A15 - even if not available on a specific device - must be programmed to 0B. UniIC_Techdoc, Rev. G 2020-09 20 / 50 A1 A0 MPR loc Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 2.6 Burst Order Accesses within a given burst may be interleaved or nibble sequential depending on the programmed bit A3 in the mode register MR0. Regarding read commands, the lower 3 column address bits CA[2:0] at read command time determine the start address for the read burst. Regarding write commands, the burst order is always fixed. For writes with a burst length of 8, the inputs on the lower 3 column address bits CA[2:0] are ignored during the write command. For writes with a burst being chopped to 4, the input on column address 2 (CA[2]) determines if the lower or upper four burst bits are selected. In this case, the inputs on the lower 2 column address bits CA[1:0] are ignored during the write command.The following table shows burst order versus burst start address for reads and writes of bursts of 8 as well as of bursts of 4 operation (burst chop). Table 11 - Bit Order during Burst Starting Burst READ/ Column Length WRITE Address (A[2, 0 01,0 0]) READ 4 (chop) WRITE 8 (fixed) READ WRITE Burst Type = Sequential (Decimal) Burst Type = Interleaved (Decimal) Notes 0, 1, 2, 3, Z, Z, Z, Z 0, 1, 2, 3, Z, Z, Z, Z 1, 2 001 1, 2, 3, 0, Z, Z, Z, Z 1, 0, 3, 2, Z, Z, Z, Z 1, 2 010 2, 3, 0, 1, Z, Z, Z, Z 2, 3, 0, 1, Z, Z, Z, Z 1, 2 011 3, 0, 1, 2, Z, Z, Z, Z 3, 2, 1, 0, Z, Z, Z, Z 1, 2 100 4, 5, 6, 7, Z, Z, Z, Z 4, 5, 6, 7, Z, Z, Z, Z 1, 2 101 5, 6, 7, 4, Z, Z, Z, Z 5, 4, 7, 6, Z, Z, Z, Z 1, 2 110 6, 7, 4, 5, Z, Z, Z, Z 6, 7, 4, 5, Z, Z, Z, Z 1, 2 111 7, 4, 5, 6, Z, Z, Z, Z 7, 6, 5, 4, Z, Z, Z, Z 1, 2 0VV 0, 1, 2, 3, X, X, X, X 0, 1, 2, 3, X, X, X, X 1, 3, 4 1VV 4, 5, 6, 7, X, X, X, X 4, 5, 6, 7, X, X, X, X 1, 3, 4 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 1 001 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 1 010 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 1 011 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 1 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 1 101 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 1 110 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 1 111 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 1 VVV 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 1, 3 Notes: 1. Internal READ and WRITE operations start at the same point in time for BC4 as they do for BL8. 2. Z = Data and strobe output drivers are in tri-state. 3. V = A valid logic level (0 or 1), but the respective input buffer ignores level-on input pins. 4. X = “Don’t Care.” UniIC_Techdoc, Rev. G 2020-09 21 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 3 Operating Conditions and Interface Specification 3.1 Absolute Maximum Ratings Table 12 - Absolute Maximum Ratings Parameter Symbol Rating Min. Max. Unit Note 1) Voltage on VDD ball relative to VSS VDD –0.4 +1.975 V Voltage on VDDQ ball relative to VSS VDDQ –0.4 +1.975 V Voltage on any ball relative to VSS VIN, VOUT –0.4 +1.975 V Storage Temperature TSTG –55 +150 °C 1) VDD and VDDQ must be within 300mV of each other at all times. VREF must not be greater than 0.6 x VDDQ. When VDD and VDDQ are less than 500 mV, VREF may be equal or less than 300 mV. UniIC_Techdoc, Rev. G 2020-09 22 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 3.2 Operating Conditions Table 13 - SDRAM Component Operating Temperature Range Rating Parameter Symbol Tc Operating Temperature Range Unit Note 85 °C 1)2)3)4) 95 °C 1)2)3)4) Min. Max. 0 85 1) MAX operating case temperature TC is measured in the center of the package, as shown below. 2) A thermal solution must be designed to ensure that the device does not exceed the maximum TC during operation. 3) Device functionality is not guaranteed if the device exceeds maximum TC during operation. 4) If TC exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9μs interval refresh rate. The use of self refresh temperature (SRT) or automatic self refresh (ASR), must be enabled. Table 14 - DC Operating Conditions Parameter Symbol Min. Typ. Max. Unit Note Supply Voltage 1.283 1.35 1.45 V 1-7 Supply Voltage for Output VDD VDDQ 1.283 1.35 1.45 V 1-7 Reference Voltage for DQ, DM inputs VREFDQ.DC 0.49 x VDD 0.5 x VDD 0.51 x VDD V VREFCA.DC 0.49 x VDD 0.5 x VDD 0.51 x VDD V Ω External Calibration Resistor connected from ZQ ball to ground RZQ 237.6 240.0 242.4 Reference Voltage for ADD, CMD inputs 8)9) 9)10) 11) 1) VDD and VDDQ must track one another. VDDQ must be ≤ VDD. VSS = VSSQ. 2) VDD and VDDQ may include AC noise of ±50mV (250 kHz to 20 MHz) in addition to the DC (0 Hz to 250 kHz) specifications. VDD and VDDQ must be at same level for valid AC timing parameters. 3) Maximum DC value may not be greater than 1.425V. The DC value is the linear average of V DD/VDDQ(t) over a very long period of time (for example, 1 second) 4) Under these supply voltages, the device operates to this DDR3L specification 5) If the maximum limit is exceeded, input levels shall be governed by DDR3specifications. 6) Under 1.5V operation, this DDR3L device operates in accordance with the DDR3 specifi-cations under the same speed timings as defined for this device. 7) Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation (see VDD Voltage Switch-ing . 8) VREFCA(DC) is expected to be approximately 0.5 × VDD and to track variations in the DC level. Externally generated peak noise (non-common mode) on VREFCA may not exceed ±1% × VDD around the VREFCA(DC) value. Peak-to-peak AC noise on VREFCA should not ex-ceed ±2% of VREFCA(DC). 9) DC values are determined to be less than 20 MHz in frequency. DRAM must meet specifi-cations if the DRAM induces additionalAC noise greater than 20 MHz in frequency 10) VREFDQ(DC) is expected to be approximately 0.5 × VDD and to track variations in the DC level. Externally generated peak noise (non-common mode) on VREFDQ maynot exceed ±1% × VDD around the VREFDQ(DC) value. Peak-to-peak AC noise on VREFDQ should not ex-ceed ±2% of VREFDQ(DC). 11) The external calibration resistor RZQ can be time-shared among DRAMs in multi-rank DIMMs. Table 15 - Input and Output Leakage Currents Parameter Symbol Condition Rating Min. Max. Unit Note Input Leakage Current IIL Any input 0 V < VIN < VDD –2 +2 µA 1)2) Output Leakage Current IOL 0V < VOUT < VDDQ –5 +5 µA 2)3) 1) All other pins not under test = 0 V. 2) Values are shown per ball. 3) DQ’s, DQS, /DQS and ODT are disabled. UniIC_Techdoc, Rev. G 2020-09 23 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 3.3 Interface Test Conditions Figure 4 represents the effective reference load of 25 Ω used in defining the relevant timing parameters of the device as well as for output slew rate measurements. It is not intended as either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. Figure 3 - Reference Load for AC Timings and Output Slew Rates 8)9) CK, /CK The Timing Reference Points are the idealized input and output nodes / terminals on the outside of the packaged SDRAM device as they would appear in a schematic or an IBIS model. The output timing reference voltage level for single ended signals is the cross point with VTT. The output timing reference voltage level for differential signals is the cross point of the true (e.g. DQS) and the complement (e.g. /DQS) signal. UniIC_Techdoc, Rev. G 2020-09 24 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM 3.4 Voltage Levels 3.4.1 DC and AC Logic Input Levels Single-Ended Signals Table 16 shows the input levels for single-ended input signals. Table 16 - DC and AC Input Levels for Single-Ended Command, Address and Control Signals Parameter Symbol DDR3L-1600,-1866,-2133 Max. VDD VREF - 0.100 V 1) V 1) See 2) V 1) VREF - 0.175 V 1) VIH.CA.DC DC input logic low VIL.CA.DC VREF + 0.100 VSS AC input logic high VIH.CA.AC VREF + 0.175 VIL.CA.AC Note Min. DC input logic high AC input logic low Unit See 2) 1) For input only pins except RESET: VREF = VREF.CA 2) See Chapter 3.9, Overshoot and Undershoot Specification. Table 17 - DC and AC Input Levels for Single-Ended DQ and DM Signals Parameter Symbol DDR3L-1600,-1866,-2133 Min. Max. DC input logic high VIH.DQ.DC VREF + 0.100 VDD DC input logic low VIL.DQ.DC VSS VREF - 0.100 2) AC input logic high VIH.DQ.AC VREF + 0.150 See AC input logic low VIL.DQ.AC See 2) VREF - 0.150 Unit Note V 1) V 1) V 1) 3) V 1) 3) 1) For DQ and DM: VREF = VREFDQ, for input only signals except RESET: VREF = VREFCA 2) See Chapter 3.9, Overshoot and Undershoot Specification. 3) Single ended swing requirement for DQS, /DQS is 350 mV (peak to peak). Differential swing requirement for DQS, /DQS is 700 mV (peak to peak). UniIC_Techdoc, Rev. G 2020-09 25 / 50 Data Sheet SCB13H4Gxx0AF 4-Gbit DDR3L SDRAM Differential Swing Requirement for Differential Signals Table 18 shows the input levels for differential input signals. Table 18 - Differential swing requirement for clock (CK - /CK) and strobe (DQS - /DQS) Parameter Symbol DDR3L-1600,-1866,-2133 Min. Max. Unit Note Differential input high VIH.DIFF +0.18 See 1) V 2) Differential input low VIL.DIFF See1) –0.18 V 2) Differential input high AC VIH.DIFF.AC 2 x (VIH.AC - VREF) See 1) V 4) Differential input low AC VIL.DIFF.AC See 1) V 4) 3) 2 x (VREF - VIL.AC) 5) 1) These values are not defined, however they single-ended signals CK, /CK, DQS, /DQS need to be within the respective limits ( VIH.DC.MAX , VIL.DC.MIN ) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to Chapter 3.9 . 2) Used to define a differential signal slew-rate. 3) Clock: use VIH.CA.AC for VIH.AC. Strobe: use VIH.DQ.AC for VIH.AC. 4) For CK - /CK use VIH /VIL.AC of ADD/CMD and VREFCA; for DQS - /DQS use VIH /VIL.AC of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 5) Clock: use VIL.CA.AC for VIL.AC. Strobe: use VIL.DQ.AC for VIL.AC. Table 19 - Allowed Time Before Ringback (tDVAC) for CK - /CK and DQS - /DQS tDVAC [ps]@ |VIH/IL.DIFF.AC| tDVAC [ps]@ |VIH/IL.DIFF.AC| DDR3L-1600 DDR3L-1866 Slew Rate [V/ns] 320mv 270mv 270mv 260mv 250mv > 4.0 189 201 163 176 168 4.0 189 201 163 176 168 3.0 162 179 140 154 147 2.0 109 134 95 111 105 1.8 91 119 80 97 91 1.6 69 100 62 78 74 1.4 40 76 37 55 52 1.2 Note1 44 5 Note1 — Note1 24 22 1.0
SCB13H4G160AF-11MI 价格&库存

很抱歉,暂时无法提供与“SCB13H4G160AF-11MI”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SCB13H4G160AF-11MI
  •  国内价格
  • 1+19.83999
  • 10+18.28999
  • 30+17.97999
  • 100+17.04999

库存:531