0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SR8201F

SR8201F

  • 厂商:

    CORECHIPS(和芯润德)

  • 封装:

    QFN32_5X5MM_EP

  • 描述:

    MII/RMII,100M以太网PHY收发芯片 QFN32

  • 数据手册
  • 价格&库存
SR8201F 数据手册
CoreChips ShenZhen CO.,Ltd Features General Description The SR8201F-VB-CG, SR8201FL-VB-CG, and SR8201FN-VB-CG are single-chip/single-port 10/100Mbps Ethernet PHYceivers that support: l MII (Media Independent Interface) l RMII (Reduced Media Independent Interface) SR8201F_VB Datasheet l Supports IEEE 802.3az-2010 (EEE) l 100Base-TX IEEE 802.3u Compliant l 10Base-T IEEE 802.3 Compliant l Supports MII mode l Supports RMII mode l Full/half duplex operation The SR8201F/FL/FN implement all 10/100M l Twisted pair or fiber mode output Ethernet Physical-layer functions including the l Supports Auto-Negotiation Physical Coding Sublayer (PCS), Physical Medium l Supports power down mode Attachment (PMA), Twisted Pair Physical Medium l Supports Link Down Power Saving Dependent Sublayer (TP-PMD), 10Base-TX l Supports Base Line Wander (BLW) Encoder/Decoder, and Twisted-Pair Media Access Compensation Unit (TPMAU). The SR8201F/FL/FN support auto MDIX. l Supports auto MDIX l Supports Interrupt function A PECL (Pseudo Emitter Coupled Logic) interface is l Support Wake-On_LAN(WOL) supported to connect with an external 100Base-FX l Adaptive Equalization fiber optical transceiver. The chip utilizes an l Automatic Polarity Correction advanced CMOS process to meet low voltage l LEDs and low power requirements. With on-chip DSP n (Digital Signal Processing) technology, the chip SR8201F and SR8201FL provide two network status LEDs provides excellent performance under all operating n conditions. SR8201FN provide three network status LEDs Application l MAU (Media Access Unit) l DTV (Digital TV) l CNR (Communication and Network Riser) l Game Console l Printer and Office Machine l DVD Player and Recorder l Ethernet Hub l Ethernet Switch l Supports 25MHz external crystal or OSC l Supports 50MHz external OSC Clock input for RMII l Provides 50MHz clock source for MAC l Low power supply 1.1V and 3.3V; 1.1V is generated by an internal regulator l 0.11µm CMOS process l Packages: n 32-pin MII/RMII QFN ‘Green’ package (SR8201F) In addition, the SR8201F/FL/FN can be used in any n embedded system with an Ethernet MAC that needs a UTP physical connection or Fiber PECL 48-pin MII/RMII QFN ‘Green’ package (SR8201FN) transceiver module 2017-11-28 (SR8201FL) n interface to an external 100Base-FX optical 48-pin MII/RMII LQFP ‘Green’ package Ver1.1 1 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Application Diagram Figure 1. Application Diagram 2017-11-28 Ver1.1 2 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Block Diagram Figure 2. Block Diagram 2017-11-28 Ver1.1 3 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Pin Assignment SR8201F (32-Pin) SR8201F Figure. SR8201F QFN-32 Pin Assignments 2017-11-28 Ver1.1 4 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet SR8201FN (48-Pin) SR8201FN Figure 4. SR8201FN QFN-48 Pin Assignments 2017-11-28 Ver1.1 5 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet SR8201FL (48-Pin) Figure 5. SR8201FL LQFP-48 Pin Assignment 2017-11-28 Ver1.1 6 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Pin Descriptions 1. MII Interface Table 1. MII Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 15 22 22 TXC O/PD 20 27 27 TXEN I/PD - 12 12 TXER I/PD 16 23 23 TX[0] I/PD 17 24 24 TXD[1] I/PD 18 25 25 TXD[2] I/PD 19 26 26 TXD[3] I/PD 13 19 19 RXC O/PD 27 38 38 COL O/PD 26 36 36 CRS/ O/PD Symbol Type CRS_DV 8 2017-11-28 13 13 RXDV LI/O/PD Ver1.1 Description Transmit Clock. This pin provides a continuous clock as a timing reference for TXD [3:0] and TXEN signals. TXC is 25MHz in 100Mbps mode and 2.5MHz in 10Mbps mode. Transmit Enable. The input signal indicates the presence of valid nibble data on TXD [3:0]. An internal weakly pulled low resistor prevents the bus floating. Transmit Error. Transmit Data. The MAC will source TXD [0:3] synchronous with TXC when TXEN is asserted. An internal weakly pulled low resistor prevents the bus floating. Receive Clock. This pin provides a continuous clock reference for RXDV and RXD [0:3] signals. RXC is 25MHz in 100Mbps mode and 2.5MHz in 10Mbps mode. Collision Detect. COL is asserted high when a collision is detected on the media. Carrier Sense. This pin’s signal is asserted high if the media is not in Idle state. Receive Data Valid. This pin’s signal is asserted high when received data is present on the RXD[3:0] lines. The signal is de-asserted at the end of the packet. The signal is valid on the rising edge of the RXC. This pin should be pulled low when operating in MII mode. 0: MII mode 1: RMII mode An internal weakly pulled low resistor sets this to the default of MII mode. It is possible to use an external 4.7KΩ pulled high resistor to enable RMII mode. After power on, the pin operates as the Receive Data Valid pin. 7 / 51 CoreChips ShenZhen CO.,Ltd Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 9 14 10 Symbol Type 14 RXD[0] O/PD 16 16 RXD[1] LI/O/PD - 17 17 RXD[2] O/PD 11 - - RXD[2]/ O/PD INTB 12 18 18 RXD[3]/ LI/O/PD CLK_CTL 28 39 39 RXER/ LI/O/PD FXEN SR8201F_VB Datasheet Description Receive Data. These are the four parallel receive data lines aligned on the nibble boundaries driven synchronously to the RXC for reception by the external physical unit (PHY). Note 1: An internal weakly pulled low resistor sets RXD[1] to the LED function (default). Use an external 4.7KΩ pulled high resistor to enable the WOL function for the SR8201F. Note 2: The SR8201F Pin11 is named RXD[2]/INTB. When in RMII mode, this pin is used for the interrupt function. See Table 9. Reset and Other Pins, page 12 for INTB descriptions. Receive Data. This is the parallel receive data line aligned on the nibble boundaries driven synchronously to the RXC for reception by the external physical unit (PHY). RXD[3]/CLK_CTL pin is the Hardware strap in RMII Mode. 1: REF_CLK input mode 0: REF_CLK output mode Note: An internal weakly pulled low resistor sets RXD[3]/CLK_CTL to REF_CLK output mode (default). Receive Error. If a 5B decode error occurs, such as invalid /J/K/, invalid /T/R/, or invalid symbol, this pin will go high. Fiber/UTP Enable. This pin’s status is latched at power on reset to determine the media mode to operate in. 1: Fiber mode 0: UTP mode An internal weakly pulled low resistor sets this to the default of UTP mode. It is possible to use an external 4.7KΩ pulled high resistor to enable fiber mode. After power on, the pin operates as the Receive Error pin. 2. RMII Interface Table 2. RMII Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 15 22 26 36 Symbol Type 22 TXC IO/PD 36 CRS/ O/PD CRS_DV 20 27 27 TXEN I/PD 16, 17 23, 24 23, 24 TXD[0:1] I/PD 2017-11-28 Ver1.1 Description Synchronous 50MHz Clock Reference for Receive, Transmit, and Control Interface. The direction is decided by Page 7, Register 16. The default direction is reference clock output mode if RXD[3]/CLK_CTL pin floating. Carrier Sense/Receive Data Valid. CRS_DV shall be asserted by the PHY when the receive medium is non-idle. Transmit Enable. Transmit Data. 8 / 51 CoreChips ShenZhen CO.,Ltd Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 9, 10 14, 16 28 39 Symbol Type 14, 16 RXD[0:1] O/PD 39 RXER/ LI/O/PD SR8201F_VB Datasheet Description Receive Data. Receive Error. RX_ER is a required output of the PHY, but is an optional input for the MAC. FXEN 3. Serial Management Interface Table 3. Serial Management Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 22 30 30 MDC I/PU 23 31 31 MDIO IO/PU Symbol Type Description Management Data Clock. This pin provides a clock synchronous to MDIO, which may be asynchronous to the transmit TXC and receive RXC clocks. The clock rate can be up to 2.5MHz. Use an internal weakly pulled high resistor to prevent the bus floating. Management Data Input/Output. This pin provides the bi-directional signal used to transfer management information. 4. Clock Interface Table 4. Clock Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 32 43 31 42 Symbol Type 43 CKXTAL2 IO 42 CKXTAL1 I Description 25MHz Crystal Output. This pin provides the 25MHz crystal output. If an external 25MHz/50MHz oscillator or clock is used, connect CKXTAL2 to the oscillator or clock output ( Oscillator Requirements, page 51). 25MHz Crystal Input. This pin provides the 25MHz crystal input. Must be shorted to GND when an external 25MHz/50MHz oscillator or clock drives CKXTAL2. 5. 10M/100M Network Interface Table 5. 10M/100M Network Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 3 1 4 Symbol Type Description 1 MDI+[0] IO 2 2 MDI-[0] 5 4 4 MDI+[1] 6 5 5 MDI-[1] Transmit Output. Differential transmit output pair shared by 100Base-TX, 100Base-FX, and 10Base-T modes. When configured as 100Base-TX, output is an MLT-3 encoded waveform. When configured as 100Base-FX, the output is pseudo- ECL level. Receive Input. Differential receive input pair shared by 100BaseTX, 100Base-FX, and 10Base-T modes. 2017-11-28 IO Ver1.1 9 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 6. Transmit Bias Interface Table 6. Transmit Bias Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 1 46 1 Symbol Type RSET I Description Transmit Bias Resistor Connection. This pin should be pulled to GND by a 2.49KΩ (1%) resistor to define driving current for the transmit DAC. 7. Device Configuration Interface Table 7. Device Configuration Interface Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 8 13 10 12 Symbol Type Description 13 RXDV LI/O/PD 16 16 RXD[1] LI/O/PD 18 18 RXD[3]/ LI/O/PD Receive Data Valid. This pin’s signal is asserted high when received data is present on the RXD [3:0] lines. The signal is deasserted at the end of the packet. The signal is valid on the rising edge of the RXC. This pin should be pulled low when operating in MII mode. 0: MII mode 1: RMII mode An internal weakly pulled low resistor sets this to the default of MII mode. It is possible to use an external 4.7KΩ pulled high resistor to enable RMII mode. After power on, the pin operates as the Receive Data Valid pin. An internal weakly pulled low resistor sets RXD[1] to the LED function (default). Use an external 4.7KΩ pulled high resistor to enable the WOL function for the SR8201F. Receive Data. This is the parallel receive data line aligned on the nibble boundaries driven synchronously to the RXC for reception by the external physical unit (PHY). RXD [3]/CLK_CTL pin is the Hardware strap in RMII Mode. 1: REF_CLK input mode 0: REF_CLK output mode Note: An internal weakly pulled low resistor sets RXD[3]/CLK_CTL to REF_CLK output mode (default). Fiber/UTP Interface. This pin’s status is latched at power on reset to determine the media mode to operate in. 1: Fiber mode 0: UTP mode An internal weakly pulled low resistor sets this to the default of UTP mode. It is possible to use an external 4.7KΩ pulled high resistor to enable fiber mode. CLK_CTL 28 39 39 RXER/ LI/O/PD FXEN 2017-11-28 Ver1.1 10 / 51 CoreChips ShenZhen CO.,Ltd Pin No Pin No Pin No (8201F) (8201FL) (8201FN) - 34 34 24 - - Symbol Type LED0/ LI/O/PU PHYAD[0] LI/O/PU LED0/ LI/O/PD PHYAD[0]/ LI/O/PD - 35 - 35 32 Description PHY Address and Customized LED Settings. The default available PHY addresses are: SR8201F: 00000~00011. SR8201FL: 00100~00111 (when PMEB pin is pulled high) 00000~00011 (when PMEB pin is pulled low) SR8201FN: 00000~00111. Traditional LED Function Selection PMEB 25 SR8201F_VB Datasheet LED _Sel 00 PHYAD[1] LED0 ACTALL LED2/ LED1 LINK100 LINK100 LINK100 LED2 Reserved Reserved Reserved LED1/ 01 10 11 LinkALL/ Link10 / ACTALL ACTALL LINK10 /ACT10 LINK100/ ACT100 PHYAD[2] Reserved Note 1: For Customized LED Settings, see section 7.17, page 22. Note 2: LED_Sel default is 11. Refer to section 7.19, page 23. An internal weakly pulled low resistor sets RXD[1] to the LED function for SR8201F (default). Use an external 4.7KΩ pulled high resistor to enable the WOL function for SR8201F. Traditional LED Function Selection for the SR8201F with WOL Enabled With the SR8201F WOL function enabled, the PHY address must be 00001 or 00011. LED 00 01 10 LINK100 LINK100 LINK100 11 _Sel LED1 LINK100/ ACT100 8. Power and Ground Pins Table 8. Power and Ground Pins Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 7, 30 6, 41 14 2 Symbol Type 6, 41 AVDD33 P 15, 21, 37 15, 21, 37 DVDD33 P 28 28 DVDD10 P 1.1V Digital Power. O Power Output. Be sure to connect a 0.1µF ceramic capacitor for decoupling purposes. The connection method is outlined in section 8.8 3.3V Power Supply and Voltage Conversion Circuit, page 37. 48 48 AVDD10O UT 2017-11-28 Ver1.1 Description 3.3V Analog Power Input. 3.3V power supply for analog circuit; should be well decoupled. 3.3V Digital Power Input. 3.3V power supply for digital circuit. 11 / 51 CoreChips ShenZhen CO.,Ltd Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 29 40 40 Symbol Type Description DVDD10 O Power Output. Be sure to connect a 0.1µF ceramic capacitor for decoupling purposes. The connection method is outlined in section 8.8 3.3V Power Supply and Voltage Conversion Circuit, page 37. Ground. Should be connected to a larger GND plane. Exposed Pad (E-Pad) is Analog and Digital Ground. OUT E-PAD 7, 20,33,47 E-PAD SR8201F_VB Datasheet GND P 9. Reset and Other Pins Table 9. Reset and Other Pins Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 7, 30 6, 41 21 PHYRSTB I/HZ 14 15, 21, 37 - INTB O/OD - 28 11 RXD[2]/IN O/PD Symbol Type TB 2 48 24 PMEB O/OD Description RESETB. Set low to reset the chip. For a complete reset, this pin must be asserted low for at least 10ms. Note: When the WOL function is enabled, keep the pin high (SR8201FN only). Interrupt. Set low if link status changed, duplex changed, or auto negotiation failed. Active Low. This pin is an open-drain design, and for default value should be pulled high by an external 4.7KΩ. If not used, keep floating. Interrupt. Set low if link status changed, duplex changed, or auto negotiation failed. Active Low. This pin is an open-drain design, and for default value should be pulled high by an external 4.7KΩ. If not used, keep floating. Note: This pin is used for the interrupt function only when in the RMII mode. Power Management Enable. Set low if received a magic packet or wake up frame; active low. 10. NC (Not Connected) Pins Table 10. NC (Not Connected) Pins Pin No Pin No Pin No (8201F) (8201FL) (8201FN) - 3,8,9,11, 3, 7, 8, 9, 44,45 10,44, 45, Symbol Type NC - Description Not Connected. 47 I=Input, O=Output, IO= Bi-directional input and output, PD=Internal Pull down, PU=Internal Pull up, LI=Latched Input during Power up or Reset, OD= Open Drain Output, P=Power 2017-11-28 Ver1.1 12 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Register Descriptions This section describes the functions and usage of the registers available in this file. In this section the following abbreviations are used. RW: Read/Write RW/LI: Read/Write/Latch In RO: Read Only RW/SC: Read/Write/Self-Clearing RC: Read Clear SC: Self-Clear Table 11. Register 0 Basic Mode Control Register Address 0:15 Name Reset Description This bit sets the status and control registers of the Mode Default RW/ SC 0 RW 0 RW 1 RW 1 PHY in the default state. This bit is self-clearing. 1: Software reset 0: Normal operation Register 0 and register 1 will return to default values after a software reset (set Bit15 to 1). This action may change the internal PHY state and the state of the physical link associated with the PHY. 0:14 Loopback This bit enables loopback of transmit data nibbles TXD3:0 to the receive data path. 1: Enable loopback 0:13 Speed Selection 0: Normal operation This bit sets the network speed. 1: 100Mbps 0: 10Mbps After completing auto negotiation, this bit will reflect the speed status. 1: 100Base-T 0: 10Base-T When 100Base-FX mode is enabled, this bit=1 and is read only. 0:12 Auto Negotiation Enable This bit enables/disables the NWay auto-negotiation function. 1: Enable auto-negotiation; bits 0:13 and 0:8 will be ignored 0: Disable auto-negotiation; bits 0:13 and 0:8 will determine the link speed and the data transfer mode, respectively When 100Base-FX mode is enabled, this bit=0 and is read only. 2017-11-28 Ver1.1 13 / 51 CoreChips ShenZhen CO.,Ltd Address Name 0:10 Isolate SR8201F_VB Datasheet Description 1: Electrically isolate the PHY from Mode Default RW 0 RW 0 RW/ SC 0 RW 1 RW 0 - - MII/GMII/RGMII/RSGMII. PHY is still able to respond to MDC/MDIO. 0: Normal operation 0:11 Power Down This bit turns down the power of the PHY chip, including the internal crystal oscillator circuit. The MDC, MDIO is still alive for accessing the MAC. 1: Power down 0:9 0: Normal operation Restart Auto This bit allows the NWay auto-negotiation function to Negotiation be reset. 1: Re-start auto-negotiation 0: Normal operation 0:8 Duplex Mode This bit sets the duplex mode if auto-negotiation is disabled (bit 0:12=0). 1: Full duplex0: Half duplex After completing auto-negotiation, this bit will reflect the duplex status. 1: Full duplex0: Half duplex 0:7 Collision Test Collision Test. 1: Collision test enabled 0: Normal operation When set, this bit will cause the COL signal to be asserted in response to the TXEN assertion within 512-bit times. The COL signal will be de-asserted within 4-bit times in response to the TXEN deassertion. 0:6~0 Reserved Reserved. Table 12. Register 1 Basic Mode Status Register Address Name 1:15 100Base-T4 Description 1: Enable 100Base-T4 support Mode Default RO 0 RO 1 RO 1 0: Suppress 100Base-T4 support 1:14 100Base_TX_FD 1: Enable 100Base-TX full duplex support 0: Suppress 100Base-TX full duplex support 1:13 100Base_TX_H D 2017-11-28 1: Enable 100Base-TX half duplex support 0: Suppress 100Base-TX half duplex support Ver1.1 14 / 51 CoreChips ShenZhen CO.,Ltd Address Name 1:12 10Base_T_FD SR8201F_VB Datasheet Description 1: Enable 10Base-T full duplex support Mode Default RO 1 RO 1 - - RO 1 RO 0 RC 0 RO 1 RO 0 RO 0 RO 1 0: Suppress 10Base-T full duplex support 1:11 10_Base_T_HD 1: Enable 10Base-T half duplex support 0: Suppress 10Base-T half duplex support 1:10~7 Reserved Reserved. 1:6 MF Preamble The SR8201F/FL/FN will accept management frames Suppression with preamble suppressed. A minimum of 32 preamble bits are required for the first management interface read/write transaction after reset. One idle bit is required between any two management transactions as per IEEE 802.3u specifications. 1:5 Auto Negotiation Complete 1:4 Remote Fault 1: Auto-negotiation process completed 0: Auto-negotiation process not completed 1: Remote fault condition detected (cleared on read) 0: No remote fault condition detected When in 100Base-FX mode, this bit means an in-band signal Far-End-Fault has been detected (see 8.10 Far End Fault Indication, page 37). 1:3 Auto-Negotiation Ability 1:2 Link Status 1: PHY is able to perform auto-negotiation 0: PHY is not able to perform auto-negotiation 1: Valid link established 0: No valid link established This bit indicates whether the link was lost since the last read. For the current link status, read this register twice. 1:1 Jabber Detect 1: Jabber condition detected 0: No jabber condition detected 1:0 Extended 1: Extended register capable (permanently=1) Capability 0: Not extended register capable Table 13. Register 2 PHY Identifier Register 1 Address Name Description Mode Default 2:15~0 OUI Composed of the 6th to 21st bits of the Organizationally RO 001Ch Mode Default Assigned to the 0 through 5th bits of the OUI. RO 110010 Model Number RO 000001 Revision Number RO 0110 Unique Identifier (OUI), respectively. Table 14. Register 3 PHY Identifier Register 2 Address Name 3:15~10 OUI_LSB 3:9~4 Model Number 3:3~0 Revision Number 2017-11-28 Description Ver1.1 15 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 15. Register 4 Auto-Negotiation Advertisement Register (ANAR) This register contains the advertised abilities of this device as they will be transmitted to its link partner during autonegotiation. Address Name 4:15 Next Page Description Next Page Bit. Mode Default RW 0 RO 0 RW 0 - - RW 0 0: Transmitting the primary capability data page 1: Transmitting the protocol specific data page 4:14 Acknowledge 1: Acknowledge reception of link partner capability data word 0: Do not acknowledge reception 4:13 Remote Fault 1: Advertise remote fault detection capability 0: Do not advertise remote fault detection capability 4:12 Reserved 4:11 Asymmetric Reserved. 1: Advertise asymmetric pause support PAUSE 0: No support of asymmetric pause 4:10 Pause Reserved. RW 0 4:9 100Base-T4 1: 100Base-T4 is supported by local node RO 0 RW 1 RW 1 RW 1 RW 1 RO 00001 0: 100Base-T4 not supported by local node 4:8 100Base-TX-FD 1: 100Base-TX full duplex is supported by local node 0: 100Base-TX full duplex not supported by local node 4:7 100Base-TX 1: 100Base-TX is supported by local node 0: 100Base-TX not supported by local node 4:6 10Base-T-FD 1: 10Base-T full duplex supported by local node 0: 10Base-T full duplex not supported by local node 4:5 10Base-T 1: 10Base-T is supported by local node 0: 10Base-T not supported by local node 4:4~0 Selector Field Binary Encoded Selector Supported by This Node. Currently only CSMA/CD 00001 is specified. No other protocols are supported. 2017-11-28 Ver1.1 16 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 16. Register 5 Auto-Negotiation Link Partner Ability Register (ANLPAR) This register contains the advertised abilities of the Link Partner as received during auto-negotiation. The content changes after a successful auto-negotiation if Next-pages are supported. Address Name 5:15 Next Page Description Next Page Bit. Mode Default RO 0 RO 0 RO 0 - - RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 00001 0: Transmitting the primary capability data page 1: Transmitting the protocol specific data page 5:14 Acknowledge 1: Link partner acknowledges reception of local node’s capability data word 0: No acknowledgement 5:13 Remote Fault 1: Link partner is indicating a remote fault 0: Link partner is not indicating a remote fault 5:12 Reserved 5:11 Asymmetric Pause Reserved. 1: Asymmetric Flow control supported by Link Partner 0: No Asymmetric flow control supported by Link Partner When auto-negotiation is enabled, this bit reflects Link Partner ability. 5:10 Pause 1: Flow control supported by Link Partner 0: No flow control supported by Link Partner When auto-negotiation is enabled, this bit reflects Link Partner ability (read only). 5:9 100Base-T4 1: 100Base-T4 is supported by link partner 0: 100Base-T4 not supported by link partner 5:8 100Base-TX-FD 1: 100Base-TX full duplex is supported by link partner 0: 100Base-TX full duplex not supported by link partner 5:7 100Base-TX 1: 100Base-TX is supported by link partner 0: 100Base-TX not supported by link partner This bit will also be set if the link in 100Base-TX is established by parallel detection. 5:6 10Base-T-FD 1: 10Base-T full duplex is supported by link partner 0: 10Base-T full duplex not supported by link partner 5:5 10Base-T 1: 10Base-T is supported by link partner 0: 10Base-T not supported by link partner This bit will also be set if the link in 10Base-T is established by parallel detection. 5:4~0 Selector Field Link Partner’s Binary Encoded Node Selector. Currently only CSMA/CD 00001 is specified. 2017-11-28 Ver1.1 17 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 17. Register 6 Auto-Negotiation Expansion Register (ANER) This register contains additional status for NWay auto-negotiation. Address Name 6:15~5 Reserved 6:4 Parallel Detection Fault Description Mode Default - - RC 0 RO 0 RO 0 RC 0 RO 0 Reserved. 1: A fault has been detected via the Parallel Detection function 0: No fault has been detected via the Parallel Detection function 6:3 Link Partner Next 1: Link Partner is Next Page able 0: Link Partner is not Next Page able Page Ability 6:2 Local Next Page Ability 6:1 Page Received 1: Next Page is able 0: Not Next Page able 1: A New Page has been received 0: A New Page has not been received 6:0 Link Partner Auto-Negotiation Ability If Auto-Negotiation is Enabled, This Bit Means: 1: Link Partner is Auto-Negotiation able 0: Link Partner is not Auto-Negotiation able Table 18. Page 0 Register 13 MACR (MMD Access Control Register; Address 0x0D) Bits Name RW Default 13.15:14 Function WO 0 Description 00: Address 01: Data; no post increment 10: Data; post increment on reads and writes 11: Data; post increment on writes only 13.13:5 Reserved RO 000000000 13.4:0 DEVAD WO 0 Reserved. Device Address. Note 1: Used in conjunction with the MAADR (Register 14) to provide access to the MMD address space. Note 2: If the access of MAADR is for address (Function=00) then it is directed to the address register within the MMD associated with the value in the DEVAD field. Note 3: If the access of MAADR is for data (Function!=00) then both the DEVAD field and the MMD address register direct the MAADR data accesses to the appropriate registers within the MMD. Table 19. Page 0 Register 14 MAADR (MMD Access Address Data Register; Address 0x0E) Bits Name RW Default 14.15:0 Address Data RW 0x0000 Description 13.15:14=00 à MMD DEVAD’s address register 13.15:14=01, 10, or 11 à MMD DEVAD’s data register as indicated by the contents of its address register Note: Used in conjunction with the MACR (Register 13) to provide access to the MMD address space. 2017-11-28 Ver1.1 18 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 20. Register 24 Power Saving Mode Register (PSMR) Address Name 15 Enpwrsave Description Enable Power Saving Mode. Mode Default RW 1 - - The bit will return to default value by software reset. 14~0 Reserved Reserved Note: If the REF_CLK output is needed in RMII output mode, LDPS (Link Down Power Saving) must be disabled (see Table 43, page 36). Table 21. Register 28 Fiber Mode and Loopback Register Address Name 28:15~6 Reserved 28:5 Fxmode 28:4~3 Reserved 28:2 En_autoMDIX 28:1 Force_MDI Description Mode Default - - RW 0 - - Enable Auto MDIX Function. RW 1 Force MDI/MDIX Mode. RW 1 - - Mode Default RC 0 RC 0 RC 0 - - RC 0 - - RO 0000 Reserved. Enable Fiber Mode. Reserved. If enable auto MDIX function is disabled: 1: Force MDI 0: Force MDIX 28:0 Reserved Reserved. Table 22. Register 30 Interrupt Indicators and SNR Display Register Address Name 30:15 Anerr Description Auto-Negotiation Error Interrupt. 1: Enable 0: Disable 30:14 Spdchg Speed Mode Change Interrupt. 1: Enable 0: Disable 30:13 Duplexchg Duplex Mode Change Interrupt. 1: Enable 0: Disable 30:12 Reserved 30:11 Linkstatuschg Reserved. Link Status Change Interrupt. 1: Enable 0: Disable 30:10~4 Reserved 30:3~0 SNR_O Reserved. These 4-Bits Show the Signal to Noise Ratio Value. Table 23. Register 31 Page Select Register 2017-11-28 Ver1.1 19 / 51 CoreChips ShenZhen CO.,Ltd Address Name 31:15~8 Reserved 31:7~0 PAGE SEL SR8201F_VB Datasheet Description Mode Default - - RW 00000000 Reserved for Internal Testing. Select Page Address: 00000000~11111111. Table 24. Page 4 Register 16 EEE Capability Enable Register Address Name 16:15~14 Reserved 16:13 EEE_10_cap 16:12 EEE_nway_en Description Mode Default - - RW 1 RW/ EFUS 1 - - RW/ EFUS 1 RW/ EFUS 1 - - Mode Default - - RW 0 - - RO 0 Reserved. Enable EEE 10M Capability. Enable Next Page Exchange in NWay for EEE 100M. 16:11~10 Reserved 16:9 Tx_quiet_en Reserved. Enable Ability to Turn Off Power 100TX when TX in Quiet State. This bit is recommended to be set to 1 when EEE is enabled. 16:8 Rx_quiet_en Enable Ability to Turn Off Power 100RX when RX in Quiet state. This bit is recommended to be set to 1 when EEE is enabled. 16:7:0 Reserved Reserved. Table 25. Page 4 Register 21 EEE Capability Register Address Name 21:15~13 Reserved 21:12 Rg_dis_ldvt Description Reserved. Set to 1 to Disable the Line Driver of the Analog Circuit. 21:11~1 Reserved 21:0 EEE_100_cap Reserved. NWay Result to Indicate Link Partner Supports EEE 100M. Table 26. Page 7 Register 16 RMII Mode Setting Register (RMSR) Address Name 16:15~13 Reserved 16:12 Rg_rmii_clkdir Description Reserved. This Bit Sets the Type of TXC in RMII Mode. Mode Default - - RW/LI 0 0: Output 1: Input 16:11~8 Rg_rmii_tx_offset Adjust RMII TX Interface Timing. RW/EFUS 1111 16:7~4 Rg_rmii_rx_offset Adjust RMII RX Interface Timing. RW/EFUS 1111 16:3 Reserved RW/LI 0 Address Name Mode Default 2017-11-28 Reserved. Description Ver1.1 20 / 51 CoreChips ShenZhen CO.,Ltd 16:2 Rg_rmii_rxdv_sel SR8201F_VB Datasheet 0: CRS/CRS_DV pin is CRS_DV signal RW/EFUS 0 RW/EFUS 1 - - 1: CRS/CRS_DV pin is RXDV signal 16:1 Rg_rmii_rxdsel 0: RMII data only 1: RMII data with SSD Error 16:0 Reserved Reserved. Table 27. Page 7 Register 17 Customized LEDs Setting Register This register is for setting customized LEDs. Table below shows the customized LED matrix table. Table27.1 Customized LED Matrix Table LINK ACT 10M 100M LED0 Bit0 Bit1 Bit3 LED1 Bit4 Bit5 Bit7 LED2 Bit8 Bit9 Bit11 LED Pin ACT=0 ACT=1 LINK=0 Floating All Speed ACT LINK>0 Selected Speed LINK Selected Speed LINK+ACT Note: The SR8201F/FL only supports LED0 and LED1. The SR8201FN supports LED0, LED1, and LED2. Table 27.2. Page7 Register 17 Customized LEDs Setting Register Address Name Description Mode 17:15~12 Reserved Reserved. 17:11~8 LED_sel2 Customized LED2 Setting. Default - - RW/ 0000 EFUS Set Bit3 (Page7 Register 19; Table 30, page 24) to 1 to enable customized LED function. 17:7~4 17:3~0 LED_sel1 LED_sel0 RW/ Customized LED1 Setting. Set Bit3 (Page7 Register 19; Table 30, page 24) to 1 to enable customized LED function. 0000 EFUS RW/ Customized LED0 Setting. 0000 EFUS Set Bit3 (Page7 Register 19; Table 30, page 24) to 1 to enable customized LED function. Table 28. Page 7 Register 18 EEE LEDs Enable Register Address 18:15~3 Name Description Mode Default - - Reserved Reserved. 18:2 EEE_LED_en2 Enable LED2 in EEE/LPI Mode. RW 0 18:1 EEE_LED_en1 Enable LED1 in EEE/LPI Mode. RW 0 18:0 EEE_LED_en0 Enable LED0 in EEE/LPI Mode. RW 0 Table 29. Page 7 Register 19 Interrupt, WOL Enable, and LEDs Function Registers 2017-11-28 Ver1.1 21 / 51 CoreChips ShenZhen CO.,Ltd Address Name 19:15~14 Reserved Reserved. 19:13 Int_linkchg Link Change Interrupt Mask. SR8201F_VB Datasheet Description Mode Default - - RW 0 RW 0 RW 0 RW/LI 0 - - RW/ 11 1: Interrupt pin Enable 0: Interrupt pin Disable This bit set to 0 only masks the link change interrupt event in the INTB pin. Reg30 Bit11 always reflects the link change interrupt behavior (see register 30, page 21). 19:12 Int_dupchg Duplex Change Interrupt Mask. 1: Interrupt pin Enable 0: Interrupt pin Disable This bit set to 0 only masks the duplex change interrupt event in the INTB pin. Reg30 Bit13 always reflects the duplex change interrupt behavior (see register 30, page 21). 19:11 Int_anerr NWay Error Interrupt Mask. 1: Interrupt pin Enable 0: Interrupt pin Disable This bit set to 0 only masks the NWay Error interrupt event in the INTB pin.Reg30 Bit15 always reflects the NWay Error interrupt behavior (see register 30, page 21). 19:10 Rg_led0_wol_sel LED and Wake-On-LAN Function Selection (SR8201F Only). 1: Wake-On-LAN Function Enable 0: LED Function Enable An internal weakly pulled low resistor sets RXD[1] to the LED function (default). Use an external 4.7KΩ pulled high resistor to enable the WOL function for the SR8201F. 19:9~6 Reserved 19:5~4 LED_sel[1:0] 19:3 Reserved. Traditional LED Function Selection. LED_sel LED0 LED1 LED2 00 ACTALL Link100 Reserved 01 LinkALL/ACTALL Link100 Reserved 10 Link10/ACTALL Link100 Reserved 11 Link10/ACT10 Link100/ACT100 Reserved Customized_LED Customized LED Enable. 1: Customized LED function enable EFUS RW/ 0 EFUS 0: Customized LED function disable See the section 4.7 Customized LED, page 33 for detail. 19:2~1 Reserved Reserved. 19:0 En10mlpi Enable 10M LPI LED Function. - - RW 0 Table 30. Page 7 Register 20 MII TX Isolate Register 2017-11-28 Ver1.1 22 / 51 CoreChips ShenZhen CO.,Ltd Address Name 20:15 Rg_tx_isolate_en 20:14~0 Reserved SR8201F_VB Datasheet Mode Description Defaul t Isolate MII TX Path Signals when TX Idle. RW 0 - - Mode Defaul Reserved. Table 31. Page 7 Register 24 Spread Spectrum Clock Register Address Name Description 24:15~1 Reserved 24:0 Rg_dis_ssc t Reserved. 0: SSC function is enabled - - RW 0 1: SSC function is disabled Table 32. MMD Register Mapping and Definition Note: MMD registers are placed at Page 0 Register 13 and Register 14. Device Offset Access Name Description 3 0 RW EEEPC1R EEE PCS Control 1 Register 3 1 RO/RO, LH EEEPS1R EEE PCS Status Control 1 Register 3 20 RO EEECR 3 22 RC EEEWER 7 60 RW EEEAR 7 61 RO EEELPAR EEE Capability Register EEE Wake Error Register EEE Advertisement Register EEE Link Partner Ability Register Note: LH: Latching High Table 33. EEEPC1R (PCS Control 1 Register, MMD Device 3, Address 0x00) Bits Name RW Default 3:0:15~11 Reserved RW 0 3:0:10 Clock Stop Enable RW 0 3:0:9~0 Reserved RW 0 Description Reserved. 1: PHY stops RXC in LPI 0: RXC not stoppable Reserved. Table 34. EEEPS1R (PCS Status 1 Register, MMD Device 3, Address 0x01) Bits Name RW Default 3:1:15~12 Reserved RO 0 3:1:11 TX LPI Received RO, LH 0 3:1:10 RX LPI Received RO, LH 0 2017-11-28 Ver1.1 Description Reserved. 1: TX PCS has received LPI 0: LPI not received 1: RX PCS has received LPI 0: LPI not received 23 / 51 CoreChips ShenZhen CO.,Ltd Bits Name RW Default 3:1:9 TX LPI Indication RO 0 3:1:8 RX LPI Indication RO 0 3:1:7 Reserved RO 0 RO 1 RO 0 SR8201F_VB Datasheet Description 1: TX PCS is currently receiving LPI 3:1:6 3:1:5~0 Clock Stop Capable Reserved 0: TX PCS is not currently receiving LPI 1: RX PCS is currently receiving LPI 0: RX PCS is not currently receiving LPI Reserved. 1: MAC stops TXC in LPI 0: TXC not stoppable Reserved. Table 35. EEECR (EEE Capability Register, MMD Device 3; Address 0x14) Bits Name RW Default 3:20:15~2 Reserved RO 0 3:20:1 100Base-TX EEE RO 1 3:20:0 Reserved RO 1 Description Reserved. 1: EEE is supported for 100Base-TX EEE 0: EEE is not supported for 100Base-TX EEE Reserved. Table 36. EEECR (EEE Capability Register, MMD Device 3; Address 0x14) Bits Name RW Default Description Used by PHY types that support EEE to count 3:22:15~0 EEE Wake Error Counter RC 0 wake time faults where the PHY fails to complete its normal wake sequence within the time required for the specific PHY type. Table 37. EEEAR (EEE Advertisement Register, MMD Device 7; Address 0x3c) Bits Name RW Default Description 7:60:15~3 Reserved RW 0 Reserved. 7:60:1 100Base-TX EEE RW 1 Advertise 100Base-TX EEE Capability. 1: Advertise 0: Do not advertise 7:60:0 Reserved RW 0 Reserved. Table 38. EEELPAR (EEE Link Partner Ability Register, MMD Device 7; Address 0x3d) Bits Name RW Default 7:61:15~3 Reserved RO 0 Reserved. 7:61:1 LP 100Base-TX RO 0 1: Link Partner is capable of 100Base-TX EEE EEE Description 0: Link Partner is not capable of 100Base-TX EEE 7:61:0 2017-11-28 Reserved RO 0 Ver1.1 Reserved. 24 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Functional Description The SR8201F/FL/FN PHYceiver is a physical layer device that integrates 10Base-T and 100Base-TX/100Base-FX functions, and some extra power management features. This device supports the following functions: l MII interface with MDC/MDIO management interface to communicate with the MAC l IEEE 802.3u clause 28 Auto-Negotiation ability l Speed, duplex, auto-negotiation ability configurable by hard wire or MDC/MDIO l Power Down mode support l 4B/5B transform l Scrambling/De-scrambling l NRZ to NRZI, NRZI to MLT-3 l Manchester Encode and Decode for 10Base-T operation l Clock and Data recovery l Adaptive Equalization l Automatic Polarity Correction l Far End Fault Indication (FEFI) in fiber mode l Network status LEDs l Wake-On-LAN (WOL) l Energy Efficient Ethernet (EEE) l Spread Spectrum Clock (SSC) for RMII REF_CLK output mode 1. MII and Management Interface 1.1. Data Transition The MII (Media Independent Interface) is an 18-signal interface (as described in IEEE 802.3u) supplying a standard interface between the PHY and MAC layer. This interface operates at two frequencies; 25MHz and 2.5MHz, to support 100Mbps/10Mbps bandwidth for both transmit and receive functions. Transmission The MAC asserts the TXEN signal. It then changes byte data into 4-bit nibbles and passes them to the PHY via TXD[3:0]. The PHY will sample TXD[3:0] synchronously with TXC – the transmit clock signal supplied by the PHY – during the interval TXEN is asserted. Reception The PHY asserts the RXDV signal. It passes the received nibble data RXD[3:0] clocked by RXC. CRS and COL signals are used for collision detection and handling. In 100Base-TX mode, when the decoded signal in 5B is not IDLE, the CRS signal will assert. When 5B is recognized as IDLE it will be de-asserted. In 10Base-T mode, CRS will assert when the 10M preamble has been confirmed and will be de-asserted when the IDLE pattern has been confirmed. The RXDV signal will be asserted when decoded 5B are /J/K/ and will be de-asserted if the 5B are /T/R/ or IDLE in 100Mbps mode. In 10Mbps mode, the RXDV signal is the same as the CRS signal. The RXER (Receive Error) signal will be asserted if any 5B decode errors occur, e.g., an invalid J/K, invalid T/R, or invalid symbol. This pin will go high for one or more clock periods to indicate to the reconciliation sublayer that an error was detected somewhere in the frame. 2017-11-28 Ver1.1 25 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 1.2. Serial Management Interface The MAC layer device can use the MDC/MDIO management interface to control a maximum of 4 (SR8201F/FL) or 8 (SR8201FN) devices, configured with different PHY addresses (00b to 11b for the SR8201F/FL; 000b to 111b for the SR8201FN). Frames transmitted on the MDC/MDIO Management Interface should have the frame structure shown in table as below. Table 39. Management Frame Format Management Frame Fields Preamble ST OP PHYAD REGAD TA DATA IDLE Read 1…1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD Z Write 1…1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD Z During a hardware reset, the logic levels of pins 20(PHYAD[0]) and 10(PHYAD[1]) are latched to be set as the PHY address for management communication via the serial interface. The read and write frame structure for the management interface is illustrated in Figure show as below. Figure 6. Read Cycle Figure 7. Write Cycle Table 40. Serial Management Name Description Preamble 32 Contiguous Logical 1’s Sent by the MAC on MDIO, along with 32 Corresponding Cycles on MDC. This provides synchronization for the PHY. ST Start of Frame. Indicated by a 01 pattern. OP Operation Code. Read: 10 Write: 01 2017-11-28 Ver1.1 26 / 51 CoreChips ShenZhen CO.,Ltd Name PHYAD SR8201F_VB Datasheet Description PHY Address. Up to 4 PHYs can be connected to one MAC. This 2-bit field selects which PHY the frame is directed to. REGAD Register Address. This is a 5-bit field that sets which of the 32 registers of the PHY this operation refers to. TA Turnaround. This is a 2-bit-time spacing between the register address and the data field of a frame to avoid contention during a read transaction. For a read transaction, both the STA and the PHY remain in a high-impedance state for the first bit time of the turnaround. The PHY drives a zero bit during the second bit time of the turnaround of a read transaction. DATA Data. These are the 16 bits of data. IDLE Idle Condition. Not truly part of the management frame. This is a high impedance state. Electrically, the PHY’s pull-up resistor will pull the MDIO line to a logical ‘1’. 2. Interrupt Whenever there is a status change on the media detected by the SR8201F, the correspond interrupt status registers (page0 register14) will be set, and the interrupt pin (LED1/INTB Pin21) will be drived to low to issue an interrupt event. The MAC senses the status change and accesses the page0 register14 through the MDC/MDIO interface in response. Once these status registers page0 register30 have been read by the MAC through the MDC/MDIO, the INTB is de-asserted. The SR8201FN/FL interrupt function removes the need for continuous polling through the MDC/MDIO management interface. Note 1: The SR8201F RXD[2]/INTB pin (Pin11) is used for the interrupt function only when in the RMII mode. Note2: The Interrupt function is disabled by default. To enable this function, refer to Interrupt Enable Function Register 3. Auto-Negotiation and Parallel Detection The SR8201F supports IEEE 802.3u clause 28 Auto-negotiation for operation with other transceivers supporting auto-negotiation.The SR8201F can auto-detect the link partner’s abilities and determine the highest speed/duplex configuration possible between the two devices. If the link partner does not support auto-negotiation, then the SR8201F will enable half-duplex mode and enter parallel detection mode.The SR8201F will default to transmitting FLP (Fast Link Pulse) and wait for the link partner to respond. If the SR8201F receives a FLP, then the autonegotiation process will continue. If it receives an NLP (Normal Link Pulse), then the SR8201F will change to 10Mbps and half-duplex mode. If it receives a 100Mbps IDLE pattern, it will change to 100Mbps and half-duplex mode. 2017-11-28 Ver1.1 27 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 3.1 Setting the Medium Type and Interface Mode to MAC Table 41. Setting the Medium Type and Interface Mode to MAC FXEN RXDV Operation Mode H L Fiber Mode and MII Mode H H Fiber Mode and RMII Mode H X Fiber Mode and MII Mode L L UTP Mode and MII Mode L H UTP Mode and RMII Mode L X UTP Mode and MII Mode 4. LED Functions The SR8201FN supports three LED signals, and the SR8201F and SR8201FL support two LED signals, in four configurable operation modes. The following sections describe the various LED actions. 4.1. LED and PHY Address As the PHYAD[0] strap options share the LED output pins, the external combinations required for strapping and LED usage must be considered in order to avoid contention. Specifically, when the LED outputs are used to drive LEDs directly, the active state of each output driver is dependent on the logic level sampled by the corresponding PHYAD input upon power-up/reset. For example,as Figure (left-side) shows, if a given PHYAD input is resistively pulled high then the corresponding output will be configured as an active low driver. On the right side, we can see that if a given PHYAD input is resistively pulled low then the corresponding output will be configured as an active high driver. The PHY address configuration pins should not be connected to GND or VCC directly, but must be pulled high or low through a resistor (e.g.,4.7KΩ).If no LED indications are needed,the components of the LED path (LED+510Ω) can be removed. PHY Address[x] = Logical 1 PHY Address[x]= Logical 0 LED Indication = Active low LED Indication= Active high Figure 8. LED and PHY Address Configuration 2017-11-28 Ver1.1 28 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 4.2. Link Monitor The Link Monitor senses link integrity,such as LINK10,LINK100,LINK10/ACT,or LINK100/ACT. Whenever link status is established, the specific link LED pin is driven low. Once a cable is disconnected,the link LED pin is driven high, indicating that no network connection exists. 4.3. RX LED In 10/100M mode, blinking of the RX LED indicates that receive activity is occurring. Figure 9. RX LED 4.4. TX LED In 10/100M mode, blinking of the TX LED indicates that transmit activity is occurring. Figure 10. TX LED 2017-11-28 Ver1.1 29 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 4.5. TX/RX LED In 10/100M mode, blinking of the TX/RX LED indicates that both transmit and receive activity is occurring. Figure 11. TX/RX LED 4.6. LINK/ACT LED In 10/100M mode, blinking of the LINK/ACT LED indicates that the SR8201F is linked and operating properly. When this LED is high for extended periods, it indicates that a link problem exists. Figure 12. LINK/ACT LED 2017-11-28 Ver1.1 30 / 51 2017-11-28 Ver1.1 Yes 10M LPI LED Enable (Page7,register19,bit0) LED0~LED2 function LPI Mode All speed traffic + LPI Mode Select speed link + LPI Mode Select speed link + traffic + LPI Mode LED0~LED2 function All speed traffic Select speed link Select speed link + traffic No 10M Yes LPI LED Enable (Page7,register18,bit[2:0]) 100M No LED0~LED2 function LPI Mode All speed traffic + LPI Mode Select speed link + LPI Mode Select speed link + traffic + LPI Mode Link Speed Yes Customized LEDs Enable? LED0~LED2 function All speed traffic Select speed link Select speed link + traffic Traditional LEDs No No Traditional LEDs + LPI LEDs Yes 10M LPI LED Enable (Page7,register19,bit0) 10M 100M Traditional LEDs + LPI LEDs Yes Traditional LEDs No LPI LED Enable (Page7,register18,bit[2:0]) Link Speed CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 4.7 Customized LED The SR8201F/FL/FN supports programmable LEDs in 10/100Mbps mode. This function can be enabled/disabled via page7, reg19[3] register (Figure below). Refer to page7 register17, page 23 for customized LED register setting. Figure 13. Customized LED with/without LPI LED Mode 31 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 4.8 EEE LED Behavior EEE Idle mode: LED continuous slow blinking. EEE Active mode: LED fast and slow blinking (on packet transmission and reception). Refer to page7 register18, page 23 for EEE LED enable setting. Figure 14. EEE LED Behavior 5. Power Down and Link Down Power Saving Modes Two types of Power Saving mode operation are supported. This section describes how to implement each mode through software. Table 42. Power Saving Mode Pin Settings Mode Description Setting bit 11 of register 0 to 1 puts the SR8201F/FL/FN into Power Down Mode (PWD). This is the maximum power saving mode while the SR8201F/FL/FN is still ‘live’. In PWD mode, the PWD SR8201F/FL/FN will turn off all analog/digital functions except the MDC/MDIO management interface. Therefore, if the SR8201F/FL/FN is put into PWD mode and the MAC wants to recall the PHY, it must create the MDC/MDIO timing by itself (this is done by software). Setting bit 15 of register 24 to 1 will put the SR8201F/FL/FN into LDPS (Link Down Power Saving) mode. In LDPS mode, the SR8201F/FL/FN will detect the link status to decide whether or not to turn LDPS off the transmit function. If the link is off, FLP or 100Mbps IDLE/10Mbps NLP will not be transmitted. However, some signals similar to NLP will be transmitted. Once the receiver detects leveled signals, it will stop the signal and transmit FLP or 100Mbps IDLE/10Mbps NLP again. This can cut power used by 60%~80% when the link is down. 6. 10M/100M Transmit and Receive 6.1. 100Base-TX Transmit and Receive Operation 100Base-TX Transmit Transmit data in 4-bit nibbles (TXD[3:0]) clocked at 25MHz (TXC) is transformed into 5B symbol code (4B/5B encoding). Scrambling, serializing, and conversion to 125MHz,and NRZ to NRZI then takes place. After this process, the NRZI signal is passed to the MLT-3 encoder, then to the transmit line driver. The transmitter will first 2017-11-28 Ver1.1 32 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet assert TXEN. Before transmitting the data pattern, it will send a /J/K/ symbol (Start-of-frame delimiter), the data symbol,and finally a /T/R/ symbol known as the End-Of-Frame delimiter. For better EMI performance, the seed of the scrambler is based on the PHY address. In a hub/switch environment, each SR8201F will have different scrambler seeds and so spread the output of the MLT-3 signals. 100Base-TX Receive The received signal is compensated by the adaptive equalizer to make up for signal loss due to cable attenuation and Inter Symbol Interference (ISI). Baseline Wander Correction monitors the process and dynamically applies corrections to the process of signal equalization. The Phase Locked Loop (PLL) then recovers the timing information from the signals and from the receive clock. With this, the received signal is sampled to form NRZI (Non-Return-toZero Inverted) data. The next steps are the NRZI to NRZ (Non- Return-to-Zero) process, unscrambling of the data, serial to parallel and 5B to 4B conversion, and passing of the 4B nibble to the MII interface. 6.2. 100Base-FX Fiber Transmit and Receive Operation The SR8201F/FL/FN can be configured to 100Base-FX mode via hardware configuration. The hardware 100Base-FX setting takes priority over NWay settings. A scrambler is not required in 100Base-FX. 100Base-FX Transmit Di-bits of TXD are processed as 100Base-TX except without a scrambler before the NRZI stage. Instead of converting to MLT-3 signals, as in 100Base-TX, the serial data stream is driven out as NRZI PECL signals, which enter the fiber transceiver in differential-pair form. 100Base-FX Receive The signal is received through PECL receiver inputs from the fiber transceiver and directly passed to the clock recovery circuit for data/clock recovery. The scrambler/de-scrambler is bypassed in 100Base-FX. 6.3. 10Base-T Transmit and Receive Operation 10Base-T Transmit Transmit data in 4-bit nibbles (TXD[3:0]) clocked at 2.5MHz (TXC) is first fed to a parallel-to-serial converter, then the 10Mbps NRZ signal is sent to a Manchester encoder.The Manchester encoder converts the 10Mbps NRZ data into a Manchester Encoded data stream for the TP transmitter and adds a Start of Idle pulse (SOI) at the end of the packet as specified in IEEE 802.3. Finally, the encoded data stream is shaped by a band-limited filter embedded in the SR8201F and then transmitted. 10Base-T Receive In 10Base-T receive mode, the Manchester decoder in the SR8201F/FL/FN converts the Manchester encoded data stream into NRZ data by decoding the data and stripping off the SOI pulse. The serial NRZ data stream is then converted to a parallel 4-bit nibble signal (RXD[0:3]). 7. Reset and Transmit Bias There are two SR8201F/FL/FN reset types: 1. Hardware Reset: Pull the PHYRSTB pin high for at least 150ms to access the SR8201F/FL/FN registers. Pull the PHYRSTB pin low for at least 10ms and then pull high. All registers will return to default values after a hardware reset. The media interface will disconnect and restart the autonegotiation/parallel detection process. 2. Software Reset: Set register 0 bit 15 to 1 for at least 20ms to access the SR8201F/FL/FN registers. A Software reset will only partially reset the registers, and will reset the chip status to ‘initializing’. The RSET pin must be pulled low by a 2.49KΩ resistor with 1% accuracy to establish an accurate transmit bias. This will affect the signal quality of the transmit waveform. Keep its circuitry away from other clock traces and transmit/receive paths to avoid signal interference. 2017-11-28 Ver1.1 33 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 8. 3.3V Power Supply and Voltage Conversion Circuit The SR8201F/FL/FN is fabricated in a 0.11µm process. The core circuit needs to be powered by 1.1V, however, the digital IO and DAC circuits need a 3.3V power supply. Regulators are embedded in the SR8201F/FL/FN to convert 3.3V to 1.1V. Note: The internal linear regulator output voltage is 1.1V. A 1.05V is supplied when using external core power. The external 1.05V power supply is not suggested for the SR8201F/FL as the internal regulators cannot be disabled (the SR8201F/FL does not have an EN_LDO_OUT pin to disable the internal 1.1V power supply), and the internal and external power sources may conflict. As with many commercial voltage conversion devices, the 1.1V output pin of this circuit requires the use of an output capacitor (0.1µF X5R low-ESR ceramic capacitor) as part of the device frequency compensation. The analog and digital ground planes should be as large and intact as possible. If the ground plane is large enough, the analog and digital grounds can be separated, which is the ideal configuration. However, if the total ground plane is not sufficiently large, partition of the ground plane is not a good idea. In this case, all the ground pins can be connected together to a larger single and intact ground plane. Note: The embedded 1.1V LDO is designed for PHYceiver device internal use only. Do not provide this power to other devices. 9. Automatic Polarity Correction The SR8201F automatically corrects polarity errors on the receive pairs in 10Base-T mode (polarity is irrelevant in 100Base-TX mode). In 10Base-T mode, polarity errors are corrected based on the detection of validly spaced link pulses. Detection begins during the MDI crossover detection phase and locks when the 10Base-T link is up. The polarity becomes unlocked when the link goes down. 10. Far End Fault Indication The MII Reg.1.4 (Remote Fault) is the Far End Fault Indication (FEFI) bit when 100FX mode is enabled, and indicates when a FEFI has been detected. FEFI is an alternative in-band signaling method that is composed of 84 consecutive ‘1’s followed by one ‘0’. When the SR8201F/FL/FN detects this pattern three times, Reg.1.4 is set, which means the transmit path (the Remote side’s receive path) has a problem. On the other hand, if an incoming signal fails to cause a ‘Link OK’, the SR8201F/FL/FN will start sending this pattern, which in turn causes the remote side to detect a Far End Fault. This means that the receive path has a problem from the point of view of the SR8201F/FL/FN. The FEFI mechanism is used only in 100Base-FX mode. 11. Wake-On-LAN (WOL) 11.1 Magic Packet and Wake-Up Frame Format The SR8201F/FL/FN can monitor the network for a Wake-Up Frame or a Magic Packet, and notify the system via the PMEB (Power Management Event; ‘B’ means low active) pin when such a packet or event occurs. The system can then be restored to a normal state to process incoming jobs. The PMEB pin mustbe connected with a 4.7kohm resistor and pulled up to 3.3V. When the Wake-Up Frame or a Magic Packet is sent to the PHY, the PMEB pin will be set low to notify the system to wake up. Refer to the WOL application note for details. 2017-11-28 Ver1.1 34 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Magic Packet Wake-Up occurs only when the following conditions are met: l The destination address of the received Magic Packet is acceptable to the SR8201F/FL/FN, e.g., a broadcast, multicast, or unicast packet addressed to the current SR8201F/FL/FN. l The received Magic Packet does not contain a CRC error. l The Magic Packet pattern matches; i.e., 6 * FFh + MISC (can be none) + 16 * DID (Destination ID) in any part of a valid Ethernet packet. A Wake-Up Frame event occurs only when the following conditions are met: l The destination address of the received Wake-Up Frame is acceptable to the SR8201F/FL/FN, e.g., a broadcast, multicast, or unicast address to the current SR8201F/FL/FN. l The received Wake-Up Frame does not contain a CRC error. l The 16-bit CRC of the received Wake-Up Frame matches the 16-bit CRC of the sample Wake-Up Frame pattern given by the local machine’s OS. Or, the SR8201F/FL/FN is configured to allow direct packet wake up, e.g., a broadcast, multicast, or unicast network packet. Note 1: 16-bit CRC: The SR8201F/FL/FN supports eight long-Wake-Up frames (covering 128 mask bytes from offset 0 to 127 of any incoming network packet). CRC16 polynomial=x16+x12+x5+1. Note 2: Refer to the WOL Application Note for detailed Wake-On-LAN register settings and waveform timings. 11.2 Active Low Wake-On-LAN When the PHY receives a Wake-Up Frame or a Magic Packet from the link partner, the PMEB pin will go low and the MAC will wake up after a T cycle. The PMEB pin will be reset to high via the system or MAC (Two figures below ). Refer to the WOL Application Note for details. Figure 15. Active Low When Receiving a Magic Packet Figure 16. Active Low When Receiving a Wake-Up Frame 2017-11-28 Ver1.1 35 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 11.3. Pulse Low Wake-On-LAN When the PHY receives a Wake-Up Frame or a Magic Packet from the link partner, the PMEB pin will go low for a period (84ms, 168ms (default), 336ms, or 672ms; set through the MDC/MDIO), and will wake up after a T cycle (Two figures below). Refer to the WOL Application Note for details. Figure 17. Pulse Low When Receiving a Magic Packet Figure 18. Pulse Low When Receiving a Wake-Up Frame 11.4 Wake-On-LAN Pin Types (MII Mode) Table 43. Wake-On-LAN Pin Types (MII Mode) Normal Name Type WOL Enable 100M 10M Idle TXC O/PD 25M CLK Output 2.5M CLK Output 2.5M CLK Output O (2.5M/25M)/L/PD1 TXEN I/PD I I I I/PD TXD[0:3] I/PD I I I I/PD RXC O/PD 25M CLK Output 2.5M CLK Output 2.5M CLK Output O (2.5M/25M)/PD2 COL LI/O/PD O O O O or PD2 CRS LI/O/PD O O O O or PD2 RXDV LI/O/PD O O O O or PD2 RXD[0:2] O/PD O O O O or PD2 RXD[3] LI/O/PD O O O O or PD2 RXER LI/O/PD O O O O or PD2 MDC I/PU I I I I/PU MDIO IO/PU IO IO IO IO/PU Note 1: If TX Isolate=1, the TXC is halted and the pin type is ‘L’.Set page0, register0, and bit10=1 to change the TXC pin type to ‘PD’. 2017-11-28 Ver1.1 36 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Note 2: If RX Isolate=1, all the MII RX interfaces are halted and the pin types are ‘PD’. 11.5 Wake-On-LAN Pin Types (RMII Mode) Table 44. Wake-On-LAN Pin Types (RMII Mode) Normal Name Type WOL Enable 100M TXC (REF_CLK)1 IO/PD 10M Idle 50M CLK 50M CLK 50M CLK Input/Output Input/Output Input/Output I/O (50M)2 TXEN I/PD I I I I/PD TXD[0:1] I/PD I I I I/PD CRS_DV LI/O/PD O O O O or PD3 RXD[0:1] O/PD O O O O or PD3 RXER LI/O/PD O O O O or PD3 MDC I/PU I I I I/PU MDIO IO/PU IO IO IO IO/PU Note 1: If TXC (REF_CLK) is in input mode (MAC to PHY), the REF_CLK cannot halt at WOL Enable. Note 2: When REF_CLK is in output mode (PHY to MAC), the REF_CLK cannot halt (always toggles 50MHz out). To set the TXC pin type to ‘PD’, set page0, register0, bit10=1. Note 3: If RX Isolate=1, all RMII RX interfaces are halted and the pin types are ‘PD’. 12. Energy Efficient Ethernet (EEE) The SR8201F/FL/FN supports IEEE 802.3az-2010, also known as Energy Efficient Ethernet (EEE), at 10Mbps and 100Mbps. It provides a protocol to coordinate transitions to/from a lower power consumption level (Low Power Idle mode) based on link utilization. When no packets are being transmitted, the system goes to Low Power Idle mode to save power. When packets need to be transmitted, the system returns to normal mode, and does this without changing the link status and without dropping/corrupting frames. To save power, when the system is in Low Power Idle mode, most of the circuits are disabled; however, the transition time to/from Low Power Idle mode is kept small enough to be transparent to upper layer protocols and applications. EEE also specifies a negotiation method to enable link partners to determine whether EEE is supported. Refer to http://www.ieee802.org/3/az/index.html for more details. Refer to the ‘SR8201(F_FL_FN)_Ethernet_Transceiver_(R)MII_EEE_App_Note’ for EEE MII/RMII power saving mode register settings. 13. Spread Spectrum Clock (SSC) The RMII REF_CLK path can be a source of EMI noise. Spread Spectrum Clock (SSC) spreads the REF_CLK signal across a wider bandwidth, reducing the peak radiated energy at any one frequency, and lowering unwanted EMI noise. The SSC function is enabled by default when using RMII REF_CLK output mode (see Page 7 Register 24 Spread Spectrum Clock Register, page 25). 2017-11-28 Ver1.1 37 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Figure 19. Spectrum Spread Clock 2017-11-28 Ver1.1 38 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Electrical Characteristics 1. DC Characteristics 1.1 Absolute Maximum Ratings Table 45. Absolute Maximum Ratings Parameter Symbol Supply Voltage 3.3V Range DVDD33, AVDD33 Supply Voltage 1.05V* DVDD10, DVDD10OUT, AVDD10OUT Input Voltage DC Input Units -0.4 ~ 3.7 V -0.1 ~ 1.26 V -0.3 ~ Corresponding Supply Voltage V +0.5V Output Voltage DC Output Storage Temperature -0.3 ~ Corresponding Supply Voltage +0.5V N/A V o C -55 ~ 125 Note: The internal linear regulator output voltage is 1.1V. 1.2 Recommend Operation Conditions Table 46. Recommend Operation Conditions Parameter Supply Voltage VDD Pins Range Typical Units DVDD33, AVDD33 2.97 ~ 3.63 3.63 V 1.00 ~ 1.16* 1.16 V 0 ~70 70 o 125 o DVDD10, DVDD10OUT, AVDD10OUT Ambient Operating Temperature TA Maximum Junction Temperature - - ~125 C C 1.3 Power On and PHY Reset Sequence The SR8201F/FL/FN needs 150ms power on time. After 150ms it can access the PHY register from MDC/MDIO Figure 20. Power On and PHY Reset Sequence 2017-11-28 Ver1.1 39 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 47. Power On and PHY Reset Sequence Symbol Description Minimum Maximum Rt1 3.3V Rise Time@ Power On Sequence 100µs - Rt2 1.05V Rise Time@ Power On and PHY Reset Sequence 100µs - Rt3 PHYRSTB De-Assert after PHY_3.3V Stable 80µs - Note: Rt2 requires 100µs Rise Time only when using an external 1.05V power supply. 1.4 RMII Input Mode Power Dissipation The whole system power dissipation (including regulator loss) is shown in Table below. Table 48. RMII Input Mode Power Dissipation (Whole System) Symbol Condition SR8201F SR8201FN SR8201FL Unit P10IDLE 10Base-T Idle (EEE not Enabled) 36.3 36.3 36.3 mW 10Base-T Full Duplex 108.9 118.8 108.9 mW 100Base-T Idle (EEE not Enabled) 148.5 151.8 155.1 mW 100Base-T Idle with EEE 56.1 56.1 62.7 mW P100F 100Base-T Full Duplex 174.9 178.2 178.2 mW PLDPS Link Down Power Saving 20.328 17.985 23.1 mW 3.3 mW P10F P100IDLE P100IDLEEEE PPHYRST PHY Reset 3.3 3.3 Note: Setting page 4 register 21 bit12 to ‘1’ will reduce power consumption when the system is idle. 1.5 Input Voltage: Vcc Table 49. Input Voltage: Vcc Symbol Condition Minimum Maximum TTL VIH Input High Voltage - 0.5*Vcc Vcc+0.5V TTL VIL Input Low Voltage - -0.5V 0.7V TTL VOH Output High Voltage IOH=-8mA 0.65*Vcc Vcc TTL VOL Output Low Voltage IOL=8mA - 0.7V TTL IOZ Tri-State Leakage Vout=Vcc or GND -110µA 10µA IIN Input Current Vin=Vcc or GND -1µA 10µA IPL Input Current with Internal Weakly Pulled Vin=Vcc or GND -1µA 100µA Vin=Vcc or GND -110µA 10µA Low Resistor IPH Input Current with Internal Weakly Pulled High Resistor PECL VIH PECL Input High Voltage - Vdd-1.16V Vdd-0.88V PECL VIL PECL Input Low Voltage - Vdd-1.81V Vdd-1.47V PECL VOH PECL Output High Voltage - Vdd-1.02V - PECL VOL PECL Output Low Voltage - - Vdd-1.62V 2. AC Characteristics All output timing assumes equivalent loading between 10pF and 25pF that includes PCB layout traces and other connected devices (e.g., MAC). 2017-11-28 Ver1.1 40 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 2.1 MII Transmission Cycle Timing Figure 21. MII Interface Setup/Hold Time Definitions Figures below show show an example of a packet transfer from MAC to PHY on the MII interface. Figure 22. MII Transmission Cycle Timing-1 6 7 Figure 23. MII Transmission Cycle Timing-2 2017-11-28 Ver1.1 41 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 50. MII Transmission Cycle Timing Symbol t1 t2 t3 t4 t5 t6 t7 Description Minimum Typical Maximum Unit 100Mbps 14 20 26 ns 10Mbps 140 200 260 ns 100Mbps 14 20 26 ns 10Mbps 140 200 260 ns 100Mbps - 40 - ns 10Mbps - 400 - ns TXEN, TXD[0:3] 100Mbps 10 - - ns Setup to TXCLK Rising Edge 10Mbps 5 - - ns TXEN, TXD[0:3] 100Mbps 0 - - ns Hold After TXCLK Rising Edge 10Mbps 0 - - ns TXEN Sampled to CRS High 100Mbps - - 40 ns 10Mbps - - 400 ns 100Mbps - - 160 ns 10Mbps - - 2000 ns TXCLK High Pulse Width TXCLK Low Pulse Width TXCLK Period TXEN Sampled to CRS Low 2.2 MII Reception Cycle Timing Figures below show an example of a packet transfer from PHY to MAC on the MII interface. Figure 24. MII Reception Cycle Timing-1 2017-11-28 Ver1.1 42 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Figure 25. MII Reception Cycle Timing-2 Table 51. MII Reception Cycle Timing Symbol Description Minimum RXCLK High Pulse Width t1 Typical Maximum Unit 100Mbps 14 20 26 ns 10Mbps 14 200 260 ns 0 RXCLK Low Pulse Width t2 100Mbps 14 20 26 ns 10Mbps 14 200 260 ns 0 RXCLK Period 100Mbps - 40 - ns 10Mbps - 400 - ns RXER, RXDV, 100Mbps 10 - - ns RXD[0:3] Setup to RXCLK Rising Edge 10Mbps 10 - - ns RXER, RXDV, RXD[0:3] 100Mbps 10 - - ns Hold After RXCLK Rising Edge 10Mbps 10 - - ns Receive Frame to CRS High 100Mbps - - 130 ns 10Mbps - - 2000 ns 100Mbps - - 240 ns 10Mbps - - 1000 ns 100Mbps - - 150 ns 10Mbps - - 3200 ns End of Receive Frame to Sampled Edge of 100Mbps - - 120 ns RXDV 10Mbps - - 1000 ns t3 t4 t5 t6 End of Receive Frame to CRS Low t7 Receive Frame to Sampled Edge of RXDV t8 t9 2017-11-28 Ver1.1 43 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 2.3 RMII Transmission and Reception Cycle Timing Figure 26. RMII Interface Setup, Hold Time, and Output Delay Time Definitions Figure 27. RMII Transmission and Reception Cycle Timing 2017-11-28 Ver1.1 44 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Table 52. RMII Transmission and Reception Cycle Timing Symbol Description Minimum Typical Maximum Unit REFCLK Frequency Frequency of Reference Clock - 50 - MHz REFCLK Duty Cycle Duty Cycle of Reference Clock 35 - 65 % T_ipsu_tx_rmii TXD[1:0]/TXEN Setup Time to REFCLK 4 - - ns T_iphd_tx_rmii TXD[1:0]/TXEN Hold Time from REFCLK 2 - - ns T_ophd_rx_rmii RXD[1:0]/CRS_DV/RXER Output Delay Time 2 - - ns from REFCLK Note 1: RMII TX timing can be adjusted by setting page7, register16[11:8]; the minimum adjustable resolution is 2ns. Any changes for these bits are not recommended as the default value is the optimum setting. Note 2: RMII RX timing can be adjusted by setting page7, register16[7:4]; the minimum adjustable resolution is 2ns. Any changes for these bits are not recommended as the default value is the optimum setting. 2.4 MDC/MDIO Timing Figure 28. MDC/MDIO Interface Setup, Hold Time, and Valid from MDC Rising Edge Time Definitions 2017-11-28 Ver1.1 45 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Figure 29. MDC/MDIO Timing Table 53. MDC/MDIO Timing Symbol Description Minimum Maximum Unit t1 MDC High Pulse Width 160 - ns t2 MDC Low Pulse Width 160 - ns t3 MDC Period 400 - ns t4 MDIO Setup to MDC Rising Edge 10 - ns t5 MDIO Hold Time from MDC Rising Edge 10 - ns t6 MDIO Valid from MDC Rising Edge 0 300 ns 2.5 Transmission without Collision Figure below shows an example of a packet transfer from MAC to PHY. Figure 30. MAC to PHY Transmission without Collision 2017-11-28 Ver1.1 46 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet 2.6 Reception without Error Figure below shows an example of a packet transfer from PHY to MAC. Figure 31. PHY to MAC Reception Without Error 3. Crystal Characteristics Table 54. Crystal Characteristics Symbol Fref Fref Stability Fref Tolerance Description/Condition Parallel Resonant Crystal Reference Frequency, Fundamental Mode, AT-Cut Type. Parallel Resonant Crystal Frequency Stability, Fundamental Mode, AT-Cut Type. Ta=0°C~70°C. Parallel Resonant Crystal Frequency Tolerance, Fundamental Mode, AT-Cut Type. Ta=25°C. Minimum Typical Maximum Unit - 25 - MHz -30 - +30 ppm -50 - +50 ppm 40 - 60 % Fref Duty Cycle Reference Clock Input Duty Cycle. ESR Equivalent Series Resistance. - - 30 Ω DL Drive Level. - - 0.3 mW - - 500 ps Jitter Broadband Peak-to-Peak Jitter1, 2 Note 1: 25KHz to 25MHz RMS < 3ps. Note 2: Broadband RMS < 9ps. 4. Oscillator Requirements Table 55. Oscillator Requirements Parameter Condition Minimum Typical Maximum Unit Frequency - - 25/50 - MHz Ta = 0°C~+70°C -30 - 30 ppm Ta = 25°C -50 - 50 ppm Duty Cycle - 40 - 60 % Broadband Peak-to-Peak Jitter1, 2 - - - 500 ps Vpeak-to-peak - 3.15 3.3 3.45 V Rise Time (10%~90%) - - - 10 ns Fall Time (10%~90%) - - - 10 ns Operating Temperature Range - 0 - 70 °C Frequency Stability Frequency Tolerance Note 1: 25KHz to 25MHz RMS < 3ps. 2017-11-28 Ver1.1 47 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Note 2: Broadband RMS < 9ps. 5. Clock Requirements Table 56. Clock Requirements Parameter Minimum Typical Maximum Unit Frequency - 25/50 - MHz Frequency Stability -30 - 30 ppm Frequency Tolerance -50 - 50 ppm Duty Cycle 40 - 60 % - - 500 ps 3.15 3.3 3.45 V - - 10 ns - - 10 ns Broadband Peak-to-Peak Jitter1, 2 Vpeak-to-peak Rise Time (10%~90%) Fall Time (10%~90%) Note 1: 25KHz to 25MHz RMS < 3ps. Note 2: Broadband RMS < 9ps. 6. Transformer Characteristics Table 57. Transformer Characteristics 2017-11-28 Parameter Transmit End Receive End Turn Ratio 1:1 CT 1:1 CT Inductance (min.) 350µH @ 8mA 350µH @ 8mA Ver1.1 48 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet Package Diagram QFN-32-5×5-0.50 SYMBOL 2017-11-28 Unit: mm MILLIMETER MIN NOM MAX A 0.70 0.75 0.80 A1 - 0.01 0.05 b 0.18 0.25 0.30 c 0.18 0.20 0.25 D/E 4.90 5.00 5.10 D2/E2 3.50REF e 0.50BSC Nd/ Ne 3.50BSC L 0.35 0.40 0.45 h 0.30 0.35 0.40 Ver1.1 49 / 51 CoreChips ShenZhen CO.,Ltd SR8201F_VB Datasheet QFN-48-6×6-0.40 SYMBOL MILLIMETER MIN NOM MAX A 0.75 0.85 1.00 A1 0.00 0.02 0.05 b 0.15 0.20 0.25 c 0.20REF D/E 6.00BSC D2/E2 4.05 4.4 e 0.4BSC Nd /Ne 4.4BSC L 2017-11-28 Unit: mm 0.30 0.40 Ver1.1 4.65 0.50 50 / 51 CoreChips ShenZhen CO.,Ltd LQFP-48-7×7-0.50 2017-11-28 SR8201F_VB Datasheet Unit: mm Ver1.1 51 / 51 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 单芯片 10/100M 以太网 PHY 收发器 概述 主要特点 l 支持IEEE 802.3az-2010(EEE) 是单芯片/单端口的10/100Mbps以太网PHY收发器。芯 l 兼容100Base-TX IEEE 802.3u 片支持: l 兼容10Base-T IEEE 802.3 MII (介质独立接口) l 支持MII模式 RMII (简化介质独立接口) l 支持RMII模式 SR8201F/FL/FN实现了所有10/100M以太网物理 l 全/半双工工作 层,包括:物理编码子层 (PCS),物理介质接入层 l 双绞线或者光纤模式输出 (PMA),双绞线物理介质相关子层 (TP-PMD),10Base- l 支持自协商 TX编码器/译码器和双绞线介质连接单元(TPMAU)。 同 l 支持待机模式 时芯片支持端口自动翻转(Auto-MDIX)。 l 支持断连省电模式 l 基线漂移 (BLW)补偿 l 支持Auto-MDIX SR8201F/FL/FN采用了高级CMOS制程,可以满足 l 支持中断功能 低电压和低功耗的要求。片上DSP数字信号处理技术使 l 支持局域网唤醒(WOL) 得该芯片在所有工作条件下都表现了完美的性能。 l 自适应均衡 l 自动极性矫正 l LED接口 SR8201F-VB、 SR8201FL-VB和SR8201FN-VB都 SR8201F/FL/FN支持PECL接口的外部100Base-FX 光纤收发器。 应用范围 n SR8201F和SR8201FL提供两个网络状态 的LED l MAU(介质连接单元) l DTV(数字电视) l CNR(网络通信扩展卡) l 支持25MHz晶振或外部振荡输入 l 游戏控制台 l RMII模式支持50MHz外部时钟输入 l 网络打印及办公设备 l 支持50MHz时钟输出作为MAC的时钟源 l DVD播放和记录设备 l 1.1V和3.3V低功耗电压源;1.1V是由内部生成 l 以太网HUB(集线器) l 小型化绿色封装: l 以太网交换机 2017-12-08 n V1.0 SR8201FN提供三个网络状态的LED n QFN32‘绿色’封装(SR8201F) n LQFP48‘绿色’封装(SR8201FL) n QFN ‘绿色’封装(SR8201FN) 1/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 内部框图 图 1. 内部框图 2017-12-08 V1.0 2/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 应用框图 图 2. 应用框图 2017-12-08 V1.0 3/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 管脚排列图 SR8201F (32-Pin) SR8201F 图 3. SR8201F QFN-32封装图 2017-12-08 V1.0 4/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 SR8201FN (48-Pin) SR8201FN 图4. SR8201FN QFN-48封装图 2017-12-08 V1.0 5/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 SR8201FL (48-Pin) SR8201FL 图 5. SR8201FL LQFP-48封装图 2017-12-08 V1.0 6/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 管脚定义 1. MII 接口 表 1. MII 接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 15 22 22 符号 类型 TXC O/PD 说明 发送时钟。 此管脚提供一个连续的时钟作为TXD[3:0]和TXEN 信号的工作时钟。 TXC在100Mbps模式下是25MHz,在10Mbps模式下 是2.5MHz。 20 27 27 TXEN I/PD 发送允许信号。 - 12 12 TXER I/PD 发送错误。 16 23 23 TX[0] I/PD 17 24 24 TXD[1] I/PD 18 25 25 TXD[2] I/PD 19 26 26 TXD[3] I/PD 13 19 19 RXC O/PD 发送数据。 接收时钟。 此管脚提供一个连续的时钟作为RXD[3:0]和RXDV 信号的工作时钟。 RXC在100Mbps模式下是25MHz,10Mbps模式下 是2.5MHz。 27 38 38 COL O/PD 冲突检测。 当介质上检测一个冲突时,COL为高电平。 26 36 36 CRS/ O/PD 如果介质不在空闲状态,此管脚信号有效。 CRS_DV 8 13 13 RXDV 载波检测。 LI/O/P 接收数据有效。 D 在RXC上升沿时有效。 一个内部的下拉电阻设置芯片工作于MII模式的 默认值;外部的4.7KΩ的上拉电阻设置芯片工作 于RMII模式。 电源上电加载成功后,该管脚作为接收数据有效 的管脚来工作。 2017-12-08 V1.0 7/53 深圳市和芯润德科技有限公司 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 9 14 10 SR8201F_VB 说明书 符号 类型 说明 14 RXD[0] O/PD 16 16 RXD[1] - 17 17 RXD[2] LI/O/PD 在RXC上升沿时有效。 注1:RXD[1]内部的下拉电阻设置芯片工作于默 O/PD 11 - - RXD[2]/ O/PD 接收数据。 认的LED功能;外部的4.7KΩ的上拉电阻使能 SR8201F启用WOL功能。 INTB 注2:SR8201F的11管脚名为RXD[2]/INTB。当在 RMII模式下,此管脚可用于中断功能。见表9的 INTB描述。 12 18 18 RXD[3]/ LI/O/P 接收数据。 CLK_CT D 同时RXD[3]/CLK_CTL也是RMII模式下的时钟设 置脚:. L 1:REF_CLK输入模式; 0:REF_CLK输出模式; 一个内部的下拉电阻设置REF_CLK为默认的输出 模式。 28 39 39 RXER/ LI/O/P 接收数据错误。 FXEN D 如果一个5B的解码器错误产生,例如,无效的 /J/K/,无效的/T/R/,甚至无效的符号,此管脚将 会拉高。 同时此管脚用于介质的工作模式设置: 1:Fiber模式; 0:UTP模式; 一个内部的下拉电阻设置芯片工作于默认的UTP 模式。外部的 4.7KΩ上拉电阻设置芯片工作于 Fiber模式。 电源上电加载成功后,此管脚为接收错误管脚。 2. RMII 接口 表 2.RMII 接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 15 22 22 符号 类型 TXC IO/P D 说明 接收和发送的50MHz参考时钟。输入输出方向由 页7寄存器16设定。 默认值为参考时钟输出模式. 26 36 36 CRS/ O/PD 载波/接收数据有效。 CRS_DV 20 27 27 TXEN I/PD 发送启用。 16,17 23,24 23,24 TXD[0:1] I/PD 发送数据。 2017-12-08 V1.0 8/53 深圳市和芯润德科技有限公司 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 9,10 14,16 14,16 SR8201F_VB 说明书 符号 类型 说明 RXD[0:1 O/PD 接收数据。 RXER/ LI/O/P 接收错误。 FXEN D 符号 类型 ] 28 39 39 3. 串行管理接口 表 3.串行管理接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 22 30 30 MDC I/PU 说明 管理数据时钟。 此管脚提供了一个到MDIO的同步时钟,它可以 是与发送TXC和接受RXC的异步时钟。此时钟频 率最高可达2.5MHz。内部的一个弱的上拉电阻防 止总线浮空。 23 31 31 MDIO IO/PU 管理数据输入/输出。 此管脚提供了双向信号用于传输管理信息 4. 时钟接口 表 4.时钟接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 32 43 43 符号 类型 CKXTAL IO 说明 25MHz 晶振输出。 此管脚提供了25MHz晶振输出。 2 如果使用外部的25MHz/50MHz振荡器或者时 钟,振荡器或者时钟输出连接CKXTAL2管脚。 31 42 42 CKXTAL I 25MHz晶振输入。 此管脚提供了25MHz晶振输入。 1 当一个外部的振荡器或者时钟输出连接CKXTAL2 管脚时,此管脚必须与地短路。 2017-12-08 V1.0 9/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 5. 10M/100M 网络接口 表 5.10M/100M 网络接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 3 1 4 2 符号 类型 1 MDI+[0] IO 2 MDI-[0] 说明 差分发送输出对。 100Base-TX,100Base-FX和10Base-T模式共 用。当配置为100Base-TX,输出是MLT-3编码器 波形;当配置为100Base-FX,输出是伪ECL级。 5 4 4 MDI+[1] 6 5 5 MDI-[1] IO 差分接收输入对。 100Base-TX,100Base-FX和10Base-T模式共 用。 6. 发送偏置接口 表 6.发送偏置接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 1 46 1 符号 类型 RSET I 说明 偏置电阻输入。 此管脚应该通过一个2.49KΩ (1%)电阻接地,以 决定发送DAC的驱动电流。 7. 设备配置接口 表 7.设备配置接口 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 8 13 13 符号 类型 说明 RXDV LI/O/P 接收数据有效。 D 在RXC上升沿时有效。 一个内部的下拉电阻设置芯片工作于MII模式的默 认值;外部的4.7KΩ的上拉电阻设置芯片工作于 RMII模式。 电源上电加载成功后,该管脚作为接收数据有效 的管脚来工作。 10 16 16 RXD[1] LI/O/P 一个内部的下拉电阻设置芯片工作于默认的LED D 功能;外部的4.7KΩ的上拉电阻使能SR8201F启 用WOL功能。 12 18 18 RXD[3]/ CLK_CTL LI/O/P 接收数据。 D 同时RXD[3]/CLK_CTL也是RMII模式下的时钟输 入输出设置脚:. 1:REF_CLK输入模式; 0:REF_CLK输出模式; 一个内部的下拉电阻设置REF_CLK为默认的输出 模式。 2017-12-08 V1.0 10/53 深圳市和芯润德科技有限公司 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 28 39 39 SR8201F_VB 说明书 符号 类型 说明 RXER/ LI/O/P 接收数据错误。 FXEN D 如果一个5B的解码器错误产生,例如,无效的 /J/K/,无效的/T/R/,甚至无效的符号,此管脚将 会拉高。 同时此管脚用于介质的工作模式设置: 1:Fiber模式; 0:UTP模式; 一个内部的下拉电阻设置芯片工作于默认的UTP 模式。外部的 4.7KΩ上拉电阻设置芯片工作于 Fiber模式。 电源上电加载成功后,此管脚为接收错误管脚。 - 34 34 LED0/ PHYAD[0] LI/O/ PU 网络状态LED指示和PHY地址设置。默认可用的 PHY地址是: SR8201F:00000~00011; 24 - - LED0/ LI/O/ PHYAD[0]/ PU SR8201FL: 00100~00111 (当PMEB管脚被拉高) 00000~00011 (当PMEB管脚被拉低) PMEB SR8201FN:00000~00111. 不同设置下LED功能: 25 - 35 - 35 32 LED1/ LI/O/ PHYAD[1] PD LED _Sel 00 LED2/ LI/O/ LED0 ACTALL PHYAD[2] PD LED1 LINK100 LED2 保留 01 10 11 LinkALL/ Link10 / ACTALL ACTALL LINK10 /ACT10 LINK100 LINK100 ACT100 保留 保留 LINK100/ 保留 注:LED_Sel默认值为11。 RXD[1]管脚内部弱的下拉电阻设置SR8201F 的 LED0为默认值的LED功能;外部4.7KΩ的上拉电 阻设置LED0管脚为启用WOL功能。 当WOL功能启用时,PHY地址必须是 00001或者 00011。LED1功能为: LED_Sel LED1 2017-12-08 V1.0 00 01 10 11 LINK LINK LINK LINK100/ 100 100 100 ACT100 11/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 8. 电源地管脚 表 8.电源地管脚 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 7,30 6,41 21 符号 类型 AVDD33 P 说明 3.3V模拟电源输入。 3.3V模拟电路电源。 14 15,21, - DVDD33 P 3.3V数字电源输入。 3.3V数字电路电源。 37 - 28 11 DVDD10 P 1.1V数字电源。 2 48 24 AVDD10O O 模拟电源输出。 需要连接一个0.1µF的陶瓷电容。 UT 连接方式描述在第35页,3.3V电源和电压转换电 路。 29 40 40 DVDD10 O 数字电源输出。 需要连接一个0.1µF的陶瓷电容。 OUT 连接方式描述在第35页,3.3V电源和电压转换电 路。 E-PAD 7, 20,33,47 E-PAD GND P 地 需要连接到一个较大的地平面。数字和模拟的地 共用一个E-Pad。 9. 复位管脚 表 9.复位管脚 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) 7,30 6,41 21 符号 PHYRSTB 类型 I/HZ 说明 低电平复位输入 为了保证一次完整的复位,此管脚必须保持低至 少10ms。 注:WOL功能启用时,保持管脚为高电平(仅 SR8201FN)。 14 15,21, - INTB O/OD 中断 如果链接状态改变、双工模式改变或者自协商失 37 败,该管脚输出低电平表示有效的中断。 此管脚是一个漏极开路设计,并且默认值应通过 4.7KΩ外部电阻拉高。如果没有使用,保持浮 空。 2017-12-08 V1.0 12/53 深圳市和芯润德科技有限公司 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) - 28 11 SR8201F_VB 说明书 符号 类型 说明 RXD[2]/IN O/P 中断 TB D 如果链接状态改变、双工模式改变或者自协商失 败,该管脚输出低电平表示有效的中断。 此管脚是一个漏极开路设计,并且默认值应通过 4.7KΩ外部电阻拉高。如果没有使用,保持浮 空。 备注:此管脚的中断功能仅在RMII模式可用。 2 48 24 PMEB O/O D 电源管理启用。 如果接收到一个魔术封包或者唤醒帧,该管脚输 出低电平表示有效的电源管理状态。 10. NC(未连接)管脚 表 10.NC(未连接)管脚 Pin No Pin No Pin No (8201F) (8201FL) (8201FN) - 3,8,9, 3,7,8, 11, 9,10, 44,45 44,45, 符号 类型 NC - 说明 未连接 47 I=输入,O=输出,I/O=输入/输出,I/PD=输入带下拉,I/PU=输入带上拉,HZ=高阻, LI=上电或复位后加载输入,OD=开漏输出,P=电源 2017-12-08 V1.0 13/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 寄存器描述 本章描述寄存器功能与使用。本章用到的简称说明如下: RW :可读可写 RW/LI :可读可写,复位加载 RO :只读 RW/SC :可读可写,自清除 RC :读清除 SC :自清除 EFUS :从EFuse加载 表 11.寄存器 0 基本模式控制寄存器 地址 名称 描述 模式 0:15 Reset 软件复位。此位带自清除功能,复位完成 RW/ 后恢复为 0。 SC 1:软件复位 默认值 0 0:正常工作 软件复位(设置 bit15 为 1)会将寄存器 0 和寄存器 1 恢复为默认值,同时此行为 将改变内部 PHY 的状态和与 PHY 物理连 接设备的相关状态。 0:14 Loopback loopback RW 0 RW 1 RW 1 设置发送到接收数据路径。 1:启用 loopback 0:13 Speed Selection 0:正常工作 网络速度 1:100Mbps 0:10Mbps 在完成自协商完成后,此位表示当前速度 状态: 1:100Base-T 0:10Base-T 当 100Base-FX 模式启用,此位等于 1 且 只读。 0:12 Auto Negotiation Enable 自协商功能 1:启用自协商;bits13 和 8 将被忽略; 0:禁用自协商;bits13 和 8 将确定链接 速度和数据传输模式。 当 100Base-FX 模式启用,此位等于 0 且 只读。 0:10 Isolate 隔离 RW 0 1:从 MII/RMII 接口隔离 PHY。PHY 依 旧能够响应 MDC/MDIO; 0:正常工作。 2017-12-08 V1.0 14/53 深圳市和芯润德科技有限公司 地址 名称 0:11 Power Down SR8201F_VB 说明书 描述 Power Down 模式 默认值 RW 0 RW/ SC 0 RW 1 RW 0 - - 此位关闭 PHY 芯片的内部电源,包括内 部晶振电路。 MDC,MDIO 依旧允许 MAC 访问。 1:电源休眠 0:9 0:8 0:正常工作 Restart Auto 重启自协商 Negotiation 1:重启自协商 Duplex Mode 0:正常工作 如果自协商被禁用(bit0:12=0),此位设置 双工模式: 1:全双工 0:半双工 自协商使能且在自协商完成之后,此位指 示双工状态: 1:全双工 0:7 Collision Test 0:半双工 碰撞测试 1:碰撞测试启用 0:正常运行 当设置的时候,此位将引起 COL 信号在 TXEN 中在 512-bit 时间内有效.COL 信号 将会失效在 4-bit 时间内,回应给 RXEN 失效. 0:6~0 Reserved 保留 表 12.寄存器 1 基本模式状态寄存器 地址 名称 1:15 100Base-T4 描述 1:支持启用 100Base-T4 模式 默认值 RO 0 RO 1 RO 1 RO 1 RO 1 - - 0:不支持 100Base-T4 1:14 100Base_TX_FD 1:支持启用 100Base-TX 全双工 0:不支持 100Base-TX 全双工 1:13 100Base_TX_HD 1:支持启用 100Base-TX 半双工 0:不支持 100Base-TX 半双工 1:12 10Base_T_FD 1:支持启用 10Base-T 全双工 0:不支持 10Base-T 全双工 1:11 10_Base_T_HD 1:支持启用 10Base-T 半双工 0:不支持 10Base-T 半双工 1:10~7 2017-12-08 Reserved 保留 V1.0 15/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 地址 名称 描述 模式 默认值 1:6 MF Preamble SR8201F/FL/FN 允 许 接 收 前 导 抑 制 的 管 理 RO 1 Suppression 帧。 RO 0 RC 0 RO 1 RO 0 RO 0 RO 1 模式 默认值 RO 001Ch 模式 默认值 分配到 OUI 的第 0 到 5 位。 RO 110010 型号 RO 000001 版本号 RO 0110 1:5 Auto Negotiation Complete 1:4 Remote Fault 1:自协商过程完成 0:自协商过程未完成 1:检测到远程错误情况(读取清除) 0:未检测到远程错误情况 当在 100Base-FX 模式下,此位意味着检测到 信号的远端错误(见 8.10,第 37 页,远端错 误指示)。 1:3 Auto-Negotiation Ability 1:2 Link Status 1:PHY 能执行自协商 0:PHY 不能执行自协商 1:已建立有效链接 0:未建立有效链接 此位指明从最后一次读取时,链接是否丢失。 对现在的链接状态,读取寄存器两次. 1:1 Jabber Detect 1:检测到 Jabber 条件 0:未检测到 jabber 条件 1:0 Extended 1:延伸寄存器能力 Capability 0:无延伸寄存器能力 表 13.寄存器 2 PHY 标识寄存器 1 地址 名称 2:15~0 OUI 描述 分别到 OUI 的第 6 到第 21 位组织唯一识别 符。 表 14.寄存器 3 PHY 标识寄存器 2 地址 名称 3:15~10 OUI_LSB 3:9~4 Model Number 3:3~0 Revision Number 2017-12-08 描述 V1.0 16/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 表 15.寄存器 4 自协商消息寄存器(ANAR) 此寄存器包括此设备要在自协商期间发送到链路伙伴的自协商能力 地址 名称 4:15 Next Page 描述 下页字节 模式 默认值 RW 0 RO 0 RW 0 - - RW 0 0:发送首要能力数据页 1:发送协议规则数据页 4:14 Acknowledge 1:确认接收到链路伙伴能力数据字 0:未接收到确认信号 4:13 Remote Fault 1:通知远程错误检测能力 0:不通知远程错误检测能力 4:12 Reserved 4:11 Asymmetric 保留 1:支持通知非对称暂停 PAUSE 0:不支持非对称暂停 4:10 Pause 保留 RW 0 4:9 100Base-T4 1:本地节点支持 100Base-T4 RO 0 RW 1 RW 1 RW 1 RW 1 RO 00001 0:本地节点不支持 100Base-T4 4:8 100Base-TX-FD 1:本地节点支持 100Base-TX 全双工 0:本地节点不支持 100Base-TX 全双工 4:7 100Base-TX 1:本地节点支持 100Base-TX 0:本地节点不支持 100Base-TX 4:6 10Base-T-FD 1:本地节点支持 10Base-T 全双工 0:本地节点不支持 10Base-T 全双工 4:5 10Base-T 1:本地节点支持 10Base-T 0:本地节点不支持 10Base-T 4:4~0 Selector Field 此节点支持二进制编码选择器.目前只有 CSMA/CD 00001 是特殊.没有其他协议支持. 表 16.寄存器 5 自协商链路伙伴能力寄存器(ANLPAR) 此寄存器在自协商期间接收链路伙伴的消息能力。如果支持下一页功能,在一次成功的自协商之后内容改变. 地址 名称 5:15 Next Page 描述 下页字节 模式 默认值 RO 0 RO 0 RO 0 0:发送首要能力数据页 1:发送协议规则数据页 5:14 Acknowledge 1:链路伙伴确认接收到链路伙伴能力数据字 0:未接收到确认信号 5:13 Remote Fault 1:链路伙伴指明一个远程错误 0:链路伙伴未指明一个远程错误 2017-12-08 V1.0 17/53 深圳市和芯润德科技有限公司 地址 名称 5:12 Reserved 5:11 Asymmetric Pause SR8201F_VB 说明书 描述 保留 1:链路伙伴支持非对称流量控制 模式 默认值 - - RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 00001 模式 默认值 - - RC 0 RO 0 RO 0 RC 0 RO 0 0:当自协商启用,表示链路伙伴不支持非对 称流量控制。此字节指示链路伙伴能力。 5:10 Pause 1:链路伙伴支持流量控制 0:当自协商启用,表示链路伙伴不支持流量 控制。此字节指示链路伙伴能力。 5:9 100Base-T4 1:链路伙伴支持 100Base-T4 0:链路伙伴不支持 100Base-T4 5:8 100Base-TX-FD 1:链路伙伴支持 100Base-TX 全双工 0:链路伙伴不支持 100Base-TX 全双工 5:7 100Base-TX 1:链路伙伴支持 100Base-TX 0:链路伙伴不支持 100Base-TX 5:6 10Base-T-FD 1:链路伙伴支持 10Base-T 全双工 0:链路伙伴不支持 10Base-T 全双工 5:5 10Base-T 1:链路伙伴支持 10Base-T 0:链路伙伴不支持 10Base-T 5:4~0 Selector Field 链路伙伴的二进制编码节点选择器.目前只有 CSMA/CD 00001 是特殊的 表 17.寄存器 6 自协商扩展寄存器(ANER) 此寄存器包含 Nway 自协商的额外状态. 地址 名称 6:15~5 Reserved 6:4 Parallel Detection 1:并行检测功能时检测到一个错误 Fault 0:并行检测功能时没有检测到错误 6:3 Link Partner Next Page Ability 6:2 Local Next Page Ability 6:1 Page Received 描述 保留 1:链路伙伴有下页能力 0:链路伙伴没有下页能力 1:本地设备有下页能力 0:本地设备没有下页能力 1:收到一个新页 0:未收到一个新页 6:0 Link Partner Auto-Negotiation Ability 2017-12-08 如果本地设备自协商功能使能,此位意味着: 1:链路伙伴有自协商能力 0:链路伙伴没有自协商能力 V1.0 18/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 表 18.第 0 页 寄存器 13 MACR (MMD 访问控制寄存器; 地址 0x0D) 位 名称 读写 默认值 13:15~14 Function WO 0 描述 00:地址 01:数据; 无后期增加 10:数据; 后期读写增加 11:数据; 后期只写增加 13:13~5 Reserved RO 000000000 13:4~0 DEVAD WO 0 保留 设备地址 注 1:用于和 MAADR (寄存器 14) 连接来访问到MMD的地址空间 注 2:如果 MAADR访问的是地址 (Function=00),那它直接指向MMD中的DEVAD指定的地址寄存器。 注 3:如果 MAADR访问的是数据 (Function!=00),那它访问的是DEVAD区域和MMD地址寄存器 指向的MMD寄存 器的数据。 表 19.第 0 页 寄存器 14 MAADR (MMD 访问地址数据寄存器; 地址 0x0E) 位 名称 读写 默认值 14:15~0 Address Data RW 0x0000 描述 13.15:14=00 à MMD和DEVAD的地址寄存器 13.15:14=01,10,or 11 à MMD和DEVAD的数据寄存器,由他的地址寄 存器的内容指出 备注:用于和 MACR (寄存器 13)连接去提供访问到 MMD 的地址空间 表 20.寄存器 24 电源省电模式寄存器(PSMR) 地址 名称 15 Enpwrsave 描述 开启电源省电模式 模式 默认值 RW 1 - - 此位可以通过软件复位来返回到默认值 14~0 Reserved 保留 备注:RMII 输出模式需要 REF_CLK 的输出时钟,LDPS (链接断开省电功能)必须禁用 (见 表 43,第 36 页). 表 21.寄存器 28 光纤模式和 Loopback 寄存器 地址 名称 28:15~6 Reserved 28:5 Fxmode 28:4~3 Reserved 28:2 En_autoMDIX 2017-12-08 描述 保留 光纤模式 保留. 自动 DIX 功能 V1.0 模式 默认值 - - RW 0 - - RW 1 19/53 深圳市和芯润德科技有限公司 地址 名称 28:1 Force_MDI SR8201F_VB 说明书 描述 强制 MDI/MDIX 模式 模式 默认值 RW 1 - - 模式 默认值 RC 0 RC 0 RC 0 - - RC 0 - - RO 0000 模式 默认值 - - RW 00000000 如果自动 MDIX 功能为禁止: 1:强制 MDI 0:强制 MDIX 28:0 Reserved 保留 表 22.寄存器 30 中断指示器和 SNR 显示寄存器 地址 名称 30:15 Anerr 描述 自协商错误中断 1:启用 0:禁用 30:14 Spdchg 速度模式改变中断 1:启用 0:禁用 30:13 Duplexchg 双工模式改变中断 1:启用 0:禁用 30:12 Reserved 30:11 Linkstatusch g 保留 链接状态改变中断 1:启用 0:禁用 30:10~4 Reserved 30:3~0 SNR_O 保留 这4位显示信噪比的值 表 23.寄存器 31 页选择寄存器 地址 名称 31:15~8 Reserved 31:7~0 PAGE SEL 描述 保留 选择页地址:00000000~11111111. 表 24.第 4 页 寄存器 16 EEE 能力启用寄存器 地址 名称 16:15~14 Reserved 16:13 EEE_10_cap 16:12 EEE_nway_en 16:11~10 Reserved 地址 名称 2017-12-08 描述 保留 启用EEE 10M能力 启用自协商时的EEE 100M下页交换 保留 描述 V1.0 模式 默认值 - - RW 1 RW/ EFUS 1 - - 模式 默认值 20/53 深圳市和芯润德科技有限公司 16:9 SR8201F_VB 说明书 启用当TX在安静状态下关闭100M TX的能力。 Tx_quiet_en RW/ EFUS 1 RW/ EFUS 1 - - 模式 默认值 - - RW 0 - - RO 0 当EEE启用时,此位建议设置为1。 16:8 启用当RX在安静状态下关闭100M RX的能力。 Rx_quiet_en 当EEE启用时,此位建议设置为1。 16:7:0 保留 Reserved 表 25.第 4 页 寄存器 21 EEE 能力寄存器 地址 名称 21:15~13 Reserved 21:12 Rg_dis_ldvt 21:11~1 Reserved 21:0 EEE_100_cap 描述 保留 设置为1时,禁用模拟电路的线驱动。 保留 自协商结果指示链路伙伴支持 EEE 100M. 表 26.第 7 页 寄存器 16 RMII 模式设置寄存器(RMSR) 地址 名称 16:15~13 Reserved 16:12 Rg_rmii_clkdir 描述 保留 此位设置RMII模式下TXC的输入输出: 0:输出 模式 默认值 - - RW/LI 0 1:输入 16:11~8 Rg_rmii_tx_offset 调节RMII TX接口时序 RW/EFUS 1111 16:7~4 Rg_rmii_rx_offset 调节RMII RX接口时序 RW/EFUS 1111 16:3 Reserved RW/LI 0 16:2 Rg_rmii_rxdv_sel RW/EFUS 0 RW/EFUS 1 - - 保留 0:CRS/CRS_DV管脚是CRS_DV信号 1:CRS/CRS_DV管脚是RXDV信号 16:1 Rg_rmii_rxdsel 0:仅RMII数据 1:有SSD错误的RMII数据 16:0 Reserved 保留 表 27.第 7 页 寄存器 17 自定义 LEDs 设置寄存器 此寄存器用于设置自定义 LED 功能。下表展示了自定义 LED 的矩阵表 表 27.1. 自定义 LED 矩阵表 链接状态 LED LINK ACT 10M 100M LED0 Bit0 Bit1 Bit3 LED1 Bit4 Bit5 Bit7 LED2 Bit8 Bit9 Bit11 2017-12-08 V1.0 21/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 LED Pin ACT=0 ACT=1 LINK=0 悬空 All Speed ACT LINK>0 Selected Speed LINK Selected Speed LINK+ACT 备注:SR8201F/FL仅支持LED0和LED1.SR8201FN支持LED0,LED1和 LED2. 表 27.2. Page7 Register 17 Customized LEDs Setting Register 地址 名称 描述 17:15~12 Reserved 保留. 17:11~8 LED_sel2 当设置第7页 寄存器19Bit3为1时,设定LED2自定义 功能 17:7~4 17:3~0 LED_sel1 LED_sel0 模式 默认值 - - RW/ 0000 EFUS 当设置第7页 寄存器19Bit3为1时,设定LED1自定义 功能 当设置第7页 寄存器19Bit3为1时,设定LED0自定义 功能 RW/ 0000 EFUS RW/ 0000 EFUS 表 28.第 7 页 寄存器 18 EEE LEDs 启用寄存器 地址 名称 18:15~3 Reserved 18:2 EEE_LED_en2 18:1 18:0 描述 模式 默认值 - - 启用 EEE/LPI 模式下 LED2 功能 RW 0 EEE_LED_en1 启用 EEE/LPI 模式下 LED1 功能 RW 0 EEE_LED_en0 启用 EEE/LPI 模式下 LED0 功能 RW 0 模式 默认值 - - RW 0 RW 0 保留 表 29.第 7 页 寄存器 19 中断、WOL 和 LED 功能寄存器 地址 名称 描述 19:15~14 Reserved 保留 19:13 Int_linkchg 启用链接变化中断 1:允许链接变化产生中断 0:禁止链接变化产生中断 此位设置为0时仅在INTB管脚屏蔽链接变化中断事件; 寄存器30 Bit11总是反映链接变化中断行为。 19:12 Int_dupchg 启用双工变化中断 1:允许链接变化产生中断 0:禁止链接变化产生中断 此位设置为0时仅在INTB管脚屏蔽双工变化中断事件; 寄存器30 Bit13总是反映双工变化中断行为。 2017-12-08 V1.0 22/53 深圳市和芯润德科技有限公司 地址 名称 19:11 Int_anerr SR8201F_VB 说明书 模式 描述 默认 值 启用自协商错误中断 RW 0 RW/LI 0 - - RW/ 11 1:允许自协商错误产生中断 0:禁止自协商错误产生中断 此位设置为0时仅在INTB管脚屏蔽自协商错误中断事件;寄存 器30 Bit15总是反映自协商错误中断行为。 19:10 Rg_led0_wol_sel LED、Wake-On-LAN功能选择(仅SR8201F) 1:Wake-On-LAN功能启用 0:LED功能启用 RXD[1]的一个内部弱下拉电阻将其设置为默认的LED功能;用 一个外部4.7KΩ上拉高电阻可以设置SR8201F启用WOL功能。 19:9~6 Reserved 19:5~4 LED_sel[1:0] 保留 传统LED功能选择 LED_sel 19:3 Customized_LED EFUS LED0 LED1 LED2 00 ACTALL Link100 Reserved 01 LinkALL/ACTALL Link100 Reserved 10 Link10/ACTALL Link100 Reserved 11 Link10/ACT10 Link100/ACT100 Reserved 自定义LED启用 RW/ 1:自定义LED功能启用 0 EFUS 0:自定义LED功能禁用 见4.7节 自定义LED功能说明。 19:2~1 Reserved 保留 19:0 En10mlpi 启用10M LPI LED功能 - - RW 0 表 30.第 7 页 寄存器 20 MII TX 隔离寄存器 地址 名称 20:15 Rg_tx_isolate_en 20:14~0 Reserved 描述 当TX空闲,隔离MII TX路径信号 保留 模式 默认值 RW 0 - - 模式 默认值 - - RW 0 表 31.第 7 页 寄存器 24 扩展频谱时钟寄存器 地址 名称 24:15~1 Reserved 24:0 Rg_dis_ssc 2017-12-08 描述 保留. 0:SSC功能启用 1:SSC功能禁用 V1.0 23/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 表 32.MMD 映射寄存器与定义 注:MMD 寄存器地址位于第 0 页 寄存器 13 和寄存器 14 Device Offset Access Name Description 3 0 RW EEEPC1R EEE PCS控制1寄存器 3 1 RO/RO,LH EEEPS1R EEE PCS状态控制1寄存器 3 20 RO EEECR 3 22 RC EEEWER 7 60 RW EEEAR 7 61 RO EEELPAR EEE能力寄存器 EEE唤醒错误寄存器 EEE通知寄存器 EEE链路伙伴能力寄存器 注:LH:加载为高 表 33.EEEPC1R (PCS 控制 1 寄存器,MMD 设备 3,地址 0x00) 地址 名称 3:0:15~11 Reserved 保留 3:0:10 Clock Stop 1:PHY在LPI时停止RXC时钟 Enable 3:0:9~0 Reserved 描述 0:RXC时钟不停止 保留 模式 默认值 RW 0 RW 0 RW 0 模式 默认值 RO 0 RO,LH 0 RO,LH 0 RO 0 RO 0 表 34.EEEPS1R (PCS 状态 1 寄存器,MMD 设备 3,地址 0x01) 地址 名称 3:1:15~12 Reserved 3:1:11 TX LPI Received 3:1:10 RX LPI Received 3:1:9 TX LPI Indication 3:1:8 RX LPI 描述 保留 1:TX PCS接收到LPI 0:未接收到LPI 1:RX PCS接收到LPI 0:未接收到LPI 1:TX PCS正在接收LPI 0:TX PCS没有正在接收LPI 1:RX PCS正在接收LPI Indication 0:RX PCS没有正在接收LPI 3:1:7 Reserved 保留 RO 0 3:1:6 Clock Stop 1:MAC在LPI中停止TXC RO 1 RO 0 3:1:5~0 2017-12-08 Capable 0:TXC不能停止 Reserved 保留 V1.0 24/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 表 35.EEECR (EEE 能力寄存器,MMD 设备 3; 地址 0x14) 地址 名称 3:20:15~2 Reserved 3:20:1 100Base-TX EEE 3:20:0 Reserved 描述 模式 默认值 RO 0 RO 1 RO 1 模式 默认值 RC 0 模式 默认值 保留. RW 0 通知100Base-TX EEE的能力 RW 1 RW 0 模式 默认值 保留 RO 0 1:链路伙伴有100Base-TX EEE的能力 RO 0 RO 0 保留. 1:支持100Base-TX下的EEE 0:不支持100Base-TX下的EEE 保留. 表 36.EEECR (EEE 能力寄存器,MMD 设备 3; 地址 0x14) 地址 3:22:15~0 名称 描述 EEE Wake 支持EEE功能的PHY唤醒错误计数。在指定PHY类型 Error Counter 的要求时间内没有完成正常的唤醒序列的错误 表 37.EEEAR (EEE 通知寄存器,MMD 设备 7; 地址 0x3c) 地址 名称 7:60:15~3 Reserved 7:60:1 100Base-TX EEE 描述 1:通知 0:不通知 7:60:0 Reserved 保留 表 38.EEELPAR (EEE 链路伙伴能力寄存器,MMD 设备 7; 地址 0x3d) 地址 名称 7:61:15~3 Reserved 7:61:1 LP 100BaseTX EEE 7:61:0 2017-12-08 Reserved 描述 0:链路伙伴没有100Base-TX EEE的能力 保留 V1.0 25/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 功能描述 SR8201F/FL/FN 是一款以太网物理层收发器芯片,它集成了 10Base-T、100Base-TX 和 100Base-FX 功能, 以及额外的电源管理特性。具体功能如下: l 有MDC/MDIO管理接口的MII接口与MAC通信 l IEEE 802.3u第28条款自协商能力 l 速度,双工,自协商能力通过线或者MDC/MDIO配置 l 支持省电模式 l 4B/5B转换 l 扰码、解扰 l NRZ到NRZI,NRZI到MLT-3 l 10Base-T下曼彻斯特码的编码和解码 l 时钟和数据恢复 l 自适应均衡器 l 自动极性矫正 l 光纤模式下的远端错误检测(FEFI) l 网络状态指示LED等 l 网络唤醒(WOL) l 节能以太网(EEE) l RMII模式时钟输出扩展频谱(SSC) 1.MII 及管理接口 1.1.数据传输 MII(介质无关接口)是一个 IEEE802.3u 标准定义,介于 PHY 层和 MAC 层之间的信号接口。 此接口有两个工作频率: 25MHz 和 2.5MHz,分别支持 100Mbps/10Mbps 带宽下的收发功能。 发送 MAC 使能 TXEN 信号,然后产生 4-Bits 半字节数据通过 TXD[3:0]发往 PHY。PHY 提供同步时钟 TXC,在 TXEN 有效期间同步采样 TXD[3:0]。 接收 PHY 能 RXDV 信号,用 PHY 提供的同步时钟 RXC 把接收到的半字节数据发往 RXD[3:0]。CRS 和 COL 信号用 于冲突检测及载波指示。 在 100Base-TX 模式下,当 5B 解码信号为非空闲时,CRS 信号将为有效。当 5B 被识别出为空闲时,它将为无 效。在 10Base-T 模式下,当 10M 前导被确定,CRS 将为有效;当空闲向量被确定,它将为无效。 在 100Base-TX 模式下,当 5B 解码为/J/K/时,RXDV 信号将为有效;如果 5B 解码为/T/R/或者空闲时,它将为 无效。在 10Mbps 模式下,RXDV 信号与 CRS 信号相同。 2017-12-08 V1.0 26/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 如果任意的 5B 解码错误产生,RXER(接收错误)将为有效,例如,一个无效的 J/K,无效的 T/R 或者无效的符 号。此管脚将高电平一个或多个时钟周期来指出当前帧在某处的错误。 1.2.串行管理接口 MAC 层设备能用 MDC/MDIO 管理接口去控制一组最大为 4(SR8201F/FL)或 8(SR8201FN)个的设备, 和不同的 PHY 地址配置(SR8201F/FL 为 00b 到 11b;SR8201FN 为 000b 到 111b)。框架传输 MDC/MDIO 管 理接口应该有下表的帧结构。 表 39.管理帧格式 管理帧域 Preamble ST OP PHYAD REGAD TA DATA IDLE 读 1…1 01 10 AAAAA RRRRR Z0 DDDDDDDDDDDDDDDD Z 写 1…1 01 01 AAAAA RRRRR 10 DDDDDDDDDDDDDDDD Z 在硬件复位期间,PHYAD[0]和 PHYAD[1]管脚的逻辑电平作为串行管理访问的地址被锁存。管理接口的读写 帧结构如下图所示: 图6.读取周期 图7.写入周期 表 40.串行管理帧说明 名称 Preamble 描述 帧前导 MAC在MDIO接口上提供32个连续的1及32个MDC时钟。帧前导用来给PHY进行时钟同步。 2017-12-08 V1.0 27/53 深圳市和芯润德科技有限公司 名称 ST SR8201F_VB 说明书 描述 帧起始 由01向量表示。 OP 操作码 读:10 写:01 PHYAD PHY地址,共5位 最 多 可 以 有 4 个 ( SR8201F/FL ) 或 8 个 ( SR8201FN ) 设 备 可 以 连 到 MAC , 通 过 低 2 位 (SR8201F/FL)或3位(SR8201FN)来选择不同的PHY,其余位必须保持0。 REGAD 寄存器地址 5位的地址可以选择PHY的32个寄存器。 TA 周转 在寄存器地址和数据序列之间的2位信号时间,避免在读传输时出现线控制权争夺。读传输帧 时,第一个Bit时间,STA和PHY都保持高阻态,在第二个Bit时间由PHY驱动0电平完成信号周 转。 在写传输时,由STA驱动10向量。 DATA 数据 16位的数据 IDLE 空闲 非真正管理帧的一部分,在此期间信号处于高阻状态。PHY的上拉电阻会将MDIO线拉高到逻辑 1。 2.中断 无论何时,只要 SR8201F 检测到媒介端的状态改变,就会写入对应中断状态的寄存器(第 0 页 寄存器 14), 并且在中断管脚(LED1/INTB 管脚 21)使能时,中断管脚会被置低表示发生一个中断事件。当 MAC 检测到中断事 件时,可以通过 MDC/MDIO 端口访问到第 0 页寄存器 14 获取相应的中断状态。 一旦这些状态寄存器第 0 页寄存器 30 通过 MDC/MDIO 被 MAC 读取后,INTB 为无效状态。SR8201FN/FL 中 断功能使得 MAC 无需通过 MDC/MDIO 管理接口连续轮询。 注1:当RMII模式下,SR8201F的RXD[2]/INTB管脚(Pin11)仅用作中断功能。 注2:中断功能默认被禁用。如需启用此功能,参见中断启用功能寄存器。 3.自协商及并行检测 SR8201F 支持 IEEE 802.3u 第 28 条款描述的自协商功能,它可与任何其它支持该功能的收发器进行协商。 SR8201F 能自动检测链路伙伴的能力,并且决定两设备之间可能的最高速度/双工配置。如果链路伙伴不支持自协 2017-12-08 V1.0 28/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 商,那么 SR8201F 将启用半双工模式并且进入并行检测模式。SR8201F 将默认传输 FLP(快速链接脉冲)并等待链 路伙伴响应。如果 SR8201F 接收到一个 FLP 那么自协商过程将继续;如果接收到一个 NLP(普通链接脉冲),然后 SR8201F 将改为 10Mbps 半双工模。如果接收 100Mbps 空闲向量,SR8201F 将改为 100Mbps 半双工模式。 3.1 设置介质类型和接口模式 表 41.设置介质类型和接口模式 工作模式 FXEN RXDV H L 光纤模式和MII模式 H H 光纤模式和RMII模式 H X 光纤模式和MII模式 L L UTP模式和MII模式 L H UTP模式和RMII模式 L X UTP模式和MII模式 4.LED 功能 SR8201FN 支持 3 LED 信号,SR8201F 和 SR8201FL 支持 2 LED 信号,4 种配置运行模式。以下描述 LED 的 行为。 4.1.LED 和 PHY 地址 作为 PHYAD[0]和 LED 的输出管脚共用,约束了外部组件的要求,并且 LED 的使用必须仔细考虑以避免冲突。 尤其是,当 LED 管脚被用作直接驱动 LED 灯,每一个输出驱动的有效状态是需要根据上电复位时 PHYAD 输入状 态来决定。例如,如左图所示,如果一个已知的 PHYAD 输入是外部上拉的,那么同样的输出将会配置为低驱动为 有效状态。对于右图而言,我们可以看到一个已知的 PHYAD 输入是外部下拉的,那么同样的输出将会配置为高驱 动为有效状态。PHY 地址配置管脚不应该直接接地或 VCC,必须通过一个电阻来拉高/低(典型值 4.7KΩ)。如果 不需要驱动 LED,LED 路径的组成(LED+510Ω)可以被移除。 PHY Address[x] = Logical 1 PHY Address[x]= Logical 0 LED指示 = 低有效 LED指示= 高有效 图 8. LED 和 PHY 地址配置 2017-12-08 V1.0 29/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 4.2.链接监视器 链接监视器检测链路完整,例如 LINK10,LINK100,LINK10/ACT 或者 LINK100/ACT。无论何时链接状态被建 立,指定的链接 LED 管脚被驱动为低电平。一旦一个线缆断开链接,链接 LED 管脚被驱动为高电平,指明没有网 络链接存在。 4.3.RX LED 在 10/100M 模式下,RX LED 的闪烁说明设备正在接收数据。 图 9. RX LED 4.4.TX LED 在10/100M模式下,TX LED灯的闪烁说明设备正在发送数据 图 10. TX LED 2017-12-08 V1.0 30/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 4.5.TX/RX LED 在10/100M模式下,TX/RX LED灯的闪烁说明正在进行接收或发送数据. 图 11. TX/RX LED 4.6.LINK/ACT LED 在 10/100M 模式下,LINK/ACT LED 灯亮表示链接成功;LED 灯闪烁,表明正在进行接收或发送数据;LED 灯 长时间灭表明链接未成功. 图 12. LINK/ACT LED 2017-12-08 V1.0 31/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 4.7 自定义 LED SR8201F/FL/FN 支持在 10/100Mbps 模式下可编程的 LED。此功能可以通过第 7 页,寄存器 9 第 3 为启用/禁 用(如图 13)。参见第 7 页 寄存器 17 的自定义 LED 寄存器设定 图 13.有/无 LPI LED 模式的自定义 LED 2017-12-08 V1.0 32/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 4.8 EEE LED 行为 EEE 空闲模式:LED 连续缓慢的闪烁 EEE 激活模式:LED 快速和缓慢的闪烁(在数据包传送和接收期间)。参见第 7 页 寄存器 18 的 EEE LED 启 用设置. 图 14.EEE LED 行为 5.断电和链接断开省电模式 SR8201F 支持两种省电模式。本章节描述如何通过软件实现每一种模式. 表 42.省电模式管脚设置 模式 描述 设置寄存器0的11位为1,将SR8201F/FL/FN处于断电模式(PWD)。这是最省电的模式,并且 PWD SR8201F/FL/FN仍是“活动”。在PWD模式下,SR8201F/FL/FN将关闭除了MDC/MDIO管理接口 的所有模拟/数字功能。因此,如果SR8201F/FL/FN处于PWD模式,且MAC想要启用PHY,它必须 通过它自己建立MDC/MDIO时序(这可以由软件完成)。 设置寄存器24的15位为1,将SR8201F/FL/FN处于LDPS (断连省电) 模式。在LDPS模式下, SR8201F/FL/FN将根据检测到的链接状态决定是否关闭传输功能。如果链接断开,FLP、100Mbps LDPS 空闲向量或10Mbps的NLP将不会被传输。但是会传输一些与NLP相似的信号。一旦接收器检测到电 平信号,它将停止信号并再次传输FLP、100Mbps空闲向量或10Mbps的NLP。当链接断开时,可以 减少60%~80%的 能耗。 2017-12-08 V1.0 33/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 6.10M/100M 发送和接收 6.1.100Base-TX 发送和接收操作 100Base-TX发送 通过 TXD[3:0]接口在 25MHz(TXC)时钟下收到的 4-bit 半字节发送数据,由 4B/5B 编码器将转化为 5B 符号 代码。在经过扰码器、串行转换器 转变为 125MHz 的信号,并从 NRZ 转变到 NRZI。在此过程之后,NRZI 信号传 送到 MLT-3 编码器,然后发送给链接驱动。发送器首先使 TXEN 有效。在发送数据帧之前,将发送一个/J/K/符号 (帧头分界符),然后发送数据符号,最终发送一个/T/R/符号作为帧尾结束符。对于更好的 EMI 性能,种子扰码 是基于 PHY 地址的。在集线器和开关环境下,每一个 SR8201F 将有不同的扰码种子然后把 MLT-3 的信号输出延 伸开。 100Base-TX 接收 接收信号首先通过自适应均衡器进行补偿,用来弥补由于线缆衰减和码间干扰(ISI)引起的信号失真。基线漂 移修正监控过程并且动态修正信号均衡过程。锁相环然后从信号中恢复接收时钟和数据信息。接着,接收信号被采 样成 NRZI(双向不归零)数据。下一步是将 NRZI 转换到 NRZ(不归零数据)。再经过数据解扰,串行转并行, 5B 到 4B 转换,最后生成 4B 半字节送到 MII 接口。 6.2.100Base-FX 光纤发送和接收操作 SR8201F/FL/FN 能通过硬件配置工作于 100Base-FX 模式下。硬件 100Base-FX 设置优先级别高于 Nway 设 置。100Base-FX 中不需要使用扰码器。 100Base-FX发送 TXD 之前的处理如 100Base-TX 一样,除了在 NRZI 阶段之前不含扰码器,NRZI 之后不用转换为如 100BaseTX 中的 MLT-3 信号, 而是将串行数据流驱动为 NRZI PECL 信号,以差分对形式进入光纤收发器。 100Base-FX接收 从 PECL 接口的光纤收发器传入的信号,直接进入时钟恢复电路来恢复数据/时钟。扰码器/解扰器在 100BaseFX 模式时被旁路。 6.3.10Base-T 发送和接收操作 10Base-T发送 通过 TXD[3:0]接口在 2.5MHz(TXC)时钟下收到的 4-bit 半字节发送数据,首先进入并行到串行转换,然后 10Mbps 的 NRZ 信号发送到曼彻斯特编码器。曼彻斯特编码器将 NRZ 数据转换为曼彻斯特编码数据流给 TP 发送 器,并在数据的结尾添加一个由 IEEE802.3 协议中指定的起始空闲脉冲(SOI)。.最后,编码数据流经过内嵌的带 限滤波器整形并发送出去。 10Base-T接收 在 10Base-T 接收模式下,SR8201F/FL/FN 中的曼彻斯特解码器将接收到的曼彻斯特编码数据流转换为 NRZ 数据,剥离 SOI 脉冲,并恢复出时钟。然后串行 NRZ 数据流转变为并行 4-bit 半字节信号并传送到 RXD[0:3]接口 上。 2017-12-08 V1.0 34/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 7.复位和传输偏置 这里有两种 SR8201F/FL/FN 复位形式: 1. 硬件复位: PHY 的 RSTB 管脚拉低至少 10ms,然后拉高。PHY 的 RSTB 管脚拉高 150ms 后,才测访 问 SR8201F/FL/FN 寄存器。在硬件复位之后,所有的寄存器都将恢复默认值。此时介质接口将断开链接 并且重启自协商/并行检测过程。 2. 软件复位:设置寄存器 0 bit 15 为 1。至少等待 20ms 后再访问 SR8201F/FL/FN 寄存器。软件复位仅将 部分寄存器复位,然后将芯片状态复位到“初始化”。 RSET 管脚必须通过 1%精度的 2.49KΩ 电阻拉低,以产生一个精准传输偏置。它将影响传输波形的信号质量。 并保持它的电路远离其他时钟走线和传输/接收路径,以避免信号干扰。 8.3.3V 电源和电压转换电路 SR8201F/FL/FN 用 0.11µm 的工艺流程制造。核心电路需要 1.1V 的电压,但是,数字 IO 和 DAC 电路需要 3.3V 电源。SR8201F/FL/FN 内嵌的稳压器提供不 3.3V 到 1.1V 的转换。 注:内部线性稳压器输出电源为 1.1V.当使用外部作为内核电源时,必须使用一个 1.05V 的电源。 不建议用外部 1.05V 电源为 SR8201F/FL 供电,因为内部稳压器无法被禁用(SR8201F/FL 没有禁用 1.1V 电源 的 EN_LDO_OUT 管脚),内部和外部电源可能发生冲突。 如同很多商业电压转换设备,此电路的 1.1V 输出管脚要求使用输出电容(0.1µF X5R 低 ESR 陶瓷电容)作为 设备频率补偿的一部分。 模拟和数字接地平面应该尽可能的大且完整。如果接地平面足够大,模拟和数字接地可以分开,这是理想的配 置。但是,如果总接地平面不够大,分割接地平面就不是一个好主意了。在这种情况下,所有的接地管脚能连在一 起,成为一个单个大型和完整的接地平面。 备注:内嵌的 1.1V LDO 仅为 PHY 的内部应用而设计。不得提供电源给其他设备。 9.自动极性校正 在 10Base-T 模式下 SR8201F 自动校正接收对的极性错误 (极性在 100Base-TX 模式下是无关的)。在 10Base-T 模式下,极性错误被修正是基于有效间隔的链路脉冲的检测。检测开始在 MDI 交叉检测相位和当 10Base-T 链接上时锁定的期间。当链接断开时极性解锁。 10.远端错误指示 当 100FX 模式启用时,MII Reg.1.4 (远程错误) 是远端错误指示 (FEFI)位,当检测到 FEFI 时被设置。 FEFI 是一个可供替代的带内信令的方法,它由 84 个连续的“1”后面跟一个“0”组成。当 SR8201F/FL/FN 检测 到三次这样的信号,Reg.1.4 被设置,这意味着传输路径的远程端的接收路径有问题。另一方面,未能检测到 ‘Link OK’ 的 信 号 , SR8201F/FL/FN 将 开 始 发 送 FEFI 信 号 , 这 将 使 得 远 端 设 备 检 测 一 个 远 端 错 误 。 这 就 意 味 着 SR8201F/FL/FN 的接收路径有问题。 11.Wake-On-LAN (WOL) 11.1 魔术包和唤醒帧格式 SR8201F/FL/FN 能监视网络唤醒帧或者魔术包,当这样一个事件发生,通过 PMEB (电源管理事件,‘B’表 示低电平有效)管脚通知系统。然后系统能被恢复到正常态去处理接下来的工作。PMEB 管脚必须和 4.7k 欧姆的 2017-12-08 V1.0 35/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 电阻连接,并且上拉至 3.3V。当一个唤醒帧或者魔术包发送到 PHY 时,PMEB 管脚将置低来通知系统去唤醒。详 情参见 WOL 应用笔记。 魔术包唤醒仅发生在当满足以下条件时: l 接收的魔术包的目的地址对于SR8201F/FL/FN是可接受的,例如,广播,多播,单播数据包地址匹配当前 SR8201F/FL/FN的地址; l 接收到的魔术包不包含CRC错误; l 魔术包模版对比;例如,6 * FFh + MISC(可以没有) + 16 * DID(终点ID)在一个有效的以太网包的任 意部分。 一个唤醒帧事件仅发生在当满足以下条件时: l 接收到的唤醒帧的目的地址对SR8201F/FL/FN是可接受的,例如,广播,多播,单播数据包地址匹配当前 SR8201F/FL/FN的地址; l 接收到的唤醒帧不包含CRC错误 l 接收到的唤醒帧的16-bit CRC和由本地的设备操作系统给出的简单的16-bit CRC匹配。或者,SR8201F/ FL/FN被配置成允许直接封包唤醒。例如,广播,多播,地址匹配当前SR8201F/FL/FN地址的单播数据包 注 1: 16-bit CRC:SR8201F/FL/FN 支持 8 个长唤醒帧 (从任意收到的网络封包的 0 to 127 字节由 128 个 屏 蔽位来转换).CRC16 多项式 =x16+x12+x5+1。 注 2:详情参见 WOL 应用笔记 Wake-On-LAN 寄存器设定和波形时序。 11.2 低有效的网络唤醒 当 PHY 从链路伙伴那里接收到一个唤醒帧或者魔术封包,PMEB 管脚将拉低且 MAC 将在 T 周期后唤醒。 PMEB 管脚将通过系统或者 MAC 被复位到高电平(见以下两图)。 详情参见 WOL 应用笔记。 图 15.当接收魔术封包时为低有效 2017-12-08 V1.0 36/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 图 16.当接收唤醒帧时为低有效 11.3 低脉冲的 Wake-On-LAN 当 PHY 从链路伙伴那里接收到一个唤醒帧或者魔术封包,PMEB 管脚拉低一个周期(84ms,168ms(默认), 336ms,或者 672ms; 通过 MDC/MDIO 设定),然后将在 T 周期后醒来(见以下两图)。 详情参见 WOL 应用笔记。 图 17.当接收魔术封包时为低脉冲 图 18.当接收唤醒帧时为低脉冲 2017-12-08 V1.0 37/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 11.4 Wake-On-LAN 管脚类型(MII 模式) 表 43.Wake-On-LAN 管脚类型(MII 模式) Normal Name Type WOL Enable 100M 10M Idle TXC O/PD 25M CLK Output 2.5M CLK Output 2.5M CLK Output O (2.5M/25M)/L/PD1 TXEN I/PD I I I I/PD TXD[0:3] I/PD I I I I/PD RXC O/PD 25M CLK Output 2.5M CLK Output 2.5M CLK Output O (2.5M/25M)/PD2 COL LI/O/PD O O O O or PD2 CRS LI/O/PD O O O O or PD2 RXDV LI/O/PD O O O O or PD2 RXD[0:2] O/PD O O O O or PD2 RXD[3] LI/O/PD O O O O or PD2 RXER LI/O/PD O O O O or PD2 MDC I/PU I I I I/PU MDIO IO/PU IO IO IO IO/PU 备注 1:如果TX Isolate=1,停止TXC且管脚类型为 ‘L’.设置第0页,寄存器0,然后bit10=1把TXC管脚类型改为 ‘PD’。 备注2:如果RX Isolate=1,停止所有的MII RX接口且管脚类型为‘PD’。 11.5 Wake-On-LAN 管脚类型(RMII 模式) 表 44.Wake-On-LAN 管脚类型(RMII 模式) Normal Name Type WOL Enable 100M TXC (REF_CLK)1 IO/PD 10M Idle 50M CLK 50M CLK 50M CLK Input/Output Input/Output Input/Output I/O (50M)2 TXEN I/PD I I I I/PD TXD[0:1] I/PD I I I I/PD CRS_DV LI/O/PD O O O O or PD3 RXD[0:1] O/PD O O O O or PD3 RXER LI/O/PD O O O O or PD3 MDC I/PU I I I I/PU MDIO IO/PU IO IO IO IO/PU 备注 1:如果TXC (REF_CLK)在输入模式下(MAC到PHY),REF_CLK不能停止在启用WOL。 备注2:当REF_CLK在输出模式下(PHY到MAC),REF_CLK无法停止(切换到50MHz).设置TXC管脚类型为 ‘PD’,设置第0页,寄存器0,bit10=1。 备注3:如果RX Isolate=1,所有的RMII RX接口都停止且管脚类型为‘PD’。 2017-12-08 V1.0 38/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 12.节能以太网(EEE) SR8201F/FL/FN 支持 IEEE 802.3az-2010,也被称为节能以太网(EEE),包括 10Mbps 和 100Mbps 模 式。它提供了一个基于网络利用率的在正常传输和低功耗等级(低能量空闲模式)间切换的协议。当没有数据 包被传输,系统转为低能量空闲模式以节省能量。当数据包需要被传输,系统返回为正常模式,不需要改变链 接状态也没有丢帧及引起错误帧。 对于省电,当系统处于低能量空闲模式时,大多数电路被禁用;但是从低能量空闲模式到正常模式的相互切 换时间足够小使得可以满足高层协议和应用。 EEE 也指定一个协商模式去通知链路伙伴,以决定是否支持 EEE。 详情参见 http://www.ieee802.org/3/az/index.html 13.扩频时钟(SSC) RMII 的 REF_CLK 路径可能成为 EMI 噪声源。扩频时钟(SSC)技术可以延伸 REF_CLK 信号到更宽的带 宽,降低在某一频率辐射出的能量峰值,降低的 EMI 噪声。 当用 RMII REF_CLK 输出模式时,SSC 功能默认启用 (见第 7 页 寄存器 24 扩频时钟寄存器)。 图 19.扩频时钟 2017-12-08 V1.0 39/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 电气特性 1.直流特性 1.1 极限参数 表 45. 极限参数 参数 符号 范围 电源电压1 DVDD33,AVDD33 电源电压2 DVDD10,DVDD10OUT, AVDD10OUT 单位 -0.4 ~ 3.7 V -0.1 ~ 1.26 V 输入电压 Vi -0.3 ~ 相应电源电压 +0.5V 输出电压 Vo -0.3 ~ 相应电源电压 +0.5V 储存温度 Ts V V o -55 ~ 125 C 1.2 推荐工作条件 表 46. 推荐工作条件 参数 电源电压 符号 范围 典型值 单位 DVDD33,AVDD33 2.97 ~ 3.63 3.63 V 1.00 ~ 1.16 1.16 V 0 ~70 70 o 125 o DVDD10,DVDD10OUT, 工作环境温度 最高结点温度 AVDD10OUT TA - ~125 Tj C C 1.3 上电和 PHY 复位序列 SR8201F/FL/FN需要150ms的上电时间。150ms后允许从MDC/MDIO访问PHY寄存器。 图20.上电和PHY复位序列 2017-12-08 V1.0 40/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 表 47.上电和 PHY 复位序列 符号 描述 最小值 最大值 Rt1 3.3V 上升时间@上电序列 100µs - Rt2 1.05V 上升时间@上电和PHY复位序列 100µs - Rt3 在PHY_3.3V稳定后,PHY RSTB无效 80µs - 注:仅当使用外部1.05V电源供电时,Rt2需要100µs的上升时间. 1.4 RMII 输入模式功耗 整个系统的功耗(包括调节器损耗)见下表 表 48.RMII 输入模式功耗(全系统) 符号 SR8201F SR8201FN SR8201FL 单位 10Base-T空闲,EEE未启用 36.3 36.3 36.3 mW 10Base-T全双工 108.9 118.8 108.9 mW 100Base-T空闲,EEE未启用 148.5 151.8 155.1 mW 100Base-T空闲,启用EEE 56.1 56.1 62.7 mW P100F 100Base-T全双工 174.9 178.2 178.2 mW PLDPS 断连省电 20.328 17.985 23.1 mW 3.3 3.3 mW P10IDLE P10F P100IDLE P100IDLEEEE 条件 PHY复位 PPHYRST 3.3 注:当系统在空闲模式时,设置第4页 寄存器21 bit12 到 ‘1’ 将降低功耗. 1.5 输入输出电压 表 49.输入输出电压 符号 描述 条件 最小值 最大值 TTL VIH 输入高电压 - 0.5*Vcc Vcc+0.5V TTL VIL 输入低电压 - -0.5V 0.7V TTL VOH 输出高电压 IOH=-8mA 0.65*Vcc Vcc TTL VOL 输出低电压 IOL=8mA - 0.7V TTL IOZ 三态漏电流 Vout=Vcc or GND -110µA 10µA IIN 输入电流 Vin=Vcc or GND -1µA 10µA IPL 带有弱的下拉电阻的输入电流 Vin=Vcc or GND -1µA 100µA IPH 带有弱的上拉电阻的输入电流 Vin=Vcc or GND -110µA 10µA PECL VIH PECL输入高电压 - Vdd-1.16V Vdd-0.88V PECL VIL PECL输入低电压 - Vdd-1.81V Vdd-1.47V PECL VOH PECL输出高电压 - Vdd-1.02V - PECL VOL PECL输出低电压 - - Vdd-1.62V 2017-12-08 V1.0 41/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 2.交流特性 所有的输出时序都假设等效荷载在10pF和25pF之间,包括PCB布局的走线和其他连接设备(例如,MAC)。 2.1 MII 传输周期时序 图21.MII接口设置/保持时间定义 下图显示了MII接口上从MAC到PHY传输一个数据包的例子。 图22.MII传输周期时序-1 2017-12-08 V1.0 42/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 图23.MII传输周期时序-2 表 50.MII 传输周期时序 符号 t1 t2 t3 t4 t5 t6 t7 描述 最小值 TXCLK高电平脉冲宽度 典型值 最大值 单位 100Mbps 14 20 26 ns 10Mbps 140 200 260 ns 100Mbps 14 20 26 ns 10Mbps 140 200 260 ns 100Mbps - 40 - ns 10Mbps - 400 - ns TXEN,TXD[0:3] 100Mbps 10 - - ns 到TXCLK上升沿的建立时间 10Mbps 5 - - ns TXEN,TXD[0:3] 100Mbps 0 - - ns 在TXCLK上升沿之后的保持时间 10Mbps 0 - - ns TXEN采样到CRS高 100Mbps - - 40 ns 10Mbps - - 400 ns 100Mbps - - 160 ns 10Mbps - - 2000 ns TXCLK低电平脉冲宽度 TXCLK周期 TXEN采样到CRS低 2.2 MII 接收周期时序 下图显示了 MII 接口上从 PHY 到 MAC 传输一个数据包的例子。 2017-12-08 V1.0 43/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 图 24.MII 接收周期时序-1 图 25.MII 接收周期时序-2 表 51.MII 接收周期时序 符号 描述 最小值 RXCLK高电平脉冲宽度 t1 RXCLK低电平脉冲宽度 典型值 最大值 单位 100Mbps 14 20 26 ns 10Mbps 140 200 260 ns 100Mbps 14 20 26 ns 10Mbps 140 200 260 ns 100Mbps - 40 - ns 10Mbps - 400 - ns t2 RXCLK周期 t3 2017-12-08 V1.0 44/53 深圳市和芯润德科技有限公司 符号 t4 t5 SR8201F_VB 说明书 描述 最小值 典型值 最大值 单位 RXER,RXDV, 100Mbps 10 - - ns RXD[0:3]到RXCLK上升沿的建立时间 10Mbps 10 - - ns RXER,RXDV,RXD[0:3] 100Mbps 10 - - ns 在RXCLK上升沿之后的保持时间 10Mbps 10 - - ns 接收帧到CRS高 100Mbps - - 130 ns 10Mbps - - 2000 ns 100Mbps - - 240 ns 10Mbps - - 1000 ns 100Mbps - - 150 ns 10Mbps - - 3200 ns 100Mbps - - 120 ns 10Mbps - - 1000 ns t6 接收帧的结束到CRS低 t7 接收帧采样到RXDV的边沿 t8 接收帧的结尾采样到RXDV的边沿 t9 2.3 RMII 传输和接收周期时序 图 26.RMII 接口设置,保持时间和输出延时定义 2017-12-08 V1.0 45/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 图 27.RMII 传输和接收周期时序 表 52.RMII 传输和接收周期时序 符号 描述 最小值 典型值 最大值 单位 Fref REFCLK参考时钟频率 - 50 - MHz Dref REFCLK参考时钟占空比 35 - 65 % T_ipsu_tx_rmii TXD[1:0]/TXEN设置时间到REFCLK 4 - - ns T_iphd_tx_rmii TXD[1:0]/TXEN保留时间从REFCLK 2 - - ns T_ophd_rx_rmii RXD[1:0]/CRS_DV/RXER输出延时从REFCLK 2 - - ns 注 1:RMII TX时序能通过第7页,寄存器16[11:8] 设置;最小的可调节分辨率为2ns。不建议对这些位的做任意改 变,默认值是最优化的设置。 注 2:RMII RX时序能通过第7页,寄存器16[7:4] 设置;最小的可调节分辨率为2ns。不建议对这些位的做任意变, 默认值是最优化的设置。 2017-12-08 V1.0 46/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 2.4 MDC/MDIO 时序 图 28.MDC/MDIO接口建立、保持时间和MDC上升有效时间定义 图 29.MDC/MDIO时序 表 53.MDC/MDIO 时序 符号 描述 最小值 最大值 单位 t1 MDC高脉冲宽度 160 - ns t2 MDC低脉冲宽度 160 - ns t3 MDC周期 400 - ns t4 MDIO设置到MDC上升沿 10 - ns t5 MDIO保持时间到MDC上升沿 10 - ns t6 MDIO有效从MDC上升沿 0 300 ns 2017-12-08 V1.0 47/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 2.5 无冲突的发送 下图列出从 MAC 到 PHY 的一个包传输。 图 30.MAC 到 PHY 无冲突的发送 2.6 无错误的接收 下图列出了从 PHY 到 MAC 的一个包传输 图31.PHY到MAC无错误的接收 2017-12-08 V1.0 48/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 3.晶体特性 表 54.晶体特性 符号 描述 / 条件 并联共振晶体参考频率,基础模式,AT-Cut型 Fref 最小值 典型值 最大值 单位 - 25 - MHz Fref Stability 并联共振晶体频率的稳定性,基础模式,AT-Cut 型.Ta=0°C~70°C. -30 - +30 ppm Fref Tolerance 并联共振晶体频率的限度,基础模式,AT-Cut 型.Ta=25°C. -50 - +50 ppm Fref Duty Cycle 参考时钟输入占空比 40 - 60 % ESR 等效串联电阻 - - 30 Ω DL 驱动等级 - - 0.3 mW Jitter 带宽抖动峰峰值1,2 - - 500 ps 注 1:25KHz 到 25MHz RMS < 3ps. 注 2:带宽RMS < 9ps. 4.振荡器要求 表 55.振荡器要求 参数 条件 最小值 典型值 - - 25/50 - MHz Ta = 0°C~+70°C -30 - 30 ppm Ta = 25°C -50 - 50 ppm 占空比 - 40 - 60 % 带宽抖动峰峰值1,2 - - - 500 ps V峰峰值 - 3.15 3.3 3.45 V 上升时间(10%~90%) - - - 10 ns 下降时间(10%~90%) - - - 10 ns 工作温度范围 - 0 - 70 °C 频率 频率稳定性 频率限度 最大值 单位 注 1:25KHz 到 25MHz RMS < 3ps. 注 2:宽带 RMS < 9ps. 2017-12-08 V1.0 49/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 5.时钟要求 表 56.时钟要求 参数 最小值 典型值 最大值 单位 - 25/50 - MHz 频率稳定性 -30 - 30 ppm 频率限度 -50 - 50 ppm 占空比 40 - 60 % - - 500 ps 3.15 3.3 3.45 V 上升时间(10%~90%) - - 10 ns 下降时间(10%~90%) - - 10 ns 频率 带宽抖动峰峰值1,2 Vpeak-to-peak 注 1:25KHz 到 25MHz RMS < 3ps. 注 2:宽带 RMS < 9ps. 6.变压器特性 表 57.变压器特性 2017-12-08 参数 发送端 接收端 匝比 1:1 CT 1:1 CT 电感(min.) 350µH @ 8mA 350µH @ 8mA V1.0 50/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 封装外形图 QFN-32-5×5-0.50 SYMBOL 2017-12-08 单位:mm MILLIMETER MIN NOM MAX A 0.70 0.75 0.80 A1 - 0.01 0.05 b 0.18 0.25 0.30 c 0.18 0.20 0.25 D/E 4.90 5.00 5.10 D2/E2 3.50REF e 0.50BSC Nd/ Ne 3.50BSC L 0.35 0.40 0.45 h 0.30 0.35 0.40 V1.0 51/53 深圳市和芯润德科技有限公司 SR8201F_VB 说明书 QFN-48-6×6-0.40 SYMBOL MILLIMETER MIN NOM MAX A 0.75 0.85 1.00 A1 0.00 0.02 0.05 b 0.15 0.20 0.25 c 0.20REF D/E 6.00BSC D2/E2 4.05 4.4 e 0.4BSC Nd /Ne 4.4BSC L 2017-12-08 单位:mm 0.30 0.40 V1.0 4.65 0.50 52/53 深圳市和芯润德科技有限公司 LQFP-48-7×7-0.50 2017-12-08 SR8201F_VB 说明书 单位:mm V1.0 53/53
SR8201F 价格&库存

很抱歉,暂时无法提供与“SR8201F”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SR8201F
    •  国内价格
    • 1+2.53800
    • 10+1.98720
    • 30+1.72800
    • 100+1.49040
    • 500+1.42560
    • 1000+1.39320

    库存:6182

    SR8201F
    •  国内价格
    • 1+1.61279
    • 10+1.54880
    • 100+1.39520
    • 500+1.31840

    库存:905