0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RTL8305SC-LF

RTL8305SC-LF

  • 厂商:

    REALTEK(瑞昱)

  • 封装:

    PQFP128

  • 描述:

    带有双MII接口的单片5端口10/100MBPS开关控制器

  • 数据手册
  • 价格&库存
RTL8305SC-LF 数据手册
RTL8305SC SINGLE-CHIP 5-PORT 10/100MBPS SWITCH CONTROLLER WITH DUAL MII INTERFACES DataSheet Rev. 1.2 02 March 2005 Track ID: JATR-1076-21 RTL8305SC Datasheet COPYRIGHT ©2005 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp. TRADEMARKS Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners. DISCLAIMER Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied, including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors. USING THIS DOCUMENT This document is intended for use by the software engineer when programming for Realtek RTL8305SC controller chips. Information pertaining to the hardware design of products using these chips is contained in a separate document. Though every effort has been made to assure that this document is current and accurate, more information may have become available subsequent to the production of this guide. In that event, please contact your Realtek representative for additional information that may help in the development process. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller ii Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet REVISION HISTORY Revision Release Date Summary 1.0 2004/06/17 First release. 1.1 2004/06/30 Removed QoS function IPv6 differentiated services and removed Table 147, page 113. Revised LEDMODE[1:0]=00, in Table 4, page 14, Table 7, page 20, Table 19, page 30, and Table 69, page 59. Changed four combinations of LED mode to three combinations of LED display mode, page 3. 1.2 2005/03/02 Corrected section 7.3.10 PHY 2 Register 23: “Port 2 Control Register 1” to “Global Option 1 Register”, page 71. Revised pull low resister to 1k ohm, Table 5, page 16. Revised PHY register in Table 64, page 55. Changed Table 139’s name from PHY 0 to PHY 5, page 87. Changed Table 140’s name from PHY 8 to PHY 5, page 88. Add P4PHY_MODE select, in Table 143, page 103. Corrected Pin52 MTXEN/PRXDV/EN_TRUNK to MTXEN/PRXDV, Pin92 LED_ACT[4]/DISFCAUTOOFF to LED_ACT[4], and Pin115 ENAGBACK/LED_DUP[0] to LED_DUP[0], in Figure 2, page 7, and Table 1, page 8. Canceled the description of Pin92 LED_ACT[4]/DISFCAUTOOFF and Pin115 ENAGBACK/LED_DUP[0], section 1, page 2, in Table 9, page 22, and section 8.3.10, page 123. Reserved PHY 0 Register 18.7 and 18.15, in Table 68, page 58. Reserved EEPROM Register 4.7, in Table 16, page 28 and Register 5.7, Table 17, page 29. Corrected QoS based features, section 2, page 4. Corrected 2SB1188K to 2SB1188 and HVDD18 to DVDD18, in Figure 24, page 132, and Table 151, page 132. Corrected “24LC02 must be 1.8Vcompatible” to “24LC02 must be 3.3Vcompatible”, section 8.3.3, page 117. Corrected TTL Input High Voltage 1.5V to 2.0V and TTL Input Low Voltage 1.0V to 0.8V, section 9.3, page 134. Corrected PHY 4 register 18 description, in Table 124, page 81. Add 100Base-TX TD and RD Differential Output Impedance (return loss) columns and delete 10Base-TX TD and RD Differential Output Impedance (return loss) columns, in Section 9.4 AC Characteristics, page 135. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller iii Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Table of Contents 1. GENERAL DESCRIPTION................................................................................................................................................1 2. FEATURES...........................................................................................................................................................................4 3. BLOCK DIAGRAM.............................................................................................................................................................6 4. PIN ASSIGNMENTS ...........................................................................................................................................................7 5. PIN DESCRIPTIONS ..........................................................................................................................................................9 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10. 6. MEDIA CONNECTION PINS............................................................................................................................................9 PORT 4 CONFIGURATION PINS ......................................................................................................................................9 PORT 4 MAC CIRCUIT INTERFACE PINS .....................................................................................................................14 PORT 4 PHY CIRCUIT INTERFACE PINS ......................................................................................................................16 MISCELLANEOUS PINS ...............................................................................................................................................19 PORT LED PINS .........................................................................................................................................................20 SERIAL EEPROM AND SMI PINS ..............................................................................................................................22 STRAPPING PINS .........................................................................................................................................................22 PORT STATUS STRAPPING PINS ...................................................................................................................................24 POWER PINS ...............................................................................................................................................................26 EEPROM DESCRIPTION................................................................................................................................................27 6.1. PORT 0 REGISTERS .....................................................................................................................................................27 6.1.1. Global Control Register0 .....................................................................................................................................27 6.1.2. Global Control Register1 .....................................................................................................................................27 6.1.3. Global Control Register2 .....................................................................................................................................28 6.1.4. Global Control Register3 .....................................................................................................................................28 6.1.5. Global Control Register4 .....................................................................................................................................28 6.1.6. Global Control Register5 .....................................................................................................................................29 6.1.7. Global Control Register6 .....................................................................................................................................29 6.1.8. Global Control Register7 .....................................................................................................................................30 6.1.9. Port 0 Control 0....................................................................................................................................................30 6.1.10. Port 0 Control 1....................................................................................................................................................31 6.1.11. Port 0 Control 2....................................................................................................................................................31 6.1.12. Port 0 Control 3....................................................................................................................................................31 6.1.13. Port 0 Control 4 & VLAN Entry [A].....................................................................................................................32 6.2. PORT 1 REGISTERS .....................................................................................................................................................33 6.2.1. Internal Use Register............................................................................................................................................33 6.2.2. Port 1 Control 0....................................................................................................................................................33 6.2.3. Port 1 Control 1....................................................................................................................................................34 6.2.4. Port 1 Control 2....................................................................................................................................................34 6.2.5. Port 1 Control 3....................................................................................................................................................34 6.2.6. Port 1 Control 4 & VLAN Entry [B].....................................................................................................................35 6.3. PORT 2 REGISTERS .....................................................................................................................................................36 6.3.1. Internal Use Register............................................................................................................................................36 6.3.2. Port 2 Control 0....................................................................................................................................................36 6.3.3. Port 2 Control 1....................................................................................................................................................37 6.3.4. Reserved ...............................................................................................................................................................37 6.3.5. Port 2 Control 2 & VLAN Entry [C] ....................................................................................................................38 6.4. PORT 3 REGISTERS .....................................................................................................................................................39 6.4.1. Switch MAC Address ............................................................................................................................................39 6.4.2. Port 3 Control 0....................................................................................................................................................39 6.4.3. Port 3 Control 1....................................................................................................................................................40 6.4.4. Reserved ...............................................................................................................................................................40 5-port 10/100Mbps Single-Chip Dual MII Switch Controller iv Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.4.5. Port 3 Control 2 & VLAN Entry [D] ....................................................................................................................40 6.4.6. Internal Use Register............................................................................................................................................41 6.5. PORT 4 REGISTERS .....................................................................................................................................................42 6.5.1. Port 4 Control 0....................................................................................................................................................42 6.5.2. Port 4 Control 1....................................................................................................................................................42 6.5.3. Reserved ...............................................................................................................................................................43 6.5.4. Port 4 Control 2 & VLAN Entry [E].....................................................................................................................43 6.5.5. Internal Use Register............................................................................................................................................44 6.5.6. 802.1p Base Priority.............................................................................................................................................44 6.6. VLAN ENTRIES .........................................................................................................................................................44 6.6.1. VLAN Entry [F]....................................................................................................................................................44 6.6.2. VLAN Entry [G] ...................................................................................................................................................45 6.6.3. VLAN Entry [H] ...................................................................................................................................................45 6.6.4. VLAN Entry [I] .....................................................................................................................................................46 6.6.5. VLAN Entry [J] ....................................................................................................................................................46 6.6.6. VLAN Entry [K]....................................................................................................................................................47 6.6.7. VLAN Entry [L] ....................................................................................................................................................47 6.6.8. VLAN Entry [M] ...................................................................................................................................................48 6.6.9. VLAN Entry [N]....................................................................................................................................................48 6.6.10. VLAN Entry [O] ...................................................................................................................................................49 6.6.11. VLAN Entry [P]....................................................................................................................................................49 7. REGISTER DESCRIPTIONS ..........................................................................................................................................50 7.1. PHY 0 REGISTERS .....................................................................................................................................................53 7.1.1. PHY 0 Register 0 for Port 0: Control ...................................................................................................................53 7.1.2. PHY 0 Register 1 for Port 0: Status......................................................................................................................54 7.1.3. PHY 0 Register 2 for Port 0: PHY Identifier 1 .....................................................................................................54 7.1.4. PHY 0 Register 3 for Port 0: PHY Identifier 2 .....................................................................................................55 7.1.5. PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement ............................................................................55 7.1.6. PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner Ability ...................................................................56 7.1.7. PHY 0 Register 16: Global Control 0...................................................................................................................56 7.1.8. PHY 0 Register 17: Global Control 1...................................................................................................................58 7.1.9. PHY 0 Register 18: Global Control 2...................................................................................................................58 7.1.10. PHY 0 Register 19: Global Control 3...................................................................................................................59 7.1.11. PHY 0 Register 22: Port 0 Control Register 0......................................................................................................60 7.1.12. PHY 0 Register 24: Port 0 Control Register 1 & VLAN ID [A] Membership ......................................................61 7.1.13. PHY 0 Register 25: Port 0 Control Register 2 & VLAN ID [A] ...........................................................................61 7.1.14. PHY 0 Register 26: Reserved or VLAN ID [F] Membership................................................................................62 7.1.15. PHY 0 Register 27: Reserved or VLAN ID [F].....................................................................................................62 7.1.16. PHY 0 Register 28: Reserved or VLAN ID [K] Membership................................................................................63 7.1.17. PHY 0 Register 29: Reserved or VLAN ID [K] ....................................................................................................63 7.1.18. PHY 0 Register 30: Reserved or VLAN ID [P] Membership................................................................................64 7.1.19. PHY 0 Register 31: Reserved or VLAN ID [P].....................................................................................................64 7.2. PHY 1 REGISTERS .....................................................................................................................................................65 7.2.1. PHY 1 Register 0 for Port 1: Control ...................................................................................................................65 7.2.2. PHY 1 Register 1 for Port 1: Status......................................................................................................................65 7.2.3. PHY 1 Register 2 for Port 1: PHY Identifier 1 .....................................................................................................65 7.2.4. PHY 1 Register 3 for Port 1: PHY Identifier 2 .....................................................................................................65 7.2.5. PHY 1 Register 4 for Port 1: Auto-Negotiation Advertisement ............................................................................65 7.2.6. PHY 1 Register 5 for Port 1: Auto-Negotiation Link Partner Ability ...................................................................65 7.2.7. PHY 1 Register 16~17: Internal Use Register......................................................................................................65 7.2.8. PHY 1 Register 18~19: Internal Use Register......................................................................................................65 7.2.9. PHY 1 Register 22: Port 1 Control Register 0......................................................................................................66 7.2.10. PHY 1 Register 23: Global Option Register 0......................................................................................................66 7.2.11. PHY 1 Register 24: Port 1 Control Register 1 & VLAN ID [B] Membership ......................................................66 5-port 10/100Mbps Single-Chip Dual MII Switch Controller v Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 7.2.12. PHY 1 Register 25: Port 1 Control Register 2 & VLAN ID [B] ...........................................................................67 7.2.13. PHY 1 Register 26: Reserved or VLAN ID [G] Membership ...............................................................................67 7.2.14. PHY 1 Register 27: Reserved or VLAN ID [G] ....................................................................................................68 7.2.15. PHY 1 Register 28: Reserved or VLAN ID [L] Membership ................................................................................68 7.2.16. PHY 1 Register 29: Reserved or VLAN ID [L].....................................................................................................69 7.3. PHY 2 REGISTERS .....................................................................................................................................................70 7.3.1. PHY 2 Register 0 for Port 2: Control ...................................................................................................................70 7.3.2. PHY 2 Register 1 for Port 2: Status......................................................................................................................70 7.3.3. PHY 2 Register 2 for Port 2: PHY Identifier 1 .....................................................................................................70 7.3.4. PHY 2 Register 3 for Port 2: PHY Identifier 2 .....................................................................................................70 7.3.5. PHY 2 Register 4 for Port 2: Auto-Negotiation Advertisement ............................................................................70 7.3.6. PHY 2 Register 5 for Port 2: Auto-Negotiation Link Partner Ability ...................................................................70 7.3.7. PHY 2 Register 16~17: Internal Use Register......................................................................................................70 7.3.8. PHY 2 Register 18~19: Internal Use Register......................................................................................................70 7.3.9. PHY 2 Register 22: Port 2 Control Register 0......................................................................................................71 7.3.10. PHY 2 Register 23: Global Option 1 Register......................................................................................................71 7.3.11. PHY 2 Register 24: Port 2 Control Register 2 & VLAN ID [C] Membership ......................................................71 7.3.12. PHY 2 Register 25: Port 2 Control Register 3 & VLAN ID [C] ...........................................................................72 7.3.13. PHY 2 Register 26: Reserved or VLAN ID [H] Membership ...............................................................................72 7.3.14. PHY 2 Register 27: Reserved or VLAN ID [H] ....................................................................................................73 7.3.15. PHY 2 Register 28: Reserved or VLAN ID [M] Membership ...............................................................................73 7.3.16. PHY 2 Register 29: Reserved or VLAN ID [M]....................................................................................................74 7.4. PHY 3 REGISTERS .....................................................................................................................................................75 7.4.1. PHY 3 Register 0 for Port 3: Control ...................................................................................................................75 7.4.2. PHY 3 Register 1 for Port 3: Status......................................................................................................................75 7.4.3. PHY 3 Register 2 for Port 3: PHY Identifier 1 .....................................................................................................75 7.4.4. PHY 3 Register 3 for Port 3: PHY Identifier 2 .....................................................................................................75 7.4.5. PHY 3 Register 4 for Port 3: Auto-Negotiation Advertisement ............................................................................75 7.4.6. PHY 3 Register 5 for Port 3: Auto-Negotiation Link Partner Ability ...................................................................75 7.4.7. PHY 3 Register 16~18: Switch MAC Address ......................................................................................................75 7.4.8. PHY 3 Register 19~21: Internal Use Register......................................................................................................76 7.4.9. PHY 3 Register 22: Port 3 Control Register 0......................................................................................................76 7.4.10. PHY 3 Register 24: Port 3 Control Register 1 & VLAN ID [D] Membership ......................................................76 7.4.11. PHY 3 Register 25: Port 3 Control Register 2 & VLAN ID [D]...........................................................................77 7.4.12. PHY 3 Register 26: Reserved or VLAN ID [I] Membership.................................................................................77 7.4.13. PHY 3 Register 27: Reserved or VLAN ID [I]......................................................................................................78 7.4.14. PHY 3 Register 28: Reserved or VLAN ID [N] Membership................................................................................78 7.4.15. PHY 3 Register 29: Reserved or VLAN ID [N] ....................................................................................................79 7.5. PHY 4 REGISTERS .....................................................................................................................................................80 7.5.1. PHY 4 Register 0 for Port 4: Control ...................................................................................................................80 7.5.2. PHY 4 Register 1 for Port 4: Status......................................................................................................................80 7.5.3. PHY 4 Register 2 for Port 4: PHY Identifier 1 .....................................................................................................80 7.5.4. PHY 4 Register 3 for Port 4: PHY Identifier 2 .....................................................................................................80 7.5.5. PHY 4 Register 4 for Port 4: Auto-Negotiation Advertisement ............................................................................80 7.5.6. PHY 4 Register 5 for Port 4: Auto-Negotiation Link Partner Ability ...................................................................80 7.5.7. PHY 4 Register 16: Indirect Access Control.........................................................................................................80 7.5.8. PHY 4 Register 17~20: Indirect Access Data.......................................................................................................81 7.5.9. PHY 4 Register 21: 802.1p Base Priority.............................................................................................................81 7.5.10. PHY 4 Register 22: Port 4 Control Register 0......................................................................................................82 7.5.11. PHY 4 Register 24: Port 4 Control Register 1 & VLAN ID [E] Membership ......................................................82 7.5.12. PHY 4 Register 25: Port 4 Control Register 2 & VLAN ID [E] ...........................................................................83 7.5.13. PHY 4 Register 26: Reserved or VLAN ID [J] Membership ................................................................................83 7.5.14. PHY 4 Register 27: Reserved or VLAN ID [J] .....................................................................................................84 7.5.15. PHY 4 Register 28: Reserved or VLAN ID [O] Membership ...............................................................................84 7.5.16. PHY 4 Register 29: Reserved or VLAN ID [O] ....................................................................................................85 5-port 10/100Mbps Single-Chip Dual MII Switch Controller vi Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 7.6. PHY 5 REGISTERS .....................................................................................................................................................86 7.6.1. PHY 5 Register 0 for Port 4 MAC: Control..........................................................................................................86 7.6.2. PHY 5 Register 1 for Port 4 MAC: Status ............................................................................................................87 7.6.3. PHY 5 Register 2 for Port 4 MAC: PHY Identifier 1............................................................................................87 7.6.4. PHY 5 Register 3 for Port 4 MAC: PHY Identifier 2............................................................................................87 7.6.5. PHY 5 Register 4 for Port 4 MAC: Auto-Negotiation Advertisement...................................................................88 7.6.6. MII Port NWay Mode ...........................................................................................................................................89 7.6.7. MII Port Force Mode ...........................................................................................................................................89 8. FUNCTIONAL DESCRIPTION.......................................................................................................................................90 8.1. SWITCH CORE FUNCTIONAL OVERVIEW .....................................................................................................................90 8.1.1. Applications..........................................................................................................................................................90 8.1.2. Port 4....................................................................................................................................................................90 8.1.3. Port Status Configuration.....................................................................................................................................94 8.1.4. Flow Control ........................................................................................................................................................95 8.1.5. Address Search, Learning, and Aging ..................................................................................................................97 8.1.6. Address Direct Mapping Mode.............................................................................................................................97 8.1.7. Half Duplex Operation .........................................................................................................................................98 8.1.8. InterFrame Gap....................................................................................................................................................98 8.1.9. Illegal Frame........................................................................................................................................................98 8.1.10. Dual MII Interface................................................................................................................................................99 8.2. PHYSICAL LAYER FUNCTIONAL OVERVIEW ..............................................................................................................110 8.2.1. Auto-Negotiation for UTP .................................................................................................................................. 110 8.2.2. 10Base-T Transmit Function .............................................................................................................................. 110 8.2.3. 10Base-T Receive Function ................................................................................................................................ 111 8.2.4. Link Monitor....................................................................................................................................................... 111 8.2.5. 100Base-TX Transmit Function.......................................................................................................................... 111 8.2.6. 100Base-TX Receive Function............................................................................................................................ 111 8.2.7. 100Base-FX ........................................................................................................................................................ 111 8.2.8. 100Base-FX Transmit Function.......................................................................................................................... 112 8.2.9. 100Base-FX Receive Function ........................................................................................................................... 112 8.2.10. 100Base-FX FEFI .............................................................................................................................................. 112 8.2.11. Reduced Fiber Interface ..................................................................................................................................... 113 8.2.12. Power Saving Mode............................................................................................................................................ 113 8.2.13. Reg0.11 Power-Down Mode............................................................................................................................... 114 8.2.14. Crossover Detection and Auto Correction.......................................................................................................... 114 8.2.15. Polarity Detection and Correction ..................................................................................................................... 114 8.3. ADVANCED FUNCTIONAL OVERVIEW .......................................................................................................................115 8.3.1. Reset ................................................................................................................................................................... 115 8.3.2. Setup and Configuration..................................................................................................................................... 116 8.3.3. Serial EEPROM Example: 24LC02.................................................................................................................... 117 8.3.4. SMI ..................................................................................................................................................................... 119 8.3.5. Head-Of-Line Blocking ...................................................................................................................................... 119 8.3.6. Port-Based VLAN ............................................................................................................................................... 119 8.3.7. IEEE 802.1Q Tagged-VID Based VLAN.............................................................................................................121 8.3.8. Port VID (PVID).................................................................................................................................................122 8.3.9. Lookup Table Access...........................................................................................................................................123 8.3.10. QoS Function......................................................................................................................................................123 8.3.11. Insert/Remove VLAN Tag....................................................................................................................................125 8.3.12. Filtering/Forwarding Reserved Control Frame .................................................................................................125 8.3.13. Broadcast Storm Control ....................................................................................................................................126 8.3.14. Broadcast In/Out Drop .......................................................................................................................................126 8.3.15. Loop Detection ...................................................................................................................................................127 8.3.16. MAC Local Loopback Return to External ..........................................................................................................128 8.3.17. Reg.0.14 PHY Digital Loopback Return to Internal...........................................................................................129 5-port 10/100Mbps Single-Chip Dual MII Switch Controller vii Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.18. 8.3.19. 8.3.20. 9. LEDs...................................................................................................................................................................129 1.8V Power Generation ......................................................................................................................................132 Crystal/Oscillator ...............................................................................................................................................132 CHARACTERISTICS .....................................................................................................................................................133 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.6.1. 9.6.2. 9.6.3. 9.6.4. 9.6.5. 10. ABSOLUTE MAXIMUM RATINGS ...............................................................................................................................133 OPERATING RANGE ..................................................................................................................................................133 DC CHARACTERISTICS .............................................................................................................................................134 AC CHARACTERISTICS .............................................................................................................................................135 DIGITAL TIMING CHARACTERISTICS.........................................................................................................................136 THERMAL CHARACTERISTICS ...................................................................................................................................139 Package Description ..........................................................................................................................................139 PCB Description.................................................................................................................................................139 Assembly Material ..............................................................................................................................................139 Simulation Analysis Conditions..........................................................................................................................140 Results ................................................................................................................................................................140 APPLICATION INFORMATION ..............................................................................................................................141 10.1. 10.2. UTP (10BASE-T/100BASE-TX) APPLICATION .........................................................................................................141 100BASE-FX APPLICATION ......................................................................................................................................143 11. DESIGN AND LAYOUT GUIDE................................................................................................................................145 12. MECHANICAL DIMENSIONS .................................................................................................................................147 12.1. 13. MECHANICAL DIMENSIONS NOTES ..........................................................................................................................148 ORDERING INFORMATION....................................................................................................................................148 5-port 10/100Mbps Single-Chip Dual MII Switch Controller viii Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet List of Tables TABLE 1. PIN ASSIGNMENTS..........................................................................................................................................................8 TABLE 2. MEDIA CONNECTION PINS .............................................................................................................................................9 TABLE 3. PORT 4 CONFIGURATION PIN DEFINITIONS .....................................................................................................................9 TABLE 4. PORT 4 MAC CIRCUIT INTERFACE PIN DEFINITIONS ...................................................................................................14 TABLE 5. PORT 4 PHY CIRCUIT INTERFACE PIN DEFINITIONS .....................................................................................................16 TABLE 6. MISCELLANEOUS PINS .................................................................................................................................................19 TABLE 7. PORT LED PINS ...........................................................................................................................................................20 TABLE 8. SERIAL EEPROM AND SMI PINS ................................................................................................................................22 TABLE 9. STRAPPING PINS ...........................................................................................................................................................22 TABLE 10. PORT STATUS STRAPPING PINS .....................................................................................................................................24 TABLE 11. POWER PINS .................................................................................................................................................................26 TABLE 12. GLOBAL CONTROL REGISTER0 ....................................................................................................................................27 TABLE 13. GLOBAL CONTROL REGISTER1 ....................................................................................................................................27 TABLE 14. GLOBAL CONTROL REGISTER2 ....................................................................................................................................28 TABLE 15. GLOBAL CONTROL REGISTER3 ....................................................................................................................................28 TABLE 16. GLOBAL CONTROL REGISTER4 ....................................................................................................................................28 TABLE 17. GLOBAL CONTROL REGISTER5 ....................................................................................................................................29 TABLE 18. GLOBAL CONTROL REGISTER6 ....................................................................................................................................29 TABLE 19. GLOBAL CONTROL REGISTER 7....................................................................................................................................30 TABLE 20. PORT 0 CONTROL 0 ......................................................................................................................................................30 TABLE 21. PORT 0 CONTROL 1 ......................................................................................................................................................31 TABLE 22. PORT 0 CONTROL 2 ......................................................................................................................................................31 TABLE 23. PORT 0 CONTROL 3 ......................................................................................................................................................31 TABLE 24. PORT 0 CONTROL 4 & VLAN ENTRY [A] ....................................................................................................................32 TABLE 25. INTERNAL USE REGISTER .............................................................................................................................................33 TABLE 26. PORT 1 CONTROL 0 ......................................................................................................................................................33 TABLE 27. PORT 1 CONTROL 1 ......................................................................................................................................................34 TABLE 28. PORT 1 CONTROL 2 ......................................................................................................................................................34 TABLE 29. PORT 1 CONTROL 2 ......................................................................................................................................................34 TABLE 30. PORT 1 CONTROL 4 & VLAN ENTRY [B] ....................................................................................................................35 TABLE 31. INTERNAL USE REGISTER .............................................................................................................................................36 TABLE 32. PORT 2 CONTROL 0 ......................................................................................................................................................36 TABLE 33. PORT 2 CONTROL 1 ......................................................................................................................................................37 TABLE 34. RESERVED ....................................................................................................................................................................37 TABLE 35. PORT 2 CONTROL 2 & VLAN ENTRY [C] ....................................................................................................................38 TABLE 36. SWITCH MAC ADDRESS ..............................................................................................................................................39 TABLE 37. PORT 3 CONTROL 0 ......................................................................................................................................................39 TABLE 38. PORT 3 CONTROL 1 ......................................................................................................................................................40 TABLE 39. RESERVED ....................................................................................................................................................................40 TABLE 40. PORT 3 CONTROL 2 & VLAN ENTRY [D] ....................................................................................................................40 TABLE 41. INTERNAL USE REGISTER .............................................................................................................................................41 TABLE 42. PORT 4 CONTROL 0 ......................................................................................................................................................42 TABLE 43. PORT 4 CONTROL 1 ......................................................................................................................................................42 TABLE 44. RESERVED ....................................................................................................................................................................43 TABLE 45. PORT 4 CONTROL 2 & VLAN ENTRY [E].....................................................................................................................43 TABLE 46. INTERNAL USE REGISTER .............................................................................................................................................44 TABLE 47. 802.1P BASE PRIORITY.................................................................................................................................................44 TABLE 48. VLAN ENTRY [F] ........................................................................................................................................................44 TABLE 49. VLAN ENTRY [G] .......................................................................................................................................................45 TABLE 50. VLAN ENTRY [H] .......................................................................................................................................................45 TABLE 51. VLAN ENTRY [I] .........................................................................................................................................................46 TABLE 52. VLAN ENTRY [J].........................................................................................................................................................46 5-port 10/100Mbps Single-Chip Dual MII Switch Controller ix Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet TABLE 53. VLAN ENTRY [K] .......................................................................................................................................................47 TABLE 54. VLAN ENTRY [L]........................................................................................................................................................47 TABLE 55. VLAN ENTRY [M].......................................................................................................................................................48 TABLE 56. VLAN ENTRY [N] .......................................................................................................................................................48 TABLE 57. VLAN ENTRY [O] .......................................................................................................................................................49 TABLE 58. VLAN ENTRY [P] ........................................................................................................................................................49 TABLE 59. REGISTER DESCRIPTIONS .............................................................................................................................................50 TABLE 60. PHY 0 REGISTER 0: CONTROL .....................................................................................................................................53 TABLE 61. PHY 0 REGISTER 1: STATUS ........................................................................................................................................54 TABLE 62. PHY 0 REGISTER 2: PHY IDENTIFIER 1.......................................................................................................................54 TABLE 63. PHY 0 REGISTER 3: PHY IDENTIFIER 2.......................................................................................................................55 TABLE 64. PHY 0 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ........................................................................................55 TABLE 65. PHY 0 REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY ..............................................................................56 TABLE 66. PHY 0 REGISTER 16: GLOBAL CONTROL 0..................................................................................................................56 TABLE 67. PHY 0 REGISTER 17: GLOBAL CONTROL 1..................................................................................................................58 TABLE 68. PHY 0 REGISTER 18: GLOBAL CONTROL 2..................................................................................................................58 TABLE 69. PHY 0 REGISTER 19: GLOBAL CONTROL 3..................................................................................................................59 TABLE 70. PHY 0 REGISTER 22: PORT 0 CONTROL REGISTER 0 ...................................................................................................60 TABLE 71. PHY 0 REGISTER 24: PORT 0 CONTROL REGISTER 1 & VLAN ID [A] MEMBERSHIP .................................................61 TABLE 72. PHY 0 REGISTER 25: PORT 0 REGISTER CONTROL 2 & VLAN ID [A]........................................................................61 TABLE 73. PHY 0 REGISTER 26: RESERVED REGISTER .................................................................................................................62 TABLE 74. PHY 0 REGISTER 26: VLAN ID [F] MEMBERSHIP ......................................................................................................62 TABLE 75. PHY 0 REGISTER 27: RESERVED REGISTER .................................................................................................................62 TABLE 76. PHY 0 REGISTER 27: VLAN ID [F] ............................................................................................................................62 TABLE 77. PHY 0 REGISTER 28: RESERVED REGISTER .................................................................................................................63 TABLE 78. PHY 0 REGISTER 28: VLAN ID [K] MEMBERSHIP .....................................................................................................63 TABLE 79. PHY 0 REGISTER 29: RESERVED REGISTER .................................................................................................................63 TABLE 80. PHY 0 REGISTER 29: VLAN ID [K]............................................................................................................................63 TABLE 81. PHY 0 REGISTER 30: RESERVED REGISTER .................................................................................................................64 TABLE 82. PHY 0 REGISTER 30: VLAN ID [P] MEMBERSHIP ......................................................................................................64 TABLE 83. PHY 0 REGISTER 31: RESERVED REGISTER .................................................................................................................64 TABLE 84. PHY 0 REGISTER 31: VLAN ID [P] ............................................................................................................................64 TABLE 85. PHY 1 REGISTER 16~17: INTERNAL USE REGISTER ....................................................................................................65 TABLE 86. PHY 1 REGISTER 18~19: INTERNAL USE REGISTER ....................................................................................................65 TABLE 87. PHY 1 REGISTER 23: GLOBAL OPTION REGISTER 0.....................................................................................................66 TABLE 88. PHY 1 REGISTER 24: PORT 1 CONTROL REGISTER 1 & VLAN ID [B] MEMBERSHIP ..................................................66 TABLE 89. PHY 1 REGISTER 25: PORT 1 CONTROL REGISTER 2 & VLAN ENTRY [B]..................................................................67 TABLE 90. PHY 1 REGISTER 26: RESERVED REGISTER .................................................................................................................67 TABLE 91. PHY 1 REGISTER 26: VLAN ID [G] MEMBERSHIP .....................................................................................................67 TABLE 92. PHY 1 REGISTER 27: RESERVED REGISTER .................................................................................................................68 TABLE 93. PHY 1 REGISTER 27: VLAN ID [G]............................................................................................................................68 TABLE 94. PHY 1 REGISTER 28: RESERVED REGISTER .................................................................................................................68 TABLE 95. PHY 1 REGISTER 28: VLAN ID [L] MEMBERSHIP ......................................................................................................68 TABLE 96. PHY 1 REGISTER 29: RESERVED REGISTER .................................................................................................................69 TABLE 97. PHY 1 REGISTER 29: VLAN ID [L] ............................................................................................................................69 TABLE 98. PHY 2 REGISTER 16~17: INTERNAL USE REGISTER ....................................................................................................70 TABLE 99. PHY 2 REGISTER 18~19: INTERNAL USE REGISTER ....................................................................................................70 TABLE 100. PHY 2 REGISTER 23: GLOBAL OPTION REGISTER 1...................................................................................................71 TABLE 101. PHY 2 REGISTER 24: PORT 2 CONTROL REGISTER 2 & VLAN ID [C] MEMBERSHIP ................................................71 TABLE 102. PHY 2 REGISTER 25: PORT 2 CONTROL REGISTER 3 & VLAN ID [C] ......................................................................72 TABLE 103. PHY 2 REGISTER 26: RESERVED REGISTER ...............................................................................................................72 TABLE 104. PHY 2 REGISTER 26: VLAN ID [H] MEMBERSHIP ...................................................................................................72 TABLE 105. PHY 2 REGISTER 27: RESERVED REGISTER ...............................................................................................................73 TABLE 106. PHY 2 REGISTER 27: VLAN ID [H]..........................................................................................................................73 TABLE 107. PHY 2 REGISTER 28: RESERVED REGISTER ...............................................................................................................73 5-port 10/100Mbps Single-Chip Dual MII Switch Controller x Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet TABLE 108. PHY 2 REGISTER 28: VLAN ID [M] MEMBERSHIP...................................................................................................73 TABLE 109. PHY 2 REGISTER 29: RESERVED REGISTER ...............................................................................................................74 TABLE 110. PHY 2 REGISTER 29: VLAN ID [M] .........................................................................................................................74 TABLE 111. PHY 3 REGISTER 16~18: SWITCH MAC ADDRESS ....................................................................................................75 TABLE 112. PHY 3 REGISTER 19~21: INTERNAL USE REGISTER ..................................................................................................76 TABLE 113. PHY 3 REGISTER 24: PORT 3 CONTROL REGISTER 1 & VLAN ID [D] MEMBERSHIP................................................76 TABLE 114. PHY 3 REGISTER 25: PORT 3 CONTROL REGISTER 2 & VLAN ID [D]......................................................................77 TABLE 115. PHY 3 REGISTER 26: RESERVED REGISTER ...............................................................................................................77 TABLE 116. PHY 3 REGISTER 26: VLAN ID [I] MEMBERSHIP .....................................................................................................77 TABLE 117. PHY 3 REGISTER 27: RESERVED REGISTER ...............................................................................................................78 TABLE 118. PHY 3 REGISTER 27: VLAN ID [I] ...........................................................................................................................78 TABLE 119. PHY 3 REGISTER 28: RESERVED REGISTER ...............................................................................................................78 TABLE 120. PHY 3 REGISTER 28: VLAN ID [N] MEMBERSHIP ...................................................................................................78 TABLE 121. PHY 3 REGISTER 29: RESERVED REGISTER ...............................................................................................................79 TABLE 122. PHY 3 REGISTER 29: VLAN ID [N]..........................................................................................................................79 TABLE 123. PHY 4 REGISTER 16: INDIRECT ACCESS CONTROL ....................................................................................................80 TABLE 124. PHY 4 REGISTER 17~20: INDIRECT ACCESS DATA ....................................................................................................81 TABLE 125. PHY 2 REGISTER 20: 802.1P BASE PRIORITY ............................................................................................................81 TABLE 126. PHY 4 REGISTER 24: PORT 4 CONTROL REGISTER 1 & VLAN ID [E] MEMBERSHIP ................................................82 TABLE 127. PHY 4 REGISTER 25: PORT 4 CONTROL REGISTER 2 & VLAN ID [E] ......................................................................83 TABLE 128. PHY 4 REGISTER 26: RESERVED REGISTER ...............................................................................................................83 TABLE 129. PHY 4 REGISTER 26: VLAN ID [J] MEMBERSHIP.....................................................................................................83 TABLE 130. PHY 4 REGISTER 27: RESERVED REGISTER ...............................................................................................................84 TABLE 131. PHY 4 REGISTER 27: VLAN ID [J]...........................................................................................................................84 TABLE 132. PHY 4 REGISTER 28: RESERVED REGISTER ...............................................................................................................84 TABLE 133. PHY 4 REGISTER 28: VLAN ID [O] MEMBERSHIP ...................................................................................................84 TABLE 134. PHY 4 REGISTER 29: RESERVED REGISTER ...............................................................................................................85 TABLE 135. PHY 4 REGISTER 29: VLAN ID [O]..........................................................................................................................85 TABLE 136. PHY 5 REGISTER 0: CONTROL ...................................................................................................................................86 TABLE 137. PHY 5 REGISTER 1: STATUS ......................................................................................................................................87 TABLE 138. PHY 5 REGISTER 2: PHY IDENTIFIER 1 .....................................................................................................................87 TABLE 139. PHY 5 REGISTER 3: PHY IDENTIFIER 2 .....................................................................................................................87 TABLE 140. PHY 5 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ......................................................................................88 TABLE 141. MII PORT NWAY MODE .............................................................................................................................................89 TABLE 142. MII PORT FORCE MODE .............................................................................................................................................89 TABLE 143. MII REGISTER DEFINITION FOR PHY 4 AND PHY 5.................................................................................................103 TABLE 144. PECL DC CHARACTERISTICS ..................................................................................................................................112 TABLE 145. SMI READ/WRITE CYCLES ......................................................................................................................................119 TABLE 146. 802.1Q VLAN TAG FRAME FORMAT .......................................................................................................................124 TABLE 147. IPV4 FRAME FORMAT ..............................................................................................................................................124 TABLE 148. RESERVED MULTICAST ADDRESS .............................................................................................................................125 TABLE 149. LOOP FRAME FORMAT..............................................................................................................................................127 TABLE 150. SPD AND BI-COLOR LINK/ACT TRUTH TABLE ..........................................................................................................130 TABLE 151. AN EXAMPLE USING POWER TRANSISTOR 2SB1188................................................................................................132 TABLE 152. ELECTRICAL CHARACTERISTICS/RATINGS ...............................................................................................................133 TABLE 153. LED TIMING ............................................................................................................................................................136 TABLE 154. MII & SMI DC TIMING ...........................................................................................................................................137 TABLE 155. PACKAGE DESCRIPTION ...........................................................................................................................................139 TABLE 156. PCB DESCRIPTION ...................................................................................................................................................139 TABLE 157. ASSEMBLY MATERIAL ..............................................................................................................................................139 TABLE 158. SIMULATION ANALYSIS CONDITIONS .......................................................................................................................140 TABLE 159. RESULTS...................................................................................................................................................................140 TABLE 160. TRANSFORMER VENDORS ........................................................................................................................................141 TABLE 161. ORDERING INFORMATION .........................................................................................................................................148 5-port 10/100Mbps Single-Chip Dual MII Switch Controller xi Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet List of Figures FIGURE 1. BLOCK DIAGRAM .........................................................................................................................................................6 FIGURE 2. PIN ASSIGNMENTS ........................................................................................................................................................7 FIGURE 3. PORT 4 OPERATING MODE OVERVIEW ........................................................................................................................93 FIGURE 4. TRADITIONAL APPLICATION........................................................................................................................................99 FIGURE 5. DUAL MII APPLICATION DIAGRAM ..........................................................................................................................100 FIGURE 6. DUAL MII MODE WITH 1 MII-MAC + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT............101 FIGURE 7. DUAL MII MODE WITH 1 MII-MAC + 1 MII-PHY (100BASE-FX MODE) INTERFACES APPLICATION CIRCUIT .......101 FIGURE 8. DUAL MII MODE WITH 1 MII-PHY + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT .............102 FIGURE 9. DUAL MII MODE WITH 1 SNI-PHY + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT .............102 FIGURE 10. RESET .......................................................................................................................................................................115 FIGURE 11. START AND STOP DEFINITION ...................................................................................................................................117 FIGURE 12. OUTPUT ACKNOWLEDGE ..........................................................................................................................................117 FIGURE 13. RANDOM READ ........................................................................................................................................................118 FIGURE 14. SEQUENTIAL READ ...................................................................................................................................................118 FIGURE 15. VLAN GROUPING EXAMPLE ....................................................................................................................................120 FIGURE 16. TAGGED AND UNTAGGED PACKET FORWARDING WHEN 802.1Q TAG AWARE VLAN IS DISABLED ...........................122 FIGURE 17. INPUT DROP VS. OUTPUT DROP ................................................................................................................................126 FIGURE 18. LOOP EXAMPLE ........................................................................................................................................................127 FIGURE 19. PORT 4 LOOPBACK ...................................................................................................................................................128 FIGURE 20. REG. 0.14 LOOPBACK ...............................................................................................................................................129 FIGURE 21. FLOATING AND PULL-DOWN OF LED PINS ...............................................................................................................130 FIGURE 22. TWO PIN BI-COLOR LED FOR SPD FLOATING OR PULL-HIGH ..................................................................................131 FIGURE 23. TWO PIN BI-COLOR LED FOR SPD PULL-DOWN ......................................................................................................131 FIGURE 24. USING A PNP TRANSISTOR TO TRANSFORM 3.3V INTO 1.8V....................................................................................132 FIGURE 25. RECEPTION DATA TIMING OF MII/SNI/SMI INTERFACE ...........................................................................................136 FIGURE 26. TRANSMISSION DATA TIMING OF MII/SNI/SMI INTERFACE .....................................................................................136 FIGURE 27. UTP APPLICATION FOR TRANSFORMER WITH CONNECTED CENTRAL TAP ................................................................141 FIGURE 28. UTP APPLICATION FOR TRANSFORMER WITH SEPARATE CENTRAL TAP ....................................................................142 FIGURE 29. 100BASE-FX WITH 3.3V FIBER TRANSCEIVER APPLICATION ...................................................................................143 FIGURE 30. 100BASE-FX WITH 5V FIBER TRANSCEIVER APPLICATION ......................................................................................144 5-port 10/100Mbps Single-Chip Dual MII Switch Controller xii Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 1. General Description The RTL8305SC is a 5-port Fast Ethernet switch controller that integrates memory, five MACs, and five physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip. All ports support 100Base-FX, which shares pins (TX+-/RX+-) with UTP ports and needs no SD+/- pins, a development using Realtek proprietary technology. To compensate for the lack of auto-negotiation in 100Base-FX applications, the RTL8305SC can be forced into 100Base-FX half or full duplex mode, and can enable or disable flow control in fiber mode. The five ports are separated into three groups (GroupX/GroupY/Port4) for flexible port configuration using strapping pins upon reset. The SetGroup pin is used to select port members in GroupX and GroupY. When the port members have been determined, you may use a mode selection pin (GxMode/Gymode/P4Mode[1:0]) to select operating interfaces such as 10/100Base-TX, 100Base-FX. Each group has four pins for selecting initial port status upon reset (ANEG/Force, 100/10, Full/Half, Enable/Disable Flow Control). Upon reset, in addition to using strapping pins, a CPU can also configure the RTL8305SC via the MDC/MDIO interface. The fifth port (port 4) supports an external MAC and an external PHY interface. The external MAC interface can be set to PHY mode MII, PHY mode SNI, or MAC mode MII to work with a routing engine, HomePNA, or VDSL transceiver. The external PHY interface can be set to PHY mode MII in the digital interface, and UTP or fiber in the differential interface. In order to accomplish diagnostics in complex network systems, the RTL8305SC also provides a loopback feature in each port for a variable CPU system. The RTL8305SC contains a 1K-entry address lookup table and supports a 16-entry CAM to avoid hash collisions and to maintain forwarding performance. The 1K-entry table provides read/write access from the SMI interface, and each of the entries can be configured as a static entry. A static entry indicates that this entry is controlled by the external management processor and automatic aging and learning of the entry will not take place. The RTL8305SC supports IEEE 802.3x full-duplex flow control and backpressure half-duplex flow control. A broadcast storm filtering function is provided to filter unusual broadcast storm issues, and an intelligent switch engine prevents Head-Of -Line blocking problems. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 1 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet The RTL8305SC supports 16 VLAN groups. These can be configured as port-based VLANs and/or IEEE 802.1Q tag-based VLANs. Two ingress filtering and egress filtering options provide flexible VLAN configuration: • Ingress filtering option 1: The Acceptable Frame Type of the Ingress Process can be set to ‘Admit All’ or ‘Admit All Tagged’. • Ingress filtering option 2: ‘Admit’ or ‘Discard’ frames associated with a VLAN for which that port is not in the member set. • • Egress filtering option 1: ‘Forward’ or ‘Discard’ ARP broadcast frames. Egress filtering option 2: ‘Forward’ or ‘Discard’ Leaky VLAN frames. The RTL8305SC supports several types of QoS functions with two-level priority queues to improve multimedia or real-time networking applications. The QoS functions are based on: • • • Port-based priority 802.1Q VLAN priority tag The TOS/DS (DiffServ) field of TCP/IP When the QoS function is enabled, a VLAN tag can be inserted or removed at the output port. The RTL8305SC will insert a Port VID (PVID) for untagged frames or remove the tag from tagged frames. The RTL8305SC also supports a special insert VLAN tag function to separate traffic from WAN and LAN sides in Router and Gateway applications. In router applications, the router may want to know which input port this packet came from. The RTL8305SC supports Port VID (PVID) for each port and can insert a PVID in the VLAN tag on egress. Using this function, VID information carried in the VLAN tag will be changed to PVID. The RTL8305SC also provides an option to admit VLAN tagged packets with a specific PVID only. If this function is enabled, it will drop non-tagged packets and packets with an incorrect PVID. Maximum packet length can be 1536 or 1552 bytes according to the initial configuration (strapping upon reset). The filtering function is supported for the 802.1D specified reserved multicast addresses (01-80C2-00-00-02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F). 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 2 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet The RTL8305SC provides flexible LED functions for diagnostics. These include: Three combinations of link, activity, speed, duplex and collision, that are ideal for bi-color LED displays. The RTL8305SC also provides a loop detection function and alarm, for network existence notification, with an output pin that can be designed as a visual LED or a status input pin for a CPU. A power saving mode is implemented on a per-port basis. Each port automatically enters power saving mode 10 seconds after the cable is disconnected from it. The RTL8305SC also implements a power down mode on a per-port basis. Users can set MII Reg.0.11 to force the corresponding port to enter power down mode, which disables all transmit/receive functions, except SMI (MDC/MDIO management interface). Each physical layer channel of the RTL8305SC consists of a 4B5B encoder/decoder, a Manchester encoder/decoder, a scrambler/de-scrambler, a transmit output driver, output wave shaping filters, a digital adaptive equalizer, a PLL circuit, and a DC restoration circuit for clock/data recovery. Friendly crossover auto detection and correction functions are also supported for easy cable connection. The integrated chip benefits from low power consumption, advanced functions with flexible configuration for 5-port SOHO switch, Home Gateway, xDSL/Cable router, and other IA applications. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 3 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 2. Features Supports broadcast storm filtering function 5-port integrated switch controller with memory and transceiver for 10Base-T and 100Base-TX with: Flow control fully supported: 5-port 10/100M UTP or 4-port 10/100M UTP + 1-port MII/SNI or 4-port 10/100M UTP + 1-port MAC MII/SNI + 1-port PHY MII Half duplex: back pressure flow control Full duplex: IEEE 802.3x flow control Supports SMI (Serial Management Interface: MDC/MDIO) for programming and diagnostics Supports the fifth port MAC circuit as PHY mode MII, SNI for router applications, and MAC mode MII for HomePNA or VDSL solutions Supports loop detection function with one LED to indicate the existence of a loop Supports the fifth port PHY circuit as PHY mode MII for router and Gateway applications Supports MAC and PHY loopback function for diagnosis All ports support 100Base-FX with optional flow control enable/disable and full/half-duplex setting Supports up to 16 VLAN groups Flexible 802.1Q port/tag-based VLAN Supports FEFI function for fiber application ARP VLAN for broadcast packets Leaky VLAN for unicast packets Non-blocking wire-speed reception and transmission and non-head-of-lineblocking forwarding VLAN tag Insert/Remove function Supports QoS function on each port: QoS based on: (1) Port-based, (2) VLAN tag, (3) TCP/IP header’s TOS/DS Supports two-level priority queues Weighted round robin service Fully compliant with IEEE 802.3/802.3u auto-negotiation function Built-in high-efficiency SRAM for packet buffer, with 1K-entry lookup table and 16-entry CAM 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 4 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Supports special VLAN tag insert or remove function on per-port basis (egress) to separate WAN traffic from LAN traffic Robust baseline wander correction for improved 100Base-TX performance Optional MDI/MDIX auto crossover for plug-and-play Optional 1536 or 1552 byte maximum packet length Physical layer port Polarity Detection and Correction function Supports reserved control frames (DID=0180C2000003~0180C200000F) filtering function Optional EEPROM interface for configuration 25MHz crystal or 3.3V OSC input Flexible LED indicators for link, activity, speed, full/half duplex, and collision Single 3.3V power input can be transformed to 1.8V via a low-cost external BJT transistor LEDs blink upon reset for LED diagnostics Low power, 1.8/3.3V, 0.18µm CMOS technology, 128-pin PQFP package Supports two power reduction methods: Power saving mode by cable detection Power down mode (via PHY register 0.11) 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 5 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 3. Block Diagram IBREF Waveform Shaping RX+-[0] TX+-[0] 10Base-T or 100Base-T PHYceiver MAC0 Switch Engine0 RX+-[1] TX+-[1] 10Base-T or 100Base-T PHYceiver MAC1 Switch Engine1 Lookup Table Packet Buffer RX+-[2] TX+-[2] 10Base-T or 100Base-T PHYceiver MAC2 Switch Engine2 RX+-[3] TX+-[3] 10Base-T or 100Base-T PHYceiver MAC3 Switch Engine3 DISBRDCTRL ENBKPRS RESET# RX+-[4] TX+-[4] 10Base-T or 100Base-T PHYceiver MAC4 Switch Engine4 PHY2PRXC PHY2PTXC PHY2PTXEN PHY2PTXD[3:0] PHY2PCOL MRXC/PTXC MRXDV/PTXEN MRXD[3:0]/PTXD[3:0] MCOL/PCOL r MAC Interface MTXC/PRXC MTXEN/PRXDV MTXD[3:0]/PRXD[3:0] PHY Interface PHY2PRXDV PHY2PRXD[3:0] Global Function X1 X2 CK25MOUT SEL_MIIMAC PHY Mode MII MAC Mode MII EN_RST_BLNK LED_BLNK_TIME Mode Select Circuit LED Control LED_SPD[4:0] LED_ACT[4:0] LED_DUP[4:0] LED_ADD[4:0] PHY Mode MII/SNI P4LNKSTA# P4DUPSTA/P4FULL P4SPDSTA/P4SPD100 P4FLCTRL/P4ENFC P4MODE[1:0] DISDUALMII Figure 1. Block Diagram 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 6 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Assignments 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 DGND LED_ADD[2]/DISLEAKY DVDD18 LED_DUP[3]/GYMODE LED_SPD[3]/DISARP LED_ACT[3]/EN48PASS1 LED_ADD[3]/GXMODE LED_DUP[4]/SETGROUP DGND LED_SPD[4]/DISVLAN LED_ACT[4] LED_ADD[4]/DISTAGPRI LOOPLED#/ENDEFER PHY2PCOL/LED_BLNK_TIME DISPORTPRI[4] (PHY2PTXD[3]) DVDD33 DISPORTPRI[3] (PHY2PTXD[2]) DISPORTPRI[2] (PHY2PTXD[1]) DISPORTPRI[1] (PHY2PTXD[0]) DISPORTPRI[0] (PHY2PTXEN) PHY2PTXC/QWEIGHT[1] PHY2PRXC/QWEIGHT[0] PHY2PRXDV/DISBRDCTRL DGND PHY2PRXD[3]/ENBKPRS PHY2PRXD[2]/GYENFC PHY2PRXD[1]/GXENFC SDA_MDIO SCL_MDC PHY2PRXD[0]/ENEEPROM ITEST6 EN_RST_BLNK DVDD18 EN_AUTOXOVER SEL_MIIMAC#/DISDSPRI MRXD[3]/PTXD[3] MRXD[2]/PTXD[2] ITEST5 4. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 RTL8305SC 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 DGND MRXD[1]/PTXD[1] DVDD33 MRXD[0]/PTXD[0] MRXDV/PTXEN MRXC/PTXC MCOL/PCOL MTXD[3]/PRXD[3]/P4IRTAG[1] MTXD[2]/PRXD[2]/P4IRTAG[0] MTXD[1]/PRXD[1]/LEDMODE[1] MTXD[0]/PRXD[0]/LEDMODE[0] DVDD18 MTXEN/PRXDV MTXC/PRXC DGND P4LNKSTA# P4DUPSTA/P4FULL P4SPDSTA/P4SPD100 P4FLCTRL/P4ENFC P4MODE[0] P4MODE[1] DVDD18 DISDUALMII ITEST4 RESET# DGND AVDD18 RXIN[0] RXIP[0] AGND TXOP[0] TXON[0] AVDD18 AVDD18 TXON[1] TXOP[1] AGND RXIP[1] RXIN[1] AVDD18 AVDD18 RXIN[2] RXIP[2] AGND TXOP[2] TXON[2] AVDD18 AVDD18 TXON[3] TXOP[3] AGND RXIP[3] RXIN[3] AVDD18 AVDD18 RXIN[4] RXIP[4] AGND TXOP[4] TXON[4] AVDD18 ITEST1 ITEST2 ITEST3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 P4ANEG/LED_ACT[2] GXANEG/LED_SPD[2] GYANEG/LED_DUP[2] DVDD33 GXSPD100/LED_ADD[1] GYSPD100/LED_ACT[1] GXFULL/LED_SPD[1] GYFULL/LED_DUP[1] ENFORWARD/LED_ADD[0] DGND BCINDROP/LED_ACT[0] MAX1536/LED_SPD[0] LED_DUP[0] CK25MOUT OSCI HVDD33 AVDD18 X1 X2 AGND VCTRL DTEST2 DTEST1 AGND IBREF AVDD18 Figure 2. Pin Assignments Note: When DISDUALMII=1, the function of pins 83~86 and pin 88 follows the names before the parenthesis ‘( )’. When DISDUALMII=0, pin names in parenthesis ‘( )’ will become functional and original pin functions will not apply. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 7 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet ‘Type’ codes used in the following tables: A=Analog; D=Digital, I=Input; O=Output, PU=Internal pull-up, PD=Internal pull-down. Table 1. Pin Assignments Name AVDD18 RXIN[0] RXIP[0] AGND TXOP[0] TXON[0] AVDD18 AVDD18 TXON[1] TXOP[1] AGND RXIP[1] RXIN[1] AVDD18 AVDD18 RXIN[2] RXIP[2] AGND TXOP[2] TXON[2] AVDD18 AVDD18 TXON[3] TXOP[3] AGND RXIP[3] RXIN[3] AVDD18 AVDD18 RXIN[4] RXIP[4] AGND TXOP[4] TXON[4] AVDD18 ITEST1 ITEST2 ITEST3 DGND RESET# ITEST4 DISDUALMII DVDD18 P4MODE[1] P4MODE[0] P4FLCTRL/P4ENFC P4SPDSTA/P4SPD100 P4DUPSTA/P4FULL P4LNKSTA# DGND MTXC/PRXC MTXEN/PRXDV/Internal DVDD18 MTXD[0]/PRXD[0]/LEDMODE[0] MTXD[1]/PRXD[1]/LEDMODE[1] MTXD[2]/PRXD[2]/P4IRTAG[0] MTXD[3]/PRXD[3]/P4IRTAG[1] MCOL/PCOL MRXC/PTXC MRXDV/PTXEN MRXD[0]/PTXD[0] DVDD33 MRXD[1]/PTXD[1] DGND Pin No. Type Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 AVDD AI AI AGND AO AO AVDD AVDD AO AO AGND AI AI AVDD AVDD AI AI AGND AO AO AVDD AVDD AO AO AGND AI AI AVDD AVDD AI AI AGND AO AO AVDD ITEST5 MRXD[2]/PTXD[2] MRXD[3]/PTXD[3] SEL_MIIMAC#/DISDSPRI EN_AUTOXOVER DVDD18 EN_RST_BLNK ITEST6 PHY2PRXD[0]/ENEEPROM SCL_MDC SDA_MDIO PHY2PRXD[1]/GXENFC PHY2PRXD[2]/GYENFC PHY2PRXD[3]/ENBKPRS DGND PHY2PRXDV/DISBRDCTRL PHY2PRXC/QWEIGHT[0] PHY2PTXC/QWEIGHT[1] DISPORTPRI[0] (PHY2PTXEN) DISPORTPRI[1] (PHY2PTXD[0]) DISPORTPRI[2] (PHY2PTXD[1]) DISPORTPRI[3] (PHY2PTXD[2]) DVDD33 DISPORTPRI[4] (PHY2PTXD[3]) PHY2PCOL/LED_BLNK_TIME LOOPLED#/ENDEFER LED_ADD[4]/DISTAGPRI LED_ACT[4] LED_SPD[4]/DISVLAN DGND LED_DUP[4]/SETGROUP LED_ADD[3]/GXMODE LED_ACT[3]/EN48PASS1 LED_SPD[3]/DISARP LED_DUP[3]/GYMODE DVDD18 LED_ADD[2]/DISLEAKY DGND LED_ACT[2]/P4ANEG LED_SPD[2]/GXANEG LED_DUP[2]/GYANEG DVDD33 LED_ADD[1]/GXSPD100 LED_ACT[1]/GYSPD100 LED_SPD[1]/GXFULL LED_DUP[1]/GYFULL LED_ADD[0]/ENFORWARD DGND LED_ACT[0]/BCINDROP LED_SPD[0]/MAX1536 LED_DUP[0] CK25MOUT OSCI HVDD33 AVDD18 X1 X2 AGND VCTRL DTEST2 DTEST1 AGND IBREF AVDD18 DGND I IPU DVDD IPU IPU IPU IPU IPU IPU DGND I/OPU I/OPU DVDD I/OPU I/OPU I/OPU I/OPU I/OPD I/OPU IPD IPU DVDD IPU DGND 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 8 Pin No. 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Type IPU IPU I/OPU IPU DVDD IPU IPU I/OPU I/OPU IPU IPU IPU DGND IPU IPU IPU IPU IPU IPU IPU DVDD IPU IPU I/OPU I/OPU I/OPU I/OPU DGND I/OPU I/OPU I/OPU I/OPU I/OPU DVDD I/OPU DGND I/OPU I/OPU I/OPU DVDD I/OPU I/OPU I/OPU I/OPU I/OPU DGND I/OPU I/OPU I/OPU O I AVDD AVDD I O AGND O AGND A AVDD Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 5. Pin Descriptions ‘Type’ codes used in the following tables: A=Analog; D=Digital, I=Input; O=Output, PU=Internal pull-up, PD=Internal pull-down. Upon Reset: Defined as a short time after the end of a hardware reset. After Reset: Defined as the time after the specified ‘Upon Reset’ time. 5.1. Media Connection Pins Table 2. Media Connection Pins Pin Name RXIP[4:0] RXIN[4:0] Pin No. 2, 3, 12, 13, 16, 17, 26, 27, 30, 31 Type I TXOP[4:0] TXON[4:0] 5, 6, 9, 10, 19, 20, 23, 24, 33, 34 O Drive (mA) Description Differential Receive Data Input Shared by 100Base-TX, 10Base-T, and 100Base-FX. UTP or FX depends on pin GxMode/GyMode/P4Mode[1:0]. Differential Transmit Data Output Shared by 100Base-TX, 10Base-T, and 100Base-FX. UTP or FX depends on pin GxMode/GyMode/P4Mode[1:0]. 5.2. Port 4 Configuration Pins Table 3. Port 4 Configuration Pin Definitions Pin Name DISDUALMII Pin No. Type 42 IPU Drive (mA) Description Port 4 Configuration Pin Definitions Disable Dual MII Interface Function This pin disables or enables the Dual MII interface function of port 4. 1: Disable 0: Enable When enabled, the MAC circuit of port 4 can be set as MAC mode MII, PHY mode MII, or PHY mode SNI. The PHY circuit of port 4 is set as PHY mode MII. The PHY circuit of port 4 can optionally be set as UTP or fiber mode according to the P4MOD[1:0] configuration. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 9 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name Pin No. Type P4MODE[1:0] 44, 45 IPU P4LNKSTA# 49 Drive (mA) Description Port 4 Configuration Pin Definitions When DISDUALMII=1: Select Port 4 MAC Circuit Operating Mode: 11: UTP/MAC mode MII 10: 100Base-FX mode 01: PHY mode MII 00: PHY mode SNI IPU When DISDUALMII=0, I. Select Port 4 MAC Circuit Operating Mode: 1x: MAC mode MII 01: PHY mode MII 00: PHY mode SNI 11: Port 4 PHY Circuit Operating Mode: Note: Provides PHY mode MII only when DISDUALMII=0. Port 4 Link Status for MAC This pin determines the link status of the Port 4 MAC in realtime when the Port 4 MAC is in MAC mode MII/PHY mode MII/PHY mode SNI regardless of whether the Port 4 PHY circuit interface is disabled or enabled in PHY mode MII. This pin is low active. Pulling this pin down sets the link status of the PHY 5 MII register to 1.2. 1: No Link 0: Link P4MODE[1:0]=11 and DISDUALMII=1 (UTP/MAC mode MII) This pin determines the link status of MAC mode MII only in real time. The link status of UTP mode is provided by the internal PHY in real time. If both the UTP and MII ports are linked OK, UTP has higher priority. P4MODE[1:0]=11 and DISDUALMII=0 (MAC mode MII) This pin determines the link status of MAC mode MII only in real time. P4MODE[1:0]=10 (100Base-FX mode) This pin does nothing. The internal PHY will provide the link status to the MAC in real time. P4MODE[1:0]=01 (PHY mode MII) This pin determines the link status of Port 4 in real time. P4MODE[1:0]=00 (PHY mode SNI) This pin determines the link status of Port 4 in real time. When DISDUALMII=1, this pin should be left floating in UTP or FX mode, and pulled down in MAC mode MII/PHY mode MII/PHY mode SNI. Regardless of whether DISDUALMII=1 or=0, this pin provides the link status to the Port 4 MAC part in PHY 5 MII register 1.2 when the Port 4 MAC part is configured in MAC mode MII/PHY mode MII/PHY mode SNI. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 10 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name P4DUPSTA Pin No. Type 48 IPU Drive (mA) Description Port 4 Configuration Pin Definitions Port 4 Duplex Status Port 4 initial configuration pin for duplex upon reset for PHY in UTP or FX mode, and strap duplex status for MAC of other modes upon reset. 1: Full duplex 0: Half duplex P4MODE[1:0]=11 (UTP/MAC mode MII) This pin provides the initial duplex configuration of the PHY part upon reset when Port 4 operates in UTP mode. If Port 4 operates in MAC mode MII, this pin straps the initial duplex status for the MAC part upon reset. P4MODE[1:0]=10 (100Base-FX mode) This pin provides the initial duplex register configuration of the PHY part upon reset (FX). The duplex status of the MAC part is provided by the internal PHY in real time after reset. P4MODE[1:0]=01 (PHY mode MII) This pin straps the initial duplex status of Port 4 upon reset. P4MODE[1:0]=00 (PHY mode SNI) This pin straps the initial duplex status of Port 4 upon reset. In MAC mode MII/PHY mode MII/PHY mode SNI, the configuration of this pin will set the duplex status of the internal register upon reset. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 11 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name Pin No. Type P4SPDSTA 47 IPU Drive (mA) Description Port 4 Configuration Pin Definitions Port 4 Speed Status Port 4 initial configuration pin for speed status upon reset for PHY of UTP mode only, and strap speed status for MAC of other modes upon reset. 1: 100Mbps 0: 10Mbps P4MODE[1:0]=11 (UTP/MAC mode MII) This pin provides the initial speed configuration of the PHY part upon reset when Port 4 operates in UTP mode. If Port 4 operates in MAC mode MII, this pin straps the initial speed status for the MAC part upon reset. P4MODE[1:0]=10 (100Base-FX mode) The speed is dedicated to 100M and this pin should be left floating as it is irrelevant. P4MODE[1:0]=01 (PHY mode MII) This pin straps the initial speed status of Port 4 upon reset. P4MODE[1:0]=00 (PHY mode SNI) The speed is dedicated to 10MHz. This pin should be pulled down. In order to provide 100M as the default value for PHY, this pin is set as high active. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 12 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name P4FLCTRL/ P4EnFC Pin No. Type 46 IPU Drive (mA) Description Port 4 Configuration Pin Definitions Port 4 Flow Control Port 4 initial configuration pin for flow control upon reset for PHY of UTP and FX mode, and strap flow control status for MAC of other modes upon reset. 1: Enable Flow Control ability 0: Disable Flow Control ability P4MODE[1:0]=11 (UTP/MAC mode MII) This pin provides the initial flow control configuration of the PHY part upon reset when Port 4 operates in UTP mode. If Port 4 operates in MAC mode MII, this pin straps the initial flow control status for the MAC part upon reset. P4MODE[1:0]=10 (100Base-FX mode) This pin provides the initial configuration of flow control for the PHY part upon reset (FX). P4MODE[1:0]=01 (PHY mode MII) This pin straps the initial flow control status of Port 4 upon reset. P4MODE[1:0]=00 (PHY mode SNI) Flow control should be disabled. This pin must be pulled down. In order to enable flow control ability for the PHY, this pin is set as high active. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 13 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name SEL_MIIMAC#/ DisDSPri /(P4PHY_ MODE) Pin No. Type 68 I/OPU Drive (mA) Description Port 4 Configuration Pin Definitions 4 Output After Reset = SEL_MIIMAC# used for LED When P4MODE[1:0]=11 and DISDUALMII=1, this pin indicates whether the UTP path or the MII MAC path is selected. Otherwise, this pin has no use. The LED statuses are represented as active-low or high depending on input strapping If Input=1: Output 0=MII MAC port is selected. 1=UTP is selected. If Input=0: Output 1=MII MAC port is selected. 0=UTP is selected. When P4MODE[1:0]=11 and DISDUALMII=1, the RTL8305SC supports UTP/MII MAC auto-detection function via the link status of Port 4 UTP and the P4LNKSTA# pin setting. UTP has higher priority than MAC mode MII. Input Upon Reset when DISDUALMII=1, DisDSPri. Disable Differentiated Service Priority. 1: Disable DS priority 0: Enable DS priority Input Upon Reset when DISDUALMII=0, P4PHY_MODE. Select the operating mode of Port 4 differential pair. 1: UTP mode 0: FX mode 5.3. Port 4 MAC Circuit Interface Pins The external device must be 3.3V compatible since the digital output of the RTL8305SC is 3.3V. Table 4. Port 4 MAC Circuit Interface Pin Definitions Pin Name MRXD[3:0]/ PTXD[3:0] Pin No. 61, 63, 66, 67 Type IPU MRXDV/PTXEN 60 IPD MRXC/PTXC 59 I/OPU Drive (mA) Description For MAC mode MII, these pins are MRXD[3:0], MII receive data nibble. For PHY mode MII, these pins are PTXD[3:0], MII transmit data nibble. For PHY mode SNI, PTXD[0] is serial transmit data. For MAC mode MII, this pin represents MRXDV, MII receive data valid. For PHY mode MII, this pin represents PTXEN, MII transmit enable. For PHY mode SNI, this pin represents PTXEN, transmit enable. 8 For MAC mode MII, this is a receive clock (MRXC acts as input). For PHY mode MII/PHY mode SNI, it is a transmit clock (PTXC acts as output). 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 14 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name MCOL/PCOL Pin No. 58 Type I/OPD MTXD[3]/PRXD[3] /P4IRTag[1] 57 I/OPU MTXD[2]/PRXD[2] /P4IRTag[0] 56 MTXD[1]/PRXD[1] /LEDMODE[1] 55 MTXD[0]/PRXD[0] /LEDMODE[0] 54 I/OPU Drive (mA) Description 4 For MAC mode MII, this pin represents MCOL collision (acts as input). For PHY mode MII/PHY mode SNI, this pin represents PCOL collision (acts as output). 4 Output After Reset. For MAC mode MII (P4MODE[1:0]=11), these pins are MTXD[3:0], MII transmit data of MAC. For PHY mode MII (P4MODE[1:0]=01), these pins are PRXD[3:0], MII receive data of PHY. For PHY mode SNI (P4MODE[1:0]=00), PRXD[0] is SNI serial receive data. 4 Input Upon Reset: P4IRTag[1:0] Insert/Remove VLAN tags of Port 4. 11=Do not insert/remove VLAN tags to/from packets. 10=Insert VLAN tags to non-tagged packets. 01=Remove tag from tagged packet. 00=Replace the VLAN tags for tagged packets and insert a VLAN tag to non-tagged packets. These pins are used for Port 4 only. Use serial EEPROM for other ports. Output After Reset. For MAC mode MII (P4MODE[1:0]=11), these pins are MTXD[3:0], MII transmit data of MAC. For PHY mode MII (P4MODE[1:0]=01), these pins are PRXD[3:0], MII receive data of PHY. For PHY mode SNI (P4MODE[1:0]=00), PRXD[0] is SNI serial receive data. Input Upon Reset: LEDMODE[1:0] Each port has four LED indicator pins. Each pin has different indicator meanings set by pins, LEDMODE[1:0]. LEDMODE[1:0]=11: Speed + Link/Act + Duplex/Col + Link/Act/Spd. LEDMODE[1:0]=10: Speed + Act + Duplex/Col+Bi-color Link/Active. LEDMODE[1:0]=01: Speed + RxAct + TxAct + Link. LEDMODE[1:0]=00: Reserved. All LED statuses are represented as active-low or high depending on input strapping, except Bi-color Link/Act in Bi-color LED mode, whose polarity depends on Spd status. Link/Act/Spd: Link, Activity, and Speed Indicator. ON for link established. Blinking every 43ms when the corresponding port is transmitting or receiving at 100Mbps. Blinking every 120ms when the port is transmitting or receiving at 10Mbps. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 15 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name MTXEN/PRXDV /Internal MTXC/PRXC Pin No. 52 51 Type I/OPD Drive (mA) Description 4 Output After Reset. For MAC mode MII, this pin represents MTXEN, MII transmit enable. For PHY mode MII, this pin represents PRXDV, MII received data valid. For PHY mode SNI, this pin represents PRXDV, received data valid. I/OPU Input Upon Reset. Internal Use For MAC mode MII, it is a transmit clock (MTXC acts as input). For PHY mode MII/PHY mode SNI, it is a receive clock (PRXC acts as output). 8 5.4. Port 4 PHY Circuit Interface Pins The external device must be 3.3V compatible as the digital output of the RTL8305SC is 3.3V. Table 5. Port 4 PHY Circuit Interface Pin Definitions Pin Name DISPORTPRI[4] (PHY2PTXD[3]) DISPORTPRI[3] (PHY2PTXD[2]) DISPORTPRI[2] (PHY2PTXD[1]) Pin No. 88 86 85 Type IPU IPU IPU Drive (mA) Description DISDUALMII=1, Enable Port based priority QoS function of port 4. DisPortPri[4]: 1=Disable port 4 priority. 0=Enable port 4 priority. - - DISDUALMII=0, PHY mode MII Transmit Data Nibble. For PHY mode MII, this pin is PHY2PTXD[3]. DISPORTPRI[4] power on strapping is not supported when DISDUALMII=0. This configuration can be set from the MII register. DISDUALMII=1, Enable Port based priority QoS function of port 3. DisPortPri[3]: 1=Disable port 3 priority. 0=Enable port 3 priority. DISDUALMII=0, PHY mode MII Transmit Data Nibble. For PHY mode MII, this pin is PHY2PTXD[2]. DISPORTPRI[3] power on strapping is not supported when DISDUALMII=0. This configuration can be set from the MII register. DISDUALMII=1, Enable Port based priority QoS function of port 2. DisPortPri[2]: 1=Disable port 2 priority. 0=Enable port 2 priority. DISDUALMII=0, PHY mode MII Transmit Data Nibble. For PHY mode MII, this pin is PHY2PTXD[1]. DISPORTPRI[2] power on strapping is not supported when DISDUALMII=0. This configuration can be set from the MII register. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 16 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name DISPORTPRI[1] (PHY2PTXD[0]) DISPORTPRI[0] (PHY2PTXEN) Pin No. 84 83 Type IPU IPU Drive (mA) Description DISDUALMII=1, Enable Port based priority QoS function of port 1. DisPortPri[1]: 1=Disable port 1 priority. 0=Enable port 1 priority. - DISDUALMII=0, PHY mode MII Transmit Data Nibble. For PHY mode MII, this pin is PHY2PTXD[0]. DISPORTPRI[1] power on strapping is not supported when DISDUALMII=0. This configuration can be set from the MII register. DISDUALMII=1, Enable Port based priority QoS function of port 0. DisPortPri[0]: 1=Disable port 0 priority. 0: Enable port 0 priority. DISDUALMII=0, PHY mode MII Transmit Data Enable. For PHY mode MII, this pin is PHY2PTXEN. DISPORTPRI[0] power on strapping is not supported when DISDUALMII=0. This configuration can be set from the MII register. PHY2PCOL /LED_BLNK_ TIME 89 PHY2PTXC /QWEIGHT[1] 82 PHY2PRXC /QWEIGHT[0] 81 I/OPU I/OPU 4 8 For Dual MII application, this pin should be pulled low (about 1k ohm) in the external circuit. Output After Reset: DISDUALMII=0, PHY mode MII PCOL. For PHY mode MII, this pin represents PCOL collision (acts as output). Input Upon Reset: LED Blink Time. This pin selects the blinking speed of the activity and collision LEDs. 1: On 43ms, then Off 43ms 0: On 120ms, then Off 120ms Power on strapping is independent of DISDUALMII configuration. Output After Reset: DISDUALMII=0, PHY mode MII Transmit/ Receive Data Clock. For PHY mode MII, this is transmit/receive data clock, PTXC/PRXC (acts as output). Input Upon Reset: Weighted round robin ratio of priority queue. The frame service rate of High-priority queue: Low-priority queue QWEIGHT[1:0]=11: 16:1 QWEIGHT[1:0]=10: Always high priority queue first QWEIGHT[1:0]=01: 8:1 QWEIGHT[1:0]=00: 4:1 Power on strapping is independent of DISDUALMII configuration. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 17 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name PHY2PRXD[3] /ENBKPRS PHY2PRXD[2] /GYENFC PHY2PRXD[1] /GXENFC Pin No. 78 77 76 Type I/OPU I/OPU I/OPU Drive (mA) Description 4 Output After Reset: DISDUALMII=0, PHY mode MII Receive Data Nibble (acts as output). For PHY mode MII, this pin is PHY2PRXD[3]. 4 4 Input Upon Reset: Enable Back Pressure. This pin sets back pressure in half duplex mode on all UTP ports. 1: Enable 0: Disable Power on strapping is independent of DISDUALMII configuration. Output After Reset: DISDUALMII=0, PHY mode MII Receive Data Nibble (acts as output). For PHY mode MII, this pin is PHY2PRXD[2]. Input Upon Reset: GroupY Enable Flow Control ability. 1: Enable Reg4.10 (NWAY Full duplex only), or ‘Enable Force Full pause ability of Force mode (UTP Force mode or FX mode)’, or ‘Enable Force Half Back Pressure ability of Force mode (UTP Force mode or FX mode)’ 0: Disable Reg4.10 (NWAY Full duplex only), or ‘Disable Force Full pause ability of Force mode (UTP Force mode or FX mode)’, or ‘Disable Force Half Back Pressure ability of Force mode (UTP Force mode or FX mode)’ Strap after reset for initial value of Group Y ‘UTP NWAY Full’, or ‘UTP Force Full or Half mode’, or ‘FX Full or Half mode’. Power on strapping is independent of DISDUALMII configuration. Output After Reset: DISDUALMII=0, PHY mode MII Receive Data Nibble (acts as output). For PHY mode MII, this pin is PHY2PRXD[1]. Input Upon Reset: GroupX Enable Flow Control ability: 1: Enable Reg4.10 (NWAY Full duplex only), or ‘Enable Force Full pause ability of Force mode (UTP Force mode or FX mode)’, or ‘Enable Force Half Back Pressure ability of Force mode (UTP Force mode or FX mode)’ 0: Disable Reg4.10 (NWAY Full duplex only), or ‘Disable Force Full pause ability of Force mode (UTP Force mode or FX mode)’, or ‘Disable Force Half Back Pressure ability of Force mode (UTP Force mode or FX mode)’ Strap after reset for initial value of Group X ‘UTP NWAY Full’, or ‘UTP Force Full or Half mode’, or ‘FX Full or Half mode’. Power on strapping is independent of DISDUALMII configuration. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 18 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name PHY2PRXD[0] /ENEEPROM PHY2PRXDV /DISBRDCTRL Pin No. 73 80 Type I/OPU Drive (mA) Description 4 DISDUALMII=0, PHY mode MII Receive Data Nibble (acts as output). For PHY mode MII, this pin is PHY2PRXD[0]. I/OPU 4 Enable EEPROM: This pin sets the RTL8305SC to enable loading of the serial EEPROM upon reset. 1: Enable 0: Disable These pins have internal 75k ohm pull-high resistors. Power on strapping is independent of DISDUALMII configuration. DISDUALMII=0, PHY mode MII Receive Data Valid. For PHY mode MII, this pin represents PRXDV. Disable Broadcast Storm Control. 1: Disable 0: Enable The RTL8305SC will disable this function when pin DISBRDCTRL is left floating. This pin has an internal 75k ohm pull-high resistor. Power on strapping is independent of DISDUALMII configuration. 5.5. Miscellaneous Pins Table 6. Miscellaneous Pins Pin Name X1 Pin No. 120 Type I X2 121 O OSCI 117 I CK25MOUT 116 O RESET# 40 I Drive (mA) Description A 25MHz crystal input The clock tolerance is +-50ppm. When using an oscillator, this pin should be tied to ground. For crystal input When using an oscillator, this pin should be left floating. A 25MHz clock from oscillator is fed to this pin The X1 should be tied to ground and X2 should be left floating in this application. If a 25MHz clock is from crystal via X1 and X2, this pin should be left floating. 8 A 25MHz clock output This pin is used to support an extra 25M clock for an external device (for example: HomePNA PHY). If this clock output is not used, this pin should be left floating. Active low reset signal To complete the reset function, this pin must be asserted for at least 1ms. After reset, about 30ms is needed for the RTL8305SC to complete internal test functions and initialization. This pin is a Schmitt input. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 19 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name IBREF Pin No. 127 VCTRL 123 ITEST1 ITEST2 ITEST3 ITEST4 ITEST5 ITEST6 DTEST2 DTEST1 36 37 38 41 65 72 124 125 Type A O Drive (mA) Description Control transmit output waveform Vpp This pin should be grounded through a 1.96KΩ resistor. 4 Voltage control to external regulator This signal controls a power PNP transistor to generate the 1.8V power supply. Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating Reserved pin for internal use. Should be left floating 5.6. Port LED Pins Each port has four LED indicator pins. Each pin may have different indicator meanings as set by pins LEDMODE[1:0]. All LED statuses are represented as active-low or high depending on input strapping, except Bi-color Link/Act in Bi-color LED mode, whose polarity depends on Spd status. Those pins that are dual function pins are output for LED or input for strapping. Below are LED descriptions only. Table 7. Port LED Pins Pin Name LED_SPD[4:0]/… LED_ACT[4:0]/… Pin No. 93, 98, 104, 109, 114 92, 97, 103, 108, 113 Type I/OPU I/OPU Drive (mA) Description 4 Output After Reset = Used for 1st LED. LEDMode[1:0]=11 -> Speed (On=100, Off=10) LEDMode[1:0]=10 -> Speed (On=100, Off=10) LEDMode[1:0]=01 -> Speed (On=100, Off=10) LEDMode[1:0]=00 -> Reserved 4 Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on page 24. Output After Reset = Used for 2nd LED. LEDMode[1:0]=11 -> Link/Act: (On=Link, Off=No Link, Flash=Tx or Rx activity) LEDMode[1:0]=10 -> Act: (Off=No activity, On=Tx or Rx activity) LEDMode[1:0]=01 -> RxAct: (Off=No activity, On=Rx activity) LEDMode[1:0]=00 -> Reserved Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on page 24. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 20 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name Pin No. LED_DUP[4:0]/… 95, 99, 105, 110, 115 LED_ADD[4:0]/.. LoopLED# /EnDefer 91, 96, 101, 107, 111 90 Type I/OPU I/OPU I/OPU Drive (mA) Description 4 Output After Reset = Used for 3rd LED. LEDMode[1:0]=11 -> Duplex/Col: (On=Full, Off=Half with no collision, Flash=Collision) LEDMode[1:0]=10 -> Duplex/Col: (On=Full, Off=Half with no collision, Flash=Collision) LEDMode[1:0]=01 -> TxAct: (Off=No activity, On=Tx activity) LEDMode[1:0]=00 -> Reserved 4 4 Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on page 24. Output After Reset = Used for 4th LED. LEDMode[1:0]=11 -> Link/Act/Spd: On for link established. Blinking every 43ms when the corresponding port is transmitting or receiving at 100Mbps. Blinking every 120ms when the port is transmitting or receiving at 10Mbps. LEDMode[1:0]=10 -> Bi-color Link/Active: polarity depends on Spd status. LEDMode[1:0]=01 -> Link: (On=Link, Off=No Link) LEDMode[1:0]=00 -> Reserved Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on page 24. Output After Reset = LoopLED# used for LED. If the Loop detection function is enabled, this pin indicates whether a Network loop is detected or not. Otherwise, this pin is of no use. The LED statuses are represented as active-low or high depending on input strapping. => If Input=1: Output 0=Network loop is detected. 1=No loop. => If Input=0: Output 1=Network loop is detected. 0=No loop. Input Upon Reset = Enable defer 1: Enable Carrier Sense Deferring function for half duplex back pressure. 0: Disable Carrier Sense Deferring function for half duplex back pressure. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 21 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 5.7. Serial EEPROM and SMI Pins As the output of the RTL8305SC is 3.3V, the serial EEPROM and external device must be 3.3V compatible. Table 8. Serial EEPROM and SMI Pins Pin Name SCL_MDC Pin No. 74 Type I/OPU Drive (mA) 4 SDA_MDIO 75 I/OPU 4 Description SCL or MDC This pin is tri state when pin RESET#=0. When pin EnEEPROM=1, this pin becomes SCL (output) to load the serial EEPROM upon reset. Then this pin changes to MDC (input) after reset. When pin EnEEPROM=0, this pin is MDC (input): 0 to 25MHz clock, sourced by an external device to sample MDIO. SDA or MDIO This pin is tri state when RESET#=0. When pin EnEEPROM=1, this pin becomes SDA (input/output) to load the serial EEPROM upon reset. Then this pin changes to MDIO (input/output) after reset. It should be pulled-high by an external resistor. When pin EnEEPROM=0, this pin is MDIO (input/output). It should be pulled-high by an external resistor. 5.8. Strapping Pins Pins that are dual function pins are outputs for LED or inputs for strapping. Below are strapping descriptions only. Table 9. Strapping Pins Pin Name EN_AUTOXOVER Pin No. 69 Type IPU EN_RST_BLNK 71 IPU DisTagPri /LED_ADD[4] 91 I/OPU Drive (mA) Description Enable Auto crossover function 1: Enable auto crossover detection 0: Disable auto crossover detection. MDI only Enable Reset Blink This enables blinking of the LEDs upon reset for diagnostic purposes. 1: Enable reset LED blinking 0: Disable reset LED blinking 4 Input Upon Reset = Disable 802.1p VLAN Tag priority based QoS function. 1: Disable 0: Enable Output After Reset = Used for LED. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 22 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name DISVLAN /LED_SPD[4] Pin No. 93 Type I/OPU En48pass1 /LED_ACT[3] 97 I/OPU DisARP /LED_SPD[3] 98 I/OPU Drive (mA) Description 4 Input Upon Reset = Disable VLAN function 1: Disable VLAN 0: Enable VLAN. The default VLAN membership configuration by internal register is port 4 overlapped with all the other ports, to form 4 individual VLANs. This default membership configuration may be modified by setup internal registers via the SMI interface or EEPROM 4 4 DisLeaky /LED_ADD[2] 101 I/OPU 4 EnForward /LED_ADD[0] 111 I/OPU 4 BCInDrop /LED_ACT[0] 113 I/OPU 4 Max1536 /LED_SPD[0] 114 I/OPU 4 Output After Reset = Used for LED. Input Upon Reset = Enable 48 pass 1 1: 48 pass 1, continuously collides 48 input packets then passes 1 packet to retain system resource and avoid the partition in repeater when the packet buffer in 8305SC is full 0: Continuously collides to avoid packet loss when the packet buffer in 8305SC is full Output After Reset = Used for LED. Input Upon Reset = Disable ARP broadcast to all VLANs 1: Disables ability to broadcast ARP broadcast packets to all VLANs 0: Enables ability to broadcast ARP broadcast packets to all VLANs ARP broadcast frame: DID is all F. Output After Reset = Used for LED. Input Upon Reset = Disable Leaky VLAN 1: Disable forwarding of unicast frames to other VLANs 0: Enable forwarding of unicast frames to other VLANs Broadcast and multicast frames adhere to the VLAN configuration. Output After Reset = Used for LED. Input Upon Reset = Enable to forward 802.1D specified reserved multicast addresses frame 1: Forward reserved control frames, with DID=01-80-C2-00-0002 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F 0: Filter reserved control packets, with DID=01-80-C2-00-00-02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F Output After Reset = Used for LED. Input Upon Reset = Broadcast Input Drop 1: Use Broadcast Input drop mechanism 0: Use Broadcast Output drop mechanism Output After Reset = Used for LED. Input Upon Reset = Maximum Frame Length 1: 1536 Bytes 0: 1552 Bytes Output After Reset = Used for LED. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 23 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 5.9. Port Status Strapping Pins Pins that are dual function pins are outputs for LEDs or inputs for strapping. Below are strapping descriptions only. Table 10. Port Status Strapping Pins Pin Name SetGroup /LED_DUP[4] Pin No. 95 Type I/OPU GxMode /LED_ADD[3] 96 I/OPU 4 GyMode /LED_DUP[3] 99 I/OPU 4 P4ANEG /LED_ACT[2] 103 I/OPU 4 GxANEG /LED_SPD[2] GyANEG /LED_DUP[2] 104 105 I/OPU I/OPU Drive (mA) Description 4 Input Upon Reset = Set group of port 1 1: Port 0 is group X. Port 1, 2, and 3 are group Y 0: Port 0, and 1 are group X. Port 2, and 3 are group Y 4 4 Output After Reset = Used for LED. Input Upon Reset = Group X operating mode 1: UTP mode 0: FX mode Output After Reset = Used for LED. Input Upon Reset = Group Y operating mode 1: UTP mode 0: FX mode Output After Reset = Used for LED. Input Upon Reset = Port 4 Auto-Negotiation ability 1: Enable auto-negotiation (NWAY mode) 0: Disable auto-negotiation (Force mode) Upon reset, this pin sets Reg.0.12 of Port 4. Strap after reset for initial value of Port 4 UTP mode only. This pin is not used for Port 4 FX, MAC mode MII, PHY mode MII, and PHY mode SNI. Output After Reset = Used for LED. Input Upon Reset = GroupX Auto-Negotiation ability 1: Enable auto-negotiation (NWAY mode) 0: Disable auto-negotiation (Force mode) Upon reset, this pin sets Reg.0.12 of Group X. Strap after reset for initial value of UTP mode only. This pin is not used for FX. Output After Reset = Used for LED. Input Upon Reset = GroupY Auto-Negotiation ability 1: Enable auto-negotiation (NWAY mode) 0: Disable auto-negotiation (Force mode) Upon reset, this pin sets Reg.0.12 of Group Y. Strap after reset for initial value of UTP mode only. This pin is not used for FX. Output After Reset = Used for LED. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 24 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Pin Name GxSpd100 /LED_ADD[1] Pin No. 107 Type I/OPU GySpd100 /LED_ACT[1] 108 I/OPU Drive (mA) Description 4 Input Upon Reset = GroupX 10Base-T/100Base-TX ability GxSpd100=1, GxFull=1 => MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1 GxSpd100=1, GxFull=0 => MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1 GxSpd100=0, GxFull=1; => MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1 GxSpd100=0, GxFull=0; => MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1 Upon reset, this pin sets Reg.0.13. In addition, upon reset, this pin and GxFull also sets Reg.4.8/4.7/4.6/4.5. Strap after reset for initial value of Group X UTP mode only. This pin is not used for FX. 4 GxFull /LED_SPD[1] 109 I/OPU 4 GyFull /LED_DUP[1] 110 I/OPU 4 Output After Reset = Used for LED. Input Upon Reset = GroupY 10Base-T/100Base-TX ability GySpd100=1, GyFull=1 => MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1 GySpd100=1, GyFull=0 => MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1 GySpd100=0, GyFull=1; => MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1 GySpd100=0, GyFull=0; => MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1 Upon reset, this pin sets Reg.0.13. In addition, upon reset, this pin and GyFull also sets Reg.4.8/4.7/4.6/4.5. Strap after reset for initial value of Group Y UTP mode only. This pin is not used for FX. Output After Reset = Used for LED. Input Upon Reset = GroupX Full Duplex ability Upon reset, this pin sets the default value of Reg.0.8. In addition, on reset, this pin also sets NWay full-duplex ability on Reg.4.8 and Reg.4.6. Strap after reset for initial value of Group X UTP or FX mode. FX can be Force 100 Full or Force 100 Half. Output After Reset = Used for LED. Input Upon Reset = GroupY Full Duplex ability Upon reset, this pin sets the default value of Reg.0.8. On reset, this pin also sets NWay full-duplex ability on Reg.4.8 and Reg.4.6. Strap after reset for initial value of Group Y UTP or FX mode. FX can be Force 100 Full or Force 100 Half. Output After Reset = Used for LED. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 25 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 5.10. Power Pins Table 11. Power Pins Pin Name AVDD18 HVDD33 AGND DVDD18 DVDD33 DGND Pin No. 1, 7, 8, 14, 15, 21, 22, 28, 29, 35, 119, 128 118 4, 11, 18, 25, 32, 122, 126 43, 53, 70, 100 62, 87, 106 39, 50, 64, 79, 94, 102, 112 Type P Drive (mA) Description 1.8V Analog Power P P 3.3V Analog Power Analog Ground P P P 1.8V Digital Power 3.3V Digital Power Digital Ground 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 26 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6. EEPROM Description 6.1. Port 0 Registers 6.1.1. Global Control Register0 Table 12. Global Control Register0 Name EEPROM Existence Reserved Internal Use Internal Use Internal Use Enable Loop Detection Function Reserved Internal Use 6.1.2. Byte.bit Description 0.7 1: EEPROM does not exist (pin EnEEPROM=0 or pin EnEEPROM=1 but EEPROM does not exist) 0: EEPROM exists (pin EnEEPROM=1 and EEPROM exists) 0.6 0.5 0.4 0.3 0.2 1: Enable loop detection function 0: Disable loop detection function 0.1 0.0 Default 0 1 1 1 1 0 1 0 Global Control Register1 Table 13. Global Control Register1 Name Page selection Reserved Lookup table accessible enable Internal Use Reserved Disable 802.1Q tag aware VLAN Byte.bit 1.7 1.6 1.5 1.4 1.3 1.2 Description 1: Select the registers in page 1 0: Select the registers in page 0 Default 0 1: Lookup table is accessible via indirect access registers 0: Lookup table is not accessible 1: Disable 802.1Q tagged-VID Aware function. The RTL8305SC will not check the tagged VID on received frames to perform tagged-VID VLAN mapping. Under this configuration, the RTL8305SC only uses the per port VLAN index register to perform Port-Based VLAN mapping 0: Enable the Member Set Filtering function of VLAN Ingress Rule. The RTL8305SC checks the tagged VID on received frames with the VIDA[11:0]~VIDH[11:0] to index to a member set, then performs VLAN mapping. The RTL8305SC uses tagged-VID VLAN mapping for tagged frames but still uses Port-Based VLAN mapping for priority-tagged and untagged frames 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 27 0 0 0 0 1 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Name Disable VLAN member set ingress filtering Byte.bit 1.1 Disable VLAN tag admit control 1.0 6.1.3. Description 1: The switch will not drop the received frame if the ingress port of this packet is not included in the matched VLAN member set. It will still forward the packet to the VLAN members specified in the matched member set. This setting works on both port-based and tag-based VLAN configurations 0: The switch will drop the received frame if the ingress port of this packet is not included in the matched VLAN member set 1: The switch accepts all frames it receives whether tagged or untagged. 0: The switch will only accept tagged frames and will drop untagged frames. Default 1 1 Global Control Register2 Table 14. Global Control Register2 Name Internal Use Internal Use Byte.bit 2.7 2.6 Internal Use 2.5~2.0 6.1.4. Description Default 0 0 11 1111 Global Control Register3 Table 15. Global Control Register3 Name Internal Use Internal Use Internal Use 6.1.5. Byte.bit 3.7 3.6 3.5~3.0 Description Default 0 0 11 1111 Global Control Register4 Table 16. Global Control Register4 Name Reserved Enable defer LED blink time Queue weight Disable broadcast storm control Byte.bit 4.7 4.6 4.5 4.4~4.3 4.2 Description 1: Enable carrier sense deferring for half duplex back pressure 0: Disable carrier sense deferring for half duplex back pressure 1: On 43ms, then Off 43ms 0: On 120ms, then Off 120ms The frame service ratio between the high priority queue and low priority queue is: 11=16:1 10=Always high priority queue first 01=8:1 00=4:1 1: Disable Broadcast Storm Control 0: Enable Broadcast Storm Control 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 28 Default 1 1 1 11 1 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Name Enable power-on blinking Reserved 6.1.6. Byte.bit 4.1 Description 1: Enable power-on LED blinking for diagnosis 0: Disable power-on LED blinking for diagnosis Default 1 1 4.0 Global Control Register5 Table 17. Global Control Register5 Name Reserved Maximum Frame Length Byte.bit 5.7 5.6 Enable broadcast drop Forward 802.1D reserved MAC addresses frame. 5.5 Disable leaky VLAN 5.3 Disable ARP VLAN 5.2 Enable 48 pass 1 5.1 Disable VLAN 5.0 6.1.7. 5.4 Description 1: 1536 Byte 0: 1552 Byte 1: Use Broadcast Input drop mechanism 0: Use Broadcast Output drop mechanism 1: Forward reserved control frames, which DID=01-80-C2-00-00-02 and 0180-C2-00-00-04 to 01-80-C2-00-00-0F packets 0: Filter reserved control packets, which DID=01-80-C2-00-00-02 and 0180-C2-00-00-04 to 01-80-C2-00-00-0F 1: Disable forwarding of unicast frames to other VLANs 0: Enable forwarding of unicast frames to other VLANs Broadcast and multicast frames adhere to the VLAN configuration. 1: Disable to broadcast the ARP broadcast packet to all VLANs 0: Enable to broadcast the ARP broadcast packet to all VLANs ARP broadcast frame: DID is all F. 1: 48 pass 1, continuously collides 48 input packets then passes 1 packet to retain system resource and avoid partition in the repeater when the packet buffer is full 0: Continuously collides to avoid packet loss when the packet buffer is full 1: Disable VLAN 0: Enable VLAN. The default VLAN membership configuration by internal register is port 4 overlapped with all the other ports, to form 4 individual VLANs. This default membership configuration may be modified by setup internal registers via the SMI interface or EEPROM Default 1 1 1 1 1 1 1 1 Global Control Register6 Table 18. Global Control Register6 Name Reserved Byte.bit 6.7~6.0 Description 5-port 10/100Mbps Single-Chip Dual MII Switch Controller Default 1111 1111 29 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.1.8. Global Control Register7 Table 19. Global Control Register 7 Name Reserved LED Mode[1:0] Internal Use Disable dual MII interface of port 4 Reserved 6.1.9. Byte.bit 7.7~7.6 7.5~7.4 7.3 7.2 Description 11=Mode 3: Speed, Link+Act, Duplex+Col, Link/Act/Speed 10=Mode 2: Speed, Act, Duplex/Col, Bi-color Link/Activity 01=Mode 1: Speed, RxAct, TxAct, Link 00=Mode 0: Reserved 1: Disable dual MII interface of port 4. Only provides MII interface for the MAC circuit of port 4 0: Enable dual MII interface of port 4. Not only provides MII interface for the MAC circuit of port 4 but provides MII interface for the PHY circuit of port 4 7.1~7.0 Default 11 11 1 1 11 Port 0 Control 0 Table 20. Port 0 Control 0 Name Reserved Internal Use Internal Use Internal Use Internal Use VLAN tag insert and remove Byte.bit 8.7 8.6 8.5~8.4 8.3 8.2 8.1~8.0 Description For port 0 egress packets 11=Do not insert or remove VLAN tags to/from packet 10=Insert VLAN tags to non-tagged packets 01=Remove tag from tagged packets 00=Replace the VLAN tags for tagged packets and insert a VLAN tag to non-tagged packets 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 30 Default 0 1 11 1 1 11 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.1.10. Port 0 Control 1 Table 21. Port 0 Control 1 Name Reserved Internal Use Local loopback Byte.bit 9.7 9.6 9.5 Internal Use Discard Non PVID packets 9.4 9.3 Disable 802.1p priority Disable Diffserv priority Disable portbased priority on port 0 9.2 9.1 9.0 Description 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX 0: Normal operation 1: If the received packets are tagged, the switch will discard packets whose VID does not match the ingress port’s PVID 0: No packets will be dropped 1: Disable 802.1p priority classification for ingress packets on port 0 0: Enable 802.1p priority classification on port 0 1: Disable Diffserv priority classification for ingress packets on port 0 0: Enable Diffserv priority classification 1: Disable port based priority QoS function on port 0 0: Enable port based priority QoS function on port 0. Ingress packets on port 0 will be classed as high priority Default 1 0 0 0 0 1 1 1 6.1.11. Port 0 Control 2 Table 22. Port 0 Control 2 Name Reserved Byte.bit 10.7~10.0 Description Default 0000 0000 6.1.12. Port 0 Control 3 Table 23. Port 0 Control 3 Name Reserved Byte.bit 11.7~11.0 Description 5-port 10/100Mbps Single-Chip Dual MII Switch Controller Default 0000 0000 31 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.1.13. Port 0 Control 4 & VLAN Entry [A] Table 24. Port 0 Control 4 & VLAN Entry [A] Name Byte.bit Description Default VLAN Entry [A] Internal Use Internal Use Reserved VLAN ID [A] membership Bit [4:0] 1 12.7 12.6 12.5 12.4~12.0 Port 0 VLAN index [3:0] 13.7~13.5 Internal Use Internal Use Internal Use Reserved 13.3 13.2 13.1 13.0 VLAN ID [A] [7:0] 14.7~14.0 Internal Use Internal Use Internal Use Internal Use VLAN ID [A] [11:8] 15.7 15.6 15.5 15.4 15.3~15.0 This 5-bit field specifies which ports are the members of VLAN A. If a destination address look up fails, the packet associated with this VLAN will be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands for port 4. E.g.: 10001 means port 4 and 0 are the members of VLAN A 10010 means port 4 and 1 are the members of VLAN A 11111 means all 5 ports are the members of VLAN A Port 0 Control 4 In a port-based VLAN configuration, this register indexes port 0’s ‘Port VLAN Membership’, which can be defined in one of the registers ‘VLAN ID [A] Membership’ to “VLAN ID [P] Membership”. Port 0 can only communicate within the membership. This register also indexes to a default Port VID (PVID) for each port. The PVID is used in tag insertion and filtering if the tagged VID is not the same as the PVID. 1 0 1 0001 0000 1 1 1 0 VLAN Entry [A] This register along with byte 15.3~15.0 defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN A 0000 0000 Port 0 Control 4 & VLAN Entry [A] This register along with byte 14.7~14.0 defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN A 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 32 1 1 1 1 0000 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.2. Port 1 Registers 6.2.1. Internal Use Register Table 25. Internal Use Register Name Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use 6.2.2. Byte.bit 16.7~16.0 17.7~17.0 18.7~18.0 19.7~19.0 20.7~20.0 21.7~21.0 22.7~22.0 23.7~23.0 Description Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Default 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF Port 1 Control 0 Table 26. Port 1 Control 0 Name Reserved Internal Use Internal Use Internal Use Internal Use VLAN tag insert and remove Byte.bit 24.7 24.6 24.5~24.4 24.3 24.2 24.1~24.0 Description For port 1 egress packets 11=Do not insert or remove VLAN tags to/from packet 10=Insert VLAN tags to non-tagged packets 01=Remove tag from tagged packets 00=Replace the VLAN tags for tagged packets and insert a VLAN tag to non-tagged packets 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 33 Default 0 1 11 1 1 11 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.2.3. Port 1 Control 1 Table 27. Port 1 Control 1 Name Reserved Internal Use Local loopback Internal Use Discard Non PVID packets Disable 802.1p priority Disable Diffserv priority Disable portbased priority on port 1 6.2.4. Byte.bit Description 25.7 25.6 25.5 1: Perform local loopback, i.e. loopback MAC’s RX back to TX 0: Normal operation 25.4 25.3 1: If the received packets are tagged, the switch will discard packets whose VID does not match the ingress port’s PVID 0: No packets will be dropped 25.2 1: Disable 802.1p priority classification for ingress packets on port 1 0: Enable 802.1p priority classification on port 1 25.1 1: Disable Diffserv priority classification for ingress packets on port 1 0: Enable Diffserv priority classification 25.0 1: Disable port based priority QoS function on port 1 0: Enable port-based priority QoS function on port 1. Ingress packets on port 1 will be classed as high priority Default 1 0 0 0 0 1 1 1 Port 1 Control 2 Table 28. Port 1 Control 2 Name Internal Use Reserved Internal Use Reserved 6.2.5. Byte.bit 26.7 26.6~ 26.5 26.4 26.3~ 26.0 Description Default 0 10 1 1111 Port 1 Control 3 Table 29. Port 1 Control 2 Name Reserved Internal Use Reserved Byte.bit 27.7 27.6 27.5~ 27.0 Description 5-port 10/100Mbps Single-Chip Dual MII Switch Controller Default 1 0 00 1111 34 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.2.6. Port 1 Control 4 & VLAN Entry [B] Table 30. Port 1 Control 4 & VLAN Entry [B] Name Byte.bit Description Default VLAN Entry [B] Internal Use Internal Use Reserved VLAN ID [B] Membership Bit [4:0] 1 28.7 28.6 28.5 28.4~ 28.0 Port 1 VLAN index [3:0] 29.7~ 29.5 Internal Use Internal Use Internal Use Reserved 29.3 29.2 29.1 29.0 VLAN ID [B] [7:0] 30.7~ 30.0 Internal Use Internal Use Internal Use Internal Use VLAN ID [B] [11:8] 31.7 31.6 31.5 31.4 31.3~ 31.0 This 5-bit field specifies which ports are the members of VLAN B. If a destination address look up fails, the packet associated with this VLAN will be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands for port 4. E.g.: 10001 means port 4 and 0 are the members of VLAN B 10010 means port 4 and 1 are the members of VLAN B 11111 means all 5 ports are members of VLAN B. Port 1 Control 4 In a port-based VLAN configuration, this register indexes to port 1’s ‘Port VLAN Membership’, which may be defined in one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 1 can only communicate with members within this VLAN. This register also indexes to a default Port VID (PVID) for each port. The PVID is used in tag insertion and filtering if the tagged VID is not the same as the PVID. The default value of this register is 0001, which indexes to the VLAN entry [B] that is composed of VLAN ID [B] Membership Bit [4:0] in PHY1 Reg.24.[4:0] and VLAN ID [B] in PHY1 Reg.25.[11:0]. 1 0 1 0010 0001 1 1 1 0 VLAN Entry [B] This register, along with byte 31.3~31.0, defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN B. 0000 0001 Port 1 Control 4 & VLAN Entry [B] 1 1 1 This register, along with byte 30.7~30.0, defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN B. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 35 1 0000 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.3. Port 2 Registers 6.3.1. Internal Use Register Table 31. Internal Use Register Name Byte.bit Description Default Internal Use Register Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use 6.3.2. 32.7~32.0 33.7~33.0 34.7~34.0 35.7~35.0 36.7~36.0 37.7~37.0 38.7~38.0 39.7~39.0 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF Port 2 Control 0 Table 32. Port 2 Control 0 Name Reserved Internal Use Internal Use Internal Use Internal Use VLAN tag insert and remove Byte.bit 40.7 40.6 40.5~40.4 40.3 40.2 40.1~40.0 Description For port 2 egress packets 11=Do not insert or remove VLAN tags to/from packet 10=Insert VLAN tags to non-tagged packets 01=Remove tag from tagged packets 00=Replace the VLAN tags for tagged packets and insert a VLAN tag to non-tagged packets 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 36 Default 0 1 11 1 1 11 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.3.3. Port 2 Control 1 Table 33. Port 2 Control 1 Name Reserved Internal Use Local loopback Byte.bit 41.7 41.6 41.5 Internal Use Discard Non PVID packets 41.4 41.3 Disable 802.1p priority Disable Diffserv priority Disable portbased priority on port 2 41.2 6.3.4. 41.1 41.0 Description 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX 0: Normal operation 1: If the received packets are tagged, the switch will discard packets whose VID does not match the ingress port’s PVID 0: No packets will be dropped 1: Disable 802.1p priority classification for ingress packets on port 2 0: Enable 802.1p priority classification on port 2 1: Disable Diffserv priority classification for ingress packets on port 2 0: Enable Diffserv priority classification 1: Disable port based priority QoS function on port 2 0: Enable port based priority QoS function on port 2. Ingress packets on port 2 will be classed as high priority Default 1 0 0 0 0 1 1 1 Reserved Table 34. Reserved Name Reserved Reserved Byte.bit Description 42.7~42.0 43.7~43.0 5-port 10/100Mbps Single-Chip Dual MII Switch Controller Default 0x20 0x00 37 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.3.5. Port 2 Control 2 & VLAN Entry [C] Table 35. Port 2 Control 2 & VLAN Entry [C] Name Internal Use Internal Use Reserved VLAN ID [C] Membership Bit [4:0] Port 2 VLAN index [3:0] Internal Use Internal Use Internal Use Reserved VLAN ID [C] [7:0] Byte.bit Description Default VLAN Entry [C] 44.7 44.6 44.5 44.4~44. This 5-bit field specifies which ports are the members of VLAN C. If a 0 destination address look up fails, the packet associated with this VLAN will be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands for port 4. E.g. 10001 means port 4 and 0 are the members of VLAN C 10010 means port 4 and 1 are the members of VLAN C 11111 means all 5 ports are the members of VLAN C Port 2 Control 2 45.7~45. In a port-based VLAN configuration, this register indexes to port 2’s ‘Port 5 VLAN Membership’, which can be defined in one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 2 can only communicate with members within this VLAN. This register also indexes to a default Port VID (PVID) for each port. The PVID is used in tag insertion and filtering if the tagged VID is not the same as the PVID. The default value of this register is 0010, which indexes to the VLAN entry [C] that is composed of VLAN ID [C] Membership Bit [4:0] in PHY2 Reg.24.[4:0] and VLAN ID [C] in PHY2 Reg.25.[11:0]. 45.3 45.2 45.1 45.0 VLAN Entry [C] 46.7~46. This register along with byte 47.3~47.0 defines the IEEE 802.1Q 12-bit VLAN 0 identifier of VLAN C 1 1 0 1 0100 0010 1 1 1 0 0000 0010 Port 2 Control 2 & VLAN Entry [C] Internal Use Internal Use Internal Use Internal Use VLAN ID [C] [11:8] 47.7 47.6 47.5 47.4 47.3~47. This register along with byte 46.7~46.0 defines the IEEE 802.1Q 12-bit VLAN 0 identifier of VLAN C 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 38 1 1 1 1 0000 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.4. Port 3 Registers 6.4.1. Switch MAC Address The Switch MAC address is used as the source address in MAC pause control frames. Table 36. Switch MAC Address Name Switch MAC Address [47:40] Switch MAC Address [39:32] Switch MAC Address [31:24] Switch MAC Address [23:16] Switch MAC Address [15:8] Switch MAC Address [7:0] 6.4.2. Byte.bit 48.7~48.0 Description Switch MAC Address Byte 5 Default 0x52 49.7~49.0 Switch MAC Address Byte 4 0x54 50.7~50.0 Switch MAC Address Byte 3 0x4C 51.7~51.0 Switch MAC Address Byte 2 0x83 52.7~52.0 Switch MAC Address Byte 1 0x05 53.7~53.0 Switch MAC Address Byte 0 0xC0 Port 3 Control 0 Table 37. Port 3 Control 0 Name Reserved Internal Use Internal Use Internal Use Internal Use VLAN tag insert and remove Byte.bit 54.7 54.6 54.5~54.4 54.3 54.2 54.1~54.0 Description For port 3 egress packets 11=Do not insert or remove VLAN tags to/from packet 10=Insert VLAN tags to non-tagged packets 01=Remove tag from tagged packets 00=Replace the VLAN tags for tagged packets and insert a VLAN tag to non-tagged packets 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 39 Default 0 1 11 1 1 11 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.4.3. Port 3 Control 1 Table 38. Port 3 Control 1 Name Reserved Internal Use Local loopback Byte.bit 55.7 55.6 55.5 Internal Use Discard Non PVID packets 55.4 55.3 Disable 802.1p priority Disable Diffserv priority Disable port-based priority on port 3 55.2 6.4.4. 55.1 55.0 Description 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX 0: Normal operation 1: If the received packets are tagged, the switch will discard packets whose VID does not match the ingress port’s PVID 0: No packets will be dropped 1: Disable 802.1p priority classification for ingress packets on port 3 0: Enable 802.1p priority classification on port 3 1: Disable Diffserv priority classification for ingress packets on port 3 0: Enable Diffserv priority classification 1: Disable port-based priority QoS function on port 3 0: Enable port-based priority QoS function on port 3. Ingress packets on port 3 will be classed as high priority Default 1 0 0 0 0 1 1 1 Reserved Table 39. Reserved Name Reserved Reserved 6.4.5. Byte.bit 56.7~56.0 57.7~57.0 Description Default 0x00 0x00 Port 3 Control 2 & VLAN Entry [D] Table 40. Port 3 Control 2 & VLAN Entry [D] Name Byte.bit Description Default VLAN Entry [D] Internal Use Internal Use Reserved VLAN ID [D] Membership Bit [4:0] 58.7 58.6 58.5 58.4~58.0 This 5-bit field specifies which ports are the members of VLAN D. If a destination address look up fails, the packet associated with this VLAN will be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands for port 4. E.g.: 10001 means port 4 and 0 are the members of VLAN D 10010 means port 4 and 1 are the members of VLAN D 11111 means all 5 ports are the members of VLAN D 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 40 1 1 0 1 1000 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Port 3 VLAN index [3:0] 59.7~59.5 Internal Use Internal Use Internal Use Reserved 59.3 59.2 59.1 59.0 VLAN ID [D] [7:0] 60.7~60.0 Port 3 Control 2 In a port-based VLAN configuration, this register indexes to port 3’s ‘Port VLAN Membership’, which can be defined in one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 3 can only communicate with the members within this VLAN. This register also indexes to a default Port VID (PVID) for each port. The PVID is used in tag insertion and filtering if the tagged VID is not the same as the PVID. The default value of this register is 0011, which indexes to the VLAN entry [D] that is composed of VLAN ID [D] Membership Bit [4:0] in PHY3 Reg.24.[4:0] and VLAN ID [D] in PHY3 Reg.25.[11:0]. 0011 1 1 1 0 VLAN Entry [D] This register along with byte 61.3~61.0 defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN D 0000 0011 Port 3 Control 2 & VLAN Entry [D] Internal Use Internal Use Internal Use Internal Use VLAN ID [D] [11:8] 6.4.6. 61.7 61.6 61.5 61.4 61.3~61.0 This register along with byte 60.7~60.0 defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN D 1 1 1 1 0000 Internal Use Register Table 41. Internal Use Register Name Internal Use Internal Use Internal Use Internal Use Internal Use Internal Use Byte.bit 62.7~62.0 63.7~63.0 64.7~64.0 65.7~65.0 66.7~66.0 67.7~67.0 Description 5-port 10/100Mbps Single-Chip Dual MII Switch Controller Default 0x00 0x00 0x00 0x00 0x00 0x00 41 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.5. Port 4 Registers 6.5.1. Port 4 Control 0 Table 42. Port 4 Control 0 Name Reserved Internal Use Internal Use Internal Use Internal Use VLAN tag insert and remove 6.5.2. Byte.bit 68.7 68.6 68.5~68.4 68.3 68.2 68.1~68.0 Description For port 4 egress packets 11=Do not insert or remove VLAN tags to/from packet 10=Insert VLAN tags to non-tagged packets 01=Remove tag from tagged packets 00=Replace the VLAN tags for tagged packets and insert a VLAN tag to non-tagged packets Default 0 1 11 1 1 11 Port 4 Control 1 Table 43. Port 4 Control 1 Name Reserved Internal Use Local loopback Byte.bit 69.7 69.6 69.5 Internal Use Discard Non PVID packets 69.4 69.3 Disable 802.1p priority 69.2 Disable Diffserv priority Disable portbased priority on port 4 69.1 69.0 Description 1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX 0: Normal operation 1: If the received packets are tagged, the switch will discard packets whose VID does not match the ingress port’s PVID 0: No packets will be dropped 1: Disable 802.1p priority classification for ingress packets on port 4 0: Enable 802.1p priority classification on port 4 1: Disable Diffserv priority classification for ingress packets on port 4 0: Enable Diffserv priority classification 1: Disable port based priority QoS function on port 4 0: Enable port based priority QoS function on port 4. Ingress packet on port 4 will be classified as high priority 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 42 Default 1 0 0 0 0 1 1 1 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.5.3. Reserved Table 44. Reserved Name Reserved Reserved 6.5.4. Byte.bit 70.7~70.0 71.7~71.0 Description Default 0x00 0x00 Port 4 Control 2 & VLAN Entry [E] Table 45. Port 4 Control 2 & VLAN Entry [E] Name Byte.bit Description Default VLAN Entry [E] Internal Use Internal Use Reserved VLAN ID [E] Membership Bit [4:0] 72.7 72.6 72.5 72.4~72.0 Port 4 VLAN index [3:0] 73.7~73.5 Internal Use Internal Use Internal Use Reserved 73.3 73.2 73.1 73.0 VLAN ID [E] [7:0] 74.7~74.0 Internal Use Internal Use Internal Use Internal Use VLAN ID [E] [11:8] 75.7 75.6 75.5 75.4 75.3~75.0 This 5-bit field specifies which ports are the members of VLAN E. If a destination address look up fails, a packet associated with this VLAN will be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands for port 4. E.g.: 10001 means port 4 and 0 are the members of VLAN E 10010 means port 4 and 1 are the members of VLAN E 11111 means all 5 ports are the members of VLAN E Port 4 Control 2 In a port-based VLAN configuration, this register indexes to port 4’s ‘Port VLAN Membership’, which can be defined in one of the registers ‘VLAN ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 4 can only communicate with the members within this VLAN. This register also indexes to a default Port VID (PVID) for each port. The PVID is used in tag insertion and filtering if the tagged VID is not the same as the PVID. The default value of this register is 0100, which indexes to the VLAN entry [E] that is composed of VLAN ID [E] Membership Bit [4:0] in PHY4 Reg.24.[4:0] and VLAN ID [E] in PHY4 Reg.25.[11:0]. 1 1 0 1 1111 0100 1 1 1 0 VLAN Entry [E] This register, along with byte 75.3~75.0, defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN E 0000 0100 Port 4 Control 2 & VLAN Entry [E] This register, along with byte 74.7~74.0, defines the IEEE 802.1Q 12-bit VLAN identifier of VLAN E 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 43 1 1 1 1 0000 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 6.5.5. Internal Use Register Table 46. Internal Use Register Name Reserved Internal Use Reserved Internal Use 6.5.6. Byte.bit 76.7 76.6~76.4 76.3 76.2~76.0 Description Default 0 100 0 000 802.1p Base Priority Table 47. 802.1p Base Priority Name 802.1p base priority Byte.bit 77.7~77.5 Reserved 77.4~77.0 Description Classifies priority for incoming 802.1Q packets, if 802.1p priority classification is enabled. “User priority” compared against this value. >=: Classify as high priority 11->01->00) Indirect Data [3:0] = The source port of this Source MAC Address ID learned 18 Indirect Data 1 [15:0] RW Indirect Data 0 [15:7] = Reserved. Indirect Data 1 [15:8] = Source MAC Address [7:0] (Byte 5) Indirect Data 1 [7:0] = Source MAC Address [15:8] (Byte 4) 0x00 Indirect Data 1 [1:0] and Indirect Data 1 [15:8] of this register also determine the Entry Index [9:0] in the lookup table of this accessed data. Indirect Data 1 [1:0] = Entry Index [9:8] Indirect Data 1 [15:8] = Entry Index [7:0] In the write cycle: Entry Index [9:0] indirectly maps to an entry in the lookup table for writing. The written data must be the Source MAC Address [47:10] and Entry Index [9:0]. 19 20 7.5.9. Indirect Data 2 [15:0] Indirect Data 3 [15:0] RW RW In the read cycle: Entry Index [9:0] indirectly maps to an entry in the lookup table for reading. The read back data will be shown in Indirect Data 0, 1, 2, and 3. Indirect Data 2 [7:0] = Source MAC Address [31:24] (Byte 3) Indirect Data 2 [15:8] = Source MAC Address [23:16] (Byte 2) Indirect Data 3 [7:0] = Source MAC Address [47:40] (Byte 1) Indirect Data 3 [15:8] = Source MAC Address [39:32] (Byte 0) 0x00 0x00 PHY 4 Register 21: 802.1p Base Priority Table 125. PHY 2 Register 20: 802.1p Base Priority Reg.bit Name 21.[15.13 802.1p base ] priority 21.[12:7] 21.[6:4] 21.3 21.[2:0] Reserved Internal Use Reserved Internal Use Mode Description RW Classifies priority for incoming IEEE 802.1Q packets, if IEEE 802.1p priority classification is enabled. ‘User priority’ is compared against this value. >=: Classify as high priority P4SpdSta, P4Full -> P4DupSta, P4EnFC -> P4FLCTRL). In the other three modes, four pins (P4LNKSTA#, P4SpdSta, P4DupSta, P4FLCTRL) are necessary in order to provide the port status to Port 4’s MAC. That means that the external MAC or PHY should be forced to the same port status as Port 4’s MAC. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 91 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Related Pins When Port 4 is in UTP or FX mode, the LEDs of Port 4 are used to display PHY status. When Port 4 is in other modes, the LEDs of Port 4 are used to display MAC status. Four parallel LEDs corresponding to port 4 can be tri-stated (disable LED functions) for MII port application by setting ENP4LED in EEPROM to 0. In UTP applications, this bit should be 1. The SEL_MIIMAC# pin can be used to indicate MII MAC port active after reset for the purposes of UTP/MII auto-detection. One 25MHz clock output (pin CK25MOUT) can be used as a clock source for the underlying HomePNA/other PHY physical devices. PHY Mode MII/PHY Mode SNI In routing applications, the RTL8305SC cooperates with a routing engine to communicate with the WAN (Wide Area Network) through MII/SNI. In such applications, P4LNKSTA# =0 and P4MODE[1] is pulled low upon reset. P4MODE[0] determines whether MII or SNI mode is selected. In MII (nibble) mode (P4MODE[0]=1), P4SPDSTA=1 results in MII operating at 100Mbps with MTXC, and MRXC runs at 25MHz; however, P4SPDSTA=0 leads to MII operating at 10Mbps with MTXC, and MRXC runs at 2.5MHz. In SNI (serial) mode (P4MODE[0]=0), P4SPDSTA has no effect and should be pulled-down. SNI mode operates at 10Mbps only, with MTXC and MRXC running at 10MHz. In SNI mode the RTL8305SC does not loopback an RXDV signal as a response to TXEN, and does not support the heartbeat function (asserting COL signal for each complete TXEN signal). 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 92 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Floating=High Floating=High 44-P4MODE[1] 59-MRXC/PTXC RXC 45-P4MODE[0] CRS 60-MRXDV/PTXEN Pull Down=Link On Note 1 Note 2 Note 3 LED Indication 49-P4LNKSTA# 47-P4SPDSTA/P4FULL 48-P4DUPSTA/P4SPD100 67~61-MRXD[3:0]/PTXD[3:0] RXDV 4 51-MTXC/PRXC 52-MTXEN/PRXDV 46-P4FLCTRL/P4ENFC 57~54-MTXD[3:0]/PRXD[3:0] 68-SELMIIMAC#/DISDSPRI 58-MCOL/PCOL RXD[3:0] TXC 4 TXEN VDSL/ HomePNA/ Single PHY TXD COL MAC Mode MII Pull Down Floating=High 51-MTXC/PRXC 25MHz 45-P4MODE[0] CRS 52-MTXEN/PRXDV 57~54-MTXD[3:0]/PRXD[3:0] Pull Down=Link On Note 1 Note 2 Note 3 RXC 44-P4MODE[1] 49-P4LNKSTA# 47-P4SPDSTA/P4FULL 48-P4DUPSTA/P4SPD100 46-P4FLCTRL/P4ENFC RXDV 4 TXC 59-MRXC/PTXC 60-MRXDV/PTXEN 67~61-MRXD[3:0]/PTXD[3:0] RXD[3:0] 4 TXEN TXD CPU/ Processor/ Routing Engine COL 58-MCOL/PCOL PHY Mode MII Pull Down 51-MTXC/PRXC 10MHz 45-P4MODE[0] CRS 52-MTXEN/PRXDV Pull Down=Link On Note 1 Note 2 Note 3 RXC 44-P4MODE[1] 49-P4LNKSTA# 47-P4SPDSTA/P4FULL 48-P4DUPSTA/P4SPD100 46-P4FLCTRL/P4ENFC RXDV 54-MTXD[0]/PRXD[0] RXD 59-MRXC/PTXC 60-MRXDV/PTXEN TXC 61-MRXD[0]/PTXD[0] TXD 58-MCOL/PCOL COL TXEN CPU/ Processor/ Routing Engine PHY Mode SNI Figure 3. Port 4 Operating Mode Overview Note 1: Pulled high or floating to set speed to 100Mbps, and pulled low to set speed to 10Mbps. Note 2: Pulled high or floating to set to full duplex, and pulled low to set to half duplex. Note 3: Pulled high or floating to enable flow control in full duplex, and pulled low to disable. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 93 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet MAC Mode MII In HomePNA or other PHY applications, the RTL8305SC provides the MII interface to the underlying HomePNA or other physical device in order to communicate with other types of LAN media. In such applications, the P4MODE[1:0] pins are floating upon reset and the RTL8305SC supports the UTP/MII auto-detection function. When both UTP and MII are active (link on), the UTP port has higher priority than the MII port. In HomePNA applications P4SPDSTA must be pulled down, as HomePNA is half-duplex only. P4DUPSTA should also be pulled down. P4LNKSTA# must be pulled down instead of being wired to the LINK LED pin of the HomePNA because of the unstable link state of HomePNA, a characteristic of the HomePNA 1.0 standard. Because the HomePNA PHY physical layer is half duplex and can only detect a collision event during the AID header interval (the time when transmitting the Ethernet preamble), the back pressure flow control algorithm is not suitable for the HomePNA network and the P4FLCTRL pin should be pulled down. For other PHY applications, P4SPDSTA, P4DUPSTA, and P4FLCTRL depend on the application. 8.1.3. Port Status Configuration The RTL8305SC supports flexible port status configuration for PHY by pin (GxANeg/GyANeg/P4ANeg, GxSpd100/ GySpd100/P4Spd100, and GxFull/GyFull/P4Full) on a group basis upon reset, or by internal registers (Reg0.12, Reg0.13, Reg0.8, and Reg4.5/4.6/4.7/4.8) via SMI on a per-port basis after reset. Those pins are used to assign the initial value of MII register 0 and 4 (PHY registers) upon reset. The registers can be updated via SMI on a per-port basis after reset. For example, the initial value of register 0.12 of Port 4 will be 0 when pin P4Aneg is 1 upon reset. All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+- pins (Realtek patent). 100Base-FX can be forced into half or full duplex mode with optional flow control ability. In order to operate correctly, both sides of the connection should be set to the same settings. In 100Base-FX, duplex and flow control ability can be set via strapped pins upon reset, or via SMI after reset. Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. Pins GxANeg/GyANeg/P4Aneg as well as GxSpd100/GySpd100/P4Spd100 are not used for 100Base-FX mode and can be left floating while in 100Base-FX mode. For example, Port 4 will be forced into full duplex 100Base-FX with flow control ability when P4Mode[1:0]=10, P4Full=1, P4EnFC=1 upon reset (regardless of P4Spd100 and P4ANeg). 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 94 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet When Auto-Negotiation ability is enabled in UTP mode, the RTL8305SC supports Auto-Negotiation and parallel detection of 10Base-T/100Base-TX to automatically determine line speed, duplex, and flow control. The parallel detection process is used when connecting a device that does not support autonegotiation. For example: port0 is UTP with all abilities (default for normal switch applications: GxMode=1, GxANeg=1, GxSpd100=1, GxFull=1, GxEnFC=1. The content of MII registers will be Reg0.12=1, Reg4.5=1, Reg4.6=1, Reg4.7=1, Reg4.8=1, and Reg4.10=1). If the connecting device supports autonegotiation, 10Full with 802.3x flow control ability, port0 will enter the auto-negotiation process. The result will be 10Full with 802.3x flow control ability for both devices. If the other device is 10M without auto-negotiation, port0 will enter the parallel detection process. The result will be 10Half without 802.3x flow control ability for port0. Note: Each port can operate at 10Mbps or 100Mbps in full-duplex or half-duplex mode independently of others when auto-negotiation is on. The port status for the PHY on a group basis can easily be set by pin configuration. For example, when group X is 100FX (GxMode=0), group X can be set as force mode half duplex by setting pin GxFull to 0. Group Y can also be set as UTP mode NWAY mode 10Full by setting GyMode=1, GyANeg=1, GySpd100=0, GyFull=1. Refer to section 5 Pin Descriptions for details. 8.1.4. Flow Control The RTL8305SC supports IEEE 802.3x full duplex flow control, Force mode Full duplex Flow Control, and optional half duplex back pressure. IEEE 802.3x Full Duplex Flow Control For UTP with auto-negotiation ability (GxANeg/GyANeg/P4Aneg set to 1), the pause ability (Reg.4.10) of full duplex flow control is enabled by pins GxEnFC/GyEnFC/P4EnFC on a group basis upon reset, or internal registers via SMI on a per-port basis after reset. For UTP with auto-negotiation ability, IEEE 802.3x flow control’s ability is auto-negotiated between the remote device and the RTL8305SC. If the auto-negotiation result of the 802.3x pause ability is ‘Enabled’ (Reg.4.10=1 and Reg.5.10=1), the full duplex 802.3x flow control function is enabled. Otherwise, the full duplex 802.3x flow control function is disabled. Force Mode Full Duplex Flow Control For UTP without auto-negotiation ability (GxANeg/GyANeg/P4Aneg is 0) and 100Base-FX, IEEE 802.3x flow control’s ability can be forced to ‘Enabled’ by pins GxEnFC/GyEnFC/P4EnFC on a group basis upon reset, or internal registers (Reg.5.10) via SMI on a per-port basis after reset. For 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 95 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet example, port 4 will be forced to 10Full UTP with forced mode full duplex flow control ability, regardless of the connected device, when P4Mode[1:0]=10, P4Aneg=0, P4Spd100=0, P4Full=1, P4EnFC=1. Port 0 will be forced to 100Full FX with forced mode full duplex flow control ability, regardless of the connected device, when SetGroup=1, GxMode=0, GxFull=1, GxEnFC=1. Regardless of IEEE 802.3x full duplex flow control or Force mode Full duplex Flow Control, when full duplex flow control is enabled, the RTL8305SC will only recognize the 802.3x flow control PAUSE ON/OFF frames with DA=0180C2000001, type = 8808, OP-code=01, PAUSE Time = maximum to zero, and with a good CRC. If a PAUSE frame is received from any PAUSE flow control enabled port set to DA=0180C2000001, the corresponding port of the RTL8305SC will stop its packet transmission until the PAUSE timer times out or another PAUSE frame with zero PAUSE time is received. The RTL8305SC will not forward any 802.3x PAUSE frames received from any port. Half Duplex Back Pressure If pin EnDefer is 1, the RTL8305SC will send a preamble to defer the other station’s transmission when there is no packet to send. Otherwise, if pin EnDefer is 0, the RTL8305SC will force a collision with the other station’s transmission when the buffer is full. If pin 48pass1 is 0, the RTL8305SC will always collide with JAM (Continuous collision). Otherwise, if pin 48pass1 is 1, the RTL8305SC will try to forward one packet successfully after 48 forced collisions (48pass1), to avoid the connected repeater being partitioned due to excessive collisions. NWay Mode For UTP with auto-negotiation ability, pins GxEnFC/GyEnFC/P4EnFC are effective only in full duplex mode. Therefore, for UTP in half duplex mode, half duplex back pressure flow control is controlled by the ENBKPRS pin strap upon hardware reset. Force Mode For UTP without auto-negotiation ability, or in 100Base-FX mode, the operation mode can be forced to half duplex. Half duplex back pressure flow control can be forced to ‘enabled’ on the RTL8305SC side by pin GxEnFC/GyEnFC/P4EnFC on a group basis upon reset. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 96 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.1.5. Address Search, Learning, and Aging When a packet is received, the RTL8305SC will use the least 10 bits of the destination MAC address to index the 1024-entry lookup table, and at the same time will compare the destination MAC address with the contents of the 16-entry CAM. If the indexed entry is valid, or the CAM comparison is matched, the received packet will be forwarded to the corresponding destination port. Otherwise, the RTL8305SC will broadcast the packet. This is the ‘Address Search’. The RTL8305SC then extracts the least 10 bits of the source MAC address to index the 1024-entry lookup table. If the entry is not already in the table it will record the source MAC address and add switching information. If this is an occupied entry, it will update the entry with new information. This is called ‘Learning’. If the indexed location has been occupied by a different MAC address (hash collision), the new source MAC address will be recorded into the 16-entry CAM. The 16-entry CAM reduces address hash collisions and improves switching performance. Address aging is used to keep the contents of the address table correct in a dynamic network topology. The lookup engine will update the time stamp information of an entry whenever the corresponding source MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed by the address learning process during the aging time period. The aging time of the RTL8305SC is between 200 and 300 seconds. 8.1.6. Address Direct Mapping Mode The RTL8305SC uses the least 10 bits of the MAC address to index the 1024-entry lookup table. For example: the index of MAC address ‘12 34 56 78 90 ab’ will be 0xab. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 97 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.1.7. Half Duplex Operation In half duplex mode, the CSMA/CD media access method is the means by which two or more stations share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If the message collides with that of another station, then each transmitting station intentionally transmits for an additional predefined period to ensure propagation of the collision throughout the system. The station remains silent for a random amount of time (backoff) before attempting to transmit again. When a transmission attempt has terminated due to a collision, it is retried until it is successful. A controlled randomization process called ‘truncated binary exponential backoff’ determines the scheduling of the retransmissions. At the end of enforcing a collision (jamming), the switch delays before attempting to retransmit the frame. The delay is an integer multiple of slotTime (512 bit times). The number of slot times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer ‘r’ in the range: 0 ≤ r < 2k where: k = min (n, backoffLimit). IEEE 802.3 defines the backoffLimit as 10. 8.1.8. InterFrame Gap The InterFrame Gap is 9.6µs for 10Mbps Ethernet and 960ns for 100Mbps Fast Ethernet. 8.1.9. Illegal Frame Illegal frames such as CRC error packets, runt packets (length < 64 bytes), and oversize packets (length > maximum length), will be discarded. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 98 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.1.10. Dual MII Interface Home Gateways, broadband access routers, and SOHO routers generally contain a powerful Network Processor, with many I/O interfaces, including MII and SNI interfaces. Traditionally, this system connects one of the MII interfaces to a single PHY as the WAN port, and another interface connects to a multi-port switch as the LAN ports. In order to meet application demands, Realtek offers an advanced dual MII interface for this application. This eliminates the need for a single PHY. Figure 4 shows the traditional design of a SOHO router. In this case, the router needs an extra single PHY as the WAN port. A traditional 5-port switch has five MAC and five PHY circuits on a single chip. When port 4 is configured as MII-MAC/MII-PHY/SNI-PHY, we only use the MAC part of port 4. 5 Port Switch CPU with Dual MII Switch Core P0 MAC P1 MAC P2 MAC P3 MAC P4 MAC MII_1 P4_MII MII_2 P0 PHY P1 PHY P2 PHY P3 PHY P4 PHY Single PHY LAN WAN Figure 4. Traditional Application 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 99 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet The RTL8305SC has pin 42, DISDUALMII, to support both port 4 PHY and MAC circuits. When the Dual MII feature is enabled, the port 4 PHY may be used as the WAN interface as shown in Figure 5. RTL8305SC CPU with Dual MII Switch Core P0 MAC P1 MAC P2 MAC P3 MAC P4 MAC P4_MII P2_MII P0 PHY P1 PHY P2 PHY LAN P3 PHY MII_1 MII_2 P4 PHY WAN Figure 5. Dual MII Application Diagram Dual MII Interfaces Configuration Port 4 of the RTL8305SC is able to separate the MAC and PHY circuits via the DISDUALMII configuration. When DISDUALMII is configured as 0, the port 4 MAC circuit supports MAC mode MII, PHY mode MII, or PHY mode SNI interface. The port 4 PHY circuit supports an MII on the MAC side, and a UTP or fiber interface in the PHY transceiver. Four pins define the mode of the dual MII interface, DISDUALMII (pin-42), P4MODE[0] (pin-45), P4MODE[1] (pin-44), and P4PHY_MODE (pin-68). • • DISDUALMII: Enable dual MII interface feature, pull high = disable, and pull low = enable. P4MODE[1:0]: When DISDUALMII is enabled: 11b/10b = P4MAC is MAC mode MII 01b = P4MAC is PHY mode MII 00b = P4MAC is PHY mode SNI • P4PHY_MODE: When DISDUALMII is enabled: 1b = P4PHY is UTP mode 0b = P4PHY is Fiber mode The following figures show the four types of configuration for the RTL8305SC with a CPU application. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 100 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet MAC Mode MII Interface Floating=High Floating=High Floating=High 10K ohm 10K ohm User Defined User Defined 44-P4MODE[1] RTL8305SC 45-P4MODE[0] PHY Mode MII Interface MAC1_TXC 51-MTXC/PRXC MAC1_CRS 52-MTXEN/PRXDV 57~54-MTXD[3:0]/PRXD[3:0] 68-P4PHY_MODE MAC1_TXEN 4 59-MRXC/PTXC 60-MRXDV/PTXEN 42-DISDUALMII 67~66, 63~61-MRXD[3:0]/PTXD[3:0] 49-P4LNKSTA# MAC1_TXD[3:0] MAC1_RXC MAC1_RXDV 4 MAC1_RXD[3:0] 58-MCOL/PCOL MAC1_COL 81-PHY2RXC MAC2_RXC 47-P4SPDSTA 48-P4DUPSTA CPU/ Processor/ Routing Engine MAC2_CRS User Defined 80-PHY2RXDV 46-P4FLCTRL 78~76, 73-PHY2RXD[3:0] MCA2_RXDV 4 MAC2_TXC 82-PHY2TXC 83PHY2TXEN 88, 86~84-PHY2TXD[3:0] MAC2_RXD[3:0] 4 MAC2_TXEN MAC2_TXD[3:0] MAC2_COL 89-PHY2COL PHY Mode MII Interface MAC Mode MII Interface Figure 6. Dual MII Mode with 1 MII-MAC + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit MAC Mode MII Interface Irrelevant Irrelevant 10K ohm 10K ohm 10K ohm User Defined User Defined 44-P4MODE[1] RTL8305SC 45-P4MODE[0] PHY Mode MII Interface MAC1_TXC 51-MTXC/PRXC MAC1_CRS 52-MTXEN/PRXDV 57~54-MTXD[3:0]/PRXD[3:0] 68-P4PHY_MODE MAC1_TXEN 4 59-MRXC/PTXC MAC1_RXC MAC1_RXDV 60-MRXDV/PTXEN 42-DISDUALMII 67~66, 63~61-MRXD[3:0]/PTXD[3:0] 49-P4LNKSTA# MAC1_TXD[3:0] 4 MAC1_RXD[3:0] 58-MCOL/PCOL MAC1_COL 81-PHY2RXC MAC2_RXC CPU/ Processor/ Routing Engine 47-P4SPDSTA/P4FULL 48-P4DUPSTA/P4SPD100 MAC2_CRS User Defined 46-P4FLCTRL/P4ENFC MCA2_RXDV 80-PHY2RXDV 78~76, 73-PHY2RXD[3:0] 4 MAC2_TXC 82-PHY2TXC 83-PHY2TXEN 88, 86~84-PHY2TXD[3:0] 89-PHY2COL PHY Mode MII Interface of 100Base-FX Mode MAC2_RXD[3:0] 4 MAC2_TXEN MAC2_TXD[3:0] MAC2_COL MAC Mode MII Interface Figure 7. Dual MII Mode with 1 MII-MAC + 1 MII-PHY (100Base-FX Mode) Interfaces Application Circuit 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 101 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet PHY Mode MII Interface 1 MAC Mode MII Interface 1 10K ohm 44-P4MODE[1] Floating=High Floating=High 10K ohm 10K ohm User Defined User Defined RTL8305SC 45-P4MODE[0] MAC1_CRS MAC1_RXDV 52-MTXEN/PRXDV 57~54-MTXD[3:0]/PRXD[3:0] 68-P4PHY_MODE 42-DISDUALMII MAC1_RXC 51-MTXC/PRXC 4 MAC1_TXC 59-MRXC/PTXC 60-MRXDV/PTXEN 67~66, 63~61-MRXD[3:0]/PTXD[3:0] 4 MAC1_TXEN MAC1_TXD[3:0] MAC1_COL 58-MCOL/PCOL 49-P4LNKSTA# MAC1_RXD[3:0] 47-P4SPDSTA MAC2_RXC 81-PHY2RXC 48-P4DUPSTA CPU/ Processor/ Routing Engine MAC2_CRS User Defined 80-PHY2RXDV 46-P4FLCTRL 78~76, 73-PHY2RXD[3:0] MCA2_RXDV 4 MAC2_TXC 82-PHY2TXC 83-PHY2TXEN 88, 86~84-PHY2TXD[3:0] MAC2_RXD[3:0] 4 MAC2_TXEN MAC2_TXD[3:0] MAC2_COL 89-PHY2COL MAC Mode MII Interface 2 PHY Mode MII Interface 2 Figure 8. Dual MII Mode with 1 MII-PHY + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit PHY Mode SNI Interface MAC Mode SNI Interface 10K ohm 44-P4MODE[1] RTL8305SC MAC1_RXC 51-MTXC/PRXC MAC1_CRS 10K ohm 45-P4MODE[0] Floating=High 68-P4PHY_MODE 10K ohm 42-DISDUALMII 10K ohm 49-P4LNKSTA# MAC1_RXDV 52-MTXEN/PRXDV 54-MTXD[0]/PRXD[0] MAC1_RXD 59-MRXC/PTXC MAC1_TXC MAC1_TXEN 60-MRXDV/PTXEN 61-MRXD[0]/PTXD[0] MAC1_TXD 58-MCOL/PCOL MAC1_COL CPU/ Processor/ Routing Engine 10K ohm 47-P4SPDSTA User Defined 48-P4DUPSTA 81-PHY2RXC 46-P4FLCTRL 80-PHY2RXDV MAC2_RXC MAC2_CRS User Defined 78~76, 73-PHY2RXD[3:0] MCA2_RXDV 4 MAC2_TXC 82-PHY2TXC 83-PHY2TXEN 88, 86~84-PHY2TXD[3:0] 89-PHY2COL PHY Mode MII Interface MAC2_RXD[3:0] 4 MAC2_TXEN MAC2_TXD[3:0] MAC2_COL MAC Mode MII Interface Figure 9. Dual MII Mode with 1 SNI-PHY + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 102 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dual MII Registers Definition For RTL8305SC single MII interface applications (DISDUALMII=1), PHY 5 MII registers represent the Port 4 MAC part. For RTL8305SC dual MII interface applications (DISDUALMII=0), PHY4 registers represent the Port 4 PHY part (Read/Write), and PHY5 registers represent the Port 4 MAC part (Reg.013, 0.12, 0.8, 4.10, 4.8~4.5 are Read/Write; others are Read-Only). The 100Base-FX mode of the PHY circuit (P4MODE[1:0]=10) only supports 100Mbps and full duplex. The PHY circuit of UTP mode only supports full ability NWay (Flow control enabled, both 10/100Mbps, both Full/Half duplex). The RTL8305SC support four status pins to provide the link status or initial configuration for the MAC circuit. A brief description of the function follows: • • • • P4LNKSTA#: Determines the link status of Port 4 MAC in real-time P4SPDSTA: Provides initial configuration pin for speed ability upon reset P4DUPSTA: Provides initial configuration pin for duplex ability upon reset P4FLCTRL: Provides initial configuration pin for flow control ability upon reset Table 143 shows the MII PHY registers of PHY4 and PHY5 definitions when P4MODE[1:0] and DISDUALMII are configured in various combinations. Table 143. MII Register Definition for PHY 4 and PHY 5 Dis P4MODE Port 4 Mode DualMII [1:0] 1 11 P4LNKSTA#=1 UTP or P4LNKSTA#=0 but UTP link on: PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) Upon Reset: Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=Signal detection and latch low Reg. 4.10=P4FLCTRL Reg. 4.8~4.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 Reg. 5.10=NWay result Reg. 5.8~5.5=NWay result PHY5 (Reg0, 1, 2, 3, 4, 5) N/A Port 4 LED UTP After Reset: All RW pins should be fully configurable and act as standard. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 103 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE DualMII [1:0] Port 4 Mode P4LNKSTA#=0 MAC: and UTP link MAC off: mode MII PHY: N/A UTP: N/A 1 10 MAC: N/A PHY: N/A UTP: 100Base-FX (Fiber) PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) N/A Upon Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=0 (NWay=Disable) Reg. 0.8=P4DUPSTA Reg. 1.2=Signal detection Reg. 4.10=P4FLCTRL Reg. 4.8~4.5=1111 Reg. 5.10=Reg. 4.10 Reg. 5.8~5.5= Reg. 4.8~4.5 PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Port 4 MAC Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5=Keep the contents identical to Reg. 4.10 and 4.8~4.5. N/A Fiber After Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=0 (NWay=Disable) Reg. 0.8=Configurable Reg. 1.2=Signal detection Reg. 4.10=Configurable Reg. 4.8~4.5=1111 Reg. 5.10=Reg. 4.10 Reg. 5.8~5.5=Reg. 4.8~4.5 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 104 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE Port 4 Mode DualMII [1:0] 1 01 MAC: PHY mode MII PHY: N/A UTP: N/A PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) N/A PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Port 4 MAC Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5= Keep the contents identical to Reg. 4.10 and 4.8~4.5. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 105 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE Port 4 Mode DualMII [1:0] 1 00 MAC: PHY mode SNI PHY: N/A UTP: N/A PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) N/A PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Port 4 MAC Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5= Keep the contents identical to Reg. 4.10 and 4.8~4.5. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 106 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE Port 4 Mode DualMII [1:0] 0 11 P4PHY_MODE (pin 68)=1 MAC: MAC mode MII PHY: PHY mode MII UTP: 100Base-TX PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) Upon Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=1 (NWay=Enable) Reg. 0.8=1 (Duplex=Full) Reg. 1.2=Signal detection and latch low Reg. 4.10=1 (Enable Fctrl) Reg. 4.8~4.5=1111 Reg. 5.10=Depends on NWay result Reg. 5.8~5.5=Depends on NWay result After Reset: All RW pins should be fully configurable and act as standard. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 107 PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Port 4 PHY Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5=Keep the contents identical to Reg. 4.10 and 4.8~4.5 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE Port 4 Mode DualMII [1:0] 0 10 P4PHY_MODE (pin 68)=0 MAC: MAC mode MII PHY: PHY mode MII UTP: 100Base-FX (Fiber) PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) Upon Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=0 (NWay=Disable) Reg. 0.8=1 (Duplex=Full) Reg. 1.2=Signal detection and latch low Reg. 4.10=1 (Enable Fctrl) Reg. 4.8~4.5=1111 Reg. 5.10=1 Reg. 5.8~5.5=1111 After Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=0 (NWay=Disable) Reg. 0.8=Configurable Reg. 1.2=Signal detection Reg. 4.10=Configurable Reg. 4.8~4.5=1111 Reg. 5.10=Reg. 4.10 Reg. 5.8~5.5=1111 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 108 PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Fiber Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5=Keep the contents identical to Reg. 4.10 and 4.8~4.5 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE Port 4 Mode DualMII [1:0] 0 01 MAC: PHY mode MII PHY: PHY mode MII UTP: 100Base-TX PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) Upon Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=1 (NWay=Enable) Reg. 0.8=1 (Duplex=Full) Reg. 1.2=Signal detection and latch low Reg. 4.10=1 (Enable Fctrl) Reg. 4.8~4.5=1111 Reg. 5.10=Depends on NWay result Reg. 5.8~5.5=Depends on NWay result After Reset: All RW pins should be fully configurable and act as standard. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 109 PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Port 4 PHY Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5=Keep the contents identical to Reg. 4.10 and 4.8~4.5 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Dis P4MODE Port 4 Mode DualMII [1:0] 0 00 MAC: PHY mode SNI PHY: PHY mode MII UTP: 100Base-TX PHY4 (Single Mode MII) (Reg0, 1, 2, 3, 4, 5) Upon Reset: Reg. 0.13=1 (Speed=100M) Reg. 0.12=1 (NWay=Enable) Reg. 0.8=1 (Duplex=Full) Reg. 1.2=Signal detection and latch low Reg. 4.10=1 (Enable Fctrl) Reg. 4.8~4.5=1111 Reg. 5.10=Depends on NWay result Reg. 5.8~5.5=Depends on NWay result After Reset: All RW pins should be fully configurable and act as standard. PHY5 Port 4 LED (Reg0, 1, 2, 3, 4, 5) Upon Reset: Port 4 PHY Reg. 0.13=P4SPDSTA Reg. 0.12=P4ANEG Reg. 0.8=P4DUPSTA Reg. 1.2=P4LNKSTA# Reg. 4.10=P4FLCTRL Reg. 5.10=P4FLCTRL Reg. 4.8~4.5=Reg. 5.8~5.5= Reg. P4 P4 4.8~4.5 SPDSTA DUPSTA 1111 1 1 0111 1 0 0011 0 1 0001 0 0 After Reset: Reg. 0.13=Configurable Reg. 0.12=Configurable Reg. 0.8=Configurable Reg. 1.2=P4LNKSTA# Reg. 4.10 and 4.8~4.5= Configurable Reg. 5.10 and 5.8~5.5=Keep the contents identical to Reg. 4.10 and 4.8~4.5 8.2. Physical Layer Functional Overview 8.2.1. Auto-Negotiation for UTP The RTL8305SC obtains the states of duplex, speed, and flow control ability for each port in UTP mode through the auto-negotiation mechanism defined in the IEEE 802.3u specifications. During autonegotiation, each port advertises its ability to its link partner and compares its ability with advertisements received from its link partner. By default, the RTL8305SC advertises full capabilities (100Full, 100Half, 10Full, 10Half) together with flow control ability. 8.2.2. 10Base-T Transmit Function The output 10Base-T waveform is Manchester-encoded before it is driven into the network media. The internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external filter. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 110 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.2.3. 10Base-T Receive Function The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit detects the signal level is above squelch level. 8.2.4. Link Monitor The 10Base-T link pulse detection circuit continually monitors the RXIP/RXIN pins for the presence of valid link pulses. Auto-polarity is implemented to correct the detected reverse polarity of RXIP/RXIN signal pairs. 8.2.5. 100Base-TX Transmit Function The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such that EMI effects can be reduced significantly. The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit stream is driven into the network media in the form of MLT-3 signaling. The MLT-3 multi-level signaling technology moves the power spectrum energy from high frequency to low frequency, which also reduces EMI emissions. 8.2.6. 100Base-TX Receive Function The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error rate. A De-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL circuit. Finally, the converted parallel data is fed into the MAC. 8.2.7. 100Base-FX All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+- pins. 100Base-FX can be forced to half or full duplex with optional flow control ability. Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. In order to operate correctly, both sides of the connection should be set to the same duplex and flow control ability. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 111 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet A scrambler is not needed in 100Base-FX. Compared to common 100Base-FX applications, the RTL8305SC removes a pair of differential SD (Signal Detect) signals that provide a link monitoring function, which reduces the pin count (Realtek patent). 8.2.8. 100Base-FX Transmit Function In 100Base-FX transmission, di-bits of TXD are processed as 100Base-TX except without being scrambled before the NRZI stage. Instead of converting to MLT-3 signals as in 100Base-TX, the serial data stream is driven out as NRZI PECL (Positive Emitter Coupled Logic) signals, which enter the fiber transceiver in differential-pairs form. The fiber transceiver may be 3.3V or 5V capable. Refer to 100BaseFX Application, on page 143 for an example application. Table 144. PECL DC Characteristics Parameter PECL Input High Voltage PECL Input Low Voltage PECL Output High Voltage PECL Output Low Voltage 8.2.9. Symbol Vih Vil Voh Vol Min Vdd-1.16 Vdd-1.81 Vdd-1.02 Max Vdd-0.88 Vdd-1.47 Vdd-1.62 Unit V V V V 100Base-FX Receive Function Signals are received through Positive Emitter Coupled Logic (PECL) receiver inputs from a fiber transceiver and directly passed to a clock recovery circuit for data/clock recovery. Scrambling/descrambling is bypassed in 100Base-FX. 8.2.10. 100Base-FX FEFI When 100FX is enabled, PHY Reg.1.4 (Remote Fault) is the Far-End-Fault-Indicator (FEFI) bit for ports, and indicates that a FEFI has been detected. The FEFI is an alternative in-band signaling that is composed of 84 consecutive 1’s followed by one 0. When the RTL8305SC has detected this pattern three times, Reg.1.4 will be set, which means the transmit path (Remote side’s receive path) has problems. On the other hand, to send an FEFI stream pattern, the following condition needs to be satisfied; the incoming signal causes link failure, which in turn causes the remote side to detect a Far-End-Fault. This means that the receive path has a problem from the view of the RTL8305SC. The FEFI mechanism is used only in 100Base-FX. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 112 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet During detection of the FEFI, PHY Reg.1.4 should be set to 1. It should remain 1, even after it is read, as long as FEFI is continuously detected by the RTL8305SC. PHY Reg.1.4 should not be cleared until the FEFI has disappeared. If there is no FEFI, then PHY Reg.1.4 should be 0. In normal conditions where there is no optical or electrical input signal; OPT-PHY should not detect Far-End-Fault signals since there is no such signal at the optical input. When Optical Receiving Fiber is disconnected from RTL8305SC, the FEFI cannot be detected by the RTL8305SC and also cannot be reflected on PHY Reg.1.4 since there is no FEFI. If there is a FEFI before Optical Receiving Fiber is disconnected, Reg.1.4 should be kept on 1. This bit should be cleared to 0 after it is read (read and clear). The OPT-PHY of RTL8305SC will not reflect the FEFI (Reg.1.4=1) when Optical Fiber is disconnected at power up, in spite of No-Far-End-Fault signals. After power on, the default value of PHY Reg1.4 will appear as ‘0’. 8.2.11. Reduced Fiber Interface The RTL8305SC ignores the underlying SD signal of the fiber transceiver to complete link detection and connection. This is achieved by monitoring RD signals from the fiber transceiver and checking whether any link integrity events are met. This significantly reduces pin-count, especially for high-port PHY devices. This is a Realtek patent-pending technology and available only with Realtek product solutions. 8.2.12. Power Saving Mode The RTL8305SC implements power saving mode on a per-port basis. A port automatically enters power saving mode 10 seconds after the cable is disconnected from it. Once a port enters power saving mode, it transmits normal link pulses only on its TXOP/TXON pins and continues to monitor the RXIP/RXIN pins to detect incoming signals, which might be the 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or Auto-Negotiation’s FLP (Fast Link Pulse). After it detects any incoming signals, it wakes up from power saving mode and operates in normal mode according to the result of the connection. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 113 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.2.13. Reg0.11 Power-Down Mode The RTL8305SC implements power-down mode on a per-port basis. Setting MII Reg.0.11 forces the corresponding port of the RTL8305SC to enter power-down mode. This disables all transmit/receive functions, except SMI (Serial Management Interface: MDC/MDIO, also known as MII Management Interface). 8.2.14. Crossover Detection and Auto Correction During the link setup phase, the RTL8305SC checks whether it receives active signals on every port in order to determine if a connection can be established. In cases where the receiver data pin pair is connected to the transmitter data pin pair of the peer device and vice versa, the RTL8305SC automatically changes its configuration and swaps receiver/transmitter data pins as required. If a port is connected to a PC or NIC with MDI-X interface with a crossover cable, the RTL8305SC will reconfigure the port to ensure proper connection. This replaces the DIP switch commonly used for reconfiguring a port on a hub or switch. By pulling-up EN_AUTOXOVER, the RTL8305SC identifies the type of connected cable and sets the port to MDI or MDIX. When switching to MDI mode, the RTL8305SC uses TXOP/N as transmit pairs; when switching to MDIX mode, the RTL8305SC uses RXIP/N as transmit pairs. This function is portbased. Pulling-down EN_AUTOXOVER disables this function, the RTL8305SC operates in MDI mode, in which TXOP/N represents transmit pairs, and RXIP/N represents receive pairs. IEEE 802.3 compliant forced mode 100M ports with Autoxover have link issues with NWay (AutoNegotiation) ports. It is recommended to not use Autoxover for forced 100M. 8.2.15. Polarity Detection and Correction For better noise immunity and lower interference to ambient devices, the Ethernet electrical signal on a twisted pair cable is transmitted in differential form. That is, the signal is transmitted on two wires in each direction with inverse polarities (+/-). If wiring on the connector is faulty or a faulty transformer is used, the two inputs to a transceiver may carry signals with opposite but incorrect polarities. As a direct consequence, the transceiver will not work properly. When the RTL8305SC operates in 10Base-T mode, it automatically reverses the polarity of its two receiver input pins if it detects that the polarities of the incoming signals on the pins is incorrect. However, this feature is unnecessary when the RTL8305SC is operating in 100Base-TX mode. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 114 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3. Advanced Functional Overview 8.3.1. Reset The whole or just part of the RTL8305SC is initialized depending on the reset type. There are several ways to reset the RTL8305SC: hardware reset for the whole chip by pin RESET#, soft reset for all except PHY by register SoftReset, and PHY software reset for each PHY by register reset. Hardware Reset: Pin RESET#=0 set to RESET#=1 (for at least 1ms). The RTL8305SC resets the whole chip and then gets initial values from pins and serial EEPROM. Soft Reset: Write bit12 of Reg16 of PHY0 as 1. The RTL8305SC resets all except PHY and does not load EEPROM and Pin Registers with serial EEPROM and Pins. The SoftReset, EEPROM, and Pin registers are designed to provide a convenient way for users who want to use SMI to change the configuration. After changing the EEPROM or Pin registers via SMI (Serial Management Interface), the external device has to perform a soft reset in order to update the configuration. PHY Software Reset: Write bit15 of Reg0 of a PHY as 1. The RTL8305SC will then reset this PHY. Hardware Reset Strap pin upon reset Soft Reset: After loading EEPROM completely, the user may access EEPROM/Pin registers via SMI. A Soft Reset to reset all except PHY is required to update pin/EEPROM configuration. Load EEPROM upon reset Figure 10. Reset Some setting values for operation modes are latched from those corresponding mode pins upon hardware reset. ‘Upon reset’ is defined as a short time after the end of a hardware reset. Other advanced configuration parameters may be latched from serial EEPROM if pin EnEEPROM=1. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 115 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.2. Setup and Configuration The RTL8305SC can be configured easily and flexibly by hardware pins upon reset, optional serial EEPROM upon reset, and internal registers (including PHY registers for each port and MAC register for global) via SMI (Serial Management Interface: MDC/MDIO, also known as MII Management Interface). There are three methods of configuration: 1. Only hardware pins for normal switch applications 2. Hardware pins and serial EEPROM for advanced switch applications 3. Hardware pins and internal registers via SMI for applications with processor Three types of pins, each with internal pull-high resistors, are used for configuration: 1. Input pins used for strapping upon reset (unused after reset) 2. Input/Output pins (MTXD[3:2]/PRXD[3:2]/P4IRTag[1:0], MTXD[1:0]/PRXD[1:0]/LEDMode[1:0]) used for strapping upon reset and used as output pins after reset 3. Input/Output pins (all LEDs) used for strapping upon reset and used as LED indicator pins after reset. The LED statuses are represented as active-low or high depending on input strapping, except Bi-color Link/Act in Bi-color LED mode, whose polarity depends on Spd status Pins with default value=1 are internal pull-high and use I/O pads. They can be left floating to set input value as high, but should not be connected to GND without a pull-down resistor. The serial EEPROM shares two pins, SCL_MDC and SDA_MDIO, with SMI, and is optional for advanced configuration. SCL_MDC and SDA_MDIO are tri-state during hardware reset (pin RESET#=0). The RTL8305SC will try to automatically find the serial EEPROM upon reset only if pin EnEEPROM=1. If the first byte of the serial EEPROM is not 0xFF (NoEEPROM bit of the first byte=0), the RTL8305SC will load all contents of the serial EEPROM into internal registers. Otherwise, the RTL8305SC will use the default internal values. Internal registers can still be accessed after reset via SMI (pin SCL_MDC and SDA_MDIO). Serial EEPROM signals and SMI signals must not exist at the same time. In order to use the SMI to flexibly change configuration, internal registers include the contents of some pins and all serial EEPROM. These registers do not work in real time and a Soft Reset is necessary after changing the EEPROM or pin registers. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 116 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.3. Serial EEPROM Example: 24LC02 The 24LC02 interface is a 2-wire serial EEPROM interface providing 2K bits of storage space. The 24LC02 must be 3.3V compatible. 8.3.3.1 24LC02 Device Operation Clock and Data transitions: The SDA pin is normally pulled high with an external resistor. Data on the SDA pin may change only during SCL low time periods. Data changes during SCL high periods will indicate a start or stop condition as defined below. Start Condition: A high-to-low transition of SDA with SCL high is the start condition and must precede any other command. Stop Condition: A low-to-high transition of SDA with SCL high is a stop condition. Acknowledge: All addresses and data are transmitted serially to and from the EEPROM in 8-bit words. The 24LC02 sends a zero to acknowledge that it has received each word. This happens during the ninth clock cycle. Random Read: A random read requires a ‘dummy’ byte write sequence to load in the data word address. Sequential Read: For the RTL8305SC, the sequential reads are initiated by a random address read. After the 24LC02 receives a data word, it responds with an acknowledgement. As long as the 24LC02 receives an acknowledgement, it will continue to increment the data word address and clock out sequential data words in series. SDA SCL START STOP Figure 11. Start and Stop Definition SCL 8 1 9 DATA IN DATA OUT ACKNOWLEDGE START Figure 12. Output Acknowledge 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 117 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Start Write Device Address Start Word Address n Stop Read Device Address SDA Data n R/W ACK ACK ACK NO ACK Dummy Write Figure 13. Random Read Read ACK Stop ACK Device Address SDA Data n R/W ACK Data n+1 ACK Data n+x ACK NO ACK Figure 14. Sequential Read 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 118 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.4. SMI The SMI (Serial Management Interface) is also known as the MII Management Interface, and consists of two signals (MDIO and MDC). It allows external devices with SMI master mode (MDC is output) to control the state of the PHY and internal registers (SMI slave mode: MDC is input). MDC is an input clock for the RTL8305SC to latch MDIO on its rising edge. The clock can run from DC to 25MHz. MDIO is a bi-directional connection used to write data to, or read data from the RTL8305SC. The PHY address is from 0 to 4. Table 145. SMI Read/Write Cycles Preamble Start OP Code PHYAD REGAD Turn Around Data (32 bits) (2 bits) (2 bits) (5 bits) (5 bits) (2 bits) (16 bits) Read 1……..1 01 10 A4A3A2A1A0 R4R3R2R1R0 Z0 D15…….D0 Write 1……..1 01 01 A4A3A2A1A0 R4R3R2R1R0 10 D15…….D0 Note: Z*: high-impedance. During idle time MDIO state is determined by an external 1.5KΩ pull-up resistor. Idle Z* Z* The RTL8305SC supports Preamble Suppression, which allows the MAC to issue Read/Write Cycles without preamble bits. However, for the first cycle of MII management after power-on reset, a 32-bit preamble is needed. To guarantee the first successful SMI transaction after power-on reset, the external device should delay at least 1second before issuing the first SMI Read/Write Cycle relative to the rising edge of reset. 8.3.5. Head-Of-Line Blocking The RTL8305SC incorporates an advanced mechanism to prevent Head-Of-Line blocking problems when flow control is disabled. When the flow control function is disabled, the RTL8305SC first checks the destination address of the incoming packet. If the destination port is congested, the RTL8305SC will discard this packet to avoid blocking the next packet, which is going to a non-congested port. 8.3.6. Port-Based VLAN If the VLAN function is enabled by pulling down the strapping pin DisVLAN, the default VLAN membership configuration by internal register is port 4 overlapped with all the other ports to form four individual VLANs. This default configuration of the input port could be modified via an attached serial EEPROM or SMI interface. The 16 VLAN membership registers designed into the RTL8305SC provide full flexibility for users to configure the input ports to associate with different VLAN groups. Each input port can join more than one VLAN group. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 119 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to determine their VLAN association. All the packets received on a given input port will be forwarded to this port’s VLAN members. The RTL8305SC supports five VLAN indexes for each port to individually index this port to one of the 16 VLAN membership registers. These 16 VLAN membership registers, VLAN ID [A] membership bit [4:0] ~ VLAN ID [P] membership bit [4:0], describe which ports are the members of this VLAN. The RTL8305SC forwards packets to the members of this VLAN only (excluding the input port of this frame). A port that is not included in a VLAN’s member set cannot transmit packets to this VLAN. Figure 15 illustrates a typical application. VLAN indexes and VLAN member definitions are set to form three different VLAN groups. VLAN 1 P0 Port 0 VLAN Index=0000 Membership [B] 1 1 0 0 0 P1 Port 1 VLAN Index=0000 P2 Port 2 VLAN Index=0000 P3 Port 3 VLAN Index=0001 P4 Membership [A] 0 0 1 1 1 Membership [C] 0 0 0 0 0 VLAN 2 Port 4 VLAN Index=0001 Membership [P] 0 0 0 0 0 RTL8305SC Figure 15. VLAN Grouping Example For port-based VLAN configuration, each ingress port is allotted an index register to index to this port’s ‘Port VLAN Membership’ register, which can be defined in one of the registers from ‘VLAN ID [A] Membership bit [4:0]’ to ‘VLAN ID [P] Membership bit [4:0]’ register. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 120 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Using the default value as an example: • Port 0 VLAN Index[3:0]=2’b0000 means the member set of port 0 is defined in the ‘VLAN ID [A] Membership’ register • Port 1 VLAN Index[3:0]=2’b0001 means the member set of port 0 is defined in the ‘VLAN ID [B] Membership’ register • Port 2 VLAN Index[3:0]=2’b0010 means the member set of port 0 is defined in the ‘VLAN ID [C] Membership’ register • Port 3 VLAN Index[3:0]=2’b0011 means the member set of port 0 is defined in the ‘VLAN ID [A] Membership’ register • Port 4 VLAN Index[3:0]=2’b0100 means the member set of port 0 is defined in the ‘VLAN ID [A] Membership’ register For non-VLAN tagged frames, the RTL8305SC performs port-based VLAN. It will use ‘Port n VLAN Index [3:0]’ register to index to a VLAN membership. The VLAN ID associated with this indexed VLAN membership is the Port VID (PVID) of this port. 8.3.7. IEEE 802.1Q Tagged-VID Based VLAN The RTL8305SC supports 16 VLAN entries to perform 802.1Q tagged-VID based VLAN mapping. In 802.1Q VLAN mapping, the RTL8305SC uses a 12-bit explicit identifier in the VLAN tag to associate received packets with a VLAN. The 16 groups of VLAN membership registers, ‘VLAN ID [A] membership [4:0] ~ VLAN ID [P] membership [4:0]’, consist of the ports that are in the same VLAN corresponding to the registers defined in register ‘VLAN ID [A] [11:0] ~ VLAN ID [P] [11:0]’. If the VID of a VLAN-tagged frame does not hit any one of the registers in ‘VLAN ID [A] [11:0] ~ VLAN ID [P] [11:0]’, the RTL8305SC will perform port-based VLAN mapping to the member set indexed by register ‘Port n VLAN index [3:0]’. Otherwise, the RTL8305SC compares the explicit identifier in the VLAN tag with the 16 VLAN ID registers to determine the VLAN association of this packet, and then forwards this packet to the member set of this VLAN. Two VIDs are reserved for special purposes. One of them is all 1’s, which is reserved and currently unused. The other is all 0’s, which indicates a priority tag. A priority-tagged frame should be treated as an untagged frame. When ‘802.1Q tag aware VLAN’ at PHY0 Reg.16.10 is enabled, the RTL8305SC performs 802.1Q tagbased VLAN mapping for tagged frames, but still performs port-based VLAN mapping for untagged frames. If ‘802.1Q tag aware VLAN’ is disabled, the RTL8305SC performs only port-based VLAN mapping both on non-tagged and tagged frames. Figure 16 illustrates the processing flow when ‘802.1Q tag aware VLAN’ is disabled. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 121 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet ------ Un-tagged Tagged ------ Length/ Type Length/ Type SA 802.1Q Tag SA DA DA P0 P0VLANIndex=0000 P1 P2 P3 ----------- Length/ Type Length/ Type SA 802.1Q Tag SA DA Search VID Table DA VID [A]=0x000 Membership [A] 1 0 0 0 1 VID [B]=0x001 Membership [B] 1 0 0 1 0 VID [C]=0x002 Membership [C] 1 0 1 0 0 VID [P]=0x00f Membership [I] 10001 P4 RTL8305SC Figure 16. Tagged and Untagged Packet Forwarding when 802.1Q Tag Aware VLAN is Disabled Two VLAN ingress filtering functions are supported by the RTL8305SC in registers. One is the ‘VLAN tag admit control’ defined in PHY0 Reg.16.8, which provides the ability to receive VLAN-tagged frames only. Untagged or priority tagged (VID=0) frames will be dropped. The other is ‘VLAN member set ingress filtering’ defined in PHY0 Reg.16.9, which will drop frames if the receive port is not in the member set. There are also two optional egress filtering functions supported by the RTL8305SC through strapping. One is ‘Leaky VLAN’ at PHY0 Reg18.11, which e . That is, if the layer 2 lookup table search has a hit, then the unicast packet will be forwarded to the egress port, ignoring the egress rule. The other is ‘ARP VLAN’ at PHY0 Reg.18.10, which will broadcast ARP packets to all other ports, ignoring the egress rule. 8.3.8. Port VID (PVID) In a router application, the router may want to know which input port this packet came from. The RTL8305SC supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on an egress packet. The VID information carried in the VLAN tag will be changed to a PVID. The RTL8305SC also provides an option to admit VLAN tagged packets with a specific PVID only. When this function is enabled, packets with an incorrect PVID, and non-tagged packets will be dropped. The RTL8305SC uses an internal register, Port n VLAN index [3:0,] to index to one of the 16 VLAN entries. The VLAN ID associated with this indexed VLAN entry is the PVID for this port. Users may select VLAN insert/remove type 10 or 00 to insert a PVID on egress packets. In 802.1Q tag-based VLAN applications, do not use a port-based VLAN PVID applications as the VID information carried in the VLAN tag will be replaced with a PVID. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 122 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.9. Lookup Table Access The RTL8305SC supports registers for the CPU to read or write an internal 1024-entry lookup table via the SMI interface. Before reading/writing from/to the internal forwarding table, the contents of internal register, Indirect Access Control [15:0] at PHY4 Register 16, should be filled correctly. In the write cycle, the user must assign the write data in register Indirect Access Data 0, 1, 2, and 3 at PHY4 Register 17~20 first. Register 17, bits [1:0] along with bits [15:8] form a 10-bit field (Entry Index [9:0]), which is indirectly mapped to an entry in the lookup table. To execute write access, bit 0 in the Indirect Access Control register should be set to 0, and bit 1 should be set to 1. The CPU will poll bit 1 in Indirect Access Control to determine whether the write access is complete on not. In the read cycle, the user only has to enter the read address of the lookup table in register Indirect Access Data 0, 1, 2, and 3 at PHY4 Register 17~20 first. Register 17, bits [1:0] along with bits [15:8] form a 10-bit field (Entry Index [9:0]). To execute read access, bit 0 in the Indirect Access Control register should be set to 1, and bit 1 should be set to 1 to trigger this command. The CPU will poll bit 1 in Indirect Access Control to determine whether read access is complete or not. 8.3.10. QoS Function The RTL8305SC can recognize the QoS priority information of incoming packets to give a different egress service priority. The RTL8305SC identifies the packets as high priority based on several types of QoS priority information: • • • Port-based priority 802.1p/Q VLAN priority tag TCP/IP’s TOS/DiffServ (DS) priority field There are two priority queues; a high-priority queue, and a low-priority queue. The queue service rate is based on the Weighted Round Robin algorithm, the packet-based service weight ratio of the high-priority queue and low-priority queue can be set to 4:1, 8:1, 16:1 or ‘Always high priority first’ by hardware pins upon reset, or internal register via SMI after reset. Port-Based Priority When port-based priority is applied, packets received from the high-priority port are sent to the highpriority queue of the destination port. High priority ports can be partially set by hardware pins, and wholly configured by registers. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 123 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 802.1p-Based Priority When 802.1p VLAN tag priority is enabled, the RTL8305SC recognizes the 802.1Q VLAN tag frames and extracts the 3-bit User Priority information from the VLAN tag. The RTL8305SC default sets the threshold of User Priority as 4. Therefore, VLAN tagged frames with User Priority value = 4~7 will be treated as high priority frames, and User Priority values=0~3 will be treated as low priority frames (follows the IEEE 802.1p standard). The threshold value can be modified in internal registers via an SMI interface or configured in EEPROM. DiffServ-Based Priority When TCP/IP’s TOS/DiffServ(DS) based priority is enabled, the RTL8305SC recognizes TCP/IP Differentiated Services Codepoint (DSCP) priority information from the DS-field defined in RFC 2474. The DS field byte in IPv4 is a Type-of-Service (TOS) octet. The recommended DiffServ Codepoint is defined in RFC 2597 to classify the traffic into different service classes. The RTL8305SC extracts the codepoint value of DS-fields from IPv4 packets, and identifies the priority of the incoming IP packet according to the following definition: High priority: Where the DS-field = (EF, Expected Forwarding:) 101110 or (AF, Assured Forwarding:) 001010; 010010; 011010; 100010 or (Network Control:) 110000 and 111000. Low priority: Where the DS-field = Other values. The VLAN-tagged frame and 6-bit DS-field in the IPv4 frame format are shown below: Table 146. 802.1Q VLAN Tag Frame Format 6 bytes DA 6 bytes SA 2 bytes 81-00 3 bits User-Priority (0~3: Low-pri; 4~7: High-pri) ---- Table 147. IPv4 Frame Format 6 bytes DA 6 bytes SA 4 bytes 802.1Q Tag (optional) 2 bytes 08-00 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 4 bits Version IPv4= 0100 124 4 bits IHL 6 bits TOS[0:5]= DSfield ---- Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.11. Insert/Remove VLAN Tag The RTL8305SC supports four types of insert/remove VLAN packet tags, controlled by internal registers on a per-port basis. They are classified as follows: Type 11: Do not change packets (Default). Type 10: Insert input port’s VLAN tags for non-tagged packets. Do not change packets if they are already tagged. Type 01: Remove VLAN tags from tagged packets. Do not change packets if they are not tagged. Type 00: Remove VLAN tags from tagged packets, then insert the input port’s VLAN tags. For nontagged packets, insert the input port’s VLAN tags. If a tagged frame is less than 64 bytes after removal of the tag, it will be padded with an 0x20 pattern before the packet’s CRC field to fit the 64-byte minimum packet length of the IEEE 802.3 spec. The RTL8305SC will recalculate the FCS (Frame Check Sequence) if the frame has been changed. 8.3.12. Filtering/Forwarding Reserved Control Frame The RTL8305SC supports the ability to forward or drop the frames of the IEEE 802.1D specified reserved multicast addresses. Table 148. Reserved Multicast Address Address Function 01-80-C2-00-00-00 Bridge Group Address 01-80-C2-00-00-01 Pause Control Frame 01-80-C2-00-00-03 IEEE802.1X Control Frame 01-80-C2-00-00-02 and Reserved 01-80-C2-00-00-04 to 01-80-C2-00-00-0F Any other multicast Address Note: * Indicates the default setting. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 125 Control Bit N/A N/A N/A EnForward Control Bit=0 Control Bit=1 Broadcast Drop Broadcast Drop *Broadcast N/A Broadcast Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.13. Broadcast Storm Control According to the latched value of the DISBRDCTRL pin upon reset, the RTL8305SC determines whether or not to proceed with broadcast storm control. Once enabled (DISBRDCTRL=0), after 64 consecutive broadcast packets (DID=FF-FF-FF-FF-FF-FF) are received by a particular port, this port will discard following incoming broadcast packets for approximately 800ms. Any non-broadcast packet can reset the time window and broadcast counter such that the scheme restarts. Note: Trigger condition: consecutive 64 DID = FF-FF-FF-FF-FF-FF packets. Release condition: receive non-broadcast packet on or after 800ms. 8.3.14. Broadcast In/Out Drop If some destination ports are blocking and the buffer is full, broadcast frames are dropped according to configuration. 1. Input Drop: Do not forward to any port and drop the frame directly 2. Output Drop: Forward only to non-blocking ports (Broadcast becomes multicast) 1. Broadcast packet from Port0 2. Buffer of Port4 is full, others are not full Port 0 1 2 3 Port 0 4 1 Full 2 3 4 Full Rx: Rx: Input Drop Output Drop Figure 17. Input Drop vs. Output Drop 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 126 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.15. Loop Detection Loops should be avoided between switch applications. The simplest loop as shown below results in: 1) Unicast frame duplication; 2) Broadcast frame multiplication; 3) Address table non-convergence. Frames may be transmitted from Switch1 to Switch 2 via Link 1, then returned to Switch 1 via Link 2. Switch 1 Switch 2 Link 2 Link 1 Figure 18. Loop Example When the loop detection function is enabled, the RTL8305SC periodically sends out a broadcast 64-byte packet every 3~5 minutes and automatically detects whether there is a network loop (or bridge loop). If a loop is detected, the LoopLED# will be ON (active low or high). The LED goes out when both RTL8305SC ports of the loop are unplugged. The Loop frame length is 64 bytes and its format is shown below. Table 149. Loop Frame Format FFFF FFFF FFFF SID 8899 0300 000…0000 CRC In order to achieve loop detection, each switch device needs a unique SID (the source MAC address). If the EEPROM is not used, a unique SID should be assigned via SMI after reset, and the default SID (5254-4c-83-05-c0) should not be used. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 127 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.16. MAC Local Loopback Return to External Each port supports loopback of the MAC (return to external device) for diagnostic purposes. Example 1: If the internal register, PHY4 Reg.22.13=0 (Local loopback), the RTL8305SC will forward local and broadcast packets from the input of Port 4 to the output of Port 4, and drop unicast packets from the input of Port 4. Other ports can still forward broadcast or unicast packets to Port 4. Example 2: If the internal register, PHY3 Reg.22.13=0 (Local loopback), the RTL8305SC will “forward local and broadcast packets from the input of Port3 to the output of Port3” and “drop unicast packets from the input of Port3”. Other ports can still forward broadcast or unicast packets to port3. This is especially useful for router applications performing mass production tests. This function is independent of PHY type (GxMode/GyMode/P4Mode[1:0]) and can be done on each mode. Below are two examples: In Example 1 the external device (CPU) is connected to the MII or SNI interface of Port 4. In Example 2, the external device (CPU) does not have an MII or SNI interface, so it uses the PCI interface to connect an RTL8139 to the UTP port of Port 4. Example 1: LoopBack in External PHY Mode RTL8305SC MII/SNI CPU Example 2: LoopBack in UTP Mode RTL8305SC UTP RTL8139 PCI CPU Figure 19. Port 4 Loopback 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 128 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.17. Reg.0.14 PHY Digital Loopback Return to Internal The digital loopback mode of the PHY (return to internal MAC) may be enabled on a per-port basis by setting MII Reg.0.14 to 1. In digital loopback mode, the TXD of PHY is transferred directly to the RXD of PHY with TXEN changed to CRS_DV, and returns to MAC via an internal MII. The data stream coming from the MAC will not egress to the physical medium, and an incoming data stream from the network medium will be blocked in this mode. The packets will be looped back in 10Mbps full duplex or 100Mbps full duplex mode. This function is especially useful for diagnostic purposes. For example, a NIC can be used to send broadcast frames into port0 of the RTL8305SC and set Port1 to Reg0.14 Loopback. The frame will be looped back to port 0, so the received packet count can be checked to verify that the switch device is good. In this example, port0 can be 10M or 100M and full or half duplex. MAC Internal MII PHY Figure 20. Reg. 0.14 Loopback As the RTL8305SC only supports digital loopback in full duplex mode, PHY Reg.0.8 for each port will always be kept on 1 when digital loopback is enabled. The digital loopback only functions on broadcast packets (DA=FF-FF-FF-FF-FF-FF). In loopback mode, the link LED of the loopback port should always be ON, and the Speed and Duplex LED combined to reflect the link status (100full/10full) correctly, regardless of what the previous status of this loopback port was. Consider a case where a port is initially unlinked. When we set this port to digital loopback mode, the RTL8305SC can get this port linked up within 100ms at the configured speed, and will block the sending of UTP or Fiber signals from this port. 8.3.18. LEDs The RTL8305SC supports four parallel LEDs for each port, and two special LEDs (SELMIIMAC# and LOOPLED#). Each port has four LED indicator pins. Each pin may have different indicator meanings set by pins LEDMode[1:0]. Refer to the pin descriptions for details (Port LED Pins, on page 20). Upon reset, the RTL8305SC supports chip diagnostics and LED functions by blinking all LEDs once for 320ms. This function can be disabled by asserting EN_RST_LINK to 0. LED_BLINK_TIME determines the LED blinking period for activity and collision (1=43ms and 0=120ms). The parallel LEDs corresponding to 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 129 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet port 4 can be tri-stated (disable LED functions) for MII port application by setting ENP4LED in EEPROM to 0. In UTP applications, this bit should be set to 1. All LED pins are dual function pins: input operation for configuration upon reset, and output operation for LED after reset. If the pin input is floating upon reset, the pin output is active low after reset. Otherwise, if the pin input is pulled down upon reset, the pin output is active high after reset. Exception: Bi-color Link/Act mode of pin LED_ADD[4:0] when LEDMode[1:0]=10. Below is an example circuit for LEDs. The typical values for pull-down resistors are 10KΩ. Floating Pull Down 3.3V LED Pin RTL8305SC 330 ohm 330 ohm 10K ohm RTL8305SC LED Pin Figure 21. Floating and Pull-Down of LED Pins For two-pin Bi-color LED mode (LEDMode[1:0]=10), Bi-color Link/Act (pin LED_ADD) and Spd (pin LED_SPD) can be used for one Bi-color LED package, which is a single LED package with two LEDs connected in parallel with opposite polarity. When LEDMode[1:0]=10, the active status of LED_ADD is the opposite of LED_SPD. Table 150. Spd and Bi-Color Link/Act Truth Table Indication Bi-Color State No Link 100M Link 10M Link 100M Act 10M Act Both Off Green On Yellow On Green Flash Yellow Flash Spd: Input=Floating, Active Low. Bi-color Link/Act: The active status of LED_ADD is the opposite of LED_SPD and does not interact with input upon reset. Spd Link/Act 1 1 0 1 1 0 0 Flash 1 Flash 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 130 Spd: Input=Pull-down, Active High. Bi-color Link/Act: The active status of LED_ADD is the opposite of LED_SPD and does not interact with input upon reset. Spd Link/Act 0 0 1 0 0 1 1 Flash 0 Flash Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Yellow LED_SPD LED_ADD Green Figure 22. Two Pin Bi-color LED for SPD Floating or Pull-high Yellow LED_SPD LED_ADD Green Figure 23. Two Pin Bi-color LED for SPD Pull-down 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 131 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 8.3.19. 1.8V Power Generation The RTL8305SC can use a PNP transistor to generate 1.8V from a 3.3V power supply. This 1.8V is used for the digital core and analog receiver circuits. Do not use one PNP transistor for more than one RTL8305SC chip, even if the rating is enough. Use one transistor for each RTL8305SC chip. Do not connect an inductor (bead) directly between the collector of the PNP transistor and AVDD18. This will adversely affect the stability of the 1.8V power to a significant degree. 3.3V Bead HVDD33 DVDD33 HVDD33, DVDD33: 3.3V RTL8305SC 0Ω 2SB1188 Ic(max.) = 2A VCTRL DVDD18, AVDD18: 1.8V DVDD18 AVDD18 1N4001 Diode 1.8V Bead 47uF/10uF/0.1uF Figure 24. Using a PNP Transistor to Transform 3.3V Into 1.8V Table 151. An Example Using Power Transistor 2SB1188 Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Collector power dissipation Junction temperature Storage temperature Symbol VCBO VCEO VEBO IC PC Tj Tstg Limits -40 -32 -5 -2 0.5 150 -55~+150 Unit V V V A(DC) W °C °C Note: Absolute maximum ratings (Ta=25°C). For more information, refer to http://www.rohm.com 8.3.20. Crystal/Oscillator The frequency is 25Mhz. The maximum Frequency Tolerance is +/-50ppm. The maximum Jitter is 150ps Peak-to-Peak. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 132 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 9. Characteristics 9.1. Absolute Maximum Ratings WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to the device, or device reliability will be affected. All voltages are specified reference to GND unless otherwise specified. Table 152. Electrical Characteristics/Ratings Parameter Vcc Supply Referenced to GND Digital Input Voltage DC Output Voltage Min -0.5 -0.5 -0.5 Max +4.0 VDD VDD Units V V V Min -55 0 3.15 Max +150 +70 3.45 Units °C °C V 1.71 1.95 V 9.2. Operating Range Parameter Storage Temperature Ambient Operating Temperature (Ta) 3.3V Vcc Supply Voltage Range (HVDD33, DVDD33) 1.8V Vcc Supply Voltage Range (DVDD18, AVDD18) 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 133 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 9.3. DC Characteristics Parameter Power Supply Current for 1.8V SYM Icc Condition 10Base-T, idle 10Base-T, Peak continuous 100% utilization 100Base-TX, idle 100Base-TX, Peak continuous 100% utilization Power saving Power down 10Base-T, idle 10Base-T, Peak continuous 100% utilization 100Base-TX, idle 100Base-TX, Peak continuous 100% utilization Power saving Power down 10Base-T, idle 10Base-T, Peak continuous 100% utilization 100Base-TX, idle 100Base-TX, Peak continuous 100% utilization Power saving Power down Power Supply Current for 3.3V Icc Total Power Consumption for all Ports PS TTL Input High Voltage Vih TTL Input Low Voltage Vil TTL Input Current Iin TTL Input Capacitance Cin Output High Voltage Voh Output Low Voltage Vol 0.4 V Output Three State Leakage Current |IOZ| 10 uA 5-port 10/100Mbps Single-Chip Dual MII Switch Controller Min 40 500 460 470 40 40 110 100 110 100 60 60 295 1230 1191 1176 270 270 2.0 Typical 45 525 470 480 45 45 120 110 120 110 65 65 477 1308 1242 1227 295.5 295.5 Max 50 550 480 490 50 50 130 120 130 120 70 70 519 1386 1293 1278 321 321 mA mW V -10 0.8 V 10 uA 3 pF 2.25 134 Units mA V Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 9.4. AC Characteristics Parameter SYM Differential Output Voltage, Peak-to-Peak Differential Output Voltage Symmetry Differential Output Overshoot Rise/Fall Time VOD Rise/Fall Time Imbalance |tr - tf| VOS VOO tr ,tf Duty Cycle Distortion TD Short Circuit Fault Tolerance TD Common-Mode Output Voltage Transmitter Output Jitter Harmonic Content Start-of-idle Pulse Width Typical Max Units V 99.1 % Percent of Vp+ or Vp- 3.1 % 10-90% of Vp+ or Vp- 4.1 ns 0.17 ns 0.2 ns 0.87 4.6 ns dB 4.6 dB VOD Ecm Period of time from start of TP_IDL to link pulses or period of time between link pulses Peak output current on TD short circuit for 10 seconds. Terminate each end with 50Ω resistive load RD Differential Output Impedance (return loss) Min 1.007 Deviation from best-fit time-grid, 010101 … Sequence Idle pattern Return loss margin from 2Hz to 80MHz for reference resistance of 100Ω. The margin is the minimum difference between the limit line and the return loss curve Return loss margin from 2Hz to 80MHz for reference resistance of 100Ω. The margin is the minimum difference between the limit line and the return loss curve Transmitter, 10Base-T 50Ω from each output to Vcc, all pattern Timing Jitter TD Differential Output Impedance (return loss) Differential Output Voltage, Peak-to-Peak TP_IDL Silence Duration Condition Transmitter, 100Base-TX 50Ω from each output to Vcc, Best-fit over 14 bit times 50Ω from each output to Vcc, |Vp+|/ |Vp-| dB below fundamental, 20 cycles of all ones data TP_IDL width 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 135 2.36 V 10.48 ms 24 mA 43.2 mV 6 28 ns dB 256 ns Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 9.5. Digital Timing Characteristics Table 153. LED Timing Parameter SYM Condition Min LED Timing tLEDon While LED blinking tLEDoff While LED blinking LED On Time LED Off Time Typical 43 43 Max Units 120 120 ms ms MRXC/PTXC, PHY2PTXC, MDC MRXD/PTXD[3: 0], PHY2PTXD[3: 0], MRXDV/PTXEN, PHY2PTXEN, MCOL, PHY2PCOL, MDIO Th Ts Figure 25. Reception Data Timing of MII/SNI/SMI Interface MTXC/PRXC, PHY2PRXC, MDC T cyc T os Toh MTXD/PRXD[3:0], PHY2PRXD[3:0], MTXEN/PRXDV, PHY2PRXDV, PCOL, PHY2PCOL, MDIO Figure 26. Transmission Data Timing of MII/SNI/SMI Interface 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 136 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Table 154. MII & SMI DC Timing Parameter SYM Condition 100BaseT MTXC/MRXC, MRXC/PTXC 10BaseT MTXC/MRXC, MRXC/PTXC MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV Output Setup Time MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV Output Hold Time MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN, MCOL/PCOL Setup Time MRXD/PTXD, MRXDV/PTXEN, MCOL/PCOL Hold Time Tcyc 100BaseT MTXC/MRXC, MRXC/PTXC, PHY2PTXC, PHY2PRXC 10BaseT MTXC/PRXC, MRXC/PTXC, PHY2PTXC, PHY2PRXC MTXD/PRXD[3:0], PHY2PRXD[3:0], MTXEN/PRXDV, PHY2PRXDV MCOL/PCOL, PHY2PCOL Output Setup Time MTXD/PRXD[3:0], PHY2PRXD[3:0], MTXEN/PRXDV, PHY2PRXDV MCOL/PCOL, PHY2PCOL Output Hold Time MRXD/PTXD[3:0], PHY2PTXD[3:0], MRXDV/PTXEN, PHY2PTXEN Setup Time MRXD/PTXD[3:0], PHY2PTXD[3:0], MRXDV/PTXEN, PHY2PTXEN Hold Time Tcyc Tcyc Tos Toh Ts Th I/O MAC Mode MII Timing MTXC/MRXC, MRXC/PTXC clock cycle time MTXC/MRXC, MRXC/PTXC clock cycle time Output Setup time from MTXC/PRXC rising edge to MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV Output Hold time from MTXC/PRXC rising edge to MTXD[3:0]/PRXD[3:0], MTXEN/PRXDV MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to MRXC/PTXC rising edge setup time MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to MRXC/PTXC rising edge hold time PHY Mode MII Timing MTXC/MRXC, MRXC/PTXC, PHY2PTXC, PHY2PRXC clock cycle time I Min Type Max Units ns O 40±50 ppm 400±50 ppm 34 34.8 36 ns O 4 6 ns I 4 ns I 2 ns I 5.2 ns O 40±50 ppm ns 400±50 ppm ns Tcyc MTXC/MRXC, MRXC/PTXC, PHY2PTXC, PHY2PRXC clock cycle time O Tos Output Setup time from MTXC/PRXC rising edge to MTXD[3:0]/PRXD[3:0], PHY2PRXD[3:0], MTXEN/PRXDV, PHY2PRXDV MCOL/PCOL, PHY2PCOL O 17.2 18.2 19.2 ns Toh Output Hold time from MTXC/PRXC rising edge to MTXD[3:0]/PRXD[3:0], PHY2PRXD[3:0], MTXEN/PRXDV, PHY2PRXDV MCOL/PCOL, PHY2PCOL O 20.8 21.8 22.8 ns Ts MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to MRXC/PTXC rising edge setup time I 4 ns Th MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to MRXC/PTXC rising edge hold time I 2 ns 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 137 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Parameter MTXC/MRXC, MRXC/PTXC MTXD/PRXD[0], MTXEN/PRXDV, MCOL/PCOL Output Setup Time MTXD/PRXD[0], MTXEN/PRXDV, MCOL/PCOL Output Hold Time MRXD/PTXD[0], MRXDV/PTXEN Setup Time MTXD/PRXD[0], MTXEN/PRXDV, MCOL/PCOL Hold Time MDC MDIO Setup Time MDIO Hold Time MDIO Output Delay Relative to Rising Edge of MDC SYM Condition Tcyc Tos I/O PHY Mode SNI Timing MTXC/PRXC, MRXC/PTXC clock cycle time Output Setup time from MTXC/PRXC rising edge to MTXD[0]/PRXD[0], MTXEN/PRXDV, MCOL/PCOL O Min Type Max Units ns O 100±50 ppm 36 38 40 ns 61 ns Toh Output Hold time from MTXC/PRXC rising edge to MTXD[0]/PRXD[0], MTXEN/PRXDV, MCOL/PCOL O 59 Ts MRXD[0]/PTXD[0], MRXDV/PTXEN to MRXC/PTXC rising edge setup time I 4 ns Th MTXD[0]/PRXD[0], MRXDV/PTXEN to MRXC/PTXC rising edge hold time I 2 ns I I I O 40 10 ns ns ns µs Tcyc Ts Th Tov SMI Timing MDC clock cycle Write cycle Write cycle Read cycle 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 138 60 10 10 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 9.6. Thermal Characteristics 9.6.1. Package Description Table 155. Package Description Item Type Device Dimension (L x W) Thickness 9.6.2. Parameter QFP128 RTL8305SC 14 x 20 mm 2.85 mm PCB Description Table 156. PCB Description Item Dimension (L x W) Number of Cu Layer 9.6.3. Parameter 50 x 70 mm 2 layers (80% of Cu trace coverage of top/bottom layer) Assembly Material Table 157. Assembly Material Item Die Lead Frame Silver Paste Mold Compound Material Silicon C7025 AG03*7 6300HG Thermal Conductivity K (w/m-k) 147 168 2.0 0.63 PCB FR4 Cu 0.21 393 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 139 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 9.6.4. Simulation Analysis Conditions Table 158. Simulation Analysis Conditions Item Air Flow Rate Control Condition Ambient Temperature 9.6.5. Parameter 0, 1, 2, 3 m/s Power=1.386 W 60°C Results Table 159. Results Air Flow (m/s) Tj (°C) Tc (°C) θJA (°C/W) ψJT (°C/W) 0 117.3 111.0 41.3 4.51 1 112.1 104.7 37.6 5.33 2 109.6 101.8 35.8 5.61 3 108.2 100.2 34.8 5.79 Where: Tj is the maximum junction temperature. Tc is the maximum case temperature. θJA is the junction-to-ambient thermal resistance. θJC is the junction-to-case thermal resistance. 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 140 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 10. Application Information 10.1. UTP (10Base-T/100Base-TX) Application In reviewing this material, please be advised that the center-tap on the primary side of the transformer must be left floating and should not be connected to ground through capacitors. Table 160. Transformer Vendors Vendor Pulse Magnetic 1 Quad H1164 ML164 Single H1102 ML102 Two types of transformers are generally used for the RTL8305SC. One is a Quad (4 port) transformer with one common pin on both sides for an internal connected central tap. Another is a Single (1 port) transformer with two pins on both sides for a separate central tap. RXIP RXIN 50Ω 1% 1:1 2 AGND 3 1.8V 4 0.1uF AGND TXON 1 0.1uF RTL8305SC TXOP RJ-45 Transformer 50Ω 1% 5 1:1 50Ω 1% 6 7 0.1uF 8 50Ω 1% AGND IBREF 75Ω 75Ω 75Ω 1.96ΚΩ, 1% 50pF/2KV AGND Chassis GND Figure 27. UTP Application for Transformer with Connected Central Tap 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 141 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet RXIP RXIN Pulse H1102 Transformer 50Ω 1% 50Ω 1% 1.8V RJ-45 1:1 1 75Ω 0.1uF 2 AGND 3 4 RTL8305SC TXOP 5 50Ω 1% 1.8V 1:1 6 75Ω 7 0.1uF TXON 8 50Ω 1% AGND IBREF 75Ω 75Ω 1.96ΚΩ, 1% 50pF/2KV AGND Chassis GND Figure 28. UTP Application for Transformer with Separate Central Tap 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 142 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 10.2. 100Base-FX Application The following is an example of an RTL8305SC connecting to a 3.3V fiber transceiver application circuit with a SIEMENS V23809-C8-C10 (3.3V~5V fiber transceiver, 1*9 SC Duplex Multimode 1300 nm LED Fast Ethernet/FDDI/ATM Optical Transceiver Module). Fiber_RX_3.3V 82Ω 82Ω RXIP 100Base-FX Fiber Transceiver 130Ω 1 GND_RX 2 RD+ 3 RD- 4 SD 5 VCC_RX 6 VCC_TX 7 TD- 8 TD+ 9 GND_TX AGND RXIN Fiber_RX_3.3V 130Ω RTL8305SC AGND Fiber_RX_3V Fiber_TX_3V 82Ω TXON TXOP 130Ω 82Ω AGND 130Ω Chassis GND AGND Figure 29. 100Base-FX with 3.3V Fiber Transceiver Application 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 143 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet Figure 30 shows an example of an RTL8305SC connected to a 5V fiber transceiver application circuit with a SIEMENS V23809-C8-C10 (3.3V~5V fiber transceiver, 1*9 SC Duplex Multimode 1300nm LED Fast Ethernet/FDDI/ATM Optical Transceiver Module). Fiber_RX_5V RXIP RXIN 82Ω 82Ω 50Ω 50Ω 100Base-FX Fiber Transceiver 1 GND_RX 2 RD+ 3 RD- 4 SD Fiber_RX_5V 5 VCC_RX Fiber_TX_5V 6 VCC_TX 7 TD- 8 TD+ 9 GND_TX Fiber_TX_5V 82Ω RTL8305SC 100Ω 100Ω 82Ω TXON TXOP 130Ω 250Ω 130Ω 250Ω Chassis GND Figure 30. 100Base-FX with 5V Fiber Transceiver Application 5-port 10/100Mbps Single-Chip Dual MII Switch Controller 144 Track ID: JATR-1076-21 Rev. 1.2 RTL8305SC Datasheet 11. Design and Layout Guide In order to achieve maximum performance using the RTL8305SC, good design attention is required throughout the design and layout process. The following are some suggestions to implement a high performance system. General Guidelines • • Provide a good power source, minimizing noise from switching power supply circuits (
RTL8305SC-LF 价格&库存

很抱歉,暂时无法提供与“RTL8305SC-LF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
RTL8305SC-LF
    •  国内价格
    • 660+25.14024

    库存:660

    RTL8305SC-LF
    •  国内价格
    • 1+52.68420
    • 10+48.63160
    • 100+44.57890
    • 1000+40.52630

    库存:1320

    RTL8305SC-LF
      •  国内价格
      • 85+25.14024

      库存:85