RTL8305SC
SINGLE-CHIP 5-PORT 10/100MBPS SWITCH
CONTROLLER WITH DUAL MII INTERFACES
DataSheet
Rev. 1.2
02 March 2005
Track ID: JATR-1076-21
RTL8305SC
Datasheet
COPYRIGHT
©2005 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any
means without the written permission of Realtek Semiconductor Corp.
TRADEMARKS
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document
are trademarks/registered trademarks of their respective owners.
DISCLAIMER
Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied,
including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in
this document or in the product described in this document at any time. This document could include
technical inaccuracies or typographical errors.
USING THIS DOCUMENT
This document is intended for use by the software engineer when programming for Realtek RTL8305SC
controller chips. Information pertaining to the hardware design of products using these chips is contained
in a separate document.
Though every effort has been made to assure that this document is current and accurate, more information
may have become available subsequent to the production of this guide. In that event, please contact your
Realtek representative for additional information that may help in the development process.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
ii
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
REVISION HISTORY
Revision Release Date Summary
1.0
2004/06/17 First release.
1.1
2004/06/30 Removed QoS function IPv6 differentiated services and removed Table 147, page 113.
Revised LEDMODE[1:0]=00, in Table 4, page 14, Table 7, page 20, Table 19, page 30, and
Table 69, page 59.
Changed four combinations of LED mode to three combinations of LED display mode, page 3.
1.2
2005/03/02 Corrected section 7.3.10 PHY 2 Register 23: “Port 2 Control Register 1” to “Global Option 1
Register”, page 71.
Revised pull low resister to 1k ohm, Table 5, page 16.
Revised PHY register in Table 64, page 55.
Changed Table 139’s name from PHY 0 to PHY 5, page 87.
Changed Table 140’s name from PHY 8 to PHY 5, page 88.
Add P4PHY_MODE select, in Table 143, page 103.
Corrected Pin52 MTXEN/PRXDV/EN_TRUNK to MTXEN/PRXDV, Pin92
LED_ACT[4]/DISFCAUTOOFF to LED_ACT[4], and Pin115 ENAGBACK/LED_DUP[0] to
LED_DUP[0], in Figure 2, page 7, and Table 1, page 8.
Canceled the description of Pin92 LED_ACT[4]/DISFCAUTOOFF and Pin115
ENAGBACK/LED_DUP[0], section 1, page 2, in Table 9, page 22, and section 8.3.10, page
123.
Reserved PHY 0 Register 18.7 and 18.15, in Table 68, page 58.
Reserved EEPROM Register 4.7, in Table 16, page 28 and Register 5.7, Table 17, page 29.
Corrected QoS based features, section 2, page 4.
Corrected 2SB1188K to 2SB1188 and HVDD18 to DVDD18, in Figure 24, page 132, and
Table 151, page 132.
Corrected “24LC02 must be 1.8Vcompatible” to “24LC02 must be 3.3Vcompatible”, section
8.3.3, page 117.
Corrected TTL Input High Voltage 1.5V to 2.0V and TTL Input Low Voltage 1.0V to 0.8V,
section 9.3, page 134.
Corrected PHY 4 register 18 description, in Table 124, page 81.
Add 100Base-TX TD and RD Differential Output Impedance (return loss) columns and delete
10Base-TX TD and RD Differential Output Impedance (return loss) columns, in Section 9.4
AC Characteristics, page 135.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
iii
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Table of Contents
1.
GENERAL DESCRIPTION................................................................................................................................................1
2.
FEATURES...........................................................................................................................................................................4
3.
BLOCK DIAGRAM.............................................................................................................................................................6
4.
PIN ASSIGNMENTS ...........................................................................................................................................................7
5.
PIN DESCRIPTIONS ..........................................................................................................................................................9
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
6.
MEDIA CONNECTION PINS............................................................................................................................................9
PORT 4 CONFIGURATION PINS ......................................................................................................................................9
PORT 4 MAC CIRCUIT INTERFACE PINS .....................................................................................................................14
PORT 4 PHY CIRCUIT INTERFACE PINS ......................................................................................................................16
MISCELLANEOUS PINS ...............................................................................................................................................19
PORT LED PINS .........................................................................................................................................................20
SERIAL EEPROM AND SMI PINS ..............................................................................................................................22
STRAPPING PINS .........................................................................................................................................................22
PORT STATUS STRAPPING PINS ...................................................................................................................................24
POWER PINS ...............................................................................................................................................................26
EEPROM DESCRIPTION................................................................................................................................................27
6.1.
PORT 0 REGISTERS .....................................................................................................................................................27
6.1.1.
Global Control Register0 .....................................................................................................................................27
6.1.2.
Global Control Register1 .....................................................................................................................................27
6.1.3.
Global Control Register2 .....................................................................................................................................28
6.1.4.
Global Control Register3 .....................................................................................................................................28
6.1.5.
Global Control Register4 .....................................................................................................................................28
6.1.6.
Global Control Register5 .....................................................................................................................................29
6.1.7.
Global Control Register6 .....................................................................................................................................29
6.1.8.
Global Control Register7 .....................................................................................................................................30
6.1.9.
Port 0 Control 0....................................................................................................................................................30
6.1.10. Port 0 Control 1....................................................................................................................................................31
6.1.11. Port 0 Control 2....................................................................................................................................................31
6.1.12. Port 0 Control 3....................................................................................................................................................31
6.1.13. Port 0 Control 4 & VLAN Entry [A].....................................................................................................................32
6.2.
PORT 1 REGISTERS .....................................................................................................................................................33
6.2.1.
Internal Use Register............................................................................................................................................33
6.2.2.
Port 1 Control 0....................................................................................................................................................33
6.2.3.
Port 1 Control 1....................................................................................................................................................34
6.2.4.
Port 1 Control 2....................................................................................................................................................34
6.2.5.
Port 1 Control 3....................................................................................................................................................34
6.2.6.
Port 1 Control 4 & VLAN Entry [B].....................................................................................................................35
6.3.
PORT 2 REGISTERS .....................................................................................................................................................36
6.3.1.
Internal Use Register............................................................................................................................................36
6.3.2.
Port 2 Control 0....................................................................................................................................................36
6.3.3.
Port 2 Control 1....................................................................................................................................................37
6.3.4.
Reserved ...............................................................................................................................................................37
6.3.5.
Port 2 Control 2 & VLAN Entry [C] ....................................................................................................................38
6.4.
PORT 3 REGISTERS .....................................................................................................................................................39
6.4.1.
Switch MAC Address ............................................................................................................................................39
6.4.2.
Port 3 Control 0....................................................................................................................................................39
6.4.3.
Port 3 Control 1....................................................................................................................................................40
6.4.4.
Reserved ...............................................................................................................................................................40
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
iv
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.4.5.
Port 3 Control 2 & VLAN Entry [D] ....................................................................................................................40
6.4.6.
Internal Use Register............................................................................................................................................41
6.5.
PORT 4 REGISTERS .....................................................................................................................................................42
6.5.1.
Port 4 Control 0....................................................................................................................................................42
6.5.2.
Port 4 Control 1....................................................................................................................................................42
6.5.3.
Reserved ...............................................................................................................................................................43
6.5.4.
Port 4 Control 2 & VLAN Entry [E].....................................................................................................................43
6.5.5.
Internal Use Register............................................................................................................................................44
6.5.6.
802.1p Base Priority.............................................................................................................................................44
6.6.
VLAN ENTRIES .........................................................................................................................................................44
6.6.1.
VLAN Entry [F]....................................................................................................................................................44
6.6.2.
VLAN Entry [G] ...................................................................................................................................................45
6.6.3.
VLAN Entry [H] ...................................................................................................................................................45
6.6.4.
VLAN Entry [I] .....................................................................................................................................................46
6.6.5.
VLAN Entry [J] ....................................................................................................................................................46
6.6.6.
VLAN Entry [K]....................................................................................................................................................47
6.6.7.
VLAN Entry [L] ....................................................................................................................................................47
6.6.8.
VLAN Entry [M] ...................................................................................................................................................48
6.6.9.
VLAN Entry [N]....................................................................................................................................................48
6.6.10. VLAN Entry [O] ...................................................................................................................................................49
6.6.11. VLAN Entry [P]....................................................................................................................................................49
7.
REGISTER DESCRIPTIONS ..........................................................................................................................................50
7.1.
PHY 0 REGISTERS .....................................................................................................................................................53
7.1.1.
PHY 0 Register 0 for Port 0: Control ...................................................................................................................53
7.1.2.
PHY 0 Register 1 for Port 0: Status......................................................................................................................54
7.1.3.
PHY 0 Register 2 for Port 0: PHY Identifier 1 .....................................................................................................54
7.1.4.
PHY 0 Register 3 for Port 0: PHY Identifier 2 .....................................................................................................55
7.1.5.
PHY 0 Register 4 for Port 0: Auto-Negotiation Advertisement ............................................................................55
7.1.6.
PHY 0 Register 5 for Port 0: Auto-Negotiation Link Partner Ability ...................................................................56
7.1.7.
PHY 0 Register 16: Global Control 0...................................................................................................................56
7.1.8.
PHY 0 Register 17: Global Control 1...................................................................................................................58
7.1.9.
PHY 0 Register 18: Global Control 2...................................................................................................................58
7.1.10. PHY 0 Register 19: Global Control 3...................................................................................................................59
7.1.11. PHY 0 Register 22: Port 0 Control Register 0......................................................................................................60
7.1.12. PHY 0 Register 24: Port 0 Control Register 1 & VLAN ID [A] Membership ......................................................61
7.1.13. PHY 0 Register 25: Port 0 Control Register 2 & VLAN ID [A] ...........................................................................61
7.1.14. PHY 0 Register 26: Reserved or VLAN ID [F] Membership................................................................................62
7.1.15. PHY 0 Register 27: Reserved or VLAN ID [F].....................................................................................................62
7.1.16. PHY 0 Register 28: Reserved or VLAN ID [K] Membership................................................................................63
7.1.17. PHY 0 Register 29: Reserved or VLAN ID [K] ....................................................................................................63
7.1.18. PHY 0 Register 30: Reserved or VLAN ID [P] Membership................................................................................64
7.1.19. PHY 0 Register 31: Reserved or VLAN ID [P].....................................................................................................64
7.2.
PHY 1 REGISTERS .....................................................................................................................................................65
7.2.1.
PHY 1 Register 0 for Port 1: Control ...................................................................................................................65
7.2.2.
PHY 1 Register 1 for Port 1: Status......................................................................................................................65
7.2.3.
PHY 1 Register 2 for Port 1: PHY Identifier 1 .....................................................................................................65
7.2.4.
PHY 1 Register 3 for Port 1: PHY Identifier 2 .....................................................................................................65
7.2.5.
PHY 1 Register 4 for Port 1: Auto-Negotiation Advertisement ............................................................................65
7.2.6.
PHY 1 Register 5 for Port 1: Auto-Negotiation Link Partner Ability ...................................................................65
7.2.7.
PHY 1 Register 16~17: Internal Use Register......................................................................................................65
7.2.8.
PHY 1 Register 18~19: Internal Use Register......................................................................................................65
7.2.9.
PHY 1 Register 22: Port 1 Control Register 0......................................................................................................66
7.2.10. PHY 1 Register 23: Global Option Register 0......................................................................................................66
7.2.11. PHY 1 Register 24: Port 1 Control Register 1 & VLAN ID [B] Membership ......................................................66
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
v
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
7.2.12. PHY 1 Register 25: Port 1 Control Register 2 & VLAN ID [B] ...........................................................................67
7.2.13. PHY 1 Register 26: Reserved or VLAN ID [G] Membership ...............................................................................67
7.2.14. PHY 1 Register 27: Reserved or VLAN ID [G] ....................................................................................................68
7.2.15. PHY 1 Register 28: Reserved or VLAN ID [L] Membership ................................................................................68
7.2.16. PHY 1 Register 29: Reserved or VLAN ID [L].....................................................................................................69
7.3.
PHY 2 REGISTERS .....................................................................................................................................................70
7.3.1.
PHY 2 Register 0 for Port 2: Control ...................................................................................................................70
7.3.2.
PHY 2 Register 1 for Port 2: Status......................................................................................................................70
7.3.3.
PHY 2 Register 2 for Port 2: PHY Identifier 1 .....................................................................................................70
7.3.4.
PHY 2 Register 3 for Port 2: PHY Identifier 2 .....................................................................................................70
7.3.5.
PHY 2 Register 4 for Port 2: Auto-Negotiation Advertisement ............................................................................70
7.3.6.
PHY 2 Register 5 for Port 2: Auto-Negotiation Link Partner Ability ...................................................................70
7.3.7.
PHY 2 Register 16~17: Internal Use Register......................................................................................................70
7.3.8.
PHY 2 Register 18~19: Internal Use Register......................................................................................................70
7.3.9.
PHY 2 Register 22: Port 2 Control Register 0......................................................................................................71
7.3.10. PHY 2 Register 23: Global Option 1 Register......................................................................................................71
7.3.11. PHY 2 Register 24: Port 2 Control Register 2 & VLAN ID [C] Membership ......................................................71
7.3.12. PHY 2 Register 25: Port 2 Control Register 3 & VLAN ID [C] ...........................................................................72
7.3.13. PHY 2 Register 26: Reserved or VLAN ID [H] Membership ...............................................................................72
7.3.14. PHY 2 Register 27: Reserved or VLAN ID [H] ....................................................................................................73
7.3.15. PHY 2 Register 28: Reserved or VLAN ID [M] Membership ...............................................................................73
7.3.16. PHY 2 Register 29: Reserved or VLAN ID [M]....................................................................................................74
7.4.
PHY 3 REGISTERS .....................................................................................................................................................75
7.4.1.
PHY 3 Register 0 for Port 3: Control ...................................................................................................................75
7.4.2.
PHY 3 Register 1 for Port 3: Status......................................................................................................................75
7.4.3.
PHY 3 Register 2 for Port 3: PHY Identifier 1 .....................................................................................................75
7.4.4.
PHY 3 Register 3 for Port 3: PHY Identifier 2 .....................................................................................................75
7.4.5.
PHY 3 Register 4 for Port 3: Auto-Negotiation Advertisement ............................................................................75
7.4.6.
PHY 3 Register 5 for Port 3: Auto-Negotiation Link Partner Ability ...................................................................75
7.4.7.
PHY 3 Register 16~18: Switch MAC Address ......................................................................................................75
7.4.8.
PHY 3 Register 19~21: Internal Use Register......................................................................................................76
7.4.9.
PHY 3 Register 22: Port 3 Control Register 0......................................................................................................76
7.4.10. PHY 3 Register 24: Port 3 Control Register 1 & VLAN ID [D] Membership ......................................................76
7.4.11. PHY 3 Register 25: Port 3 Control Register 2 & VLAN ID [D]...........................................................................77
7.4.12. PHY 3 Register 26: Reserved or VLAN ID [I] Membership.................................................................................77
7.4.13. PHY 3 Register 27: Reserved or VLAN ID [I]......................................................................................................78
7.4.14. PHY 3 Register 28: Reserved or VLAN ID [N] Membership................................................................................78
7.4.15. PHY 3 Register 29: Reserved or VLAN ID [N] ....................................................................................................79
7.5.
PHY 4 REGISTERS .....................................................................................................................................................80
7.5.1.
PHY 4 Register 0 for Port 4: Control ...................................................................................................................80
7.5.2.
PHY 4 Register 1 for Port 4: Status......................................................................................................................80
7.5.3.
PHY 4 Register 2 for Port 4: PHY Identifier 1 .....................................................................................................80
7.5.4.
PHY 4 Register 3 for Port 4: PHY Identifier 2 .....................................................................................................80
7.5.5.
PHY 4 Register 4 for Port 4: Auto-Negotiation Advertisement ............................................................................80
7.5.6.
PHY 4 Register 5 for Port 4: Auto-Negotiation Link Partner Ability ...................................................................80
7.5.7.
PHY 4 Register 16: Indirect Access Control.........................................................................................................80
7.5.8.
PHY 4 Register 17~20: Indirect Access Data.......................................................................................................81
7.5.9.
PHY 4 Register 21: 802.1p Base Priority.............................................................................................................81
7.5.10. PHY 4 Register 22: Port 4 Control Register 0......................................................................................................82
7.5.11. PHY 4 Register 24: Port 4 Control Register 1 & VLAN ID [E] Membership ......................................................82
7.5.12. PHY 4 Register 25: Port 4 Control Register 2 & VLAN ID [E] ...........................................................................83
7.5.13. PHY 4 Register 26: Reserved or VLAN ID [J] Membership ................................................................................83
7.5.14. PHY 4 Register 27: Reserved or VLAN ID [J] .....................................................................................................84
7.5.15. PHY 4 Register 28: Reserved or VLAN ID [O] Membership ...............................................................................84
7.5.16. PHY 4 Register 29: Reserved or VLAN ID [O] ....................................................................................................85
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
vi
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
7.6.
PHY 5 REGISTERS .....................................................................................................................................................86
7.6.1.
PHY 5 Register 0 for Port 4 MAC: Control..........................................................................................................86
7.6.2.
PHY 5 Register 1 for Port 4 MAC: Status ............................................................................................................87
7.6.3.
PHY 5 Register 2 for Port 4 MAC: PHY Identifier 1............................................................................................87
7.6.4.
PHY 5 Register 3 for Port 4 MAC: PHY Identifier 2............................................................................................87
7.6.5.
PHY 5 Register 4 for Port 4 MAC: Auto-Negotiation Advertisement...................................................................88
7.6.6.
MII Port NWay Mode ...........................................................................................................................................89
7.6.7.
MII Port Force Mode ...........................................................................................................................................89
8.
FUNCTIONAL DESCRIPTION.......................................................................................................................................90
8.1.
SWITCH CORE FUNCTIONAL OVERVIEW .....................................................................................................................90
8.1.1.
Applications..........................................................................................................................................................90
8.1.2.
Port 4....................................................................................................................................................................90
8.1.3.
Port Status Configuration.....................................................................................................................................94
8.1.4.
Flow Control ........................................................................................................................................................95
8.1.5.
Address Search, Learning, and Aging ..................................................................................................................97
8.1.6.
Address Direct Mapping Mode.............................................................................................................................97
8.1.7.
Half Duplex Operation .........................................................................................................................................98
8.1.8.
InterFrame Gap....................................................................................................................................................98
8.1.9.
Illegal Frame........................................................................................................................................................98
8.1.10. Dual MII Interface................................................................................................................................................99
8.2.
PHYSICAL LAYER FUNCTIONAL OVERVIEW ..............................................................................................................110
8.2.1.
Auto-Negotiation for UTP .................................................................................................................................. 110
8.2.2.
10Base-T Transmit Function .............................................................................................................................. 110
8.2.3.
10Base-T Receive Function ................................................................................................................................ 111
8.2.4.
Link Monitor....................................................................................................................................................... 111
8.2.5.
100Base-TX Transmit Function.......................................................................................................................... 111
8.2.6.
100Base-TX Receive Function............................................................................................................................ 111
8.2.7.
100Base-FX ........................................................................................................................................................ 111
8.2.8.
100Base-FX Transmit Function.......................................................................................................................... 112
8.2.9.
100Base-FX Receive Function ........................................................................................................................... 112
8.2.10. 100Base-FX FEFI .............................................................................................................................................. 112
8.2.11. Reduced Fiber Interface ..................................................................................................................................... 113
8.2.12. Power Saving Mode............................................................................................................................................ 113
8.2.13. Reg0.11 Power-Down Mode............................................................................................................................... 114
8.2.14. Crossover Detection and Auto Correction.......................................................................................................... 114
8.2.15. Polarity Detection and Correction ..................................................................................................................... 114
8.3.
ADVANCED FUNCTIONAL OVERVIEW .......................................................................................................................115
8.3.1.
Reset ................................................................................................................................................................... 115
8.3.2.
Setup and Configuration..................................................................................................................................... 116
8.3.3.
Serial EEPROM Example: 24LC02.................................................................................................................... 117
8.3.4.
SMI ..................................................................................................................................................................... 119
8.3.5.
Head-Of-Line Blocking ...................................................................................................................................... 119
8.3.6.
Port-Based VLAN ............................................................................................................................................... 119
8.3.7.
IEEE 802.1Q Tagged-VID Based VLAN.............................................................................................................121
8.3.8.
Port VID (PVID).................................................................................................................................................122
8.3.9.
Lookup Table Access...........................................................................................................................................123
8.3.10. QoS Function......................................................................................................................................................123
8.3.11. Insert/Remove VLAN Tag....................................................................................................................................125
8.3.12. Filtering/Forwarding Reserved Control Frame .................................................................................................125
8.3.13. Broadcast Storm Control ....................................................................................................................................126
8.3.14. Broadcast In/Out Drop .......................................................................................................................................126
8.3.15. Loop Detection ...................................................................................................................................................127
8.3.16. MAC Local Loopback Return to External ..........................................................................................................128
8.3.17. Reg.0.14 PHY Digital Loopback Return to Internal...........................................................................................129
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
vii
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.18.
8.3.19.
8.3.20.
9.
LEDs...................................................................................................................................................................129
1.8V Power Generation ......................................................................................................................................132
Crystal/Oscillator ...............................................................................................................................................132
CHARACTERISTICS .....................................................................................................................................................133
9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.6.1.
9.6.2.
9.6.3.
9.6.4.
9.6.5.
10.
ABSOLUTE MAXIMUM RATINGS ...............................................................................................................................133
OPERATING RANGE ..................................................................................................................................................133
DC CHARACTERISTICS .............................................................................................................................................134
AC CHARACTERISTICS .............................................................................................................................................135
DIGITAL TIMING CHARACTERISTICS.........................................................................................................................136
THERMAL CHARACTERISTICS ...................................................................................................................................139
Package Description ..........................................................................................................................................139
PCB Description.................................................................................................................................................139
Assembly Material ..............................................................................................................................................139
Simulation Analysis Conditions..........................................................................................................................140
Results ................................................................................................................................................................140
APPLICATION INFORMATION ..............................................................................................................................141
10.1.
10.2.
UTP (10BASE-T/100BASE-TX) APPLICATION .........................................................................................................141
100BASE-FX APPLICATION ......................................................................................................................................143
11.
DESIGN AND LAYOUT GUIDE................................................................................................................................145
12.
MECHANICAL DIMENSIONS .................................................................................................................................147
12.1.
13.
MECHANICAL DIMENSIONS NOTES ..........................................................................................................................148
ORDERING INFORMATION....................................................................................................................................148
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
viii
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
List of Tables
TABLE 1. PIN ASSIGNMENTS..........................................................................................................................................................8
TABLE 2. MEDIA CONNECTION PINS .............................................................................................................................................9
TABLE 3. PORT 4 CONFIGURATION PIN DEFINITIONS .....................................................................................................................9
TABLE 4. PORT 4 MAC CIRCUIT INTERFACE PIN DEFINITIONS ...................................................................................................14
TABLE 5. PORT 4 PHY CIRCUIT INTERFACE PIN DEFINITIONS .....................................................................................................16
TABLE 6. MISCELLANEOUS PINS .................................................................................................................................................19
TABLE 7. PORT LED PINS ...........................................................................................................................................................20
TABLE 8. SERIAL EEPROM AND SMI PINS ................................................................................................................................22
TABLE 9. STRAPPING PINS ...........................................................................................................................................................22
TABLE 10. PORT STATUS STRAPPING PINS .....................................................................................................................................24
TABLE 11. POWER PINS .................................................................................................................................................................26
TABLE 12. GLOBAL CONTROL REGISTER0 ....................................................................................................................................27
TABLE 13. GLOBAL CONTROL REGISTER1 ....................................................................................................................................27
TABLE 14. GLOBAL CONTROL REGISTER2 ....................................................................................................................................28
TABLE 15. GLOBAL CONTROL REGISTER3 ....................................................................................................................................28
TABLE 16. GLOBAL CONTROL REGISTER4 ....................................................................................................................................28
TABLE 17. GLOBAL CONTROL REGISTER5 ....................................................................................................................................29
TABLE 18. GLOBAL CONTROL REGISTER6 ....................................................................................................................................29
TABLE 19. GLOBAL CONTROL REGISTER 7....................................................................................................................................30
TABLE 20. PORT 0 CONTROL 0 ......................................................................................................................................................30
TABLE 21. PORT 0 CONTROL 1 ......................................................................................................................................................31
TABLE 22. PORT 0 CONTROL 2 ......................................................................................................................................................31
TABLE 23. PORT 0 CONTROL 3 ......................................................................................................................................................31
TABLE 24. PORT 0 CONTROL 4 & VLAN ENTRY [A] ....................................................................................................................32
TABLE 25. INTERNAL USE REGISTER .............................................................................................................................................33
TABLE 26. PORT 1 CONTROL 0 ......................................................................................................................................................33
TABLE 27. PORT 1 CONTROL 1 ......................................................................................................................................................34
TABLE 28. PORT 1 CONTROL 2 ......................................................................................................................................................34
TABLE 29. PORT 1 CONTROL 2 ......................................................................................................................................................34
TABLE 30. PORT 1 CONTROL 4 & VLAN ENTRY [B] ....................................................................................................................35
TABLE 31. INTERNAL USE REGISTER .............................................................................................................................................36
TABLE 32. PORT 2 CONTROL 0 ......................................................................................................................................................36
TABLE 33. PORT 2 CONTROL 1 ......................................................................................................................................................37
TABLE 34. RESERVED ....................................................................................................................................................................37
TABLE 35. PORT 2 CONTROL 2 & VLAN ENTRY [C] ....................................................................................................................38
TABLE 36. SWITCH MAC ADDRESS ..............................................................................................................................................39
TABLE 37. PORT 3 CONTROL 0 ......................................................................................................................................................39
TABLE 38. PORT 3 CONTROL 1 ......................................................................................................................................................40
TABLE 39. RESERVED ....................................................................................................................................................................40
TABLE 40. PORT 3 CONTROL 2 & VLAN ENTRY [D] ....................................................................................................................40
TABLE 41. INTERNAL USE REGISTER .............................................................................................................................................41
TABLE 42. PORT 4 CONTROL 0 ......................................................................................................................................................42
TABLE 43. PORT 4 CONTROL 1 ......................................................................................................................................................42
TABLE 44. RESERVED ....................................................................................................................................................................43
TABLE 45. PORT 4 CONTROL 2 & VLAN ENTRY [E].....................................................................................................................43
TABLE 46. INTERNAL USE REGISTER .............................................................................................................................................44
TABLE 47. 802.1P BASE PRIORITY.................................................................................................................................................44
TABLE 48. VLAN ENTRY [F] ........................................................................................................................................................44
TABLE 49. VLAN ENTRY [G] .......................................................................................................................................................45
TABLE 50. VLAN ENTRY [H] .......................................................................................................................................................45
TABLE 51. VLAN ENTRY [I] .........................................................................................................................................................46
TABLE 52. VLAN ENTRY [J].........................................................................................................................................................46
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
ix
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
TABLE 53. VLAN ENTRY [K] .......................................................................................................................................................47
TABLE 54. VLAN ENTRY [L]........................................................................................................................................................47
TABLE 55. VLAN ENTRY [M].......................................................................................................................................................48
TABLE 56. VLAN ENTRY [N] .......................................................................................................................................................48
TABLE 57. VLAN ENTRY [O] .......................................................................................................................................................49
TABLE 58. VLAN ENTRY [P] ........................................................................................................................................................49
TABLE 59. REGISTER DESCRIPTIONS .............................................................................................................................................50
TABLE 60. PHY 0 REGISTER 0: CONTROL .....................................................................................................................................53
TABLE 61. PHY 0 REGISTER 1: STATUS ........................................................................................................................................54
TABLE 62. PHY 0 REGISTER 2: PHY IDENTIFIER 1.......................................................................................................................54
TABLE 63. PHY 0 REGISTER 3: PHY IDENTIFIER 2.......................................................................................................................55
TABLE 64. PHY 0 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ........................................................................................55
TABLE 65. PHY 0 REGISTER 5: AUTO-NEGOTIATION LINK PARTNER ABILITY ..............................................................................56
TABLE 66. PHY 0 REGISTER 16: GLOBAL CONTROL 0..................................................................................................................56
TABLE 67. PHY 0 REGISTER 17: GLOBAL CONTROL 1..................................................................................................................58
TABLE 68. PHY 0 REGISTER 18: GLOBAL CONTROL 2..................................................................................................................58
TABLE 69. PHY 0 REGISTER 19: GLOBAL CONTROL 3..................................................................................................................59
TABLE 70. PHY 0 REGISTER 22: PORT 0 CONTROL REGISTER 0 ...................................................................................................60
TABLE 71. PHY 0 REGISTER 24: PORT 0 CONTROL REGISTER 1 & VLAN ID [A] MEMBERSHIP .................................................61
TABLE 72. PHY 0 REGISTER 25: PORT 0 REGISTER CONTROL 2 & VLAN ID [A]........................................................................61
TABLE 73. PHY 0 REGISTER 26: RESERVED REGISTER .................................................................................................................62
TABLE 74. PHY 0 REGISTER 26: VLAN ID [F] MEMBERSHIP ......................................................................................................62
TABLE 75. PHY 0 REGISTER 27: RESERVED REGISTER .................................................................................................................62
TABLE 76. PHY 0 REGISTER 27: VLAN ID [F] ............................................................................................................................62
TABLE 77. PHY 0 REGISTER 28: RESERVED REGISTER .................................................................................................................63
TABLE 78. PHY 0 REGISTER 28: VLAN ID [K] MEMBERSHIP .....................................................................................................63
TABLE 79. PHY 0 REGISTER 29: RESERVED REGISTER .................................................................................................................63
TABLE 80. PHY 0 REGISTER 29: VLAN ID [K]............................................................................................................................63
TABLE 81. PHY 0 REGISTER 30: RESERVED REGISTER .................................................................................................................64
TABLE 82. PHY 0 REGISTER 30: VLAN ID [P] MEMBERSHIP ......................................................................................................64
TABLE 83. PHY 0 REGISTER 31: RESERVED REGISTER .................................................................................................................64
TABLE 84. PHY 0 REGISTER 31: VLAN ID [P] ............................................................................................................................64
TABLE 85. PHY 1 REGISTER 16~17: INTERNAL USE REGISTER ....................................................................................................65
TABLE 86. PHY 1 REGISTER 18~19: INTERNAL USE REGISTER ....................................................................................................65
TABLE 87. PHY 1 REGISTER 23: GLOBAL OPTION REGISTER 0.....................................................................................................66
TABLE 88. PHY 1 REGISTER 24: PORT 1 CONTROL REGISTER 1 & VLAN ID [B] MEMBERSHIP ..................................................66
TABLE 89. PHY 1 REGISTER 25: PORT 1 CONTROL REGISTER 2 & VLAN ENTRY [B]..................................................................67
TABLE 90. PHY 1 REGISTER 26: RESERVED REGISTER .................................................................................................................67
TABLE 91. PHY 1 REGISTER 26: VLAN ID [G] MEMBERSHIP .....................................................................................................67
TABLE 92. PHY 1 REGISTER 27: RESERVED REGISTER .................................................................................................................68
TABLE 93. PHY 1 REGISTER 27: VLAN ID [G]............................................................................................................................68
TABLE 94. PHY 1 REGISTER 28: RESERVED REGISTER .................................................................................................................68
TABLE 95. PHY 1 REGISTER 28: VLAN ID [L] MEMBERSHIP ......................................................................................................68
TABLE 96. PHY 1 REGISTER 29: RESERVED REGISTER .................................................................................................................69
TABLE 97. PHY 1 REGISTER 29: VLAN ID [L] ............................................................................................................................69
TABLE 98. PHY 2 REGISTER 16~17: INTERNAL USE REGISTER ....................................................................................................70
TABLE 99. PHY 2 REGISTER 18~19: INTERNAL USE REGISTER ....................................................................................................70
TABLE 100. PHY 2 REGISTER 23: GLOBAL OPTION REGISTER 1...................................................................................................71
TABLE 101. PHY 2 REGISTER 24: PORT 2 CONTROL REGISTER 2 & VLAN ID [C] MEMBERSHIP ................................................71
TABLE 102. PHY 2 REGISTER 25: PORT 2 CONTROL REGISTER 3 & VLAN ID [C] ......................................................................72
TABLE 103. PHY 2 REGISTER 26: RESERVED REGISTER ...............................................................................................................72
TABLE 104. PHY 2 REGISTER 26: VLAN ID [H] MEMBERSHIP ...................................................................................................72
TABLE 105. PHY 2 REGISTER 27: RESERVED REGISTER ...............................................................................................................73
TABLE 106. PHY 2 REGISTER 27: VLAN ID [H]..........................................................................................................................73
TABLE 107. PHY 2 REGISTER 28: RESERVED REGISTER ...............................................................................................................73
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
x
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
TABLE 108. PHY 2 REGISTER 28: VLAN ID [M] MEMBERSHIP...................................................................................................73
TABLE 109. PHY 2 REGISTER 29: RESERVED REGISTER ...............................................................................................................74
TABLE 110. PHY 2 REGISTER 29: VLAN ID [M] .........................................................................................................................74
TABLE 111. PHY 3 REGISTER 16~18: SWITCH MAC ADDRESS ....................................................................................................75
TABLE 112. PHY 3 REGISTER 19~21: INTERNAL USE REGISTER ..................................................................................................76
TABLE 113. PHY 3 REGISTER 24: PORT 3 CONTROL REGISTER 1 & VLAN ID [D] MEMBERSHIP................................................76
TABLE 114. PHY 3 REGISTER 25: PORT 3 CONTROL REGISTER 2 & VLAN ID [D]......................................................................77
TABLE 115. PHY 3 REGISTER 26: RESERVED REGISTER ...............................................................................................................77
TABLE 116. PHY 3 REGISTER 26: VLAN ID [I] MEMBERSHIP .....................................................................................................77
TABLE 117. PHY 3 REGISTER 27: RESERVED REGISTER ...............................................................................................................78
TABLE 118. PHY 3 REGISTER 27: VLAN ID [I] ...........................................................................................................................78
TABLE 119. PHY 3 REGISTER 28: RESERVED REGISTER ...............................................................................................................78
TABLE 120. PHY 3 REGISTER 28: VLAN ID [N] MEMBERSHIP ...................................................................................................78
TABLE 121. PHY 3 REGISTER 29: RESERVED REGISTER ...............................................................................................................79
TABLE 122. PHY 3 REGISTER 29: VLAN ID [N]..........................................................................................................................79
TABLE 123. PHY 4 REGISTER 16: INDIRECT ACCESS CONTROL ....................................................................................................80
TABLE 124. PHY 4 REGISTER 17~20: INDIRECT ACCESS DATA ....................................................................................................81
TABLE 125. PHY 2 REGISTER 20: 802.1P BASE PRIORITY ............................................................................................................81
TABLE 126. PHY 4 REGISTER 24: PORT 4 CONTROL REGISTER 1 & VLAN ID [E] MEMBERSHIP ................................................82
TABLE 127. PHY 4 REGISTER 25: PORT 4 CONTROL REGISTER 2 & VLAN ID [E] ......................................................................83
TABLE 128. PHY 4 REGISTER 26: RESERVED REGISTER ...............................................................................................................83
TABLE 129. PHY 4 REGISTER 26: VLAN ID [J] MEMBERSHIP.....................................................................................................83
TABLE 130. PHY 4 REGISTER 27: RESERVED REGISTER ...............................................................................................................84
TABLE 131. PHY 4 REGISTER 27: VLAN ID [J]...........................................................................................................................84
TABLE 132. PHY 4 REGISTER 28: RESERVED REGISTER ...............................................................................................................84
TABLE 133. PHY 4 REGISTER 28: VLAN ID [O] MEMBERSHIP ...................................................................................................84
TABLE 134. PHY 4 REGISTER 29: RESERVED REGISTER ...............................................................................................................85
TABLE 135. PHY 4 REGISTER 29: VLAN ID [O]..........................................................................................................................85
TABLE 136. PHY 5 REGISTER 0: CONTROL ...................................................................................................................................86
TABLE 137. PHY 5 REGISTER 1: STATUS ......................................................................................................................................87
TABLE 138. PHY 5 REGISTER 2: PHY IDENTIFIER 1 .....................................................................................................................87
TABLE 139. PHY 5 REGISTER 3: PHY IDENTIFIER 2 .....................................................................................................................87
TABLE 140. PHY 5 REGISTER 4: AUTO-NEGOTIATION ADVERTISEMENT ......................................................................................88
TABLE 141. MII PORT NWAY MODE .............................................................................................................................................89
TABLE 142. MII PORT FORCE MODE .............................................................................................................................................89
TABLE 143. MII REGISTER DEFINITION FOR PHY 4 AND PHY 5.................................................................................................103
TABLE 144. PECL DC CHARACTERISTICS ..................................................................................................................................112
TABLE 145. SMI READ/WRITE CYCLES ......................................................................................................................................119
TABLE 146. 802.1Q VLAN TAG FRAME FORMAT .......................................................................................................................124
TABLE 147. IPV4 FRAME FORMAT ..............................................................................................................................................124
TABLE 148. RESERVED MULTICAST ADDRESS .............................................................................................................................125
TABLE 149. LOOP FRAME FORMAT..............................................................................................................................................127
TABLE 150. SPD AND BI-COLOR LINK/ACT TRUTH TABLE ..........................................................................................................130
TABLE 151. AN EXAMPLE USING POWER TRANSISTOR 2SB1188................................................................................................132
TABLE 152. ELECTRICAL CHARACTERISTICS/RATINGS ...............................................................................................................133
TABLE 153. LED TIMING ............................................................................................................................................................136
TABLE 154. MII & SMI DC TIMING ...........................................................................................................................................137
TABLE 155. PACKAGE DESCRIPTION ...........................................................................................................................................139
TABLE 156. PCB DESCRIPTION ...................................................................................................................................................139
TABLE 157. ASSEMBLY MATERIAL ..............................................................................................................................................139
TABLE 158. SIMULATION ANALYSIS CONDITIONS .......................................................................................................................140
TABLE 159. RESULTS...................................................................................................................................................................140
TABLE 160. TRANSFORMER VENDORS ........................................................................................................................................141
TABLE 161. ORDERING INFORMATION .........................................................................................................................................148
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
xi
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
List of Figures
FIGURE 1. BLOCK DIAGRAM .........................................................................................................................................................6
FIGURE 2. PIN ASSIGNMENTS ........................................................................................................................................................7
FIGURE 3. PORT 4 OPERATING MODE OVERVIEW ........................................................................................................................93
FIGURE 4. TRADITIONAL APPLICATION........................................................................................................................................99
FIGURE 5. DUAL MII APPLICATION DIAGRAM ..........................................................................................................................100
FIGURE 6. DUAL MII MODE WITH 1 MII-MAC + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT............101
FIGURE 7. DUAL MII MODE WITH 1 MII-MAC + 1 MII-PHY (100BASE-FX MODE) INTERFACES APPLICATION CIRCUIT .......101
FIGURE 8. DUAL MII MODE WITH 1 MII-PHY + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT .............102
FIGURE 9. DUAL MII MODE WITH 1 SNI-PHY + 1 MII-PHY (100BASE-T UTP) INTERFACES APPLICATION CIRCUIT .............102
FIGURE 10. RESET .......................................................................................................................................................................115
FIGURE 11. START AND STOP DEFINITION ...................................................................................................................................117
FIGURE 12. OUTPUT ACKNOWLEDGE ..........................................................................................................................................117
FIGURE 13. RANDOM READ ........................................................................................................................................................118
FIGURE 14. SEQUENTIAL READ ...................................................................................................................................................118
FIGURE 15. VLAN GROUPING EXAMPLE ....................................................................................................................................120
FIGURE 16. TAGGED AND UNTAGGED PACKET FORWARDING WHEN 802.1Q TAG AWARE VLAN IS DISABLED ...........................122
FIGURE 17. INPUT DROP VS. OUTPUT DROP ................................................................................................................................126
FIGURE 18. LOOP EXAMPLE ........................................................................................................................................................127
FIGURE 19. PORT 4 LOOPBACK ...................................................................................................................................................128
FIGURE 20. REG. 0.14 LOOPBACK ...............................................................................................................................................129
FIGURE 21. FLOATING AND PULL-DOWN OF LED PINS ...............................................................................................................130
FIGURE 22. TWO PIN BI-COLOR LED FOR SPD FLOATING OR PULL-HIGH ..................................................................................131
FIGURE 23. TWO PIN BI-COLOR LED FOR SPD PULL-DOWN ......................................................................................................131
FIGURE 24. USING A PNP TRANSISTOR TO TRANSFORM 3.3V INTO 1.8V....................................................................................132
FIGURE 25. RECEPTION DATA TIMING OF MII/SNI/SMI INTERFACE ...........................................................................................136
FIGURE 26. TRANSMISSION DATA TIMING OF MII/SNI/SMI INTERFACE .....................................................................................136
FIGURE 27. UTP APPLICATION FOR TRANSFORMER WITH CONNECTED CENTRAL TAP ................................................................141
FIGURE 28. UTP APPLICATION FOR TRANSFORMER WITH SEPARATE CENTRAL TAP ....................................................................142
FIGURE 29. 100BASE-FX WITH 3.3V FIBER TRANSCEIVER APPLICATION ...................................................................................143
FIGURE 30. 100BASE-FX WITH 5V FIBER TRANSCEIVER APPLICATION ......................................................................................144
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
xii
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
1.
General Description
The RTL8305SC is a 5-port Fast Ethernet switch controller that integrates memory, five MACs, and five
physical layer transceivers for 10Base-T and 100Base-TX operation into a single chip. All ports support
100Base-FX, which shares pins (TX+-/RX+-) with UTP ports and needs no SD+/- pins, a development
using Realtek proprietary technology. To compensate for the lack of auto-negotiation in 100Base-FX
applications, the RTL8305SC can be forced into 100Base-FX half or full duplex mode, and can enable or
disable flow control in fiber mode.
The five ports are separated into three groups (GroupX/GroupY/Port4) for flexible port configuration
using strapping pins upon reset. The SetGroup pin is used to select port members in GroupX and GroupY.
When the port members have been determined, you may use a mode selection pin
(GxMode/Gymode/P4Mode[1:0]) to select operating interfaces such as 10/100Base-TX, 100Base-FX.
Each group has four pins for selecting initial port status upon reset (ANEG/Force, 100/10, Full/Half,
Enable/Disable Flow Control). Upon reset, in addition to using strapping pins, a CPU can also configure
the RTL8305SC via the MDC/MDIO interface.
The fifth port (port 4) supports an external MAC and an external PHY interface. The external MAC
interface can be set to PHY mode MII, PHY mode SNI, or MAC mode MII to work with a routing
engine, HomePNA, or VDSL transceiver. The external PHY interface can be set to PHY mode MII in the
digital interface, and UTP or fiber in the differential interface. In order to accomplish diagnostics in
complex network systems, the RTL8305SC also provides a loopback feature in each port for a variable
CPU system.
The RTL8305SC contains a 1K-entry address lookup table and supports a 16-entry CAM to avoid hash
collisions and to maintain forwarding performance. The 1K-entry table provides read/write access from
the SMI interface, and each of the entries can be configured as a static entry. A static entry indicates that
this entry is controlled by the external management processor and automatic aging and learning of the
entry will not take place. The RTL8305SC supports IEEE 802.3x full-duplex flow control and backpressure half-duplex flow control. A broadcast storm filtering function is provided to filter unusual
broadcast storm issues, and an intelligent switch engine prevents Head-Of -Line blocking problems.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
1
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
The RTL8305SC supports 16 VLAN groups. These can be configured as port-based VLANs and/or
IEEE 802.1Q tag-based VLANs. Two ingress filtering and egress filtering options provide flexible
VLAN configuration:
•
Ingress filtering option 1: The Acceptable Frame Type of the Ingress Process can be set to ‘Admit
All’ or ‘Admit All Tagged’.
•
Ingress filtering option 2: ‘Admit’ or ‘Discard’ frames associated with a VLAN for which that
port is not in the member set.
•
•
Egress filtering option 1: ‘Forward’ or ‘Discard’ ARP broadcast frames.
Egress filtering option 2: ‘Forward’ or ‘Discard’ Leaky VLAN frames.
The RTL8305SC supports several types of QoS functions with two-level priority queues to improve
multimedia or real-time networking applications. The QoS functions are based on:
•
•
•
Port-based priority
802.1Q VLAN priority tag
The TOS/DS (DiffServ) field of TCP/IP
When the QoS function is enabled, a VLAN tag can be inserted or removed at the output port. The
RTL8305SC will insert a Port VID (PVID) for untagged frames or remove the tag from tagged frames.
The RTL8305SC also supports a special insert VLAN tag function to separate traffic from WAN and
LAN sides in Router and Gateway applications.
In router applications, the router may want to know which input port this packet came from. The
RTL8305SC supports Port VID (PVID) for each port and can insert a PVID in the VLAN tag on egress.
Using this function, VID information carried in the VLAN tag will be changed to PVID. The
RTL8305SC also provides an option to admit VLAN tagged packets with a specific PVID only. If this
function is enabled, it will drop non-tagged packets and packets with an incorrect PVID.
Maximum packet length can be 1536 or 1552 bytes according to the initial configuration (strapping upon
reset). The filtering function is supported for the 802.1D specified reserved multicast addresses (01-80C2-00-00-02 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F).
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
2
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
The RTL8305SC provides flexible LED functions for diagnostics. These include: Three combinations of
link, activity, speed, duplex and collision, that are ideal for bi-color LED displays. The RTL8305SC also
provides a loop detection function and alarm, for network existence notification, with an output pin that
can be designed as a visual LED or a status input pin for a CPU.
A power saving mode is implemented on a per-port basis. Each port automatically enters power saving
mode 10 seconds after the cable is disconnected from it. The RTL8305SC also implements a power down
mode on a per-port basis. Users can set MII Reg.0.11 to force the corresponding port to enter power down
mode, which disables all transmit/receive functions, except SMI (MDC/MDIO management interface).
Each physical layer channel of the RTL8305SC consists of a 4B5B encoder/decoder, a Manchester
encoder/decoder, a scrambler/de-scrambler, a transmit output driver, output wave shaping filters, a digital
adaptive equalizer, a PLL circuit, and a DC restoration circuit for clock/data recovery. Friendly crossover
auto detection and correction functions are also supported for easy cable connection.
The integrated chip benefits from low power consumption, advanced functions with flexible configuration
for 5-port SOHO switch, Home Gateway, xDSL/Cable router, and other IA applications.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
3
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
2.
Features
Supports broadcast storm filtering
function
5-port integrated switch controller with
memory and transceiver for 10Base-T
and 100Base-TX with:
Flow control fully supported:
5-port 10/100M UTP or
4-port 10/100M UTP + 1-port
MII/SNI or
4-port 10/100M UTP + 1-port MAC
MII/SNI + 1-port PHY MII
Half duplex: back pressure flow
control
Full duplex: IEEE 802.3x flow
control
Supports SMI (Serial Management
Interface: MDC/MDIO) for
programming and diagnostics
Supports the fifth port MAC circuit as
PHY mode MII, SNI for router
applications, and MAC mode MII for
HomePNA or VDSL solutions
Supports loop detection function with
one LED to indicate the existence of a
loop
Supports the fifth port PHY circuit as
PHY mode MII for router and Gateway
applications
Supports MAC and PHY loopback
function for diagnosis
All ports support 100Base-FX with
optional flow control enable/disable
and full/half-duplex setting
Supports up to 16 VLAN groups
Flexible 802.1Q port/tag-based VLAN
Supports FEFI function for fiber
application
ARP VLAN for broadcast packets
Leaky VLAN for unicast packets
Non-blocking wire-speed reception and
transmission and non-head-of-lineblocking forwarding
VLAN tag Insert/Remove function
Supports QoS function on each port:
QoS based on: (1) Port-based,
(2) VLAN tag, (3) TCP/IP header’s
TOS/DS
Supports two-level priority queues
Weighted round robin service
Fully compliant with
IEEE 802.3/802.3u auto-negotiation
function
Built-in high-efficiency SRAM for
packet buffer, with 1K-entry lookup
table and 16-entry CAM
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
4
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Supports special VLAN tag insert or
remove function on per-port basis
(egress) to separate WAN traffic from
LAN traffic
Robust baseline wander correction for
improved 100Base-TX performance
Optional MDI/MDIX auto crossover
for plug-and-play
Optional 1536 or 1552 byte maximum
packet length
Physical layer port Polarity Detection
and Correction function
Supports reserved control frames
(DID=0180C2000003~0180C200000F)
filtering function
Optional EEPROM interface for
configuration
25MHz crystal or 3.3V OSC input
Flexible LED indicators for link,
activity, speed, full/half duplex, and
collision
Single 3.3V power input can be
transformed to 1.8V via a low-cost
external BJT transistor
LEDs blink upon reset for LED
diagnostics
Low power, 1.8/3.3V, 0.18µm CMOS
technology, 128-pin PQFP package
Supports two power reduction methods:
Power saving mode by cable
detection
Power down mode (via PHY
register 0.11)
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
5
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
3.
Block Diagram
IBREF
Waveform
Shaping
RX+-[0]
TX+-[0]
10Base-T or
100Base-T
PHYceiver
MAC0
Switch
Engine0
RX+-[1]
TX+-[1]
10Base-T or
100Base-T
PHYceiver
MAC1
Switch
Engine1
Lookup
Table
Packet
Buffer
RX+-[2]
TX+-[2]
10Base-T or
100Base-T
PHYceiver
MAC2
Switch
Engine2
RX+-[3]
TX+-[3]
10Base-T or
100Base-T
PHYceiver
MAC3
Switch
Engine3
DISBRDCTRL
ENBKPRS
RESET#
RX+-[4]
TX+-[4]
10Base-T or
100Base-T
PHYceiver
MAC4
Switch
Engine4
PHY2PRXC
PHY2PTXC
PHY2PTXEN
PHY2PTXD[3:0]
PHY2PCOL
MRXC/PTXC
MRXDV/PTXEN
MRXD[3:0]/PTXD[3:0]
MCOL/PCOL
r
MAC Interface
MTXC/PRXC
MTXEN/PRXDV
MTXD[3:0]/PRXD[3:0]
PHY Interface
PHY2PRXDV
PHY2PRXD[3:0]
Global
Function
X1
X2
CK25MOUT
SEL_MIIMAC
PHY
Mode
MII
MAC
Mode
MII
EN_RST_BLNK
LED_BLNK_TIME
Mode
Select
Circuit
LED
Control
LED_SPD[4:0]
LED_ACT[4:0]
LED_DUP[4:0]
LED_ADD[4:0]
PHY
Mode
MII/SNI
P4LNKSTA#
P4DUPSTA/P4FULL
P4SPDSTA/P4SPD100
P4FLCTRL/P4ENFC
P4MODE[1:0]
DISDUALMII
Figure 1. Block Diagram
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
6
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Assignments
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
DGND
LED_ADD[2]/DISLEAKY
DVDD18
LED_DUP[3]/GYMODE
LED_SPD[3]/DISARP
LED_ACT[3]/EN48PASS1
LED_ADD[3]/GXMODE
LED_DUP[4]/SETGROUP
DGND
LED_SPD[4]/DISVLAN
LED_ACT[4]
LED_ADD[4]/DISTAGPRI
LOOPLED#/ENDEFER
PHY2PCOL/LED_BLNK_TIME
DISPORTPRI[4] (PHY2PTXD[3])
DVDD33
DISPORTPRI[3] (PHY2PTXD[2])
DISPORTPRI[2] (PHY2PTXD[1])
DISPORTPRI[1] (PHY2PTXD[0])
DISPORTPRI[0] (PHY2PTXEN)
PHY2PTXC/QWEIGHT[1]
PHY2PRXC/QWEIGHT[0]
PHY2PRXDV/DISBRDCTRL
DGND
PHY2PRXD[3]/ENBKPRS
PHY2PRXD[2]/GYENFC
PHY2PRXD[1]/GXENFC
SDA_MDIO
SCL_MDC
PHY2PRXD[0]/ENEEPROM
ITEST6
EN_RST_BLNK
DVDD18
EN_AUTOXOVER
SEL_MIIMAC#/DISDSPRI
MRXD[3]/PTXD[3]
MRXD[2]/PTXD[2]
ITEST5
4.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
RTL8305SC
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
DGND
MRXD[1]/PTXD[1]
DVDD33
MRXD[0]/PTXD[0]
MRXDV/PTXEN
MRXC/PTXC
MCOL/PCOL
MTXD[3]/PRXD[3]/P4IRTAG[1]
MTXD[2]/PRXD[2]/P4IRTAG[0]
MTXD[1]/PRXD[1]/LEDMODE[1]
MTXD[0]/PRXD[0]/LEDMODE[0]
DVDD18
MTXEN/PRXDV
MTXC/PRXC
DGND
P4LNKSTA#
P4DUPSTA/P4FULL
P4SPDSTA/P4SPD100
P4FLCTRL/P4ENFC
P4MODE[0]
P4MODE[1]
DVDD18
DISDUALMII
ITEST4
RESET#
DGND
AVDD18
RXIN[0]
RXIP[0]
AGND
TXOP[0]
TXON[0]
AVDD18
AVDD18
TXON[1]
TXOP[1]
AGND
RXIP[1]
RXIN[1]
AVDD18
AVDD18
RXIN[2]
RXIP[2]
AGND
TXOP[2]
TXON[2]
AVDD18
AVDD18
TXON[3]
TXOP[3]
AGND
RXIP[3]
RXIN[3]
AVDD18
AVDD18
RXIN[4]
RXIP[4]
AGND
TXOP[4]
TXON[4]
AVDD18
ITEST1
ITEST2
ITEST3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
P4ANEG/LED_ACT[2]
GXANEG/LED_SPD[2]
GYANEG/LED_DUP[2]
DVDD33
GXSPD100/LED_ADD[1]
GYSPD100/LED_ACT[1]
GXFULL/LED_SPD[1]
GYFULL/LED_DUP[1]
ENFORWARD/LED_ADD[0]
DGND
BCINDROP/LED_ACT[0]
MAX1536/LED_SPD[0]
LED_DUP[0]
CK25MOUT
OSCI
HVDD33
AVDD18
X1
X2
AGND
VCTRL
DTEST2
DTEST1
AGND
IBREF
AVDD18
Figure 2. Pin Assignments
Note: When DISDUALMII=1, the function of pins 83~86 and pin 88 follows the names before the
parenthesis ‘( )’.
When DISDUALMII=0, pin names in parenthesis ‘( )’ will become functional and original pin functions
will not apply.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
7
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
‘Type’ codes used in the following tables: A=Analog; D=Digital, I=Input; O=Output,
PU=Internal pull-up, PD=Internal pull-down.
Table 1. Pin Assignments
Name
AVDD18
RXIN[0]
RXIP[0]
AGND
TXOP[0]
TXON[0]
AVDD18
AVDD18
TXON[1]
TXOP[1]
AGND
RXIP[1]
RXIN[1]
AVDD18
AVDD18
RXIN[2]
RXIP[2]
AGND
TXOP[2]
TXON[2]
AVDD18
AVDD18
TXON[3]
TXOP[3]
AGND
RXIP[3]
RXIN[3]
AVDD18
AVDD18
RXIN[4]
RXIP[4]
AGND
TXOP[4]
TXON[4]
AVDD18
ITEST1
ITEST2
ITEST3
DGND
RESET#
ITEST4
DISDUALMII
DVDD18
P4MODE[1]
P4MODE[0]
P4FLCTRL/P4ENFC
P4SPDSTA/P4SPD100
P4DUPSTA/P4FULL
P4LNKSTA#
DGND
MTXC/PRXC
MTXEN/PRXDV/Internal
DVDD18
MTXD[0]/PRXD[0]/LEDMODE[0]
MTXD[1]/PRXD[1]/LEDMODE[1]
MTXD[2]/PRXD[2]/P4IRTAG[0]
MTXD[3]/PRXD[3]/P4IRTAG[1]
MCOL/PCOL
MRXC/PTXC
MRXDV/PTXEN
MRXD[0]/PTXD[0]
DVDD33
MRXD[1]/PTXD[1]
DGND
Pin No.
Type
Name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
AVDD
AI
AI
AGND
AO
AO
AVDD
AVDD
AO
AO
AGND
AI
AI
AVDD
AVDD
AI
AI
AGND
AO
AO
AVDD
AVDD
AO
AO
AGND
AI
AI
AVDD
AVDD
AI
AI
AGND
AO
AO
AVDD
ITEST5
MRXD[2]/PTXD[2]
MRXD[3]/PTXD[3]
SEL_MIIMAC#/DISDSPRI
EN_AUTOXOVER
DVDD18
EN_RST_BLNK
ITEST6
PHY2PRXD[0]/ENEEPROM
SCL_MDC
SDA_MDIO
PHY2PRXD[1]/GXENFC
PHY2PRXD[2]/GYENFC
PHY2PRXD[3]/ENBKPRS
DGND
PHY2PRXDV/DISBRDCTRL
PHY2PRXC/QWEIGHT[0]
PHY2PTXC/QWEIGHT[1]
DISPORTPRI[0] (PHY2PTXEN)
DISPORTPRI[1] (PHY2PTXD[0])
DISPORTPRI[2] (PHY2PTXD[1])
DISPORTPRI[3] (PHY2PTXD[2])
DVDD33
DISPORTPRI[4] (PHY2PTXD[3])
PHY2PCOL/LED_BLNK_TIME
LOOPLED#/ENDEFER
LED_ADD[4]/DISTAGPRI
LED_ACT[4]
LED_SPD[4]/DISVLAN
DGND
LED_DUP[4]/SETGROUP
LED_ADD[3]/GXMODE
LED_ACT[3]/EN48PASS1
LED_SPD[3]/DISARP
LED_DUP[3]/GYMODE
DVDD18
LED_ADD[2]/DISLEAKY
DGND
LED_ACT[2]/P4ANEG
LED_SPD[2]/GXANEG
LED_DUP[2]/GYANEG
DVDD33
LED_ADD[1]/GXSPD100
LED_ACT[1]/GYSPD100
LED_SPD[1]/GXFULL
LED_DUP[1]/GYFULL
LED_ADD[0]/ENFORWARD
DGND
LED_ACT[0]/BCINDROP
LED_SPD[0]/MAX1536
LED_DUP[0]
CK25MOUT
OSCI
HVDD33
AVDD18
X1
X2
AGND
VCTRL
DTEST2
DTEST1
AGND
IBREF
AVDD18
DGND
I
IPU
DVDD
IPU
IPU
IPU
IPU
IPU
IPU
DGND
I/OPU
I/OPU
DVDD
I/OPU
I/OPU
I/OPU
I/OPU
I/OPD
I/OPU
IPD
IPU
DVDD
IPU
DGND
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
8
Pin No.
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
Type
IPU
IPU
I/OPU
IPU
DVDD
IPU
IPU
I/OPU
I/OPU
IPU
IPU
IPU
DGND
IPU
IPU
IPU
IPU
IPU
IPU
IPU
DVDD
IPU
IPU
I/OPU
I/OPU
I/OPU
I/OPU
DGND
I/OPU
I/OPU
I/OPU
I/OPU
I/OPU
DVDD
I/OPU
DGND
I/OPU
I/OPU
I/OPU
DVDD
I/OPU
I/OPU
I/OPU
I/OPU
I/OPU
DGND
I/OPU
I/OPU
I/OPU
O
I
AVDD
AVDD
I
O
AGND
O
AGND
A
AVDD
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
5.
Pin Descriptions
‘Type’ codes used in the following tables: A=Analog; D=Digital, I=Input; O=Output,
PU=Internal pull-up, PD=Internal pull-down.
Upon Reset: Defined as a short time after the end of a hardware reset.
After Reset: Defined as the time after the specified ‘Upon Reset’ time.
5.1. Media Connection Pins
Table 2. Media Connection Pins
Pin Name
RXIP[4:0]
RXIN[4:0]
Pin No.
2, 3, 12, 13,
16, 17, 26,
27, 30, 31
Type
I
TXOP[4:0]
TXON[4:0]
5, 6, 9, 10,
19, 20, 23,
24, 33, 34
O
Drive (mA)
Description
Differential Receive Data Input
Shared by 100Base-TX, 10Base-T, and 100Base-FX.
UTP or FX depends on pin GxMode/GyMode/P4Mode[1:0].
Differential Transmit Data Output
Shared by 100Base-TX, 10Base-T, and 100Base-FX.
UTP or FX depends on pin GxMode/GyMode/P4Mode[1:0].
5.2. Port 4 Configuration Pins
Table 3. Port 4 Configuration Pin Definitions
Pin Name
DISDUALMII
Pin No.
Type
42
IPU
Drive (mA) Description
Port 4 Configuration Pin Definitions
Disable Dual MII Interface Function
This pin disables or enables the Dual MII interface function of
port 4.
1: Disable
0: Enable
When enabled, the MAC circuit of port 4 can be set as MAC
mode MII, PHY mode MII, or PHY mode SNI. The PHY
circuit of port 4 is set as PHY mode MII.
The PHY circuit of port 4 can optionally be set as UTP or fiber
mode according to the P4MOD[1:0] configuration.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
9
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
Pin No.
Type
P4MODE[1:0]
44, 45
IPU
P4LNKSTA#
49
Drive (mA) Description
Port 4 Configuration Pin Definitions
When DISDUALMII=1:
Select Port 4 MAC Circuit Operating Mode:
11: UTP/MAC mode MII
10: 100Base-FX mode
01: PHY mode MII
00: PHY mode SNI
IPU
When DISDUALMII=0,
I. Select Port 4 MAC Circuit Operating Mode:
1x: MAC mode MII
01: PHY mode MII
00: PHY mode SNI
11: Port 4 PHY Circuit Operating Mode:
Note: Provides PHY mode MII only when DISDUALMII=0.
Port 4 Link Status for MAC
This pin determines the link status of the Port 4 MAC in realtime when the Port 4 MAC is in MAC mode MII/PHY mode
MII/PHY mode SNI regardless of whether the Port 4 PHY
circuit interface is disabled or enabled in PHY mode MII. This
pin is low active. Pulling this pin down sets the link status of
the PHY 5 MII register to 1.2.
1: No Link
0: Link
P4MODE[1:0]=11 and DISDUALMII=1 (UTP/MAC
mode MII)
This pin determines the link status of MAC mode MII only in
real time. The link status of UTP mode is provided by the
internal PHY in real time. If both the UTP and MII ports are
linked OK, UTP has higher priority.
P4MODE[1:0]=11 and DISDUALMII=0 (MAC mode MII)
This pin determines the link status of MAC mode MII only in
real time.
P4MODE[1:0]=10 (100Base-FX mode)
This pin does nothing. The internal PHY will provide the link
status to the MAC in real time.
P4MODE[1:0]=01 (PHY mode MII)
This pin determines the link status of Port 4 in real time.
P4MODE[1:0]=00 (PHY mode SNI)
This pin determines the link status of Port 4 in real time.
When DISDUALMII=1, this pin should be left floating in UTP
or FX mode, and pulled down in MAC mode MII/PHY mode
MII/PHY mode SNI.
Regardless of whether DISDUALMII=1 or=0, this pin provides
the link status to the Port 4 MAC part in PHY 5 MII register
1.2 when the Port 4 MAC part is configured in MAC mode
MII/PHY mode MII/PHY mode SNI.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
10
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
P4DUPSTA
Pin No.
Type
48
IPU
Drive (mA) Description
Port 4 Configuration Pin Definitions
Port 4 Duplex Status
Port 4 initial configuration pin for duplex upon reset for PHY
in UTP or FX mode, and strap duplex status for MAC of other
modes upon reset.
1: Full duplex
0: Half duplex
P4MODE[1:0]=11 (UTP/MAC mode MII)
This pin provides the initial duplex configuration of the PHY
part upon reset when Port 4 operates in UTP mode. If Port 4
operates in MAC mode MII, this pin straps the initial duplex
status for the MAC part upon reset.
P4MODE[1:0]=10 (100Base-FX mode)
This pin provides the initial duplex register configuration of the
PHY part upon reset (FX). The duplex status of the MAC part
is provided by the internal PHY in real time after reset.
P4MODE[1:0]=01 (PHY mode MII)
This pin straps the initial duplex status of Port 4 upon reset.
P4MODE[1:0]=00 (PHY mode SNI)
This pin straps the initial duplex status of Port 4 upon reset.
In MAC mode MII/PHY mode MII/PHY mode SNI, the
configuration of this pin will set the duplex status of the
internal register upon reset.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
11
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
Pin No.
Type
P4SPDSTA
47
IPU
Drive (mA) Description
Port 4 Configuration Pin Definitions
Port 4 Speed Status
Port 4 initial configuration pin for speed status upon reset for
PHY of UTP mode only, and strap speed status for MAC of
other modes upon reset.
1: 100Mbps
0: 10Mbps
P4MODE[1:0]=11 (UTP/MAC mode MII)
This pin provides the initial speed configuration of the PHY
part upon reset when Port 4 operates in UTP mode. If Port 4
operates in MAC mode MII, this pin straps the initial speed
status for the MAC part upon reset.
P4MODE[1:0]=10 (100Base-FX mode)
The speed is dedicated to 100M and this pin should be left
floating as it is irrelevant.
P4MODE[1:0]=01 (PHY mode MII)
This pin straps the initial speed status of Port 4 upon reset.
P4MODE[1:0]=00 (PHY mode SNI)
The speed is dedicated to 10MHz. This pin should be pulled
down.
In order to provide 100M as the default value for PHY, this pin
is set as high active.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
12
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
P4FLCTRL/
P4EnFC
Pin No.
Type
46
IPU
Drive (mA) Description
Port 4 Configuration Pin Definitions
Port 4 Flow Control
Port 4 initial configuration pin for flow control upon reset for
PHY of UTP and FX mode, and strap flow control status for
MAC of other modes upon reset.
1: Enable Flow Control ability
0: Disable Flow Control ability
P4MODE[1:0]=11 (UTP/MAC mode MII)
This pin provides the initial flow control configuration of the
PHY part upon reset when Port 4 operates in UTP mode. If Port
4 operates in MAC mode MII, this pin straps the initial flow
control status for the MAC part upon reset.
P4MODE[1:0]=10 (100Base-FX mode)
This pin provides the initial configuration of flow control for
the PHY part upon reset (FX).
P4MODE[1:0]=01 (PHY mode MII)
This pin straps the initial flow control status of Port 4 upon
reset.
P4MODE[1:0]=00 (PHY mode SNI)
Flow control should be disabled. This pin must be pulled down.
In order to enable flow control ability for the PHY, this pin is
set as high active.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
13
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
SEL_MIIMAC#/
DisDSPri
/(P4PHY_
MODE)
Pin No.
Type
68
I/OPU
Drive (mA) Description
Port 4 Configuration Pin Definitions
4
Output After Reset = SEL_MIIMAC# used for LED
When P4MODE[1:0]=11 and DISDUALMII=1, this pin
indicates whether the UTP path or the MII MAC path is
selected. Otherwise, this pin has no use.
The LED statuses are represented as active-low or high
depending on input strapping
If Input=1: Output 0=MII MAC port is selected. 1=UTP is
selected.
If Input=0: Output 1=MII MAC port is selected. 0=UTP is
selected.
When P4MODE[1:0]=11 and DISDUALMII=1, the
RTL8305SC supports UTP/MII MAC auto-detection function
via the link status of Port 4 UTP and the P4LNKSTA# pin
setting. UTP has higher priority than MAC mode MII.
Input Upon Reset when DISDUALMII=1, DisDSPri. Disable
Differentiated Service Priority.
1: Disable DS priority
0: Enable DS priority
Input Upon Reset when DISDUALMII=0, P4PHY_MODE.
Select the operating mode of Port 4 differential pair.
1: UTP mode
0: FX mode
5.3. Port 4 MAC Circuit Interface Pins
The external device must be 3.3V compatible since the digital output of the RTL8305SC is 3.3V.
Table 4. Port 4 MAC Circuit Interface Pin Definitions
Pin Name
MRXD[3:0]/
PTXD[3:0]
Pin No.
61, 63,
66, 67
Type
IPU
MRXDV/PTXEN
60
IPD
MRXC/PTXC
59
I/OPU
Drive (mA) Description
For MAC mode MII, these pins are MRXD[3:0], MII receive
data nibble.
For PHY mode MII, these pins are PTXD[3:0], MII transmit data
nibble.
For PHY mode SNI, PTXD[0] is serial transmit data.
For MAC mode MII, this pin represents MRXDV, MII receive
data valid.
For PHY mode MII, this pin represents PTXEN, MII transmit
enable.
For PHY mode SNI, this pin represents PTXEN, transmit enable.
8
For MAC mode MII, this is a receive clock (MRXC acts as
input).
For PHY mode MII/PHY mode SNI, it is a transmit clock (PTXC
acts as output).
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
14
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
MCOL/PCOL
Pin No.
58
Type
I/OPD
MTXD[3]/PRXD[3]
/P4IRTag[1]
57
I/OPU
MTXD[2]/PRXD[2]
/P4IRTag[0]
56
MTXD[1]/PRXD[1]
/LEDMODE[1]
55
MTXD[0]/PRXD[0]
/LEDMODE[0]
54
I/OPU
Drive (mA) Description
4
For MAC mode MII, this pin represents MCOL collision (acts as
input).
For PHY mode MII/PHY mode SNI, this pin represents PCOL
collision (acts as output).
4
Output After Reset.
For MAC mode MII (P4MODE[1:0]=11), these pins are
MTXD[3:0], MII transmit data of MAC.
For PHY mode MII (P4MODE[1:0]=01), these pins are
PRXD[3:0], MII receive data of PHY.
For PHY mode SNI (P4MODE[1:0]=00), PRXD[0] is SNI serial
receive data.
4
Input Upon Reset: P4IRTag[1:0]
Insert/Remove VLAN tags of Port 4.
11=Do not insert/remove VLAN tags to/from packets.
10=Insert VLAN tags to non-tagged packets.
01=Remove tag from tagged packet.
00=Replace the VLAN tags for tagged packets and insert a
VLAN tag to non-tagged packets.
These pins are used for Port 4 only. Use serial EEPROM for
other ports.
Output After Reset.
For MAC mode MII (P4MODE[1:0]=11), these pins are
MTXD[3:0], MII transmit data of MAC.
For PHY mode MII (P4MODE[1:0]=01), these pins are
PRXD[3:0], MII receive data of PHY.
For PHY mode SNI (P4MODE[1:0]=00), PRXD[0] is SNI serial
receive data.
Input Upon Reset: LEDMODE[1:0]
Each port has four LED indicator pins. Each pin has different
indicator meanings set by pins, LEDMODE[1:0].
LEDMODE[1:0]=11: Speed + Link/Act + Duplex/Col +
Link/Act/Spd.
LEDMODE[1:0]=10: Speed + Act + Duplex/Col+Bi-color
Link/Active.
LEDMODE[1:0]=01: Speed + RxAct + TxAct + Link.
LEDMODE[1:0]=00: Reserved.
All LED statuses are represented as active-low or high depending
on input strapping, except Bi-color Link/Act in Bi-color LED
mode, whose polarity depends on Spd status.
Link/Act/Spd: Link, Activity, and Speed Indicator. ON for link
established. Blinking every 43ms when the corresponding port is
transmitting or receiving at 100Mbps. Blinking every 120ms
when the port is transmitting or receiving at 10Mbps.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
15
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
MTXEN/PRXDV
/Internal
MTXC/PRXC
Pin No.
52
51
Type
I/OPD
Drive (mA) Description
4
Output After Reset.
For MAC mode MII, this pin represents MTXEN, MII transmit
enable.
For PHY mode MII, this pin represents PRXDV, MII received data
valid.
For PHY mode SNI, this pin represents PRXDV, received data
valid.
I/OPU
Input Upon Reset.
Internal Use
For MAC mode MII, it is a transmit clock (MTXC acts as input).
For PHY mode MII/PHY mode SNI, it is a receive clock (PRXC
acts as output).
8
5.4. Port 4 PHY Circuit Interface Pins
The external device must be 3.3V compatible as the digital output of the RTL8305SC is 3.3V.
Table 5. Port 4 PHY Circuit Interface Pin Definitions
Pin Name
DISPORTPRI[4]
(PHY2PTXD[3])
DISPORTPRI[3]
(PHY2PTXD[2])
DISPORTPRI[2]
(PHY2PTXD[1])
Pin No.
88
86
85
Type
IPU
IPU
IPU
Drive (mA) Description
DISDUALMII=1, Enable Port based priority QoS function of
port 4.
DisPortPri[4]: 1=Disable port 4 priority. 0=Enable port 4 priority.
-
-
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[3]. DISPORTPRI[4]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
DISDUALMII=1, Enable Port based priority QoS function of
port 3.
DisPortPri[3]: 1=Disable port 3 priority. 0=Enable port 3 priority.
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[2]. DISPORTPRI[3]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
DISDUALMII=1, Enable Port based priority QoS function of
port 2.
DisPortPri[2]: 1=Disable port 2 priority. 0=Enable port 2 priority.
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[1]. DISPORTPRI[2]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
16
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
DISPORTPRI[1]
(PHY2PTXD[0])
DISPORTPRI[0]
(PHY2PTXEN)
Pin No.
84
83
Type
IPU
IPU
Drive (mA) Description
DISDUALMII=1, Enable Port based priority QoS function of
port 1.
DisPortPri[1]: 1=Disable port 1 priority. 0=Enable port 1 priority.
-
DISDUALMII=0, PHY mode MII Transmit Data Nibble.
For PHY mode MII, this pin is PHY2PTXD[0]. DISPORTPRI[1]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
DISDUALMII=1, Enable Port based priority QoS function of
port 0.
DisPortPri[0]: 1=Disable port 0 priority. 0: Enable port 0 priority.
DISDUALMII=0, PHY mode MII Transmit Data Enable.
For PHY mode MII, this pin is PHY2PTXEN. DISPORTPRI[0]
power on strapping is not supported when DISDUALMII=0. This
configuration can be set from the MII register.
PHY2PCOL
/LED_BLNK_
TIME
89
PHY2PTXC
/QWEIGHT[1]
82
PHY2PRXC
/QWEIGHT[0]
81
I/OPU
I/OPU
4
8
For Dual MII application, this pin should be pulled low (about
1k ohm) in the external circuit.
Output After Reset: DISDUALMII=0, PHY mode MII PCOL.
For PHY mode MII, this pin represents PCOL collision (acts as
output).
Input Upon Reset: LED Blink Time.
This pin selects the blinking speed of the activity and collision
LEDs.
1: On 43ms, then Off 43ms
0: On 120ms, then Off 120ms
Power on strapping is independent of DISDUALMII
configuration.
Output After Reset: DISDUALMII=0, PHY mode MII Transmit/
Receive Data Clock.
For PHY mode MII, this is transmit/receive data clock,
PTXC/PRXC (acts as output).
Input Upon Reset: Weighted round robin ratio of priority queue.
The frame service rate of High-priority queue: Low-priority queue
QWEIGHT[1:0]=11: 16:1
QWEIGHT[1:0]=10: Always high priority queue first
QWEIGHT[1:0]=01: 8:1
QWEIGHT[1:0]=00: 4:1
Power on strapping is independent of DISDUALMII
configuration.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
17
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
PHY2PRXD[3]
/ENBKPRS
PHY2PRXD[2]
/GYENFC
PHY2PRXD[1]
/GXENFC
Pin No.
78
77
76
Type
I/OPU
I/OPU
I/OPU
Drive (mA) Description
4
Output After Reset: DISDUALMII=0, PHY mode MII Receive
Data Nibble (acts as output).
For PHY mode MII, this pin is PHY2PRXD[3].
4
4
Input Upon Reset: Enable Back Pressure.
This pin sets back pressure in half duplex mode on all UTP ports.
1: Enable
0: Disable
Power on strapping is independent of DISDUALMII
configuration.
Output After Reset: DISDUALMII=0, PHY mode MII Receive
Data Nibble (acts as output).
For PHY mode MII, this pin is PHY2PRXD[2].
Input Upon Reset: GroupY Enable Flow Control ability.
1: Enable Reg4.10 (NWAY Full duplex only), or ‘Enable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Enable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
0: Disable Reg4.10 (NWAY Full duplex only), or ‘Disable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Disable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
Strap after reset for initial value of Group Y ‘UTP NWAY Full’, or
‘UTP Force Full or Half mode’, or ‘FX Full or Half mode’.
Power on strapping is independent of DISDUALMII
configuration.
Output After Reset: DISDUALMII=0, PHY mode MII Receive
Data Nibble (acts as output).
For PHY mode MII, this pin is PHY2PRXD[1].
Input Upon Reset: GroupX Enable Flow Control ability:
1: Enable Reg4.10 (NWAY Full duplex only), or ‘Enable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Enable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
0: Disable Reg4.10 (NWAY Full duplex only), or ‘Disable Force
Full pause ability of Force mode (UTP Force mode or FX mode)’,
or ‘Disable Force Half Back Pressure ability of Force mode (UTP
Force mode or FX mode)’
Strap after reset for initial value of Group X ‘UTP NWAY Full’, or
‘UTP Force Full or Half mode’, or ‘FX Full or Half mode’.
Power on strapping is independent of DISDUALMII
configuration.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
18
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
PHY2PRXD[0]
/ENEEPROM
PHY2PRXDV
/DISBRDCTRL
Pin No.
73
80
Type
I/OPU
Drive (mA) Description
4
DISDUALMII=0, PHY mode MII Receive Data Nibble (acts as
output).
For PHY mode MII, this pin is PHY2PRXD[0].
I/OPU
4
Enable EEPROM: This pin sets the RTL8305SC to enable loading
of the serial EEPROM upon reset.
1: Enable
0: Disable
These pins have internal 75k ohm pull-high resistors.
Power on strapping is independent of DISDUALMII
configuration.
DISDUALMII=0, PHY mode MII Receive Data Valid.
For PHY mode MII, this pin represents PRXDV.
Disable Broadcast Storm Control.
1: Disable
0: Enable
The RTL8305SC will disable this function when pin DISBRDCTRL
is left floating.
This pin has an internal 75k ohm pull-high resistor.
Power on strapping is independent of DISDUALMII
configuration.
5.5. Miscellaneous Pins
Table 6. Miscellaneous Pins
Pin Name
X1
Pin No.
120
Type
I
X2
121
O
OSCI
117
I
CK25MOUT
116
O
RESET#
40
I
Drive (mA) Description
A 25MHz crystal input
The clock tolerance is +-50ppm. When using an oscillator, this pin
should be tied to ground.
For crystal input
When using an oscillator, this pin should be left floating.
A 25MHz clock from oscillator is fed to this pin
The X1 should be tied to ground and X2 should be left floating in
this application.
If a 25MHz clock is from crystal via X1 and X2, this pin should be
left floating.
8
A 25MHz clock output
This pin is used to support an extra 25M clock for an external
device (for example: HomePNA PHY). If this clock output is not
used, this pin should be left floating.
Active low reset signal
To complete the reset function, this pin must be asserted for at least
1ms. After reset, about 30ms is needed for the RTL8305SC to
complete internal test functions and initialization.
This pin is a Schmitt input.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
19
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
IBREF
Pin No.
127
VCTRL
123
ITEST1
ITEST2
ITEST3
ITEST4
ITEST5
ITEST6
DTEST2
DTEST1
36
37
38
41
65
72
124
125
Type
A
O
Drive (mA) Description
Control transmit output waveform Vpp
This pin should be grounded through a 1.96KΩ resistor.
4
Voltage control to external regulator
This signal controls a power PNP transistor to generate the 1.8V
power supply.
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
Reserved pin for internal use. Should be left floating
5.6. Port LED Pins
Each port has four LED indicator pins. Each pin may have different indicator meanings as set by pins
LEDMODE[1:0].
All LED statuses are represented as active-low or high depending on input strapping, except Bi-color
Link/Act in Bi-color LED mode, whose polarity depends on Spd status.
Those pins that are dual function pins are output for LED or input for strapping. Below are LED
descriptions only.
Table 7. Port LED Pins
Pin Name
LED_SPD[4:0]/…
LED_ACT[4:0]/…
Pin No.
93,
98,
104,
109,
114
92,
97,
103,
108,
113
Type
I/OPU
I/OPU
Drive (mA) Description
4
Output After Reset = Used for 1st LED.
LEDMode[1:0]=11 -> Speed (On=100, Off=10)
LEDMode[1:0]=10 -> Speed (On=100, Off=10)
LEDMode[1:0]=01 -> Speed (On=100, Off=10)
LEDMode[1:0]=00 -> Reserved
4
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
Output After Reset = Used for 2nd LED.
LEDMode[1:0]=11 -> Link/Act: (On=Link, Off=No Link,
Flash=Tx or Rx activity)
LEDMode[1:0]=10 -> Act: (Off=No activity, On=Tx or Rx
activity)
LEDMode[1:0]=01 -> RxAct: (Off=No activity, On=Rx activity)
LEDMode[1:0]=00 -> Reserved
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
20
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
Pin No.
LED_DUP[4:0]/…
95,
99,
105,
110,
115
LED_ADD[4:0]/..
LoopLED#
/EnDefer
91,
96,
101,
107,
111
90
Type
I/OPU
I/OPU
I/OPU
Drive (mA) Description
4
Output After Reset = Used for 3rd LED.
LEDMode[1:0]=11 -> Duplex/Col: (On=Full, Off=Half with no
collision, Flash=Collision)
LEDMode[1:0]=10 -> Duplex/Col: (On=Full, Off=Half with no
collision, Flash=Collision)
LEDMode[1:0]=01 -> TxAct: (Off=No activity, On=Tx activity)
LEDMode[1:0]=00 -> Reserved
4
4
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
Output After Reset = Used for 4th LED.
LEDMode[1:0]=11 -> Link/Act/Spd: On for link established.
Blinking every 43ms when the corresponding port is transmitting
or receiving at 100Mbps. Blinking every 120ms when the port is
transmitting or receiving at 10Mbps.
LEDMode[1:0]=10 -> Bi-color Link/Active: polarity depends on
Spd status.
LEDMode[1:0]=01 -> Link: (On=Link, Off=No Link)
LEDMode[1:0]=00 -> Reserved
Input Upon Reset = Refer to Table 9, on page 22, and Table 10, on
page 24.
Output After Reset = LoopLED# used for LED.
If the Loop detection function is enabled, this pin indicates
whether a Network loop is detected or not. Otherwise, this pin is of
no use.
The LED statuses are represented as active-low or high depending
on input strapping.
=> If Input=1: Output 0=Network loop is detected. 1=No loop.
=> If Input=0: Output 1=Network loop is detected. 0=No loop.
Input Upon Reset = Enable defer
1: Enable Carrier Sense Deferring function for half duplex back
pressure.
0: Disable Carrier Sense Deferring function for half duplex back
pressure.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
21
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
5.7. Serial EEPROM and SMI Pins
As the output of the RTL8305SC is 3.3V, the serial EEPROM and external device must be 3.3V
compatible.
Table 8. Serial EEPROM and SMI Pins
Pin Name
SCL_MDC
Pin No.
74
Type
I/OPU
Drive (mA)
4
SDA_MDIO
75
I/OPU
4
Description
SCL or MDC
This pin is tri state when pin RESET#=0.
When pin EnEEPROM=1, this pin becomes SCL (output) to load the
serial EEPROM upon reset. Then this pin changes to MDC (input)
after reset.
When pin EnEEPROM=0, this pin is MDC (input): 0 to 25MHz clock,
sourced by an external device to sample MDIO.
SDA or MDIO
This pin is tri state when RESET#=0.
When pin EnEEPROM=1, this pin becomes SDA (input/output) to
load the serial EEPROM upon reset. Then this pin changes to MDIO
(input/output) after reset. It should be pulled-high by an external
resistor.
When pin EnEEPROM=0, this pin is MDIO (input/output). It should
be pulled-high by an external resistor.
5.8. Strapping Pins
Pins that are dual function pins are outputs for LED or inputs for strapping. Below are strapping
descriptions only.
Table 9. Strapping Pins
Pin Name
EN_AUTOXOVER
Pin No.
69
Type
IPU
EN_RST_BLNK
71
IPU
DisTagPri
/LED_ADD[4]
91
I/OPU
Drive (mA) Description
Enable Auto crossover function
1: Enable auto crossover detection
0: Disable auto crossover detection. MDI only
Enable Reset Blink
This enables blinking of the LEDs upon reset for diagnostic
purposes.
1: Enable reset LED blinking
0: Disable reset LED blinking
4
Input Upon Reset = Disable 802.1p VLAN Tag priority based
QoS function.
1: Disable
0: Enable
Output After Reset = Used for LED.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
22
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
DISVLAN
/LED_SPD[4]
Pin No.
93
Type
I/OPU
En48pass1
/LED_ACT[3]
97
I/OPU
DisARP
/LED_SPD[3]
98
I/OPU
Drive (mA) Description
4
Input Upon Reset = Disable VLAN function
1: Disable VLAN
0: Enable VLAN. The default VLAN membership configuration
by internal register is port 4 overlapped with all the other ports,
to form 4 individual VLANs. This default membership
configuration may be modified by setup internal registers via the
SMI interface or EEPROM
4
4
DisLeaky
/LED_ADD[2]
101
I/OPU
4
EnForward
/LED_ADD[0]
111
I/OPU
4
BCInDrop
/LED_ACT[0]
113
I/OPU
4
Max1536
/LED_SPD[0]
114
I/OPU
4
Output After Reset = Used for LED.
Input Upon Reset = Enable 48 pass 1
1: 48 pass 1, continuously collides 48 input packets then passes 1
packet to retain system resource and avoid the partition in
repeater when the packet buffer in 8305SC is full
0: Continuously collides to avoid packet loss when the packet
buffer in 8305SC is full
Output After Reset = Used for LED.
Input Upon Reset = Disable ARP broadcast to all VLANs
1: Disables ability to broadcast ARP broadcast packets to all
VLANs
0: Enables ability to broadcast ARP broadcast packets to all
VLANs
ARP broadcast frame: DID is all F.
Output After Reset = Used for LED.
Input Upon Reset = Disable Leaky VLAN
1: Disable forwarding of unicast frames to other VLANs
0: Enable forwarding of unicast frames to other VLANs
Broadcast and multicast frames adhere to the VLAN
configuration.
Output After Reset = Used for LED.
Input Upon Reset = Enable to forward 802.1D specified reserved
multicast addresses frame
1: Forward reserved control frames, with DID=01-80-C2-00-0002 and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F
0: Filter reserved control packets, with DID=01-80-C2-00-00-02
and 01-80-C2-00-00-04 to 01-80-C2-00-00-0F
Output After Reset = Used for LED.
Input Upon Reset = Broadcast Input Drop
1: Use Broadcast Input drop mechanism
0: Use Broadcast Output drop mechanism
Output After Reset = Used for LED.
Input Upon Reset = Maximum Frame Length
1: 1536 Bytes
0: 1552 Bytes
Output After Reset = Used for LED.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
23
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
5.9. Port Status Strapping Pins
Pins that are dual function pins are outputs for LEDs or inputs for strapping. Below are strapping
descriptions only.
Table 10. Port Status Strapping Pins
Pin Name
SetGroup
/LED_DUP[4]
Pin No.
95
Type
I/OPU
GxMode
/LED_ADD[3]
96
I/OPU
4
GyMode
/LED_DUP[3]
99
I/OPU
4
P4ANEG
/LED_ACT[2]
103
I/OPU
4
GxANEG
/LED_SPD[2]
GyANEG
/LED_DUP[2]
104
105
I/OPU
I/OPU
Drive (mA) Description
4
Input Upon Reset = Set group of port 1
1: Port 0 is group X. Port 1, 2, and 3 are group Y
0: Port 0, and 1 are group X. Port 2, and 3 are group Y
4
4
Output After Reset = Used for LED.
Input Upon Reset = Group X operating mode
1: UTP mode
0: FX mode
Output After Reset = Used for LED.
Input Upon Reset = Group Y operating mode
1: UTP mode
0: FX mode
Output After Reset = Used for LED.
Input Upon Reset = Port 4 Auto-Negotiation ability
1: Enable auto-negotiation (NWAY mode)
0: Disable auto-negotiation (Force mode)
Upon reset, this pin sets Reg.0.12 of Port 4. Strap after reset for initial
value of Port 4 UTP mode only. This pin is not used for Port 4 FX,
MAC mode MII, PHY mode MII, and PHY mode SNI.
Output After Reset = Used for LED.
Input Upon Reset = GroupX Auto-Negotiation ability
1: Enable auto-negotiation (NWAY mode)
0: Disable auto-negotiation (Force mode)
Upon reset, this pin sets Reg.0.12 of Group X. Strap after reset for
initial value of UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
Input Upon Reset = GroupY Auto-Negotiation ability
1: Enable auto-negotiation (NWAY mode)
0: Disable auto-negotiation (Force mode)
Upon reset, this pin sets Reg.0.12 of Group Y. Strap after reset for
initial value of UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
24
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Pin Name
GxSpd100
/LED_ADD[1]
Pin No.
107
Type
I/OPU
GySpd100
/LED_ACT[1]
108
I/OPU
Drive (mA) Description
4
Input Upon Reset = GroupX 10Base-T/100Base-TX ability
GxSpd100=1, GxFull=1
=> MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
GxSpd100=1, GxFull=0
=> MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
GxSpd100=0, GxFull=1;
=> MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
GxSpd100=0, GxFull=0;
=> MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Upon reset, this pin sets Reg.0.13. In addition, upon reset, this pin and
GxFull also sets Reg.4.8/4.7/4.6/4.5. Strap after reset for initial value
of Group X UTP mode only. This pin is not used for FX.
4
GxFull
/LED_SPD[1]
109
I/OPU
4
GyFull
/LED_DUP[1]
110
I/OPU
4
Output After Reset = Used for LED.
Input Upon Reset = GroupY 10Base-T/100Base-TX ability
GySpd100=1, GyFull=1
=> MII Reg0.13=1, 0.8=1, 4.8=1, 4.7=1, 4.6=1, 4.5=1
GySpd100=1, GyFull=0
=> MII Reg0.13=1, 0.8=0, 4.8=0, 4.7=1, 4.6=1, 4.5=1
GySpd100=0, GyFull=1;
=> MII Reg0.13=0, 0.8=1, 4.8=0, 4.7=0, 4.6=1, 4.5=1
GySpd100=0, GyFull=0;
=> MII Reg0.13=0, 0.8=0, 4.8=0, 4.7=0, 4.6=0, 4.5=1
Upon reset, this pin sets Reg.0.13. In addition, upon reset, this pin and
GyFull also sets Reg.4.8/4.7/4.6/4.5. Strap after reset for initial value
of Group Y UTP mode only. This pin is not used for FX.
Output After Reset = Used for LED.
Input Upon Reset = GroupX Full Duplex ability
Upon reset, this pin sets the default value of Reg.0.8. In addition, on
reset, this pin also sets NWay full-duplex ability on Reg.4.8 and
Reg.4.6. Strap after reset for initial value of Group X UTP or FX
mode. FX can be Force 100 Full or Force 100 Half.
Output After Reset = Used for LED.
Input Upon Reset = GroupY Full Duplex ability
Upon reset, this pin sets the default value of Reg.0.8. On reset, this pin
also sets NWay full-duplex ability on Reg.4.8 and Reg.4.6.
Strap after reset for initial value of Group Y UTP or FX mode. FX can
be Force 100 Full or Force 100 Half.
Output After Reset = Used for LED.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
25
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
5.10. Power Pins
Table 11. Power Pins
Pin Name
AVDD18
HVDD33
AGND
DVDD18
DVDD33
DGND
Pin No.
1, 7, 8, 14, 15,
21, 22, 28, 29,
35, 119, 128
118
4, 11, 18, 25,
32, 122, 126
43, 53, 70, 100
62, 87, 106
39, 50, 64, 79,
94, 102, 112
Type
P
Drive (mA) Description
1.8V Analog Power
P
P
3.3V Analog Power
Analog Ground
P
P
P
1.8V Digital Power
3.3V Digital Power
Digital Ground
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
26
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.
EEPROM Description
6.1. Port 0 Registers
6.1.1.
Global Control Register0
Table 12. Global Control Register0
Name
EEPROM Existence
Reserved
Internal Use
Internal Use
Internal Use
Enable Loop
Detection Function
Reserved
Internal Use
6.1.2.
Byte.bit Description
0.7
1: EEPROM does not exist (pin EnEEPROM=0 or pin EnEEPROM=1 but
EEPROM does not exist)
0: EEPROM exists (pin EnEEPROM=1 and EEPROM exists)
0.6
0.5
0.4
0.3
0.2
1: Enable loop detection function
0: Disable loop detection function
0.1
0.0
Default
0
1
1
1
1
0
1
0
Global Control Register1
Table 13. Global Control Register1
Name
Page selection
Reserved
Lookup table
accessible enable
Internal Use
Reserved
Disable 802.1Q
tag aware VLAN
Byte.bit
1.7
1.6
1.5
1.4
1.3
1.2
Description
1: Select the registers in page 1
0: Select the registers in page 0
Default
0
1: Lookup table is accessible via indirect access registers
0: Lookup table is not accessible
1: Disable 802.1Q tagged-VID Aware function. The RTL8305SC will not
check the tagged VID on received frames to perform tagged-VID VLAN
mapping. Under this configuration, the RTL8305SC only uses the per port
VLAN index register to perform Port-Based VLAN mapping
0: Enable the Member Set Filtering function of VLAN Ingress Rule. The
RTL8305SC checks the tagged VID on received frames with the
VIDA[11:0]~VIDH[11:0] to index to a member set, then performs VLAN
mapping. The RTL8305SC uses tagged-VID VLAN mapping for tagged
frames but still uses Port-Based VLAN mapping for priority-tagged and
untagged frames
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
27
0
0
0
0
1
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Name
Disable VLAN
member set
ingress filtering
Byte.bit
1.1
Disable VLAN
tag admit control
1.0
6.1.3.
Description
1: The switch will not drop the received frame if the ingress port of this
packet is not included in the matched VLAN member set. It will still forward
the packet to the VLAN members specified in the matched member set. This
setting works on both port-based and tag-based VLAN configurations
0: The switch will drop the received frame if the ingress port of this packet is
not included in the matched VLAN member set
1: The switch accepts all frames it receives whether tagged or untagged.
0: The switch will only accept tagged frames and will drop untagged frames.
Default
1
1
Global Control Register2
Table 14. Global Control Register2
Name
Internal Use
Internal Use
Byte.bit
2.7
2.6
Internal Use
2.5~2.0
6.1.4.
Description
Default
0
0
11 1111
Global Control Register3
Table 15. Global Control Register3
Name
Internal Use
Internal Use
Internal Use
6.1.5.
Byte.bit
3.7
3.6
3.5~3.0
Description
Default
0
0
11 1111
Global Control Register4
Table 16. Global Control Register4
Name
Reserved
Enable defer
LED blink time
Queue weight
Disable broadcast
storm control
Byte.bit
4.7
4.6
4.5
4.4~4.3
4.2
Description
1: Enable carrier sense deferring for half duplex back pressure
0: Disable carrier sense deferring for half duplex back pressure
1: On 43ms, then Off 43ms
0: On 120ms, then Off 120ms
The frame service ratio between the high priority queue and low priority
queue is:
11=16:1
10=Always high priority queue first
01=8:1
00=4:1
1: Disable Broadcast Storm Control
0: Enable Broadcast Storm Control
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
28
Default
1
1
1
11
1
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Name
Enable power-on
blinking
Reserved
6.1.6.
Byte.bit
4.1
Description
1: Enable power-on LED blinking for diagnosis
0: Disable power-on LED blinking for diagnosis
Default
1
1
4.0
Global Control Register5
Table 17. Global Control Register5
Name
Reserved
Maximum Frame
Length
Byte.bit
5.7
5.6
Enable broadcast
drop
Forward 802.1D
reserved MAC
addresses frame.
5.5
Disable leaky
VLAN
5.3
Disable ARP
VLAN
5.2
Enable 48 pass 1
5.1
Disable VLAN
5.0
6.1.7.
5.4
Description
1: 1536 Byte
0: 1552 Byte
1: Use Broadcast Input drop mechanism
0: Use Broadcast Output drop mechanism
1: Forward reserved control frames, which DID=01-80-C2-00-00-02 and 0180-C2-00-00-04 to 01-80-C2-00-00-0F packets
0: Filter reserved control packets, which DID=01-80-C2-00-00-02 and 0180-C2-00-00-04 to 01-80-C2-00-00-0F
1: Disable forwarding of unicast frames to other VLANs
0: Enable forwarding of unicast frames to other VLANs
Broadcast and multicast frames adhere to the VLAN configuration.
1: Disable to broadcast the ARP broadcast packet to all VLANs
0: Enable to broadcast the ARP broadcast packet to all VLANs
ARP broadcast frame: DID is all F.
1: 48 pass 1, continuously collides 48 input packets then passes 1 packet to
retain system resource and avoid partition in the repeater when the packet
buffer is full
0: Continuously collides to avoid packet loss when the packet buffer is full
1: Disable VLAN
0: Enable VLAN. The default VLAN membership configuration by internal
register is port 4 overlapped with all the other ports, to form 4 individual
VLANs. This default membership configuration may be modified by setup
internal registers via the SMI interface or EEPROM
Default
1
1
1
1
1
1
1
1
Global Control Register6
Table 18. Global Control Register6
Name
Reserved
Byte.bit
6.7~6.0
Description
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
Default
1111
1111
29
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.1.8.
Global Control Register7
Table 19. Global Control Register 7
Name
Reserved
LED Mode[1:0]
Internal Use
Disable dual MII
interface of port 4
Reserved
6.1.9.
Byte.bit
7.7~7.6
7.5~7.4
7.3
7.2
Description
11=Mode 3: Speed, Link+Act, Duplex+Col, Link/Act/Speed
10=Mode 2: Speed, Act, Duplex/Col, Bi-color Link/Activity
01=Mode 1: Speed, RxAct, TxAct, Link
00=Mode 0: Reserved
1: Disable dual MII interface of port 4. Only provides MII interface for the
MAC circuit of port 4
0: Enable dual MII interface of port 4. Not only provides MII interface for
the MAC circuit of port 4 but provides MII interface for the PHY circuit of
port 4
7.1~7.0
Default
11
11
1
1
11
Port 0 Control 0
Table 20. Port 0 Control 0
Name
Reserved
Internal Use
Internal Use
Internal Use
Internal Use
VLAN tag insert
and remove
Byte.bit
8.7
8.6
8.5~8.4
8.3
8.2
8.1~8.0
Description
For port 0 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
30
Default
0
1
11
1
1
11
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.1.10. Port 0 Control 1
Table 21. Port 0 Control 1
Name
Reserved
Internal Use
Local loopback
Byte.bit
9.7
9.6
9.5
Internal Use
Discard Non
PVID packets
9.4
9.3
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority on
port 0
9.2
9.1
9.0
Description
1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
1: Disable 802.1p priority classification for ingress packets on port 0
0: Enable 802.1p priority classification on port 0
1: Disable Diffserv priority classification for ingress packets on port 0
0: Enable Diffserv priority classification
1: Disable port based priority QoS function on port 0
0: Enable port based priority QoS function on port 0. Ingress packets on port
0 will be classed as high priority
Default
1
0
0
0
0
1
1
1
6.1.11. Port 0 Control 2
Table 22. Port 0 Control 2
Name
Reserved
Byte.bit
10.7~10.0
Description
Default
0000
0000
6.1.12. Port 0 Control 3
Table 23. Port 0 Control 3
Name
Reserved
Byte.bit
11.7~11.0
Description
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
Default
0000
0000
31
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.1.13. Port 0 Control 4 & VLAN Entry [A]
Table 24. Port 0 Control 4 & VLAN Entry [A]
Name
Byte.bit
Description
Default
VLAN Entry [A]
Internal Use
Internal Use
Reserved
VLAN ID [A]
membership Bit
[4:0]
1
12.7
12.6
12.5
12.4~12.0
Port 0 VLAN
index [3:0]
13.7~13.5
Internal Use
Internal Use
Internal Use
Reserved
13.3
13.2
13.1
13.0
VLAN ID [A]
[7:0]
14.7~14.0
Internal Use
Internal Use
Internal Use
Internal Use
VLAN ID [A]
[11:8]
15.7
15.6
15.5
15.4
15.3~15.0
This 5-bit field specifies which ports are the members of VLAN A. If a
destination address look up fails, the packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN A
10010 means port 4 and 1 are the members of VLAN A
11111 means all 5 ports are the members of VLAN A
Port 0 Control 4
In a port-based VLAN configuration, this register indexes port 0’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN
ID [A] Membership’ to “VLAN ID [P] Membership”. Port 0 can only
communicate within the membership. This register also indexes to a default
Port VID (PVID) for each port. The PVID is used in tag insertion and
filtering if the tagged VID is not the same as the PVID.
1
0
1 0001
0000
1
1
1
0
VLAN Entry [A]
This register along with byte 15.3~15.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN A
0000
0000
Port 0 Control 4 & VLAN Entry [A]
This register along with byte 14.7~14.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN A
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
32
1
1
1
1
0000
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.2. Port 1 Registers
6.2.1.
Internal Use Register
Table 25. Internal Use Register
Name
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
6.2.2.
Byte.bit
16.7~16.0
17.7~17.0
18.7~18.0
19.7~19.0
20.7~20.0
21.7~21.0
22.7~22.0
23.7~23.0
Description
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Default
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
Port 1 Control 0
Table 26. Port 1 Control 0
Name
Reserved
Internal Use
Internal Use
Internal Use
Internal Use
VLAN tag insert
and remove
Byte.bit
24.7
24.6
24.5~24.4
24.3
24.2
24.1~24.0
Description
For port 1 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
33
Default
0
1
11
1
1
11
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.2.3.
Port 1 Control 1
Table 27. Port 1 Control 1
Name
Reserved
Internal Use
Local loopback
Internal Use
Discard Non
PVID packets
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority on
port 1
6.2.4.
Byte.bit Description
25.7
25.6
25.5
1: Perform local loopback, i.e. loopback MAC’s RX back to TX
0: Normal operation
25.4
25.3
1: If the received packets are tagged, the switch will discard packets whose VID
does not match the ingress port’s PVID
0: No packets will be dropped
25.2
1: Disable 802.1p priority classification for ingress packets on port 1
0: Enable 802.1p priority classification on port 1
25.1
1: Disable Diffserv priority classification for ingress packets on port 1
0: Enable Diffserv priority classification
25.0
1: Disable port based priority QoS function on port 1
0: Enable port-based priority QoS function on port 1. Ingress packets on port 1
will be classed as high priority
Default
1
0
0
0
0
1
1
1
Port 1 Control 2
Table 28. Port 1 Control 2
Name
Internal Use
Reserved
Internal Use
Reserved
6.2.5.
Byte.bit
26.7
26.6~ 26.5
26.4
26.3~ 26.0
Description
Default
0
10
1
1111
Port 1 Control 3
Table 29. Port 1 Control 2
Name
Reserved
Internal Use
Reserved
Byte.bit
27.7
27.6
27.5~
27.0
Description
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
Default
1
0
00 1111
34
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.2.6.
Port 1 Control 4 & VLAN Entry [B]
Table 30. Port 1 Control 4 & VLAN Entry [B]
Name
Byte.bit Description
Default
VLAN Entry [B]
Internal Use
Internal Use
Reserved
VLAN ID [B]
Membership Bit
[4:0]
1
28.7
28.6
28.5
28.4~
28.0
Port 1 VLAN
index [3:0]
29.7~
29.5
Internal Use
Internal Use
Internal Use
Reserved
29.3
29.2
29.1
29.0
VLAN ID [B]
[7:0]
30.7~
30.0
Internal Use
Internal Use
Internal Use
Internal Use
VLAN ID [B]
[11:8]
31.7
31.6
31.5
31.4
31.3~
31.0
This 5-bit field specifies which ports are the members of VLAN B. If a
destination address look up fails, the packet associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN B
10010 means port 4 and 1 are the members of VLAN B
11111 means all 5 ports are members of VLAN B.
Port 1 Control 4
In a port-based VLAN configuration, this register indexes to port 1’s ‘Port
VLAN Membership’, which may be defined in one of the registers ‘VLAN ID
[A] Membership’ to ‘VLAN ID [P] Membership’. Port 1 can only communicate
with members within this VLAN. This register also indexes to a default Port
VID (PVID) for each port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0001, which indexes to the VLAN entry [B]
that is composed of VLAN ID [B] Membership Bit [4:0] in PHY1 Reg.24.[4:0]
and VLAN ID [B] in PHY1 Reg.25.[11:0].
1
0
1 0010
0001
1
1
1
0
VLAN Entry [B]
This register, along with byte 31.3~31.0, defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN B.
0000
0001
Port 1 Control 4 & VLAN Entry [B]
1
1
1
This register, along with byte 30.7~30.0, defines the IEEE 802.1Q 12-bit VLAN
identifier of VLAN B.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
35
1
0000
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.3. Port 2 Registers
6.3.1.
Internal Use Register
Table 31. Internal Use Register
Name
Byte.bit
Description
Default
Internal Use Register
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
6.3.2.
32.7~32.0
33.7~33.0
34.7~34.0
35.7~35.0
36.7~36.0
37.7~37.0
38.7~38.0
39.7~39.0
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
0xFF
Port 2 Control 0
Table 32. Port 2 Control 0
Name
Reserved
Internal Use
Internal Use
Internal Use
Internal Use
VLAN tag insert
and remove
Byte.bit
40.7
40.6
40.5~40.4
40.3
40.2
40.1~40.0
Description
For port 2 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
36
Default
0
1
11
1
1
11
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.3.3.
Port 2 Control 1
Table 33. Port 2 Control 1
Name
Reserved
Internal Use
Local loopback
Byte.bit
41.7
41.6
41.5
Internal Use
Discard Non
PVID packets
41.4
41.3
Disable 802.1p
priority
Disable Diffserv
priority
Disable portbased priority on
port 2
41.2
6.3.4.
41.1
41.0
Description
1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
1: Disable 802.1p priority classification for ingress packets on port 2
0: Enable 802.1p priority classification on port 2
1: Disable Diffserv priority classification for ingress packets on port 2
0: Enable Diffserv priority classification
1: Disable port based priority QoS function on port 2
0: Enable port based priority QoS function on port 2. Ingress packets on
port 2 will be classed as high priority
Default
1
0
0
0
0
1
1
1
Reserved
Table 34. Reserved
Name
Reserved
Reserved
Byte.bit Description
42.7~42.0
43.7~43.0
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
Default
0x20
0x00
37
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.3.5.
Port 2 Control 2 & VLAN Entry [C]
Table 35. Port 2 Control 2 & VLAN Entry [C]
Name
Internal Use
Internal Use
Reserved
VLAN ID [C]
Membership Bit
[4:0]
Port 2 VLAN
index [3:0]
Internal Use
Internal Use
Internal Use
Reserved
VLAN ID [C]
[7:0]
Byte.bit Description
Default
VLAN Entry [C]
44.7
44.6
44.5
44.4~44. This 5-bit field specifies which ports are the members of VLAN C. If a
0
destination address look up fails, the packet associated with this VLAN will be
broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4 stands
for port 4.
E.g.
10001 means port 4 and 0 are the members of VLAN C
10010 means port 4 and 1 are the members of VLAN C
11111 means all 5 ports are the members of VLAN C
Port 2 Control 2
45.7~45. In a port-based VLAN configuration, this register indexes to port 2’s ‘Port
5
VLAN Membership’, which can be defined in one of the registers ‘VLAN ID
[A] Membership’ to ‘VLAN ID [P] Membership’. Port 2 can only communicate
with members within this VLAN. This register also indexes to a default Port
VID (PVID) for each port. The PVID is used in tag insertion and filtering if the
tagged VID is not the same as the PVID.
The default value of this register is 0010, which indexes to the VLAN entry [C]
that is composed of VLAN ID [C] Membership Bit [4:0] in PHY2 Reg.24.[4:0]
and VLAN ID [C] in PHY2 Reg.25.[11:0].
45.3
45.2
45.1
45.0
VLAN Entry [C]
46.7~46. This register along with byte 47.3~47.0 defines the IEEE 802.1Q 12-bit VLAN
0
identifier of VLAN C
1
1
0
1 0100
0010
1
1
1
0
0000
0010
Port 2 Control 2 & VLAN Entry [C]
Internal Use
Internal Use
Internal Use
Internal Use
VLAN ID [C]
[11:8]
47.7
47.6
47.5
47.4
47.3~47. This register along with byte 46.7~46.0 defines the IEEE 802.1Q 12-bit VLAN
0
identifier of VLAN C
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
38
1
1
1
1
0000
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.4. Port 3 Registers
6.4.1.
Switch MAC Address
The Switch MAC address is used as the source address in MAC pause control frames.
Table 36. Switch MAC Address
Name
Switch MAC
Address [47:40]
Switch MAC
Address [39:32]
Switch MAC
Address [31:24]
Switch MAC
Address [23:16]
Switch MAC
Address [15:8]
Switch MAC
Address [7:0]
6.4.2.
Byte.bit
48.7~48.0
Description
Switch MAC Address Byte 5
Default
0x52
49.7~49.0
Switch MAC Address Byte 4
0x54
50.7~50.0
Switch MAC Address Byte 3
0x4C
51.7~51.0
Switch MAC Address Byte 2
0x83
52.7~52.0
Switch MAC Address Byte 1
0x05
53.7~53.0
Switch MAC Address Byte 0
0xC0
Port 3 Control 0
Table 37. Port 3 Control 0
Name
Reserved
Internal Use
Internal Use
Internal Use
Internal Use
VLAN tag insert
and remove
Byte.bit
54.7
54.6
54.5~54.4
54.3
54.2
54.1~54.0
Description
For port 3 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
39
Default
0
1
11
1
1
11
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.4.3.
Port 3 Control 1
Table 38. Port 3 Control 1
Name
Reserved
Internal Use
Local loopback
Byte.bit
55.7
55.6
55.5
Internal Use
Discard Non PVID
packets
55.4
55.3
Disable 802.1p
priority
Disable Diffserv
priority
Disable port-based
priority on port 3
55.2
6.4.4.
55.1
55.0
Description
1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
1: Disable 802.1p priority classification for ingress packets on port 3
0: Enable 802.1p priority classification on port 3
1: Disable Diffserv priority classification for ingress packets on port 3
0: Enable Diffserv priority classification
1: Disable port-based priority QoS function on port 3
0: Enable port-based priority QoS function on port 3. Ingress packets on
port 3 will be classed as high priority
Default
1
0
0
0
0
1
1
1
Reserved
Table 39. Reserved
Name
Reserved
Reserved
6.4.5.
Byte.bit
56.7~56.0
57.7~57.0
Description
Default
0x00
0x00
Port 3 Control 2 & VLAN Entry [D]
Table 40. Port 3 Control 2 & VLAN Entry [D]
Name
Byte.bit
Description
Default
VLAN Entry [D]
Internal Use
Internal Use
Reserved
VLAN ID [D]
Membership Bit
[4:0]
58.7
58.6
58.5
58.4~58.0
This 5-bit field specifies which ports are the members of VLAN D. If a
destination address look up fails, the packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN D
10010 means port 4 and 1 are the members of VLAN D
11111 means all 5 ports are the members of VLAN D
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
40
1
1
0
1 1000
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Port 3 VLAN
index [3:0]
59.7~59.5
Internal Use
Internal Use
Internal Use
Reserved
59.3
59.2
59.1
59.0
VLAN ID [D]
[7:0]
60.7~60.0
Port 3 Control 2
In a port-based VLAN configuration, this register indexes to port 3’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN
ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 3 can only
communicate with the members within this VLAN. This register also
indexes to a default Port VID (PVID) for each port. The PVID is used in
tag insertion and filtering if the tagged VID is not the same as the PVID.
The default value of this register is 0011, which indexes to the VLAN entry
[D] that is composed of VLAN ID [D] Membership Bit [4:0] in PHY3
Reg.24.[4:0] and VLAN ID [D] in PHY3 Reg.25.[11:0].
0011
1
1
1
0
VLAN Entry [D]
This register along with byte 61.3~61.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN D
0000
0011
Port 3 Control 2 & VLAN Entry [D]
Internal Use
Internal Use
Internal Use
Internal Use
VLAN ID [D]
[11:8]
6.4.6.
61.7
61.6
61.5
61.4
61.3~61.0
This register along with byte 60.7~60.0 defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN D
1
1
1
1
0000
Internal Use Register
Table 41. Internal Use Register
Name
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Internal Use
Byte.bit
62.7~62.0
63.7~63.0
64.7~64.0
65.7~65.0
66.7~66.0
67.7~67.0
Description
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
Default
0x00
0x00
0x00
0x00
0x00
0x00
41
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.5. Port 4 Registers
6.5.1.
Port 4 Control 0
Table 42. Port 4 Control 0
Name
Reserved
Internal Use
Internal Use
Internal Use
Internal Use
VLAN tag insert
and remove
6.5.2.
Byte.bit
68.7
68.6
68.5~68.4
68.3
68.2
68.1~68.0
Description
For port 4 egress packets
11=Do not insert or remove VLAN tags to/from packet
10=Insert VLAN tags to non-tagged packets
01=Remove tag from tagged packets
00=Replace the VLAN tags for tagged packets and insert a VLAN tag to
non-tagged packets
Default
0
1
11
1
1
11
Port 4 Control 1
Table 43. Port 4 Control 1
Name
Reserved
Internal Use
Local loopback
Byte.bit
69.7
69.6
69.5
Internal Use
Discard Non
PVID packets
69.4
69.3
Disable 802.1p
priority
69.2
Disable Diffserv
priority
Disable portbased priority on
port 4
69.1
69.0
Description
1: Perform ‘local loopback’, i.e. loopback MAC’s RX back to TX
0: Normal operation
1: If the received packets are tagged, the switch will discard packets whose
VID does not match the ingress port’s PVID
0: No packets will be dropped
1: Disable 802.1p priority classification for ingress packets on port 4
0: Enable 802.1p priority classification on port 4
1: Disable Diffserv priority classification for ingress packets on port 4
0: Enable Diffserv priority classification
1: Disable port based priority QoS function on port 4
0: Enable port based priority QoS function on port 4. Ingress packet on port
4 will be classified as high priority
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
42
Default
1
0
0
0
0
1
1
1
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.5.3.
Reserved
Table 44. Reserved
Name
Reserved
Reserved
6.5.4.
Byte.bit
70.7~70.0
71.7~71.0
Description
Default
0x00
0x00
Port 4 Control 2 & VLAN Entry [E]
Table 45. Port 4 Control 2 & VLAN Entry [E]
Name
Byte.bit
Description
Default
VLAN Entry [E]
Internal Use
Internal Use
Reserved
VLAN ID [E]
Membership Bit
[4:0]
72.7
72.6
72.5
72.4~72.0
Port 4 VLAN
index [3:0]
73.7~73.5
Internal Use
Internal Use
Internal Use
Reserved
73.3
73.2
73.1
73.0
VLAN ID [E]
[7:0]
74.7~74.0
Internal Use
Internal Use
Internal Use
Internal Use
VLAN ID [E]
[11:8]
75.7
75.6
75.5
75.4
75.3~75.0
This 5-bit field specifies which ports are the members of VLAN E. If a
destination address look up fails, a packet associated with this VLAN will
be broadcast to the ports specified in this field. Bit 0 stands for port 0, bit 4
stands for port 4.
E.g.:
10001 means port 4 and 0 are the members of VLAN E
10010 means port 4 and 1 are the members of VLAN E
11111 means all 5 ports are the members of VLAN E
Port 4 Control 2
In a port-based VLAN configuration, this register indexes to port 4’s ‘Port
VLAN Membership’, which can be defined in one of the registers ‘VLAN
ID [A] Membership’ to ‘VLAN ID [P] Membership’. Port 4 can only
communicate with the members within this VLAN. This register also
indexes to a default Port VID (PVID) for each port. The PVID is used in
tag insertion and filtering if the tagged VID is not the same as the PVID.
The default value of this register is 0100, which indexes to the VLAN entry
[E] that is composed of VLAN ID [E] Membership Bit [4:0] in PHY4
Reg.24.[4:0] and VLAN ID [E] in PHY4 Reg.25.[11:0].
1
1
0
1 1111
0100
1
1
1
0
VLAN Entry [E]
This register, along with byte 75.3~75.0, defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN E
0000
0100
Port 4 Control 2 & VLAN Entry [E]
This register, along with byte 74.7~74.0, defines the IEEE 802.1Q 12-bit
VLAN identifier of VLAN E
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
43
1
1
1
1
0000
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
6.5.5.
Internal Use Register
Table 46. Internal Use Register
Name
Reserved
Internal Use
Reserved
Internal Use
6.5.6.
Byte.bit
76.7
76.6~76.4
76.3
76.2~76.0
Description
Default
0
100
0
000
802.1p Base Priority
Table 47. 802.1p Base Priority
Name
802.1p base
priority
Byte.bit
77.7~77.5
Reserved
77.4~77.0
Description
Classifies priority for incoming 802.1Q packets, if 802.1p priority
classification is enabled. “User priority” compared against this value.
>=: Classify as high priority
11->01->00)
Indirect Data [3:0] = The source port of this Source MAC
Address ID learned
18
Indirect Data 1
[15:0]
RW
Indirect Data 0 [15:7] = Reserved.
Indirect Data 1 [15:8] = Source MAC Address [7:0] (Byte 5)
Indirect Data 1 [7:0] = Source MAC Address [15:8] (Byte 4)
0x00
Indirect Data 1 [1:0] and Indirect Data 1 [15:8] of this register
also determine the Entry Index [9:0] in the lookup table of this
accessed data.
Indirect Data 1 [1:0] = Entry Index [9:8]
Indirect Data 1 [15:8] = Entry Index [7:0]
In the write cycle: Entry Index [9:0] indirectly maps to an entry
in the lookup table for writing. The written data must be the
Source MAC Address [47:10] and Entry Index [9:0].
19
20
7.5.9.
Indirect Data 2
[15:0]
Indirect Data 3
[15:0]
RW
RW
In the read cycle: Entry Index [9:0] indirectly maps to an entry
in the lookup table for reading. The read back data will be
shown in Indirect Data 0, 1, 2, and 3.
Indirect Data 2 [7:0] = Source MAC Address [31:24] (Byte 3)
Indirect Data 2 [15:8] = Source MAC Address [23:16] (Byte 2)
Indirect Data 3 [7:0] = Source MAC Address [47:40] (Byte 1)
Indirect Data 3 [15:8] = Source MAC Address [39:32] (Byte 0)
0x00
0x00
PHY 4 Register 21: 802.1p Base Priority
Table 125. PHY 2 Register 20: 802.1p Base Priority
Reg.bit Name
21.[15.13 802.1p base
]
priority
21.[12:7]
21.[6:4]
21.3
21.[2:0]
Reserved
Internal Use
Reserved
Internal Use
Mode Description
RW Classifies priority for incoming IEEE 802.1Q packets, if
IEEE 802.1p priority classification is enabled.
‘User priority’ is compared against this value.
>=: Classify as high priority
P4SpdSta, P4Full -> P4DupSta, P4EnFC -> P4FLCTRL).
In the other three modes, four pins (P4LNKSTA#, P4SpdSta, P4DupSta, P4FLCTRL) are necessary in
order to provide the port status to Port 4’s MAC. That means that the external MAC or PHY should be
forced to the same port status as Port 4’s MAC.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
91
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Related Pins
When Port 4 is in UTP or FX mode, the LEDs of Port 4 are used to display PHY status. When Port 4 is in
other modes, the LEDs of Port 4 are used to display MAC status.
Four parallel LEDs corresponding to port 4 can be tri-stated (disable LED functions) for MII port
application by setting ENP4LED in EEPROM to 0. In UTP applications, this bit should be 1.
The SEL_MIIMAC# pin can be used to indicate MII MAC port active after reset for the purposes of
UTP/MII auto-detection.
One 25MHz clock output (pin CK25MOUT) can be used as a clock source for the underlying
HomePNA/other PHY physical devices.
PHY Mode MII/PHY Mode SNI
In routing applications, the RTL8305SC cooperates with a routing engine to communicate with the WAN
(Wide Area Network) through MII/SNI. In such applications, P4LNKSTA# =0 and P4MODE[1] is pulled
low upon reset. P4MODE[0] determines whether MII or SNI mode is selected.
In MII (nibble) mode (P4MODE[0]=1), P4SPDSTA=1 results in MII operating at 100Mbps with MTXC,
and MRXC runs at 25MHz; however, P4SPDSTA=0 leads to MII operating at 10Mbps with MTXC, and
MRXC runs at 2.5MHz.
In SNI (serial) mode (P4MODE[0]=0), P4SPDSTA has no effect and should be pulled-down. SNI mode
operates at 10Mbps only, with MTXC and MRXC running at 10MHz. In SNI mode the RTL8305SC does
not loopback an RXDV signal as a response to TXEN, and does not support the heartbeat function
(asserting COL signal for each complete TXEN signal).
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
92
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Floating=High
Floating=High
44-P4MODE[1]
59-MRXC/PTXC
RXC
45-P4MODE[0]
CRS
60-MRXDV/PTXEN
Pull Down=Link On
Note 1
Note 2
Note 3
LED Indication
49-P4LNKSTA#
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
67~61-MRXD[3:0]/PTXD[3:0]
RXDV
4
51-MTXC/PRXC
52-MTXEN/PRXDV
46-P4FLCTRL/P4ENFC 57~54-MTXD[3:0]/PRXD[3:0]
68-SELMIIMAC#/DISDSPRI
58-MCOL/PCOL
RXD[3:0]
TXC
4
TXEN
VDSL/
HomePNA/
Single PHY
TXD
COL
MAC Mode MII
Pull Down
Floating=High
51-MTXC/PRXC
25MHz
45-P4MODE[0]
CRS
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
Pull Down=Link On
Note 1
Note 2
Note 3
RXC
44-P4MODE[1]
49-P4LNKSTA#
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
46-P4FLCTRL/P4ENFC
RXDV
4
TXC
59-MRXC/PTXC
60-MRXDV/PTXEN
67~61-MRXD[3:0]/PTXD[3:0]
RXD[3:0]
4
TXEN
TXD
CPU/
Processor/
Routing
Engine
COL
58-MCOL/PCOL
PHY Mode MII
Pull Down
51-MTXC/PRXC
10MHz
45-P4MODE[0]
CRS
52-MTXEN/PRXDV
Pull Down=Link On
Note 1
Note 2
Note 3
RXC
44-P4MODE[1]
49-P4LNKSTA#
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
46-P4FLCTRL/P4ENFC
RXDV
54-MTXD[0]/PRXD[0]
RXD
59-MRXC/PTXC
60-MRXDV/PTXEN
TXC
61-MRXD[0]/PTXD[0]
TXD
58-MCOL/PCOL
COL
TXEN
CPU/
Processor/
Routing
Engine
PHY Mode SNI
Figure 3. Port 4 Operating Mode Overview
Note 1: Pulled high or floating to set speed to 100Mbps, and pulled low to set speed to 10Mbps.
Note 2: Pulled high or floating to set to full duplex, and pulled low to set to half duplex.
Note 3: Pulled high or floating to enable flow control in full duplex, and pulled low to disable.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
93
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
MAC Mode MII
In HomePNA or other PHY applications, the RTL8305SC provides the MII interface to the underlying
HomePNA or other physical device in order to communicate with other types of LAN media. In such
applications, the P4MODE[1:0] pins are floating upon reset and the RTL8305SC supports the UTP/MII
auto-detection function. When both UTP and MII are active (link on), the UTP port has higher priority
than the MII port.
In HomePNA applications P4SPDSTA must be pulled down, as HomePNA is half-duplex only.
P4DUPSTA should also be pulled down. P4LNKSTA# must be pulled down instead of being wired to the
LINK LED pin of the HomePNA because of the unstable link state of HomePNA, a characteristic of the
HomePNA 1.0 standard.
Because the HomePNA PHY physical layer is half duplex and can only detect a collision event during the
AID header interval (the time when transmitting the Ethernet preamble), the back pressure flow control
algorithm is not suitable for the HomePNA network and the P4FLCTRL pin should be pulled down.
For other PHY applications, P4SPDSTA, P4DUPSTA, and P4FLCTRL depend on the application.
8.1.3.
Port Status Configuration
The RTL8305SC supports flexible port status configuration for PHY by pin (GxANeg/GyANeg/P4ANeg,
GxSpd100/ GySpd100/P4Spd100, and GxFull/GyFull/P4Full) on a group basis upon reset, or by internal
registers (Reg0.12, Reg0.13, Reg0.8, and Reg4.5/4.6/4.7/4.8) via SMI on a per-port basis after reset.
Those pins are used to assign the initial value of MII register 0 and 4 (PHY registers) upon reset. The
registers can be updated via SMI on a per-port basis after reset. For example, the initial value of register
0.12 of Port 4 will be 0 when pin P4Aneg is 1 upon reset.
All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+- pins
(Realtek patent). 100Base-FX can be forced into half or full duplex mode with optional flow control
ability. In order to operate correctly, both sides of the connection should be set to the same settings. In
100Base-FX, duplex and flow control ability can be set via strapped pins upon reset, or via SMI after
reset.
Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation.
Pins GxANeg/GyANeg/P4Aneg as well as GxSpd100/GySpd100/P4Spd100 are not used for 100Base-FX
mode and can be left floating while in 100Base-FX mode. For example, Port 4 will be forced into full
duplex 100Base-FX with flow control ability when P4Mode[1:0]=10, P4Full=1, P4EnFC=1 upon reset
(regardless of P4Spd100 and P4ANeg).
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
94
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
When Auto-Negotiation ability is enabled in UTP mode, the RTL8305SC supports Auto-Negotiation and
parallel detection of 10Base-T/100Base-TX to automatically determine line speed, duplex, and flow
control. The parallel detection process is used when connecting a device that does not support autonegotiation.
For example: port0 is UTP with all abilities (default for normal switch applications: GxMode=1,
GxANeg=1, GxSpd100=1, GxFull=1, GxEnFC=1. The content of MII registers will be Reg0.12=1,
Reg4.5=1, Reg4.6=1, Reg4.7=1, Reg4.8=1, and Reg4.10=1). If the connecting device supports autonegotiation, 10Full with 802.3x flow control ability, port0 will enter the auto-negotiation process. The
result will be 10Full with 802.3x flow control ability for both devices. If the other device is 10M without
auto-negotiation, port0 will enter the parallel detection process. The result will be 10Half without 802.3x
flow control ability for port0.
Note: Each port can operate at 10Mbps or 100Mbps in full-duplex or half-duplex mode independently of
others when auto-negotiation is on.
The port status for the PHY on a group basis can easily be set by pin configuration. For example, when
group X is 100FX (GxMode=0), group X can be set as force mode half duplex by setting pin GxFull to 0.
Group Y can also be set as UTP mode NWAY mode 10Full by setting GyMode=1, GyANeg=1,
GySpd100=0, GyFull=1. Refer to section 5 Pin Descriptions for details.
8.1.4.
Flow Control
The RTL8305SC supports IEEE 802.3x full duplex flow control, Force mode Full duplex Flow Control,
and optional half duplex back pressure.
IEEE 802.3x Full Duplex Flow Control
For UTP with auto-negotiation ability (GxANeg/GyANeg/P4Aneg set to 1), the pause ability (Reg.4.10)
of full duplex flow control is enabled by pins GxEnFC/GyEnFC/P4EnFC on a group basis upon reset, or
internal registers via SMI on a per-port basis after reset. For UTP with auto-negotiation ability,
IEEE 802.3x flow control’s ability is auto-negotiated between the remote device and the RTL8305SC. If
the auto-negotiation result of the 802.3x pause ability is ‘Enabled’ (Reg.4.10=1 and Reg.5.10=1), the full
duplex 802.3x flow control function is enabled. Otherwise, the full duplex 802.3x flow control function is
disabled.
Force Mode Full Duplex Flow Control
For UTP without auto-negotiation ability (GxANeg/GyANeg/P4Aneg is 0) and 100Base-FX,
IEEE 802.3x flow control’s ability can be forced to ‘Enabled’ by pins GxEnFC/GyEnFC/P4EnFC on a
group basis upon reset, or internal registers (Reg.5.10) via SMI on a per-port basis after reset. For
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
95
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
example, port 4 will be forced to 10Full UTP with forced mode full duplex flow control ability,
regardless of the connected device, when P4Mode[1:0]=10, P4Aneg=0, P4Spd100=0, P4Full=1,
P4EnFC=1. Port 0 will be forced to 100Full FX with forced mode full duplex flow control ability,
regardless of the connected device, when SetGroup=1, GxMode=0, GxFull=1, GxEnFC=1.
Regardless of IEEE 802.3x full duplex flow control or Force mode Full duplex Flow Control, when full
duplex flow control is enabled, the RTL8305SC will only recognize the 802.3x flow control PAUSE
ON/OFF frames with DA=0180C2000001, type = 8808, OP-code=01, PAUSE Time = maximum to zero,
and with a good CRC.
If a PAUSE frame is received from any PAUSE flow control enabled port set to DA=0180C2000001, the
corresponding port of the RTL8305SC will stop its packet transmission until the PAUSE timer times out
or another PAUSE frame with zero PAUSE time is received. The RTL8305SC will not forward any
802.3x PAUSE frames received from any port.
Half Duplex Back Pressure
If pin EnDefer is 1, the RTL8305SC will send a preamble to defer the other station’s transmission when
there is no packet to send. Otherwise, if pin EnDefer is 0, the RTL8305SC will force a collision with the
other station’s transmission when the buffer is full.
If pin 48pass1 is 0, the RTL8305SC will always collide with JAM (Continuous collision). Otherwise, if
pin 48pass1 is 1, the RTL8305SC will try to forward one packet successfully after 48 forced collisions
(48pass1), to avoid the connected repeater being partitioned due to excessive collisions.
NWay Mode
For UTP with auto-negotiation ability, pins GxEnFC/GyEnFC/P4EnFC are effective only in full duplex
mode. Therefore, for UTP in half duplex mode, half duplex back pressure flow control is controlled by
the ENBKPRS pin strap upon hardware reset.
Force Mode
For UTP without auto-negotiation ability, or in 100Base-FX mode, the operation mode can be forced to
half duplex. Half duplex back pressure flow control can be forced to ‘enabled’ on the RTL8305SC side
by pin GxEnFC/GyEnFC/P4EnFC on a group basis upon reset.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
96
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.1.5.
Address Search, Learning, and Aging
When a packet is received, the RTL8305SC will use the least 10 bits of the destination MAC address to
index the 1024-entry lookup table, and at the same time will compare the destination MAC address with
the contents of the 16-entry CAM. If the indexed entry is valid, or the CAM comparison is matched, the
received packet will be forwarded to the corresponding destination port. Otherwise, the RTL8305SC will
broadcast the packet. This is the ‘Address Search’.
The RTL8305SC then extracts the least 10 bits of the source MAC address to index the 1024-entry
lookup table. If the entry is not already in the table it will record the source MAC address and add
switching information. If this is an occupied entry, it will update the entry with new information. This is
called ‘Learning’. If the indexed location has been occupied by a different MAC address (hash collision),
the new source MAC address will be recorded into the 16-entry CAM. The 16-entry CAM reduces
address hash collisions and improves switching performance.
Address aging is used to keep the contents of the address table correct in a dynamic network topology.
The lookup engine will update the time stamp information of an entry whenever the corresponding source
MAC address appears. An entry will be invalid (aged out) if its time stamp information is not refreshed
by the address learning process during the aging time period. The aging time of the RTL8305SC is
between 200 and 300 seconds.
8.1.6.
Address Direct Mapping Mode
The RTL8305SC uses the least 10 bits of the MAC address to index the 1024-entry lookup table. For
example: the index of MAC address ‘12 34 56 78 90 ab’ will be 0xab.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
97
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.1.7.
Half Duplex Operation
In half duplex mode, the CSMA/CD media access method is the means by which two or more stations
share a common transmission medium. To transmit, a station waits (defers) for a quiet period on the
medium (that is, no other station is transmitting) and then sends the intended message in bit-serial form. If
the message collides with that of another station, then each transmitting station intentionally transmits for
an additional predefined period to ensure propagation of the collision throughout the system. The station
remains silent for a random amount of time (backoff) before attempting to transmit again.
When a transmission attempt has terminated due to a collision, it is retried until it is successful. A
controlled randomization process called ‘truncated binary exponential backoff’ determines the scheduling
of the retransmissions. At the end of enforcing a collision (jamming), the switch delays before attempting
to retransmit the frame. The delay is an integer multiple of slotTime (512 bit times). The number of slot
times to delay before the nth retransmission attempt is chosen as a uniformly distributed random integer
‘r’ in the range:
0 ≤ r < 2k
where:
k = min (n, backoffLimit). IEEE 802.3 defines the backoffLimit as 10.
8.1.8.
InterFrame Gap
The InterFrame Gap is 9.6µs for 10Mbps Ethernet and 960ns for 100Mbps Fast Ethernet.
8.1.9.
Illegal Frame
Illegal frames such as CRC error packets, runt packets (length < 64 bytes), and oversize packets (length >
maximum length), will be discarded.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
98
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.1.10. Dual MII Interface
Home Gateways, broadband access routers, and SOHO routers generally contain a powerful Network
Processor, with many I/O interfaces, including MII and SNI interfaces. Traditionally, this system
connects one of the MII interfaces to a single PHY as the WAN port, and another interface connects to a
multi-port switch as the LAN ports. In order to meet application demands, Realtek offers an advanced
dual MII interface for this application. This eliminates the need for a single PHY.
Figure 4 shows the traditional design of a SOHO router. In this case, the router needs an extra single PHY
as the WAN port. A traditional 5-port switch has five MAC and five PHY circuits on a single chip. When
port 4 is configured as MII-MAC/MII-PHY/SNI-PHY, we only use the MAC part of port 4.
5 Port Switch
CPU
with Dual MII
Switch Core
P0
MAC
P1
MAC
P2
MAC
P3
MAC
P4
MAC
MII_1
P4_MII
MII_2
P0
PHY
P1
PHY
P2
PHY
P3
PHY
P4
PHY
Single
PHY
LAN
WAN
Figure 4. Traditional Application
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
99
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
The RTL8305SC has pin 42, DISDUALMII, to support both port 4 PHY and MAC circuits. When the
Dual MII feature is enabled, the port 4 PHY may be used as the WAN interface as shown in Figure 5.
RTL8305SC
CPU
with Dual MII
Switch Core
P0
MAC
P1
MAC
P2
MAC
P3
MAC
P4
MAC
P4_MII
P2_MII
P0
PHY
P1
PHY
P2
PHY
LAN
P3
PHY
MII_1
MII_2
P4
PHY
WAN
Figure 5. Dual MII Application Diagram
Dual MII Interfaces Configuration
Port 4 of the RTL8305SC is able to separate the MAC and PHY circuits via the DISDUALMII
configuration. When DISDUALMII is configured as 0, the port 4 MAC circuit supports MAC mode MII,
PHY mode MII, or PHY mode SNI interface. The port 4 PHY circuit supports an MII on the MAC side,
and a UTP or fiber interface in the PHY transceiver. Four pins define the mode of the dual MII interface,
DISDUALMII (pin-42), P4MODE[0] (pin-45), P4MODE[1] (pin-44), and P4PHY_MODE (pin-68).
•
•
DISDUALMII: Enable dual MII interface feature, pull high = disable, and pull low = enable.
P4MODE[1:0]: When DISDUALMII is enabled:
11b/10b = P4MAC is MAC mode MII
01b = P4MAC is PHY mode MII
00b = P4MAC is PHY mode SNI
•
P4PHY_MODE: When DISDUALMII is enabled:
1b = P4PHY is UTP mode
0b = P4PHY is Fiber mode
The following figures show the four types of configuration for the RTL8305SC with a CPU application.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
100
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
MAC Mode MII Interface
Floating=High
Floating=High
Floating=High
10K ohm
10K ohm
User Defined
User Defined
44-P4MODE[1]
RTL8305SC
45-P4MODE[0]
PHY Mode MII Interface
MAC1_TXC
51-MTXC/PRXC
MAC1_CRS
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
68-P4PHY_MODE
MAC1_TXEN
4
59-MRXC/PTXC
60-MRXDV/PTXEN
42-DISDUALMII
67~66, 63~61-MRXD[3:0]/PTXD[3:0]
49-P4LNKSTA#
MAC1_TXD[3:0]
MAC1_RXC
MAC1_RXDV
4
MAC1_RXD[3:0]
58-MCOL/PCOL
MAC1_COL
81-PHY2RXC
MAC2_RXC
47-P4SPDSTA
48-P4DUPSTA
CPU/
Processor/
Routing Engine
MAC2_CRS
User Defined
80-PHY2RXDV
46-P4FLCTRL
78~76, 73-PHY2RXD[3:0]
MCA2_RXDV
4
MAC2_TXC
82-PHY2TXC
83PHY2TXEN
88, 86~84-PHY2TXD[3:0]
MAC2_RXD[3:0]
4
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
89-PHY2COL
PHY Mode MII Interface
MAC Mode MII Interface
Figure 6. Dual MII Mode with 1 MII-MAC + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit
MAC Mode MII Interface
Irrelevant
Irrelevant
10K ohm
10K ohm
10K ohm
User Defined
User Defined
44-P4MODE[1]
RTL8305SC
45-P4MODE[0]
PHY Mode MII Interface
MAC1_TXC
51-MTXC/PRXC
MAC1_CRS
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
68-P4PHY_MODE
MAC1_TXEN
4
59-MRXC/PTXC
MAC1_RXC
MAC1_RXDV
60-MRXDV/PTXEN
42-DISDUALMII
67~66, 63~61-MRXD[3:0]/PTXD[3:0]
49-P4LNKSTA#
MAC1_TXD[3:0]
4
MAC1_RXD[3:0]
58-MCOL/PCOL
MAC1_COL
81-PHY2RXC
MAC2_RXC
CPU/
Processor/
Routing Engine
47-P4SPDSTA/P4FULL
48-P4DUPSTA/P4SPD100
MAC2_CRS
User Defined
46-P4FLCTRL/P4ENFC
MCA2_RXDV
80-PHY2RXDV
78~76, 73-PHY2RXD[3:0]
4
MAC2_TXC
82-PHY2TXC
83-PHY2TXEN
88, 86~84-PHY2TXD[3:0]
89-PHY2COL
PHY Mode MII Interface
of 100Base-FX Mode
MAC2_RXD[3:0]
4
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
MAC Mode MII Interface
Figure 7. Dual MII Mode with 1 MII-MAC + 1 MII-PHY (100Base-FX Mode) Interfaces Application Circuit
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
101
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
PHY Mode MII Interface 1
MAC Mode MII Interface 1
10K ohm
44-P4MODE[1]
Floating=High
Floating=High
10K ohm
10K ohm
User Defined
User Defined
RTL8305SC
45-P4MODE[0]
MAC1_CRS
MAC1_RXDV
52-MTXEN/PRXDV
57~54-MTXD[3:0]/PRXD[3:0]
68-P4PHY_MODE
42-DISDUALMII
MAC1_RXC
51-MTXC/PRXC
4
MAC1_TXC
59-MRXC/PTXC
60-MRXDV/PTXEN
67~66, 63~61-MRXD[3:0]/PTXD[3:0]
4
MAC1_TXEN
MAC1_TXD[3:0]
MAC1_COL
58-MCOL/PCOL
49-P4LNKSTA#
MAC1_RXD[3:0]
47-P4SPDSTA
MAC2_RXC
81-PHY2RXC
48-P4DUPSTA
CPU/
Processor/
Routing Engine
MAC2_CRS
User Defined
80-PHY2RXDV
46-P4FLCTRL
78~76, 73-PHY2RXD[3:0]
MCA2_RXDV
4
MAC2_TXC
82-PHY2TXC
83-PHY2TXEN
88, 86~84-PHY2TXD[3:0]
MAC2_RXD[3:0]
4
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
89-PHY2COL
MAC Mode MII Interface 2
PHY Mode MII Interface 2
Figure 8. Dual MII Mode with 1 MII-PHY + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit
PHY Mode SNI Interface
MAC Mode SNI Interface
10K ohm
44-P4MODE[1]
RTL8305SC
MAC1_RXC
51-MTXC/PRXC
MAC1_CRS
10K ohm
45-P4MODE[0]
Floating=High
68-P4PHY_MODE
10K ohm
42-DISDUALMII
10K ohm
49-P4LNKSTA#
MAC1_RXDV
52-MTXEN/PRXDV
54-MTXD[0]/PRXD[0]
MAC1_RXD
59-MRXC/PTXC
MAC1_TXC
MAC1_TXEN
60-MRXDV/PTXEN
61-MRXD[0]/PTXD[0]
MAC1_TXD
58-MCOL/PCOL
MAC1_COL
CPU/
Processor/
Routing Engine
10K ohm
47-P4SPDSTA
User Defined
48-P4DUPSTA
81-PHY2RXC
46-P4FLCTRL
80-PHY2RXDV
MAC2_RXC
MAC2_CRS
User Defined
78~76, 73-PHY2RXD[3:0]
MCA2_RXDV
4
MAC2_TXC
82-PHY2TXC
83-PHY2TXEN
88, 86~84-PHY2TXD[3:0]
89-PHY2COL
PHY Mode MII Interface
MAC2_RXD[3:0]
4
MAC2_TXEN
MAC2_TXD[3:0]
MAC2_COL
MAC Mode MII Interface
Figure 9. Dual MII Mode with 1 SNI-PHY + 1 MII-PHY (100Base-T UTP) Interfaces Application Circuit
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
102
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dual MII Registers Definition
For RTL8305SC single MII interface applications (DISDUALMII=1), PHY 5 MII registers represent the
Port 4 MAC part.
For RTL8305SC dual MII interface applications (DISDUALMII=0), PHY4 registers represent the Port 4
PHY part (Read/Write), and PHY5 registers represent the Port 4 MAC part (Reg.013, 0.12, 0.8, 4.10,
4.8~4.5 are Read/Write; others are Read-Only). The 100Base-FX mode of the PHY circuit
(P4MODE[1:0]=10) only supports 100Mbps and full duplex. The PHY circuit of UTP mode only
supports full ability NWay (Flow control enabled, both 10/100Mbps, both Full/Half duplex).
The RTL8305SC support four status pins to provide the link status or initial configuration for the MAC
circuit. A brief description of the function follows:
•
•
•
•
P4LNKSTA#: Determines the link status of Port 4 MAC in real-time
P4SPDSTA: Provides initial configuration pin for speed ability upon reset
P4DUPSTA: Provides initial configuration pin for duplex ability upon reset
P4FLCTRL: Provides initial configuration pin for flow control ability upon reset
Table 143 shows the MII PHY registers of PHY4 and PHY5 definitions when P4MODE[1:0] and
DISDUALMII are configured in various combinations.
Table 143. MII Register Definition for PHY 4 and PHY 5
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
1
11
P4LNKSTA#=1 UTP
or
P4LNKSTA#=0
but UTP link
on:
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=P4FLCTRL
Reg. 4.8~4.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
Reg. 5.10=NWay result
Reg. 5.8~5.5=NWay result
PHY5
(Reg0, 1, 2, 3, 4, 5)
N/A
Port 4
LED
UTP
After Reset:
All RW pins should be fully
configurable and act as
standard.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
103
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
DualMII
[1:0]
Port 4 Mode
P4LNKSTA#=0 MAC:
and UTP link
MAC
off:
mode
MII
PHY:
N/A
UTP:
N/A
1
10
MAC: N/A
PHY: N/A
UTP: 100Base-FX
(Fiber)
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
N/A
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=P4DUPSTA
Reg. 1.2=Signal detection
Reg. 4.10=P4FLCTRL
Reg. 4.8~4.5=1111
Reg. 5.10=Reg. 4.10
Reg. 5.8~5.5= Reg. 4.8~4.5
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Port 4
MAC
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5.
N/A
Fiber
After Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=Configurable
Reg. 1.2=Signal detection
Reg. 4.10=Configurable
Reg. 4.8~4.5=1111
Reg. 5.10=Reg. 4.10
Reg. 5.8~5.5=Reg. 4.8~4.5
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
104
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
1
01
MAC: PHY mode MII
PHY: N/A
UTP: N/A
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
N/A
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Port 4
MAC
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5= Keep
the contents identical to Reg.
4.10 and 4.8~4.5.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
105
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
1
00
MAC: PHY mode SNI
PHY: N/A
UTP: N/A
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
N/A
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Port 4
MAC
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5= Keep
the contents identical to Reg.
4.10 and 4.8~4.5.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
106
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
0
11
P4PHY_MODE (pin
68)=1
MAC: MAC mode MII
PHY: PHY mode MII
UTP: 100Base-TX
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=1 (NWay=Enable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=Depends on NWay
result
Reg. 5.8~5.5=Depends on
NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
107
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Port 4
PHY
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
0
10
P4PHY_MODE
(pin 68)=0
MAC: MAC mode MII
PHY: PHY mode MII
UTP: 100Base-FX
(Fiber)
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=1
Reg. 5.8~5.5=1111
After Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=0 (NWay=Disable)
Reg. 0.8=Configurable
Reg. 1.2=Signal detection
Reg. 4.10=Configurable
Reg. 4.8~4.5=1111
Reg. 5.10=Reg. 4.10
Reg. 5.8~5.5=1111
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
108
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Fiber
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
0
01
MAC: PHY mode MII
PHY: PHY mode MII
UTP: 100Base-TX
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=1 (NWay=Enable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=Depends on NWay
result
Reg. 5.8~5.5=Depends on
NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
109
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Port 4
PHY
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Dis
P4MODE
Port 4 Mode
DualMII
[1:0]
0
00
MAC: PHY mode SNI
PHY: PHY mode MII
UTP: 100Base-TX
PHY4 (Single Mode MII)
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Reg. 0.13=1 (Speed=100M)
Reg. 0.12=1 (NWay=Enable)
Reg. 0.8=1 (Duplex=Full)
Reg. 1.2=Signal detection and
latch low
Reg. 4.10=1 (Enable Fctrl)
Reg. 4.8~4.5=1111
Reg. 5.10=Depends on NWay
result
Reg. 5.8~5.5=Depends on
NWay result
After Reset:
All RW pins should be fully
configurable and act as
standard.
PHY5
Port 4
LED
(Reg0, 1, 2, 3, 4, 5)
Upon Reset:
Port 4
PHY
Reg. 0.13=P4SPDSTA
Reg. 0.12=P4ANEG
Reg. 0.8=P4DUPSTA
Reg. 1.2=P4LNKSTA#
Reg. 4.10=P4FLCTRL
Reg. 5.10=P4FLCTRL
Reg. 4.8~4.5=Reg. 5.8~5.5=
Reg.
P4
P4
4.8~4.5 SPDSTA DUPSTA
1111
1
1
0111
1
0
0011
0
1
0001
0
0
After Reset:
Reg. 0.13=Configurable
Reg. 0.12=Configurable
Reg. 0.8=Configurable
Reg. 1.2=P4LNKSTA#
Reg. 4.10 and 4.8~4.5=
Configurable
Reg. 5.10 and 5.8~5.5=Keep
the contents identical to
Reg. 4.10 and 4.8~4.5
8.2. Physical Layer Functional Overview
8.2.1.
Auto-Negotiation for UTP
The RTL8305SC obtains the states of duplex, speed, and flow control ability for each port in UTP mode
through the auto-negotiation mechanism defined in the IEEE 802.3u specifications. During autonegotiation, each port advertises its ability to its link partner and compares its ability with advertisements
received from its link partner. By default, the RTL8305SC advertises full capabilities (100Full, 100Half,
10Full, 10Half) together with flow control ability.
8.2.2.
10Base-T Transmit Function
The output 10Base-T waveform is Manchester-encoded before it is driven into the network media. The
internal filter shapes the driven signals to reduce EMI emissions, eliminating the need for an external
filter.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
110
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.2.3.
10Base-T Receive Function
The Manchester decoder converts the incoming serial stream to NRZ data when the squelch circuit
detects the signal level is above squelch level.
8.2.4.
Link Monitor
The 10Base-T link pulse detection circuit continually monitors the RXIP/RXIN pins for the presence of
valid link pulses. Auto-polarity is implemented to correct the detected reverse polarity of RXIP/RXIN
signal pairs.
8.2.5.
100Base-TX Transmit Function
The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling,
NRZ/NRZI conversion, and MLT-3 encoding. The 5-bit serial data stream after 4B/5B coding is then
scrambled as defined by the TP-PMD Stream Cipher function to flatten the power spectrum energy such
that EMI effects can be reduced significantly.
The scrambled seed is based on PHY addresses and is unique for each port. After scrambling, the bit
stream is driven into the network media in the form of MLT-3 signaling. The MLT-3 multi-level
signaling technology moves the power spectrum energy from high frequency to low frequency, which
also reduces EMI emissions.
8.2.6.
100Base-TX Receive Function
The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits (to
compensate for an incoming distorted MLT-3 signal), an MLT-3 to NRZI and NRZI to NRZ converter to
convert analog signals to digital bit-stream, and a PLL circuit to clock data bits with minimum bit error
rate. A De-scrambler, 5B/4B decoder, and serial-to-parallel conversion circuits are followed by the PLL
circuit. Finally, the converted parallel data is fed into the MAC.
8.2.7.
100Base-FX
All ports support 100Base-FX, which shares pins with UTP (TX+-/RX+-) and needs no SD+- pins.
100Base-FX can be forced to half or full duplex with optional flow control ability.
Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. In order to
operate correctly, both sides of the connection should be set to the same duplex and flow control ability.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
111
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
A scrambler is not needed in 100Base-FX. Compared to common 100Base-FX applications, the
RTL8305SC removes a pair of differential SD (Signal Detect) signals that provide a link monitoring
function, which reduces the pin count (Realtek patent).
8.2.8.
100Base-FX Transmit Function
In 100Base-FX transmission, di-bits of TXD are processed as 100Base-TX except without being
scrambled before the NRZI stage. Instead of converting to MLT-3 signals as in 100Base-TX, the serial
data stream is driven out as NRZI PECL (Positive Emitter Coupled Logic) signals, which enter the fiber
transceiver in differential-pairs form. The fiber transceiver may be 3.3V or 5V capable. Refer to 100BaseFX Application, on page 143 for an example application.
Table 144. PECL DC Characteristics
Parameter
PECL Input High Voltage
PECL Input Low Voltage
PECL Output High Voltage
PECL Output Low Voltage
8.2.9.
Symbol
Vih
Vil
Voh
Vol
Min
Vdd-1.16
Vdd-1.81
Vdd-1.02
Max
Vdd-0.88
Vdd-1.47
Vdd-1.62
Unit
V
V
V
V
100Base-FX Receive Function
Signals are received through Positive Emitter Coupled Logic (PECL) receiver inputs from a fiber
transceiver and directly passed to a clock recovery circuit for data/clock recovery. Scrambling/descrambling is bypassed in 100Base-FX.
8.2.10. 100Base-FX FEFI
When 100FX is enabled, PHY Reg.1.4 (Remote Fault) is the Far-End-Fault-Indicator (FEFI) bit for ports,
and indicates that a FEFI has been detected. The FEFI is an alternative in-band signaling that is composed
of 84 consecutive 1’s followed by one 0. When the RTL8305SC has detected this pattern three times,
Reg.1.4 will be set, which means the transmit path (Remote side’s receive path) has problems. On the
other hand, to send an FEFI stream pattern, the following condition needs to be satisfied; the incoming
signal causes link failure, which in turn causes the remote side to detect a Far-End-Fault. This means that
the receive path has a problem from the view of the RTL8305SC. The FEFI mechanism is used only in
100Base-FX.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
112
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
During detection of the FEFI, PHY Reg.1.4 should be set to 1. It should remain 1, even after it is read, as
long as FEFI is continuously detected by the RTL8305SC. PHY Reg.1.4 should not be cleared until the
FEFI has disappeared.
If there is no FEFI, then PHY Reg.1.4 should be 0. In normal conditions where there is no optical or
electrical input signal; OPT-PHY should not detect Far-End-Fault signals since there is no such signal at
the optical input.
When Optical Receiving Fiber is disconnected from RTL8305SC, the FEFI cannot be detected by the
RTL8305SC and also cannot be reflected on PHY Reg.1.4 since there is no FEFI. If there is a FEFI
before Optical Receiving Fiber is disconnected, Reg.1.4 should be kept on 1. This bit should be cleared
to 0 after it is read (read and clear).
The OPT-PHY of RTL8305SC will not reflect the FEFI (Reg.1.4=1) when Optical Fiber is disconnected
at power up, in spite of No-Far-End-Fault signals. After power on, the default value of PHY Reg1.4 will
appear as ‘0’.
8.2.11. Reduced Fiber Interface
The RTL8305SC ignores the underlying SD signal of the fiber transceiver to complete link detection and
connection. This is achieved by monitoring RD signals from the fiber transceiver and checking whether
any link integrity events are met. This significantly reduces pin-count, especially for high-port PHY
devices. This is a Realtek patent-pending technology and available only with Realtek product solutions.
8.2.12. Power Saving Mode
The RTL8305SC implements power saving mode on a per-port basis. A port automatically enters power
saving mode 10 seconds after the cable is disconnected from it. Once a port enters power saving mode, it
transmits normal link pulses only on its TXOP/TXON pins and continues to monitor the RXIP/RXIN pins
to detect incoming signals, which might be the 100Base-TX MLT-3 idle pattern, 10Base-T link pulses, or
Auto-Negotiation’s FLP (Fast Link Pulse). After it detects any incoming signals, it wakes up from power
saving mode and operates in normal mode according to the result of the connection.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
113
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.2.13. Reg0.11 Power-Down Mode
The RTL8305SC implements power-down mode on a per-port basis. Setting MII Reg.0.11 forces the
corresponding port of the RTL8305SC to enter power-down mode. This disables all transmit/receive
functions, except SMI (Serial Management Interface: MDC/MDIO, also known as MII Management
Interface).
8.2.14. Crossover Detection and Auto Correction
During the link setup phase, the RTL8305SC checks whether it receives active signals on every port in
order to determine if a connection can be established. In cases where the receiver data pin pair is
connected to the transmitter data pin pair of the peer device and vice versa, the RTL8305SC automatically
changes its configuration and swaps receiver/transmitter data pins as required. If a port is connected to a
PC or NIC with MDI-X interface with a crossover cable, the RTL8305SC will reconfigure the port to
ensure proper connection. This replaces the DIP switch commonly used for reconfiguring a port on a hub
or switch.
By pulling-up EN_AUTOXOVER, the RTL8305SC identifies the type of connected cable and sets the
port to MDI or MDIX. When switching to MDI mode, the RTL8305SC uses TXOP/N as transmit pairs;
when switching to MDIX mode, the RTL8305SC uses RXIP/N as transmit pairs. This function is portbased. Pulling-down EN_AUTOXOVER disables this function, the RTL8305SC operates in MDI mode,
in which TXOP/N represents transmit pairs, and RXIP/N represents receive pairs.
IEEE 802.3 compliant forced mode 100M ports with Autoxover have link issues with NWay (AutoNegotiation) ports. It is recommended to not use Autoxover for forced 100M.
8.2.15. Polarity Detection and Correction
For better noise immunity and lower interference to ambient devices, the Ethernet electrical signal on a
twisted pair cable is transmitted in differential form. That is, the signal is transmitted on two wires in each
direction with inverse polarities (+/-). If wiring on the connector is faulty or a faulty transformer is used,
the two inputs to a transceiver may carry signals with opposite but incorrect polarities. As a direct
consequence, the transceiver will not work properly.
When the RTL8305SC operates in 10Base-T mode, it automatically reverses the polarity of its two
receiver input pins if it detects that the polarities of the incoming signals on the pins is incorrect.
However, this feature is unnecessary when the RTL8305SC is operating in 100Base-TX mode.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
114
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3. Advanced Functional Overview
8.3.1.
Reset
The whole or just part of the RTL8305SC is initialized depending on the reset type. There are several
ways to reset the RTL8305SC: hardware reset for the whole chip by pin RESET#, soft reset for all except
PHY by register SoftReset, and PHY software reset for each PHY by register reset.
Hardware Reset: Pin RESET#=0 set to RESET#=1 (for at least 1ms). The RTL8305SC resets the whole
chip and then gets initial values from pins and serial EEPROM.
Soft Reset: Write bit12 of Reg16 of PHY0 as 1. The RTL8305SC resets all except PHY and does not
load EEPROM and Pin Registers with serial EEPROM and Pins. The SoftReset, EEPROM, and Pin
registers are designed to provide a convenient way for users who want to use SMI to change the
configuration. After changing the EEPROM or Pin registers via SMI (Serial Management Interface), the
external device has to perform a soft reset in order to update the configuration.
PHY Software Reset: Write bit15 of Reg0 of a PHY as 1. The RTL8305SC will then reset this PHY.
Hardware Reset
Strap pin
upon reset
Soft Reset: After loading EEPROM completely,
the user may access EEPROM/Pin registers via
SMI. A Soft Reset to reset all except PHY is
required to update pin/EEPROM configuration.
Load EEPROM
upon reset
Figure 10. Reset
Some setting values for operation modes are latched from those corresponding mode pins upon hardware
reset. ‘Upon reset’ is defined as a short time after the end of a hardware reset. Other advanced
configuration parameters may be latched from serial EEPROM if pin EnEEPROM=1.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
115
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.2.
Setup and Configuration
The RTL8305SC can be configured easily and flexibly by hardware pins upon reset, optional serial
EEPROM upon reset, and internal registers (including PHY registers for each port and MAC register for
global) via SMI (Serial Management Interface: MDC/MDIO, also known as MII Management Interface).
There are three methods of configuration:
1. Only hardware pins for normal switch applications
2. Hardware pins and serial EEPROM for advanced switch applications
3. Hardware pins and internal registers via SMI for applications with processor
Three types of pins, each with internal pull-high resistors, are used for configuration:
1.
Input pins used for strapping upon reset (unused after reset)
2.
Input/Output pins (MTXD[3:2]/PRXD[3:2]/P4IRTag[1:0], MTXD[1:0]/PRXD[1:0]/LEDMode[1:0])
used for strapping upon reset and used as output pins after reset
3.
Input/Output pins (all LEDs) used for strapping upon reset and used as LED indicator pins after reset.
The LED statuses are represented as active-low or high depending on input strapping, except Bi-color
Link/Act in Bi-color LED mode, whose polarity depends on Spd status
Pins with default value=1 are internal pull-high and use I/O pads. They can be left floating to set input
value as high, but should not be connected to GND without a pull-down resistor.
The serial EEPROM shares two pins, SCL_MDC and SDA_MDIO, with SMI, and is optional for
advanced configuration. SCL_MDC and SDA_MDIO are tri-state during hardware reset (pin
RESET#=0). The RTL8305SC will try to automatically find the serial EEPROM upon reset only if pin
EnEEPROM=1. If the first byte of the serial EEPROM is not 0xFF (NoEEPROM bit of the first byte=0),
the RTL8305SC will load all contents of the serial EEPROM into internal registers. Otherwise, the
RTL8305SC will use the default internal values.
Internal registers can still be accessed after reset via SMI (pin SCL_MDC and SDA_MDIO). Serial
EEPROM signals and SMI signals must not exist at the same time. In order to use the SMI to flexibly
change configuration, internal registers include the contents of some pins and all serial EEPROM. These
registers do not work in real time and a Soft Reset is necessary after changing the EEPROM or pin
registers.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
116
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.3.
Serial EEPROM Example: 24LC02
The 24LC02 interface is a 2-wire serial EEPROM interface providing 2K bits of storage space. The
24LC02 must be 3.3V compatible.
8.3.3.1 24LC02 Device Operation
Clock and Data transitions: The SDA pin is normally pulled high with an external resistor. Data on the
SDA pin may change only during SCL low time periods. Data changes during SCL high periods will
indicate a start or stop condition as defined below.
Start Condition: A high-to-low transition of SDA with SCL high is the start condition and must precede
any other command.
Stop Condition: A low-to-high transition of SDA with SCL high is a stop condition.
Acknowledge: All addresses and data are transmitted serially to and from the EEPROM in 8-bit words.
The 24LC02 sends a zero to acknowledge that it has received each word. This happens during the ninth
clock cycle.
Random Read: A random read requires a ‘dummy’ byte write sequence to load in the data word address.
Sequential Read: For the RTL8305SC, the sequential reads are initiated by a random address read. After
the 24LC02 receives a data word, it responds with an acknowledgement. As long as the 24LC02 receives
an acknowledgement, it will continue to increment the data word address and clock out sequential data
words in series.
SDA
SCL
START
STOP
Figure 11. Start and Stop Definition
SCL
8
1
9
DATA IN
DATA OUT
ACKNOWLEDGE
START
Figure 12. Output Acknowledge
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
117
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Start
Write
Device
Address
Start
Word
Address n
Stop
Read
Device
Address
SDA
Data n
R/W
ACK
ACK
ACK
NO ACK
Dummy Write
Figure 13. Random Read
Read
ACK
Stop
ACK
Device
Address
SDA
Data n
R/W
ACK
Data n+1
ACK
Data n+x
ACK
NO ACK
Figure 14. Sequential Read
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
118
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.4.
SMI
The SMI (Serial Management Interface) is also known as the MII Management Interface, and consists of
two signals (MDIO and MDC). It allows external devices with SMI master mode (MDC is output) to
control the state of the PHY and internal registers (SMI slave mode: MDC is input). MDC is an input
clock for the RTL8305SC to latch MDIO on its rising edge. The clock can run from DC to 25MHz.
MDIO is a bi-directional connection used to write data to, or read data from the RTL8305SC. The PHY
address is from 0 to 4.
Table 145. SMI Read/Write Cycles
Preamble
Start
OP Code
PHYAD
REGAD
Turn Around
Data
(32 bits) (2 bits)
(2 bits)
(5 bits)
(5 bits)
(2 bits)
(16 bits)
Read
1……..1
01
10
A4A3A2A1A0 R4R3R2R1R0
Z0
D15…….D0
Write
1……..1
01
01
A4A3A2A1A0 R4R3R2R1R0
10
D15…….D0
Note: Z*: high-impedance. During idle time MDIO state is determined by an external 1.5KΩ pull-up resistor.
Idle
Z*
Z*
The RTL8305SC supports Preamble Suppression, which allows the MAC to issue Read/Write Cycles
without preamble bits. However, for the first cycle of MII management after power-on reset, a 32-bit
preamble is needed.
To guarantee the first successful SMI transaction after power-on reset, the external device should delay at
least 1second before issuing the first SMI Read/Write Cycle relative to the rising edge of reset.
8.3.5.
Head-Of-Line Blocking
The RTL8305SC incorporates an advanced mechanism to prevent Head-Of-Line blocking problems when
flow control is disabled. When the flow control function is disabled, the RTL8305SC first checks the
destination address of the incoming packet. If the destination port is congested, the RTL8305SC will
discard this packet to avoid blocking the next packet, which is going to a non-congested port.
8.3.6.
Port-Based VLAN
If the VLAN function is enabled by pulling down the strapping pin DisVLAN, the default VLAN
membership configuration by internal register is port 4 overlapped with all the other ports to form four
individual VLANs. This default configuration of the input port could be modified via an attached serial
EEPROM or SMI interface. The 16 VLAN membership registers designed into the RTL8305SC provide
full flexibility for users to configure the input ports to associate with different VLAN groups. Each input
port can join more than one VLAN group.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
119
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Port-based VLAN mapping is the simplest implicit mapping rule. Each ingress packet is assigned to a
VLAN group based on the input port. It is not necessary to parse and inspect frames in real-time to
determine their VLAN association. All the packets received on a given input port will be forwarded to
this port’s VLAN members. The RTL8305SC supports five VLAN indexes for each port to individually
index this port to one of the 16 VLAN membership registers. These 16 VLAN membership registers,
VLAN ID [A] membership bit [4:0] ~ VLAN ID [P] membership bit [4:0], describe which ports are the
members of this VLAN. The RTL8305SC forwards packets to the members of this VLAN only
(excluding the input port of this frame). A port that is not included in a VLAN’s member set cannot
transmit packets to this VLAN.
Figure 15 illustrates a typical application. VLAN indexes and VLAN member definitions are set to form
three different VLAN groups.
VLAN 1
P0
Port 0 VLAN Index=0000
Membership [B] 1 1 0 0 0
P1
Port 1 VLAN Index=0000
P2
Port 2 VLAN Index=0000
P3
Port 3 VLAN Index=0001
P4
Membership [A] 0 0 1 1 1
Membership [C] 0 0 0 0 0
VLAN 2
Port 4 VLAN Index=0001
Membership [P] 0 0 0 0 0
RTL8305SC
Figure 15. VLAN Grouping Example
For port-based VLAN configuration, each ingress port is allotted an index register to index to this port’s
‘Port VLAN Membership’ register, which can be defined in one of the registers from ‘VLAN ID [A]
Membership bit [4:0]’ to ‘VLAN ID [P] Membership bit [4:0]’ register.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
120
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Using the default value as an example:
•
Port 0 VLAN Index[3:0]=2’b0000 means the member set of port 0 is defined
in the ‘VLAN ID [A] Membership’ register
•
Port 1 VLAN Index[3:0]=2’b0001 means the member set of port 0 is defined
in the ‘VLAN ID [B] Membership’ register
•
Port 2 VLAN Index[3:0]=2’b0010 means the member set of port 0 is defined
in the ‘VLAN ID [C] Membership’ register
•
Port 3 VLAN Index[3:0]=2’b0011 means the member set of port 0 is defined
in the ‘VLAN ID [A] Membership’ register
•
Port 4 VLAN Index[3:0]=2’b0100 means the member set of port 0 is defined
in the ‘VLAN ID [A] Membership’ register
For non-VLAN tagged frames, the RTL8305SC performs port-based VLAN. It will use ‘Port n VLAN
Index [3:0]’ register to index to a VLAN membership. The VLAN ID associated with this indexed
VLAN membership is the Port VID (PVID) of this port.
8.3.7.
IEEE 802.1Q Tagged-VID Based VLAN
The RTL8305SC supports 16 VLAN entries to perform 802.1Q tagged-VID based VLAN mapping. In
802.1Q VLAN mapping, the RTL8305SC uses a 12-bit explicit identifier in the VLAN tag to associate
received packets with a VLAN. The 16 groups of VLAN membership registers, ‘VLAN ID [A]
membership [4:0] ~ VLAN ID [P] membership [4:0]’, consist of the ports that are in the same VLAN
corresponding to the registers defined in register ‘VLAN ID [A] [11:0] ~ VLAN ID [P] [11:0]’. If the
VID of a VLAN-tagged frame does not hit any one of the registers in ‘VLAN ID [A] [11:0] ~ VLAN ID
[P] [11:0]’, the RTL8305SC will perform port-based VLAN mapping to the member set indexed by
register ‘Port n VLAN index [3:0]’. Otherwise, the RTL8305SC compares the explicit identifier in the
VLAN tag with the 16 VLAN ID registers to determine the VLAN association of this packet, and then
forwards this packet to the member set of this VLAN. Two VIDs are reserved for special purposes. One
of them is all 1’s, which is reserved and currently unused. The other is all 0’s, which indicates a priority
tag. A priority-tagged frame should be treated as an untagged frame.
When ‘802.1Q tag aware VLAN’ at PHY0 Reg.16.10 is enabled, the RTL8305SC performs 802.1Q tagbased VLAN mapping for tagged frames, but still performs port-based VLAN mapping for untagged
frames. If ‘802.1Q tag aware VLAN’ is disabled, the RTL8305SC performs only port-based VLAN
mapping both on non-tagged and tagged frames. Figure 16 illustrates the processing flow when ‘802.1Q
tag aware VLAN’ is disabled.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
121
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
------
Un-tagged
Tagged
------
Length/
Type
Length/
Type
SA
802.1Q
Tag
SA DA
DA
P0
P0VLANIndex=0000
P1
P2
P3
-----------
Length/
Type
Length/
Type
SA
802.1Q
Tag
SA DA
Search
VID
Table
DA
VID [A]=0x000
Membership [A] 1 0 0 0 1
VID [B]=0x001
Membership [B] 1 0 0 1 0
VID [C]=0x002
Membership [C] 1 0 1 0 0
VID [P]=0x00f
Membership [I]
10001
P4
RTL8305SC
Figure 16. Tagged and Untagged Packet Forwarding when 802.1Q Tag Aware VLAN is Disabled
Two VLAN ingress filtering functions are supported by the RTL8305SC in registers. One is the ‘VLAN
tag admit control’ defined in PHY0 Reg.16.8, which provides the ability to receive VLAN-tagged frames
only. Untagged or priority tagged (VID=0) frames will be dropped. The other is ‘VLAN member set
ingress filtering’ defined in PHY0 Reg.16.9, which will drop frames if the receive port is not in the
member set.
There are also two optional egress filtering functions supported by the RTL8305SC through strapping.
One is ‘Leaky VLAN’ at PHY0 Reg18.11, which e . That is, if the layer 2 lookup table search has a hit,
then the unicast packet will be forwarded to the egress port, ignoring the egress rule. The other is ‘ARP
VLAN’ at PHY0 Reg.18.10, which will broadcast ARP packets to all other ports, ignoring the egress rule.
8.3.8.
Port VID (PVID)
In a router application, the router may want to know which input port this packet came from. The
RTL8305SC supports Port VID (PVID) for each port to insert a PVID in the VLAN tag on an egress
packet. The VID information carried in the VLAN tag will be changed to a PVID. The RTL8305SC also
provides an option to admit VLAN tagged packets with a specific PVID only. When this function is
enabled, packets with an incorrect PVID, and non-tagged packets will be dropped.
The RTL8305SC uses an internal register, Port n VLAN index [3:0,] to index to one of the 16 VLAN
entries. The VLAN ID associated with this indexed VLAN entry is the PVID for this port. Users may
select VLAN insert/remove type 10 or 00 to insert a PVID on egress packets.
In 802.1Q tag-based VLAN applications, do not use a port-based VLAN PVID applications as the VID
information carried in the VLAN tag will be replaced with a PVID.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
122
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.9.
Lookup Table Access
The RTL8305SC supports registers for the CPU to read or write an internal 1024-entry lookup table via
the SMI interface. Before reading/writing from/to the internal forwarding table, the contents of internal
register, Indirect Access Control [15:0] at PHY4 Register 16, should be filled correctly.
In the write cycle, the user must assign the write data in register Indirect Access Data 0, 1, 2, and 3 at
PHY4 Register 17~20 first. Register 17, bits [1:0] along with bits [15:8] form a 10-bit field (Entry Index
[9:0]), which is indirectly mapped to an entry in the lookup table. To execute write access, bit 0 in the
Indirect Access Control register should be set to 0, and bit 1 should be set to 1. The CPU will poll bit 1 in
Indirect Access Control to determine whether the write access is complete on not.
In the read cycle, the user only has to enter the read address of the lookup table in register Indirect Access
Data 0, 1, 2, and 3 at PHY4 Register 17~20 first. Register 17, bits [1:0] along with bits [15:8] form a
10-bit field (Entry Index [9:0]). To execute read access, bit 0 in the Indirect Access Control register
should be set to 1, and bit 1 should be set to 1 to trigger this command. The CPU will poll bit 1 in Indirect
Access Control to determine whether read access is complete or not.
8.3.10. QoS Function
The RTL8305SC can recognize the QoS priority information of incoming packets to give a different
egress service priority. The RTL8305SC identifies the packets as high priority based on several types of
QoS priority information:
•
•
•
Port-based priority
802.1p/Q VLAN priority tag
TCP/IP’s TOS/DiffServ (DS) priority field
There are two priority queues; a high-priority queue, and a low-priority queue. The queue service rate is
based on the Weighted Round Robin algorithm, the packet-based service weight ratio of the high-priority
queue and low-priority queue can be set to 4:1, 8:1, 16:1 or ‘Always high priority first’ by hardware pins
upon reset, or internal register via SMI after reset.
Port-Based Priority
When port-based priority is applied, packets received from the high-priority port are sent to the highpriority queue of the destination port. High priority ports can be partially set by hardware pins, and
wholly configured by registers.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
123
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
802.1p-Based Priority
When 802.1p VLAN tag priority is enabled, the RTL8305SC recognizes the 802.1Q VLAN tag frames
and extracts the 3-bit User Priority information from the VLAN tag. The RTL8305SC default sets the
threshold of User Priority as 4. Therefore, VLAN tagged frames with User Priority value = 4~7 will be
treated as high priority frames, and User Priority values=0~3 will be treated as low priority frames
(follows the IEEE 802.1p standard). The threshold value can be modified in internal registers via an SMI
interface or configured in EEPROM.
DiffServ-Based Priority
When TCP/IP’s TOS/DiffServ(DS) based priority is enabled, the RTL8305SC recognizes TCP/IP
Differentiated Services Codepoint (DSCP) priority information from the DS-field defined in RFC 2474.
The DS field byte in IPv4 is a Type-of-Service (TOS) octet. The recommended DiffServ Codepoint is
defined in RFC 2597 to classify the traffic into different service classes. The RTL8305SC extracts the
codepoint value of DS-fields from IPv4 packets, and identifies the priority of the incoming IP packet
according to the following definition:
High priority: Where the DS-field = (EF, Expected Forwarding:) 101110 or
(AF, Assured Forwarding:) 001010; 010010; 011010; 100010 or
(Network Control:) 110000 and 111000.
Low priority: Where the DS-field = Other values.
The VLAN-tagged frame and 6-bit DS-field in the IPv4 frame format are shown below:
Table 146. 802.1Q VLAN Tag Frame Format
6 bytes
DA
6 bytes
SA
2 bytes
81-00
3 bits
User-Priority
(0~3: Low-pri; 4~7: High-pri)
----
Table 147. IPv4 Frame Format
6 bytes
DA
6 bytes
SA
4 bytes
802.1Q Tag
(optional)
2 bytes
08-00
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
4 bits
Version IPv4=
0100
124
4 bits
IHL
6 bits
TOS[0:5]= DSfield
----
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.11. Insert/Remove VLAN Tag
The RTL8305SC supports four types of insert/remove VLAN packet tags, controlled by internal registers
on a per-port basis. They are classified as follows:
Type 11: Do not change packets (Default).
Type 10: Insert input port’s VLAN tags for non-tagged packets. Do not change packets if they are
already tagged.
Type 01: Remove VLAN tags from tagged packets. Do not change packets if they are not tagged.
Type 00: Remove VLAN tags from tagged packets, then insert the input port’s VLAN tags. For nontagged packets, insert the input port’s VLAN tags.
If a tagged frame is less than 64 bytes after removal of the tag, it will be padded with an 0x20 pattern
before the packet’s CRC field to fit the 64-byte minimum packet length of the IEEE 802.3 spec. The
RTL8305SC will recalculate the FCS (Frame Check Sequence) if the frame has been changed.
8.3.12. Filtering/Forwarding Reserved Control Frame
The RTL8305SC supports the ability to forward or drop the frames of the IEEE 802.1D specified
reserved multicast addresses.
Table 148. Reserved Multicast Address
Address
Function
01-80-C2-00-00-00
Bridge Group Address
01-80-C2-00-00-01
Pause Control Frame
01-80-C2-00-00-03
IEEE802.1X Control Frame
01-80-C2-00-00-02 and
Reserved
01-80-C2-00-00-04 to
01-80-C2-00-00-0F
Any other multicast Address
Note: * Indicates the default setting.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
125
Control Bit
N/A
N/A
N/A
EnForward
Control Bit=0
Control Bit=1
Broadcast
Drop
Broadcast
Drop
*Broadcast
N/A
Broadcast
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.13. Broadcast Storm Control
According to the latched value of the DISBRDCTRL pin upon reset, the RTL8305SC determines whether
or not to proceed with broadcast storm control. Once enabled (DISBRDCTRL=0), after 64 consecutive
broadcast packets (DID=FF-FF-FF-FF-FF-FF) are received by a particular port, this port will discard
following incoming broadcast packets for approximately 800ms. Any non-broadcast packet can reset the
time window and broadcast counter such that the scheme restarts.
Note: Trigger condition: consecutive 64 DID = FF-FF-FF-FF-FF-FF packets. Release condition: receive
non-broadcast packet on or after 800ms.
8.3.14. Broadcast In/Out Drop
If some destination ports are blocking and the buffer is full, broadcast frames are dropped according to
configuration.
1.
Input Drop: Do not forward to any port and drop the frame directly
2.
Output Drop: Forward only to non-blocking ports (Broadcast becomes multicast)
1. Broadcast packet from Port0
2. Buffer of Port4 is full, others are not full
Port 0
1
2
3
Port 0
4
1
Full
2
3
4
Full
Rx:
Rx:
Input Drop
Output Drop
Figure 17. Input Drop vs. Output Drop
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
126
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.15. Loop Detection
Loops should be avoided between switch applications. The simplest loop as shown below results in:
1) Unicast frame duplication; 2) Broadcast frame multiplication; 3) Address table non-convergence.
Frames may be transmitted from Switch1 to Switch 2 via Link 1, then returned to Switch 1 via Link 2.
Switch 1
Switch 2
Link 2
Link 1
Figure 18. Loop Example
When the loop detection function is enabled, the RTL8305SC periodically sends out a broadcast 64-byte
packet every 3~5 minutes and automatically detects whether there is a network loop (or bridge loop). If a
loop is detected, the LoopLED# will be ON (active low or high). The LED goes out when both
RTL8305SC ports of the loop are unplugged. The Loop frame length is 64 bytes and its format is shown
below.
Table 149. Loop Frame Format
FFFF FFFF FFFF
SID
8899
0300 000…0000
CRC
In order to achieve loop detection, each switch device needs a unique SID (the source MAC address). If
the EEPROM is not used, a unique SID should be assigned via SMI after reset, and the default SID (5254-4c-83-05-c0) should not be used.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
127
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.16. MAC Local Loopback Return to External
Each port supports loopback of the MAC (return to external device) for diagnostic purposes.
Example 1: If the internal register, PHY4 Reg.22.13=0 (Local loopback), the RTL8305SC will forward
local and broadcast packets from the input of Port 4 to the output of Port 4, and drop unicast packets from
the input of Port 4. Other ports can still forward broadcast or unicast packets to Port 4.
Example 2: If the internal register, PHY3 Reg.22.13=0 (Local loopback), the RTL8305SC will “forward
local and broadcast packets from the input of Port3 to the output of Port3” and “drop unicast packets from
the input of Port3”. Other ports can still forward broadcast or unicast packets to port3.
This is especially useful for router applications performing mass production tests. This function is
independent of PHY type (GxMode/GyMode/P4Mode[1:0]) and can be done on each mode. Below are
two examples: In Example 1 the external device (CPU) is connected to the MII or SNI interface of Port 4.
In Example 2, the external device (CPU) does not have an MII or SNI interface, so it uses the PCI
interface to connect an RTL8139 to the UTP port of Port 4.
Example 1: LoopBack in External PHY Mode
RTL8305SC
MII/SNI
CPU
Example 2: LoopBack in UTP Mode
RTL8305SC
UTP
RTL8139
PCI
CPU
Figure 19. Port 4 Loopback
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
128
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.17. Reg.0.14 PHY Digital Loopback Return to Internal
The digital loopback mode of the PHY (return to internal MAC) may be enabled on a per-port basis by
setting MII Reg.0.14 to 1. In digital loopback mode, the TXD of PHY is transferred directly to the RXD
of PHY with TXEN changed to CRS_DV, and returns to MAC via an internal MII. The data stream
coming from the MAC will not egress to the physical medium, and an incoming data stream from the
network medium will be blocked in this mode. The packets will be looped back in 10Mbps full duplex or
100Mbps full duplex mode. This function is especially useful for diagnostic purposes. For example, a
NIC can be used to send broadcast frames into port0 of the RTL8305SC and set Port1 to Reg0.14
Loopback. The frame will be looped back to port 0, so the received packet count can be checked to verify
that the switch device is good. In this example, port0 can be 10M or 100M and full or half duplex.
MAC
Internal MII
PHY
Figure 20. Reg. 0.14 Loopback
As the RTL8305SC only supports digital loopback in full duplex mode, PHY Reg.0.8 for each port will
always be kept on 1 when digital loopback is enabled. The digital loopback only functions on broadcast
packets (DA=FF-FF-FF-FF-FF-FF). In loopback mode, the link LED of the loopback port should always
be ON, and the Speed and Duplex LED combined to reflect the link status (100full/10full) correctly,
regardless of what the previous status of this loopback port was.
Consider a case where a port is initially unlinked. When we set this port to digital loopback mode, the
RTL8305SC can get this port linked up within 100ms at the configured speed, and will block the sending
of UTP or Fiber signals from this port.
8.3.18. LEDs
The RTL8305SC supports four parallel LEDs for each port, and two special LEDs (SELMIIMAC# and
LOOPLED#). Each port has four LED indicator pins. Each pin may have different indicator meanings set
by pins LEDMode[1:0]. Refer to the pin descriptions for details (Port LED Pins, on page 20). Upon reset,
the RTL8305SC supports chip diagnostics and LED functions by blinking all LEDs once for 320ms. This
function can be disabled by asserting EN_RST_LINK to 0. LED_BLINK_TIME determines the LED
blinking period for activity and collision (1=43ms and 0=120ms). The parallel LEDs corresponding to
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
129
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
port 4 can be tri-stated (disable LED functions) for MII port application by setting ENP4LED in
EEPROM to 0. In UTP applications, this bit should be set to 1.
All LED pins are dual function pins: input operation for configuration upon reset, and output operation
for LED after reset. If the pin input is floating upon reset, the pin output is active low after reset.
Otherwise, if the pin input is pulled down upon reset, the pin output is active high after reset.
Exception: Bi-color Link/Act mode of pin LED_ADD[4:0] when LEDMode[1:0]=10.
Below is an example circuit for LEDs. The typical values for pull-down resistors are 10KΩ.
Floating
Pull Down
3.3V
LED Pin
RTL8305SC
330 ohm
330 ohm
10K ohm
RTL8305SC
LED Pin
Figure 21. Floating and Pull-Down of LED Pins
For two-pin Bi-color LED mode (LEDMode[1:0]=10), Bi-color Link/Act (pin LED_ADD) and Spd (pin
LED_SPD) can be used for one Bi-color LED package, which is a single LED package with two LEDs
connected in parallel with opposite polarity. When LEDMode[1:0]=10, the active status of LED_ADD is
the opposite of LED_SPD.
Table 150. Spd and Bi-Color Link/Act Truth Table
Indication
Bi-Color State
No Link
100M Link
10M Link
100M Act
10M Act
Both Off
Green On
Yellow On
Green Flash
Yellow Flash
Spd: Input=Floating, Active Low.
Bi-color Link/Act: The active status
of LED_ADD is the opposite of
LED_SPD and does not interact with
input upon reset.
Spd
Link/Act
1
1
0
1
1
0
0
Flash
1
Flash
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
130
Spd: Input=Pull-down, Active High.
Bi-color Link/Act: The active status
of LED_ADD is the opposite of
LED_SPD and does not interact with
input upon reset.
Spd
Link/Act
0
0
1
0
0
1
1
Flash
0
Flash
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Yellow
LED_SPD
LED_ADD
Green
Figure 22. Two Pin Bi-color LED for SPD Floating or Pull-high
Yellow
LED_SPD
LED_ADD
Green
Figure 23. Two Pin Bi-color LED for SPD Pull-down
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
131
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
8.3.19. 1.8V Power Generation
The RTL8305SC can use a PNP transistor to generate 1.8V from a 3.3V power supply. This 1.8V is used
for the digital core and analog receiver circuits. Do not use one PNP transistor for more than one
RTL8305SC chip, even if the rating is enough. Use one transistor for each RTL8305SC chip.
Do not connect an inductor (bead) directly between the collector of the PNP transistor and AVDD18. This
will adversely affect the stability of the 1.8V power to a significant degree.
3.3V
Bead
HVDD33
DVDD33
HVDD33, DVDD33: 3.3V
RTL8305SC
0Ω
2SB1188
Ic(max.) = 2A
VCTRL
DVDD18, AVDD18: 1.8V
DVDD18
AVDD18
1N4001
Diode
1.8V
Bead
47uF/10uF/0.1uF
Figure 24. Using a PNP Transistor to Transform 3.3V Into 1.8V
Table 151. An Example Using Power Transistor 2SB1188
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Collector power dissipation
Junction temperature
Storage temperature
Symbol
VCBO
VCEO
VEBO
IC
PC
Tj
Tstg
Limits
-40
-32
-5
-2
0.5
150
-55~+150
Unit
V
V
V
A(DC)
W
°C
°C
Note: Absolute maximum ratings (Ta=25°C).
For more information, refer to http://www.rohm.com
8.3.20. Crystal/Oscillator
The frequency is 25Mhz. The maximum Frequency Tolerance is +/-50ppm. The maximum Jitter is 150ps
Peak-to-Peak.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
132
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
9.
Characteristics
9.1. Absolute Maximum Ratings
WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to
the device, or device reliability will be affected. All voltages are specified reference to GND unless
otherwise specified.
Table 152. Electrical Characteristics/Ratings
Parameter
Vcc Supply Referenced to GND
Digital Input Voltage
DC Output Voltage
Min
-0.5
-0.5
-0.5
Max
+4.0
VDD
VDD
Units
V
V
V
Min
-55
0
3.15
Max
+150
+70
3.45
Units
°C
°C
V
1.71
1.95
V
9.2. Operating Range
Parameter
Storage Temperature
Ambient Operating Temperature (Ta)
3.3V Vcc Supply Voltage Range (HVDD33,
DVDD33)
1.8V Vcc Supply Voltage Range (DVDD18,
AVDD18)
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
133
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
9.3. DC Characteristics
Parameter
Power Supply Current
for 1.8V
SYM
Icc
Condition
10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100% utilization
Power saving
Power down
10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100% utilization
Power saving
Power down
10Base-T, idle
10Base-T, Peak continuous 100% utilization
100Base-TX, idle
100Base-TX, Peak continuous 100% utilization
Power saving
Power down
Power Supply Current
for 3.3V
Icc
Total Power
Consumption for all
Ports
PS
TTL Input High Voltage
Vih
TTL Input Low Voltage
Vil
TTL Input Current
Iin
TTL Input Capacitance
Cin
Output High Voltage
Voh
Output Low Voltage
Vol
0.4
V
Output Three State
Leakage Current
|IOZ|
10
uA
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
Min
40
500
460
470
40
40
110
100
110
100
60
60
295
1230
1191
1176
270
270
2.0
Typical
45
525
470
480
45
45
120
110
120
110
65
65
477
1308
1242
1227
295.5
295.5
Max
50
550
480
490
50
50
130
120
130
120
70
70
519
1386
1293
1278
321
321
mA
mW
V
-10
0.8
V
10
uA
3
pF
2.25
134
Units
mA
V
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
9.4. AC Characteristics
Parameter
SYM
Differential Output
Voltage, Peak-to-Peak
Differential Output
Voltage Symmetry
Differential Output
Overshoot
Rise/Fall Time
VOD
Rise/Fall Time Imbalance
|tr - tf|
VOS
VOO
tr ,tf
Duty Cycle Distortion
TD Short Circuit Fault
Tolerance
TD Common-Mode
Output Voltage
Transmitter Output Jitter
Harmonic Content
Start-of-idle Pulse Width
Typical
Max
Units
V
99.1
%
Percent of Vp+ or Vp-
3.1
%
10-90% of Vp+ or Vp-
4.1
ns
0.17
ns
0.2
ns
0.87
4.6
ns
dB
4.6
dB
VOD
Ecm
Period of time from start of TP_IDL to link
pulses or period of time between link pulses
Peak output current on TD short circuit
for 10 seconds.
Terminate each end with 50Ω resistive load
RD Differential Output
Impedance (return loss)
Min
1.007
Deviation from best-fit time-grid, 010101 …
Sequence
Idle pattern
Return loss margin from 2Hz to 80MHz for
reference resistance of 100Ω. The margin is
the minimum difference between the limit line
and the return loss curve
Return loss margin from 2Hz to 80MHz for
reference resistance of 100Ω. The margin is
the minimum difference between the limit line
and the return loss curve
Transmitter, 10Base-T
50Ω from each output to Vcc, all pattern
Timing Jitter
TD Differential Output
Impedance (return loss)
Differential Output
Voltage, Peak-to-Peak
TP_IDL Silence Duration
Condition
Transmitter, 100Base-TX
50Ω from each output to Vcc, Best-fit over 14
bit times
50Ω from each output to Vcc, |Vp+|/ |Vp-|
dB below fundamental, 20 cycles of all ones
data
TP_IDL width
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
135
2.36
V
10.48
ms
24
mA
43.2
mV
6
28
ns
dB
256
ns
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
9.5. Digital Timing Characteristics
Table 153. LED Timing
Parameter
SYM Condition
Min
LED Timing
tLEDon While LED blinking
tLEDoff While LED blinking
LED On Time
LED Off Time
Typical
43
43
Max
Units
120
120
ms
ms
MRXC/PTXC,
PHY2PTXC,
MDC
MRXD/PTXD[3: 0],
PHY2PTXD[3: 0],
MRXDV/PTXEN,
PHY2PTXEN,
MCOL, PHY2PCOL,
MDIO
Th
Ts
Figure 25. Reception Data Timing of MII/SNI/SMI Interface
MTXC/PRXC,
PHY2PRXC,
MDC
T cyc
T os
Toh
MTXD/PRXD[3:0],
PHY2PRXD[3:0],
MTXEN/PRXDV,
PHY2PRXDV,
PCOL, PHY2PCOL,
MDIO
Figure 26. Transmission Data Timing of MII/SNI/SMI Interface
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
136
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Table 154. MII & SMI DC Timing
Parameter
SYM Condition
100BaseT MTXC/MRXC,
MRXC/PTXC
10BaseT MTXC/MRXC,
MRXC/PTXC
MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV Output
Setup Time
MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV Output
Hold Time
MRXD[3:0]/PTXD[3:0],
MRXDV/PTXEN,
MCOL/PCOL Setup Time
MRXD/PTXD,
MRXDV/PTXEN,
MCOL/PCOL Hold Time
Tcyc
100BaseT MTXC/MRXC,
MRXC/PTXC,
PHY2PTXC, PHY2PRXC
10BaseT MTXC/PRXC,
MRXC/PTXC,
PHY2PTXC, PHY2PRXC
MTXD/PRXD[3:0],
PHY2PRXD[3:0],
MTXEN/PRXDV,
PHY2PRXDV
MCOL/PCOL,
PHY2PCOL Output Setup
Time
MTXD/PRXD[3:0],
PHY2PRXD[3:0],
MTXEN/PRXDV,
PHY2PRXDV
MCOL/PCOL,
PHY2PCOL Output Hold
Time
MRXD/PTXD[3:0],
PHY2PTXD[3:0],
MRXDV/PTXEN,
PHY2PTXEN Setup Time
MRXD/PTXD[3:0],
PHY2PTXD[3:0],
MRXDV/PTXEN,
PHY2PTXEN Hold Time
Tcyc
Tcyc
Tos
Toh
Ts
Th
I/O
MAC Mode MII Timing
MTXC/MRXC, MRXC/PTXC clock cycle
time
MTXC/MRXC, MRXC/PTXC clock cycle
time
Output Setup time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV
Output Hold time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
MTXEN/PRXDV
MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge setup time
MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge hold time
PHY Mode MII Timing
MTXC/MRXC, MRXC/PTXC, PHY2PTXC,
PHY2PRXC clock cycle time
I
Min
Type
Max
Units
ns
O
40±50
ppm
400±50
ppm
34
34.8
36
ns
O
4
6
ns
I
4
ns
I
2
ns
I
5.2
ns
O
40±50
ppm
ns
400±50
ppm
ns
Tcyc
MTXC/MRXC, MRXC/PTXC, PHY2PTXC,
PHY2PRXC clock cycle time
O
Tos
Output Setup time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
PHY2PRXD[3:0], MTXEN/PRXDV,
PHY2PRXDV MCOL/PCOL, PHY2PCOL
O
17.2
18.2
19.2
ns
Toh
Output Hold time from MTXC/PRXC rising
edge to MTXD[3:0]/PRXD[3:0],
PHY2PRXD[3:0], MTXEN/PRXDV,
PHY2PRXDV MCOL/PCOL, PHY2PCOL
O
20.8
21.8
22.8
ns
Ts
MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge setup time
I
4
ns
Th
MRXD[3:0]/PTXD[3:0], MRXDV/PTXEN to
MRXC/PTXC rising edge hold time
I
2
ns
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
137
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Parameter
MTXC/MRXC,
MRXC/PTXC
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Output
Setup Time
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Output
Hold Time
MRXD/PTXD[0],
MRXDV/PTXEN Setup
Time
MTXD/PRXD[0],
MTXEN/PRXDV,
MCOL/PCOL Hold Time
MDC
MDIO Setup Time
MDIO Hold Time
MDIO Output Delay
Relative to Rising Edge of
MDC
SYM Condition
Tcyc
Tos
I/O
PHY Mode SNI Timing
MTXC/PRXC, MRXC/PTXC clock cycle
time
Output Setup time from MTXC/PRXC rising
edge to MTXD[0]/PRXD[0],
MTXEN/PRXDV, MCOL/PCOL
O
Min
Type
Max
Units
ns
O
100±50
ppm
36
38
40
ns
61
ns
Toh
Output Hold time from MTXC/PRXC rising
edge to MTXD[0]/PRXD[0],
MTXEN/PRXDV, MCOL/PCOL
O
59
Ts
MRXD[0]/PTXD[0], MRXDV/PTXEN to
MRXC/PTXC rising edge setup time
I
4
ns
Th
MTXD[0]/PRXD[0], MRXDV/PTXEN to
MRXC/PTXC rising edge hold time
I
2
ns
I
I
I
O
40
10
ns
ns
ns
µs
Tcyc
Ts
Th
Tov
SMI Timing
MDC clock cycle
Write cycle
Write cycle
Read cycle
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
138
60
10
10
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
9.6. Thermal Characteristics
9.6.1.
Package Description
Table 155. Package Description
Item
Type
Device
Dimension (L x W)
Thickness
9.6.2.
Parameter
QFP128
RTL8305SC
14 x 20 mm
2.85 mm
PCB Description
Table 156. PCB Description
Item
Dimension (L x W)
Number of Cu Layer
9.6.3.
Parameter
50 x 70 mm
2 layers (80% of Cu trace coverage of top/bottom layer)
Assembly Material
Table 157. Assembly Material
Item
Die
Lead Frame
Silver Paste
Mold Compound
Material
Silicon
C7025
AG03*7
6300HG
Thermal Conductivity K (w/m-k)
147
168
2.0
0.63
PCB
FR4
Cu
0.21
393
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
139
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
9.6.4.
Simulation Analysis Conditions
Table 158. Simulation Analysis Conditions
Item
Air Flow Rate
Control Condition
Ambient Temperature
9.6.5.
Parameter
0, 1, 2, 3 m/s
Power=1.386 W
60°C
Results
Table 159. Results
Air Flow (m/s)
Tj (°C)
Tc (°C)
θJA (°C/W)
ψJT (°C/W)
0
117.3
111.0
41.3
4.51
1
112.1
104.7
37.6
5.33
2
109.6
101.8
35.8
5.61
3
108.2
100.2
34.8
5.79
Where:
Tj is the maximum junction temperature.
Tc is the maximum case temperature.
θJA is the junction-to-ambient thermal resistance.
θJC is the junction-to-case thermal resistance.
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
140
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
10. Application Information
10.1. UTP (10Base-T/100Base-TX) Application
In reviewing this material, please be advised that the center-tap on the primary side of the transformer
must be left floating and should not be connected to ground through capacitors.
Table 160. Transformer Vendors
Vendor
Pulse
Magnetic 1
Quad
H1164
ML164
Single
H1102
ML102
Two types of transformers are generally used for the RTL8305SC. One is a Quad (4 port) transformer
with one common pin on both sides for an internal connected central tap. Another is a Single (1 port)
transformer with two pins on both sides for a separate central tap.
RXIP
RXIN
50Ω
1%
1:1
2
AGND
3
1.8V
4
0.1uF
AGND
TXON
1
0.1uF
RTL8305SC
TXOP
RJ-45
Transformer
50Ω
1%
5
1:1
50Ω
1%
6
7
0.1uF
8
50Ω
1% AGND
IBREF
75Ω
75Ω
75Ω
1.96ΚΩ, 1%
50pF/2KV
AGND
Chassis GND
Figure 27. UTP Application for Transformer with Connected Central Tap
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
141
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
RXIP
RXIN
Pulse H1102
Transformer
50Ω
1%
50Ω
1%
1.8V
RJ-45
1:1
1
75Ω
0.1uF
2
AGND
3
4
RTL8305SC
TXOP
5
50Ω
1%
1.8V
1:1
6
75Ω
7
0.1uF
TXON
8
50Ω
1%
AGND
IBREF
75Ω
75Ω
1.96ΚΩ, 1%
50pF/2KV
AGND
Chassis GND
Figure 28. UTP Application for Transformer with Separate Central Tap
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
142
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
10.2. 100Base-FX Application
The following is an example of an RTL8305SC connecting to a 3.3V fiber transceiver application circuit
with a SIEMENS V23809-C8-C10 (3.3V~5V fiber transceiver, 1*9 SC Duplex Multimode 1300 nm LED
Fast Ethernet/FDDI/ATM Optical Transceiver Module).
Fiber_RX_3.3V
82Ω
82Ω
RXIP
100Base-FX
Fiber Transceiver
130Ω
1
GND_RX
2
RD+
3
RD-
4
SD
5
VCC_RX
6
VCC_TX
7
TD-
8
TD+
9
GND_TX
AGND
RXIN
Fiber_RX_3.3V
130Ω
RTL8305SC
AGND
Fiber_RX_3V
Fiber_TX_3V
82Ω
TXON
TXOP
130Ω
82Ω
AGND
130Ω
Chassis GND
AGND
Figure 29. 100Base-FX with 3.3V Fiber Transceiver Application
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
143
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
Figure 30 shows an example of an RTL8305SC connected to a 5V fiber transceiver application circuit
with a SIEMENS V23809-C8-C10 (3.3V~5V fiber transceiver, 1*9 SC Duplex Multimode 1300nm LED
Fast Ethernet/FDDI/ATM Optical Transceiver Module).
Fiber_RX_5V
RXIP
RXIN
82Ω
82Ω
50Ω
50Ω
100Base-FX
Fiber Transceiver
1
GND_RX
2
RD+
3
RD-
4
SD
Fiber_RX_5V
5
VCC_RX
Fiber_TX_5V
6
VCC_TX
7
TD-
8
TD+
9
GND_TX
Fiber_TX_5V
82Ω
RTL8305SC
100Ω
100Ω
82Ω
TXON
TXOP
130Ω
250Ω
130Ω
250Ω
Chassis GND
Figure 30. 100Base-FX with 5V Fiber Transceiver Application
5-port 10/100Mbps Single-Chip Dual MII Switch Controller
144
Track ID: JATR-1076-21 Rev. 1.2
RTL8305SC
Datasheet
11. Design and Layout Guide
In order to achieve maximum performance using the RTL8305SC, good design attention is required
throughout the design and layout process. The following are some suggestions to implement a high
performance system.
General Guidelines
•
•
Provide a good power source, minimizing noise from switching power supply circuits (